磁介质中的安培环路定理
3磁介质中的安培环路定理
在均匀的磁介质
B
(非铁磁质)中
M
磁场强度与磁感
H
应强度成正比,
Is
同向。
Ic
§3.磁介质中安培环路定理 / 三、几个结论
4.结论4
磁介质(非铁磁介质)中,磁化强度 与磁场强度具有线性关系。
M
κ m
H
κ 为磁化率。 m
电介质中 P κ 0E
5.结论5
相对磁导率与磁化率之间的关系
§3.磁介质中安培环路定理 / 二、环路定理
H B M
0
H dl Ic
②. H 既与磁感应强度 B 有关,又与磁化
强度 M 有关,所以 H 又是混合物理量。
③.磁场强度的单位与 M 相同,
安培/米,A/m
④.若 H d l 0 不一定环路上各点的
H 为 0,因为 H 是环路内、外电流共同 产生的。
R
由螺线管的磁场
r
B
分布可知,管内 的场各处均匀一
H
致,管外的场为0;
I
§3.磁介质中安培环路定理 / 四、解题方法
1.介质内部
作 abcda 矩形回路,回 路内的传导电 流代数和为:
B
a
b
H
d
cI
I c n ab I 在环路上应用介质中的环路定理:
H dl
H dl H dl H dl H dl
第三节
磁介质中的 安培环路定理
一、问题的提出
在真空中的安培环路定理中:
B dl 0 I
将其应用在磁介质中时,I为所有电流的
代数和;
B dl 0 (I c I s )
如果求 B
B = Bo + B’
磁介质中的安培环路定理
L
L
B M dl I L 0 B M 定义“磁场强度” H
L
M dl I s
o
1
磁化率
实验指出: M m H
均匀的各向同性的磁介质
系数m称为“磁化率”。
H
B
解:
L
H dl I
ab H n ab I
则:H nI
B
a
d
. . .
× × ×
I
b
B o r H nI
c
5
均匀的各向同性的磁介质
2
例题1
一半径为R1的无限长圆柱形直导线,外面包一层半 径为R2,相对磁导率为r 的圆筒形磁介质。通过导 线的电流为I0 。求磁场强度和磁感应强度的分布。 解: 0 r R1 H dl 2π rH
L
r
r
R1
R2
I0
I 2 π r 2 π R1
R1 r R2 r R2
H dl H 2π r I
L
Ir H 2 π R12
B 0 H
0 Ir
2πR12
B 0 H
0 I
2π r
B 0 r H
0 r I
2π r
例题2
有两个半径分别为R1和R2的“无限长”同轴圆筒形 导体,在它们之间充以相对磁导率为μr 的磁介质。 当两圆筒通有相反方向的电流I时,试求磁感强度。 解: d R1 , B 0 R1 d R2 H dl I
0
M
B
磁介质中的高斯定理和安培环路定理
求 H; 求 B;
B
0 由 M js
由
M H
求 M;
求 js; 求 Is;
I s js L 或由 I s ( r 1)I c
求 Is;
9
例1:长直螺线管半径为 R ,通有电流 I,线圈密度 为 n , 管内插有半径为 r ,相对磁导率为 r 磁介质, 求介质内和管内真空部分的磁感应强度 B 。 R 解:由螺线管的磁场分布 B r a 可知,管内的场各处均匀 b H 一致,管外的场为0; 1.介质内 c I d 作 abcda 矩形回路。 部 回路内的传导电流代数和为: I c nab I
H dl
在环路上应用介质中的环路定理:
ab bc cd
H dl H dl H dl H dl
da
∵在bc和da段路径上 H dl , cos 0
10
bc
H dl H dl 0
L
(
L
B
0
M ) dl I
L
L
L
B H M
0
3
0 H d l I
L
(
B
M ) dl I
L
定义:磁场强度
B H M
0
L
L
磁介质中的环路定理
