(北师大版)数学七年级下册第三单元教案全集-word版

合集下载

北师大版七年级下册数学教案初中数学七年级下册

北师大版七年级下册数学教案初中数学七年级下册

北师大版七年级下册数学教案初中数学七年级下册对于数学老师而言,上课之前准备好一份教案既能保证上课质量,又可以使老师轻松很多。

下面小编为你整理的北师大版七年级下册数学教案,希望对你有所帮助!七年级下册数学教案篇一教学目标:1.理解和掌握多项式除以单项式的运算法则。

2.运用多项式除以单项式的法则,熟练、准确地进行计算.3.通过法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.4.培养学生耐心细致、严谨的数学思维品质.重点、难点:1.多项式除以单项式的法则及其应用.2.理解法则导出的根据。

课时安排:一课时.教具学具:投影仪、胶片.教学过程:1.复习导入(l)用式子表示乘法分配律.(2)单项式除以单项式法则是什么?(3)计算:①②③(4)填空:规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2.讲授新课例1 计算:(1)(2)解:(1)原式(2)原式注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.(2)要求学生说出式子每步变形的依据.(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.例2 化简:解:原式说明:注意弄清题中运算顺序,正确运用有关法则、公式。

练习:(1)P150 1,2,。

(2)错例辩析:有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为3.小结1.多项式除以单项式的法则是什么?2.运用该法则应注意什么?正确地把多项式除以单项式问题转化为单项式除以单项式问题。

计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。

4.作业P152 A组1,2。

B组1,2。

七年级下册数学教案篇二一、教学目标1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算.2.培养学生抽象的数学思维能力.3.通过例题和习题,训练学生综合解题的能力和计算能力.4.渗透公式自向运用与逆向运用的辩证统一的数学思维观点.二、重点·难点1.重点理解和应用负整数指数幂的性质.2.难点理解和应用负整数指数幂的性质及作用,用科学记数法表示绝对值小于1的数.三、教学过程1.创造情境、复习导入(l)幂的运算性质是什么?请用式子表示.(2)用科学记数法表示:①*****②-5746(3)计算:①②③2.导向深入,揭示规律由此我们规定规律一:任何不等于0的数的0次幂都等于1.同底数幂扫除,若被除式的指数小于除式的指数,例如:可仿照同底数幂的除法性质来计算,得由此我们规定一般我们规定规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.3.尝试反馈.理解新知例1 计算:(1)(2)(3)(4)解:(1)原式(2)原式(3)原式(4)原式例2 用小数表示下列各数:(1)(2)解:(1)(2)练习:P 141 1,2.例3 把100、1、0.1、0.01、0.0001写成10的幂的形式.由学生归纳得出:①大于1的整数的位数减1等于10的幂的指数.②小于1的纯小数,连续零的个数(包括小数点前的0)等于10的幂的指数的绝对值.问:把0.000007写成只有一个整数位的数与10的幂的积的形式.解:像上面这样,我们也可以把绝对值小于1的数用科学记数法来表示.例4 用科学记数法表示下列各数:0.008、0.000016、0.***-*****25解:例5 地球的质量约是吨,木星的质量约是地球质量的318倍,木星的质量约是多少吨?(保留2位有效数字) 解:(吨) 答:木星的质量约是吨.练习:P142 1,2.四总结、扩展1.负整数指数幂的性质:2.用科学记数法表示数的规律:(1)绝对值较大的数,n是非负整数,n=原数的整数部分位数减1. (2)绝对值较小的数,n为一个负整数,原数中第一个非零数字前面所有零的个数.(包括小数点前面的零)五、布置作业P143 A组4,5,6; B组1,2,3,4.点击下页还有更多北师大版七年级下册数学教案。

七年级数学下册 4.3《探索三角形全等的条件》教案 北师大版(2021学年)

七年级数学下册 4.3《探索三角形全等的条件》教案 北师大版(2021学年)

七年级数学下册4.3《探索三角形全等的条件》教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册4.3《探索三角形全等的条件》教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册4.3《探索三角形全等的条件》教案(新版)北师大版的全部内容。

《探索三角形全等的条件》教学目标一、知识与技能1.掌握三角形全等的条件;2.会证明简单的三角形全等问题;二、过程与方法1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.通过观察、动手操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维;三、情感态度和价值观1.通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧;2.通过分组讨论学习,体会合作学习的兴趣;教学重点探究三角形全等的条件;教学难点寻求三角形全等的条件;教学方法引导发现法、启发猜想课前准备教师准备课件、多媒体学生准备练习本课时安排3课时教学过程一、导入小明作业本上画的三角形被墨迹污染了,她想画一个与原来完全一样的三角形,她该怎么办?请你帮助小颖想一个办法,并说明你的理由?注意:与原来完全一样的三角形,即是与原来三角形全等的三角形.要画一个三角形与小明画的三角形全等。

需要几个与边或角的大小有关的条件呢?一个条件?两个条件?三个条件?···让我们一起来探索三角形全等的条件二、新课做一做1.只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1)三角形的一个内角为30° ,一条边为3cm;(2)三角形的两个内角分别为30°和50° ;(3)三角形的两条边分别为4cm,6cm.结论:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等.议一议如果给出三个条件画三角形,你能说出有哪几种可能的情况?有四种可能:三条边、三个角、两边一角和两角一边.做一做(1)已知一个三角形的三个内角分别为40° ,60°和80° ,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?结论:三个内角对应相等的两个三角形不一定全等.(2)已知一个三角形的三条边分别为4 cm,5cm和7cm,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,它们一定全等吗?754三边分别相等的两个三角形全等,简写为“边边边"或“SSS”。

北师大版七年级数学下册教案_第三章_生活中的数据

北师大版七年级数学下册教案_第三章_生活中的数据

第三章 生活中的数据 3.1 认识百万分之一一、复习提问1.我们已学过一百万有多大,请结合自己身边熟悉的事物来描述这些大数。

2.什么叫科学记数法?把下列各数用科学记数法来表示:(1)2500000 (2)753000 (3)205000000 四、随堂练习:几吨的百万分之一是多少吨?是多少克? 五、继续探索新知识,用科学计数法表示绝对值较小数 1. 正的纯小数的科学记数法表示: (1)学生填空:551010100001.0-==(2)总结规律:n-=1001......0.0:一般地把一个绝对值小于1的数也可以表示成na 10⨯的形式,其中101 a ≤,n 为负整数,n 等于非零的数前面的连续零的个数。

1、例:大多数花粉的直径约为20微米到50微米,这相当于多少米?解:因为1微米=610-米,所以大多数花粉的直径为61020-⨯米到61050-⨯米,即5102-⨯米到5105-⨯米。

2、做一做(1)你能在科学计算器上表示出12109.2⨯吗?7102.7-⨯呢?(2)在显微镜下,人体内一种细胞的截面图的形状可以近似地看成圆,它的直径约为61056.1-⨯米,利用科学计算器求出这种细胞的截面图的面积。

3、练习:把下列各数用科学记数学法表示: (1)0.000 000 001 65;(2)0.000 36微米,相当于多少米? (3)600纳米,相当于多少米? 小结1、1米=1000毫米、1毫米=1000微米、1微米=百万分之一米,即610-米。

2、把较小的数表示成科学记数法,小数点向右移动几位,就写成10的负几次方。

3、用科学记数法表示绝对值较小的数也是将它写成na 10⨯米的形式,其中a 也是大于或等于1且小于10的一个数,不同的地方是此时10的指数n 变成了负整数。

3.2近似数与有效数字 (一)通过学生的练习,加深对近似数的理解,并讲解例题1、2 (二)练习: 1、判断下列各数,哪些是准确数,哪些是近似数(1)某歌星在体育馆举办音乐会,大约有一万二千人参加;( )(2)检查一双没洗过的手,发现带有各种细菌80000万个;( ) (3)张明家里养了5只鸡;( )(4)1990年人口普查,我国的人口总数为11.6亿;( ) (5)小王身高为1.53米;( )(6)月球与地球相距约为38万千米;( ) (7)圆周率π取3.14156( )2.小明量得一条线长为3.652米,按下列要求取这个数的近似数:(1)四舍五入到十分位___________ (2)四舍五入到百分位_________ (3)四舍五入到个位____________一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位. 在上题中,小明得到的近似数分别精确到哪一位。

北师大版七年级数学下册《三章 变量之间的关系 复习题》公开课教案_6

北师大版七年级数学下册《三章 变量之间的关系  复习题》公开课教案_6

七年级下册第三章变量之间的关系复习题(教学设计)教材分析函数是研究世界变化规律的一个重要模型,对它的学习是初中阶段数学学习的一个重要内容。

变量之间的关系是函数概念的一个核心要素。

通过这一章的学习,让学生对变量有一个初步认识,这是学习函数的基础。

现实生活中,存在着大量用变量来描述的数量关系。

这一章把学生从研究不变的量引导到研究变量之间的相依关系方面;把知识的学习置于与学生身边有关的情境之中,使学生怀着了解自己、认识世界的愿望积极投身探索活动之中,在探索变量之间关系的过程中,体会数学的思想方法,体会用数学的符号语言表示多彩世界的作用,发展学生的符号感,发展观察、分析、归纳能力和解决问题的能力。

学情分析在本章的学习中,学生已经分别从三种表示方法中对变量之间的关系进行了讨论。

本节课让学生对全章所学的内容进行回顾,系统地复习表示变量之间关系的三种方法,为学生以后顺利过渡到函数学习打下基础。

为了发展学生对函数思想的理解,提高学生的分析能力、表达能力及逻辑思维能力,鼓励学生运用自己的语言进行表述。

学生在本节课也将逐渐了解掌握几种常见的数学思想。

教学目标1、知识目标:回顾总结表示变量之间的方法,学会用变量之间关系的各种形式分析变量之间的关系,并做出预测。

2、能力目标:从常量的世界走入变量的世界,能用运动变化的观点去认识数学对象,发展符号感和抽象思维。

3、情感目标:体验从运动变化的角度认识数学对象的过程,体验成就感,获得学习的快乐,发展对数学更高层次的认识。

教学重难点1、重点:能从表格、图象中分析变量之间的关系,发展有条理地进行思考及表达的能力。

2、难点:根据各种表示方法对变量之间的关系作出预测。

教学方法自主探究与合作交流相结合。

教学过程(第一学时)【第一环节】完善知识结构在教师的引导下,师生总结本单元知识结构:(活动一)小组合作讨论交流:举一个生活中变量之间的关系的例子。

指出其中的自变量、因变量各是什么?(活动二)将复习题1~7,10~12题按其所用的表示方法进行分类,将题号直接写在相应方法的后面。

北师大版数学七年级下册《利用内错角、同旁内角判断两直线平行》教案2

北师大版数学七年级下册《利用内错角、同旁内角判断两直线平行》教案2

北师大版数学七年级下册《利用内错角、同旁内角判断两直线平行》教案2一. 教材分析《利用内错角、同旁内角判断两直线平行》是北师大版数学七年级下册的一个重要内容。

这部分内容主要让学生掌握利用内错角、同旁内角判断两直线平行的方法,理解平行线的性质,为后续学习直线与圆、空间几何等知识打下基础。

二. 学情分析学生在学习这部分内容时,已经掌握了相似三角形的性质、角的计算等基础知识,但对于利用内错角、同旁内角判断两直线平行的方法还较为陌生。

因此,在教学过程中,需要注重引导学生理解内错角、同旁内角的概念,并通过实例让学生感受判断两直线平行的方法。

三. 教学目标1.理解内错角、同旁内角的概念,掌握利用内错角、同旁内角判断两直线平行的方法。

2.能够运用所学知识解决实际问题,提高运用数学知识解决实际问题的能力。

3.培养学生的逻辑思维能力,提高学生分析问题、解决问题的能力。

四. 教学重难点1.内错角、同旁内角的概念及判断两直线平行的方法。

2.如何运用内错角、同旁内角判断两直线平行解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究内错角、同旁内角的概念及判断两直线平行的方法。

