【九年高考理科数学真题分类训练】专题二函数概念与基本初等函数第四讲指数函数对数函数幂函数
2019-2020年高考高考数学一轮总复习第2章函数的概念与基本初等函数第四节指数与指数函数课件理
x=k 得 f(k)=3k+k=4,可得 k=1,从而 f(k)=3x+1,∴f(x)+
f(-x)=3x+31x+2≥2 故选 B.
3x·31x+2=4,当且仅当 x=0 时取等号,
答案 (1)B (2)B
[点评] 熟练掌握指数函数的图象是解题的关键,尤其注意 指数函数值域为(0,+∞).
利用方程思想和转化思想求参数范围解题策略
答案 (1)A (2)0
[点评] 对于有关指数型函数的图象问题,一般是从最基本 的指数函数的图象入手,通过平移、伸缩,对称变换得到, 当底数a与1的大小关系不确定时应注意分类讨论.
指数函数的性质及其应用解题方略
应用指数函数性质的常见3大题型及求解策略
题型
求解策略
(1)能化成同底数的先化成同底数幂再利用单 比较幂值的大
【例1】 (1)(2016·豫晋冀三省调研)已知函数f(x) =(x-a)(x-b)(其中a>b)的图象如图所示, 则函数g(x)=ax+b的图象是( )
(2)(2016·广西南宁模拟)已知函数y=2|x+a|的图象关于y轴对称, 则实数a的值为________.
解析 (1)根据函数f(x)=(x-a)(x-b)(a>b)的图象可知,方程 (x-a)(x-b)=0的两根中(0<a<1),b<-1,函数g(x)=ax+ b的图象为由函数h(x)=ax(0<a<1)的 图象向下平移大于1个 单位所得,故选A. (2)将函数y=2x当x≥0时的图象,关于y轴进行翻折,得到函 数y=2|x|的图象,此时函数图象关于y轴对称,再将图象向左 平移a个单位长度,得到y=2|x+a|的图象,此时函数图象关于x =-a对称,由题意得-a=0,即a=0.
►指数运算两个易混点:n an;(n a)n. (1)[(n a)n=a;n an=a|a,|,nn为为奇偶数数,. ] 计算(3 -2)3=________; (-2)2=________.
高考数学一轮复习 第二章 函数与基本初等函数 第4讲 指数与指数函数 文(含解析)
第4讲 指数与指数函数一、选择题1.函数y =a |x |(a >1)的图像是( )解析 y =a |x |=⎩⎪⎨⎪⎧ a x x ≥0,a -x x <0.当x ≥0时,与指数函数y =a x (a >1)的图像相同;当x <0时,y =a -x 与y =a x 的图像关于y 轴对称,由此判断B 正确.答案 B2.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >02x x ≤0,则f (9)+f (0)=( ) A .0 B .1 C .2 D .3 解析 f (9)=log 39=2,f (0)=20=1,∴f (9)+f (0)=3.答案 D3.不论a 为何值时,函数y =(a -1)2x -a 2恒过定点,则这个定点的坐标是 ( ). A.⎝⎛⎭⎪⎫1,-12 B.⎝ ⎛⎭⎪⎫1,12 C.⎝ ⎛⎭⎪⎫-1,-12 D.⎝⎛⎭⎪⎫-1,12 解析 y =(a -1)2x -a 2=a ⎝ ⎛⎭⎪⎫2x -12-2x ,令2x -12=0,得x =-1,则函数y =(a -1)2x -a 2恒过定点⎝⎛⎭⎪⎫-1,-12. 答案 C4.定义运算:a *b =⎩⎪⎨⎪⎧ a ,a ≤b ,b ,a >b ,如1*2=1,则函数f (x )=2x *2-x 的值域为 ( ). A .RB .(0,+∞)C .(0,1]D .[1,+∞) 解析 f (x )=2x *2-x =⎩⎪⎨⎪⎧ 2x ,x ≤0,2-x ,x >0,∴f (x )在(-∞,0]上是增函数,在(0,+∞)上是减函数,∴0<f (x )≤1.答案 C5.若a >1,b >0,且a b +a -b =22,则a b -a -b 的值为( ) A. 6B .2或-2C .-2D .2 解析 (a b +a -b )2=8⇒a 2b +a-2b =6, ∴(a b -a -b )2=a 2b +a-2b -2=4. 又a b >a -b (a >1,b >0),∴a b -a -b =2.答案 D6.若函数f (x )=(k -1)a x -a -x(a >0且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的图象是下图中的 ( ).解析 函数f (x )=(k -1)a x -a -x 为奇函数,则f (0)=0,即(k -1)a 0-a 0=0,解得k =2,所以f (x )=a x -a -x ,又f (x )=a x -a -x 为减函数,故0<a <1,所以g (x )=log a (x +2)为减函数且过点(-1,0).答案 A二、填空题7.已知函数f (x )=⎩⎪⎨⎪⎧ a x ,x <0,a -3x +4a ,x ≥0,满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则a 的取值范围是________. 解析 对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,说明函数y =f (x )在R 上是减函数,则0<a <1,且(a -3)×0+4a ≤a 0,解得0<a ≤14. 答案 ⎝ ⎛⎦⎥⎤0,148.若函数y =2-x +1+m 的图象不经过第一象限,则m 的取值范围是________.解析 函数y =2-x +1+m =(12)x -1+m , ∵函数的图象不经过第一象限, ∴(12)0-1+m ≤0,即m ≤-2. 答案 (-∞,-2]9.若函数f (x )=a x-x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析 令a x -x -a =0即a x =x +a ,若0<a <1,显然y =a x 与y =x +a 的图象只有一个公共点;若a >1,y =a x 与y =x +a 的图象如图所示.答案 (1,+∞)10.已知f (x )=x 2,g (x )=⎝ ⎛⎭⎪⎫12x -m ,若对∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),则实数m 的取值范围是________.解析 x 1∈[-1,3]时,f (x 1)∈[0,9],x 2∈[0,2]时,g (x 2)∈⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122-m ,⎝ ⎛⎭⎪⎫120-m ,即g (x 2)∈⎣⎢⎡⎦⎥⎤14-m ,1-m ,要使∀x 1∈[-1,3],∃x 2∈[0,2],f (x 1)≥g (x 2),只需f (x )min ≥g (x )min ,即0≥14-m ,故m ≥14. 答案 ⎣⎢⎡⎭⎪⎫14,+∞ 三、解答题11.已知函数f (x )=2x-12x +1. (1)判断函数f (x )的奇偶性;(2)求证f (x )在R 上为增函数.(1)解 因为函数f (x )的定义域为R ,且f (x )=2x -12x +1=1-22x +1,所以f (-x )+f (x )=⎝ ⎛⎭⎪⎫1-22-x +1+⎝ ⎛⎭⎪⎫1-22x +1=2-⎝ ⎛⎭⎪⎫22x +1+22-x +1=2-⎝ ⎛⎭⎪⎫22x +1+2·2x 2x +1=2-22x +12x +1=2-2=0,即f (-x )=-f (x ),所以f (x )是奇函数.(2)证明 设x 1,x 2∈R ,且x 1<x 2,有f (x 1)-f (x 2)=2x 1-12x 1+1-2x 2-12x 2+1=22x 1-2x 22x 1+12x 2+1, ∵x 1<x 2,2x 1-2x 2<0,2x 1+1>0,2x 2+1>0,∴f (x 1)<f (x 2),∴函数f (x )在R 上是增函数.12.已知函数f (x )=b ·a x(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)求f (x );(2)若不等式(1a )x +(1b )x -m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围.解析 (1)把A (1,6),B (3,24)代入f (x )=b ·a x ,得⎩⎪⎨⎪⎧ 6=ab ,24=b ·a 3.结合a >0且a ≠1,解得⎩⎪⎨⎪⎧ a =2,b =3.∴f (x )=3·2x .(2)要使(12)x +(13)x≥m 在(-∞,1]上恒成立,只需保证函数y =(12)x +(13)x在(-∞,1]上的最小值不小于m 即可.∵函数y =(12)x +(13)x在(-∞,1]上为减函数,∴当x =1时,y =(12)x +(13)x 有最小值56.∴只需m ≤56即可.∴m 的取值范围(-∞,56]13.已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.(1)若a =-1,求f (x )的单调区间;(2)若f (x )有最大值3,求a 的值.解析 (1)当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令t =-x 2-4x +3, 由于t (x )在(-∞,-2)上单调递增,在[-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在[-2,+∞)上单调递增,即函数f (x )的递增区间是[-2,+∞),递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1.即当f (x )有最大值3时,a 的值等于1.14.已知定义在R 上的函数f (x )=2x -12|x |.(1)若f (x )=32,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 解 (1)当x <0时, f (x )=0,无解;当x ≥0时,f (x )=2x -12x ,由2x -12x =32,得2·22x -3·2x-2=0,看成关于2x 的一元二次方程,解得2x =2或-12,∵2x >0,∴x =1.(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t -122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,即m (22t -1)≥-(24t -1),∵22t -1>0,∴m ≥-(22t +1),∵t ∈[1,2],∴-(22t +1)∈[-17,-5],故m 的取值范围是[-5,+∞).。
专题02 函数的概念与基本初等函数(原卷版)
专题02函数的概念与基本初等函数1.【2019年天津文科05】已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b2.【2019年天津文科08】已知函数f(x)若关于x的方程f(x)x+a(a∈R)恰有两个互异的实数解,则a的取值范围为()A.[,] B.(,] C.(,]∪{1} D.[,]∪{1}3.【2019年新课标3文科12】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)4.【2019年新课标2文科06】设f(x)为奇函数,且当x≥0时,f(x)=e x﹣1,则当x<0时,f(x)=()A.e﹣x﹣1 B.e﹣x+1 C.﹣e﹣x﹣1 D.﹣e﹣x+15.【2019年新课标1文科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a6.【2019年北京文科03】下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=2﹣x C.y=log x D.y7.【2018年新课标2文科12】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.508.【2018年新课标1文科12】设函数f(x),则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1] B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)9.【2018年新课标3文科07】下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x) C.y=ln(1+x)D.y=ln(2+x)10.【2018年北京文科05】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f11.【2018年天津文科05】已知a,b,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b12.【2017年北京文科05】已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数13.【2017年北京文科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.109314.【2017年天津文科06】已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f (20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b15.【2017年天津文科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A .[﹣2,2]B .C .D .16.【2018年新课标1文科13】已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a = . 17.【2018年新课标3文科16】已知函数f (x )=ln (x )+1,f (a )=4,则f (﹣a )= .18.【2018年天津文科14】已知a ∈R ,函数f (x ).若对任意x ∈[﹣3,+∞),f (x )≤|x |恒成立,则a 的取值范围是 .19.【2017年新课标2文科14】已知函数f (x )是定义在R 上的奇函数,当x ∈(﹣∞,0)时,f (x )=2x 3+x 2,则f (2)= .20.【2017年新课标3文科16】设函数f (x ),则满足f (x )+f (x )>1的x 的取值范围是 .21.【2017年北京文科11】已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是 .1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2B .4C .2±D .4±2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( ) A .()10-,B .()12-,C .()02,D .()2,+∞ 3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( )A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln3c =,则( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ( )A .2019B .0C .1D .-18.【天津市红桥区2019届高三一模】若方程2121x kx x -=--有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞-B .()1,0-C .()0,4D .()()0,11,49.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。
理科数学2010-2019高考真题分类训练专题2函数概念与基本初等函数-函数与方程含答案及详解
专题二 函数概念与基本初等函数Ⅰ第五讲 函数与方程2019年1.(2019全国Ⅱ理12)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦2.(2019江苏14)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 .3.(2019浙江9)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有3个零点,则A .a <-1,b <0B .a <-1,b >0C .a >-1,b <0D .a >-1,b >02010-2018年一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞2.(2017新课标Ⅲ)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .13.(2017山东)已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 A .(])0,123,⎡+∞⎣B .(][)0,13,+∞C.()23,⎡+∞⎣D .([)3,+∞4.(2016年天津)已知函数()f x =2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(0a >,且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是 A .(0,23] B .[23,34] C .[13,23]{34} D .[13,23){34} 5.(2015安徽)下列函数中,既是偶函数又存在零点的是A .y cos x =B .y sin x =C .y ln x =D .21y x =+ 6.(2015福建)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于A .6B .7C .8D .97.(2015天津)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中 b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是A .7(,)4+∞ B .7(,)4-∞ C .7(0,)4 D .7(,2)48.(2015陕西)对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是 A .-1是()f x 的零点 B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上9.(2014山东)已知函数()12+-=x x f ,()kx x g =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是A .),(210B .),(121C .),(21D .),(∞+210.(2014北京)已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是 A .()0,1 B .()1,2 C .()2,4 D .()4,+∞11.(2014重庆)已知函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩, 且()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点,则实数m 的取值范围是A .]21,0(]2,49(⋃--B .]21,0(]2,411(⋃-- C .]32,0(]2,49(⋃-- D .]32,0(]2,411(⋃--12.(2014湖北)已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -.则函数()()+3g x f x x =-的零点的集合为A .{1,3}B .{3,1,1,3}-- C.{23} D.{21,3}- 13.(2013安徽)已知函数有两个极值点,若,则关于的方程的不同实根个数为A .3B .4C .5D .614.(2013重庆)若,则函数的两个零点分别位于区间A .和内B .和内C .和内D .和内15.(2013湖南)函数的图像与函数的图象的交点个数为A .3B .2C .1D .0 16.(2013天津)函数的零点个数为32()f x x ax bx c =+++12,x x 112()f x x x =<x 23(())2()0f x af x b ++=a b c <<()()()()()()()f x x a x b x b x c x c x a =--+--+--(),a b (),b c (),a -∞(),a b (),b c (),c +∞(),a -∞(),c +∞()2ln f x x =()245g x x x =-+0.5()2|log |1x f x x =-17.(2012北京)函数121()()2xf x x =-的零点个数为A .0B .1C .2D .318.(2012湖北)函数在区间上的零点个数为A .4B .5C .6D .719.(2012辽宁)设函数满足()()f x f x -=,()(2)f x f x =-,且当时,.