H的环流仅与传导电流 I 有关,与介质无关。(当 I相同 时,尽管介质不同, H 在同一点上也不相同,然而环 流却相同。因此可以用它求场量 H ,就象求D那样。
3.明确几点: H 是一辅助物理量,描述磁场的基本物理量仍然 ①. 是 B。 是为消除磁化电流的影响而引入的, H B 和H 的名字张冠李戴了。
介质中的安培环路定理14.3铁磁质
例1:一无限长螺线管,通以电流I,管内充有相对磁 导率为 r的各向同性的均匀介质,若单位长度线圈 B H ,及面磁化电流密度。 匝数为n,求介质中的 和
解:由于螺线管无限长, 故管外磁场为零,管内 磁场均匀,B 和 H 与管轴线平行
j M (r 1) H (r 1)nI
j ' 0 即磁化电流和传导电流方向相同 顺磁质 r 1 故
r 1 故 j ' 0 即磁化电流和传导电流方向相反 抗磁质
例2:长直单芯电缆的芯是一根 半径为R 的金属导体,它与外壁 之间充满均匀磁介质,电流从芯 流过再沿外壁流回。求介质中磁 场强度及磁感应强度。
(2)铁磁质在没有传导电流存在时也可以有磁性
这种磁性叫做剩磁 (3)一次磁化过程损耗的能量与磁滞回线包围的面 积成正比
三、铁磁质的分类
1 按矫顽力HC分 软磁材料:磁滞回线窄而长,Br , Hc都小;
硬磁材料:磁滞回线较宽,Br , Hc较大;
B
Hc
Hc
B
Hc
H
Hc
H
作变压器的软磁材料
作永久磁铁的硬磁材料
弱磁质的磁化特点:
B
tg
H
(1) 0为一常数, B-H曲线为一直线, 斜率 tg 0
H (2) B-H曲线具有可逆性, B ; H B ; H 0 B 0
2. 铁磁质的磁化曲线 将螺绕环中充满铁磁质: 开始时I=0, H=0, B=0; 然 后增大电流 I H 测B
2 按磁滞回线形状分
B
Br
B
Bs
H
-H c
Br
o
Hc
磁介质中的高斯定理和安培环路定理.
B 0(H M ) 0(H mH) 0(1 m)H
在各B向0H同r0H性r H介质r中H10B.rH为m磁相关导对系 率磁:B导 率。0D r电H介0质rHE中
E
在真空 中 r 1, B0 0H
3.明确几点:
①. H 是 一辅助物理量,描述磁场的基本物理量仍然
是 B。H是 为消除磁化电流的影响而引入的,
B 和H 的名字张冠李戴了。
4
②. H 既与磁感应强度B 有关,又与磁化强度M 有
关,所以H 又是混合物理量。
③.磁场强度 的单 位与磁化强度相同,安培/米,A/m
④.若 H dl 0不一定环路内无电流。
或由 I s (r 1)I c
求 Is;
9
例1:长直螺线管半径为 R ,通有电流 I,线圈密度 为 n , 管内插有半径为 r ,相对磁导率为 r 磁介质, 求介质内和管内真空部分的磁感应强度 B 。
解: 由螺线管的磁场分布 可知,管内的场各处均匀
R
r
a Bb
一致,管外的场为0;
H
1.介质内
10
H dl H dl 0
bc
da
因为 cd 段处在真空中,真
a
B ab H b
空中的 M = 0;B = 0 ,
有 H dl 0
d
c d
Ic
cd H dl
H dl
Hdl cos H dl H ab I c
§12.2 磁介质中的高斯定理和安培环路定理
1
一、磁介质中的高斯定理
磁介质放在磁场中,磁介质受到磁场的作用要产
磁介质中的安培环路定理
磁介质中的安培环路定理
安培环路定理是描述电流在一个闭合环路内的磁场强度的定量关系的定理。
在磁介质中,安培环路定理可以表述为:闭合环路内的磁通量等于环路内电流所产生的磁场强度与环路中磁化强度的代数和。
换句话说,如果我们将一个磁介质的闭合环路划分成若干小段,对每一小段进行磁场分析,然后将它们按照一定的方向按顺序排列,就形成了一个完整的安培环路。
在磁介质中,该安培环路的总磁通量等于环路内任意一个小段上的磁场强度与该小段上的磁化强度的代数和。
这个定理主要用于计算磁介质中的磁场分布及其对电路的影响。