2.运用实例分析法,让学生通过观察实例,感受判断两直线平行的方法。

3.采用合作学习法,让学生在小组内讨论、交流,提高学生分析问题、解决问题的能力。

六. 教学准备1.准备相关的实例,用于讲解内错角、同旁内角的概念及判断两直线平行的方法。

2.准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的直线图片,引导学生思考:如何判断这些直线是否平行?从而引出本节课的主题——利用内错角、同旁内角判断两直线平行。

2.呈现(10分钟)讲解内错角、同旁内角的概念,并通过实例展示如何利用内错角、同旁内角判断两直线平行。

让学生观察实例,感受判断两直线平行的方法。

3.操练(10分钟)让学生在小组内合作完成一些练习题,巩固所学知识。

(完整版)新北师大版七年级数学下册全册教案

(完整版)新北师大版七年级数学下册全册教案

周次日期教学内容课时备注1 2.15---2.16 同底数幂的乘法 12 2.17---2.21 幂的乘方与积的乘方法—同底数幂的除 52015—2016 学年度第二学期教学进度任课教师:学科:数学年(班)级:3 2.24---2.28 整式的乘法—平方差公式 54 3.3—3.7 完全平方公式—回顾与思考 55 3.10---3.14 两条直线的位置关系—探索直线平 5行的条件6 3.17---3.21 探索直线平行的条件—平行线的性质 57 3.24—3.28 回顾与思考—认识三角形 58 3.31---4.4 图形的全等—探索三角形全等的条件 4 清明节9 4.7---4.11 探索三角形全等的条件—用尺规作三 5角形10 4.14---4.18 利用三角形全等测距离—回顾与思考 511 4.21—4.25 复习期中考试 312 4.28---5.2 用表格表示的变量间关系—用关系 4 劳动节式表示的变量间关系13 5.5---5.9 用图象表示的变量间关系—回顾与 5思考14 5.12---5.16 轴对称现象—探索轴对称的性质 515 5.19---5.23 简单的轴对称图形 516 5.26---5.30 利用轴对称进行设计—回顾与思考 517 6.2---6.6 感受可能性—概率的稳定性 518 6.9---6.13 等可能事件发生的概率—回顾与思考 519 6.16—6.20 总复习 520 6.23---6.27 期末考试 5本学期总目标:培养学生良好的学习习惯,提高他们学习数学的热情,力争取得一个比较优异的学习成绩教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上,一份上交教务处。

1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。

过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。

北师大版七年级数学下册教案

北师大版七年级数学下册教案
- 1 -
例 1:下列代数式中,哪些是整式?单项式?多项式? ab+c,ax2+bx +c,-5, , 例 2:求下列各单项式的系数及次数:
3 xy ,-ab2c 7 x- y 2x , 2 x-1
例 3:说出下列多项式为几次几项式?
1 - x-x2y+ 2 ,6x3y 2-5+xy3-x 2 3

2.多项式 x2- 3x- 4 共有_____项,次数是________. 六、竞赛积累题: 已知 a=2, b=3,则 (A)ax 3y2 和 bm 3n2 是同类项 (C)bx 2a 1y4 和 ax5yb
+ +1
( (B)3xay 3 和 bx3y 3 是同类项 (D)5m 2bn5a 和 6n 2bm5a 是同类项
1.1
教学目标:
整式
1.在现实情景中进一步理解用字母表示数的意义,发展符号感. 2.了解整式产生的背景和整式的概念,能求出整式的次数. 教学重点:整式的概念与整式的次数. 教学难点:整式的次数. 教学过程: 一、整式的有关概念: (1)单项式的定义:像 1.5V, 叫做单项式. 注:①单独一个数与一个字母也是单项式. ②形如
2 x 2 y 的系数是___________、次数是__________ 3
3.多项式 3m 3-2m-5+m 2 是_____次______项式,其中二次项系数是______,一次项 是__________,常数项是____________. 4.下列各式,是同类项的一组是 (A) 22x2y 与
x+1 形式的代数式不是单项式. 2
2 1 2 n , r h 等,都是数与字母的乘积,这样的代数式 8 3
(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.注: 单独一个数的次数是 0 次. (3)多项式的概念:几个单项式的和叫做多项式. 注:①多项式概念中的和指代数和,即省略了加号的和的形式. ②多项式中不含字母的项叫做常数项. (4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数. (5)整式的概念:单项式和多项式统称为整式. 二、定义的补充: (1)单项式的系数:单项式中的数字因数叫做单项式的系数. 注:①单个字母的系数为 1; ②单项式的系数包括符号. (2)多项式的项数:多项式中单项式的个数叫做多项式的项数. 三、区别是否整式: 关键:分母中是否含有字母? 四、例题讲解:

北师大版七年级数学下册《三章 变量之间的关系 1 用表格表示的变量间关系》公开课教案_0

北师大版七年级数学下册《三章 变量之间的关系  1 用表格表示的变量间关系》公开课教案_0

第三章变量之间的关系一、课标与教材分析课标要求:探索现实生活中简单实例的数量关系和变化规律,了解常量、变量的意义。

结合实例,了解变量的概念和三种表示法——表格法、解析式法和图象法(本节为第一种即:表格法),能举出变量之间关系的实例。

在孩子们目前的知识基础上,本节的教学及学习任务是鼓励孩子用表格整理数据并充分地从表格中获取信息,运用自己的语言进行描述,与同伴进行交流,提高孩子合作交流的意识。

孩子通过对表格中数据的分析,进一步体会变量之间的关系,明确自变量与因变量的概念,并能通过资料分析进行预测。

本节课是本章的起始课,与后面三个课时合起来分别呈现的是表示变量之间关系的三种方式——表格法、解析式法和图象法。

本章作为研究变量和函数的起始章节,重在让孩子感受和体会生活中的“变量”。

同时,在第一课时还要教给孩子用表格呈现实验中变量的数据的方法。

依据变量之间关系的数学表示(表格、解析式和图象)进行预测或推测已知中没有给出的量,也是研究变量之间关系的重要目标之一。

二、孩子们的学情分析孩子们已经知道的: 本节课是孩子们在北师大版七年级上册教材中学习了探索规律,从统计图中获取信息的基础上,通过表格形式来理解变量、自变量、因变量这些概念。

我们生活在变化的世界中,变量与变量的关系,在生活生产中无处不在,通过对实际问题的理解,在表格信息中发现两个变化的量,通过了解哪一个是主动变化的,哪一个是随着变化的,来识别自变量和因变量,这对今后学习函数知识是非常重要的。

孩子们想知道的:通过表格形式来理解变量、自变量、因变量这些概念。

变量与变量的关系,在生活生产中无处不在,通过对实际问题的理解,在表格信息中发现两个变化的量,通过了解哪一个是主动变化的,哪一个是随着变化的,来识别自变量和因变量。

孩子们能自己解决的:在以前的学习中,孩子们已经经历了分组学习、合作交流等形式,可以解决一些实际问题,具备了合作学习的能力。

三、教学任务分析在孩子们现有的知识基础上,本节的教学及学习任务是鼓励他们用表格整理数据并充分地从表格中获取信息,运用自己的语言进行描述,与同伴进行交流,提高孩子合作交流的意识。

