2.1.1(3)指数综合

合集下载

高中数学 第二章 基本初等函数(1) 2.1.1 指数与指数幂的运算 第一课时 根式学案(含解析)

高中数学 第二章 基本初等函数(1) 2.1.1 指数与指数幂的运算 第一课时 根式学案(含解析)

2.1。

1指数与指数幂的运算第一课时根式根式[提出问题](1)若x2=9,则x是9的平方根,且x=±3;(2)若x3=64,则x是64的立方根,且x=4;(3)若x4=81,则x是81的4次方根,且x=±3;(4)若x5=-32,则x是-32的5次方根,且x=-2。

问题1:观察(1)(3),你认为正数的偶次方根都是两个吗?提示:是.问题2:一个数的奇次方根有几个?提示:1个.问题3:由于22=4,小明说,2是4的平方根;小李说,4的平方根是2,你认为谁说的正确?提示:小明.[导入新知]根式及相关概念(1)a的n次方根定义:如果x n=a,那么x叫做a的n次方根,其中n〉1,且n∈N*。

(2)a的n次方根的表示:n的奇偶性a的n次方根的表示符号a的取值范围n为奇数错误!Rn为偶数±错误![0,+∞)(3)根式:式子错误!叫做根式,这里n叫做根指数,a叫做被开方数.[化解疑难]根式记号的注意点(1)根式的概念中要求n>1,且n∈N*。

(2)当n为大于1的奇数时,a的n次方根表示为错误!(a∈R);当n为大于1的偶数时,错误!(a≥0)表示a在实数范围内的一个n次方根,另一个是-错误!,从而错误!n=a.根式的性质[提出问题]问题1:错误!3,错误!3,错误!4分别等于多少?提示:2,-2,2.问题2:错误!,错误!,错误!,错误!分别等于多少?提示:-2,2,2,2.问题3:等式错误!=a及(错误!)2=a恒成立吗?提示:当a≥0时,两式恒成立;当a〈0时,a2=-a,(a)2无意义.[导入新知]根式的性质(1)(错误!)n=a(n为奇数时,a∈R;n为偶数时,a≥0,且n〉1).(2)错误!=错误!(3)错误!=0。

(4)负数没有偶次方根.[化解疑难](错误!)n与错误!的区别(1)当n为奇数,且a∈R时,有错误!=(错误!)n=a;(2)当n为偶数,且a≥0时,有错误!=(错误!)n=a。

高一数学必修一第二章基本初等函数知识点总结

高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)

a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x

2.1.1指数和指数幂运算(一)—根式

2.1.1指数和指数幂运算(一)—根式

新课
2、 n次方根的定义
一般地, 若x a, 则x叫做a的n次方根.其中
n
n次方根,32的5次方根; (2)25的2次方根, 81的4次方根.
n次方根有何性质?
3/21/2019 10:18:57 PM
新课
n次方根的性质
(1)奇次方根的性质 :
(1).
3 3
(3)( 3) ; 2 (4 ) ( a b ) . n n (5 ) ( a b) .
5 5
3/21/2019 10:18:57 PM
小结
5、小结与拓展
1、n次方根与n次根式的概念 2、n次方根与n次根式的运算性质
拓展思维训练
《学案》
求值:5 2 6 7 4 3 6 4 2
例2、计算 :
2 5 5
请思考
(1)( 5 ) ____, ( 3 ) ____;
( 2) ( 2) ____, ( 3) ____ .
2 3 3
比较( a ) 和 a 的区别与联系 ?
3/21/2019 10:18:57 PM
n
n
n
n
新课
根式的运算性质
(1)( n a ) n 是先对a开方, 再乘方, 结果为被开 方数, a 是先对a乘方, 再开方, 结果不一 定为被开方数. n n (2)当n为奇数时, a ____, a 当n为偶数时, a
正数的奇次方根是一个正数, 负数的奇次 方根是一个负数,0的奇次方根是0.
( 2)偶次方根的性质 : 正数的偶次方根是两个绝对值相等符号
相反的数, 负数的偶次方根没有意义,0的 奇次方根是0.
3/21/2019 10:18:57 PM

人教A版高中数学必修一课件:2.1.1 指数与指数幂的运算

人教A版高中数学必修一课件:2.1.1 指数与指数幂的运算
有理指数幂的运算性质,对于无理数指数幂都适用
(四).实数指数幂的运算性质
a ar s a (a rs 0, r, s R)
(ar )s ars (a 0, r, s R)
(ab)r a br r (a 0,b 0, r R)
练习: (1).用根式的形式表示下列各式(a>0):
m3n3 m2 n3
(3) a 2 (a 0); a3 a2
(4)(3 25 125) 4 5
2
3
1

a2
1
3
2 1 2
a 2 3
a2 a2
(53 52 ) 54
2
1
3
1
53 54 52 54
5
a6 6 a5
21
31
5
5
53 4 52 4 512 54
a a
(a 0) (a 0)
(Ⅱ)讲授新课 1.引入:
(±2)2=4
2,-2 叫4的平方根(即2次方根),
其中:2叫做4的算术平方根(正的2次方根) -2叫做4的负的平方根(负的2次方根)
23=8
2叫8的立方根(即3次方根)
(-2)3=-8
-2叫-8的立方根(即3次方根)
25=32
五.练习:
课本P59习题2.1A组1,2题
练习
(1)3 64 __-_4___ 5 32 ____2___; (2)4 81 ___3___ 4 81 ___-_3__;;
(3) (4 3)4 3______(5 6)5 ___6___;
(4) 5 a10 _a_2___ 3 a12 _____a4__;

