课 题:等差数列

合集下载

等差数列知识点及习题

等差数列知识点及习题

第06课 等差数列1. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差.2. 等差中项:由三个数b A a ,,组成的等差数列可以看成最简单的等差数列. 这时,A 叫做b a 与的等差中项.3. 等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=4. 等差数列的性质:(1)通项公式的推广:()d m n a a m n -+= ()*N m n ∈,. (2)若{}n a 为等差数列,且n m l k +=+ ()*N m n l k ∈,,,,则n m l k a a a a +=+.(3)若{}n a 为等差数列,公差为d ,则{}n a 2也是等差数列,公差为d 2.(4)若{}n a 、{}n b 为等差数列,则{}n n qb pa +是等差数列.(5)若{}n a 为等差数列,则()*2N m k a a a m k m k k ∈⋅⋅⋅++,,,,组成公差为md 的等差数列.5.例1. 下列说法,正确的是___________(1)若{}n a 为等差数列,则{}n a 2也为等差数列; (2)若{}n a 为等差数列,则{}1++n n a a 为等差数列;(3)若正数数列{}n a 满足()5312252-=-n n a n ,则数列{}n a 是等差数列;(4)若数列{}n a 的通项公式为n n a n +=2,则数列{}n a 为等差数列.例2. 等差数列{}n a 中,13573==a a ,,求其通项公式.例3. 已知单调递增的等差数列{}n a 的前三项之和为21,前三项之积为231,求数列的通项公式.例4. 等差数列{a n }中, 3(a 3+a 5) +2(a 7+a 10+a 13) =24, 则a 4+a 10等于( )A. 3B. 4C. 5D. 12例5. 在数列{a n }中, a 1=2, a n+1=a n +2n +1.(1) 求证: 数列{a n -2n }为等差数列;(2) 设数列{b n }满足b n =2log 2(a n +1-n), 求{b n }的通项公式.【课堂训练】1. 在等差数列{a n }中, a 2=2, a 3=4, 则a 10=( )A. 12B. 14C. 16D. 182. 等差数列{a n }的首项为70, 公差为-9, 则这个数列中绝对值最小的一项为( )A. a 8B. a 9C. a 10D. a 113. 在数列{a n }中, a 1=15, 3a n+1=3a n -2, 则该数列中相邻两项乘积为负值的项是() A. a 21和a 22 B. a 22和a 23C. a 23和a 24D. a 24和a 254. 等差数列{a n }中, a 5+a 6=4, 则()1021222log 2a a a⋅⋅⋅⋅=( )A. 10B. 20C. 40D. 2+log 255. 等差数列{a n }中, a 1+a 5=10, a 4=7, 则数列{a n }的公差为( )A. 1B. 2C. 3D. 46. 已知{a n }为等差数列, a 1+a 3+a 5=105, a 2+a 4+a 6=99, 则a 20等于( )A. -1B. 1C. 3D. 77. 如果一个数列的前3项分别是1, 2, 3, 下列结论中正确的是( )A. 它一定是等差数列B. 它一定是递增数列C. 通项公式是a n =nD. 以上结论都不一定对8. 一个首项为23, 公差为整数的等差数列中, 前6项均为正数, 从第7项起为负数, 则公差d 为( )A. -2B. -3C. -4D. -59. 设数列{a n }, {b n }都是等差数列, 且a 1=25, b 1=75, a 2+b 2=100, 那么数列{a n +b n }的第37项为( )A. 0B. 37C. 100D. -3710. 已知递减的等差数列{a n }满足9212a a =, 则a 5=( )A. -1B. 0C. -1或0D. 4或511. 在等差数列{a n }中, 首项a 1=0, 公差d≠0, 若a k =a 1+a 2+a 3+…+a 7, 则k=( )A. 21B. 22C. 23D. 2412. nn n a a a 311+=+, a 1=2, 则a 4为( ) A.78 B. 58 C. 516 D. 19213. 设数列{a n }是公差不为零的等差数列, 且a 20=22, |a 11|=|a 51|, 则a n = .14. 在等差数列{}n a 中,已知9852=++a a a ,21753-=a a a ,求数列的通项公式.15. 已知数列{log 2(a n -1) }(n ∈N *) 为等差数列, 且a 1=3, a 3=9, 求数列{a n }的通项公式.16. 已知等差数列{a n }中, a 1=a, 公差d=1, 若b n =122+-n n a a(n ∈N *), 试判断数列{b n }是否为等差数列, 并证明你的结论.【强化训练】1. 已知数列{a n }满足a 1=2, a n+1-a n =a n+1a n , 那么a 31等于( ) A. 583-B. 592-C. 301-D. 602-2. 已知数列{a n }中, a 3=2, a 5=1, 若⎭⎬⎫⎩⎨⎧+n a 11是等差数列, 则a 11等于( ) A. 0 B.61 C. 31 D. 21 3. 若lg 2, lg(2x -1), lg(2x +3) 成等差数列, 则x 的值为( )A. 1B. 0或32C. 32D. log 254. 已知函数f(x)是R 上的单调增函数且为奇函数, 数列{a n }是等差数列, a 3> 0, 则f(a 1) +f(a 3) + f(a 5)的值( )A. 恒为正数B. 恒为负数C. 恒为0D. 可正可负5. 如果有穷数列a 1, a 2, …, a m (m 为正整数) 满足条件: a 1=a m , a 2=a m-1, …, a m =a 1, 则称其为“对称” 数列. 例如, 数列1, 2, 5, 2, 1与数列8, 4, 2, 4, 8都是“对称” 数列. 已知在21项的“对称” 数列{c n }中, c 11, c 12, …, c 21是 以1为首项, 2为公差的等差数列, 则c 2= .6. 数列{a n }是公差为正数的等差数列, a 1=f(x-1), a 2=0, a 3=f(x+1), 其中f(x) =x 2-4x+2, 则数列{a n }的通项公式a n = .7. 在数列{a n }中, a 1=3, 且对任意大于1的正整数n, 点()1-n n a a ,在直线x-y-3=0上, 则a n = .8. 已知无穷等差数列{a n }中, 首项a 1=3, 公差d=-5, 依次取出序号能被4除余3的项组成数列{b n }.(1) 求b 1和b 2;(2) 求{b n}的通项公式;(3) {b n}中的第503项是{a n}中的第几项?。