北师大版数学七年级下册3 等可能事件的概率教案与反思

北师大版数学七年级下册3 等可能事件的概率教案与反思

3 等可能事件的概率人非圣贤,孰能无过?过而能改,善莫大焉。

《左传》原创不容易,【关注】店铺,不迷路!第1课时概率的计算方法教学目标一、基本目标理解和掌握概率的计算方法,体会概率是描述随机现象的数学模型.二、重难点目标【教学重点】概率的计算方法.【教学难点】灵活应用概率的计算方法解决各种类型的实际问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P147~P148的内容,完成下面练习.【3min反馈】1.设一个试验的所有可能的结果有n种,每次试验有且只有其中一种结果出现.如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的.2.一般地,如果一个试验有n种等可能的结果,事件A包含其中m种结果,那么事件A发生的概率为P(A)=m n .3.完成教材P147“议一议”第1题:解:(1)会摸到1号球、2号球、3号球、4号球、5号球这5种可能的结果.(2)相同.它们的概率均为1 5 .4.完成教材P147“议一议”第2题:解:所有可能的结果有有限个,每种结果出现的可能性相等.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】一只不透明的箱子里共有8个球,其中2个白球、1个红球、5个黄球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)再往箱子中放入多少个黄球,可以使摸到白球的概率变为0.2? 【互动探索】(引发学生思考)(1)从袋中任意摸出一个球,可能出现的结果有多少种?满足条件的结果有多少种?(2)已知摸到白球的概率,可以根据概率公式列方程求解.【解答】(1)因为一只不透明的箱子里共有8个球,其中2个白球, 所以从箱子中随机摸出一个球是白球的概率是28=14.(2)设再往箱子中放入x 个黄球. 根据题意,得28+x=0.2, 解得x =2.故再往箱子中放入2个黄球,可以使摸到白球的概率变为0.2.【互动总结】(学生总结,老师点评)(1)求概率主要是求随机事件发生的概率,关键是分别求出事件所有可能出现的结果数和所求的随机事件可能出现的结果数,后者与前者的比值即为该事件发生的概率.(2)第(2问也可以根据概率公式直接用除法求出盒子中球的总数,从而求出还需要往箱子中放入的黄球个数.活动2 巩固练习(学生独学)1.完成教材P148“习题6.4”第1~3题. 略2.已知一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球. (1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是14,求y 与x 之间的函数关系式.解:(1)因为一个口袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,所以从随机抽取出一个黑球的概率是47 .(2)因为口袋中有3个白球、4个黑球,再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是1 4,所以x+37+x+y=14,则y=3x+5.环节3 课堂小结,当堂达标(学生总结,老师点评)一般地,如果一个试验有n种等可能的结果,事件A包含其中m种结果,那么事件A发的概率为P(A)=m n .练习设计请完成本课时对应练习!第2课时游戏的公平性及按要求设计戏教学目标一、基本目标理解游戏的公平性,并能根据不同问题的要求设计出符合条件的摸球游戏.二、重难点目标【教学重点】判断游戏的公平性,根据题目题目要求设计游戏方案.【教学难点】按题目要求设计游戏方案.教学过程环节1 自学提纲,生成问题【5mi阅读】阅读教材P19~P150的内容,完成下面练习.【3min反馈】1.用概率判断游戏的公平性:若获胜的概率相同,则游戏公平;若获胜的概率不相同,则游戏不公平.2.按要求设计游戏:若设计公平的游戏,则要使随机事件发生的概率相等;若设计不公平的游戏,则要使随机事件发生的概率不相等.3.完成教材P149“议一议”: 解:(1)第二位同学说的有道理.(2)不公平.游戏否公平,应看双方获胜的概率是否相等. 4.完成教材P149“做一做”:解:(1)在一个不透明的口袋里装入除颜色外完全相同的2个红球、2个白球,摇匀后,从中任摸一球,则摸到红球的概率为12,摸到白球的概率也为12.(2)在一个不透明的口袋里装入除颜色外完全相同的2个红球、1个白球和1个黄球,摇匀后,从中任摸一球,则摸到红球的概率为12,摸到白球和黄球的概率都为14.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】小明和小红一起做游戏,在一个不透明的袋中有8个白球和6个红球,它们除颜色外都相同,从袋中任意摸出一球,若摸到白球小明胜;若摸到红球小红胜,这个游戏公平吗?请说明理由;若你认为不公平,请你改动一下规则,使游戏对双方都是公平的.【互动探索】(引发学生思考)根据概率公式可计算出P (小明胜)和P (小红胜),再比较两个概率的大小即可判定游戏不公平,然后改动规则,满足袋中白球和红球的个数相等即可.【解答】不公平.理由如下: 因为P (小明胜)=88+6=47,P (小红胜)=68+6=37, 而47>37,即P (小明胜)>P (小红胜), 所以这个游戏不公平.可改为:从袋中取出2个白球或放入2个红球,使袋中白球和红球的个数相等,这样游戏对双方都是公平的.【互动总结】(学生总结,老师点评)判断游戏对双方是否公平,关键是看双方在游戏中所关注的事件发生的概率是否相等.【例2】用12个除颜色外完全相同的球设计一个摸球游戏. (1)使得摸到红球、白球和蓝球的概率都是13;(2)使得摸到红球的概率为13,摸到白球的概率为12,摸到蓝球的概率为16.【互动探索】(引发学生思考)根据摸到各种颜色球的概率,求出它们的个数,便可进行游戏的设计.【解答】(1)根据概率的计算公式可知,P (摸到红球)=摸到红球可能出现的结果数所有可能出现的结果数,所以摸到红球可能出现的结果数=所有可能出现的结果数×P (摸到红球)=12×13=4;同理可得摸到白球和蓝球可能出现的结果数均为4,所以只要使得红球、白球和蓝球的数目均为4个,就能满足题目要求.(2)同理,由(1)可知,只要使得红球的数目为4个,白球的数目为6个,蓝球的数目为2个,就能满足题目要求.【互动总结】(学生总结,老师点评)灵活运用概率的计算公式求出各色球的个数是解题的关键.活动2 巩固练习(学生独学)1.有8个大小相同的球,设计一个摸球游戏,使摸到白球的概率为12,摸到红球的概率为14,摸到黄球的概率为14,摸到绿球的概率为0,则白球有4个,红球有2个,绿球有0个.2.有一盒子中装有3个白色乒乓球、2个黄色乒乓球、1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是白色颜色; (2)请你计算摸到每种颜色乒乓球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?解:(2)P (摸到白色乒乓球)=36=12,P (摸到黄色乒乓球)=26=13,P (摸到红色乒乓球)=1 6 .(3)公平.理由如下:因为P(摸到白色乒乓球)=12,P(摸到其他球)=2+16=12,所以这个游戏对双方公平.3.现在有足够多除颜色外均相同的球,请你从中选12个球设计摸球游戏.(要求写出设计方案)(1)使摸到红球的概率和摸到白球的概率相等;(2)使摸到红球、白球、黑球的概率都相等;(3)使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.解:(1)12个球中,有6个红球、6个白球可使摸到红球的概率和摸到白球的概率相等.(2)12个球中,有4个红球、4个白球、4个黑球可使摸到红球、白球、黑球的概率都相等.(3)12个球中,有3个红球、3个白球、6个黑球可使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.环节3 课堂小结,当堂达标(学生总结,老师点评)1.游戏的公平性2.按要求设计游戏练习设计请完成本课时对应练习!第3课时几何图形中的概率教学目标一、基本目标1.理解和掌握与面积有关的一类事件发生的概率的计算方法,并能进行简单的计算.2.能设计符合要求的简单概率模型,进一步体会概率的意义.二、重难点目标【教学重点】能计算与面积有关的一类事件发生的概率.【教学难点】能设计符合要求的简单概率模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P151~P152的内容,完成下面练习.【3min反馈】1.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型.2.与面积有关的几何概率也就是概率的大小与面积大小有关,事件发生的概率等于此事件所有可能结果所组成的图形的面积除以所有可能结果所组成的图形的总面积.3.完成教材P152“想一想”:解:(1)图中共有20块方砖组成,这些方砖除颜色外其他完全相同,小球停留在任何一块方砖上的概率都相等,所以P(小球停留在白砖上)=1520=34.(2)同意.因为袋中共有20个球,这些球除颜色外其他都相同,从中任意摸出一个球,这20个球被摸到的概率都相等,所以P(任意摸出一球是白球)=15 20=34.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则( )A.P1>P2 B.P1<P2C .P 1=P 2D .以上都有可能【互动探索】(引发学生思考)由图甲可知,黑色方砖6块,共有16块方砖,所以黑色方砖在整个地板中所占的比值为616=38,所以在甲种地板上最终停留在黑色区域的概率为P 1=38;由图乙可知,黑色方砖3块,共有9块方砖,所以黑色方砖在整个地板中所占的比值=39=13,所以在乙种地板上最终停留在黑色区域的概率为P 2=13.因为38>13,所以P 1>P 2.【答案】A【互动总结】(学生总结,老师点评)利用公式求几何概率通常分为三步:(1)分析事件所占面积与总面积的关系;(2)计算出各部分的面积;(3)代入公式求出几何概率.【例2】如图,一个可以自由转动的转盘被均匀的分成了20个扇形区域,其中一部分被阴影覆盖.(1)转动转盘,当转盘停止时,指针落在阴影部分的概率是多少? (2)试再选一部分扇形涂上阴影,使得转动转盘,当转盘停止时,指针落在阴影部分的概率变为12.【互动探索】(引发学生思考)(1)先确定在图中阴影区域的面积在整个面积中所占的比例,根据这个比例即可求出指针指向阴影区域的概率;(2)根据概率等于相应的面积与总面积之比得出阴影部分面积即可.【解答】(1)因为转盘被均匀的分成了20个扇形区域,阴影部分占其中的6份,所以转动转盘,当转盘停止时,指针落在阴影部分的概率=620=310.(2)如图所示,当转盘停止时,指针落在阴影部分的概率变为12 .【互动总结】(学生总结,老师点评)在几何概型中若是等分图形,则只需求出总的图形个数与某事件发生的图形个数;若不是等分图形,则需求出各图形面积的大小.活动2 巩固练习(学生独学)1.有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是( C )A.116B.18C.14D.122.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是( D )A.转盘2与转盘3 B.转盘2与转盘4C.转盘3与转盘4 D.转盘1与转盘43.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是1 8 .4.向如图所示的正三角形区域内扔沙包(区域中每个小正三角形除颜色外完全相同),沙包随机落在某个正三角形内.(1)扔沙包一次,落在图中阴影区域的概率是3 8;(2)要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑几个小正三角形?请在图中画出.解:如图所示,要使沙包落在图中阴影区域和空白区域的概率均为12,还要涂黑2个小正三角形(涂法不唯一).环节3 课堂小结,当堂达标(学生总结,老师点评)几何图形中的概率计算公式:P(A)=事件A发生的所有可能结果所组成的图形的面积所有可能结果所组成的图形的总面积练习设计请完成本课时对应练习!第4课时转盘问题教学目标一、基本目标计算转盘问题中的概率,进一步理解几何概型,能设计出符合要求的简单概率模型.二、重难点目标【教学重点】计算转盘问题中的概率.【教学难点】设计符合要求的简单概率模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P154~P155的内容,完成下面练习.【3min反馈】1.转盘问题中的概率计算:指针停留在某扇形内的概率等于该扇形的面积除以圆的面积,即P(指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数.2.完成教材P154“想一想”:解:P(落在红色区域)=110°360°=1136,P(落在白色区域)=360°-110°360°=250°360°=2536.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例题】某商场柜台为了吸引顾客,打出了一个小广告如下:本专柜为了感谢广大消费者的支持和厚爱,特举行购物抽奖活动,中奖率100%,最高奖50元.具体方法是:顾客每购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准黄、红、绿、白色区域,顾客就可以分别获得50元、20元、10元、5元的购物券.(转盘的各个区域均被等分)请根据以上信息,解答下列问题:(1)小亮的妈妈购物150元,她获得50元、5元购物券的概率分别是多少?(2)请在转盘的适当地方写上一个区域的颜色,使得自由转动这个转盘,当它停止转动时,指针落在某一区域的事件发生概率为38,并说出此事件.【互动探索】(引发学生思考)(1)根据随机事件概率大小的求法,找准两点:①符合条件的情况数;②全部情况的总数,二者的比值就是其发生的概率的大小;(2)指针落在某一区域的事件发生概率为38,则该区域应该有6份,据此解答即可.【解答】(1)因为转盘被等分为16份,黄色占1份,白色占11份,所以获得50元、5元购物券的概率分别是116,1116.(2)根据概率的意义可知,若指针落在某一区域的事件发生概率为38,那么该区域应有16×38=6(份).根据等级越高,中奖概率越小的原则,此处应涂绿色,事件为获得10元购物券.【互动总结】(学生总结,老师点评)(1)转盘中哪种区域的面积越大,则指针指向哪种区域的概率越大;(2)根据几何概率的大小设计概率模型就是选定一个图形,再分割图形,使其中一部分图形的面积与总面积的比值等于几何概率.活动2 巩固练习(学生独学)1.如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是25.2.完成教材P155“随堂练习”第1~2题. 略3.有一个质地均匀的正12面体,12个面上分别写有1到12这12个整数(每个面只有一个整数且互不相同),投掷这个正12面体一次,记事件A 为“向上一面的数字是3的整数倍”,记事件B 为“向上一面的数字是4的整数倍”请你判断事件A 与事件B ,哪个发生的概率大,并说明理由.解:因为P (A )=412=13,P (B )=312=14,13>14,所以事件A 发生的概率大于事件B 发生的概率.4.如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23.解:(1)指针指向奇数区的概率是36=12. (2)答案不唯一,如:自由转动的转盘停止时,指针指向大于2的区域. 环节3 课堂小结,当堂达标(学生总结,老师点评)转盘问题的概率计算公式:P (指针停留在某扇形内)=某扇形的面积圆的面积=某扇形所占圆的份数总份数练习设计请完成本课时对应练习!【素材积累】宋庆龄自1913年开始追随孙中山,致力于中国革命事业,谋求中华民族独立解放。