对于任意一个闭合环路,我们都可以通过安培环路定理求得环路内的磁通量,再根据法拉第电磁感应定律计算出环路内的感应电动势,从而分析电路中的电磁现象。
总之,安培环路定理是一种描述磁介质中电流与磁场强度之间关系的基本定理,是电磁学研究中不可或缺的重要工具。
12-2 磁介质中的安培环路定理
一、 安培环路定理
在磁介质中,安培环路定理应写为 式中, Io内和 I´内分别是闭合路径l所包围的传导电 流和磁化电流的代数和。 由于:
l
I ) ( I B dl 内 o o 内
l
M dl I
l
内
(
B
o
M ) dl I o内
a
H
P
•
B b
c
L H dr ab H dr Hl
环路定理
d
l
nlI
B H 0 r nI
H nI
dI d r 1 H j M d r M dr dr
I I o·a · c ·b
I c I b
a
上页
下页
解 由安培环路定理:
H dl I
l
o内
I
o内
2r I H dl H· I 及 B= H H
l
o内
r<a:
I 2 r 2 Ir a H= 2 2 a 2r o Ir B o H 2 2a
在国际单位制中,磁场强度的单位为安/米(A/m)。
上页 下页
例1 一根长直同轴线由半径 a的长导 线和套在它外面的内半径为b、外半 径为c的同轴导体圆筒组成。中间充 满磁导率为的各向同性均匀非铁磁 绝缘材料,如图所示。由圆筒向下流 回,设电流在截面上都是均匀分布的。 求同轴线内外的磁场强度H和磁感应 强度B的分布。
2r
I r I o· · a r· c b
r c:H
磁介质中的安培环路定理
产生磁场:
I
Bdl o I o I
有磁介质
B
C
的总场 传导电流 分布电流
分子磁矩 m I 'π r 2
A LD
n(单位体积分子磁矩数)
I n π r2LI ' nmL
M m nm
V
I ML BC M dl
I'
r
Cr
l M dl l B dl 0 ( I l M dl )
第二节 磁介质中的安培环路定理 磁场强度
一、有介质时的高斯定理
介质中的磁感应强度:
B B外 B
无论是什么电流激发的磁场,其磁力线均是无头
无尾的闭合曲线。
∴ 通过磁场中任意闭合曲面的磁通量为零。
即: BdS 0
二、有介质时的安培环路定理
在有介质的空间,传导电流与磁化电流共同
例:长直螺线管ห้องสมุดไป่ตู้充满均匀磁介质r单位长度上
的匝数为n,通有电流I 。求管内的磁感应强度。
解:管外磁场为零,取图示的回路
L H dl Ii
L
ab H n ab I
B
I
...
则:H nI
B or H nI
B
a
b
× × × ×M
d c nˆ
相对磁导率 r 1 磁 导 率 0r
1 顺磁质
r 1 抗磁质
1 铁磁质
(非常数)
各向同性磁介质
B 0r H H
H和 B的区别: B是描述磁场作为物质与其它物质交换动量的物理量;
H是描述磁场能量传输的物理量;
磁介质中安培环路定理
b I2
力的方向向右
(1)Fx
dF sin
0
0I1I2 sin Rd 0 2R sin
0I1I2
2
(2)Fx
2
dF sin
0
2 0I1I2 sin Rd 0 2R sin
0I1I2
AB C
dFA
3106 N / cm
___________,
dFB
_____0_______,
dl
dl
dFC _3__1_0__6_N__/_c_m.
dl
(0 4 107 )
IA
IB
IC
dFA I ABAdl
BA
BAB
BCA
0IB 2d
0IC 2 2d
dd
dFA 30I 2 dl 4d
4) r>c
I I I 0
B0
例7 一无限长圆柱形铜导体(磁导率0),半径为R, 通有均匀分布的电流I,导体外充满相对磁导率r的磁
介质。今有一矩形平面S(长1m,宽2R),位置如右 图中画斜线部分所示,求通过该矩形平面的磁通量.