等差数列习题课

等差数列习题课

等差数列习题课一、选择题(每小题5分,共30分,多选题全部选对得5分,选对但不全的得2分,有选错的得0分)1.等差数列{}a n 中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 6的值为( ) A .10 B .9 C .8 D .7【解析】选B.因为等差数列{}a n 中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,所以2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9),所以a 3+a 6+a 9=27,所以3a 6=27,所以a 6=9.2.已知等差数列{a n }的公差d≠0,S n 是其前n 项和,若a 1+a 3+a 5=-15,a 2+a 4+a 6=-21,则18 S 3的值是( )A .-5B .-58C .-98D .-18【解析】选C.由等差数列性质知3a 3=-15,3a 4=-21, 故a 3=-5,a 4=-7,则a 2=-3. 则18 S 3=18 ×3(a 1+a 3)2 =3a 28 =-98 .3.在数列{}a n 中,a 1=3,且对任意大于1的正整数n ,点(a n ,a n -1 )在直线x -y - 3 =0上,则( ) A .a n =3nB .a n =3nC .a n =n - 3D .a n =3n 2【解析】选D.因为点(a n ,a n -1 )在直线x -y - 3 =0上,所以a n -a n -1= 3 ,所以数列{}a n 是首项为 3 ,公差为 3 的等差数列.所以数列{}a n 的通项公式为 a n = 3 +(n -1)·3 = 3 n. 所以a n =3n 2.4.若数列{a n }的通项a n =2n -6,设b n =|a n |,则数列{b n }的前7项和为( ) A .14 B .24 C .26 D .28【解析】选C.当n≤3时,a n ≤0,b n =|a n |=-a n =6-2n ,即b 1=4,b 2=2,b 3=0.当n>3时,a n >0,b n =|a n |=a n =2n -6, 即b 4=2,b 5=4,b 6=6,b 7=8.所以数列{b n }的前7项和为4+2+0+2+4+6+8=26.5.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1 的前100项和为( )A .100101B .99101C .99100D .101100【解析】选A.因为a 5=5,S 5=15,所以5(a 1+5)2 =15,所以a 1=1.所以d =a 5-a 15-1=1,所以a n =n.所以1a n a n +1 =1n (n +1) =1n -1n +1.则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1 的前100项的和为:T 100=⎝ ⎛⎭⎪⎫1-12 +⎝ ⎛⎭⎪⎫12-13 +…+⎝ ⎛⎭⎪⎫1100-1101 =1-1101 =100101 .6.(多选题)等差数列{a n }中,a na 2n是一个与n 无关的常数,则该常数的可能值为( )A .1B .12 C .2 D .3【解析】选AB.本题考查等差数列.设等差数列{a n }的公差为d ,则a na 2n=a 1-d +dna 1-d +2dn为常数,则a 1=d 或d =0,a n a 2n =12 或1.二、填空题(每小题5分,共10分)7.在等差数列{a n }中,a 2=3,a 3+a 4=9,则a 1a 6=______.【解析】因为a 2=3,a 3+a 4=9,所以a 2+a 3+a 4=12,即3a 3=12,故a 3=4,a 4=5,所以a n =n +1,所以a 1a 6=2×7=14. 答案:148.已知数列{a n }满足a n =11-2n ,则|a 1|+|a 2|+|a 3|+…+|a 8|=________. 【解析】原式=(a 1+a 2+a 3+a 4+a 5)-(a 6+a 7+a 8) =(9+7+5+3+1)-(-1-3-5)=34. 答案:34三、解答题(每小题10分,共20分)9.已知数列{a n }中,a 7=6,a 10=-3,S n 为等差数列{a n }的前n 项和. (1)求数列{a n }的通项公式及S n 的最大值; (2)求|a 1|+|a 2|+|a 3|+…+|a 19|+|a 20|的值. 【解析】(1)因为a 7=6,a 10=-3,故⎩⎨⎧a 1+6d =6a 1+9d =-3,解得a 1=24,d =-3,则a n =-3n +27, 数列的前n 项和公式为:S n =n×24+n (n -1)2 ×(-3)=-32 n 2+512 n , 注意到数列{a n }单调递减,且a 8>0,a 9=0, 所以S n 的最大值=S 8=S 9=108.(2)因为|a 1|+|a 2|+|a 3|+…+|a 19|+|a 20|=a 1+a 2+a 3+…+a 9-(a 10+a 11+…+a 20), 所以a 1+a 2+a 3+…+a 9-(a 10+a 11+…+a 20)=2S 9-S 20,由于S 9=108,S 20=-90,即|a 1|+|a 2|+|a 3|+…+|a 19|+|a 20|=306.10.已知S n 为各项均为正数的数列{a n }的前n 项和,a 1∈(0,2),a 2n +3a n +2=6S n .(1)求{a n }的通项公式;(2)设b n =1a n a n +1 ,数列{b n }的前n 项和为T n ,若对任意n ∈N *,t≤4T n 恒成立,求实数t 的最大值.【解析】(1)①当n =1时,a 21 +3a 1+2=6S 1=6a 1, 即a 21 -3a 1+2=0,又因为a 1∈(0,2),解得a 1=1. ②对任意n ∈N *,由a 2n +3a n +2=6S n 知 a 2n +1 +3a n +1+2=6S n +1,两式相减,得a 2n +1 -a 2n +3(a n +1-a n )=6a n +1,即(a n +1+a n )(a n +1-a n -3)=0,由a n >0得a n +1-a n -3=0,即a n +1-a n =3, 所以{a n }是首项为1,公差为3的等差数列,所以a n =1+3(n -1)=3n -2. (2)由a n =3n -2得b n =1a n a n +1 =1(3n -2)(3n +1)=13 ⎝ ⎛⎭⎪⎪⎫13n -2-13n +1 , 所以T n =b 1+b 2+…+b n =13 ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎝ ⎛⎭⎪⎪⎫13n -2-13n +1 =13 ⎝ ⎛⎭⎪⎪⎫1-13n +1 =n 3n +1 . 因为T n +1-T n =n +13(n +1)+1 -n 3n +1=1(3n +1)(3n +4)>0,所以T n +1>T n ,即数列{T n }是递增数列, 所以t≤4T n ,t 4 ≤T n ,t 4 ≤T 1=14 ,t≤1, 所以实数t 的最大值是1.(35分钟 70分)一、选择题(每小题5分,共20分,多选题全部选对得5分,选对但不全的得2分,有选错的得0分)1.已知数列{}a n 的前n 项和为S n ,若a n =1n +n +1,S n =10,则n =( ) A .90 B .119 C .120 D .121【解析】选C.因为a n =1n +n +1=n +1 -n ,所以S n =⎝⎛⎭⎫2-1 +⎝⎛⎭⎫3-2 +…+(n +1 -n )=n +1 -1=10,故n +1=121 ,故n =120.2.已知数列{a n }是等差数列,a 1<0,a 8+a 9>0,a 8·a 9<0.则使S n >0的n 的最小值为( )A .8B .9C .15D .16【解析】选D.因为等差数列{a n },首项a 1<0,a 8+a 9>0,a 8·a 9<0,所以a 8<0,a 9>0, 由S n =12 n(a 1+a n ),可得S 15=15a 8<0,S 16=16(a 1+a 16)2 =8(a 8+a 9)>0,所以使前n 项和S n >0成立的最小自然数n 的值为16.3.已知函数f(x)是(-1,+∞)上的单调函数,且函数y =f(x -2)的图象关于直线x =1对称,若数列{a n }是公差不为0的等差数列,且f(a 50)=f(a 51),则数列{a n }的前100项的和为( )A .-200B .-100C .0D .-50【解析】选B.因为函数y =f(x -2)的图象关于直线x =1对称,则函数f(x)的图象关于直线x =-1对称,又因为函数f(x)是(-1,+∞)上的单调函数,{a n }是公差不为0的等差数列,f(a 50)=f(a 51),所以a 50+a 51=-2,S 100=100(a 1+a 100)2=50(a 50+a 51)=-100. 4.(多选题)设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论正确的是( ) A .d <0 B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值【解析】选ABD.由S 5<S 6得a 1+a 2+…+a 5<a 1+a 2+…+a 5+a 6,即a 6>0,又因为S 6=S 7,所以a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7, 所以a 7=0,故B 正确;同理由S 7>S 8,得a 8<0,因为d =a 7-a 6<0,故A 正确;而C 选项S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,显然C 选项是错误的.因为S 5<S 6,S 6=S 7>S 8,所以S 6与S 7均为S n 的最大值,故D 正确. 二、填空题(每小题5分,共20分)5.在等差数列{}a n 中,S n 为其前n 项的和,若S 4=12,S 8=40,则S 16=________. 【解析】设等差数列的公差为d , 则⎩⎪⎨⎪⎧S 4=4a 1+4×32d =12S 8=8a 1+8×72d =40,解得a 1=32 ,d =1,所以S 16=16×32 +16×152 ×1=144. 答案:1446.已知S n 为等差数列{a n }的前n 项和,满足a 2+a 8=6,S 5=-5,则a 6=________,S n 的最小值为________.【解析】依题意得:⎩⎨⎧2a 1+8d =6,5a 1+10d =-5,解得⎩⎨⎧a 1=-5,d =2,所以a 6=-5+10=5,S n =-5n +n (n -1)2 ×2=n 2-6n , 当n =3时,S n 的最小值为-9. 答案:5 -97.已知数列{a n }中a 1=1,a 2=2,当整数n>1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15=________.【解析】因为数列{a n }中,当整数n>1时, S n +1+S n -1=2(S n +S 1)都成立⇔S n +1-S n =S n -S n -1+2⇔a n +1-a n =2(n>1).所以当n≥2时,{a n }是以2为首项,2为公差的等差数列. 所以S 15=14a 2+14×132 ×2+a 1=14×2+14×132 ×2+1=211. 答案:2118.已知等差数列{a n }的前n 项和为S n ,若1≤a 1≤3,3≤a 1+S 3≤6,则a 2a 1的取值范围是________.【解析】在等差数列{a n }中,a 1+a 3=2a 2, 所以S 3=a 1+a 2+a 3=3a 2, 又3≤a 1+S 3≤6,所以3≤a 1+3a 2≤6. 由1≤a 1≤3得13 ≤1a 1≤1.所以1≤a 1+3a 2a 1≤6,即1≤1+3a 2a 1≤6,所以0≤a 2a 1 ≤53 .即a 2a 1的取值范围是⎣⎢⎡⎦⎥⎤0,53 .答案:⎣⎢⎡⎦⎥⎤0,53三、解答题(每小题10分,共30分)9.已知数列{a n },a n ∈N *,S n 是其前n 项和,S n =18 (a n +2)2. (1)求证:{a n }是等差数列;(2)设b n =12 a n -30,求数列{b n }的前n 项和的最小值. 【解析】(1)当n =1时,a 1=S 1=18 (a 1+2)2, 解得a 1=2.当n≥2时,a n =S n -S n -1=18 (a n +2)2-18 (a n -1+2)2,即8a n =(a n +2)2-(a n -1+2)2, 整理得(a n -2)2-(a n -1+2)2=0, 即(a n +a n -1)(a n -a n -1-4)=0. 因为a n ∈N *,所以a n +a n -1>0,所以a n -a n -1-4=0,即a n -a n -1=4(n≥2). 故数列{a n }是以2为首项,4为公差的等差数列. (2)设数列{b n }的前n 项和为T n ,因为b n =12 a n -30,且由(1)知,a n =2+(n -1)×4=4n -2(n ∈N *), 所以b n =12 (4n -2)-30=2n -31.故数列{b n }是单调递增的等差数列. 令2n -31=0,得n =1512 .因为n ∈N *,所以当n≤15时,b n <0;当n≥16时,b n >0,即b 1<b 2<…<b 15<0<b 16<b 17<….故当n =15时,T n 取得最小值,最小值为T 15=-29-12 ×15=-225. 10.已知等差数列{a n }(n ∈N *)满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1 ,求数列{b n }的前n 项和T n .【解析】(1)设等差数列{a n }的首项为a 1,公差为d , 由于a 3=7,a 5+a 7=26,所以a 1+2d =7,2a 1+10d =26,解得a 1=3,d =2. 所以a n =2n +1,S n =n(n +2)(n ∈N *).(2)因为a n =2n +1,所以a 2n -1=4n(n +1),所以b n =14n (n +1) =14 ⎝ ⎛⎭⎪⎪⎫1n -1n +1 . 故T n =b 1+b 2+…+b n=14 ⎝ ⎛⎭⎪⎪⎫1-12+12-13+…+1n -1n +1=14 ⎝ ⎛⎭⎪⎪⎫1-1n +1 =n 4(n +1) ,所以数列{b n }的前n 项和T n =n 4n +1 (n ∈N *). 【补偿训练】数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N *). (1)求数列{a n }的通项公式; (2)设H n =|a 1|+|a 2|+…+|a n |,求H n . 【解析】(1)因为a n +2-2a n +1+a n =0. 所以a n +2-a n +1=a n +1-a n =…=a 2-a 1.所以{a n }是等差数列且a 1=8,a 4=2,所以d =-2,a n =a 1+(n -1)d =10-2n.故a n =10-2n(n ∈N *).(2)因为a n =10-2n ,令a n =0,得n =5.当n>5时,a n <0;当n =5时,a n =0;当n<5时,a n >0.设S n =a 1+a 2+…+a n .所以当n>5时,H n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=S 5-(S n -S 5)=2S 5-S n =n 2-9n +40,当n≤5时,H n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =9n -n 2.所以H n =⎩⎨⎧9n -n 2,n≤5,n 2-9n +40,n>5 (n ∈N *).11.数列{a n }满足a 1=12 ,a n +1=12-a n(n ∈N *). (1)求证:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1 为等差数列,并求出{a n }的通项公式. (2)设b n =1a n-1,数列{b n }的前n 项和为B n ,对任意n≥2都有B 3n -B n >m 20 成立,求正整数m 的最大值.【解析】(1)因为a n +1=12-a n, 所以1a n +1-1 =112-a n-1 =2-a n a n -1=-1+1a n -1 , 即1a n +1-1 -1a n -1=-1, 所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n -1 是首项为-2,公差为-1的等差数列,1a n -1=-2+(n -1)×(-1)=-(n +1),所以a n =nn +1 .(2)b n =n +1n -1=1n ,令C n =B 3n -B n =1n +1 +1n +2 +…+13n ,所以C n +1-C n =1n +2 +1n +3 +…+13(n +1) - 1n +1 -…-13n =-1n +1 +13n +2 +13n +3 +13n +1=13n +2 -23n +3 +13n +1 >23n +3 -23n +3 =0,所以C n +1-C n >0,{C n }为单调递增数列,又因为n≥2,所以(B 3n -B n )min =B 6-B 2=13 +14 +15 +16 =1920 ,m 20 <1920 ,m<19. 又因为m ∈N *,所以m 的最大值为18.。