又函数,则函数()()()h x g x f x =-在13[,]22-上的零点个数为A .5B .6C .7D .8 20.(2011天津)对实数a 与b ,定义新运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是 A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭21.(2011福建)若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 22.(2011全国新课标)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于A .2B .4C .6D .823.(2011山东)已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为2()cos f x x x =[0,4])(x f ()x R ∈[]0,1x ∈()3=f x x ()()=cos g x x x π24.(2010年福建)函数223,0()2ln ,0x x x f x x x ⎧+-=⎨-+>⎩≤,的零点个数为A .0B .1C .2D .325.(2010天津)函数的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 26.(2010广东)“14m <”是“一元二次方程20x x m ++=有实数解”的 A .充分非必要条件 B .充分必要条件 C .必要非充分条件 D .非充分非必要条件27.(2010浙江)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4 二、填空题28.(2018全国卷Ⅲ)函数()cos(3)6f x x π=+在[0,]π的零点个数为________.29.(2018天津)已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++=⎨-+->⎩≤若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是 .30.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .31.(2018浙江)已知λ∈R ,函数24,()43,x x f x x x x λλ-⎧=⎨-+<⎩≥,当2λ=时,不等式()0f x <的解集是_____.若函数()f x 恰有2个零点,则λ的取值范围是______.32.(2018浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x ,y ,z ,则1001531003x y z x y z ++=⎧⎪⎨++=⎪⎩,当81z =时,x = ,()23xf x x =+y = .33.(2017江苏)设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x D f x x x D⎧∈=⎨∉⎩其中集合1{|,}n D x x n n -==∈*N ,则方程()lg 0f x x -=的解的个数是 .34.(2016年山东)已知函数2||,()24,x x m f x x mx m x m⎧=⎨-+>⎩≤ 其中,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_________. 35.(2015湖北)函数2π()4coscos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 36.(2015北京)设函数()()()2142 1.xa x f x x a x a x ⎧-<⎪=⎨--⎪⎩≥‚‚‚①若1a =,则()f x 的最小值为;②若()f x 恰有2个零点,则实数a 的取值范围是.37.(2015湖南)已知函数32,(),x x af x x x a⎧=⎨>⎩≤,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .38.(2014江苏)已知是定义在R 上且周期为3的函数,当时,.若函数在区间上有10个零点(互不相同),则实数的取值范围是 .39.(2014福建)函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是_________.40.(2014天津)已知函数2()|3|f x x x =+,x ∈R .若方程()|1|0f x a x --=恰有4个互异的实数根,则实数a 的取值范围为__________.41.(2012福建)对于实数a 和b ,定义运算“*”:22,,,,a ab a b a b b ab a b ⎧-*=⎨->⎩设()f x =(21)(1)x x -*-,且关于x 的方程为()f x m =(m ∈R )恰有三个互不相等的0m >)(x f )3,0[∈x |212|)(2+-=x x x f a x f y -=)(]4,3[-a实数根123,,x x x ,则123x x x 的取值范围是____________.42.(2011北京)已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x =k 有两个不同的实根,则数k 的取值范围是_______.43.(2011辽宁)已知函数a x e x f x +-=2)(有零点,则a 的取值范围是_____.。
专题02 函数的概念与基本初等函数(解析版)-三年(2022–2024)高考数学真题分类汇编(通用)
专题02函数的概念与基本初等函数I 考点三年考情(2022-2024)命题趋势考点1:已知奇偶性求参数2023年全国Ⅱ卷2023年全国乙卷(理)2024年上海卷2022年全国乙卷(文)2023年全国甲卷(理)从近三年高考命题来看,本节是高考的一个重点,函数的单调性、奇偶性、对称性、周期性是高考的必考内容,重点关注周期性、对称性、奇偶性结合在一起,与函数图像、函数零点和不等式相结合进行考查.考点2:函数图像的识别2022年天津卷2023年天津卷2024年全国甲卷(理)2024年全国Ⅰ卷2022年全国乙卷(文)2022年全国甲卷(理)考点3:函数模型及应用2022年北京卷2024年北京卷2023年全国Ⅰ卷考点4:基本初等函数的性质:单调性、奇偶性2023年全国乙卷(理)2022年北京卷2023年北京卷2024年全国Ⅰ卷2024年天津卷2023年全国Ⅰ卷考点5:分段函数问题2022年浙江卷2024年上海夏季考点6:函数的定义域、值域、最值问题2022年北京卷2022年北京卷考点7:函数性质(对称性、周期性、奇偶性)的综合运用2023年全国Ⅰ卷2022年全国I卷2024年全国Ⅰ卷2022年全国II卷考点8:指对幂运算2022年天津卷2022年浙江卷2024年全国甲卷(理)2023年北京卷考点1:已知奇偶性求参数1.(2023年新课标全国Ⅱ卷数学真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ().A .1-B .0C .12D .1【答案】B【解析】因为()f x 为偶函数,则1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =,当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln 21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-,故此时()f x 为偶函数.故选:B.2.(2023年高考全国乙卷数学(理)真题)已知e ()e 1xax x f x =-是偶函数,则=a ()A .2-B .1-C .1D .2【答案】D【解析】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.3.(2024年上海夏季高考数学真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【解析】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =,故答案为:0.4.(2022年高考全国乙卷数学(文)真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b =.【答案】12-;ln 2.【解析】[方法一]:奇函数定义域的对称性若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠-1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-,由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+---1()1ax a f x lnbx++-=++ 函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=-22(1)1210112a a a a +∴=⇒+=⇒=-1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称.由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211xf x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意.故答案为:12-;ln 2.5.(2023年高考全国甲卷数学(理)真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【解析】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s a a ⎛⎫⎛⎫⎛⎫-+=+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++,所以()()()()221cos s 1co f x x x x x f x -=-++++-==,又定义域为R ,故()f x 为偶函数,所以2a =.故答案为:2.考点2:函数图像的识别6.(2022年新高考天津数学高考真题)函数()21x f x x-=的图像为()A .B .C .D .【答案】D【解析】函数()21x f x x-=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x -=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.7.(2023年天津高考数学真题)已知函数()f x 的部分图象如下图所示,则()f x 的解析式可能为()A .25e 5e 2x xx --+B .25sin 1x x +C .25e 5e 2x xx -++D .25cos 1x x +【答案】D【解析】由图知:函数图象关于y 轴对称,其为偶函数,且(2)(2)0f f -=<,由225sin()5sin ()11x xx x -=--++且定义域为R ,即B 中函数为奇函数,排除;当0x >时25(e e )02x x x -->+、25(e e )02x x x -+>+,即A 、C 中(0,)+∞上函数值为正,排除;故选:D8.(2024年高考全国甲卷数学(理)真题)函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的图象大致为()A .B .C .D .【答案】B【解析】()()()()()22e e sin e e sin x x x xf x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.9.(2024年新课标全国Ⅰ卷数学真题)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .8【答案】C【解析】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=- ⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=- ⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C10.(2022年高考全国乙卷数学(文)真题)如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是()A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x x y x =+D .22sin 1x y x =+【答案】A【解析】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C;设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D.故选:A.11.(2022年高考全国甲卷数学(理)真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .【答案】A【解析】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.考点3:函数的实际应用12.(2022年新高考北京数学高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是()A .当220T =,1026P =时,二氧化碳处于液态B .当270T =,128P =时,二氧化碳处于气态C .当300T =,9987P =时,二氧化碳处于超临界状态D .当360T =,729P =时,二氧化碳处于超临界状态【答案】D【解析】当220T =,1026P =时,lg 3P >,此时二氧化碳处于固态,故A 错误.当270T =,128P =时,2lg 3P <<,此时二氧化碳处于液态,故B 错误.当300T =,9987P =时,lg P 与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C 错误.当360T =,729P =时,因2lg 3P <<,故此时二氧化碳处于超临界状态,故D 正确.故选:D13.(2024年北京高考数学真题)生物丰富度指数1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则()A .2132N N =B .2123N N =C .2321N N =D .3221N N =【答案】D 【解析】由题意得12112.1, 3.15ln ln S S N N --==,则122.1ln 3.15ln N N =,即122ln 3ln N N =,所以3221N N =.故选:D.14.(多选题)(2023年新课标全国Ⅰ卷数学真题)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lg p pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车105060电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A .12p p ≥B .2310p p >C .30100p p =D .12100p p ≤【答案】ACD【解析】由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈=,对于选项A :可得1212100220lg 20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为12p p L L ≥,则121220lg 0p p p L L p =-⨯≥,即12lg 0pp ≥,所以121p p ≥且12,0p p >,可得12p p ≥,故A 正确;对于选项B :可得2332200320lg20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥,所以2310p p ≥且23,0p p >,可得2310p ≥,当且仅当250p L =时,等号成立,故B 错误;对于选项C :因为33020lg 40p p L p =⨯=,即30lg 2pp =,可得3100p p =,即30100p p =,故C 正确;对于选项D :由选项A 可知:121220lg p p p L L p =-⨯,且12905040p p L L ≤-=-,则1220lg 40p p ⨯≤,即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确;故选:ACD.考点4:基本初等函数的性质:单调性、奇偶性15.(2023年高考全国乙卷数学(理)真题)设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是.【答案】512⎡⎫-⎪⎢⎪⎣⎭【解析】由函数的解析式可得()()()ln 1ln 10xx f x a a a a '=+++≥在区间()0,∞+上恒成立,则()()1ln 1ln xxa a a a ++≥-,即()1ln ln 1xa a a a +⎛⎫≥-⎪+⎝⎭在区间()0,∞+上恒成立,故()01ln 1ln 1a a a a +⎛⎫=≥- ⎪+⎝⎭,而()11,2a +∈,故()ln 10a +>,故()ln 1ln 01a a a ⎧+≥-⎨<<⎩即()1101a a a ⎧+≥⎨<<⎩,故5112a ≤<,结合题意可得实数a 的取值范围是512⎫-⎪⎪⎣⎭.故答案为:512⎡⎫-⎪⎢⎪⎣⎭.16.(2022年新高考北京数学高考真题)已知函数1()12xf x =+,则对任意实数x ,有()A .()()0f x f x -+=B .()()0f x f x --=C .()()1f x f x -+=D .1()()3f x f x --=【答案】C【解析】()()1121112121212x x x x xf x f x --+=+=+=++++,故A 错误,C 正确;()()11212121121212122121x x x x x x x xf x f x ----=-=-==-++++++,不是常数,故BD 错误;故选:C .17.(2023年北京高考数学真题)下列函数中,在区间(0,)+∞上单调递增的是()A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【解析】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减,所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减,所以()12xf x =在()0,∞+上单调递减,故B 错误;对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减,所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为1112213332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.18.(2024年新课标全国Ⅰ卷数学真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞【答案】B【解析】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.19.(2024年天津高考数学真题)下列函数是偶函数的是()A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x x y +=【答案】B【解析】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称,则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141eϕ---=,则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误.故选:B.20.(2023年新课标全国Ⅰ卷数学真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【解析】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D考点5:分段函数问题21.(2022年新高考浙江数学高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是.【答案】37283333+【解析】由已知2117(2224f ⎛⎫=-+= ⎪⎝⎭,77437()144728f =+-=,所以137()228f f ⎡⎤=⎢⎥⎣⎦,当1x ≤时,由1()3f x ≤≤可得2123x ≤-+≤,所以11x -≤≤,当1x >时,由1()3f x ≤≤可得1113x x≤+-≤,所以123x <≤+1()3f x ≤≤等价于123x -≤≤[,][1,23]a b ⊆-,所以b a -的最大值为33故答案为:3728,3322.