解:
r
R
:
B1
0 Ir 2R 2
r
R
:
B2
0r I 2r
2R R 2R
0I 0I 30 I
H dl
I I 3I
例4 如图,电荷q (>0)均匀地分布在一个半径为R的薄 球壳外表面上,若球壳以恒角速度 0绕Z轴转动,则 沿着Z轴从-到+ 磁感应强度的线积分
q00
B dl ___2___
B dl
B dl
L
二磁介质中的安培环路定理传导电流磁化电流
磁介质
(Magnetism medium)
(4)
1
§15-1 磁介质的分类
1.磁介质的种类
在考虑物质与磁场的相互影响时,我们把所有的物 质都称为磁介质。
电场中,电介质极化后,在均匀电介质表面出现 极化电荷,于是电介质中的电场为
与此类似E,磁Eo场中E, 磁E介ro 质磁化后,在均匀磁介
en
M
a
b
l
图15-6
M dl Mab Jab I内 (15-5) l Jab 闭合路径l所包围的磁化电流的代数和
可见,磁化强度的环流(磁化强度沿闭合路径l的线 积分)等于该闭合路径l所包围的磁化电流的代数和。
11
§15 -3 磁介质中的磁场 磁场强度 一.磁介质中的磁场
顺磁质分子的固有磁矩pm虽不为零,但由于分子 的热运动,分子磁矩取每一个方向的概率是一样的, 因
此对一块顺磁质来说,分子磁矩的矢量和为零,故也不
显磁性。
4
电子进动与附加磁矩
在外磁场Bo作用下, 分子中的电子受到洛仑兹 力的作用,除了绕核运动和自旋外,还要附加一个以外 磁场方向为轴线的转动,从而形成进动。
图15-5
JLS=| pmi| =磁介质中分子磁矩的矢量和
按磁化强度的定义 ,有
M
pmi J
V
(15-3)
即磁化电流面密度J 等于磁化强度M的大小 。
10
一般情况下, J=M可 写成下面的矢量式:
J M en (15-4)
取如图15-6所示的 矩形闭合路径l, 则磁化 强度的环流为
B=Bo+B =rBo (15-1)
传导 磁化 电流 电流
二.磁介质中的安培环路定理
12-2 磁介质中的安培环路定理
即
H 0
或
B0
例2 在均匀密绕的螺绕环内充满均匀的顺磁介质, 已知螺绕环中的传导电流为 I ,单位长度内匝数 n , 环的横截面半径比环的平均半径小得多,磁介质的 相对磁导率和磁导率分别为 和 r 。求环内的磁 场强度和磁感应强度。
解:在环内任取一点, 过该点作一和环同心、 半径为 r 的圆形回路。
B H M o
通常写成
B 0 ( H M )
M mH
实验证明: 各向同性磁介质
m
只与介质的性质有关称为磁介质的磁化率
M mH
代入
如果介质是均匀介质 如果介质是不均匀的 位置的函数
m m
是常数 是空间
B 0 ( H M )
r
H d l NI
式中 N为螺绕环上线圈的总匝数。由对称性可 知,在所取圆形回路上各点的磁感应强度的大小相 等,方向都沿切线。