等差数列的性质练习 含答案

等差数列的性质练习 含答案

时间:45分钟满分:100分课堂训练1.若一个数列的通项公式是a n=k·n+b(其中b,k为常数),则下列说法中正确的是( )A.数列{a n}一定不是等差数列B.数列{a n}是以k为公差的等差数列C.数列{a n}是以b为公差的等差数列D.数列{a n}不一定是等差数列【答案】B【解析】a n+1-a n=k(n+1)+b-kn-b=k.2.等差数列中,若a3+a4+a5+a6+a7+a8+a9=420,则a2+a10等于( )A.100 B.120C.140 D.160【答案】B【解析】∵a3+a4+a5+a6+a7+a8+a9=7a6=420,则a6=60,∴a2+a10=2a6=2×60=120.3.在等差数列{a n}中,a15=33,a25=66,则a35=________.【答案】99【解析】a15,a25,a35成等差数列,∴a35=2a25-a15=99.4.已知单调递增的等差数列{a n}的前三项之和为21,前三项之积为231,求数列{a n}的通项公式.【分析】关键是求出数列{a n}的首项和公差.【解析】由于数列为等差数列,因此可设等差数列的前三项为a -d ,a ,a +d ,于是可得⎩⎪⎨⎪⎧a -d +a +a +d =21,a -d a a +d =231,即⎩⎪⎨⎪⎧3a =21,a a 2-d2=231,即⎩⎪⎨⎪⎧a =7,d 2=16,由于数列为单调递增数列,因此d =4,a 1=3,从而{a n }的通项公式为a n =4n -1.【规律方法】 此解法恰到好处地设定等差数列的项,为我们的解题带来了极大的方便,特别是大大降低了运算量.一般来说,已知三个数成等差数列时,可设成:a -d ,a ,a +d ,四个数成等差数列时,可设成:a -3d ,a -d ,a +d ,a +3d ,其余依此类推,如五个可设成:a -2d ,a -d ,a ,a +d ,a +2d .课后作业一、选择题(每小题5分,共40分)1.在等差数列{a n }中,a 5=3,a 9=5,则a 7=( ) A .4 B .-4 C .7 D .1【答案】 A【解析】 由题意知a 7为a 5,a 9的等差中项,故a 7=12(a 5+a 9)=12×(3+5)=4.2.在等差数列{a n }中,若a 3+a 5+a 7+a 9+a 11=100,则3a 9-a 13的值为( )A .20B .30C .40D .50 【答案】 C【解析】 ∵a 3+a 11=a 5+a 9=2a 7,∴a 3+a 5+a 7+a 9+a 11=5a 7=100, ∴a 7=20.∴3a 9-a 13=3(a 7+2d )-(a 7+6d )=2a 7=40.3.在等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9的值为( )A .30B .27C .24D .21【答案】 B【解析】 方法一:由等差数列的性质知,a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9成等差数列,所以(a 1+a 4+a 7)+(a 3+a 6+a 9)=2(a 2+a 5+a 8),则a 3+a 6+a 9=2×33-39=27. 方法二:(a 2+a 5+a 8)-(a 1+a 4+a 7) =3d (d 为数列{a n }的公差),则d =-2,a 3+a 6+a 9=(a 2+a 5+a 8)+3d =33-6=27.4.把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的 17是较小的两份之和,问最小的1份是( )【答案】 C【解析】 设这5份为a -2d ,a -d ,a ,a +d ,a +2d , 由已知得a =20,且17(a +a +d +a +2d )=a -2d +a -d ,∴d =556,∴a -2d =53. 5.等差数列{a n }的公差d <0,且a 2a 4=12,a 1+a 5=8,则其通项公式为( )A .a n =2n -2B .a n =2n +4C .a n =-2n +12D .a n =-2n +10【答案】 D【解析】 由等差数列的性质得a 2+a 4=a 1+a 5=8. 又a 2a 4=12,所以a 2,a 4为方程x 2-8x +12=0的两根,解得⎩⎪⎨⎪⎧a 2=2,a 4=6或⎩⎪⎨⎪⎧a 2=6,a 4=2.当a 2=2,a 4=6时,d =a 4-a 24-2=2>0(舍去), 当a 2=6,a 4=2时,d =a 4-a 24-2=-2.所以数列的通项公式为a n =a 2+(n -2)d =6+(n -2)×(-2)=-2n +10.即a n =-2n +10.6.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37【答案】 C【解析】 设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n+b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,∴{a n +b n }为等差数列. 又∵a 1+b 1=a 2+b 2=100, ∴a 37+b 37=100. 故正确答案为C.7.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A .-2B .-3C .-4D .-5【答案】 C【解析】 设该数列的公差为d ,则由题设条件知:a 6=a 1+5d >0,a 7=a 1+6d <0.又∵a 1=23,∴⎩⎪⎨⎪⎧d >-235,d <-236,即-235<d <-236.又∵d 是整数,∴d =-4,故选C.8.已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1,b 1∈N +.设c n =ab n (n ∈N +),则数列{c n }的前10项和等于( )A .55B .70C .85D .100【答案】 C【解析】 由题c n =ab n (n ∈N +),则数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+…+ab 1+9.∵ab 1=a 1+(b 1-1)=4,∴ab 1+ab 1+1+…+ab 1+9=4+5+…+13=85. 二、填空题(每小题10分,共20分)9.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20=________.【答案】1【解析】∵a1+a3+a5=105,即3a3=105,∴a3=35,同理a4=33,∴d=a4-a3=-2,∴a20=a4+(20-4)d=1.10.等差数列{a n}中,a1+a4+a10+a16+a19=150,则a18-2a14=________.【答案】-30【解析】由a1+a4+a10+a16+a19=5a10=150,得a10=30,a18-2a14=(a10+8d)-2(a10+4d)=-a10=-30.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.(1)已知数列{a n}为等差数列,若a1-a5+a9-a13+a17=117,求a3+a15.(2)在等差数列{a n}中,已知a2+a5+a8=9,a3a5a7=-21,求数列{a n}的通项公式.【解析】(1)方法一:∵数列{a n}是等差数列,∴设数列{a n}的首项为a1,公差为d,则由题意得a1-(a1+4d)+(a1+8d)-(a1+12d)+(a1+16d)=117,∴a1+8d=117.从而a3+a15=(a1+2d)+(a1+14d)=2(a1+8d)=234.方法二:由等差数列的性质知,a1+a17=a5+a13=a3+a15=2a9.∵a1-a5+a9-a13+a17=117,∴a9=117,∴a3+a15=2a9=234.(2)∵a2+a5+a8=9,a3a5a7=-21,a2+a8=a3+a7=2a5,∴a5=3,∴a3+a7=2a5=6,a3a7=-7,解得a3=-1,a7=7或a3=7,a7=-1.又a7=a3+4d,∴当a3=-1,a7=7时,可得d=2;当a3=7,a7=-1时,可得d=-2.根据a n=a3+(n-3)d,可得当a3=-1,d=2时,a n=2n-7;当a3=7,d=-2时,a n=-2n+13.12.已知无穷等差数列{a n}中,首项a1=3,公差d=-5,依次取出序号能被4除余3的项组成数列{b n}.(1)求b1和b2;(2)求{b n}的通项公式;(3){b n}中的第503项是{a n}的第几项?【解析】数列{b n}是数列{a n}的一个子数列,其序号构成以3为首项,4为公差的等差数列,由于{a n}是等差数列,则{b n}也是等差数列.(1)∵a1=3,d=-5,∴a n=3+(n-1)(-5)=8-5n.数列{a n}中序号能被4除余3的项是{a n}中的第3项,第7项,第11项,…,∴b1=a3=-7,b2=a7=-27.(2)设{a n}中的第m项是{b n}的第n项,即b n=a m,则m=3+4(n-1)=4n-1,∴b n=a m=a4n-1=8-5(4n-1)=13-20n.即{b n}的通项公式为b n=13-20n.(3)b503=13-20×503=-10 047,设它是{a n}中的第m项,则-10 047=8-5m,则m=2 011,即{b n}中的第503项是{a n}中的第2 011项.。

等差数列习题课

等差数列习题课

2.已知等差数列{an}的前 n 项和为 Sn,若 a1·a2=2,S5=15,则 a4=( )
A.3
B.4 或 13
C.4 或123
D.3 或123
a1·a2=2
a1(a1+d)=2
【解析】选 C.因为等差数列{an}的前 n 项和为 Sn, S5=15
,即5(a1+ 2 a5)=15 ,
解得 a1=1 或 a1=-4,当 a1=1 时,d=1,解得 a4=4;当 a1=-4 时,d=72 ,此时
6.记 Sn 为等差数列{an} 的前 n 项和.已知 S4=0,a5=5,则 an=______;Sn=______. 【解析】设等差数列{an} 的公差为 d,
因为 S4=0,a5=5,
a1+4d=5, 所以根据等差数列前 n 项和公式和通项公式得:
4a1+6d=0,
解方程组得:a1=-3,d=2, 所以 an=-3+n-1 ×2=2n-5,Sn=n2-4n. 答案:2n-5 n2-4n
【解析】由题意知,良马每日行的距离成等差数列,
记为{an} ,其中 a1=193,d=13,an=193+13(n-1)=13n+180,
驽马每日行的距离成等差数列,
记为{bn} ,其中 b1=97,d=-0.5,bn=97-0.5(n-1)=97.5-0.5n, 则数列{an} 与数列{bn} 的前 n 项和为 3 000×2=6 000. 又因为数列{an} 的前 n 项和为12 n×(193+13n+180)=12 n×(373+13n), 数列{bn} 的前 n 项和为12 n×(97+97.5-0.5n)=12 n×(194.5-12 n),
.
当 n=19 时,S19=190.
当 n=20 时,S20=210>200.

第2课时等差数列习题课

第2课时等差数列习题课

n(n+1)
(2)由(1)知an=n,Sn= 2

所以bn=21Sn
=1 n(n+1)
=1n
-1 n+1

所以Tn=b1+b2+b3+…+bn
=(1-12
)+(12
-13
)+…+(n1
-1 n+1
)
=1-n+1 1
=n n+1
.
【类题通法】裂项相消法求和
当数列的通项是分式形式,分母是两个式子的乘积,且两个式子的差为常数时,
-2n2+40n
可得Tn=
2
=-n2+20n=-(n-10)2+100,
所以当n=10时,Tn取得最大值,且T10=100.
(3)令cn=na+2n2 ,Sn为cn的前n项和,
由(1)知,cn=n(n1+2) =12 1n-n+1 2 ,
所以Sn=21
11-13
+12
12-14
+12
13-15
+…+12
(2)当n≤7时, Tn=-(a1+a2+a3+…+an)=-Sn=13n-n2, 当n≥8时,an>0,Tn=-(a1+a2+a3+a4+a5+a6+a7)+(a8+…+an)=Sn-2S7=n2 -13n+84.
13n-n2,n≤7, 综上,Tn=n2-13n+84,n≥8.
探究点三 等差数列
an+1=-2(n+1)+27≤0, n≤1312, 得n≥1212,
又因为n∈N*,所以当n=13时,Sn有最大值169.
方法三:因为S9=S17,所以a10+a11+…+a17=0. 由等差数列的性质得a13+a14=0. 因为a1>0,所以d<0.所以a13>0,a14<0. 所以当n=13时,Sn有最大值169. 方法四:设Sn=An2+Bn. 因为S9=S17,