北师大版数学七年级下册《垂直》教案2

北师大版数学七年级下册《垂直》教案2

北师大版数学七年级下册《垂直》教案2一. 教材分析《北师大版数学七年级下册》中“垂直”这一节主要介绍垂直的定义、性质和应用。

通过这一节的学习,学生能够理解垂直的概念,掌握垂直的性质,并能够运用垂直的知识解决实际问题。

教材通过丰富的图片和实例,引导学生探究垂直的性质,培养学生的观察能力、操作能力和解决问题的能力。

二. 学情分析七年级的学生已经掌握了平面几何的基本知识,对于图形的认识和操作有一定的基础。

但是,对于垂直的概念和性质,学生可能还比较陌生,需要通过实例和操作来加深理解。

学生的学习动机较强,对于新的知识充满好奇,但同时也可能存在一定的困惑。

因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,引导他们正确理解和掌握垂直的概念和性质。

三. 教学目标1.知识与技能:学生能够理解垂直的概念,掌握垂直的性质,并能够运用垂直的知识解决实际问题。

2.过程与方法:通过观察、操作、交流等活动,学生能够培养观察能力、操作能力和解决问题的能力。

3.情感态度与价值观:学生能够积极参与学习活动,克服困难,体验成功的喜悦,培养对数学的兴趣和自信心。

四. 教学重难点1.重点:学生能够理解垂直的概念,掌握垂直的性质。

2.难点:学生能够运用垂直的知识解决实际问题。

五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生观察和探究垂直的性质。

2.操作教学法:通过实际操作,让学生体验和理解垂直的概念。

3.问题解决法:通过解决实际问题,培养学生运用垂直知识解决问题的能力。

六. 教学准备1.教学素材:准备相关的图片和实例,用于引导学生观察和探究垂直的性质。

2.教学工具:准备直尺、三角板等工具,用于实际操作。

3.教学课件:制作课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用图片和生活实例,引导学生观察和思考垂直的现象,激发学生的学习兴趣。

2.呈现(10分钟)通过课件展示垂直的定义和性质,引导学生理解和掌握垂直的概念。

北师大版七年级数学下册教案

北师大版七年级数学下册教案

北师大版七年级数学下册教案(一)1.5 同底数幂的除法教学目标:1.了解同底数幂除法的运算性质,并解决一些实际问题。

2.理解零指数幂和负指数幂的意义。

3.在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力;提高学生观察、归纳、类比、概括等能力。

4.在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养。

教学重点:会进行同底数幂的除法运算。

教学难点:同底数幂的除法法则的总结及运用。

教学方法:尝试练习法,讨论法,归纳法。

教学过程:一、情境引入活动内容:一种液体每升含有 10 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,9发现1滴杀虫剂可以杀死 10 个此种细菌,要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的? 12二、了解同底数幂除法的运算及应用活动内容:活动1先让学生作“做一做”:计算下列各式,并说明理由(m>n)(1)108105; (2)10m10n; (3)(3)m(3)n;从中归纳出同底数幂除法的运算性质。

从上面的练习中你发现了什么规律? 。

mn猜一猜:a a a0,m,n都是正整数,且m>n。

三、同底数幂除法运算的应用活动内容:例1计算:1)a7a4; (2)(x)6(x)3; (3)(xy)4(xy);(4)b2m2b2; (5)(m n)8(n m)3; (6)(m)4(m)2.例2:地震的强度通常用里克特震级表示,描绘地震级数的数字表示地震的强度是10的若干次幂。

例如用里克特震级表示地震是8级,说明地震的强度是10。

1992年4月荷兰发生了5级地震,12天后,加利福尼亚发生了7级地震。

加利福尼亚地震强度是荷兰地震强度的多少倍?(学生先想一想,再进行小组讨论,互相补充完善,并派代表回答) 7四、探索零指数幂和负整数指数幂的意义活动内容:想一想:10000=104 , 16=241000=10(), 8=2()100=10() , 4=2()10=10(), 2=2()猜一猜:1=10() 1=2()0.1=10() 1 =2()21() =241 =2()8 0.01=10() 0.001=10()例3 计算:用小数或分数分别表示下列各数:(1)103(2)7082;(3)1.610 4北师大版七年级数学下册教案(二)1.6 整式的乘法(一)教学目标:1.经历探索单项式乘法法则的过程,在具体情境中了解单项式乘法的意义,理解单项式乘法法则。

北师大版七年级下册数学教案:1.8 《科学计数法》x

北师大版七年级下册数学教案:1.8 《科学计数法》x

北师大版七年级下册数学教案:1.8 《科学计数法》x一. 教材分析《科学计数法》是北师大版七年级下册数学的重要内容,主要让学生了解科学计数法的概念、意义以及运用。

通过学习,学生能够熟练掌握科学计数法的表示方法,将大数字或小数字简洁、准确地表示出来,为以后学习物理、化学等学科打下基础。

二. 学情分析七年级的学生已经掌握了有理数、实数等基础知识,对数字的表示和运算有一定的了解。

但学生对科学计数法的认识还比较模糊,需要通过实例和练习来加深理解。

此外,学生可能对负指数、零指数幂等概念感到困惑,需要在教学中进行解释和引导。

三. 教学目标1.理解科学计数法的概念,掌握科学计数法的表示方法。

2.能够将大数字或小数字用科学计数法简洁、准确地表示出来。

3.理解负指数、零指数幂的意义,并能运用到实际问题中。

四. 教学重难点1.科学计数法的概念和表示方法。

2.负指数、零指数幂的理解和运用。

五. 教学方法采用情境教学法、实例教学法和小组合作学习法。

通过生活实例引入科学计数法,让学生在实际问题中感受其意义;通过小组讨论和练习,激发学生的思维,培养学生的合作精神。

六. 教学准备1.PPT课件:包括科学计数法的概念、实例、练习等。

2.练习题:包括不同难度的题目,以巩固所学知识。

3.小组讨论卡片:用于引导学生进行小组讨论。

七. 教学过程1.导入(5分钟)通过一个实际问题引入科学计数法:我国的人口约为13亿,如何简洁地表示这个数字?引导学生思考,引出科学计数法的概念。

2.呈现(10分钟)讲解科学计数法的定义、表示方法,通过PPT展示实例,让学生跟随老师一起书写。

同时,解释负指数、零指数幂的意义,让学生明白指数的奥秘。

3.操练(10分钟)让学生独立完成PPT上的练习题,老师巡回指导。

期间,可以挑选不同难度的题目让学生回答,以了解学生的掌握情况。

4.巩固(10分钟)小组合作学习,让学生互相讨论、交流,共同完成一组练习题。

老师参与小组讨论,解答学生的疑问。

七年级数学下册1.3.2科学计数法教案(新版)北师大版【精品教案】

七年级数学下册1.3.2科学计数法教案(新版)北师大版【精品教案】

整式的乘除1.3同底数幂的除法 1.3.2科学计数法 【教学目标】 知识与技能1、经历把一个绝对值小于1的非零数表示为科学计数法a ×10n的形式的过程。

2、会用把一个用科学计数法表示的数写成小数的形式,并体会科学计数法方便、快捷便于进行计算的优点。

过程与方法利用同底数幂的除法和负指数幂的意义把一个绝对值小于1的非零数表示为科学计数法a ×10n的形式(n 为负整数)。

情感、态度与价值观通过收集数据、整理数据、分析数据的活动,培养学生应用数学的意识和能力;培养学生与人合作,并能与人交流思维的意识。

【教学重难点】重点:把一个绝对值小于1的非零数表示为科学计数法a ×10n 的形式 难点:能灵活地将科学计数法表示的数与小数的形式相互变换。

【导学过程】 【知识回顾】负整数指数幂的意义:ppaa1=-(0≠a ,p 为正整数)或p pa a )1(=-(0≠a ,p 为正整数)在用科学记数法表示数据时,我们要注意哪些问题?a × 10n(其中1≤a <10,n 是正整数) 【情景导入】1纳米= 米?这个结果还能用科学记数法表示吗? 【新知探究】探究一、1、填表:根据上面的计算,.0100.010 =-n有 个0?根据此规律:一个水分子的质量可写成:0.00000000000000000000003=()0300.0个=3×10用科学计数法可以把一个绝对值小于1的非零数表示成 的形式,其中 ,n 是 ,n 的绝对值等于1尝试练习:用科学记数法表示:0.0000123=10000000000002、用科学计数法表示下列各数:(1)0.00002 (2)—0.0000307(3)0.0031 (4)0.00567探究二、下面的数据都是用科学记数法表示的,请你用小数把它们表示出来:7×10-5= 1.35×10-10= 2.657×10-16=思考:将科学记数法表示的数改写成小数有什么规律?:练习:将下列各数写成小数:(1) 3.1×10-3 (2)-2.8×10-43. 填空(在括号内填入适当的数) -3.45 ×10()=-0.0003454. 计算(结果用科学计数法表示)(8.6 ×10-4)×10-5【知识梳理】你有什么收获?【随堂练习】1. 用科学计数法表示下列各数:(1)0.00003 (2)—0.000308(3)0.0047 (4)0.0007892. 将下列各数写成小数:(1) 4.2×10-3 (2)-3.6 ×10-43. 填空(在括号内填入适当的数)5.2 ×10()=0.00000524. 计算(结果用科学计数法表示)(1)(7.3 ×10-5)×10-2(2)(2.6 ×10-8)(5.2 ×10-3)5. 鸵鸟是世界上最大的鸟,体重约160千克,蜂鸟是世界上最小的鸟,体重仅2克,一只蜂鸟相当于多少中鸵鸟的重量(用科学计数法表示)。

2.2同位角、内错角、同旁内角(三线八角)-北师大版七年级数学下册(教案)