(2024年上海夏季高考数学真题)已知(),0,1,0x x f x x >=≤⎪⎩则()3f =.3【解析】因为()0,1,0x x f x x >=≤⎪⎩故()33f =3考点6:函数的定义域、值域、最值问题23.(2022年新高考北京数学高考真题)函数1()1f x x x=-的定义域是.【答案】()(],00,1-∞⋃【解析】因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃24.(2022年新高考北京数学高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为;a 的最大值为.【答案】0(答案不唯一)1【解析】若0a =时,21,0(){(2),0x f x x x <=-≥,∴min ()0f x =;若a<0时,当x a <时,()1f x ax =-+单调递增,当x →-∞时,()f x →-∞,故()f x 没有最小值,不符合题目要求;若0a >时,当x a <时,()1f x ax =-+单调递减,2()()1f x f a a >=-+,当x a >时,min 20(02)(){(2)(2)a f x a a <<=-≥∴210a -+≥或2212a a -+≥-(),解得01a <≤,综上可得01a ≤≤;故答案为:0(答案不唯一),1考点7:函数性质(对称性、周期性、奇偶性)的综合运用25.(多选题)(2023年新课标全国Ⅰ卷数学真题)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点【答案】ABC 【解析】方法一:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误.方法二:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,当220x y ≠时,对22()()()f xy y f x x f y =+两边同时除以22x y ,得到2222()()()f xy f x f y x y x y=+,故可以设2()ln (0)f x x x x =≠,则2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩,当0x >肘,2()ln f x x x =,则()212ln (2ln 1)x x x x xf x x =+⋅=+',令()0f x '<,得120e x -<<;令()0f x ¢>,得12e x ->;故()f x 在120,e -⎛⎫ ⎪⎝⎭上单调递减,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,因为()f x 为偶函数,所以()f x 在12,0e -⎛⎫- ⎪⎝⎭上单调递增,在12,e -⎛⎫ ⎪⎝∞⎭-上单调递减,显然,此时0x =是()f x 的极大值,故D 错误.故选:ABC .26.(多选题)(2022年新高考全国I 卷数学真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222fx f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.27.(2024年新课标全国Ⅰ卷数学真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <【答案】B【解析】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.28.(2022年新高考全国II 卷数学真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A【解析】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=,所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;29.(2022年高考全国乙卷数学(理)真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑()A .21-B .22-C .23-D .24-【答案】D【解析】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D考点8:指对幂运算30.(2022年新高考天津数学高考真题)化简()()48392log 3log 3log 2log 2++的值为()A .1B .2C .4D .6【答案】B【解析】原式2233111(2log 3log 3)(log 2log 2)232=⨯++2343log 3log 2232=⨯=,故选:B31.(2022年新高考浙江数学高考真题)已知825,log 3ab ==,则34a b -=()A .25B .5C .259D .53【答案】C【解析】因为25a=,821log 3log 33b ==,即323b=,所以()()22323232452544392a aa b b b -====.故选:C.32.(2024年高考全国甲卷数学(理)真题)已知1a >且8115log log 42a a -=-,则=a .【答案】64【解析】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.33.(2023年北京高考数学真题)已知函数2()4log x f x x =+,则12f ⎛⎫= ⎪⎝⎭.【答案】1【解析】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:1。
高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)
第1讲函数、基本初等函数的图象与性质考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3. (2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t ) =f (1+t ),即f (t +1)=-f (t ),进而得到 f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14.所以f (3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________________________________________________________________________. 答案 (1)3 (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3. (2)易知f (x )为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知, f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0, 令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.热点二 函数的图象例2 (1)下列四个图象可能是函数y =10ln|x +1|x +1图象的是________.(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为________.思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 答案 (1)③ (2)b >a >c解析 (1)函数的定义域为{x |x ≠-1},其图象可由y =10ln|x |x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x |x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.所以①④不可能是;又x >0时,y =10ln|x +1|x +1>0,所以②不可能是,图象③可能是.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f (-12)=f (52),当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)(2013·课标全国Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a的取值范围是________.(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg |x |图象的交点个数为n ,则n =________. 答案 (1)[-2,0] (2)4解析 (1)函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立. 比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2.综上所述:-2≤a ≤0. (2)由题意知,当a =1,b =1时, y =1|x |-1=⎩⎨⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1),在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是________.①α>β;②α+β>0;③α<β;④α2>β2.思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性.答案 (1)(-1,0)∪(1,+∞) (2)④解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0.(2)设f (x )=x sin x ,x ∈[-π2,π2],∴y ′=x cos x +sin x =cos x (x +tan x ), 当x ∈[-π2,0]时,y ′<0,∴f (x )为减函数,当x ∈[0,π2]时,y ′>0,∴f (x )为增函数,且函数f (x )为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么a a ,b a ,a b 的大小关系式是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)a b <a a <b a (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b <(15)a <1,得0<a <b <1,所以0<ab<1.所以y =a x ,y =b x ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而a b <a a ,(ab )a <1得b a >a a ,故a b <a a <b a .(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a . (2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f (x )是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f (x )是奇函数,∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎫416=12-316=516.2.(2014·福建改编)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是________.答案 ②解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.图象①中,y =3-x =(13)x ,显然图象错误;图象②中,y =x 3,由幂函数图象可知正确;图象③中,y =(-x )3=-x 3,显然与所画图象不符;图象④中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故图象②正确. 押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为________.答案 ①解析 据已知关系式可得f (x )=⎩⎨⎧e-ln x+⎝⎛⎭⎫x -1x =x (0<x ≤1),eln x-⎝⎛⎫x -1x =1x(x >1),作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.答案 (4,+∞)解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )的最小值为________. 答案 -1解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )的最小值为-1.4.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0,①正确; 根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴,②正确; 根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.(推荐时间:40分钟)1.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.2.(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是________.答案 ④解析 幂函数f (x )=x a 的图象不过(0,1)点,图象①不正确;②由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故②错;图象③中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故③错.图象④是正确的.3.(2014·朝阳模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值为________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎫1100=lg 1100=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f (-2)=-lg 2. 4.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.5.设偶函数f (x )满足f (x )=2x -4(x ≥0),则f (x -2)>0的解集为________.答案 {x |x <0或x >4}解析 由于函数f (x )是偶函数,因此有f (|x |)=f (x ),不等式f (x -2)>0,即f (|x -2|)>0,f (|x -2|)=2|x -2|-4>0, |x -2|>2,即x -2<-2或x -2>2,由此解得x <0或x >4.∴f (x -2)>0的解集为{x |x <0或x >4}.6.使log 2(-x )<x +1成立的x 的取值范围是________.答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).7.函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________对. 答案 3解析 因为y =cos πx 是偶函数,图象关于y 轴对称.所以,本题可转化成求函数y =log 3x 与y =cos πx 图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f (x )图象上关于y 轴对称的点有3对.8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________. 答案 ⎣⎡⎦⎤12,2解析 由题意知a >0,又log 12a =log 2a -1=-log 2a . ∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ). ∵f (log 2a )+f (log 12a )≤2f (1), ∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1).又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎡⎦⎤12,2.9.已知函数f (x )=⎩⎪⎨⎪⎧ 13e x (x ≥2),f (x +1)(x <2),则f (ln 3)=________. 答案 e解析 f (ln 3)=f (ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.答案 {a |a ≤2}解析 f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,-x (x -a ),x <a ,由(x 1-x 2)[f (x 1)-f (x 2)]>0知,函数y =f (x )在[2,+∞)单调递增,当a ≤0时,满足题意,当a >0时,只需a ≤2,即0<a ≤2,综上所述,实数a 的取值范围为a ≤2.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.答案 f (4.5)<f (7)<f (6.5)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.所以f (4.5)=f (4+12)=f (12), f (7)=f (4+3)=f (3),f (6.5)=f (4+52)=f (52). 又f (x )在[0,2]上为增函数.所以作出其在[0,4]上的图象知f (4.5)<f (7)<f (6.5).13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论: ①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f (x )的图象为离散的点,关于y 轴对称,①正确;f (x )为周期函数,T =2,②正确;f (x +1)+f (x )=1+(-1)x +12+1+(-1)x 2 =1+(-1)x +1+(-1)x 2=1,③正确. 14.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f (x )=e x +e -x ;②f (x )=ln 5-x 5+x; ③f (x )=tan x 2;④f (x )=4x 3+x . 答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中f (0)=ln 5-05+0=ln 1=0,且f (-x )=ln 5+x 5-x =-ln 5-x 5+x=-f (x ),所以f (x )为奇函数,所以f (x )=ln 5-x 5+x为“和谐函数”;③中,f (0)=tan 0=0,且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x 2为“和谐函数”;④中,f (0)=0,且f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。
2024年高考数学总复习第二章函数的概念与基本初等函数真题分类9函数的图象与变换
A.5(exx2-+e2-x) C.5(exx2++e2-x)
B.5x2s+in 1x D.5xc2+os1x
第4页
返回层目录 返回目录
真题分类9 函数的图象与变换
高考·数学
答案:D 由图知函数图象关于 y 轴对称,其为偶函数,且 f(-2)=f(2)<0, 由5(si-n (x)-2+x)1 =-5x2s+in 1x 且定义域为 R,即 B 中函数为奇函数,排除; 当 x>0 时,5(exx2-+e2-x) >0,5(exx2++e2-x) >0,即 A,C 中函数在(0,+∞)上的函数 值为正数,排除. 故选 D.
第11页
返回层目录 返回目录
真题分类9 函数的图象与变换
5.(2021·天津,3,5 分)函数 y=xl2n+|x2| 的图象大致为(
)
高考·数学
A
B
C
D
第12页
返回层目录 返回目录
真题分类9 函数的图象与变换
高考·数学
答案:B 设 y=f(x)=xl2n+|x2| ,则函数 f(x)的定义域为xx≠0 ,关于原点对称, 又 f(-x)=(-lnx|-)x2+| 2 =f(x),所以函数 f(x)为偶函数,排除 A,C; 当 x∈(0,1)时,ln |x|<0,x2+2>0,所以 f(x)<0,排除 D. 故选 B.
真题分类9 函数的图象与变换
高考·数学
答案:A 设 f(x)=x cos x+sin x,f(x)的定义域为 R.因为 f(-x)=-x cos (-x)+sin (-x)=-f(x),所以 f(x)为奇函数,排除选项 C,D.又 f(π)=πcos π+sin π=-π<0,排除选 项 B,故选 A.