等差数列新课练习题

等差数列新课练习题

等差数列新课练习题一.选择题(共10小题)1.等差数列{a n}中,已知a3=7,a5=13,则a7=()A.16 B.17 C.18 D.192.已知等差数列{a n}满足a1+a3=﹣2a2,则a2=()A.﹣1 B.0 C.1 D.23.在数列{a n}中,a1=1,a n+1﹣a n=2,则a6的值是()A.11 B.13 C.15 D.174.在等差数列{a n}中,a1+a5+a7+a9+a13=100,a6﹣a2=12,则a1=()A.1 B.2 C.3 D.45.在等差数列{a n}中,a1+3a8+a15=60,则a2﹣a8+a14等于()A.10 B.12 C.11 D.﹣46.在三角形A,B,C中,角A,B,C成等差数列,则cos B的大小为()A.B.C.D.7.等差数列{a n},中,a2+a7+a9=﹣6,则a6=()A.﹣1 B.﹣2 C.﹣3 D.﹣68.在等差数列{a n}中,若a1+a9=8,则=()A.60 B.56 C.52 D.429.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n﹣5 B.a n=3n﹣10 C.S n=2n2﹣8n D.S n=n2﹣2n 10.等差数列{a n}中,S n为其前n项和,若S3=2,S6=8,则S9=()A.32 B.18 C.14 D.10二.填空题(共5小题)11.在等差数列{a n}中,a2=1,a4=3,则a3=.12.已知等差数列{a n}的前n项和为S n,a1=1,a7=19,则a3+a5=,S7=.13.设等差数列{a n}的前n项和为S n,若a2=﹣3,S5=﹣10,则a5=,S n的最小值为.14.若数列{a n}满足a1=2,a n+1=a n﹣2,则a2019=.15.《莱因德纸草书》是世界上最古老的数学著作之一.书中有这样的题目:把100个面包分给5个人(注:每个面包可以分割),使每人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小1份是,公差为.三.解答题(共5小题)16.设S n为等差数列{a n}的前n项和,已知a2=20,S9=45.(Ⅰ)求{a n}的通项公式;(Ⅱ)求S n,并求当S n取得最大值时n的值.17.已知数列{a n}前n项和为.(1)求数列{a n}的通项公式;(2)设数列b n=a n•a n+1;求数列的前n项和T n.18.已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*.(1)求数列{a n}的通项公式a n;(2)数列{a n}是等差数列吗?若是,请证明.19.已知正项数列{a n}的首项a1=1,前n项和S n满足.(1)求数列{a n}的通项公式;(2)记数列的前n项和为T n,若对任意的n∈N*,不等式恒成立,求实数a的取值范围.20.若数列{a n}的通项公式为a n=2n﹣1,f(n)=(1﹣)(1﹣)(1﹣)…(1﹣).其中S n为数列{a n}的前n项和(1)计算f(1),f(2),f(3)的值;(2)猜测f(n)的解析式,并给出证明.等差数列新课练习题参考答案与试题解析一.选择题(共10小题)1.【解答】解:设等差数列{a n}的公差为d,∵a3=7,a5=13,∴a1+2d=7,a1+4d=13,联立解得a1=1,d=3,则a7=1+3×6=19.故选:D.2.【解答】解:等差数列{a n}满足a1+a3=﹣2a2,则2a2=﹣2a2,解得a2=0.故选:B.3.【解答】解:依题意,数列{a n}中,a n+1﹣a n=2,所以数列{a n}是首项为1,公差为2的等差数列,所以a6=a1+(6﹣1)×d=1+5×2=11.故选:A.4.【解答】解:∵a1+a5+a7+a9+a13=100,∴5a7=100,∴a7=20,∵a6﹣a2=12,∴4d=12,∴d=3,∴a7=a1+6d=20,∴a1=2,故选:B.5.【解答】解:等差数列{a n}中,a1+3a8+a15=60,可得:5a8=60,解得a8=12,则a2﹣a8+a14=a8=12,故选:B.6.【解答】解:在三角形A,B,C中,角A,B,C成等差数列,∴2B=A+C=π﹣B,解得B=.则cos B=.故选:B.7.【解答】解:由等差数列{a n},中,a2+a7+a9=﹣6,∴3a6=﹣6,解得a6=﹣2.故选:B.8.【解答】解:等差数列{a n}中,a1+a9=8,由等差数列的性质可知,===52故选:C.9.【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n﹣5,,故选:A.10.【解答】解:∵等差数列{a n}中,S n为其前n项和,S3=2,S6=8,则根据等差数列的性质可得S3,S6﹣S3,S9﹣S6仍成等差数列,即2,8﹣2,S9﹣8成等差数列,则有2×(8﹣2)=2+(S9﹣8),解得S9=18.故选:B.二.填空题(共5小题)11.【解答】解:由等差数列的性质可知,a2+a4=2a3=4,∴a3=2故答案为:212.【解答】解:等差数列{a n}中,a1=1,a7=19,由等差数列的性质可知,a3+a5=a1+a7=20∴=70故答案为:20;7013.【解答】解:设等差数列{a n}的前n项和为S n,a2=﹣3,S5=﹣10,∴,解得a1=﹣4,d=1,∴a5=a1+4d=﹣4+4×1=0,S n==﹣4n+=(n﹣)2﹣,∴n=4或n=5时,S n取最小值为S4=S5=﹣10.故答案为:0,﹣10.14.【解答】解:a n+1=a n﹣2,化为:a n+1﹣a n=﹣2,∴数列{a n}为等差数列,首项为2,公差为﹣2.则a2019=2﹣2×2018=﹣4034.故答案为:﹣4034.15.【解答】解;设每人所得成等差数列{a n},不妨设d>0.则a1+a2=(a3+a4+a5),a1+a2+a3+a4+a5=100,∴2a1+d=(3a1+9d),5a1+d=100,联立解得:a1=,d=.故答案为:,.三.解答题(共5小题)16.【解答】解:(I)设等差数列{a n}的公差为d,∵a2=20,S9=45.∴a1+d=20,9a1+36d=45,联立解得:a1=25,d=﹣5,∴a n=25﹣5(n﹣1)=30﹣5n.(Ⅱ)S n===+,可得:n=5,或6时,S n取得最大值.17.【解答】解:(1)当n=1时,S1=a1=1当n≥=2时,此时n=1也满足上式,∴a n=2n﹣1 5.分.(2)∵b n=a n•a n+1,∴b n=(2n﹣1)(2n+1),∴8.分.∴12..分.18.【解答】解:(1)由S n=2n2+n,得当n=1时,a1=S1=3;当n≥2时,a n=S n﹣S n﹣1=2n2+n﹣[2(n﹣1)2+(n﹣1)]=4n﹣1,n∈N﹡.检验当n=1时,S1=4×1﹣1=3;所以数列{a n}的通项公式a n=4n﹣1;(2)∵a n+1=4(n+1)﹣1=4n+3,∴a n+1﹣a n=4n+3﹣(4n﹣1)=4.∴数列{a n}是首项为3公差d=4的等差数列.19.【解答】解:(1)当n≥2时,,∴,即,所以数列是首项为1,公差为的等差数列,故,=(n≥2),因此.(2)当n≥2时,,∴,又∵,∴12≤a2﹣a,解得a≤﹣3或a≥4.即所求实数a的范围是a≤﹣3或a≥4.20.【解答】解:(1)由等差数列的求和公式可得,S n=1+3+…+2n﹣1==n2∴f(1)=1=1﹣=,f(2)=(1﹣)(1﹣)==,f(3)==()(1﹣)(1﹣)==,(6分)(2)猜想f(n)=(8分)证明f(n)=(1﹣)(1﹣)(1﹣)…(1﹣)=()(1)(1﹣)…(1﹣)=(1﹣)(1)()(1+)…(1﹣)(1+),=()×()==(12分)。

第3讲 等差数列

第3讲  等差数列

第三讲等差数列课前练习:1. 求等差数列1,4,7,10,13,…的第20 项和第80 项。

例1:36 个小学生排成一排玩报数游戏,后一个同学报的数总比前一个同学多报8,已知最后一个同学报的数是286,第一个同学报的数是几?【思路导航】从题意可知。

同学们报的数是一个等差数列。

n=36,d=8,ɑn=286,要求ɑ, 可用公式ɑn=ɑ1 +(n-1) ×d 推导出:ɑl =ɑn-(n-1)×d ɑ1=286-(36-1)×8=286-280=6答:第一个同学报的数是6。

1. 仓库里有一叠被编上号的书,共40 本,已知每下面一本书都比上面一本书的编号多5,最后一本书的编号是225,问第一本书的编号是几?例2:等差数列4,12 ,20,…中,580 是第几项?【思路导航】在这一等差数列中,己知ɑ1=4,ɑn =580,d=8,求n 是多少,根据公式ɑn =ɑ1 十(n-1) ×d 推导出n=(ɑn 一ɑ1 ) ÷d+1n=(580-4)÷8+1=72+1=73答:580 是第73 项。

1. 等差数列3,9,15,21,…中,381是第几项?例3:一批货箱,上面的标号是按等差数列排列的,第1项是3.6 ,第5 项是12,求它的第2 项。

【思路导航】要求这个等差数列的第 2 项,我们必须先求出等差数列的公差是多少。

已知ɑ1=3.6,ɑ5=12,n=5,可以得出:ɑ1与ɑ5 相差12-3. 6=8.4,8.4 就是(5-1)个公差。

d =(12-3.6)÷(5-1)=8.4÷4=2.1ɑ2 =3.6+(2-1) ×2. 1=3.6+2.1=5.7答:第2项是5.7。

1. 有一个等差数列的第1项是2.4,第7项是26.4,求它的第5项。

课堂巩固练习:1. 学校举办运动会,共54 个人参加,每人都有参赛号码。

已知前一个人的号码比后一个人的号码总是少4,最后一个人的号码是215,第一个人的号码是多少?2.糖果生产商为机器编号。

等差等比数列练习题(含答案)

等差等比数列练习题(含答案)

一、等差等比数列基础知识点。

(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa qa a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n = 2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k nn k kkkaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkkaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q a qa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知cb a 1,1,1成等差数列,求证: (1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列;(2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b求证:{n b }是等比数列. [解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S ②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当 .,3)1(212,21结论正确-+=-=∴≥+k k a k k由1)、2)知,,32,-=∈*n a N n n 时当.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.① ②[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP P Q bn an S n 222, ①-②得:,],)()[(22Q P b Q P a Q P PQ P Q ≠++-=-.)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P Q P +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP QP a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列①②.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a d a a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功. [例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数. [解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 ①②①,②2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n(B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21 (B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n(B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( )(A )97 (B )78(C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n, …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是 ( )A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}nb a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。

等差数列典型例题及详细解答

等差数列典型例题及详细解答

等差数列典型例题及详细解答(总1 3页)-CAL-FENGHAI.-(YICAI)-Company One 1■CAL■本页仅作为文档封面.使用请直接删除1. 等差数列的定义-般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母_g_表示.2. 等差数列的通项公式如果等差数列{拐的首项为*公差为d,那么它的通项公式是a.,= a:+a-l)£・3. 等差中项如果A=~,那么月叫做a与b的等差中项.4. 等差数列的常用性质(1)通项公式的推广:a n=(n—ai) d(n, mWN*).⑵若{<> 为等差数列,且1=m~\~n(k, m、”WN°),则az+a』=ac+am(3)若{%}是等差数列,公差为",贝9 {吐}也是等差数列,公差为竺⑷若{山,⑹是等差数列,贝!」{皿+也}也是等差数列.⑸若&}是等差数列,公差为〃,则必,站”必口,…(匕 4)是公差为迢的等差数列.5. 等差数列的前n项和公式设等差数列{““}的公差为〃,其前“项和S”=^宁或必=“5+巴亍丄〃.6. 等差数列的前”项和公式与函数的关系数列{"”}是等差数列S…=An2+Bn(A. B为常数).7. 等差数列的前”项和的最值在等差数列{“”}中,心0,(1<0,则&存在最大一值:若E<0, d>0,则S“存在最小值. 【思考辨析】判断下而结论是否正确(请在括号中打“ J ”或“ X ” )(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(X )⑵数列{“”}为等差数列的充要条件是对任意都有2如尸心+如2・(J)(3)等差数列{心}的单调性是由公差〃决定的.(J)(4)数列{“”}为等差数列的充要条件是其通项公式为"的一次函数.(X )⑸数列{"”}满足“,小一"产”,则数列{“”}是等差数列.(X )⑹已知数列{⑷}的通项公式是心=””+/苴中p,彳为常数),贝IJ数列{““}一立是等差数列.(V )1. (2015•重庆)在等差数列{如中,若他=4,心=2,则心等于()A・一 1 B. 0 C・ 1 D・ 6答案B解析由等差数列的性质,得“6二如-"2二2X2 - 4二0 ,选B.2. (2014 •福建)等差数列{血}的前〃项和为几若t/i=2, 53=12,则心等于()5-4 D 5-2 A. 8 B ・ 10 C ・ 12 D ・ 14答案C3X2解析由题意知⑵二2 ,由Sy = 3a\+—^Xd= 12 ,解彳导〃二2,所以“6二⑷+5d 二2 + 5X2二12,故选C ・3. 在等差数列{“”}中,已知心+心=16,则该数列前11项和S H 等于()A. 58 B ・ 88 C ・ 143 D ・ 176答案Blid] + 1 k/4 + “8解析 S|)二 ---- -- 二 ------ 二 8&4. 设数列{“”}是等差数列,若的+如+的=12,则他+卄・・+的等于()A. 14 B ・ 21 C ・ 28 D ・ 35 答案c解析 丁心十"4 +心=3心二12 # 6/4 = 4 ,/. U\ + U2 + ••• + = 7“4 = 2&5・(2014•北京诺等差数列仏}满足⑷+曲+心>0,心+尙()<0,则当n= ______________ 时,仏}的前〃项和最大. 答案8解析 因为数列{"“}是等差数歹I 」,且十"8 + "9 = 3"8 > 0 ,所以“8 > 0.又"7 + "10 = "8十Og < 0 ,所以的< 0.故当H 二8时,其前n 项和最大・例1⑴在数列仏}中,若ai = -2,且对任意的nGN*有2如| = 1+2如 则数列{如}前10项的和为( )(2)已知在等差数列{如中,"2=7,心=15.则前10项和Sg 等于()A. 100B. 210 C ・ 380 D ・ 400答案(1)C (2)B解析⑴由二1十如得⑷+】-如二* , 所以数列{“”}是首项为-2 ,公差为*的等差数列,10X10- 1 1 5所以510= 10X( - 2) + ----------- 5 ----- X 2 = 2・(2)因为 </2 = 7. a 4 = 15 .所以〃二 4,6/1 = 3,故 Sw 二 10X3 十10X9X4 二 210.思维升华(1)等差数列运算问题的一般求法是设出首项E 和公差d .然后由通项公式或前“项和公式转化为方 程(组)求解•(2)等差数列的通项公式及前"项和公式,共涉及五个呈山,m .d.n. S … ,知其中三个就能求另外 两个,体现了方程的思想•跟踪训练1 (1)(2015・课标全国II )设S “是等差数列{“”}的前“项和,若“|+“3+"5=3,则S5等于()A. 5B. 7C. 9D. 11⑵已知等差数列{"”}的前n 项和为S",且满足~y= 1,则数列⑺”}的公差是()A.|B. 1C. 2D. 3答案(1)A (2)C解析 ⑴丁 {如为等差数列「."I 十“5二加3 ,a\ 十 “3 十"5 = 3"3 二 3 ,彳导"3 二 1 f5ai + as/. S5 二—5— - 5“3 二 5 •故选 A. nai + Un 如+。