2.2同位角、内错角、同旁内角(三线八角)-北师大版七年级数学下册(教案)
实践活动环节,学生们分组讨论和实验操作,我观察到到有些学生参与度不高,可能是由于他们对主题不感兴趣或是不擅长表达自己的观点。针对这个问题,我将在接下来的课程中尝试引入更多有趣的讨论主题,鼓励学生大胆发表自己的看法,提高他们的参与度。
学生小组讨论环节,我尽量扮演好引导者的角色,让学生在探讨中自己发现问题、解决问题。但从成果分享来看,部分学生的思考深度仍有待提高。为了激发学生的思考,我决定在下一节课增加一些开放性问题,引导学生从多角度分析问题,培养他们的逻辑思维能力。
2.2同位角、内错角、同旁内角(三线八角)-北师大版七年级数学下册(教案)
一、教学内容
2.2同位角、内错角、同旁内角(三线八角)-北师大版七年级数学下册(教案)
本节课,我们将深入学习以下内容:
1.同位角的定义及性质;
2.内错角的定义及性质;
3.同旁内角的定义及性质;
4.三线八角的关系及其应用。
-能够识别并画出同位角、内错角、同旁内角;
3.增强学生的数学抽象能力,使学生能从具体的几何图形中抽象出同位角、内错角、同旁内角的数学概念,形成数学模型;
4.培养学生的数学应用意识,将所学知识应用于解决实际问题,体会数学在生活中的价值。
这些目标旨在帮助学生深入理解几何图形的基本概念,提高学生的数学思维品质,为后续学习打下坚实基础。
三、教学难点与重点
(2)难点突破:通过举例和练习,让学生在实际问题中学会找出三线八角的关系。如给出一个图形,要求学生找出所有的同位角、内错角、同旁内角,并说明它们之间的关系。
(3)难点应用:在几何证明中,引导学生运用三线八角关系进行推理。例如,在证明两个三角形全等时,通过证明它们的一对同位角、一对内错角和一对同旁内角分别相等,从而得出两个三角形全等的结论。

2024北师大版数学七年级下册1.6.3《乘法公式综合运用》教案3

2024北师大版数学七年级下册1.6.3《乘法公式综合运用》教案3

2024北师大版数学七年级下册1.6.3《乘法公式综合运用》教案3一. 教材分析《乘法公式综合运用》是北师大版数学七年级下册1.6.3的教学内容。

这部分内容是在学生掌握了平方差公式、完全平方公式等乘法公式的基础上进行学习的。

通过这部分的学习,学生能够灵活运用乘法公式解决实际问题,提高他们的解决问题的能力。

二. 学情分析面对七年级的学生,他们在之前的学习中已经掌握了平方差公式、完全平方公式等乘法公式。

但是,他们在运用这些公式解决实际问题时,往往会存在理解不深、运用不灵活的情况。

因此,在教学这部分内容时,需要引导学生深入理解乘法公式的内涵,提高他们解决问题的能力。

三. 教学目标1.知识与技能:使学生掌握乘法公式的运用方法,能够灵活解决实际问题。

2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们积极思考、勇于探索的精神。

四. 教学重难点1.重点:乘法公式的运用。

2.难点:灵活运用乘法公式解决实际问题。

五. 教学方法采用自主学习、合作交流、教师引导相结合的教学方法,让学生在探究中掌握知识,提高解决问题的能力。

六. 教学准备1.准备相关的乘法公式的资料,以便在教学中进行查阅。

2.准备一些实际问题,让学生进行练习。

七. 教学过程1.导入(5分钟)教师通过提问的方式,引导学生回顾之前学过的平方差公式、完全平方公式等乘法公式,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过展示一些实际问题,让学生尝试运用乘法公式进行解决。

学生在解决问题的过程中,教师给予适当的引导和提示。

3.操练(10分钟)学生分组进行练习,教师给出一些运用乘法公式的问题,学生通过合作交流,共同解决问题。

4.巩固(5分钟)教师挑选一些学生解决的实际问题,让学生上台进行讲解,以此巩固乘法公式的运用。

5.拓展(5分钟)教师提出一些拓展问题,引导学生深入思考,提高他们解决问题的能力。

2024北师大版初中七年级数学上册下册全年级教案精写

2024北师大版初中七年级数学上册下册全年级教案精写

2024北师大版初中七年级数学上册下册全年级教案精写一. 教材分析本教案为北师大版初中七年级数学上册和下册的全年级教案,以教材内容为基础,深入剖析每个知识点,结合学生实际情况,进行精心的设计和编写。

本教案力求让学生在掌握知识的同时,培养学生的数学思维能力和解决问题的能力。

二. 学情分析七年级的学生正处于青春期,思维活跃,好奇心强,但对数学学科有一定的恐惧心理。

因此,在教学过程中,需要充分调动学生的积极性,激发他们的学习兴趣,帮助他们建立自信心。

同时,七年级学生的学习习惯和方法还需要进一步培养和指导。

三. 教学目标1.知识与技能:使学生掌握初中七年级数学上册和下册的知识点,提高学生的数学素养。

2.过程与方法:培养学生独立思考、合作交流、解决问题的能力。

3.情感态度与价值观:激发学生对数学学科的兴趣,培养学生的自信心,使学生树立正确的数学观念。

四. 教学重难点1.教学重点:每个知识点的理解和运用。

2.教学难点:数学思维能力的培养,解决问题的方法。

五. 教学方法1.情境教学法:通过生活实例、故事等引入知识点,激发学生的学习兴趣。

2.启发式教学法:引导学生独立思考,培养学生解决问题的能力。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识。