理科数学2010-2019高考真题分类训练专题二函数概念与基本初等函数第四讲指数函数对数函数幂函数答案
专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数答案部分 2019年1.解析:存在t ∈R ,使得2|(2)()|3f t f t +-≤, 即有332|(2)(2)|3a t t at t +-+-+≤, 化为22|2(364)2|3a t t ++-≤, 可得2222(364)233a t t -++-剟, 即224(364)33a t t ++剟, 由223643(1)11t t t ++=++…, 可得403a 剟,可得a 的最大值为43. 2.解析:依题意22log 0.2log 10a ==<, 0.20221b ==>,因为0.3000.20.21=<<, 所以0.30.201c =∈(,),所以a c b <<.故选B .3.解析 由题意,可知5log 21a =<,115122221log 0.2log log 5log 5log 425b --====>=. 0.20.51c =<,所以b 最大,a ,c 都小于1.因为5log 2a ==150.210.52⎛⎫==== ⎪⎝⎭225log 42>=12⎛< ⎝c <, 所以a c b <<. 故选A .2010-2018年1.C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C . 2.B 【解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=, 所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a b ab+<<.又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .3.D 【解析】因为2log e >1a =,ln 2(0,1)b =∈,12221log log 3log 13c e ==>>. 所以c a b >>,故选D .4.D 【解析】设235xyzk ===,因为,,x y z 为正数,所以1k >,则2log x k =,3log y k =,5log z k =, 所以22lg lg 3lg 913lg 23lg lg8x k y k =⨯=>,则23x y >,排除A 、B ;只需比较2x 与5z , 22lg lg 5lg 2515lg 25lg lg 32x k z k =⨯=<,则25x z <,选D . 5.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =-=又2222log 4log 5.1log 83=<<=,0.8122<<, 所以0.822log 5.13<<,故b a c <<,选C .6.A 【解析】11()3()(3())()33xx x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .7.D 【解析】设36180310M x N ==,两边取对数得,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-≈,所以93.2810x =,即M N最接近9310,选D .8.C 【解析】选项A ,考虑幂函数cy x =,因为0c >,所以cy x =为增函数,又1a b >>,所以cca b >,A 错.对于选项B ,ccab ba <()cb b aa ⇔<,又()xb y a=是减函数,所以B 错.对于选项D ,由对数函数的性质可知D 错,故选C .9.A 【解析】因为4133216a ==,2155416b ==,1325c =,且幂函数13y x =在R 上单调递增,指数函数16xy =在R 上单调递增,所以b a c <<,故选A . 10.C 【解析】由于2(2)1log 43f -=+=,22log 121log 62(log 12)226f -===,所以2(2)(log 12)f f -+=9.11.C 【解析】如图,函数2log (1)y x =+的图象可知,2()log (1)f x x +≥的解集是{|11}x x -<≤.(x +1)12.C 【解析】因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 21213123a f f ⎛⎫===-=-=-= ⎪⎝⎭,()2log 5b f =2log 5214=-=, ()02(0)210c f m f ===-=,所以c a b <<,故选C .13.B 【解析】由指数函数的性质知,若333ab>>,则1a b >>,由对数函数的性质,得log 3log 3a b <;反之,取12a =,13b =,显然有log 3log 3a b <,此时01b a <<<,于是333ab>>,所以“333ab>>”是log 3log 3a b <的充分不必要条件,选B . 14.C 【解析】由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥. 15.D 【解析】由图象可知01a <<,当0x =时,log ()log 0a a x c c +=>,得01c <<. 16.B 【解析】∵32log 71a >=>, 1.122b =>, 3.10.81c =<,所以b a c <<.17.D 【解析】当1a >时,函数()(0)af x x x =>单调递增,函数()log a g x x =单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当01a <<时,函数()(0)af x x x =>单调递增,函数()log a g x x =单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知C 错,因此选D .18.D 【解析】240x ->,解得2x <-或2x >.由复合函数的单调性知()f x 的单调递增区间为(,2)-∞-.19.D 【解析】33log 61log 2,a ==+5577log 101log 2,log 141log 2b c ==+==+,由下图可知D 正确.解法二 3321log 61log 21log 3a ==+=+,5521log 101log 21log 5b ==+=+, 7721log 141log 21log 7c ==+=+,由222log 3log 5log 7<<,可得答案D 正确. 20.B 【解析】a ,b ,c ≠1. 考察对数2个公式abb y x xyc c a a a a log log log ,log log log =+= 对选项A :bab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假.对选项B :abb b a bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式一致,所以为真.对选项C :c b bc a a alog log log ⋅=)(,显然与第一个公式不符,所以为假.对选项D :c b c b a a a log log )log +=+(,同样与第一个公式不符,所以为假.所以选B .21.D 【解析】取特殊值即可,如取lg lg lg lg 10,1,22,223,x yx y x y +===+=()lg lg11lg lg 22,21x y x y +⋅==.22.C 【解析】因为函数()f x 是定义在R 上的偶函数,且122log log a a =-,所以222122(log )(log )(log )(log )2(log )2(1)f a f a f a f a f a f +=+-=≤,即2(log )(1)f a f ≤,因为函数在区间[0,)+∞单调递增,所以2(log )(1)f a f ≤, 即2log 1a ≤,所以21log 1a -≤≤,解得122a ≤≤,即a 的取值范围是1,22⎡⎤⎢⎥⎣⎦,选C .23.D 【解析】23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯=. 24.B 【解析】由指数函数与对数函数的图像知12011log 42a a <<⎧⎪⎨>⎪⎩1a <<,故选B. 25.A 【解析】因为122.02.022)21(<==-b ,所以a b <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A .26.D 【解析】根据对数函数的性质得1x y >>.27.D 【解析】当2x a =时,2lg 2lg 2y a a b ===,所以点2(,2)a b 在函数lg y x =图象上.28.D 【解析】当1x ≤时122x-≤,解得0x ≥,所以01x ≤≤;当1x >时,21log 2x -≤,解得12x ≥,所以1x >,综上可知0x ≥.29.A 【解析】因为当x =2或4时,220xx -=,所以排除B 、C ;当x =–2时,2124<04x x -=-,故排除D ,所以选A . 30.D 【解析】因为50log 41<<,所以b <a <c . 31.B 【解析】α+1=2,故α=1,选B . 32.A 【解析】211log 2log 5log 102,10,m m m m a b+=+==∴=又0,m m >∴=Q 33.C 【解析】)()()(y x f a a a y f x f yx yx+===+.34.C 【解析】画出函数的图象,如图所示,不妨设a b c <<,因为()()()f a f b f c ==,所以1ab =,c 的取值范围是(10,12),所以abc 的取值范围是(10,12).35.C 【解析】由分段函数的表达式知,需要对a 的正负进行分类讨论。
高考数学(理)一轮复习课件:第二篇函数与基本初等函数Ⅰ第4讲指数与指数函数)共40页文档
a a≥0, -a a<0.
⑤负数没有偶次方根.
2.有理数指数幂
(1)幂的有关概念
①正整数指数幂:an=
(n∈N*).
②零指数幂:a0=1(a≠0).
③负整数指数幂:a-p=
1 ap
(a≠0,p∈N*).
④正分数指数幂:amn =n am(a>0,m、n∈ N*,且n>1).
⑤负分数指数幂:a-mn =
又∵y=5x是增函数,∴a>c>b.
答案 C
5.(2012·天津一中月考)已知a
1 2
+a-
1 2
=3,则a+a-1=
______;a2+a-2=________.
解析 由已知条件(a12+a-12)2=9.整理得:a+a-1=7
又(a+a-1)2=49,因此a2+a-2=47.
答案 7 47
考向一 指数幂的化简与求值 【例1】►化简下列各式(其中各字母均为正数).
1 m
=
an
1 n am
(a>0,m、n∈N*,且n
>1).
⑥0的正分数指数幂等于0,0的负分数指数幂没有意义.
(2)有理数指数幂的性质
①aras= ar+s (a>0,r、s∈Q).
②(ar)s= ars
(a>0,r、s∈Q).
③(ab)r= arbr (a>0,b>0,r∈Q).
3.指数函数的图2·郴州五校联考)函数f(x)=2|x-1|的图象是( ).
解析
2x-1,x≥1, f(x)=12x-1,x<1,
故选B.
答案 B
3.若函数f(x)=2x+1 1,则该函数在(-∞,+∞)上是(
).
A.单调递减无最小值
B.单调递减有最小值
2024年高考数学总复习第二章函数的概念与基本初等函数真题分类8对数与对数函数
第15页
返回层目录 返回目录
真题分类8 对数与对数函数
高考·数学
01 掌握对数函数图象的特征,底数大小决定了图象的高低,指数函数 y=ax(a>0 且 a≠1)
图象中“底大图高”,而对数函数 y=logax 图象中“底大图低”.具体见下图(图 1 中 a>b>1>c>d>0,图 2 中 b>a>1>d>c>0).
C5.对数函数的图象及性质
高考·数学
命题者说:(1)理解对数函数的图象的特点及性质,能应用其性质比较大小,解不等式,并能 处理简单的对数型复合函数问题.
第1题 第2题 第11题
第3题
第4题
第5题
第6题
第7题
第8题
第9题
第10题
第12页
返回层目录 返回目录
真题分类8 对数与对数函数
高考·数学
Ⅰ.对数函数图象过定点问题 Ⅱ.对数函数图象的辨析
第10页
返回层目录 返回目录
真题分类8 对数与对数函数
高考·数学
6.(2023·北京,11,5
分)已知函数
f(x)=4x+log2x,则
1 f(2
)=____1____.
答案:1
函数
f(x)=4x+log2x,所以
1 f(2
1 )=42
+log212
=2-1=1.
第11页
返回层目录 返回目录
真题分类8 对数与对数函数
第8页
返回层目录 返回目录
真题分类8 对数与对数函数
高考·数学
5.(2017·北京,8,5 分)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而 可观测宇宙中普通物质的原子总数 N 约为 1080.则下列各数中与MN 最接近的是(参考数据: lg3≈0.48)( )
理科数学2010-2019高考真题分类训练4专题二 函数概念与基本初等函数 第四讲—附解析答案
第四讲 指数函数、对数函数、幂函数
2019 年
1.(2019 浙江 16)已知 a R ,函数 f (x) ax3 x ,若存在 t R ,使得
| f (t 2) f (t) | 2 ,则实数 a 的最大值是____. 3
2.(2019 全国Ⅰ理 3)已知 a log20.2,b 20.2,c 0.20.3 ,则
34.(2010
新课标)已知函数
f
(x)
log2 x, x
log
1 2
(
x),
x
0 0 ,若 a
,b
,c
均不相等,且
f
(a)
=
f (b) = f (c) ,则 abc 的取值范围是
A.(1,10)
B.(5,6) C.(10,12)
D.(20,24)
35.(2010
天津)若函数
f
(x)
log2 x, x
22.(2013 天津)已知函数 f (x) 是定义在 R 上的偶函数, 且在区间[0, ) 单调递增.若实
数 a 满足 f (log2 a) f (log 1 a) 2 f (1) , 则 a 的取值范围是
2
A.[1, 2]
B.
0,
1 2
C.