等差数列知识点及类型题详解(含精细化答案)

等差数列知识点及类型题详解(含精细化答案)

数列——等差数列【考纲解读】◆ 理解等差数列的概念。

◆ 掌握等差数列的通项公式n a 及前n 项和公式。

◆ 能根据具体条件识别等差数列,并灵活运用等差数列的性质解决问题。

◆ 了解等差数列通项公式与一次函数、等差数列前n 项和与二次函数的关系。

【知识储备】知识点1、等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

知识点2、等差数列的通项公式如果等差数列{}n a 的首项是1a ,公差是d ,则有d a a n n =-+1(d 是常数)或n n n n a a a a -=-+++112, 叠加得到等差数列的通项为:d n a a n )1(1-+= 该公式整理后是关于n 的一次函数。

例1:已知{}n a 是一个等差数列,请在下表中填入适当的数或式子。

知识点3、等差中项A ,b 成等差 如果a ,数列,那么A 叫做a 与b即:2b a A +=的等差中项b a A +=2或例2:已知{}n a 是等差数列。

(1)有3122a a a +=,那么7352a a a +=是否成立? 9152a a a +=呢?为什么? (2))1(211n >+=+-n a a a n n 是否成立?(3))0(2k k n >>+=+-k n a a a n n 是否成立?据此你能得出什么结论?知识点4、等差数列的前n 项和2)(1n n a a n S +=将d n a a n )1(1-+=带入可得 d n n na S n 2)1(1-+=该公式整理后是关于n 的二次函数。

例3:根据下列各题中的条件,求相应的等差数列{}n a 的前n 项和n S 。

(1);,,8n 18481=-=-=a a (2)7.0185.141=-==d a a n ,,。

知识点5、等差数列的判定方法❖ 定 义 法:若d a a n n =-+1(d 是常数)或n n n n a a a a -=-+++112,则数列{}n a 是等差数列。

等差数列(试题部分)

等差数列(试题部分)

§6.2 等差数列(试题部分)基础篇固本夯基【基础集训】考点一 等差数列的有关概念及运算1.已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-4答案 D2.已知在等差数列{a n }中,a 1=1,a 3=2a+1,a 5=3a+2,若S n =a 1+a 2+…+a n ,且S k =66,则k 的值为( ) A.9 B.11 C.10 D.12答案 B3.设等差数列{a n }满足3a 8=5a 15,且a 1>0,S n 为其前n 项和,则数列{S n }的最大项为( )A.S 23B.S 24C.S 25D.S 26答案 C4.已知数列{a n }满足a 1=12,且a n+1=2a n2+a n .(1)求证:数列{1a n }是等差数列;(2)若b n =a n a n+1,求数列{b n }的前n 项和S n .解析 (1)证明:易知a n ≠0,∵a n+1=2a n2+a n ,∴1a n+1=2+a n 2a n ,∴1a n+1-1a n =12,又∵a 1=12,∴1a 1=2,∴数列{1a n }是以2为首项,12为公差的等差数列.(2)由(1)知,1a n =2+12(n-1)=n+32,即a n =2n+3,∴b n =4(n+3)(n+4)=4(1n+3-1n+4),∴S n =4[(14-15)+(15-16)+…+(1n+3-1n+4)]=4(14-1n+4)=n n+4.考点二 等差数列的性质5.设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A.1B.-1C.2D.126.(2018河北唐山第二次模拟,7)设{a n }是任意等差数列,它的前n 项和、前2n 项和与前4n 项和分别为X,Y,Z,则下列等式中恒成立的是( )A.2X+Z=3YB.4X+Z=4YC.2X+3Z=7YD.8X+Z=6Y答案 D7.已知数列{a n }是公差为d 的等差数列,S n 为其前n 项和,若S 2 0172 017- S 1717=100,则d 的值为( ) A.120 B.110 C.10 D.20答案 B8.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8= .答案 749.已知A n 及B n 是等差数列{a n }、{b n }的前n 项和,且A n B n =3n+14n+1,则a11b 11= . 答案 648510.已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数;(2)项数为奇数,奇数项和为44,偶数项和为33.求数列的中间项和项数.解析 (1)由已知得a 1+a 2+a 3+a 4=21,a n-3+a n-2+a n-1+a n =67,∴a 1+a 2+a 3+a 4+a n-3+a n-2+a n-1+a n =88,∴a 1+a n =884=22. ∵S n =286,∴n (a 1+a n )2=286,∴11n=286,∴n=26.(2)解法一:设项数为2k+1,则a 1+a 3+…+a 2k+1=44=k+12(a 1+a 2k+1),a 2+a 4+…+a 2k =33=k 2(a 2+a 2k ), 又∵a 1+a 2k+1=a 2+a 2k ,∴k+1k =4433,∴k=3,项数为7, ∴中间项为a 1+a 2k+12=11.解法二:记等差数列{a n }的中间项为a 中,奇数项和为S 奇,偶数项和为S 偶,前n 项和为S n .根据题意得{S 偶+S 奇=S n ,S 奇-S 偶=a 中,∴S n =77,a 中=11, 又na 中=S n ,∴n=7.综合篇知能转换【综合集训】考法一 等差数列的判定与证明1.(2018山东济宁一模,11)设数列{a n }满足a 1=1,a 2=2,且2na n =(n-1)a n-1+(n+1)a n+1(n≥2且n ∈N *),则a 18=( )A.259B.269C.3D.2892.(2019河北冀州模拟,9)已知{a n},{b n}均为等差数列,且a2=4,a4=6,b3=3,b7=9,由{a n},{b n}的公共项组成新数列{c n},则c10=()A.18B.24C.30D.36答案 C3.设数列{a n}的前n项和为S n,且S n=2n-1.数列{b n}满足b1=2,b n+1-2b n=8a n.(1)求数列{a n}的通项公式;(2)证明数列{b n2n}为等差数列,并求{b n}的通项公式.解析(1)当n=1时,a1=S1=21-1=1;当n≥2时,a n=S n-S n-1=(2n-1)-(2n-1-1)=2n-1.因为a1=1适合上式,所以a n=2n-1(n∈N*).(2)因为b n+1-2b n=8a n,所以b n+1-2b n=2n+2,即b n+12n+1-b n2n=2.又b121=1,所以{b n2n}是首项为1,公差为2的等差数列,所以b n2n=1+2(n-1)=2n-1.所以b n=(2n-1)×2n.考法二等差数列前n项和的最值问题4.(2018江西赣中南五校联考,4)在等差数列{a n}中,已知a3+a8>0,且S9<0,则S1、S2、…、S9中最小的是()A.S5B.S6C.S7D.S8答案 A5.(2018广东汕头模拟,8)已知等差数列{a n}的前n项和为S n,a1=9,S99-S55=-4,则S n取最大值时的n为()A.4B.5C.6D.4或5答案 B6.(2018湖南永州三模,11)已知数列{a n}是等差数列,前n项和为S n,满足a1+5a3=S8,给出下列结论:①a10=0;②S10最小;③S7=S12;④S20=0.其中一定正确的结论是()A.①②B.①③④C.①③D.①②④答案 C7.(2018广东深圳期末,14)设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取最小值时,n=. 答案 6【五年高考】考点一等差数列的有关概念及运算1.(2016课标Ⅰ,3,5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97答案 C2.(2018课标Ⅰ,4,5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.-12B.-10C.10D.12答案 B3.(2017课标Ⅰ,4,5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8答案 C4.(2017课标Ⅲ,9,5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.-24B.-3C.3D.8答案 A5.(2019课标Ⅰ,9,5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n-5B.a n=3n-10n2-2nC.S n=2n2-8nD.S n=12答案 A=.6.(2019课标Ⅲ,14,5分)记S n为等差数列{a n}的前n项和,若a1≠0,a2=3a1,则S10S5答案 47.(2018北京,9,5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.答案a n=6n-38.(2019江苏,8,5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是. 答案169.(2019北京,10,5分)设等差数列{a n}的前n项和为S n.若a2=-3,S5=-10,则a5=,S n的最小值为. 答案0;-1010.(2018课标Ⅱ,17,12分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解析(1)设{a n}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{a n}的通项公式为a n=2n-9.(2)由(1)得S n=n2-8n=(n-4)2-16.所以当n=4时,S n取得最小值,最小值为-16.11.(2016天津,18,13分)已知{a n }是各项均为正数的等差数列,公差为d.对任意的n ∈N *,b n 是a n 和a n+1的等比中项.(1)设c n =b n+12-b n 2,n ∈N *,求证:数列{c n }是等差数列;(2)设a 1=d,T n =∑k=12n(-1)k b k 2,n ∈N *,求证:∑k=1n 1T k <12d 2.证明 (1)由题意得b n 2=a n a n+1,有c n =b n+12-b n 2=a n+1·a n+2-a n a n+1=2da n+1,因此c n+1-c n =2d(a n+2-a n+1)=2d 2,所以{c n }是等差数列.(2)T n =(-b 12+b 22)+(-b 32+b 42)+…+(-b 2n -12+b 2n 2)=2d(a 2+a 4+…+a 2n )=2d·n (a 2+a 2n )2=2d 2n(n+1).所以∑k=1n 1T k =12d 2∑k=1n 1k (k+1)=12d 2∑k=1n (1k -1k+1)=12d 2·(1-1n+1)<12d 2.考点二 等差数列的性质12.(2015广东,10,5分)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= .答案 10教师专用题组考点一 等差数列的有关概念及运算1.(2016浙江,6,5分)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n ≠A n+2,n ∈N *,|B n B n+1|=|B n+1B n+2|,B n ≠B n+2,n ∈N *.(P≠Q 表示点P 与Q 不重合)若d n =|A n B n |,S n 为△A n B n B n+1的面积,则()A.{S n }是等差数列B.{S n 2}是等差数列C.{d n }是等差数列D.{d n 2}是等差数列答案 A2.(2015浙江,3,5分)已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )A.a 1d>0,dS 4>0B.a 1d<0,dS 4<0C.a 1d>0,dS 4<0D.a 1d<0,dS 4>0答案 B3.(2013课标Ⅰ,7,5分)设等差数列{a n }的前n 项和为S n ,若S m-1=-2,S m =0,S m+1=3,则m=( )A.3B.4C.5D.6答案 C4.(2016江苏,8,5分)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 .5.(2014课标Ⅰ,17,12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数,(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解析(1)证明:由题设a n a n+1=λS n-1,知a n+1a n+2=λS n+1-1.两式相减得,a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)存在.由a1=1,a1a2=λa1-1,可得a2=λ-1,由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得,{a2n-1}是首项为1,公差为4的等差数列,a2n-1=1+(n-1)·4=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=3+(n-1)·4=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得{a n}为等差数列.思路分析(1)已知a n a n+1=λS n-1,用n+1代替n得a n+1·a n+2=λS n+1-1,两式相减得结论.(2)利用a1=1,a2=λ-1,a3=λ+1及2a2=a1+a3,得λ=4.进而得a n+2-a n=4.故数列{a n}的奇数项和偶数项分别组成公差为4的等差数列,分别求通项公式,进而求出{a n}的通项公式,从而证出等差数列.方法总结对于含a n、S n的等式的处理,往往可转换为关于a n的递推式或关于S n的递推式;对于存在性问题,可先探求参数的值再证明.考点二等差数列的性质6.(2015陕西,13,5分)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为.答案 57.(2013课标Ⅱ,16,5分)等差数列{a n}的前n项和为S n.已知S10=0,S15=25,则nS n的最小值为.答案-49【三年模拟】一、单项选择题(每题5分,共40分)1.(2020届云南陆良第二次教学质量摸底考,3)已知{a n}为等差数列,若a3+a4+a8=12,则S9=()A.24B.27C.36D.54答案 C2.(2020届四川宜宾四中开学考,4)已知等差数列{a n}中,a2、a2 016是方程x2-2x-2=0的两根,则S2 017=()A.-2 017B.-1 008C.1 008D.2 017答案 D3.(2020届河北邯郸大名一中第六周周测,4)设{a n}是等差数列,则下列结论一定正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a2+a3<0C.若0<a1<a2,则a2>√a1a3D.(a2-a1)(a2-a3)<04.(2019 5·3原创冲刺卷一,4)已知等差数列{a n}的前n项和为S n,S2=3,S3=6,则S2n+1=()A.(2n+1)(n+1)B.(2n+1)(n-1)C.(2n-1)(n+1)D.(2n+1)(n+2)答案 A5.(2018安徽合肥第二次教学质量检测,5)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是()A.174斤B.184斤C.191斤D.201斤答案 B6.(2019湖北宜昌一模,8)等差数列{a n}的前n项和为S n,若公差d>0,(S8-S5)(S9-S5)<0,则()A.a7=0B.|a7|=|a8|C.|a7|>|a8|D.|a7|<|a8|答案 D7.(2018湖南三湘名校教育联盟第三次联考,5)已知等差数列{a n}的各项都为整数,且a1=-5,a3a4=-1,则|a1|+|a2|+…+|a10|=()A.70B.58C.51D.40答案 B8.(2018安徽淮北一模,9)S n是等差数列{a n}的前n项和,S2 018<S2 016,S2 017<S2 018,则S n<0时n的最大值是()A.2 017B.2 018C.4 033D.4 034答案 D二、多项选择题(每题5分,共10分)9.(改编题)设等差数列{a n}满足a3+a7=36,a4a6=275,则()A.a n=7n-17B.a n=-7n+53C.a n a n+1的最小值为-12D.a n a n+1无最小值答案ABC10.(改编题)记S n为等比数列{a n}的前n项和,已知S2=2,S3=-6,则()A.a n=(-2)nB.S n+1,S n,S n+2成等差数列C.a n=-2nD.S n+1,S n,S n+2不成等差数列答案AB三、填空题(每题5分,共15分)11.(2020届河北邯郸大名一中周测,14)设等差数列{a n}的前n项和为S n,若a2=3,S4=16,则数列{a n}的公差d=.12.(2019上海嘉定(长宁)二模,11)已知有穷数列{a n }共有m 项,记数列{a n }的所有项的和为S(1),第二项及以后所有项的和为S(2),……,第n(1≤n≤m)项及以后所有项的和为S(n),若S(n)是首项为1,公差为2的等差数列的前n 项和,则当1≤n<m 时,a n = .答案 -2n-113.(2018河南六市第一次联考,16)已知正项数列{a n }的前n 项和为S n ,若{a n }和{√S n }都是等差数列,且公差相等,则a 2= .答案 34四、解答题(共25分)14.(2020届四川宜宾四中开学考,18)已知数列{a n }的首项a 1=1,2a n a n+1=a n -a n+1(n ∈N *).(1)证明:数列{1a n }是等差数列; (2)设b n =a n a n+1,数列{b n }的前n 项和为S n ,求证:S n <12.证明 (1)由于a 1=1,2a n a n+1=a n -a n+1,显然a n a n+1≠0,所以两边同除以a n a n+1可得,1a n+1-1a n =2, 所以数列{1a n }是1为首项,2为公差的等差数列.(2)由(1)知,1a n =1+(n-1)×2=2n-1,所以a n =12n -1.所以b n =a n a n+1=1(2n -1)(2n+1)=12(12n -1-12n+1), 所以S n =12[(1-13)+(13-15)+…+(12n -1-12n+1)]=12(1-12n+1)<12. 15.(2019湖北武汉外国语学校3月模拟,17)若数列{a n }的前n 项和为S n ,首项a 1>0且2S n =a n 2+a n (n ∈N *). (1)求数列{a n }的通项公式;(2)若a n >0(n ∈N *),令b n =1a n (a n +2),求数列{b n }的前n 项和T n .解析 (1)当n=1时,2S 1=a 12+a 1=2a 1,又a 1>0,则a 1=1,当n≥2时,a n =S n -S n-1=a n 2+a n 2-a n -12+a n -12,即(a n +a n-1)(a n -a n-1-1)=0⇒a n =-a n-1或a n =a n-1+1,∴a n =(-1)n-1或a n =n.(2)∵a n >0,∴a n =n,∴b n =1n (n+2)=12(1n -1n+2),∴T n =12[(1-13)+(12-14)+…+(1n -1n+2)]=121+12-1n+1-1n+2=34-2n+32(n+1)(n+2).。

