高中不等式的基本知识点和练习题(供参考)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的基本知识
(一)不等式与不等关系
1、应用不等式(组)表示不等关系;
不等式的主要性质:
(1)对称性:a b b a <⇔>
(2)传递性:c a c b b a >⇒>>,
(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加)
(4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,
bd ac d c b a >⇒>>>>0,0(同向同正可乘)
(5)倒数法则:b a ab b a 110,<⇒
>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且
2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)
3、应用不等式性质证明不等式
(二)解不等式
1、一元二次不等式的解法
一元二次不等式()0002
2≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42
-=∆,则不等式的解的各种情况如下表:
2、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
3、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题
若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >
若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <
(三)线性规划
1、用二元一次不等式(组)表示平面区域
二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)
2、二元一次不等式表示哪个平面区域的判断方法
由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)
3、线性规划的有关概念:
①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.
②线性目标函数:关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.
③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:
满足线性约束条件的解(x ,y )叫可行解.
由所有可行解组成的集合叫做可行域.
使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.
4、求线性目标函数在线性约束条件下的最优解的步骤:
(1)寻找线性约束条件,列出线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域;
(3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解
2
a b +≤
1.若a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a=b 时取等号. 2.如果a,b 是正数,那么).""(2
号时取当且仅当==≥+b a ab b a 变形: 有:a+b ≥ab 2;ab ≤22⎪⎭
⎫ ⎝⎛+b a ,当且仅当a=b 时取等号. 3.如果a,b ∈R+,a ·b=P (定值),当且仅当a=b 时,a+b 有最小值P 2;
如果a,b ∈R+,且a+b=S (定值),当且仅当a=b 时,ab 有最大值4
2
S . 注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,
正所谓“积定和最小,和定积最大”.
(2)求最值的重要条件“一正,二定,三取等”
4.常用不等式有:(1(根据目标不等式左右的运算结构选用) ;(2)a 、b 、c R ,(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。
不等式主要题型
(一) 不等式与不等关系
题型二:比较大小(作差法、函数单调性、中间量比较,基本不等式)
1. 设2a >,12
p a a =+
-,2422-+-=a a q ,试比较q p ,的大小 (二) 解不等式
题型三:解不等式 2.解不等式2(1)(2)0x x -+≥。
3 .25123
x x x -<--- 4.不等式2120ax bx ++>的解集为{x|-1<x <2},则a =_____, b=_______
2222211a b a b ab a b
++≥≥≥+∈222a b c ab bc ca ++≥++a b c ==0,0a b m >>>b b m a a m
+<+
5.关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02
>-+x b ax 的解集为 题型四:恒成立问题 6.关于x 的不等式a x 2+ a x +1>0 恒成立,则a 的取值范围是_____________
7.若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.
8.已知0,0x y >>且
191x y +=,求使不等式x y m +≥恒成立的实数m 的取值范围。
2
a b +≤ 题型五:求最值
9.求函数 y =3x 2+12x 2 的值域。 10.求2710(1)1
x x y x x ++=>-+的值域。 11.求函数2
y =的值域。
12.若实数满足2=+b a ,则b a 33+的最小值是 .
13.已知0,0x y >>,且191x y
+=,求x y +的最小值。 14.已知x ,y 为正实数,且
x 2+y 22 =1,求x 1+y 2 的最大值. 15.已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab
的最小值. 题型六:利用基本不等式证明不等式
16已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222
17.(1)正数a ,b ,c 满足a +b +c =1,求证:(1-a)(1-b)(1-c)≥8abc