人教A版高中数学必修一2.1.1指数与指数幂的运算第一、二、三课时

人教A版高中数学必修一2.1.1指数与指数幂的运算第一、二、三课时

备用
1.要使
(5x
1
)
3 4
(x
2
1) 3
有意义,则x的取
值范围是 2
2.计算:1
(a 2
1
a2
1
)(a 2
1
a2
)(a
a2
a1)
a2
3.求值: 3 2 5 12 3 2 2
2.1.1 指数与指数幂的运算
第3课时
指数式的计算与化简
指数式的计算与化简,除了掌握定义、法则外,还 要掌握一些变形技巧.根据题目的不同结构特征,灵 活运用不同的技巧,才能做到运算合理准确快捷.
(2)在 根 式n am中,若 根 指 数n与 幂 指 数m有 公 约 数 时, 当a 0时 可约 分.当a 0时 不可 随意 约 分. 如8 32 4 3, 10 (2)2 5 2而15 (2)5 3 2.
课堂练习:课本 P54中练习第3题
课外作业:课本 P59习题2.1中A组第2,3,4题
4.下 列 各 式 中,正 确 的 是( C )
A.6 (2)2 3 2 B.4 (3 )4 3
C .(3 2 )3 2 D.6 (2a 1)6 2a 1
小结
1.n次方根的定义:
一般地,如果xn a,那么x叫做a的n次方根, 其中n 1且n N .
2.根式的简单性质: 1) 当n 1, n N *时,总有 (n a )n a.
(1)a a1 7; (2)a2 a2 47;
3
a2 (3) 1
3
a 2
1
(a
1 2
1
a2
)(a
1
a1
1
1
a2
1
a2
)

冲击地压评价的综合指数法使用说明

冲击地压评价的综合指数法使用说明

综合指数法使用说明1 .概念冲击地压影响因素众多,有地质的因素,也有采矿的因素。

在地质类因素中,如果某个矿井曾经发生过冲击地压,则能够表明该矿井具备发生冲击地压的充分必要条件,发生次数越多,则冲击地压危险越高;开采深度越大,则围岩应力水平及冲击地压危险越高;上覆裂隙带内坚硬厚层岩层距煤层的距离越近,则顶板运动断裂时产生的震动对冲击地压的影响越大;煤层上方100m范围顶板岩层厚度特征越明显,则储存和释放弹性能的能力越强,对冲击地压危险的影响越大;开采区域内构造引起的应力增量越高,对冲击地压的影响越大;煤的单轴抗压强度越高,煤体的完整性越好,煤体越容易冲击破坏;煤的弹性能指数越大,其储存弹性能的能力越强、冲击破坏的强度越大。

在采矿类因素中,如果提前进行保护层开采,可以降低冲击地压危险,如果保护层的卸压程度越高,则冲击地压危险越低;如果在上保护层开采遗留的煤柱下方区域开采,则离煤柱的水平距离越近,则冲击地压危险越高;如果工作面为实体煤工作面,则比临近采空区的工作面冲击地压危险低,如果为孤岛工作面则冲击地压危险高;如果工作面长度过小则可引起两端头拐角煤柱产生的集中应力叠加,引起冲击地压危险上升;如果区段煤柱宽度留设不合理,则可产生应力过度升高的情况,增大冲击地压危险;如果巷道留有底煤,则可在水平应力的作用下产生底鼓冲击破坏;当巷道、工作面向采空区、断层、向斜、背斜、煤层侵蚀、合层或厚度变化区域掘进或回采时,可造成超前支承应力与采空区边缘集中应力或构造应力的叠加,将会增大冲击地压的危险。

在统计已发生的冲击地压灾害的基础上,分析各种地质因素和开采技术因素对冲击地压发生的影响,确定各种因素的影响权重,得到冲击危险综合指数,基于对冲击地压危险性进行预测与等级划分,该方法称为综合指数法。

综合指数法由窦林名教授提出并实施应用,后由窦林名、牟宗龙教授做简单修改。

其他学者提出的综合分析法、层次分析法、统计分析法等,不能称为综合指数法。

2.1.1 指数与指数幂运算

2.1.1 指数与指数幂运算

1.415
9.750851808 9.735171039 1.414
1.4143
9.73987262 9.735305174 1.4142
1.41422 9.738618643 9.738461907 1.41421
1.414214 9.738524602 9.738508928 1.414213
1.4142136 9.738518332 9.738516765 1.4142135
林老师网络编辑整理
13
利用根式性质化简求值
P31例( 2 5) 3 2 2 3 (1 2)3 4 (1 2)4
【解析】(5)因为 3-2 2=( 2)2-2 2+1=(1- 2)2,
3
4
所以原式= 1- 22+ 1- 23+ 1- 24
=|1- 2|+(1- 2)+|1- 2|
= 2-1+1- 2+ 2-1= 2-1.
林老师网络编辑整理
14
有条件根式的化简
P31例(3 2) 已知 | x | <3,化简 x2 2x+1+ x2 +6x+9
【解析】(2)原式= x-12- x+32=|x-1|-|x+3|. ∵-3<x<3, ∴当-3<x<1 时,原式=-(x-1)-(x+3)=-2x-2. 当 1≤x<3 时,原式=(x-1)-(x+3)=-4.
……
……
林老师网络编辑整理
11
5 2 就是一串有理数指数幂和另一串有理 数指数幂按照规律变化的结果。这个过程可以
表示如下:
. . . . . . ...... .. . .
51.4 51.4151.41451.4142 5 2 51.4143 51.415

一二三四级劳动强度指数表-概述说明以及解释

一二三四级劳动强度指数表-概述说明以及解释

一二三四级劳动强度指数表-概述说明以及解释1.引言1.1 概述概述部分的内容可以介绍整篇文章的主题和背景,以及概括性地阐述一二三四级劳动强度指数表的研究意义和重要性。