H d l NI
H 2r NI
NI H nI 2r
r
当环内是真空时 B0 0 H 当环内充满均匀介质时 B H 0 r H B r B0
12-2 磁场强度
磁介质中的安培环路定理
一.有磁介质时的安培环路定理 无磁介质时的磁场安培环路定理
L
B0 dl 0
(L内)
I
穿过回路 的总电流
0
有磁介质时的磁场安培环路定理
B dl 0 ( I i I S )
L
穿过回路 的总电流
注意!这里 B 是导线中的传导电流激发的磁场和
r 1 r 1 r >>1
顺磁质 抗磁质 铁磁质
物理学下磁介质中的安培环路定理
未来研究方向和挑战
复杂磁场下的安培环路定理研究
在实际应用中,磁场往往是非常复杂的,如何准确描述和 计算复杂磁场下的安培环路定理是一个重要的研究方向。
磁化电流的精确测量和控制
磁化电流是磁介质磁化程度的量度,如何精确测量和控制 磁化电流对于理解和应用安培环路定理具有重要意义。
新型磁材料的开发和应用
随着科技的发展,新型磁材料不断涌现,如何将这些新型磁材料应用 于安培环路定理中,发挥其独特优势,是一个具有挑战性的课题。
磁介质性质
磁介质具有磁化性,即在外磁场 作用下,磁介质内部会产生附加 磁场,使原磁场发生变化。
磁化现象与磁化强度
磁化现象
磁介质在外磁场作用下,其内部磁偶 极子会重新排列,产生附加磁场,这 种现象称为磁化。
磁化强度
磁化强度是描述磁介质磁化程度的物 理量,表示单位体积内磁偶极子的磁 矩矢量和。
分类及特点分析
磁感应强度B描述了磁场对磁介质的作用力大小,而磁场强度H则描述了磁场的源强 度。
边界条件对磁场分布影响分析
在两种不同磁介质的分界面上, 磁场的切向分量连续,即磁场线
与分界面平行。
磁场的法向分量在分界面两侧会 发生跃变,跃变的大小与两种磁
介质的磁导率差异有关。
边界条件对磁场分布的影响可以 通过麦克斯韦方程组中的边界条
变压器工作原理简述
变压器基本结构
由铁芯和线圈组成,通过电磁感应实 现电压变换。
工作原理
当原线圈中通入交流电时,会在铁芯 中产生交变磁场,进而在副线圈中感 应出电动势。安培环路定理可用于分 析变压器中的磁场分布和漏磁现象。
其他电磁设备设计优化方向
电磁铁
利用安培环路定理分析电磁铁 的磁场分布和吸力特性,优化
04磁介质的磁化和介质中的安培环路定理
解: 由螺线管的磁场分布 可知,管内的场各处均匀
R
r
a Bb
一致,管外的场为零;
H
1、介质内部
作 abcda 矩形回路。
d Ic
回路内的传导电流代数和为: I c n ab I
在环路上应用介质中的环路定理:
H dl H dl H dl H dl H dl
有半径为 R2的无限长同轴圆柱面,该面也通有电流 I,
圆柱面外为真空,在R1<r<R2区域内,充满相对介质常 数为 r2的 磁介质,且r2 >r1。求B和 H的分布?