4.反馈评价法:及时给予学生反馈,鼓励学生积极参与,提高学习效果。

六. 教学准备1.教具准备:教材、教案、PPT、黑板、粉笔等。

2.教学资源:互联网、教学视频、教学案例等。

3.学生准备:预习教材,了解基本知识点。

七. 教学过程1.导入(5分钟)通过一个生活实例或故事,引出本节课的知识点,激发学生的学习兴趣。

2.呈现(10分钟)利用PPT或板书,详细讲解本节课的知识点,重点突出,条理清晰。

在讲解过程中,注意引导学生思考,提问学生,确保学生能够理解和掌握。

3.操练(15分钟)根据本节课的知识点,设计一些练习题,让学生独立完成。

在学生练习过程中,教师及时给予指导和解答,帮助学生巩固知识点。

七年级数学下册第章三角形三角形的三边关系教案北师大版

七年级数学下册第章三角形三角形的三边关系教案北师大版

三角形的三边关系知识技能目标1.掌握和理解三角形的三边关系;2.认识三角形的稳定性,并能利用三角形的稳定性解决一些实际问题.过程性目标1.联系三角形的三个内角、外角以及外角与内角之间的数量关系,探索三角形的三边之间的不等量关系;2.结合实践与应用,充分感受三角形的三边关系,体会三角形的稳定性.教学过程一、创设情境让学生拿出预先准备好的四根牙签(2cm,3cm,5cm,6cm各一根)请你用其中的三根,首尾相接,摆成三角形,是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以?你从中发现了什么?二、探索归纳从4根中取出3根有一下几种情况:(1) 2cm,5cm,6cm (2) 3cm,5cm,6cm(3) 2cm,3cm,5cm (4) 2cm,3cm,6cm通过实践可知(1),(2)可以摆出三角形,(3),(4)不能摆成三角形我们可以发现这三根牙签中,如果较小的两根的和不大于最长的第三根,就不能组成三角.这就是说:三角形的任意两边的和大于第三边.三、实践应用例1 画一个三角形,使它的三条边分别为7cm,5cm,4cm.画法步骤如下:(1)先画线段AB=7cm;(2)以点A为圆心,5cm长为半径画圆弧;(3)再以B为圆心,4cm长为半径画圆弧,两弧相交于点C;(4)连结AC,BC.△ABC就是所要画的三角形.练习:以下列长度的各组线段为边,能否画一个三角形?(1)7cm,4cm,2cm; (2)9cm,5cm,4m.例2 有两根长度分别为5cm和8cm的木棒,现在再取一根木棒与它们摆成一三角形,你说第三根要多长呢?用长度为3cm的木棒行吗?为什么?长度为14cm的木棒呢?解取长度3cm的木棒时,由于3+5=8,与三角形两边之和大于第三边相矛盾,所以不能摆成三角形;取长度为14cm的木棒时,由于5+8<14,同样与三角形两边之和大于第三边相矛盾,所以也不能摆成三角形. 从上可知第三木棒的长度应该是大于3cm且小于13cm.结论 1. 三角形两边之差小于第三边;2.已知三角形的两边长度,第三边长度范围是大于这两边的差小于这两边的和.练习下列长度的各组线段能否组成一个三角形?(1)15cm、10cm、7cm; (2)4cm、5cm、10cm;(3)3cm、8cm、5cm; (4)4cm、5cm、6cm.例3 (1)如果等腰三角形的一边长是4cm,另一边长是9cm,则这个等腰三角形的周长为多少?(2)如果等腰三角形的一边长是5cm,另一边长是8cm,则这个等腰三角形的周长是多少?解 (1)若4cm为底边9cm为腰时,有4+9>9和9+9>4能构成三角形周长为22cm;若4cm为腰9cm为底时,有4+4<9不能构成三角形假设不成立;(2)若5cm为底8cm为腰时,有5+8>8和8+8>5能构成三角形,周长为21 cm;若5cm为腰8cm为底时,有5+5>8和8+5>8也能构成三角形,周长为18cm.故已知等腰三角形的二条边求第三边的长时,首先要判断这三边能否构成三角形,再求第三边的长.用三根木条钉一个三角形,你会发现再也无法改变这个三角形的形状和大小,也就是说,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个性质叫做三角形稳定性.有四根木条钉一个四边形,你会发现可以任意改变这个四边形的形状和大小,这说明四边形具有不稳定性.三角形的稳定性在生产实践中有着广泛的应用.例如桥梁拉杆、电视塔底座都是三角形结构.交流反思三角形的三边关系:三角形任何两边的和大于第三边.注意“任何”两字.如三角形的三边分别为a、b、c则a+b>c,a+c>b,b+c>a都成立才可以,三角形任何两边之差小于第三边也同样如此.五、检测反馈1.画一个三角形,使它的三条边长分别为3cm、4cm、6cm;2.已知△ABC是等腰三角形,如果它的两条边的长分别为8cm和3cm,那么它的周长是多少?七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知AB∥CD,BC平分∠ABE,∠C=35°,则∠BED的度数是()A.70°B.68°C.60°D.72°【答案】A【解析】先根据平行线的性质求出∠ABC的度数,再由BC平分∠ABE可得出∠ABE的度数,进而可得出结论.【详解】解:∵AB∥CD,∠C=35°,∴∠ABC=∠C=35°.∵BC平分∠ABE,∴∠ABE=2∠ABC=70°.∵AB∥CD,∴∠BED=∠ABE=70°.故选:A.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.2.将一副直角三角尺按如图所示摆放,则图中∠α的度数是()A.45°B.60°C.70°D.75°【答案】D【解析】分析:如下图,根据“三角形外角的性质结合直角三角尺中各个角的度数”进行分析解答即可.详解:如下图,由题意可知:∠DCE=45°,∠B=30°,∵∠ =∠DCE+∠B,∴∠α=45°+30°=75°. 故选D.点睛:熟悉“直角三角尺中各个内角的度数,且知道三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和”是解答本题的关键.3.如图是北京城镇居民家庭年每百户移动电话拥有量折线统计图,根据图中信息,相邻两年每百户移动电话拥有量变化最大的是A .2010年至2011年B .2011年至2012年C .2014年至2015年D .2016年至2017年 【答案】B【解析】观察折线统计图可知:2011年至2012年每百户移动电话拥有量变化最大. 【详解】解:观察折线统计图可知:2011年至2012年每百户移动电话拥有量变化最大. 故选:B . 【点睛】本题考查折线统计图,关键是能够根据统计图提供的信息,解决有关的实际问题.4.如图,ABC ∆中,AB =AC ,D 、E 分别在边AB 、AC 上,且满足AD =AE ,下列结论中:①ABE ACD ∆≅∆;②AO 平分∠BAC ;③OB =OC ;④AO ⊥BC ;⑤若12AD BD =,则13OD OC =;其中正确的有( )A .2个B .3个C .4个D .5个【答案】D【解析】利用SAS 可证明△ABE ≌△ACD ,判断①正确;根据全等三角形的性质以及邻补角定义可得∠BDO=∠BEC ,继而利用AAS 证明△BOD ≌△COE ,可得OD=OE ,BO=OC ,判断③正确;利用SSS 证明△AOD ≌△AOE ,可得AO 平分∠BAC ,判断②正确,继而根据等腰三角形三线合一的性质可判断④正确,根据三角形的高相等时,两三角形的面积比就是底边之比,通过推导可判断⑤正确. 【详解】在△ABE 与△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ACD ,故①正确; ∴∠AEB=∠ADC , ∴∠BDO=∠BEC ,∵AB=AC ,AD=AE ,∴BD=CE , 在△BOD 与△COE 中,BDO CEO BOD COE BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BOD ≌△COE ,∴OD=OE ,BO=OC ,故③正确; 在△AOD 与△AOE 中,AD AE AO AO OD OE =⎧⎪=⎨⎪=⎩, ∴△AOD ≌△AOE , ∴∠DAO=∠EAO ,即AO 平分∠BAC ,故②正确, 又∵AB=AC ,∴AO⊥BC,故④正确,∵12AD BD=,∴S△BOD=2S△AOD,又∵△BOD≌△COE,∴S△COE=2S△AOD,又∵△AOD≌△AOE,∴S△AOC=3S△AOD,∴OC=3OD,即13OD OC=,故⑤正确,故选D.【点睛】本题考查了等腰三角形的的性质,全等三角形的判定与性质,角平分的定义,三角形的面积等,综合性较强,准确识图,正确分析,熟练运用相关知识是解题的关键.5.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.7{2x yx y+==B.7{2x yy x+==C.27{2x yx y+==D.27{2x yy x+==【答案】A【解析】设甲数为x,乙数为y,根据题意得:7 {2x yx y+==,故选A.6.一个不等式组的两个不等式的解集如图所示,则这个不等式组的解集为( )A.1 <x ≤ 0B.0 <x ≤1C.0 ≤ x<1 D.0<x<1【答案】B【解析】分析:由数轴可知,两个不等式的解集分别为x>0,x≤1,由此可求出不等式组的解集. 详解:由数轴得,不等式组的解集为0 <x ≤1.故选B.点睛:此题主要考查了在数轴上表示不等式的解集,关键是用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.写出图中表示的两个不等式的解集,这两个式子公共部分就是对应不等式组的解集.=++,则称n为“好数”.例如:7.对于一个自然数n,如果能找到正整数x、y,使得n x y xy=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有()个31111A.1 B.2 C.3 D.4【答案】C【解析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=1,1是一个质数,∴10不是好数;∵1=2+3+2×3,∴1是好数.综上,可得在8,9,10,1这四个数中,“好数”有3个:8、9、1.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.8.不等式-3x≤6 的解集在数轴上正确表示为()A.B.C.D.【答案】D【解析】先求出不等式的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集在数轴上表示出来,比较得到结果.【详解】−3x⩽6,x⩾−2.不等式的解集在数轴上表示为:故选D.【点睛】此题考查在数轴上表示不等式的解集,解题关键在于掌握表示方法9.画△ABC中AC上的高,下列四个画法中正确的是()A.B.C.D.【答案】C【解析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【详解】过点B作直线AC的垂线段,即画AC边上的高BD,所以画法正确的是C.故选C.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于掌握作图法则.10.在平面直角坐标系中,已知A(﹣2,3),B(2,1),将线段AB平移后,A点的坐标变为(﹣3,2),则点B的坐标变为()A.(﹣1,2)B.(1,0)C.(﹣1,0)D.(1,2)【答案】B【解析】由A(﹣2,3)平移后坐标变为(﹣3,2)可得平移变化规律,可求B点变化后的坐标.【详解】解:∵A(﹣2,3)平移后坐标变为(﹣3,2),∴可知点A向左平移1个单位,向下平移1个单位,∴B 点坐标可变为(1,0). 故选:B . 【点睛】本题运用了坐标的平移变化规律,由分析A 点的坐标变化规律可求B 点变化后坐标. 二、填空题题11.定义:f (a ,b )=(﹣a ,b ),g (m ,n )=(m ,﹣n ),例 f (1,2)=(﹣1,2),g (﹣4,﹣5)=(﹣4,5),则 g ( f (2,﹣3))=_____. 【答案】(﹣2,3).【解析】根据新定义法则,分步完成.即: g ( f (2,﹣3))= g (-2,﹣3))=(﹣2,3). 【详解】g ( f (2,﹣3))= g (-2,﹣3))=(﹣2,3). 故答案为:(﹣2,3) 【点睛】本题考核知识点:点的坐标.解题关键点:根据新定义写坐标.12.一个凸多边形的内角和为720°,则这个多边形的边数是__________________ 【答案】1【解析】设这个多边形的边数是n ,根据多边形的内角和公式:()n 2180-⨯,列方程计算即可. 【详解】解:设这个多边形的边数是n根据多边形内角和公式可得()n 2180720,-⨯= 解得n 6=. 故答案为:1. 【点睛】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.13.小亮帮母亲预算家庭4月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数,(1)表格中反映的变量是_____,自变量是_______,因变量是___________.(2)估计小亮家4月份的用电量是_____°,若每度电是0.49元,估计他家4月份应交的电费是_________. 【答案】 日期和电表读数 日期 电表读数 120 58.8【解析】分析:(1)、根据表格即可得出自变量和因变量;(2)、首先根据表格得出每天的平均用电量,然后得出4月份的用电量,根据电价得出答案.详解:(1)、变量有两个:日期和电表读数,自变量为日期,因变量为电表读数; (2)、每天的用电量:(49-21)÷7=4°,4月份的用电量=30×4=120°, ∵每度电是0.49元,∴4月份应交的电费=120×0.49=58.8元. 点睛:本题主要考查的是函数的变量,属于基础题型.在看这个表格的时候一定要注意两天数值的差才是前一天的用电量.14.已知,x=3、y=2是方程组6324x by ax by +=⎧⎨-=⎩的解,则a=_____,b=_____【答案】6; 7【解析】把x 与y 的值代入方程组计算即可求出a 与b 的值.【详解】把x=3、y=2代入6324x by ax by +=⎧⎨-=⎩中得:18232324b a b +⎧⎨-⎩== 解得:67a b ⎧⎨⎩==故答案是:6,7. 【点睛】考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.已知方程组123a b b c a c -=-⎧⎪-=⎨⎪+=⎩,则a =______________.【答案】2【解析】利用“加减消元法”解三元一次方程组,即可求出a 的值.【详解】123a b b c a c -=-⎧⎪-=⎨⎪+=⎩①②③解:①+②得:12a b b c -+-=-+ 合并同类项,得:1a c -=④ ③+④得:314a c a c ++-=+= 合并同类项,得:24a =解得:a=2故答案为:2【点睛】本题考查解三元一次方程组,熟练掌握“加减消元法”是解题关键.16.如图,△ABC的周长为15cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D、交AC边于点E,连接AD,若AE=2cm,则△ABD的周长是_____cm.【答案】11【解析】根据垂直平分线的性质即可求解.【详解】由题意可知EC=AE=2cm,AD=CDAB+AC+BC=15cm;∴AB +BC=15-2×2=11cm∴△ABD的周长为AB+BD+AD=AB+BC-CD+AD= AB+BC=11cm【点睛】此题主要考查周长的计算,解题的关键是熟知垂直平分线的的性质.17.按如图所示的程序进行运算时,发现输入的x恰好经过3次运算输出,则输入的整数x的值是________ .【答案】11或12或13或14或1.【解析】试题分析:第一次的结果为:2x-5,没有输出,则2x-545,解得:x25;第二次的结果为:2(2x-5)-4=4x-1,没有输出,则4x-145,解得:x1;第三次的结果为:2(4x-1)-5=8x-35,输出,则8x-3545,解得:x10,综上可得:,则x的最小整数值为11.考点:一元一次不等式组的应用三、解答题18.为保护环境,增强居民环保意识,某校积极参加即将到来的6月5日的“世界环境日”宣传活动,七年级(1)班所有同学在同一天调查了各自家庭丢弃塑料袋的情况,统计结果的条形统计图如下:根据统计图,请回答下列问题:(1)这组数据共调查了居民有多少户?(2)这组数据的居民丢弃塑料袋个数的中位数是_______个,众数是 _______个.(3)该校所在的居民区约有3000户居民,估计该居民区每天丢弃的塑料袋总数大约是多少?【答案】 (1)50(2)中位数 4 众数 4(3)12600【解析】(1)计算居民总数(2)中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。