概述劳动强度指数是衡量劳动强度的一种重要指标,对于评估劳动条件和劳动安全具有重要的参考价值。

一二三四级劳动强度指数表作为一种针对劳动强度的分类系统,可以帮助我们更准确地评价不同劳动工种和工作环境的劳动强度水平。

在当前全球化和经济快速发展的背景下,劳动力市场日益竞争激烈,工作压力和劳动强度也不断增加。

因此,研究劳动强度的评估方法对于保障劳动者的权益、提高劳动生产率以及促进社会可持续发展至关重要。

本文旨在通过构建一二三四级劳动强度指数表,系统地研究劳动强度的分类和评价方法,为劳动者提供更安全、健康的工作环境,同时为企业提供科学的劳动管理基础。

本文将先介绍一二三四级劳动强度指数表的构建思路和方法,然后详细阐述各个级别的劳动强度指数的特征和评价标准。

最后,将总结一二三四级劳动强度指数的应用意义,并探讨如何更好地利用这一指数表来推动劳动力市场的发展和改善劳动条件。

通过本文的研究,有望为社会各界提供一个科学的劳动强度评估参考工具,帮助政府、企事业单位和劳动者更好地了解和应对不同劳动强度等级下的挑战和需求。

相信本文的研究成果将对劳动力市场的健康发展和社会的可持续进步产生积极的影响。

1.2 文章结构文章结构部分的内容可以按照以下方式进行编写:文章结构部分旨在介绍本文的整体组织架构和目录安排。

本文主要分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的三个小节。

在概述部分,将简要介绍劳动强度指数及其重要性。

在文章结构部分,将详细介绍本文的组织结构和各个部分的内容。

在目的部分,将明确本文的研究目的和意义。

正文部分是本文的核心部分,主要包括一级劳动强度指数、二级劳动强度指数、三级劳动强度指数和四级劳动强度指数四个小节。

在每个小节中,将介绍相应级别的劳动强度指数的定义、计算方法以及实际应用情况,同时可以结合案例或数据进行说明和分析。

2.1.1 指数幂及其运算

2.1.1 指数幂及其运算

先将根式化为分数指数幂的形式,再运用分数指数幂的运算性
质进行化简.
11
11
7
【解析】(1)原式=a3 ·a4 =a3 +4 =a12 .
111
111
7
(2)原式=a2 ·a4 ·a8 =a2 +4 +8 =a8 .
23
23
13
(3)原式=a3 ·a2 =a3 +2 =a 6 .
1
1
2 13
213
73
了灵活运用运算法则外还要关注条件中的字母是否有隐含的条
件.
1
【正解】由(-a)2 知-a≥0,故 a-1<0.
11
∴(1-a)[(a-1)-2(-a)2 ]2
=(1-a)(1-a)-1·(-a)14=(-a)14 .
【警示】在利用指数幂的运算性质时,要关注条件中有无
隐含条件,在出现根式时要注意是否为偶次方根,被开方数是
(1)4 2+1·23-2 2·64-3 ;
11
(2)
a-b
1
1
-a+b1-2a21 ·b2
a2 +b2
a2 -b2
【解析】(1)原式=22 2+2·23-2 2·2-4=21=2.
1
1
1
1
1
1
(2)原式=a2
+b2 ·a2 a21+b12
-b2
-a21 a2
-b2
1
-b2
2
1
=a2
1
-b2
- a 1 2
方法二:a2+a-2=a2+2aa-1+a-2-2aa-1
=(a+a-1)2-2=25-2=23.
1
1
(2)∵(a2 -a-2 )2=a+a-1-2=5-2=3,