解:根据轴对称性,以轴上一点为圆心在
垂直于轴的平面内取圆为安培回路:
r R1
H1
2rH1
I
2R12
I
R12
磁介质的磁化 磁介质中的高斯定 理和安培环路定理
1
一、磁介质的磁化现象
凡是能与磁场发生相互作用的物质叫磁介质。
磁场中放入磁介质
磁介质发生磁化
出现磁化电流
产生附加磁场
磁介质内部的总场强 B B0 B
在各向同性均匀介质中:
r 称为相对磁导率。
B内
r B0
磁介质的分类:
介质中的磁感 应强度是真空
美国在 磁谱仪中,将采用超导磁铁产生强磁场,
2003 年再次送入地球轨道,观察暗物质和反物质。
高温超导现已达到 -153°C。
11
L
对各B向同性的磁介质
dl
L 0r
I0内
B r B0
B
定义:磁场强度
H
0r
08磁介质的磁化和介质中的安培环路定理
磁力线为闭合曲线, 磁力线为闭合曲线,穿过任何一个闭合曲面的 磁通量为零。 磁通量为零。
v v B⋅ dS = 0 ∫
s
三、磁介质中的安培环路定理 1、磁介质中的安培环路定理
r r 在真空中的安培环路定理中: 在真空中的安培环路定理中: B0 ⋅ dl = µ 0 ∑ I ∫
3
r r 在介质中: 在介质中: ∫ B ⋅ dl = µ 0 ∑ ( I + I ′)
磁介质的磁化 磁介质中的高斯定 理和安培环路定理
1
一、磁介质的磁化现象 凡是能与磁场发生相互作用的物质叫磁介质。 凡是能与磁场发生相互作用的物质叫磁介质。 磁场中放入磁介质 磁介质发生磁化 产生附加磁场 r r r 磁介质内部的总场强 B = B0 + B′ 出现磁化电流
r r r B 在各向同性均匀介质中: 在各向同性均匀介质中: B = µ r B0 即 r = µ r B0
H = nI
H = nI 真空中 µ = 1 ∴ B = µ 0 H = µ 0 nI
8
r r r r H ⋅ dl = ∫da H ⋅ dl = 0
a
B
∴ H ab = ∑ I c = n abI ,
∴ B = µ 0 µ r H = µ 0 µ r nI
2、管内真空中 、 作环路 abcda ; 在环路上应用介 质中的安培环路定理,同理有: 质中的安培环路定理,同理有:
4
r r H ⋅ dl = ∑I ∫
L L
r r H ⋅ dl = ∑I ∫
L L
----磁介质中的环路定理 磁介质中的环路定理
物理意义:磁场强度沿闭合路径的线积分, 物理意义:磁场强度沿闭合路径的线积分,等于环路 所包围的传导电流的代数和。 所包围的传导电流的代数和。 2、明确几点: 明确几点:
8-8 有磁介质时的安培环路定理磁场强度
B
上页 下页 返回 退出
磁化电流 B
磁化面电流
上页 下页 返回 退出
下面以顺磁质为例,讨论磁化电流的形成。
B0
一块顺磁质放到外磁场中时,它的分子的固有磁 矩要沿着磁场方向取向,如图所示。
上页 下页 返回 退出
pm
Bo
磁化电流
考虑和这些磁矩相对应的分子电流,可以发现: 在均匀磁介质内部,各处电流的方向总是有相反 的,结果相互抵消。只有在横截面边缘处,分子 电流未被抵消,形成与横截面边缘重合的一层圆 电流。这种电流叫做磁化电流。
H
dl
H
2r1 0
dl
I
H I
2r1 B=H I
2r1
(2)设在圆柱体内一点
到轴的垂直距离是r2,则 磁导
以r2为半径作一圆,根据
率
安培环路定理有
R1 R2
r3
r2 r1
H
d
l
H
2r2
0
dl
H
2r2=I
r 2 2
R2
=I
r2 2
R2
I
II
1
1
上页 下页 返回 退出
H= Ir2
2R
2
L B0 dl
0 I0
(L内)
有磁介质时 B dl 0 ( I Is )
I
s
M dl
或
B
(dlB0M0 () dIlM
I
d
l
)
上页 下页 返回 退出
定义磁场强度:
H
B
M
B
( 0
0
M ) dl
I
则 H dl I
有磁介质时的 安培环路定理
磁介质的安培环路定理公式
磁介质的安培环路定理公式
∮H·dl=∑niIs+Id
其中∮H·dl是磁场H沿闭合回路的环路积分,ni是回路内对应的线