1 2
,
2
D. (0, 2]
23.(2012 安徽) (log2 9) (log3 4) =
化为| 2a(3t2 6t 4) 2 | 2 , 3
可得 2 剟2a(3t2 6t 4) 2 2 ,
3
3
即 2 剟a(3t2 6t 4) 4 ,
3
3
由 3t2 6t 4 3(t 1)2 1…1,
理科数学2010-2019高考真题分类训练专题二函数概念与基本初等函数第四讲指数函数对数函数幂函数
专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数2019年1.(2019浙江16)已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 2.(2019全国Ⅰ理3)已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<3.(2019天津理6)已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A.a c b <<B.a b c <<C.b c a <<D.c a b <<2010-2018年一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞2.(2018全国卷Ⅲ)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+3.(2018天津)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>4.(2017新课标Ⅰ)设,,x y z 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 5.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 A .a b c <<B .c b a <<C .b a c <<D .b c a <<6.(2017北京)已知函数1()3()3x xf x =-,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 7.(2017北京)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)A .3310B .5310C .7310D .9310 8.(2016全国I) 若1a b >>,01c <<,则A .c c a b <B .c c ab ba <C .log log b a a c b c <D .log log a b c c < 9.(2016全国III) 已知432a =,254b =,1325c =,则A .b a c <<B .a b c <<C .b c a <<D .c a b <<10.(2015新课标Ⅱ)设函数211log (2),1()2,1x x x f x x -+-<⎧=⎨⎩≥,则2(2)(log 12)f f -+=A .3B .6C .9D .1211.(2015北京)如图,函数()f x 的图像为折线ACB ,则不等式()()2log 1f x x +≥的解集是A .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤12.(2015天津)已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记0.5log 3a =,()2log 5b f =,()2c f m =则,,a b c 的大小关系为A .a b c <<B .a c b <<C .c a b <<D .c b a <<13.(2015四川)设,a b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 14.(2015山东)设函数31,1()2,1xx x f x x -<⎧=⎨⎩≥,则满足()(())2f a f f a =的a 的取值范围是 A .2[,1]3B .[0,1]C .2[,)3+∞ D .[1,)+∞15.(2014山东)已知函数log ()a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如图,则下列结论成立的是A .0,1a c >>B .1,01a c ><<C .01,1a c <<>D .01,01a c <<<< 16.(2014安徽)设3log 7a =, 1.12b =, 3.10.8c =,则A .c a b <<B .b a c <<C .a b c <<D .b c a <<17.(2014浙江)在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是18.(2014天津)函数212()log(4)f x x=-的单调递增区间是A.(0,)+¥B.(,0)-?C.(2,)+¥D.(),2-?19.(2013新课标)设357log6,log10,log14a b c===,则A.c b a>>B.b c a>>C.a c b>>D.a b c>>20.(2013陕西)设a, b, c均为不等于1的正实数, 则下列等式中恒成立的是A.·loglog loga c cb ab=B.·log lolog gaa ab a b=C.()log ogg lloa a ab cbc=g D.()logg ogo lla a ab b cc+=+21.(2013浙江)已知yx,为正实数,则A.yxyx lglglglg222+=+B.lg()lg lg222x y x y+=gC.yxyx lglglglg222+=•D.lg()lg lg222xy x y=g22.(2013天津)已知函数()f x是定义在R上的偶函数,且在区间[0,)+∞单调递增.若实数a满足212(log)(log)2(1)f a f fa≤+,则a的取值范围是A.[1,2]B.10,2⎛⎤⎥⎝⎦C.1,22⎡⎤⎢⎥⎣⎦D.(0,2]23.(2012安徽)23(log9)(log4)⋅=A.14B.12C. 2 D.424.(2012新课标)当12x<≤时,4logxax<,则a的取值范围是A.(0,2B.,1)2C.D.2)25.(2012天津)已知122a=,0.212b-⎛⎫= ⎪⎝⎭,52log2c=,则,,a b c的大小关系为A .c b a <<B .c a b <<C .b a c <<D .b c a << 26.(2011北京)如果,0log log 2121<<y x 那么A .1y x <<B .1x y <<C .1x y <<D .1y x <<27.(2011安徽)若点(,)a b 在lg y x = 图像上,a ≠1,则下列点也在此图像上的是A .1(,)b a B .(10,1)a b - C .10(,1)b a+ D .2(,2)a b 28.(2011辽宁)设函数122,1()1log ,1x x f x x x -⎧=⎨->⎩≤,则满足()2f x ≤的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞)D .[0,+∞)29.(2010山东)函数22xy x =-的图像大致是30.(2010天津)设5log 4a =,5(log 3)b =2,4log 5c =,则A .a <c <bB .b <c <aC .a <b <cD .b <a <c 31.(2010浙江)已知函数2()log (1),f x x =+若()1,f α= α=A .0B .1C .2D .332.(2010辽宁)设25abm ==,且112a b+=,则m = A 10 B .10 C .20 D .10033.(2010陕西)下列四类函数中,具有性质“对任意的>0,y >0,函数f ()满足f (+y )=f ()f (y )”的是A .幂函数B .对数函数C .指数函数D .余弦函数34.(2010新课标)已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若a ,b ,c 均不相等,且()f a =()f b =()f c ,则abc 的取值范围是A .(1,10)B .(5,6)C .(10,12)D .(20,24)35.(2010天津)若函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,则实数a 的取值范围是A .(1,0)(0,1)-UB .(,1)(1,)-∞-+∞UC .(1,0)(1,)-+∞UD .(,1)(0,1)-∞-U 二、填空题36.(2018江苏)函数()f x 的定义域为 .37.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在(0,)+∞上递减,则α=_____.38.(2018上海)已知常数0a >,函数2()(2)x x f x ax =+的图像经过点6()5P p ,、1()5Q q -,,若236p qpq +=,则a =__________.39.(2016年浙江) 已知1a b >>,若5log log 2a b b a +=,b aa b =,则a = ,b = . 40.(2015江苏)不等式224x x-<的解集为_______.41.(2015浙江)若4log 3a =,则22aa-+=_______.42.(2014新课标)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__.43.(2014天津)函数2()lg f x x =的单调递减区间是________. 44.(2014重庆)函数2()log )f x x =的最小值为_________.45.(2013四川)的值是____________.46.(2012北京)已知函数()lg f x x =,若()1f ab =,则22()()f a f b += . 47.(2012山东)若函数()(0,1)x f x a a a =>≠在[1,2]-上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =____.48.(2011天津)已知22log log 1a b +≥,则39ab+的最小值为__________.49.(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________.。
理科数学2010-2019高考真题分类训练专题二 函数概念与基本初等函数 第四讲指数函数对数函数幂函数
专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数2019年1.(2019浙江16)已知a ∈R ,函数3()f x ax x =−,若存在t ∈R ,使得2|(2)()|3f t f t +−≤,则实数a 的最大值是____.2.(2019全国Ⅰ理3)已知0.20.32 log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<3.(2019天津理6)已知5log 2a =,0.5og 2.l 0b =,0.20.5c =,则,,a b c 的大小关系为A.a c b <<B.a b c <<C.b c a <<D.c a b <<2010-2018年一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)−B .[0,)+∞C .[1,)−+∞D .[1,)+∞2.(2018全国卷Ⅲ)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+3.(2018天津)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>4.(2017新课标Ⅰ)设,,x y z 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z << 5.(2017天津)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =−,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为A .a b c <<B .c b a <<C .b a c <<D .b c a <<6.(2017北京)已知函数1()3()3x xf x =−,则()f xA .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数 7.(2017北京)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与M N最接近的是(参考数据:lg 3≈0.48)A .3310B .5310C .7310D .9310 8.(2016全国I) 若1a b >>,01c <<,则A .c c a b <B .c c ab ba <C .log log b a a c b c <D .log log a b c c < 9.(2016全国III) 已知432a =,254b =,1325c =,则A .b a c <<B .a b c <<C .b c a <<D .c a b <<10.(2015新课标Ⅱ)设函数211log (2),1()2,1x x x f x x −+−<⎧=⎨⎩≥,则2(2)(log 12)f f −+=A .3B .6C .9D .1211.(2015北京)如图,函数()f x 的图像为折线ACB ,则不等式()()2log 1f x x +≥的解集是A .{}|10x x −<≤B .{}|11x x −≤≤C .{}|11x x −<≤D .{}|12x x −<≤12.(2015天津)已知定义在R 上的函数()21x mf x −=− (m 为实数)为偶函数,记0.5log 3a =,()2log 5b f =,()2c f m =则,,a b c 的大小关系为A .a b c <<B .a c b <<C .c a b <<D .c b a <<13.(2015四川)设,a b 都是不等于1的正数,则“333ab>>”是“log 3log 3a b <”的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 14.(2015山东)设函数31,1()2,1xx x f x x −<⎧=⎨⎩≥,则满足()(())2f a f f a =的a 的取值范围是 A .2[,1]3B .[0,1]C .2[,)3+∞ D .[1,)+∞15.(2014山东)已知函数log ()a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如图,则下列结论成立的是A .0,1a c >>B .1,01a c ><<C .01,1a c <<>D .01,01a c <<<< 16.(2014安徽)设3log 7a =, 1.12b =, 3.10.8c =,则A .c a b <<B .b a c <<C .a b c <<D .b c a <<17.(2014浙江)在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是18.(2014天津)函数212()log(4)f x x=-的单调递增区间是A.(0,)+¥B.(,0)-?C.(2,)+¥D.(),2-?19.(2013新课标)设357log6,log10,log14a b c===,则A.c b a>>B.b c a>>C.a c b>>D.a b c>>20.(2013陕西)设a, b, c均为不等于1的正实数, 则下列等式中恒成立的是A.·loglog loga c cb ab=B.·log lolog gaa ab a b=C.()log ogg lloa a ab cbc=D.()logg ogo lla a ab b cc+=+21.(2013浙江)已知yx,为正实数,则A.yxyx lglglglg222+=+B.lg()lg lg222x y x y+=C.yxyx lglglglg222+=•D.lg()lg lg222xy x y=22.(2013天津)已知函数()f x是定义在R上的偶函数,且在区间[0,)+∞单调递增.若实数a满足212(log)(log)2(1)f a f fa≤+,则a的取值范围是A.[1,2]B.10,2⎛⎤⎥⎝⎦C.1,22⎡⎤⎢⎥⎣⎦D.(0,2]23.(2012安徽)23(log9)(log4)⋅=A.14B.12C. 2 D.424.(2012新课标)当12x<≤时,4logxax<,则a的取值范围是A.(0,)2B.(2C.D.2)25.(2012天津)已知122a=,0.212b−⎛⎫= ⎪⎝⎭,52log2c=,则,,a b c的大小关系为A .c b a <<B .c a b <<C .b a c <<D .b c a << 26.(2011北京)如果,0log log 2121<<y x 那么A .1y x <<B .1x y <<C .1x y <<D .1y x <<27.(2011安徽)若点(,)a b 在lg y x = 图像上,a ≠1,则下列点也在此图像上的是A .1(,)b a B .(10,1)a b − C .10(,1)b a+ D .2(,2)a b 28.(2011辽宁)设函数122,1()1log ,1x x f x x x −⎧=⎨−>⎩≤,则满足()2f x ≤的x 的取值范围是A .1[−,2]B .[0,2]C .[1,+∞)D .[0,+∞)29.(2010山东)函数22xy x =−的图像大致是30.(2010天津)设5log 4a =,5(log 3)b =2,4log 5c =,则A .a <c <bB .b <c <aC .a <b <cD .b <a <c 31.(2010浙江)已知函数2()log (1),f x x =+若()1,f α=α=A .0B .1C .2D .332.(2010辽宁)设25abm ==,且112a b+=,则m = AB .10C .20D .10033.(2010陕西)下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是A .幂函数B .对数函数C .指数函数D .余弦函数34.(2010新课标)已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨−<⎪⎩,若a ,b ,c 均不相等,且()f a =()f b =()f c ,则abc 的取值范围是A .(1,10)B .(5,6)C .(10,12)D .(20,24)35.(2010天津)若函数212log ,0()log (),0x x f x x x >⎧⎪=⎨−<⎪⎩,若()()f a f a >−,则实数a 的取值范围是A .(1,0)(0,1)−B .(,1)(1,)−∞−+∞C .(1,0)(1,)−+∞D .(,1)(0,1)−∞−二、填空题36.(2018江苏)函数()f x =的定义域为 .37.(2018上海)已知11{2,1,,,1,2,3}22α∈−−−,若幂函数()α=f x x 为奇函数,且在(0,)+∞上递减,则α=_____.38.(2018上海)已知常数0a >,函数2()(2)x x f x ax =+的图像经过点6()5P p ,、1()5Q q −,,若236p qpq +=,则a =__________.39.