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.1指数与指数幂的运算(3)教案数学教案

高中数学第二章基本初等函数(Ⅰ)2.1指数函数2.1.1指数与指数幂的运算(3)教案数学教案

指数与指数幂的运算(3)导入新课思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数.并且知道,在有理数到实数的扩充过程中,增添的数是——实数.对无理数指数幂,也是这样扩充而来.既然如此,我们这节课的主要内容是:教师板书本堂课的课题(指数与指数幂的运算(3))之无理数指数幂.思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本堂课的课题.推进新课新知探究提出问题①我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?③你能给上述思想起个名字吗?④一个正数的无理数次幂到底是一个什么性质的数呢?如52,根据你学过的知识,能作出判断并合理地解释吗?⑤借助上面的结论你能说出一般性的结论吗?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:问题①从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向.问题②对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联.问题③上述方法实际上是无限接近,最后是逼近.问题④对问题给予大胆猜测,从数轴的观点加以解释.问题⑤在③④的基础上,推广到一般的情形,即由特殊到一般.讨论结果:①1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值.②第一个表:从大于2的方向逼近2时,52就从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向逼近52.第二个表:从小于2的方向逼近2时,52就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向逼近52.从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面52从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于52的方向接近52,而另一方面52从51.5,51.42,51.415,51.4143,51.41422,…,即大于52的方向接近52,可以说从两个方向无限地接近52,即逼近52,所以52是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.4143,51.41422,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示52的点靠近,但这个点一定在数轴上,由此我们可得到的结论是52一定是一个实数,即51.4<51.41<51.414<51.414 2<51.41421<…<52<…<51.41422<51.4143<51.415<51.42<51.5.充分表明52是一个实数.③逼近思想,事实上里面含有极限的思想,这是以后要学的知识. ④根据②③我们可以推断52是一个实数,猜测一个正数的无理数次幂是一个实数.⑤无理数指数幂的意义:一般地,无理数指数幂a α(a>0,α是无理数)是一个确定的实数.也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数.我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂. 提出问题(1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?(2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢? (3)你能给出实数指数幂的运算法则吗?活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳. 对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明.对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂a α(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通. 对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了.讨论结果:(1)底数大于零的必要性,若a=-1,那么a α是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂a α是一个确定的实数,就不会再造成混乱. (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂.类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则: ①a r ·a s =a r+s(a>0,r,s 都是无理数).②(a r )s =a rs(a>0,r,s 都是无理数).③(a·b)r =a r b r(a>0,b>0,r 是无理数).(3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂. 实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质: ①a r ·a s =a r+s(a>0,r,s∈R ).②(a r )s =a rs(a>0,r,s∈R ).③(a·b)r =a r b r(a>0,b>0,r∈R ). 应用示例思路1例1利用函数计算器计算.(精确到0.001) (1)0.32.1;(2)3.14-3;(3)3.143;(4)33.活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按键,再按幂指数2.1,最后按,即可求得它的值; 对于(2),先按底数3.14,再按键,再按负号键,再按3,最后按即可;对于(3),先按底数3.1,再按键,再按34,最后按即可;对于(4),这种无理指数幂,可先按底数3,其次按键,再按键,再按3,最后按键.有时也可按或键,使用键上面的功能去运算.学生可以相互交流,挖掘计算器的用途.答案:(1)0.32.1≈0.080;(2)3.14-3≈0.032; (3)3.143≈2.336;(4)33≈6.705.点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n 位,只需看第(n+1)位能否进位即可.例2求值或化简. (1)3224ab ba -(a>0,b>0); (2)(41)21-213321)()1.0()4(---b a ab (a>0,b>0);(3)246347625---+-.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律.解:(1)3224ab ba -=2224b a -(a 31b 32)21=a -2ba 61b 31=a611-b 34=61134ab .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.(2)(41)21-2133231)()1.0()4(---b a ab =223211044•a 23a 23-b 23-b 23=254a 0b 0=254.点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数.(3) 246347625---+- =222)22()32()23(---+- =3-2+2-3-2+2=0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用.例3已知x=21(5n 1-5n 1-),n∈N *,求(x+2x 1+)n 的值.活动:学生思考,观察题目的特点,从整体上看,应先化简,然后再求值,要有预见性,5n1与5n1-具有对称性,它们的积是常数1,为我们解题提供了思路,教师引导学生考虑问题的思路,必要时给予提示.x 2=41(5n 1-5n 1-)2=41(5n 2-2·50+5n 2-)=41(5n 2+2+5n 2--4) =41(5n 1+5n 1-)2-1. 这时应看到1+x 2=1+41(n 1-5n 1-)2=41(5n 1+5n 1-)2,这样先算出1+x 2,再算出2x 1+,带入即可.解:将x=21(5n 1-5n 1-)代入1+x 2,得1+x 2=1+41(5n 1-5n 1-)2=41(5n 1+5n 1-)n ,所以(x+2x 1+)n=[21(5n 1-5n 1-)+211)55(41n n-+]n=[21(5n 1-5n 1-)+21(5n 1+5n 1-)]n =(5n 1)n=5.点评:运用整体思想和完全平方公式是解决本题的关键,要深刻理解这种做法.思路2 例1计算:(1)105432)(0625.0833416--+++π;(2)12532+(21)-2+34331-(271)31-;(3)(-2x 41y31-)(3x 21y 32);(4)(x 21-y 21)÷(x 41-y 41).活动:学生观察、思考,根式化成分数指数,利用幂的运算性质解题,另外要注意整体的意识,教师有针对性的提示引导,对(1)根式的运算常常化成幂的运算进行,对(2)充分利用指数幂的运算法则来进行,对(3)则要根据单项式乘法和幂的运算法则进行,对(4)要利用平方差公式先因式分解,并对学生作及时的评价. 解:(1)105432)(0625.0833416--+++π =(425)21+(827)31+(0.062 5)41+1-21=(25)2×21+(23)313⨯+(0.5)414⨯+21 =25+23+0.5+21 =5;(2)12532+(21)-2+34331-(271)31-=(53)32+(2-1)-2+(73)31-(3-3)31-=5323⨯+2-2×(-1)+7313⨯-3)31(3-⨯-=25+4+7-3=33; (3)(-2x 41y 31-)(3x 21y 32)=(-2×3)(x 41x 21·y31-y 32)=323121416+-+•-yx=-6x 43y 31=3436y x-;(4)(x 21-y 21)÷(x 41-y 41)=((x 41)2-(y 41)2)÷(x 41-y 41) =(x 41+y 41)(x 41-y 41)÷(x 41-y 41) =x 41+y 41.点评:在指数运算中,一定要注意运算顺序和灵活运用乘法公式.例2化简下列各式: (1)323222323222--------+--++yxy x yxy x ;(2)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a-a -1)].活动:学生观察式子的特点,特别是指数的特点,教师引导学生考虑题目的思路,这两题要注意分解因式,特别是立方和和立方差公式的应用,对有困难的学生及时提示:对(1)考查x 2与x 32的关系可知x 2=(x 32)3,立方关系就出来了,公式便可运用,对(2)先利用平方差,再利用幂的乘方转化为立方差,再分解因式,组织学生讨论交流. 解:(1)原式=323222323222--------+--++yxy x yxy x=])())(()[()()(23232322322323232232--------++-+-yyx x yy x x=343234343234)()(---------+-yxy xy xy x=xyxy xy 3322)(2-=--; (2)原式=[(a 3)2-(a -3)2]÷[(a 4+a -4+1)(a-a -1)]=))(1()()(1442222----++-a a a a a a =))(1()1)((1444422-----++++-a a a a a a a a =1212)(----a a a a =a+a -1.点评:注意立方和立方差公式在分数指数幂当中的应用,因为二项和、差公式,平方差公式一般在使用中一目了然,而对立方和立方差公式却一般不易观察到,a 23=(a 21)3还容易看出,对其中夹杂的数字m 可以化为m·a 21a 21-=m,需认真对待,要在做题中不断地提高灵活运用这些公式的能力.知能训练课本P 59习题2.1A 组 3.利用投影仪投射下列补充练习: 1.化简:(1+2321-)(1+2161-)(1+281-)(1+241-)(1+221-)的结果是( )A.21(1-2321-)-1B.(1-2321-)-1C.1-2321- D.21(1-2321-) 分析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形. 因为(1+2321-)(1-2321-)=1-2161-,所以原式的分子分母同乘以(1-2321-),依次类推,所以321212121)21)(21(----+-=32112121----=21(1-2321-)-1. 答案:A2.计算(297)0.5+0.1-2+(22710)32--3π0+9-0.5+490.5×2-4.解:原式=(925)21+100+(6427)32-3+4921×161=53+100+169-3+31+167=100.3.计算1212--+-+a a a a (a≥1). 解:原式=|11|11)11()11(22--++-=--++-a a a a (a≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a>0,x=21(a n 1-a n 1-),则(x+2x 1+)n 的值为_______.分析:从整体上看,应先化简,然后再求值,这时应看到解:1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.这样先算出1+x 2,再算出2x 1+,将x=21(a n 1-a n 1-)代入1+x 2,得1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.所以(x+2x 1+)n=[21(a n 1-a n 1-)+41(a n 1+a n 1-)2]n=[21(a n 1-a n 1-)+21(a n 1+a n 1-)]n=a.答案:a 拓展提升参照我们说明无理数指数幂的意义的过程,请你说明无理数指数幂32的意义.活动:教师引导学生回顾无理数指数幂52的意义的过程,利用计算器计算出3的近似值,取它的过剩近似值和不足近似值,根据这些近似值计算32的过剩近似值和不足近似值,利用逼近思想,“逼出”32的意义,学生合作交流,在投影仪上展示自己的探究结果.我们把用2作底数,3的不足近似值作指数的各个幂排成从小到大的一列数 21.7,21.72,21.731,21.7319,…,同样把用2作底数, 3的过剩近似值作指数的各个幂排成从大到小的一列数: 21.8,21.74,21.733,21.7321,…,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2α会越来越趋近于同一个数,我们把这个数记为32. 即21.7<21.73<21.731<21.7319<…<32<…<21.7321<21.733<21.74<21.8.也就是说32是一个实数,32=3.321 997 …也可以这样解释:当3的过剩近似值从大于3的方向逼近3时,32的近似值从大于32的方向逼近32; 当3的不足近似值从小于3的方向逼近3时,32的近似值从小于32的方向逼近32.所以32就是一串有理指数幂21.7,21.73,21.731,21.7319,…,和另一串有理指数幂21.8,21.74,21.733,21.7321,…,按上述规律变化的结果,即32≈3.321 997.课堂小结(1)无理指数幂的意义.一般地,无理数指数幂a α(a>0,α是无理数)是一个确定的实数. (2)实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质: ①a r ·a s =a r+s(a>0,r,s∈R ).②(a r )s =a rs(a>0,r,s∈R ).③(a·b)r =a r b r(a>0,b>0,r∈R ).(3)逼近的思想,体会无限接近的含义. 作业课本P 60习题2.1 B 组 2.设计感想无理数指数是指数概念的又一次扩充,教学中要让学生通过多媒体的演示,理解无理数指数幂的意义,教学中也可以让学生自己通过实际情况去探索,自己得出结论,加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多作练习,提高学生理解问题、分析问题的能力.。