圈数目,Is是回路内穿过的表面电流的总和,而Id是回路内通过的自由
电流的总和。
这个公式可以解读为:磁场的环路积分等于回路内部磁场的总和。
这
意味着当通过一个闭合回路的磁场发生变化时,环路积分的结果不为零。
这是因为磁场可以通过改变磁势能来对物质产生作用,从而影响磁介质的
磁化特性。
同时,这个公式还表明了磁场的环路积分与闭合回路上通过的电流之
间的关系。
其中,表面电流通过回路时对环路积分有贡献,而自由电流则
没有对环路积分有贡献。
磁介质的安培环路定理可以用于解决一些与磁场和磁介质相关的问题。
例如,在计算回路中的磁场强度时,可以根据安培环路定理计算出回路中
的磁场强度。
同时,这个公式还可以用于计算磁介质材料中的磁感应强度,从而研究磁介质的磁化特性。
总之,磁介质的安培环路定理是描述磁场在磁介质中传播的重要定律,它给出了磁场沿闭合回路的环路积分等于该回路内部磁场的变化率。
这个
公式可以帮助我们理解和解决与磁场和磁介质相关的问题,从而推动磁学
领域的研究和应用。
安培环路定理磁介质的磁导率ppt课件
B 0I
2r
dl cos dl cos dl cos
rd
B cos dl 0 I d
2
L
B
I
r'
r
d
dl
ds
dl cos ds rd
Bdl cos Brd 0I r d 0I d
2r
2
LBdl cos
L
0 I 2
d
0 I 2
2
0
I
3
7-4 安培环路定理 磁介质的磁导率
0
I
rd
0
I
d
B
0I
2r
2 r
2
B cos dl 0I d
L
0I 2 2
L 2
0I
d
磁场的环流与环路中所包围的
电流有关,与环路的形状无关。
B cos dl 0 I d 2
IL
r
P
L
I
rd
r
ds
B
dl
2
7-4 安培环路定理 磁介质的磁导率
与右手螺旋方向反向
2
LB dl LBdl cos
dB
B 0I
2π r
I
RR
L
r
B
I . dB
dI
B
12
7-4 安培环路定理 磁介质的磁导率
0rR
l
Bdl
0
πr2 π R2
I
I
RR
r B
2π
rB
0r2
R2
I
B
0Ir
2π R2
B
13
7-4 安培环路定理 磁介质的磁导率
B 的方向与 I 成右螺旋
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 各向同性磁介质
B 0r H H
uuv uv
uvH和 B的区别:
B是描述磁场作为物质与其它物质交换动量的物理量; uuv
H是u描v 述v磁场能量u传uv输v的物理量;
Ñ Bds0 Ñ Hds0
例:长直螺线管内充满均匀磁介质r单位长度上
的匝数为n,通有电流I 。求管内的磁感应强度。
解:管外磁场为零,取图示的回路
有磁介质
B
C
的总场 传导电流 分布电流
分子磁矩 m I 'π r 2
A LD
n(单位体积分子磁矩数)
I n π r2LI ' nmL
I'
M m nm
r
V v v
Cr
I
ML
v
M
BCv
dl
Ñl M
dl
蜒 l Bv
v dl
v B
Ñl (0
0 ( I
vv M )dl
v
l M I
v dl )
磁场强度
H
B
M
0
磁介质中的安培环路定理
l H dl I
物理意义 沿任一闭合路径磁场强度的环流等于该
闭合路径所包围的传导电流的代数和。
各向同性磁介质 M H
(磁化率)
H
B
M
B
H
0
0
B 0 (1 )H
相对磁导率 r 1 磁 导 率 0r
1 顺磁质
r 1 抗磁质
1 铁磁质
第二节 磁介质中的安培环路定理 磁场强度
一、有介质时的高斯定理
介质中的磁感应强度:
B B外 B
无论是什么电流激发的磁场,其磁力线均是无头
无尾的闭合曲线。
∴ 通过磁场中任意闭合曲面的磁通量为零。
即: BdS 0
二、有介质时的安培环路定理
在有介质的空间,传导电流与磁化电流共同
产生磁场:
I
Bdl o I o I
L H dl Ii
L
ab H n ab I
则:H nI
B
B or H nI
B
I
...
a
b
× × × ×M
d c nˆ