数学学案:等差数列习题课——等差数列习题课

数学学案:等差数列习题课——等差数列习题课

数学人教B必修5第二章2.2 等差数列习题课——等差数列习题课1.进一步了解等差数列的定义,通项公式以及前n项和公式.2.理解等差数列的性质,等差数列前n项和公式的性质的应用.3.掌握等差数列前n项和之比的问题,及其实际应用.题型一已知S n求a n【例1】已知数列{a n}的前n项和S n=-错误!n2+错误!n,求数列{a n}的通项公式a n.分析:求a1→错误!→错误!→错误!反思:数列{a n}的前n项和S n与通项a n的关系已知数列{a n}的通项就可以求数列{a n}的前n项和S n;反过来,若已知前n项和S n也可以求数列{a n}的通项公式a n。

∵S n=a1+a2+a3+…+a n,∴S n-1=a1+a2+a3+…+a n-1(n≥2).在n≥2的条件下,把上面两式相减可得:a n=S n-S n-1(n≥2),当n=1时,a1=S1,所以a n与S n有如下关系:a n=错误!注意:a n=S n-S n-1并非对所有的n∈N+都成立,而只对n≥2的正整数成立.由S n求通项公式a n时,要分n=1和n≥2两种情况,然后验证两种情况可否用统一解析式表示,若不能,则用分段函数的形式表示.题型二数列{|a n|}的求和问题【例2】在等差数列{a n}中,a1=-60,a17=-12,求数列{|a n|}的前n项和.分析:先分清哪些项是负的,然后再分段求出前n项的绝对值之和.反思:等差数列各项取绝对值后组成的数列{|a n|}的前n项和,可分为以下情形:(1)等差数列{a n}的各项都为非负数,这种情形中数列{|a n|}就等于数列{a n},可以直接求解.(2)在等差数列{a n}中,a1>0,d<0,这种数列只有前边有限项为非负数,从某项开始其余所有项都为负数,可把数列{a n}分成两段处理.(3)在等差数列{a n}中,a1<0,d>0,这种数列只有前边有限项为负数,其余都为非负数,同样可以把数列{a n}分成两段处理.总之,解决此类问题的关键是找到数列{a n}的正负分界点.题型三等差数列前n项和的比值问题【例3】等差数列{a n},{b n}的前n项和分别为S n,T n,若错误!=错误!,求错误!.分析:本题可把“项比”转化成“和比",也可把“和比”转化为“项比”.反思:本题的关键是建立通项和前n项和的内在联系,解法一侧重于待定系数法,而解法二应用整体代换思想.1已知在等差数列{a n}中,a7+a9=16,a4=1,则a12的值是( ).A.15 B.30 C.31 D.642等差数列{a n}的前n项和为S n,若S2=2,S4=10,则S6等于( ).A.12 B.18 C.24 D.423若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( ).A.13项B.12项C.11项D.10项4设2a=3,2b=x,2c=12,且a,b,c成等差数列,则x的值为________.5设等差数列{a n}满足a3=5,a10=-9.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n及使得S n最大的序号n的值.答案:典型例题·领悟【例1】解:a1=S1=-错误!×12+错误!×1=101。

第四次课:等差数列初步

第四次课:等差数列初步

等差数列初步1.等差数列中,第9项和第17项相隔__________个公差.2.等差数列中,第6项和第20项相隔__________个公差.3.等差数列中,第7项和第19项相隔__________个公差.4.一个等差数列共有15项.每一项都比它的前一项大2,并且首项为30,那么末项是__________.5.一个等差数列,每一项都比它的前一项大2,第3项为33,那么第10项是__________.6.一个等差数列,每一项都比它的前一项大3,第2项为10,那么第12项是__________.7.一个等差数列首项为7,第10项为61,那么这个等差数列的公差是__________.8.一个等差数列第4项为25,第15项为113,那么这个等差数列的公差是__________.9.一个等差数列第7项为50,第12项为75,那么这个等差数列的公差是__________.10.一个等差数列首项为4,第10项为49,那么第19项是__________.11.一个等差数列第3项为18,第9项为60,那么第15项是__________.12.一个等差数列第2项为24,第10项为64,那么第18项是__________.1.一个等差数列首项为5,末项为101,公差为8,那么首项和末项之间相隔了__________个公差.2.一个等差数列首项为20,末项为116,公差为6,那么首项和末项之间相隔了__________个公差.3.一个等差数列首项为10,末项为100,公差为5,那么首项和末项之间相隔了__________个公差.4.一个等差数列首项为5,末项为93,公差为8,那么这个等差数列一共有__________项.5.一个等差数列第3项为50,公差为8,那么130是这个等差数列的第__________项.6.一个等差数列首项为5,公差为7,那么103是这个等差数列的第__________项.7.已知等差数列2,9,16,23,30,…,那么86是这个等差数列的第__________项.8.已知等差数列3,9,15,21,27,…,那么93是这个等差数列的第__________项.9.已知等差数列4,15,26,37,…,那么114是这个等差数列的第__________项.10.一个等差数列的首项为11,第7项为65,146是第__________项.11.一个等差数列的首项为7,第8项为91,127是第__________项.12.一个等差数列的首项为12,第7项为90,129是第__________项.。