北师大版数学七年级下册 利用概率判断游戏的公平性 教案

北师大版数学七年级下册 利用概率判断游戏的公平性 教案

第3课时 利用概率判断游戏的公平性●情景导入 活动内容: 出示一个不透明的盒子,里面装有3个红球和2个白球,每个球除颜色外完全相同,任意摸出一个球. 提出问题:摸到白球的概率是多少?最有可能摸到什么颜色的球?一定会摸到白球吗?学生活动:以小组为单位开始活动,每人摸10次球,并记下摸出球的颜色,讨论摸到白球的概率. 【教学与建议】教学:通过游戏,让学生在亲身体会中理解概率的计算公式.引导学生用列举法把所有可能结果一一列举,再求概率.建议:先思考提出的问题后再通过试验得出结果,最后通过计算得出结论.●置疑导入 一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?【教学与建议】教学:通过问题的创设,激发了学生的好奇心和求知欲,让他们体会探索的过程.建议:学生各抒己见后,教师提出我们这节课继续探讨等可能事件的概率,同时板书课题.●命题角度1 判断游戏是否公平游戏是否公平只要计算出各方获胜的概率,然后进行比较就可以做出判断. 【例1】在一个不透明的袋中有6个除颜色外其他都相同的小球,其中3个红球,2个黄球,1个白球. (1)小明从中任意摸出一个小球,摸到白球的概率是多少?(2)小明和小亮商定一个游戏,规则如下:小明从中任意摸出一个小球,摸到红球则小明胜,否则小亮胜,问该游戏对双方是否公平?为什么?解:(1)P(摸到白球)=16;(2)该游戏对双方是公平的.理由如下:由题意,得P(小明获胜)=36=12,P(小亮获胜)=1+26=12.因为他们获胜的概率相等,所以游戏对双方是公平的.●命题角度2 根据要求设计游戏按要求设计游戏,就是通过一定的游戏规则使得获胜的概率达到相应的要求.【例2】用8个除颜色外其他均相同的球设计一个游戏,使摸到白球与摸不到白球的可能性一样大,摸到红球的可能性比摸到黄球的可能性大,则游戏设计中白、红、黄球的个数可能是(C)A .4,2,2B .3,2,3C .4,3,1D .5,2,1 【例3】小颖和小明做游戏:一个不透明的袋子中装有6个完全一样的球,每个球上分别标有1,2,2,3,4,5,从袋子中任意摸出一个球,然后放回.规定:若摸到的球上所标数字大于3,则小颖赢,否则小明赢.你认为这个游戏公平吗?为什么?如果不公平,请修改游戏规则,使游戏公平.解:游戏不公平.理由如下:因为摸到的球上所标数字大于3的概率是26=13,摸到的球上所标数字不大于3的概率是46=23,所以小明赢的概率大,故游戏不公平. 修改规则如下:方法一:若摸到的球上所标数字小于3,则小颖赢,否则小明赢. 方法二:若摸到的球上所标数字是偶数,则小颖赢,否则小明赢. ●命题角度3 根据概率求袋中的球的数量根据概率来求袋中球的数量实际就是将求概率的过程逆向运用.【例4】已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同,若从该布袋里任意摸出1个球是红球的概率为15,则a 等于(D)A .2B .3C .4D .5【例5】在一个不透明的口袋中,装有20个红球和若干个白球,它们除颜色外其余都相同,从中任意摸出一个球,摸到红球的概率是58,如果再往口袋中放入4个白球,求这时任意摸出一个球,摸到红球的概率.解:口袋中原来球的总数为20÷58=32(个).再往口袋中放入4个白球,任意摸出一个球,摸到红球的概率为2032+4=59.高效课堂 教学设计1.会根据概率判断游戏的公平性.2.通过一定的游戏规则使得获胜的概率达到相应要求.▲重点根据已知概率设计游戏方案. ▲难点利用概率判断游戏的规则是否公平.◆活动1 创设情境 导入新课(课件)1.想一想,填一填.任意掷一枚质地均匀的骰子.(1)掷出的点数不大于4的概率是__23__,理由是__不大于4的点数有1,2,3,4,P(不大于4点数)=46=23__;(2)掷出的点数是奇数的概率是__12__,理由是__点数是奇数有1,3,5,P(掷出的点数是奇数)=36=12__. 2.学校举行演讲比赛,王强和李明都想去,可是参加比赛的名额只有一个,于是两个用掷骰子游戏决定谁去参加比赛.若朝上的点数是6,则王强参加;若朝上的点数不是6,则李明参加.你认为这个游戏规则对王强、李明公平吗?说出理由.不公平,理由是王强参加的概率是16,李明参加的概率是56,朝上的点数不是6,则有1,2,3,4,5,所以李明参加的概率是=56.◆活动2 实践探究 交流新知 【探究1】游戏的公平性(1)一个袋中装有2个红球和3个白球,每个球除颜色外都相同,任意摸出一个球,摸到红球的概率是多少?讨论分析:答案1:P(摸到红球)=12,理由是:摸到的球只有两种颜色,不是红球就是白球;答案2:P(摸到红球)=25,理由是:把每个球都是编上号,1号球(红色),2号球(红色),3号球(白色),4号球(白色),5号球(白色),摸出每个球的可能性相同,共有5种等可能结果.摸到可能出现的结果有:1号球或2号球.共有2种等可能的结果.画图分析:① ② ③ ④ ⑤有5种等可能结果,其中红色球有2种,所以P(摸到红球)=25.答案1错误.(2)小明和小凡做游戏,在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球.摸到红球的话小明获胜,摸到白球小凡获胜,这个游戏公平吗?在一个双人游戏中,你怎么理解双方公平的?不公平,总共有5个球,也就是有5种等可能结果,P(摸到红球)=25,P(摸到白球)=35,因此小明和小凡获胜的概率不一样,不公平;在双人游戏中,两人获胜的概率必须一样才是公平的.【探究2】根据要求设计游戏利用一个口袋和4个除颜色外完全相同的球设计一个摸球游戏.(1)使摸到白球的概率为12,摸到红球的概率也是12;(2)使摸到红球的概率为12,摸到白球和黄球的概率都是14.分析:(1)共有4个球,使摸到红球的概率是12,摸到白球的概率为12,那么红球的个数为:__4×12=2(个),白球的个数为__4×12=2(个)__.所以需要红球和白球各__2__个;(2)共有4个球,使摸到红球的概率是12,红球的个数为__4×12=2(个)__,摸到白球和黄球的概率都是14,白球的个数为__4×14=1(个)__,黄球的个数为__4×14=1(个)__.所以需要红球__2__个,白球__1__个,黄球__1__个.想一想:1.你能用8个除颜色外完全相同的球分别设计满足如上条件的游戏吗? 解:4个红球,4个白球和4个红球,2个白球,2个黄球.2.你能用7个除颜色外完全相同的球分别设计满足如上条件的游戏吗? 解:不行.◆活动3 开放训练 应用举例【例1】在一个不透明的袋中有6个除颜色其他都相同的小球,其中3个红球,2个黄球,1个白球. (1)小明从中任意摸一个小球,摸到的白球机会是多少?(2)小明和小亮商定一个游戏,规则如下:小明从中任意摸出一个小球,摸到红球则小明胜,否岀小亮胜,问该游戏对双方是否公平?为什么?【方法指导】(1)由题意可得共有6种等可能的结果,其中任意摸出一个球是白球的有1种情况,利用概率公式即可求得答案;(2)游戏公平,分别计算他们各自获胜的概率再比较即可.解:(1)因为在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中3个红球,2个黄球,1个白球,所以P(摸出一个白球)=16;(2)该游戏对双方是公平的.理由如下:由题意可知P(小明获胜)=36=12,P (小亮获胜)=1+26=12,所以他们获胜的概率相等,即游戏是公平的.【例2】选取6个除颜色外完全相同的球,设计一个游戏,使得参与游戏的小明和小颖获胜的概率相同.【方法指导】获胜的概率相同不一定都是12,都是13也可以,比如:2个红球,2个白球,2个黑球,摸到红球小明获胜,摸到白球小颖获胜.解:只要使得两人获胜的概率相同即可.比如:3个红球,3个白球,摸到红球小明获胜,摸到白球小颖获胜.◆活动4 随堂练习1.在一个不透明的袋子中装有若干个除颜色外形状和大小完全相同的球,如果其中有4个白球,且摸出白球的概率是13,那么袋子中共有球__12__个.2.选取15个除颜色外完全相同的球设计一个摸球游戏,使得摸到红球的概率为15,摸到白球和黄球的概率都是25.解:红球3个,白球6个,黄球6个. 3.课本P 150随堂练习T 1. 4.课本P 150随堂练习T 2. ◆活动5 课堂小结与作业【学生活动】你这节课有哪些收获,还有哪些困惑?【教学说明】梳理本节课的重要方法和知识,加深对知识的理解.【作业】课本P150习题6.5中的T1、T2、T4、T5.本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1用表格表示的变量间关系1.了解常量与变量的含义并能分清实例中的常量与变量,了解自变量和因变量的关系;2.能从表格中获得变量间的关系信息,能用表格表示变量之间的关系,并根据表格中的数据尝试对变化趋势进行初步预测.(重点,难点)一、情境导入在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?二、合作探究探究点一:变量与常量【类型一】常量与变量的判断写出下列各问题中的关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程s(千米)与行驶时间t(时)之间的关系式s=40t.解析:根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.解:(1)常量:6,变量:n,t;(2)常量:40,变量:s,t.方法总结:确定在该过程中哪些量是变化的,而哪些量又是不变的,数值发生变化的量为变量,数值始终不变的量称之为常量.【类型二】自变量、因变量的确定A,B两地相距50千米,明明以每小时5千米的速度由A地到B地,若他距B地的距离为y,到达时间为x.请你写出在这个变化过程中的自变量和因变量.解析:因为这个变化过程中,他距B地的距离为y随时间的变化而变化,所以自变量是时间x,因变量是他距B地的距离y.解:在这个变化过程中,自变量是时间x,因变量是他距B地的距离y.方法总结:在判断自变量和因变量时,要分清哪个量是主动变化的,哪个量是被动变化的,主动变化的量是自变量,被动变化的量是因变量.探究点二:用表格表示数量间的关系【类型一】利用表格对数据进行分析弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)间有下面的关系:A.x与y都是变量,且x是自变量,y是因变量B.所挂物体质量为4kg时,弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度y增加0.5cm解析:A.x与y都是变量,且x是自变量,y是因变量,故A正确;B.所挂物体质量为4kg时,弹簧长度为12cm,故B正确;C.弹簧不挂重物时的长度为10cm,故C错误;D.物体质量每增加1kg,弹簧长度y增加0.5cm,故D正确.故选C.方法总结:在解题时可根据给出的表格中的数据进行分析,确定自变量和因变量以及弹簧伸长的长度.【类型二】从表格中获取信息解决问题某电动车厂2014年各月份生产电动车的数量情况如下表:(2)哪个月份电动车的产量最高?哪个月份电动车的产量最低?(3)哪两个月份之间产量相差最大?根据这两个月的产量,电动车厂的厂长应该怎么做?解析:(1)从表中可以看出电动车的月产量y随时间x的变化而变化,所以自变量是时间x,因变量是电动车的月产量;(2)(3)根据表中信息答题即可.解:(1)电动车的月产量y为随着时间x的变化而变化,有一个时间x就有唯一一个y与之对应,月产量y是时间x的因变量;(2)6月份产量最高,1月份产量最低;(3)6月份和1月份相差最大,在1月份加紧生产,实现产量的增值.方法总结:观察因变量随自变量变化而变化的趋势,实质是观察自变量增大时,因变量是随之增大还是减小.三、板书设计1.常量与变量:在一个变化过程中,数值发生变化的量为变量,数值始终不变的量称之为常量.2.用表格表示数量间的关系:借助表格表示因变量随自变量的变化而变化的情况.