2.1.1指数与指数运算(根式)

2.1.1指数与指数运算(根式)

P50探究 例如,3 33 = 3 ,5(-3)5 = -3
32 = 3 ,(-3)2 = 3
当n为奇数时, n an a;
当n为偶数时, n
an
| a |
a, a 0, a,a 0.
例1、求下列各式的值:
(1)3 (8)3 =-8 (2) (10)2 =︱-10︱=10
P59A1
(3)4 (3 )4 =︱3-π ︱= π -3
(4) (a b)2 (a b) = ︱a-b ︱=a-b
分析:
当n为奇数时,n an a
a(a 0)
当n为偶数时,n an a
-a (a<0)
补充练习:
(1) 5 -3)3 =-3
(3) (-3)4 = 92 = 9 =9
(4) ( 2- 3)2 =︱ 2- 3︱= 3- 2
(5)
6 = ( 3)2 =︱x3︱
(6)
5-2 6 = ( 3)2-2 2 3 ( 2)2
= ( 3- 2)2 =︱ 3- 2 ︱ = 3- 2
小结
a2
(3) a6 的三次方根是____
(4) 0 的七次方根是____0___
思考:a的n次方根有几个?
① n 为奇数时,a 的 n 次方根只有1个.记为:n a
正数的奇次方根是正数, 例如,3 8=2 负数的奇次方根是负数, 例如,3 -8=-2 零的奇次方根是零.
② n为偶数时,aa 0 的 n次方根有2个.记为: n a
例如,81的4次方根 4 81= 3.
(其中4 81=3, -4 81=-3)
n 0 0;负数没有偶次方根.
4、式子 n a 叫做根式. n 叫做根指数,a 叫

2.1.1 指数与指数幂的运算(3)

2.1.1 指数与指数幂的运算(3)

2 ; 公式2:
② (- 2)2 = 2 ; 当n为奇数时:
③ 3 33 =
3;
n an = a
④ 3 (- 3)3 = -3 ; 当n为偶数时:
⑤ 4 (- 1)4 =
1 ; n an =| a |= ìïí a, a ³ 0
ïî - a, a < 0
例题分析
例3. 求下列各式的值
(1) 3 (- 8)3
(1)正数的负分数指数幂的意义与负整数幂的意
-m
义相同.即:a n =
1 m (a > 0, m, n ?
N*)
an
(2)规定:0的正分数指数幂等于0,
0的负分数指数幂无意义. (3)运算性质仍然适用
例题分析
例3 .根式与分数指数幂的互化
1
3
a 2 = a a 4 =4 a3
4
5
3 a4 = a 3 6 a5 = a 6
2.观察以下式子,并总结出规律:(a > 0)
10
210 = (25 )2 = 25 = 2 2 ;
3 312
= 3 (34 )3
= 34
12
=33;
12
4 a12 = 4 (a3 )4 = a3 = a 4 ;
10
5 a10 = 5 (a2 )5 = a2 = a 5
结论:当根式的被开方数的指数能被根指数 整除时,根式可以表示为分数指数幂的形式.
思考:一个数的n次方根有多少个?
一、n次方根、根式的概念
a ①当n为奇数时, a的n次方根只有1个,用 n 表示
②当n为偶数时,
正数的n次方根有2个,用 ? n a (a 0) 表示
0的n次方根有1个,是0