(2016年浙江) 已知1a b >>,若5log log 2a b b a +=,b aa b =,则a = ,b = . 40.(2015江苏)不等式224x x−<的解集为_______.41.(2015浙江)若4log 3a =,则22aa−+=_______.42.(2014新课标)设函数()113,1,,1,x e x f x x x −⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__.43.(2014天津)函数2()lg f x x =的单调递减区间是________. 44.(2014重庆)函数2()log )f x x =的最小值为_________.45.(2013四川)的值是____________.46.(2012北京)已知函数()lg f x x =,若()1f ab =,则22()()f a f b += . 47.(2012山东)若函数()(0,1)x f x a a a =>≠在[1,2]−上的最大值为4,最小值为m ,且函数()(14g x m =−在[0,)+∞上是增函数,则a =____.48.(2011天津)已知22log log 1a b +≥,则39ab+的最小值为__________.49.(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________.专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数答案部分 2019年1.解析:存在t ∈R ,使得2|(2)()|3f t f t +−≤, 即有332|(2)(2)|3a t t at t +−+−+≤, 化为22|2(364)2|3a t t ++−≤, 可得2222(364)233a t t −++−剟, 即224(364)33a t t ++剟, 由223643(1)11t t t ++=++…, 可得403a 剟,可得a 的最大值为43. 2.解析:依题意22log 0.2log 10a ==<, 0.20221b ==>,因为0.3000.20.21=<<, 所以0.30.201c =∈(,),所以a c b <<.故选B .3.解析 由题意,可知5log 21a =<,115122221log 0.2log log 5log 5log 425b −−====>=. 0.20.51c =<,所以b 最大,a ,c 都小于1.因为5log 2a ==150.210.52⎛⎫==== ⎪⎝⎭225log 42>=>12⎛< ⎝c <, b .2010-2018年1.C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=−−f x x a 有2个不同的实根,即函数()f x 的图象与直线=−−y x a 有2个交点,作出直线=−−y x a 与函数()f x 的图象,如图所示,由图可知,1−≤a ,解得1≥a ,故选C . 2.B 【解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=, 所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a b ab+<<.又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .3.D 【解析】因为2log e >1a =,ln 2(0,1)b =∈,12221log log 3log 13c e ==>>. 所以c a b >>,故选D .4.D 【解析】设235xyzk ===,因为,,x y z 为正数,所以1k >,则2log x k =,3log y k =,5log z k =, 所以22lg lg3lg913lg 23lg lg8x k y k =⨯=>,则23x y >,排除A 、B ;只需比较2x 与5z , 22lg lg5lg 2515lg 25lg lg32x k z k =⨯=<,则25x z <,选D . 5.C 【解析】由题意()g x 为偶函数,且在(0,)+∞上单调递增,所以22(log 5.1)(log 5.1)a g g =−= 又2222log 4log 5.1log 83=<<=,0.8122<<,所以0.822log 5.13<<,故b a c <<,选C .6.A 【解析】11()3()(3())()33xx x x f x f x −−−=−=−−=−,得()f x 为奇函数, ()(33)3ln 33ln 30x x x x f x −−''=−=+>,所以()f x 在R 上是增函数.选A .7.D 【解析】设36180310M x N ==,两边取对数得,36136180803lg lg lg3lg10361lg38093.2810x ==−=⨯−≈,所以93.2810x =,即M N最接近9310,选D .8.C 【解析】选项A ,考虑幂函数cy x =,因为0c >,所以cy x =为增函数,又1a b >>,所以cca b >,A 错.对于选项B ,ccab ba <()cb b a a ⇔<,又()xb y a=是减函数,所以B 错.对于选项D ,由对数函数的性质可知D 错,故选C .9.A 【解析】因为4133216a ==,2155416b ==,1325c =,且幂函数13y x =在R 上单调递增,指数函数16xy =在R 上单调递增,所以b a c <<,故选A . 10.C 【解析】由于2(2)1log 43f −=+=,22log 121log 62(log 12)226f -===,所以2(2)(log 12)f f −+=9.11.C 【解析】如图,函数2log (1)y x =+的图象可知,2()log (1)f x x +≥的解集是{|11}x x -<≤.(x +1)12.C 【解析】因为函数()21x mf x −=−为偶函数,所以0m =,即()21xf x =−,所以221log log 330.521(log 3)log 21213123a f f ⎛⎫===−=−=−= ⎪⎝⎭,()2log 5b f =2log 5214=−=, ()02(0)210c f m f ===−=,所以c a b <<,故选C .13.B 【解析】由指数函数的性质知,若333ab>>,则1a b >>,由对数函数的性质,得log 3log 3a b <;反之,取12a =,13b =,显然有log 3log 3a b <,此时01b a <<<,于是333ab>>,所以“333ab>>”是log 3log 3a b <的充分不必要条件,选B . 14.C 【解析】由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨−≥⎩,解得23a ≥. 15.D 【解析】由图象可知01a <<,当0x =时,log ()log 0a a x c c +=>,得01c <<. 16.B 【解析】∵32log 71a >=>, 1.122b =>, 3.10.81c =<,所以b a c <<.17.D 【解析】当1a >时,函数()(0)a f x x x =>单调递增,函数()log a g x x =单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当01a <<时,函数()(0)af x x x =>单调递增,函数()log a g x x =单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知C 错,因此选D .18.D 【解析】240x ->,解得2x <-或2x >.由复合函数的单调性知()f x 的单调递增区间为(,2)−∞−.19.D 【解析】33log 61log 2,a ==+5577log 101log 2,log 141log 2b c ==+==+,由下图可知D 正确.解法二 3321log 61log 21log 3a ==+=+,5521log 101log 21log 5b ==+=+, 7721log 141log 21log 7c ==+=+,由222log 3log 5log 7<<,可得答案D 正确. 20.B 【解析】a ,b ,c ≠1. 考察对数2个公式:abb y x xyc c a a a a log log log ,log log log =+= 对选项A :bab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假.对选项B :abb b a bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式一致,所以为真.对选项C :c b bc a a a log log log ⋅=)(,显然与第一个公式不符,所以为假.对选项D :c b c b a a alog log )log +=+(,同样与第一个公式不符,所以为假.所以选B .21.D 【解析】取特殊值即可,如取lg lg lg lg 10,1,22,223,x yx y x y +===+=()lg lg11lg lg 22,21x y x y +⋅==.22.C 【解析】因为函数()f x 是定义在R 上的偶函数,且122log log a a =−,所以222122(log )(log )(log )(log )2(log )2(1)f a f a f a f a f a f +=+−=≤,即2(log )(1)f a f ≤,因为函数在区间[0,)+∞单调递增,所以2(log )(1)f a f ≤, 即2log 1a ≤,所以21log 1a −≤≤,解得122a ≤≤,即a 的取值范围是1,22⎡⎤⎢⎥⎣⎦,选C .23.D 【解析】23lg9lg 42lg32lg 2log 9log 44lg 2lg3lg 2lg3⨯=⨯=⨯=. 24.B 【解析】由指数函数与对数函数的图像知12011log 42a a <<⎧⎪⎨>⎪⎩,解得12a <<,故选B. 25.A 【解析】因为122.02.022)21(<==−b ,所以a b <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A .26.D 【解析】根据对数函数的性质得1x y >>.27.D 【解析】当2x a =时,2lg 2lg 2y a a b ===,所以点2(,2)a b 在函数lg y x =图象上.28.D 【解析】当1x ≤时122x −≤,解得0x ≥,所以01x ≤≤;当1x >时,21log 2x −≤,解得12x ≥,所以1x >,综上可知0x ≥.29.A 【解析】因为当x =2或4时,220xx −=,所以排除B 、C ;当x =–2时,2124<04x x −=−,故排除D ,所以选A . 30.D 【解析】因为50log 41<<,所以b <a <c . 31.B 【解析】α+1=2,故α=1,选B . 32.A 【解析】211log 2log 5log 102,10,m m m m a b+=+==∴=又0,m m >∴ 33.C 【解析】)()()(y x f a a a y f x f yx yx+===+.34.C 【解析】画出函数的图象,如图所示,不妨设a b c <<,因为()()()f a f b f c ==,所以1ab =,c 的取值范围是(10,12),所以abc 的取值范围是(10,12).35.C 【解析】由分段函数的表达式知,需要对a 的正负进行分类讨论。
9年全国高考文科数学试题分类汇编之专题二函数概念与基本初等函数第四讲指数函数对数函数幂函数及答案
9年全国高考文科数学试题分类汇编之专题二函数概念与基本初等函数第四讲指数函数对数函数幂函数及答案专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数 一、选择题1.(2018天津)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为 A.a b c >>B.b a c >>C.c b a >>D.c a b >>2.(2018全国卷Ⅱ)函数2()--=x x e e f x x 的图像大致为3.(2018全国卷Ⅲ)下列函数中,其图象与函数ln y x =的图象关于直线1x =对称的是 A.ln(1)y x =-B.ln(2)y x =-C.ln(1)y x =+D.ln(2)y x =+4.(2017新课标Ⅰ)已知函数()ln ln(2)f x x x =+-,则A.()f x 在(0,2)单调递增B.()f x 在(0,2)单调递减C.()y f x =的图像关于直线1x =对称D.()y f x =的图像关于点(1,0)对称5.(2017新课标Ⅱ)函数2()ln(28)f x x x =--的单调递增区间是 A.(,2)-∞- B.(,1)-∞ C.(1,)+∞ D.(4,)+∞6.(2017天津)已知奇函数()f x 在R 上是增函数.若21(log )5a f =-,2(log 4.1)b f =,0.8(2)c f =,则,,a b c 的大小关系为A.a b c <<B.b a c <<C.c b a <<D.c a b <<7.(2017北京)已知函数1()3()3x xf x =-,则()f x A.是偶函数,且在R 上是增函数 B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是增函数8.(2017山东)若函数e ()x f x (e =2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A.()2x f x -=B.2()f x x =C.()3xf x -= D.()cos f x x =9.(2017北京)根据有关资料,围棋状态空间复杂度的上限M 约为3613,而可观测宇宙中普通物质的原子总数N 约为8010.则下列各数中与MN 最接近的是(参考数据:lg 3≈0.48)A.3310 B.5310 C.7310 D.931010.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m - A.与a 有关,且与b 有关 B.与a 有关,但与b 无关 C.与a 无关,且与b 无关 D.与a 无关,但与b 有关 11.(2016年全国I 卷)若0a b >>,01c <<,则 A.log log a b c c < B.log log c c a b <C.c c a b <D.a bc c >12.(2016年全国I 卷)函数2||2x y x e =-在[–2,2]的图像大致为A. B.C. D.13.(2016年全国II 卷)下列函数中,其定义域和值域分别与函数lg 10xy =的定义域和值域相同的是A.y =xB.y =lg xC.y =2xD.y =14.(2016全国III 卷)已知4213332,3,25a b c ===,则 A.b a c << B.a b c << C.b c a << D.c a b <<15.(2015山东)设0.6 1.50.60.6,0.6, 1.5a b c === ,则,,a b c 的大小关系是A.a b c <<B.a c b <<C.b a c <<D.b c a <<16.(2015天津)已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数, 记0.5(log 3)a f =,2(log 5)b f =,(2)c f m =,则,,a b c ,的大小关系为 A.a b c << B.c a b << C.a c b << D.c b a <<17.(2015陕西)设()ln f x x =,0a b <<,若p f =,()2a bq +=,1(()())2r f a f b =+,则下列关系式中正确的是A.q r p =<B.q r p =>C.p r q =<D.p r q =>18.(2015新课标1)设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =A.1-B.1C.2D.419.(2014山东)已知函数log ()a y x c =+(,a c 为常数,其中0,1a a >≠)的图象如图,则下列结论成立的是A.0,1a c >>B.1,01a c ><<C.01,1a c <<>D.01,01a c <<<<20.(2014安徽)设3log 7a =, 1.12b =, 3.10.8c =,则A.c a b <<B.b a c <<C.a b c <<D.b c a <<21.(2014浙江)在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是A. B. C. D. 22.(2014天津)函数212()log (4)f x x =-的单调递增区间是A.()0,+¥ B.(),0-¥ C.()2,+¥ D.(),2-?23.(2013新课标)设357log 6,log 10,log 14a b c ===,则 A.c b a >> B.b c a >> C.a c b >> D.a b c >>24.(2013陕西)设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是A.·log log log a c c b a b = B.·log lo log g a a a b a b = C.()log og g l lo a a a b c bc = D.()log g og o l l a a a b b c c +=+ 25.(2013浙江)已知y x ,为正实数,则 A.y x yx lg lg lg lg 222+=+ B.lg()lg lg 222x y x y += C.y x yx lg lg lg lg 222+=∙ D.lg()lg lg 222xy x y =26.(2013天津)已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增.若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是A.[1,2]B.10,2⎛⎤ ⎥⎝⎦C.1,22⎡⎤⎢⎥⎣⎦ D.(0,2]27.(2012安徽)23(log 9)(log 4)⋅=A.14B.12 C.2 D.428.(2012新课标)当102x <≤时,4log xa x <,则a 的取值范围是A.(0,) B.(29.(2012天津)已知122a =,0.212b -⎛⎫= ⎪⎝⎭,52log 2c =,则,,a b c 的大小关系为A.c <b <aB.c <a <bC.b <a <cD.b <c <a30.(2011北京)如果,0log log 2121<<y x 那么A.1y x <<B.1x y <<C.1x y <<D.1y x <<31.(2011安徽)若点(,)a b 在lg y x = 图像上,a ≠1,则下列点也在此图像上的是A.(a 1,b ) B.(10a ,1-b ) C.(a 10,b +1) D.(a 2,2b )32.(2011辽宁)设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩,则满足2)(≤x f 的x 的取值范围是 A.1[-,2] B.[0,2] C.[1,+∞) D.[0,+∞)33.(2010山东)函数22x y x =-的图像大致是34.