自变量和因变量是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.本节是学好本章的基础,教学中立足于学生的认知基础,激发学生的认知冲突,提升学生的认知水平,使学生在原有的知识基础上迅速迁移到新知上来3.2用关系式表示的变量间关系1.理解两个变量之间的关系可以用关系式表示,能在一个关系式中指出自变量和因变量;2.能够在具体的情境中列出表示变量关系的关系式.(重点,难点)一、情境导入汽车以60km/h的速度匀速行驶,行驶里程为s km,行驶时间为t h.先填写下表:.试用含t的式子表示s:________.二、合作探究探究点:用关系式表示变量间关系【类型一】列关系式表示变量之间的关系一个小球由静止开始沿一个斜坡向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表:写出用t解析:观察表中给出的t与s的对应值,再进行分析,归纳得出关系式.t=1时,s=2×12;t=2时,s=2×22;t=3时,s=2×32;t=4时,s=2×42,…所以s与t的关系式为s=2t2,其中t≥0.故答案为s=2t2(t≥0).方法总结:本题以关系式法表示时间t与距离s之间的关系,认真观察分析s随t的变化而变化的规律是列出关系式的关键.【类型二】用关系式表示图形的变化规律图中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是()A.y=4n-4 B.y=4nC.y=4n+4 D.y=n2解析:由图可知n=1时,圆点有4个,即y=4;n=2时,圆点有8个,即y=8;n=3时,圆点有12个,即y=12,∴y=4n.故选B.【类型三】列关系式并求值已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数关系式;(2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?解析:(1)根据“抽水时间×抽水速度=抽水量”,“蓄水量-抽水量=剩余水量”解题即可;(2)根据自变量与因变量的关系式,可得自变量相应的值;(3)根据自变量与因变量的关系式,可得相应自变量的值.解:(1)Q=800-50t(0≤t≤16);(2)当t=6时,Q=800-50×6=500(立方米).答:6小时后,池中还剩500立方米的水;(3)当Q=200时,800-50t=200,解得t=12.答:12小时后,池中还有200立方米的水.方法总结:利用关系式,根据任何一个自变量的值求出相应因变量的值,其实质是代数式求值,根据因变量的值求出相应自变量的值,其实质是解方程.【类型四】关系式与表格的综合一辆加满汽油的汽车在匀速行驶中,油箱中的剩余油量Q(L)与行驶的时间t(h)的关系如下表所示:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)随着行驶时间的不断增加,油箱中剩余油量的变化趋势是怎样的?(3)请直接写出Q与t的关系式,并求出这辆汽车在连续行驶6h后,油箱中的剩余油量;(4)这辆车在中途不加油的情况下,最多能连续行驶的时间是多少?解析:(1)认真分析表中数据可知,油箱中剩余油量Q(L)与行驶时间t(h)的变量关系,再根据自变量、因变量的定义找出自变量和因变量;(2)由表中数据可知随着行驶时间的不断增加,油箱中剩余油量的变化趋势;(3)由分析表中数据可知,每行驶1h消耗油量为7.5L.然后根据此关系写出油箱中剩余油量Q(L)与行驶时间t(h)的代数式;(4)根据图表可知汽车行驶每小时耗油7.5L,油箱原有汽油54L,即可求出油箱中原有汽油可以供汽车行驶多少小时.解:(1)表中反映的是油箱中剩余油量Q(L)与行驶时间t(h)的变量关系,时间t是自变量,油箱中剩余油量Q是因变量;(2)随着行驶时间的不断增加,油箱中的剩余油量在不断减小;(3)由题意可知汽车行驶每小时耗油7.5L,Q=54-7.5t;把t=6代入得Q=54-7.5×6=9(L);(4)由题意可知汽车行驶每小时耗油7.5L,油箱中原有54L汽油,可以供汽车行驶54÷7.5=7.2(h).答:最多能连续行驶7.2h.方法总结:观察表中的数据,发现其中的变化规律,然后根据其增减趋势写出自变量与因变量之间的关系式.三、板书设计1.用关系式表示变量间关系2.表格和关系式的区别与联系:表格能直接得到某些具体的对应值,但不能直接反映变量的整体变化情况;用关系式表示变量之间的关系简单明了,便于计算分析,能方便求出自变量为任意一个值时,相对应的因变量的值,但是需计算.本节课的教学内容是变量间关系的另一种表示方法,这种表示方法学生才接触到,学生感觉有点难.这节课的重点是让学生掌握用关系式与表格表示变量间的关系,难点是理解这两种表示方法的优缺点.就此问题,通过让学生对几个例子比较、讨论、总结、归纳两种方法的优点来解决,这样学生就能很好地区分这两种表示方法,并能对不同的问题选择恰当的方法3.3用图象表示的变量间关系第1课时曲线型图象1.理解两个变量之间的关系的曲线图象,了解图象中各个部分所表示的意义;2.能够从曲线型图象中获取关于两个变量的信息.(重点,难点)一、情境导入观察下图,你能从中获取怎样的信息?二、合作探究探究点:用曲线型图象表示变量间关系【类型一】用曲线型图象表示两个变量间的关系水滴进玻璃容器如图所示(设单位时间内进水量相同),那么水的高度是如何随时间变化的,请选择分别与A、B、C、D匹配的图象()A.(3)(2)(4)(1) B.(2)(3)(1)(4)C.(2)(3)(4)(1) D.(3)(2)(1)(4)解析:A.容器的直径小,水上升的速度最快,故A应是图(3),B.容器直径大,上升速度慢,故B应是图(2);C.容器下面大,上升速度慢,上面较小,上升速度变快,故C应是图(4);D.先最快,再速度放慢然后速度又变快,最后速度不变,故D应是图(1).故选A.方法总结:对于题目中有不规则容器,图象多为不规则变化,要确定这种变化关系,可以从容器横截面的变化情况进行判断.【类型二】从曲线型图象中获取变量信息如图所示是某市夏天的温度随时间变化的图象,通过观察可知,下列说法中错误的是()A.这天15时温度最高B.这天3时温度最低C.这天最高温度与最低温度的差是13℃D.这天0~3时,15~24时温度在下降解析:横轴表示时间,纵轴表示温度.温度最高应找到图象的最高点所对应的x值,即15时,A对;温度最低应找到图象的最低点所对应的x值,即3时,B对;这天最高温度与最低温度的差应让前面的两个y值相减,即38-22=16(℃),C错;从图象看出,这天0~3时,15~24时温度在下降,D对.故选C.方法总结:认真观察图象,弄清楚时间是自变量,温度是因变量,然后由图象上的点确定自变量及因变量的对应值.三、板书设计1.用曲线型图象表示变量间关系2.从曲线型图象中获取变量信息图象法能直观形象地表示因变量随自变量变化的变化趋势,可通过图象来研究变量的某些性质,这也是数形结合的优点,但是它也存在感性观察不够准确,画面局限性大的缺点.教学中让学生自己归纳总结,回顾反思,将知识点串连起来,完成对该部分内容的完整认识和意义建构.这对学生在实际情境中根据不同需要选择恰当的方法表示变量间的关系,发展与深化思维能力是大有裨益的第2课时折线型图象1.理解分段图象的意义,掌握分段图象各个部分的含义;2.复习巩固运用图象表示变量间关系的方法,能够运用其解决实际问题.(重点,难点)一、情境导入小强和爷爷经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分钟)的关系(从小强开始爬山时计时).问:图中的横轴(x轴)和纵轴(y轴)各表示什么?答:横轴(x轴)表示两人爬山所用时间,纵轴(y轴)表示两人离开山脚的距离.问:如图,线段上有一点P,则P的坐标是多少?表示的实际意义是什么?答:P的坐标是(3,90).表示小强爬山3分钟时,离开山脚的距离是90米.我们能否从图象中看出其他信息呢?二、合作探究探究点:用折线型图象表示变量间关系【类型一】用折线型图象表示两个变量间的关系小明放学后从学校乘轻轨回家,他从学校出发,先匀速步行至轻轨车站,等了一会儿,小明搭轻轨回到家,下面能反映在此过程中小明与家的距离y与时间x的关系的大致图象是()解析:根据从学校回家,可得与家的距离是越来越近.根据步行的速度慢,可得离家的距离变化小,根据搭轻轨的速度快,可得离家的距离变化大.A.随着时间的变化,离家的距离越来越远,故A、B错误;C.随着时间的变化,步行离家的距离变化快,搭轻轨的距离变化慢,不符合题意,故C错误;D.随着时间的变化,步行离家的距离变化慢,搭轻轨的距离变化快,符合题意,故D正确.故选D.方法总结:路程问题中,在不同的时间内,速度可以发生变化,要掌握这类问题,就要对图像中各个线段的意义正确理解.【类型二】利用折线型图象解决图形问题用均匀的速度向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OAB为折线),这个容器的形状是图中()解析:由图象可得容器形状不是粗细均匀的物体.相比较而言,前一个阶段,用时较多,高度增加较慢,那么下面的物体应较粗.故选C.【类型三】通过折线型图象获取信息星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速是多少?(4)玲玲全程骑车的平均速度是多少?解析:(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不随时间的增加而增加;(3)用距离除以所用时间求出速度,再比较大小即可;(4)用玲玲全程所行的路程除以所用的时间即可.解:观察图象可知:(1)玲玲到离家最远的地方需要3小时,此时离家30千米;(2)10点半时开始第一次休息,休息了半小时;(3)玲玲郊游过程中,各时间段的速度分别为:9时~10时,速度为10÷(10-9)=10(千米/时);10时~10时30分,速度约为(17.5-10)÷(10.5-10)=(15千米/时);10时30分~11时,速度为0;11时~12时,速度为(30-17.5)÷(12-11)=12.5(千米/时);12时~13时,速度为0;13时~15时,在返回的途中,速度为30÷(15-13)=15(千米/时);可见骑行最快有两段时间:10时~10时30分;13时~15时.两段时间的速度都是15千米/时;(4)玲玲全程骑车的平均速度为(30+30)÷(15-9)=10(千米/时).答:玲玲全程骑车的平均速度是10千米/时.方法总结:准确理解图象上的点所表示的意义是解决问题的关键,解题时可通过仔细观察图象,从中整理出解题时所需的相关信息.【类型四】双图象问题端午节至,甲、乙两队举行了一年一度的赛龙舟比赛,两队在比赛时的路程s(米)与时间t(分钟)之间的图象如图所示,请你根据图象,回答下列问题:(1)这次龙舟赛的全程是多少米?哪队先到达终点?(2)求乙与甲相遇时乙的速度.解析:(1)根据图象的纵坐标,可得比赛的路程.根据图象的横坐标,可得比赛的结果;(2)根据乙加速后行驶的路程除以加速后的时间,可得答案.解:(1)由纵坐标看出,这次龙舟赛的全程是1000米;由横坐标看出,乙队先到达终点;(2)由图象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的时间是3.8-2.2=1.6(分钟),乙与甲相遇时乙的速度600÷1.6=375(米/分钟).方法总结:解决双图象问题时,正确识别图象,弄清楚两图象所代表的意义,从中挖掘有用的信息,明确实际意义.三、板书设计1.用折线型图象表示变量间关系2.根据折线型图象获取信息解决问题经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到关系式这一过程,提升学生的数学应用能力,使学生在探索过程中体验成功的喜悦,树立学习的自信心.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。

相关文档
最新文档