习题课等差数列的性质的综合问题答案

 习题课等差数列的性质的综合问题答案

习题课 等差数列的性质的综合问题答案一、等差数列的实际应用例1 《周髀算经》是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则立夏的日影子长为( )A .15.5尺B .12.5尺C .9.5尺D .6.5尺答案 D解析 设该等差数列为{a n },冬至、小寒、大寒、…芒种的日影子长分别记为a 1,a 2,a 3,…,a 12,公差为d ,由题意可得,a 1+a 4+a 7=37.5,即a 4=12.5,又a 12=4.5,所以d =a 12-a 412-4=-1. 所以立夏的日影子长为a 10=a 4+6d =12.5-6=6.5(尺).反思感悟 解决等差数列实际应用问题的步骤及注意点(1)解答数列实际应用问题的基本步骤:①审题,即仔细阅读材料,认真理解题意;②建模,即将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题;③判型,即判断该数列是否为等差数列;④求解,即求出该问题的数学解;⑤还原,即将所求结果还原到实际问题中.(2)在利用数列方法解决实际问题时,一定要弄清首项、项数等关键问题.跟踪训练1 假设某市2020年新建住房400万平方米,预计在今后的若干年内,该市每年新建住房面积均比上一年增加50万平方米.那么该市在________年新建住房的面积开始大于820万平方米. 答案 2029解析 设n 年后该市新建住房的面积为a n 万平方米.由题意,得{a n }是等差数列,首项a 1=450,公差d=50,所以a n =a 1+(n -1)d =400+50n .令400+50n >820,解得n >425.由于n ∈N *,则n ≥9.所以该市在2029年新建住房的面积开始大于820万平方米.二、等差数列中项的设法例2 (1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数;(2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数.解 (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ (a -d )+a +(a +d )=9,(a -d )a =6(a +d ), 解得⎩⎪⎨⎪⎧a =3,d =-1, 所以这三个数为4,3,2.(2)设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ),依题意得2a =2且(a -3d )(a +3d )=-8,即a =1,a 2-9d 2=-8,所以d 2=1,所以d =1或d =-1.又四个数成递增等差数列,所以d >0,所以d =1,故所求的四个数为-2,0,2,4.反思感悟 等差数列的设项方法和技巧(1)当已知条件中出现与首项、公差有关的内容时,可直接设首项为a 1,公差为d ,利用已知条件建立方程(组)求出a 1和d ,即可确定此等差数列的通项公式.(2)当已知数列有3项时,可设为a -d ,a ,a +d ,此时公差为d .若有5项、7项、…时,可同理设出.(3)当已知数列有4项时,可设为a -3d ,a -d ,a +d ,a +3d ,此时公差为2d .若有6项、8项、…时,可同理设出.跟踪训练2 已知五个数成等差数列,它们的和为5,平方和为859,求这5个数. 解 设第三个数为a ,公差为d ,则这5个数分别为a -2d ,a -d ,a ,a +d ,a +2d .由已知有⎩⎪⎨⎪⎧ (a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 整理得⎩⎪⎨⎪⎧ 5a =5,5a 2+10d 2=859. 解得⎩⎪⎨⎪⎧a =1,d =±23. 当d =23时,这5个数分别是-13,13,1,53,73; 当d =-23时,这5个数分别是73,53,1,13,-13. 综上,这5个数分别是-13,13,1,53,73或73,53,1,13,-13. 三、等差数列的综合应用例3 若关于x 的方程x 2-x +m =0和x 2-x +n =0(m ,n ∈R ,且m ≠n )的四个根组成首项为14的等差数列,则数列的公差d =________,m +n 的值为________.答案 16 3172解析 设x 2-x +m =0,x 2-x +n =0的根分别为x 1,x 2,x 3,x 4,则x 1+x 2=x 3+x 4=1(且1-4m >0,1-4n >0).设数列的首项为x 1,则根据等差数列的性质,数列的第4项为x 2.由题意知x 1=14, ∴x 2=34,数列的公差d =34-144-1=16, ∴数列的中间两项分别为14+16=512,512+16=712. ∴x 1·x 2=m =316,x 3·x 4=n =512×712=35144. ∴m +n =316+35144=3172. 反思感悟 解决数列综合问题的方法策略(1)结合等差数列的性质或利用等差中项.(2)利用通项公式,得到一个以首项a 1和公差d 为未知数的方程或不等式.(3)利用函数或不等式的有关方法解决.跟踪训练3 已知等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9=________. 答案 27解析 方法一 由性质可知,数列a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9是等差数列,所以2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9),则a 3+a 6+a 9=2×33-39=27.方法二 设等差数列{a n }的公差为d ,则(a 2+a 5+a 8)-(a 1+a 4+a 7)=(a 2-a 1)+(a 5-a 4)+(a 8-a 7)=3d =-6, 解得d =-2,所以a 3+a 6+a 9=a 2+d +a 5+d +a 8+d =27.1.知识清单:(1)等差数列的实际应用.(2)等差数列中项的设法.(3)等差数列的综合应用.2.方法归纳:解方程组法.3.常见误区:对等差数列的性质不理解而致错.1.已知等差数列1,a 1,a 2,9,则a 2-a 1的值为( )A .8B .-8C .±8 D.83答案 D解析 根据等差数列1,a 1,a 2,9知,1和9是该数列的第一项和第四项,所以a 2-a 1=9-14-1=83. 2.在等差数列{a n }中,a 2+a 5=10,a 3+a 6=14,则a 5+a 8等于( )A .12B .22C .24D .34答案 B解析 设数列{a n }的公差为d ,则d =a 3+a 6-()a 2+a 52=14-102=2, 故a 5+a 8=a 5+a 2+6d =10+6×2=22.3.由公差d ≠0的等差数列a 1,a 2,…,a n 组成一个新的数列a 1+a 3,a 2+a 4,a 3+a 5,…,下列说法正确的是( )A .新数列不是等差数列B .新数列是公差为d 的等差数列C .新数列是公差为2d 的等差数列D .新数列是公差为3d 的等差数列答案 C解析 因为(a n +1+a n +3)-(a n +a n +2)=(a n +1-a n )+(a n +3-a n +2)=2d ,所以数列a 1+a 3,a 2+a 4,a 3+a 5,…是公差为2d 的等差数列.4.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,乙所得为________钱.答案 76解析 由题意,设这五人所得钱分别为a +2d ,a +d ,a ,a -d ,a -2d ,则a +2d +a +d =a +a -d +a -2d ,且5a =5,所以a =1,d =16, 所以乙所得为a +d =76(钱).1.已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,则a 7等于( )A .1B .8C .4D .2答案 D解析 因为各项不为0的等差数列{a n }满足a 6-a 27+a 8=0, 所以2a 7-a 27=0,解得a 7=2或a 7=0(舍去).2.已知数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么数列{a n +b n }的第37项为( )A .0B .37C .100D .-37答案 C解析 设等差数列{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,所以数列{a n +b n }仍然是等差数列.又d 1+d 2=(a 2+b 2)-(a 1+b 1)=100-(25+75)=0,所以a 37+b 37=a 1+b 1=100.3.已知等差数列{a n }的首项是2,公差为d (d ∈Z ),且{a n }中有一项是14,则d 的取值的个数为( )A .3B .4C .6D .7答案 C解析 等差数列{a n }的首项是2,公差为d (d ∈Z ),有一项是14,∴设第n 项为14,有a n =a 1+(n -1)d =2+(n -1)d =14,即(n -1)d =12,由n ∈N *知,n -1>0,n -1∈N *,而12=1×12=2×6=3×4,∴d 的取值有1,2,3,4,6,12.4.若三个数成等差数列,它们的和为12,积为-36,则这三个数的平方和为( )A .98B .88C .78D .68答案 A解析 设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ a -d +a +a +d =12,(a -d )a (a +d )=-36,解得⎩⎪⎨⎪⎧ a =4,d =5或⎩⎪⎨⎪⎧ a =4,d =-5.∴这三个数为-1,4,9或9,4,-1.∴它们的平方和为98.5.已知等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程x 2+(a 4+a 6)x +10=0( )A .无实根B .有两个相等的实根C .有两个不等的实根D .不能确定有无实根答案 A解析 因为a 4+a 6=a 2+a 8=2a 5,a 2+a 5+a 8=3a 5=9,所以a 5=3,则方程为x 2+6x +10=0,因为Δ=62-4×10=-4<0,所以方程无实根.6.(多选)已知等差数列{a n }中,a 1=3,公差为d (d ∈N *),若2 021是该数列的一项,则公差d 不可能是( )A .2B .3C .4D .5答案 BCD解析 由2 021是该数列的一项,得2 021=3+(n -1)d ,所以n =2 018d+1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.7.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.答案 -21解析 设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4. ∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21.8.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________. 答案 1或2解析 ∵a ,b ,c 成等差数列,∴2b =a +c ,∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2.9.四个数成递减等差数列,四个数之和为26,第二个数与第三个数之积为40.求这四个数.解 设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ),依题意,得⎩⎪⎨⎪⎧4a =26,a 2-d 2=40, 解得⎩⎨⎧ a =132,d =32或⎩⎨⎧ a =132,d =-32. 又四个数成递减等差数列,所以d <0, 所以d =-32, 故所求的四个数为11,8,5,2.10.已知数列{a n }满足a n +1=1+a n 3-a n(n ∈N *),且a 1=0. (1)求a 2,a 3;(2)是否存在一个实数λ,使得数列⎩⎨⎧⎭⎬⎫1a n -λ为等差数列,请说明理由. 解 (1)因为a 1=0,a n +1=1+a n 3-a n(n ∈N *), 所以a 2=1+a 13-a 1=13,a 3=1+a 23-a 2=12. (2)假设存在一个实数λ,使得数列⎩⎨⎧⎭⎬⎫1a n -λ为等差数列,所以2a 2-λ=1a 1-λ+1a 3-λ,即213-λ=10-λ+112-λ,解得λ=1.因为1a n +1-1-1a n -1=11+a n 3-a n-1-1a n -1 =3-a n 2(a n -1)-1a n -1=1-a n 2(a n -1)=-12, 又1a 1-1=-1,所以存在一个实数λ=1,使得数列⎩⎨⎧⎭⎬⎫1a n -λ是首项为-1,公差为-12的等差数列.11.设等差数列的公差为d ,若数列{}12n a a 为递减数列,则( ) A .d >0B .d <0C .a 1d >0D .a 1d <0 答案 D解析 由数列{}12n a a 为递减数列,得11122n n a a a a <-,再由指数函数性质得a 1a n -1>a 1a n ,由等差数列的公差为d 知,a n -a n -1=d ,所以a 1a n -1>a 1a n ⇒a 1a n -a 1a n -1<0⇒a 1(a n -a n -1)<0⇒a 1d <0.12.已知在数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7等于( ) A.109 B.1011 C.1211 D.1312答案 D解析 设b n =1a n -1,则{b n }为等差数列, 因为a 2=32,a 5=98,所以b 2=2,b 5=8, 所以数列{b n }的公差d =b 5-b 23=2, 所以b 7=b 5+2d =8+4=12,即1a 7-1=12, 所以a 7=1312. 13.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的17等于较小的两份之和,则最小的一份为( ) A.53B.103C.56D.116 答案 A解析 设五个人所分得的面包个数为a -2d ,a -d ,a ,a +d ,a +2d ,其中d >0,则(a -2d )+(a -d )+a +(a +d )+(a +2d )=5a =100,∴a =20.由17(a +a +d +a +2d )=a -2d +a -d , 得3a +3d =7(2a -3d ),∴24d =11a ,∴d =556, ∴最小的一份为a -2d =20-1106=53. 14.在等差数列{a n }中,a 2=3,若从第5项开始为负数,则公差d 的取值范围是________.答案 ⎣⎡⎭⎫-32,-1 解析 ∵等差数列{a n }从第5项开始为负数,∴⎩⎪⎨⎪⎧ a 5<0,a 4≥0,即⎩⎪⎨⎪⎧ a 2+3d <0,a 2+2d ≥0,∴⎩⎪⎨⎪⎧3+3d <0,3+2d ≥0, 解得-32≤d <-1.15.一个三角形的三个内角A ,B ,C 成等差数列,其三边a ,b ,c 也成等差数列,则该三角形的形状为________. 答案 等边三角形解析 由三边成等差数列,得2b =a +c ,三角形的三个内角A ,B ,C 成等差数列,则2B =A +C 且A +B +C =π,得B =π3. 由余弦定理得b 2=a 2+c 2-2ac cos 60°,即⎝⎛⎭⎫a +c 22=a 2+c 2-ac .即(a +c )2=4a 2+4c 2-4ac ,整理得a 2+c 2-2ac =0,即(a -c )2=0,所以a =c .所以在三角形中A =C ,B =π3,则A =C =B =π3. 所以该三角形为等边三角形.16.有一批电视机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价为760元,以此类推,每多买一台则所购买各台的单价均减少20元,但每台最少不低于440元;乙商场一律按原价的75%销售.某单位需购买一批此类电视机,则去哪一家商场购买花费较少?解 设某单位需购买电视机n 台.在甲商场购买时,所买电视机的售价构成等差数列{a n },a n =780+(n -1)×(-20)=-20n +800,由a n =-20n +800≥440,得n ≤18,即购买台数不超过18台时,每台售价(800-20n )元;购买台数超过18台时,每台售价440元.到乙商场购买时,每台售价为800×75%=600(元).比较在甲、乙两家家电商场的费用(800-20n )n -600n =20n (10-n ).当n <10时,(800-20n )n >600n ,到乙商场购买花费较少;当n =10时,(800-20n )n =600n ,到甲、乙商场购买花费相同;当10<n ≤18时,(800-20n )n <600n ,到甲商场购买花费较少;当n >18时,440n <600n ,到甲商场购买花费较少.因此,当购买电视机台数少于10台时,到乙商场购买花费较少;当购买电视机10台时,到两家商场购买花费相同;当购买电视机台数多于10台时,到甲商场购买花费较少.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:等差数列教学重点:等差数列的通项公式,前n项和公式,等差数列的性质。

教学难点:等差数列的性质的应用。

考点:等差数列的通项公式、前n项和公式及对性质的运用。

考纲要求:①理解等差数列的概念。

②掌握等差数列的通项公式与前n项和公式。

③能在具体的问题情景中识别数列的等差关系,并能用有关的知识解决相应的问题。

④了解等差数列与一次函数的关系。

课时:3课时一.知识要点:1、定义:一般地,如果一个数列从第2项起,每一项与前一项的差等于同一个常数,这个数列叫做等差数列,这个常数叫做等差数列的公差,常用字母d表示,定义的表达式为:an -an-1=d(n∈N*,n≥2)或an+1-an=d(n∈N*)。