(2010天津)设5554log 4log 3log a b c ===2,(),,则 A.a <c <b B.b <c <a C.a <b <c D.b <a <c 35.(2010浙江)已知函数1()log (1),f x x =+若()1,f α= α= A.0B.1C.2D.336.(2010辽宁)设25a bm ==,且112a b +=,则m =A.37.(2010陕西)下列四类函数中,个有性质“对任意的0x >,0y >,函数()f x 满足()()()f x y f x f y +=+”的是A.幂函数B.对数函数C.指数函数D.余弦函数38.(2010新课标)已知函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若a ,b ,c 均不相等, 且()f a =()f b =()f c ,则abc 的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)39.(2010天津)若函数212log ,0()log (),0x x f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,则实数a 的取值范围是 A.(1-,0)∪(0,1) B.(-∞,1-)∪(1,+∞) C.(1-,0)∪(1,+∞) D.(-∞,1-)∪(0,1) 二、填空题40.(2018全国卷Ⅰ)已知函数22()log ()=+f x x a ,若(3)1=f ,则a =________. 41.(2018全国卷Ⅲ)已知函数())1f x x =+,()4f a =,则()f a -=___. 42.(2018上海)已知11{2,1,,,1,2,3}22α∈---,若幂函数()α=f x x 为奇函数,且在0+∞(,)上递减,则α=_____43.(2018上海)已知常数0a >,函数2()(2)x x f x ax =+的图像经过点6()5P p ,、1()5Q q -,,若236p q pq +=,则a =__________.44.(2017江苏)已知函数31()2x x f x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是 . 45.(2015江苏)不等式224x x-<的解集为________.46.(2015浙江)计算:2log 2=,24log 3log 32+= .47.(2015北京)32-,123,2log 5三个数中最大数的是 .48.(2015安徽)151lg 2lg 2()22-+-= . 49.(2015天津)已知0a >,0b >,8ab =,则当a 的值为 时,()22log log 2a b ⋅ 取得最大值.50.(2015福建)若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞上单调递增,则实数m 的最小值等于_______.51.(2014新课标)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__.52.(2014天津)函数2()lg f x x =的单调递减区间是________.53.(2014重庆)函数2()log )f x x =的最小值为_________.54.(2013四川)____________.55.(2012北京)已知函数()lg f x x =,若()1f ab =,则22()()f a f b += . 56.(2012山东)若函数()(0,1)xf x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-[0,)+∞上是增函数,则a =____.57.(2011天津)已知22log log 1a b +≥,则39a b+的最小值为__________.58.(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________. 专题二 函数概念与基本初等函数Ⅰ 第四讲 指数函数、对数函数、幂函数 答案部分1.D 【解析】1331log log 55c ==,因为3log y x =为增函数,所以3337log 5log log 312>>=.因为函数1()4x y =为减函数,所以10311()()144<=,故c a b >>,故选D.2.B 【解析】当0<x 时,因为0--<x x e e ,所以此时2()0--=<x xe ef x x ,故排除A.D ;又1(1)2=->f e e ,故排除C,选B.3.B 【解析】解法一 设所求函数图象上任一点的坐标为(,)x y ,则其关于直线1x =的对称点的坐标为(2,)x y -,由对称性知点(2,)x y -在函数()ln f x x =的图象上,所以ln(2)y x =-,故选B.解法二 由题意知,对称轴上的点(1,0)即在函数ln y x =的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A,C,D,选B.4.C 【解析】由2(1)()(2)x f x x x -'=-,02x <<知,()f x 在(0,1)上单调递增,在(1,2)上单调递减,排除A 、B ;又(2)ln(2)ln ()f x x x f x -=-+=, 所以()f x 的图象关于1x =对称,C 正确.5.D 【解析】由2280x x -->,得2x <-或4x >,设228u x x =--,则(,2)x ∈-∞-,u 关于x 单调递减,(4,)x ∈+∞,u 关于x 单调递增,由对数函数的性质,可知ln y u =单调递增,所以根据同增异减,可知单调递增区间为(4,)+∞.选D. 6.C 【解析】函数()f x 为奇函数,所以221(log )(log 5)5a f f =-=,又222log 5log 4.1log 42>>=,0.8122<<,由题意,a b c >>,选C.7.B 【解析】由11()3()(3())()33x x x x f x f x ---=-=--=-,得()f x 为奇函数,()(33)3ln33ln30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选B.8.A 【解析】对于A,令()e 2x xg x -=⋅,11()e (22ln )e 2(1ln )022x x x x xg x ---'=+=+>,则()g x 在R上单调递增,故()f x 具有M 性质,故选A.9.D 【解析】设36180310M x N ==,两边取对数得,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-≈,所以93.2810x =,即MN 最接近9310,选D.10.B 【解析】函数()f x 的对称轴为2a x =-,①当02a -≤,此时(1)1M f a b ==++,(0)m f b ==,1M m a -=+; ②当12a-≥,此时(0)M f b ==,(1)1m f a b ==++,1M m a -=--;③当012a <-<,此时2()24a a m f b =-=-,(0)M f b ==或(1)1M f a b ==++,24a M m -=或214a M m a -=++.综上,M m -的值与a 有关,与b 无关.选B.11.B 【解析】因为01c <<,所以log c y x =在(0,)+∞上单调递减,又0b a <<,所以log log c c a b <,故选B.12.D 【解析】∵2||2x y x e =-是偶函数,设2||2x y x e =-,则222(2)228f e e =⨯-=-,所以0(2)1f <<,所以排除A,B ;当02x剟时,22x y x e =-,所以4xy x e '=-,又()4x y e ''=-,当0ln 4x <<时,()0y ''>,当ln 42x <<时,()0y ''<,所以4xy x e '=-在(0,ln4)单调递增,在(ln4,2)单调递减,所以4x y x e '=-在[0,2]有14(ln41)y '--剟,所以4x y x e '=-在[0,2]存在零点ε,所以函数22x y x e =-在[0,)ε单调递减,在(,2]ε单调递增,排除C,故选D.13.D 【解析】函数lg 10x y =的定义域为(0,)+∞,又lg 10xy x ==,所以函数的值域为(0,)+∞,故选D.14.A 【解析】因为422333243a b ==>=,1223332554c a ==>=,所以b a c <<,故选A.15.C 【解析】由0.6x y =在区间(0,)+∞是单调减函数可知, 1.50.600.60.61<<<,又0.61.51>,故选C.16.B 【解析】由于()f x 为偶函数,所以0m =,即||()21x f x =-,其图象过原点,且关于y 轴对称,在(,0)-∞上单调递减,在(0,)+∞上单调递增.又0.522(log 3)(log 3)(log 3)a f f f ==-=,2(log 5)b f =,(0)c f =. 且220log 3log 5<<,所以c a b <<.17.C 【解析】1ln 2p f ab ===,()ln 22a b a b q f ++==;11(()())ln 22r f a f b ab=+=.因为2a b +>由()ln f x x =是个递增函数,()2a bf f +>,所以q p r >=.18.C 【解析】设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x a y +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a =--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C.19.D 【解析】由图象可知01a <<,当0x =时,log ()log 0a a x c c +=>,得01c <<.20.B 【解析】∵32log 71a >=>, 1.122b =>, 3.10.81c =<,所以b a c <<.21.D 【解析】当1a >时,函数()(0)af x x x =>单调递增,函数()log a g x x =单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当01a <<时,函数()(0)af x x x =>单调递增,函数()log a g x x =单调递减,且过点(1,0),排除A,又由幂函数的图象性质可知C 错,因此选D.22.D 【解析】240x ->,解得2x <-或2x >.由复合函数的单调性知()f x 的单调递增区间为(),2-?.23.D 【解析】33log 61log 2,a ==+5577log 101log 2,log 141log 2b c ==+==+, 由下图可知D 正确.解法二3321log 61log 21log 3a ==+=+,5521log 101log 21log 5b ==+=+,7721log 141log 21log 7c ==+=+由222log 3log 5log 7<<,可得答案D 正确. 24.B 【解析】a ,b ,c ≠1.考察对数2个公式:a b b y x xy c c a a a a log log log ,log log log =+=对选项A :b ab a b bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式不符,所以为假.对选项B :a bb b a bc c a c c a log log log log log log =⇒=⋅,显然与第二个公式一致,所以为真.对选项C :c b bc a a a log log log ⋅=)(,显然与第一个公式不符,所以为假.对选项D :c b c b a a a log log )log +=+(,同样与第一个公式不符,所以为假.所以选B.25.D 【解析】取特殊值即可,如取lg lg lg lg 10,1,22,223,x y x yx y +===+= ()lg lg11lg lg 22,21x y x y +⋅==.26.C 【解析】因为函数()f x 是定义在R 上的偶函数,且122log log a a=-,所以222122(log )(log )(log )(log )2(log )2(1)f a f a f a f a f a f +=+-=≤,即2(log )(1)f a f ≤,因为函数在区间[0,)+∞单调递增,所以2(log )(1)f a f ≤,即2log 1a ≤,所以21log 1a -≤≤,解得122a ≤≤,即a 的取值范围是1,22⎡⎤⎢⎥⎣⎦,选C.27.D 【解析】23lg9lg 42lg32lg 2log 9log 44lg 2lg3lg 2lg3⨯=⨯=⨯=.28.B 【解析】由指数函数与对数函数的图像知12011log 42aa <<⎧⎪⎨>⎪⎩,解得12a <<,故选B. 29.A 【解析】因为122.02.022)21(<==-b ,所以a b <<1,14log 2log 2log 25255<===c ,所以a b c <<,选A.30.D 【解析】根据对数函数的性质得1x y >>.31.D 【解析】当2x a =时,2lg 2lg 2y a a b ===,所以点2(,2)a b 在函数lg y x =图象上.32.D 【解析】当1x ≤时122x-≤,解得0x ≥,所以01x ≤≤; 当1x >时,21log 2x -≤,解得12x ≥,所以1x >,综上可知0x ≥.33.A 【解析】因为当x =2或4时,2x -2x =0,所以排除B 、C ;当x =-2时,2x-2x =14<04-,故排除D,所以选A.34.D 【解析】因为50log 41<<,所以b <a <c . 35.B 【解析】α+1=2,故α=1,选B.36.A 【解析】211log 2log 5log 102,10,m m m m a b +=+==∴=又0,m m >∴37.C 【解析】)()()(y x f a a a y f x f yx y x +===+ 38.C 【解析】画出函数的图象,如图所示,不妨设a b c <<,因为()()()f a f b f c ==,所以1ab =,c 的取值范围是(10,12),所以abc 的取值范围是(10,12).39.C 【解析】由分段函数的表达式知,需要对a 的正负进行分类讨论.2112220<0()()log log log ()log ()a a f a f a a a a a >⎧⎧⎪⎪>-⇒⎨⎨>->-⎪⎪⎩⎩或001-10112a a a a a a a <>⎧⎧⎪⎪⇒⇒><<⎨⎨<>⎪⎪⎩⎩或或.40.7-【解析】由(3)1f =得,22log (3)1a +=,所以92a +=,即7a =-. 41.2-【解析】由())14f a a =+=,得)3a =,所以())11)1f a a a -=+=-+=-+312=-+=-.42.1-【解析】由题意()f x 为奇函数,所以α只能取1,1,3-,又()f x 在(0,)+∞上递减,所以1α=-.43.6a =【解析】由题意2625=+p p ap ,2125=-+q qaq ,上面两式相加, 得22122+=++p qp q ap aq ,所以22+=p q a pq ,所以236=a , 因为0>a ,所以6=a .44.1[1,]2-【解析】因为31()2e ()e x xf x x f x x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以数()f x 在R 上单调递增,又21)02()(f f a a +-≤,即2())2(1a a f f ≤-,所以221a a ≤-,即2120a a +-≤,解得112a -≤≤,故实数a 的取值范围为1[1,]2-.45.(1,2)-【解析】由题意得:2212x x x -<⇒-<<,解集为(1,2)-.46.12-12221log log 22-==-;2424log 3log 3log 3log 32223+=⨯==47.2log 5【解析】∵3128-=,123 1.732=≈,而22log 4log 5<,即2log 52>,所以三个数中最大数是2log 5.48.1-【解析】原式=12122lg 5lg 2lg 22lg 5lg -=-=-+=-+-.49.4 【解析】()()()()22222222log log 211log log 2log 2log 164,244a b a b ab ≤+⎛⎫⋅=== ⎪⎝⎭ 当2a b =时取等号,结合0a >,0b >,8ab =,可得4, 2.a b ==50.1【解析】由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =, 则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 51.(,8]-∞【解析】当1x <时,由12x e-≤得1ln 2x +≤,∴1x <;当1x ≥时,由132x ≤得8x ≤,∴18x ≤≤,综上8x ≤.52.(,0)-?【解析】22lg ,0()lg 2lg ||2lg(),0x x f x x x x x >⎧===⎨-<⎩, 易知单调递减区间是(,0)-?.53.14-【解析】()222221()log (22log )log log 2f x x x x x=⋅+=+22111(log )244x =+--≥.当且仅当21log 2x =-,即2x =时等号成立.54.1【解析】lg101==.55.2【解析】由()1f ab =,得10ab =,于是2222()()lg lg f a f b a b +=+2(lg lg )2lg()2lg102a b ab =+===56.14【解析】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =,不合题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意. 57.18【解析】222log log log a b ab +=,∵2ab ≥且0,0a b >>,则39a b+=23318a b +=≥.当且仅当2a b =,即2,1a b ==时等号成立,所以39a b +的最小值为18.58.1(,)2-+∞【解析】由题意知,函数)12(log )(5+=x x f 的定义域为1{|}2x x >-,所以该函数的单调增区间是1(,)2-+∞.。
2024年高考数学总复习第二章函数的概念与基本初等函数真题分类4函数及其表示
第11页
返回层目录 返回目录
C3.函数的解析式
真题分类4 函数及其表示
命题者说:掌握几类求函数解析式的常用技法.
第1题 第2题
高考·数学
第12页
返回目录
真题分类4 函数及其表示
Ⅰ.与解析式有关的恒等式判断
1.(2022·北京,4,4 分)已知函数f(x)= ,则对任意实数x,有( )
返回层目录 返回目录
真题分类4 函数及其表示
3.(2019·江苏,4,5 分)函数y=
的定义域是_[_-__1_,__7_]..
高考·数学
答案:[-1,7] 要使函数有意义,需 7+6x-x2≥0,即x2-6x-7≤0, 即(x+1)(x-7)≤0, 解得-1≤x≤7. 故所求函数的定义域为[-1,7].
应法则相同时,值域一定相同,所以只要定义域、对应法则相同,则两个函数为同一函
数.