2.1.1有理指数幂教案

2.1.1有理指数幂教案

第二章 基本初等函数(Ⅰ)2.1指数函数2 .1.1 指数与指数幂的运算一.教学目标:1.知识与技能:(1)理解分数指数幂和根式的概念; (2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力. 2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质. 3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (3)让学生体验数学的简洁美和统一美. 二.重点、难点1.教学重点:(1)分数指数幂和根式概念的理解; (2)掌握并运用分数指数幂的运算性质; 2.教学难点:分数指数幂及根式概念的理解 三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体 四、教学设想:第一课时一、复习提问:什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零. 二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若nx a =,则x 叫做a 的n 次方根(throot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n 次方根中,正数用n a 表示,如果是负数,用n a -表示,n a 叫做根式.n 为奇数时,a 的n 次方根用符号n a 表示,其中n 称为根指数,a 为被开方数. 类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?n nn a n aa n a n a⎧⎪⎨±⎪⎩为奇数, 的次方根有一个,为为正数:为偶数, 的次方根有两个,为n n a n aa n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为为负数:为偶数, 的次方根不存在.零的n 次方根为零,记为00n =举例:16的次方根为2±,527527--的次方根为等等,而27-的4次方根不存在. 小结:一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数和偶数两种情况.根据n 次方根的意义,可得:()n n a a =()n n a a =肯定成立,n n a 表示a n 的n 次方根,等式n n a a =一定成立吗?如果不一定成立,那么n na 等于什么?让学生注意讨论,n 为奇偶数和a 的符号,充分让学生分组讨论. 通过探究得到:n 为奇数,n na a =n 为偶数,,0||,0nn a a a a a a ≥⎧==⎨-<⎩如34334(3)273,(8)|8|8-=-=--=-=小结:当n 为偶数时,nna 化简得到结果先取绝对值,再在绝对值算具体的值,这样就避免出现错误:例题:求下列各式的值(1)33(1)(8)- 2(2)(10)- 44(3)(3)π-2(4)()a b -分析:当n 为偶数时,应先写||nna a =,然后再去绝对值. 思考:()nn nn a a =是否成立,举例说明. 课堂练习:1. 求出下列各式的值473473(1)(2)(2)(33)(1)(3)(33)a a a --≤-2.若2211,a a a a -+=-求的取值范围. 3.计算343334(8)(32)(23)-+---三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n ,x a x a n 是的次方根,n 为奇数时,=n 为偶数时,n x a =±;2.掌握两个公式:(0),||(0)nnna a n a n a a a a ≥⎧==⎨-<⎩n为奇数时,()为偶数时,3.作业:课后习题2.1 A 组 第1题第二课时提问:1.习初中时的整数指数幂,运算性质?00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义1(0)n na a a -=≠;()m n m n m n mn a a a a a +⋅== (),()n m mn n n n a a ab a b ==什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:a >0 ① 1051025255()a a a a === ②884242()a a a a ===③1212343444()a a a a === ④5105102525()a a a a ===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:2323(0)a a a ==> 12(0)b b b ==>5544(0)c c c ==>即:*(0,,1)m nmna a a n N n =>∈> 为此,我们规定正数的分数指数幂的意义为:*(0,,)m n m na a a m n N =>∈正数的定负分数指数幂的意义与负整数幂的意义相同.即:*1(0,,)m nm na a m n N a-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)n m m m ma a a a a =⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)rsr sa a aa r s Q +⋅=>∈(2)()(0,,)r S rsa a a r s Q =>∈ (3)()(0,0,)rr ra b a b Q b r Q ⋅=>>∈若a >0,P 是一个无理数,则P 该如何理解?为了解决这个问题,引导学生先阅读课本P 62——P 62.即:2的不足近似值,从由小于2的方向逼近2,2的过剩近似值从大于2的方向逼近2.所以,当2不足近似值从小于2的方向逼近时,25的近似值从小于25的方向逼近25.当2的过剩似值从大于2的方向逼近2时,25的近似值从大于25的方向逼近25,(如课本图所示)所以,25是一个确定的实数.一般来说,无理数指数幂(0,)pa a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.思考:32的含义是什么?由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈3.例题 (1).(P 60,例2)求值 解:① 2223323338(2)224⨯====② 1112()21222125(5)555--⨯--====③ 5151(5)1()(2)2322----⨯-===④334()344162227()()()81338-⨯--=== (2).(P 60,例3)用分数指数幂的形式表或下列各式(a >0) 解:117333222.a a a a a a+=⋅== 22823222333a a a a aa+⋅⋅⋅==31442133332()aa a a a a a =⋅===分析:先把根式化为分数指数幂,再由运算性质来运算. 课堂练习:课后练习 第 1,2,3,4题 补充练习:1. 计算:122121(2)()248n n n ++-⋅的结果 2. 若13107310333,384,[()]n a a a a a -==⋅求的值小结:1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的. 作业: 习题 2.1 第2题第三课时一.教学目标1.知识与技能:(1)掌握根式与分数指数幂互化;(2)能熟练地运用有理指数幂运算性质进行化简,求值. 2.过程与方法:通过训练点评,让学生更能熟练指数幂运算性质. 3.情感、态度、价值观(1)培养学生观察、分析问题的能力;(2)培养学生严谨的思维和科学正确的计算能力. 二.重点、难点:1.重点:运用有理指数幂性质进行化简,求值. 2.难点:有理指数幂性质的灵活应用. 三.学法与教具:1.学法:讲授法、讨论法. 2.教具:投影仪 四.教学设想:1.复习分数指数幂的概念与其性质2.例题讲解 例1.(课本例4)计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b -÷- (2)31884()m n - (先由学生观察以上两个式子的特征,然后分析、提问、解答)分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的. 整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.解:(1)原式=211115326236[2(6)(3)]a b+-+-⨯-÷-=04ab =4a (2)原式=318884()()m n -=23m n - 例2.(课本例5)计算下列各式 (1)34(25125)25-÷ (2)232(.a a a a>0)分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.解:(1)原式= 111324(25125)25-÷= 231322(55)5-÷ = 2131322255---= 1655- = 655-(2)原式=12522652362132a aa a a a--===⋅小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数. 课堂练习:化简:(1)52932232(9)(10)100-÷ (2)322322+-- (3)a aa a归纳小结:1. 熟练掌握有理指数幂的运算法则,化简的基础.2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算. 作业:课后 习题2.1A 组 第4题B 组 第2题。