2.等差中项:任意两个数a,b有且只有一个等差中项,即A=2ba+。

A=2ba+是a,A,b成等差数列的充要条件。

在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。

3.通项公式:an =a1+(n-1)d.或an=am+(n-m)d.或dmnaamn=--(当d=0时,数列{ an}为常数数列)数列{ an}为等差数列(常数数列除外)的充要条件是: an是关于n的一次函数,即an=dn+b(从函数的观点来看)4、求和公式(由倒序相加法推得)Sn =2)(1naan+或Sn=na1+21n(n-1)d=2dn2+(a-2d)n.数列{ an}为等差数列的充要条件是: Sn=an2+bn5.等差数列的判定方法:(2)中项公式法:2a n+1=a n +a n+2n }是等差数列 (3)通项公式法:a n n }是等差数列 (4)前n 项和公式法:S n =an 2 n }是等差数列 6、性质(1)若公差d >0,则此数列为递增数列,S n 有最小值;若公差d <0,则此数列为递减数列,S n 有最大值;(2)若{a n }为等差数列,则{pa n },{a n +q},{pa n +q}都是等差数列. (3)若{a n },{b n }为等差数列,则{a n ±b n }为等差数列.(4)有穷等差数列中,与首末两项距离相等的两项和相等,并且等于首末两项之和;特别地,若项数为奇数时,还等于中间项的2倍,即a 1+a n =a 2+a n-1=a 3+a n-2=…=2a 中。

推广:2a n =a n-m +a n+m ;④如果m+n=p+q,则a m +a n =a p +a q 当m+n=2p 时,有a m +a n =2a p ⑤s n , s 2n -s n , s 3n -s 2n 也是等差数列.⑥若{a n }为等差数列,则a k ,a k+m , a k+2m …(m ∈N *)为等差数列. ⑦设等差数列{a n}和{b n}的前n 项和分别为S n和T n ,则:nnb a =1212--n n T S 。

⑧项数为偶数2n 的等差数列{a n },有s 2n =n (a 1+a 2n )=…=n(a n +a n+1) S 偶-S 奇=nd ; 项数为奇数(2n-1)的等差数列{a n },有S 2n-1=(2n-1)a n 二.例题讲解:(1)题型一:等差数列的有关计算 例1:在等差数列{a n }中,①已知a 15=33,a 45=153,求a 61; ②已知a 8=33,a 12=153,求a 1和d ; ③已知a 6=33,S 5=153,求a 8和S 8;分析:在等差数列中有五个重要的量:a 1,a n ,d ,n ,S n ,只要已知任意三个,就可以例2:①已知数列))}1({log *2N n a n ∈-为等差数列,且.9,331==a a 求数列}{n a 的通项公式;②数列{a n }中,2,841==a a ,且满足)(0212+++∈=+-N n a a a n n n ,求数列}{n a 的通项公式;(2)题型二:等差数列的有关证明例3:①两个数列{a n }和{b n }满足b n =na a a n+++ 21,求证:若{a n }为等差数列,则数列{b n }也是等差数列。

②在数列{a n }中,n n n a a a 22,111+==+,设12-=n nn a b ,证明:数列{b n }是等差数列。

③在数列{a n }中,n n n a a a )21(21,111+==+,证明:数列{a n }是等差数列。

(3)题型三:等差数列的最值例4:①若数列{an }满足:a1=19,an+1=an-3(n∈N*),则数列{an}的前n项和数值最大时,n的值为( ) A.6 B.7 C.8 D.9②设等差数列{an }满足a3=5,a10=-9.(1)求{an }的通项公式;(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.③在等差数列{an }中,满足3a4=7a7,且a1>0,Sn是数列{an}前n项和,求Sn取得最大值时n的值。

分析:可借助Sn是关于n的二次函数,利用求二次函数的最值的方法求解。

(4)题型四:等差数列性质及其综合应用例5:等差数列{an}中,①已知a16=3,求S31;②若a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9=————③若a3+a11=40,则a6-a7+a8=————④若数列的前8项和为21,末8项和为67,前n项之和为286,求项数n.⑤若数列的前m项和为30,前2m项和为100,则它的前3m项和为————分析:主要是利用等差数列有关的性质来求解。

注意下标之间的关系。

例6:设等差数列{an }及{bn}的前n项之和分别为Sn和Tn,且nnTS=327++nn,求77ba分析:利用Sn 与an的关系,得到:nnba=1212--nnTS。

例7:项数为奇数的等差数列{an}中,所有奇数项之和为20,所有偶数项之和为15,求这个数列的项数及中间一项。

分析:在等差数列中,经常用整体相加减的方法求解。

例8:已知数列数列{an }前n项和Sn=n2-4n,则│a1│+│a2│+…+│a10│=——————.变式:已知数列数列{an }前n项和Sn=n2-4n,取bn=∣an∣,求数列{bn}的前n项和Tn三.巩固练习1.若x≠y,两个等差数列x ,a 1,a 2,y 与x ,b 1,b 2,b 3,y 的公差分别为d 1和d 2,则d 2d 1 等于 ( ) A.23 B.32 C.34 D.432.{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于 ( ) A .40 B .200 C .400 D .203.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( ) A .160 B .180 C .200 D .2204.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m = ( )A .38B .20C .10D .95.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n ,那么S 100的值等于________. 6.等差数列{a n }中,S 4=1,S 8=4,则a 17+a 18+a 19+a 20=________. 7.等差数列{a n }中,a 1-a 4-a 8-a 12+a 15=2,则a 3+a 13=________. 8.等差数列{a n }中,a 3+a 4+a 5+a 6+a 7=2,则a 2+a 8=________.9.设等差数列{a n }共有2n+1项,所有奇数项之和为132,所有偶数项之和为120, 则n=———,a n+1=————。

10.等差数列{a n }的公差d=0.5, S 100=145,求a 1+a 3+a 5+…+a 99的值为________. 11.已知数列的通项公式是a n =2n-47,那么S n 达到最小值时n 的值为———— 12、等差数列{a n }的前n 项为S n ,若a 2+a 6+a 7=18,则S 9的值是( )A .64B .72C .54D .以上都不对13、已知数列{a n }满足a 1=33,a n +1-a n =2n ,则an n 的最小值为________.14、一个等差数列的前4项是a ,x ,b,2x ,则ab 等于( ) A.14 B.12 C.13 D .2315、已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 16、在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项a n =________.17、已知数列{a n }中,a 3=2,a 7=1,若{1a n+1}为等差数列,则a 11=( )A .0B.12C.23D .2a 2n +2a n -120试证明{an }为等差数列,并求{an}的通项公式.19.在等差数列{an}中,a16+a17+a18=a9=-36,其前n项为S n.(1)求Sn 的最小值,并求出Sn取最小值时n的值;(2)求Tn =|a1|+|a2|+…+|an|.20.在等差数列{an }中, a1>0,Sn是数列{an}前n项和,且S3=S11,问该数列前多少项和最大?21.设等差数列有三个数组成,三项的和是21,三项的平方和是179,求此数列的通项22.在等差数列{an }中,已知d>0,a3a7=-12,a4+a6=-4,求S2023.项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求项数及中间一项. 参考答案由,8log 2log )2(log 2:9,322231+=+==d a a 得 即d=1。

所以,1)1(1)1(log 2n n a n =⨯-+=-即.12+=n n a例4:①解析:∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n. 设前k 项和最大,则有⎩⎨⎧a k ≥0,a k +1≤0,∴⎩⎨⎧22-3k≥0,22-3(k +1)≤0, ∴193≤k≤223, ∵k∈N *,∴k=7. 故满足条件的n 的值为7. 答案:B例4:②解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎨⎧a 1+2d =5,a 1+9d =-9,可解得⎩⎨⎧a 1=9,d =-2.数列{a n }的通项公式为a n =11-2n. (2)由(1)知,S n =na 1+-2d =10n -n 2.因为S n =-(n -5)2+25, 所以当n =5时,S n 取得最大值. 巩固练习 1、解析:d 1=y -x 4-1=y -x 3,d 2=y -x 5-1=y -x 4.∴d 2d 1=34.答案:C 2、解析:本题考查等差数列的运算.S 20-2S 10=20a 1+a 202-2×10a 1+a 102=10(a 20-a 10)=100d ,又a 10=a 2+8d ,∴33=1+8d ,∴d =4,∴S 20-2S 10=400. 答案:C3、解析:∵a +a +a =-24,a +a +a =78,∴a +a +a +a +a +a =3(a +a 20)=54,∴S 20=1+a 202=20×542×3=180. 答案:B4、解析:由已知条件⎩⎨⎧2a m -a 2m =02m -1a m =38,解得a m =2,m =10. 答案:C5、解析:本题考查数列通项公式的应用;据已知当n 为奇数时,a n +2-a n =0⇒a n =1,当n 为偶数时,a n +2-a n =2⇒a n =n ,故a n =⎩⎨⎧为奇数为偶数,故S 100=(1+1+…+150个)+(2+4+6+…+100)=50+50×2+1002=2 600. 答案:2 600 12、解析:由a 2+a 6+a 7=3a 1+12d =3a 5=18,得a 5=6.所以S 9=9(a 1+a 9)2=9a 5=54. 答案:C 13、解析:在a n +1-a n =2n 中,令n =1,得a 2-a 1=2;令n =2得,a 3-a 2=4,…,a n -a n -1=2(n -1).把上面n -1个式子相加,得a n -a 1=2+4+6+…+2(n -1)=(2+2n -2)(n -1)2=n 2-n ,∴a n =n 2-n +33.∴a n n =n 2-n +33n =n +33n -1≥233-1,当且仅当n =33n,即n =33时取等号,而n ∈N *, ∴等号取不到. ∵5<33<6,∴当n =5时,a n n =5-1+335=535,当n =6时,a n n =6-1+336=636=212,∵535>212,∴a n n 的最小值是212.答案:21214、解析:依题意得⎩⎪⎨⎪⎧a +2x =x +b 2b =x +2x ,所以b =3x 2,a =x 2,于是有a b =13. 答案:C15、解析:a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k (k -1)2×2=k 2=9.又k ∈N *,故k =3. 答案:3 16、解析:由2a n +1=1a n +1a n +2,1a n +2-1a n +1=1a n +1-1a n , ∴{1a n }为等差数列.又1a 1=1,d =1a 2-1a 1=1,∴1a n=n ,∴a n =1n . 答案:1n17、解析:由已知可得1=1,1=1是等差数列{1}的第3项和第7项,其公差d =12-13=11 124,由此可得1a 11+1=1a 7+1+(11-7)d =12+4×124=23,解之得a 11=12.答案:B 18、证明:当n≥2时,S n =a 2n +2a n -1204,① S n -1=a 2n -1+2a n -1-1204,② ①-②整理得:(a n -a n -1-2)(a n +a n -1)=0,又a n >0,则a n -a n -1-2=0, 即a n -a n -1=2,因此{a n }为等差数列,a n =a 1+2(n -1)=2n +10.19、解:(1)设等差数列{a n }的首项为a 1,公差为d ,∵a 16+a 17+a 18=3a 17=-36,∴a 17=-12,∴d =a 17-a 917-9=248=3, ∴a n =a 9+(n -9)·d=3n -63,a n +1=3n -60,令⎩⎨⎧ a n =3n -63≤0a n +1=3n -60≥0,得20≤n≤21,∴S 20=S 21=20×[-60+-2=-630.∴当n =20或21时,S n 最小且最小值为-630(2)由(1)知前20项小于零,第21项等于0,以后各项均为正数. 当n≤21时,T n =-S n =--60+3n -2 =-32n 2+1232n. 当n>21时,T n =S n -2S 21=-60+3n -2-2S 21 =32n 2-1232n +1 260. 综上,T n =⎩⎪⎨⎪⎧ -32n 2+1232n ,n ∈N*32n 2-1232n +,n ∈N *。

相关文档
最新文档