高一数学人教A版必修1:2.1.1 指数与指数幂运算

高一数学人教A版必修1:2.1.1 指数与指数幂运算
2.1.1 指数与指数幂运算
一、复习引入
问题1:据调查,现行银行存款定期一年利率是 1.75%, 某投资者打算存款1万元,按照复利计算, 设x年(x≤20)底存款数y元, 问:y是否是关于x的函数?若是,求函数关系式.
解:y (1 1.75%) 1.0175 (x N 且x 20)
x x
*

x 1.0175
指数
底数
一、复习引入
同底数幂相乘,底数不变,指数相加 a (1) a a ________
1、整数指数幂运算性质: ( r、s ∈Z ) rs r s
( 2)
a a
r s
a ________
r s r
rs
同底数幂相除,底数不变,指数相减
a ( 3) ( a ) ________ 幂的乘方,底数不变,指数相乘 a b 乘积的幂,等于幂的乘积 (4) (ab ) ________
2 3 3 5 5
二、新课讲解
(4)
a
n
n
_________
a
(5) n a n
?
n n
n n 当n是奇数时, a a
a,a 0 当n是偶数时, a | a | a,a <0
思考:
3
5 53 ___________ 5 5 ___________
2
3
5 ( 5)3 ________
( 5) ________ 5
2
二、新课讲解 如果x n a,那么x叫做a的n次方根.
2、运算性质: (1)当n为偶数:正数a的n次方根有两个,且互为相反数.
正的n次方根记为n a,负的n次方根记为 n a ( 2)当n是奇数:正数a的n次方根是一个正数;

高一数学必修一课件2.1.1-指数与指数幂的运算

高一数学必修一课件2.1.1-指数与指数幂的运算
无理数指数幂 有理数指数幂 分数指数幂
a = a
m n
n
m
(a > 0,m,n N*, 且n > 1)
实数指数幂的运算法则
(1)a a a (a 0, r , s R)
r s
rs rs
(2)(a ) a (a 0, r , s R)
r s r
(3)(ab) a b (a 0, b 0, r R)
1 1 1 + 2 4 8

= 2 3 = 6;
1 1 1 2 - 3 3
= a ;(4)x
5 8
1 1 - + 3 3
- 4x
4 = 1- . x
知识点总结
• 根式 • 分数指数幂 • 无理数指数幂
正分数指数幂
负分数指数幂
新课导入
回顾旧知
正整数指数幂: 一个数a的n次幂等于n个a的连乘积, 即:
1.am· an=am+n; 2.am÷an=am-n; 3.(am)n=amn; 4.(ab)n=an· bn;
n a a 5. = n (b 0). b b n
前面我们讲的都是正整数指数幂,即 n只取正整数,那么n能否取有理数呢?
5 2 常数
无理数指数幂:
1.无理数指数幂ax(a>0,x是无理数) 是一个确定的实数. 2.有理数指数幂的运算性质同样适用 于无理数指数幂.
课堂小结
整数指数幂 根式 xn=a
x a ; (当n是奇数)
n
负数没有偶次方根; 0的任何次方根都是0.
x n a . (当n是偶数,
且a>0)
1 3
3 25Βιβλιοθήκη 63 1 (2) x x 2 2 x 2 ; 1 2

高中数学必修1第二章2.1.1《指数与指数幂的运算》--(第一课时)

高中数学必修1第二章2.1.1《指数与指数幂的运算》--(第一课时)

③ 5 (3)5 3
④ 5 (3)10 3
⑤ 4 (3)4 3
2022/1/18
练一练
【2】求以下各式的值.
⑴ 5 32;
⑵ ( 3)4 ;
Hale Waihona Puke ⑶ ( 2 3)2 ;⑷
2022/1/18
52 6.
本节课我们有哪些收获?
达标检测
(1)7 27 ;
(4) 210
(2)3 3a 33 ,a 1; (5)3 (3)9
2022/1/18
(三)根式的概念
根指数
a n 被开方数
2022/1/18
根式
探究四:n次方根的运算性质
2
(1) 6 ;
(2) 5 5 5
(3) 3 7 3
=6
= -5
= -7
a 结论: n a n
2022/1/18
求出下列根式的值
13 83 , 23 83 , 3 102 , 4 102
2022/1/18
学习目标:
1. 理解n次方根的概念; 2. 掌握n次方根的性质. 3. 体会分类讨论思想的运用.。
探究一:n次方根的概念
回忆知识,平方根,立方根是如何定义
的?有哪些规定?
①如果一个数的平方等于a,那么这个数叫做 a的平
方根.
正实数的平方根有两个,
22=4 (-2)2=4
它们互为相反数
2,-2叫4的平方根.
②如果一个数的立方等于a,那么这个数叫做a 的立 方根.
23=8 (-2) =-8 3
2022/1/18
2叫8的立方根. 一个数的立方 -2叫-8的立方根. 根只有一个
24=16
(-2)4=16

最新-2021高中数学必修1课件:2.1.1 指数与指数幂的运算 第1课时 根式 精讲优练课型 精品

最新-2021高中数学必修1课件:2.1.1 指数与指数幂的运算 第1课时 根式 精讲优练课型 精品

【典例】已知x∈[1,2],化简
=_______.
( 4 x 1)4 6 (x2 4x 4)3
【失误案例】
【错解分析】分析解题过程,你知道错在哪里吗? 提示:错误的根本原因是化简偶次根式 不是恒等变形.忽视了条件
6 x 26
1≤x≤2的限制.
【自我矫正】因为x∈[1,2],所以 ( 4 x 1)4 6 (x2 4x 4)3
(1)已知x6=2013,则x=
.
(2)已知x5=-2013,则x=
.
【解析】(1)由于6为偶数,所以x=±
(2)由于5为奇数,所以
6 2 013.
答案:
x 5 2 013 5 2 013.
1 6 2 0132 5 2 013
类型二 根式的化简与求值
【典例】化简:
1 1.
【解题探究】典例3 (中2 对于5)3分母( 3中2 含有5 )3根号的式子应如何进行化简?
【方法技巧】根式化简或求值的注意点 (1)解决根式的化简或求值问题,首先要分清根式为奇次根式还是偶次 根式,然后运用根式的性质进行化简或求值. (2)对于根式的运算还要注意变式,整体代换,以及平方差、立方差和 完全平方、完全立方公式的运用,做到化繁为简,必要时进行讨论.
【补偿训练】1.求下列各式的值:
=|3.14-π|+|33..1144 + π2|+=2π3..14 2
(2)原式=|m-n|+(m-n)=
2m n,m n,
0,
m<n.
类型三 有限制条件的根式运算
【典例】1.若x<0,则x+|x|+ x2 =______.
2.若代数式
有意义,x化简
2x 1+ 2 x
4x2 4x 1+24 x 24 .

数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)

数学:2.1.1《指数与指数幂的运算》课件(新人教A版必修1)

1.am· an=am+n;
2.am÷an=am-n; 3.(am)n=amn; 4.(ab)n=an· bn; 5.
a n an ( ) n (b 0). b b
另外,我们规定:
a 1(a 0); 1 n a n. a
0
二、根式
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1, 且n∈N*.
(a b) (a b).
2
三、分数指数幂 探究:
5 10 5
a
10பைடு நூலகம்
(a ) a a (a 0),
5 2 5 2 12 4
4
a12 4 (a 4 ) 3 a 3 a (a 0).
2 3
0的正分数指数 幂等于0,0 的负 分数指数幂没有 意义.
3
a 2 a ( a 0), b b (b 0),
(2)(a r ) s a rs (a 0, r , s Q) (3)(ab) r a r b r (a 0, b 0, r Q)
例2 用分数指数幂表示下列各式(其中a>0).
a 3 a , a 2 3 a 2 , a3 a .
解:
a3 a a3 a a
2 3 1 3 1 3 1 3
2 3

a
1 3
1 3 1 3
a
1 3
a 2b
a a a a.
五、知识总结
整数指数幂 根式 两个等式
分数指数幂 有理数指数幂 无理数指数幂
(1)a r a s a r s (a 0, r , s R) (2)(a r ) s a rs (a 0, r , s R ) (3)(ab) a b (a 0, b 0, r R)

CJJ362016城镇道路养护技术标准

CJJ362016城镇道路养护技术标准

城镇道路养护技术标准Technical code of maintenance for urban roadCJJ 36-2016修订的要紧技术内容是:1.增加了预防性养护技术的相关要求,包括:预防性养护的概念,预防性养护机会的选择,病害预处置的要求,预防性养护方法及相关规定,和预防性养护工程检查与验收的标准;2.增加了技术档案治理,包括技术档案治理的一样规定,道路检查及养护工程资料的相关要求和档案治理及信息化治理的要求。

标准:众智建筑资源1 总那么1.0.1 为维持城镇道路设施的功能,保证其完好和平安运行,提高效劳水平,统一技术标准,标准养护工作,制定本标准。

1.0.2 本标准适用于完工验收后交付利用的城镇道路(包括车行道、人行道、停车场、广场及附属设施)的养护。

1.0.3 城镇道路中的桥梁养护应符合现行行业标准《城市桥梁养护技术标准》CJJ 99的规定。

1.0.4 城镇道路的养护除应符合本标准外,尚应符合国家现行有关标准的规定。

2 术语和符号2.1 术语2.1.1 路面状况指数pavement condition index(PCI)表征路面完好程度的指标。

2.1.2 路面行驶质量指数riding quality index(RQI)表征路面行驶舒适度的指标。

2.1.3 路面综合评判指数pavement quality index(PQI)表征路面完好与行驶舒适程度的综合指标。

2.1.4 人行道状况指数footpath condition index(FCI)表征人行道完好程度的指标。

2.1.5 预防性养护pavement preventive maintenance在道路结构强度足够、仅表面功能衰减的情形下,为恢复路面表面的效劳功能而采取的养护方法。

2.1.6 矫正性养护corrective maintenance在道路设施显现明确病害或已部份丧失效劳功能的情形下,采取相应的功能性或结构性恢复方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n m
m n
3.负分数指数幂:
a
m n

1 a
( a 0 , m , n N *, 且 n 1 ) m
n
4.0的正分数指数幂等于0,0的负分数指数 幂没有意义
5.分数指数幂的n n n
mn
(m, n Q)
(a ) a (m, n Q)
2
例5.画出函数
2 3 3 2
y x 2x 1 x 3x 3x 1 的图象。
最新试题
摩托车驾照考试 /mtc/ 2016年摩托车科目一考试 科目四考试 教练员从业资格考试 /jly/ 教练员从业资格证理论考试 客运从业资格证考试 /keyun/ 道路旅客运输从业资格证考试
货运从业资格证考试 /huoyun/ 道路货物运输从业资格证
出租汽车从业资格证考试 /czc/ 出租车驾驶员理论考试
例7.化简
(1)(x y ) ( x y )
1 (2)(2a b )(3a b ) ( a b ) 4
2 3 2
a a
( a 0)
例3.求值:
(1) 5 2 6 7 4 3 6 4 2 ; (2)2 3 1.5 12
3 6
1
例4. 写出使下列等式成立的x的取值范围:
1 1 3 (1) x 3 x 3
3
(2) ( x 5)( x 25) (5 x) x 5
1 4 1 3 1 2 2 3 1 4 2 3
1 2
1 2
1 4
1 4
mn
(ab) a b (n Q )
n
二、讲解范例:
例1.计算下列各式(式中字母都是正数)
(1)(2a b )(6a b ) (3a b ) (2)(m n )
1 4 3 8 8
2 3
1 2
1 2
1 3
1 6
5 6
例2.计算下列各式.
(1)(3 25 125) 4 25 ( 2) a
2.1.1 指数综合
一、复习引入:
1.根式的运算性质: n n ①当n为任意正整数时,( a ) a. ②当n为奇数时,n a n =a; 当n为偶数时, n
a
n
a(a 0) =|a|= a(a 0)
2.正数的正分数指数幂的意义:
a a (a 0, m, n N *,且n 1)
相关文档
最新文档