第4页
返回层目录 返回目录
真题分类4 函数及其表示
高考·数学
Ⅲ.复合函数求值
2.(2014·江西,3,5 分)已知函数 f(x)=5|x|,g(x)=ax2-x(a∈R).若 f(g(1))=1,则 a
=( )
A.1
B.2
第1题 第2题 第3题 第4题 第5题 第6题
第16页
返回目录
真题分类4 函数及其表示
高考·数学
Ⅰ.已知分段函数的解析式,求函数值
1.(2015·课标全国Ⅱ,5,5 分)设函数 f(x)=21x+-1l,ogx2≥2-1,x,x<1, 则 f(-2)+f(log212)
=( )
A.3
B.6
C.9
D.12
专题二,函数概念与基本初等函数,第四讲指数函数对数函数幂函数—附解析答案
文科数学2010-2019高考真题分类训练专题二,函数概念与基本初等函数,第四讲指数函数对数函数幂函数—后附解析答案专题二函数概念与基本初等函数Ⅰ第四讲指数函数、对数函数、幂函数 20xx年 1.(20xx年一、选择题1.(20xx年全国I卷)若,,则A. B. C. D. 12.(20xx年全国I卷)函数在[–2,2]的图像大致为 A. B. C. D. 13.(20xx年全国II 卷)下列函数中,其定义域和值域分别与函数的定义域和值域相同的是 A.y=x B.y=lgx C.y=2x D. 14.(20xx 年 1. 解析由题意知,,将数据代入,可得,所以.故选A. 2.解析因为,,所以,所以为上的奇函数,因此排除A;又,因此排除B,C;故选D. 3.解析:由函数,,单调性相反,且函数图像恒过可各满足要求的图象为D.故选D. 20xx年 1.D【解析】,因为为增函数,所以.因为函数为减函数,所以,故,故选D. 2.B【解析】当时,因为,所以此时,故排除A.D;又,故排除C,选B. 3.B【解析】解法一设所求函数图象上任一点的坐标为,则其关于直线的对称点的坐标为,由对称性知点在函数的图象上,所以,故选B.解法二由题意知,对称轴上的点即在函数的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A,C,D,选B. 4.C【解析】由,知,在上单调递增,在上单调递减,排除A、B;又,所以的图象关于对称,C正确. 5.D【解析】由,得或,设,则,关于单调递减,,关于单调递增,由对数函数的性质,可知单调递增,所以根据同增异减,可知单调递增区间为.选D. 6.C【解析】函数为奇函数,所以,又,,由题意,,选C. 7.B【解析】由,得为奇函数,,所以在R上是增函数.选B. 8.A【解析】对于A,令,,则在R上单调递增,故具有性质,故选A. 9.D 【解析】设,两边取对数得,,所以,即最接近,选D. 10.B【解析】函数的对称轴为,①当,此时,,;②当,此时,,;③当,此时,或,或.综上,的值与有关,与无关.选B. 11.B【解析】因为,所以在上单调递减,又,所以,故选B. 12.D【解析】∵是偶函数,设,则,所以,所以排除A,B;当时,,所以,又,当时,,当时,,所以在单调递增,在单调递减,所以在有,所以在存在零点,所以函数在单调递减,在单调递增,排除C,故选D. 13.D【解析】函数的定义域为,又,所以函数的值域为,故选D. 14.A 【解析】因为,,所以,故选A. 15.C【解析】由在区间是单调减函数可知,,又,故选C. 16.B【解析】由于为偶函数,所以,即,其图象过原点,且关于轴对称,在上单调递减,在上单调递增.又,,.且,所以. 17.C 【解析】,;.因为,由是个递增函数,,所以. 18.C【解析】设是函数的图像上任意一点,它关于直线对称为(),由已知知()在函数的图像上,∴,解得,即,∴,解得,故选C. 19.D【解析】由图象可知,当时,,得. 20.B【解析】∵,,,所以. 21.D【解析】当时,函数单调递增,函数单调递增,且过点(1,0),由幂函数的图象性质可知C错;当时,函数单调递增,函数单调递减,且过点(1,0),排除A,又由幂函数的图象性质可知C错,因此选D. 22.D 【解析】,解得或.由复合函数的单调性知的单调递增区间为. 23.D【解析】,由下图可知D正确.解法二,,由,可得答案D正确. 24.B【解析】,,≠1. 考察对数2个公式:对选项A:,显然与第二个公式不符,所以为假.对选项B:,显然与第二个公式一致,所以为真.对选项C:,显然与第一个公式不符,所以为假.对选项D:,同样与第一个公式不符,所以为假.所以选B. 25.D【解析】取特殊值即可,如取. 26.C【解析】因为函数是定义在R上的偶函数,且,所以,即,因为函数在区间单调递增,所以,即,所以,解得,即a的取值范围是,选C. 27.D 【解析】. 28.B【解析】由指数函数与对数函数的图像知,解得,故选B. 29.A【解析】因为,所以,,所以,选A. 30.D【解析】根据对数函数的性质得. 31.D【解析】当时,,所以点在函数图象上. 32.D【解析】当时,解得,所以;当时,,解得,所以,综上可知. 33.A【解析】因为当x=2或4时,2x =0,所以排除B、C;当x=2时,2x =,故排除D,所以选A. 34.D【解析】因为,所以<<. 35.B【解析】+1=2,故=1,选B. 36.A 【解析】又 37.C【解析】 38.C【解析】画出函数的图象,如图所示,不妨设,因为,所以,的取值范围是,所以的取值范围是. 39.C【解析】由分段函数的表达式知,需要对的正负进行分类讨论.. 40.【解析】由得,,所以,即. 41.【解析】由,得,所以. 42.【解析】由题意为奇函数,所以只能取,又在上递减,所以. 43.【解析】由题意,,上面两式相加,得,所以,所以,因为,所以. 44.【解析】因为,所以函数是奇函数,因为,所以数在上单调递增,又,即,所以,即,解得,故实数的取值范围为. 45.【解析】由题意得:,解集为. 46.【解析】;. 47.【解析】∵,,而,即,所以三个数中最大数是. 48.【解析】原式=. 49.4 【解析】当时取等号,结合,,,可得 50.1【解析】由得函数关于对称,故,则,由复合函数单调性得在递增,故,所以实数的最小值等于. 51.【解析】当时,由得,∴;当时,由得,∴,综上. 52.【解析】,易知单调递减区间是. 53.【解析】.当且仅当,即时等号成立. 54.1【解析】. 55.2【解析】由,得,于是56.【解析】当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意. 57.18【解析】,∵且,则=.当且仅当,即时等号成立,所以的最小值为18. 58.【解析】由题意知,函数的定义域为,所以该函数的单调增区间是.。
高考数学 专题二 函数的概念与基本初等函数 4 指数与指数函数课件 理
12/10/2021
考向突破 考向一 指数式大小比较
例1 (2019安徽合肥4月冲刺,2)若0<b<a<1,则在ab,ba,aa,bb中最大的是 ( )
A.ba
B.aa
C.ab
D.bb
解析 ∵0<b<a<1,∴指数函数y=ax和y=bx均为减函数,
∴ab>aa,ba<bb,∵幂函数y=xb在(0,+∞)上为增函数,
∴ab>bb,即在ab,ba,aa,bb中最大的是ab,故选C.
答案 C
12/10/2021
考向二 指数函数的图象与性质及其应用
例2 已知函数f(x)=|2x-1|,a<b<c,且f(a)>f(c)>f(b),则下列结论中,一定成立的
12/10/2021
2.与指数函数有关的复合函数的单调性 形如y=af(x)的函数的单调性,它的单调区间与f(x)的单调区间有关: 若a>1,函数f(x)的单调增(减)区间即函数y=af(x)的单调增(减)区间;若0<a<1, 函数f(x)的单调增(减)区间即函数y=af(x)的单调减(增)区间.即“同增异减”. 注意 当底数a与1的大小不确定时应分类讨论. 3.对于含有ax,a2x的函数表达式,通常可以令t=ax进行换元,但换元过程中要 注意新元的取值范围.
∴f(a)=|2a-1|=1-2a, f(c)=|2c-1|=2c-1. 又f(a)>f(c),即1-2a>2c-1, ∴2a+2c<2,故选D. 答案 D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A .是奇函数,且在 R 上是增函数
B .是偶函数,且在 R 上是增函数
C.是奇函数,且在 R 上是减函数
D .是偶函数,且在 R 上是减函数
7.( 2017 北京)根据有关资料,围棋状态空间复杂度的上限
M 约为 3361 ,而可观测宇宙中
普通物质的原子总数
N 约为 1080 .则下列各数中与
M 最接近的是
2 f (a ) 的 a 的取值范围是
高考真题专项分类(理科数学)
第 2 页—共 6 页
一线名师凭借教学实践科学分类,高质量的解析,你能感受到名家不一样的解题思路
2 A . [ ,1]
3
B. [0,1]
2 C. [ , )
3
D. [1, )
15.( 2014 山东)已知函数 y loga ( x c) ( a,c 为常数,其中 a 0, a 1 )的图象如图,
1 log 2(2 x), x 1
2x 1, x ≥ 1
,则 f ( 2) f (log 212)
A.3
B.6
C.9
D . 12
11.(2015 北京)如图,函数 f x 的图像为折线 ACB ,则不等式 f x ≥ log2 x 1 的解集
是
y 2C
A -1 O
B
2
x
A. x| 1 x≤ 0
B. x | 1≤ x≤1
B. ab c ba c
C. a logb c b loga c
D. log a c logb c
4
2
1
9. (2016 全国 III) 已知 a 2 3 , b 4 5 , c 253 ,则
A . b a c B . a b c C. b c a
D. c a b
10.( 2015 新课标Ⅱ)设函数 f ( x)
5.( 2017 天津)已知奇函数 f ( x) 在 R 上是增函数, g (x) xf (x ) .若 a g( log 2 5.1),
b g(20.8 ) , c g (3) ,则 a,b, c 的大小关系为
A. a b c
B. c b a
C. b a c
D. b c a
6.( 2017 北京)已知函数 f ( x) 3x ( 1) x ,则 f (x) 3
y
y
y
1
1
1
x
x
O1
O1
O
-1
-1
-1
y 1
x
x
1
O1
-1
18.( 2014 天津)函数 f ( x) = log 1 ( x2 - 4) 的单调递增区间是
2
A . (0, + ¥ )
B. (- ? ,0)
C. (2, + ¥ )
D. (- ? , 2)
19.( 2013 新课标)设 a log3 6,b log5 10,c log 714 ,则
C. x | 1 x≤ 1
D. x| 1 x≤2
xm
12.( 2015 天津)已知定义在 R 上的函数 f (x) 2
1 ( m 为实数)为偶函数,记
a log 0.5 3, b f log 2 5 , c f 2m 则 a, b, c 的大小关系为
A. a b c
B. a c b
C. c a b
D. c b a
N
(参考数据: lg 3 ≈0. 48)
A . 1033
B . 1053
C. 1073
D. 1093
高考真题专项分类(理科数学)
第 1 页—共 6 页
一线名师凭借教学实践科学分类,高质量的解析,你能感受到名家不一样的解题思路
8. (2016 全国 I) 若 a b 1 , 0 c 1,则 A . ac bc
log2 e , b
ln 2 , c
1 log 1 ,则 a,b, c 的大小关系为
23
A. a b c
B. b a c
C. c b a D . c a b
4.( 2017 新课标Ⅰ)设 x, y, z为正数,且 2 x 3 y 5 z ,则
A . 2x 3 y 5z B. 5z 2x 3y C. 3y 5z 2x D . 3y 2x 5z
13.( 2015 四川)设 a, b 都是不等于 1 的正数,则“ 3a 3b 3 ”是“ log a 3 log b 3 ”的
A .充要条件 C.必要不充分条件
B.充分不必要条件 D .既不充分也不必要条件
14.( 2015 山东)设函数 f ( x)
3x 1,x 1 2x , x ≥ 1 ,则满足 f ( f (a))
A. c b a
B. b c a
C. a c b
D. a b c
20.( 2013 陕西)设 a, b, c 均为不等于 1 的正实数 , 则下列等式中恒成立的是
A . loga b·logc b log c a
B . log a b·log a a log a b
C. loga (bc) log a b loga c
零点,则 a 的取值范围是
A . [ 1,0)
B. [0, )
C. [ 1, )
D . [1, )
2. (2018 全国卷Ⅲ )设 a log0.2 0.3 , b log2 0.3 ,则
A . a b ab 0 C. a b 0 ab
B. ab a b 0 D. ab 0 a b
3. (2018 天津 ) 已知 a
D. loga (b c) log a b loga c
21.( 2013 浙江)已知 x, y 为正实数,则
高考真题专项分类(理科数学)
第 3 页—共 6 页
一线名师凭借教学实践科学分类,高质量的解析,你能感受到名家不一样的解题思路
专题二 函数概念与基本初等函数 Ⅰ
第四讲 指数函数、对数函数、幂函数
一、选择题
1. (2018 全国卷Ⅰ )已知函数 f ( x)
ex, x ≤ 0, g( x) f ( x) x a .若 g ( x) 存在 2 个
ln x, x 0,
则下列结论成立的是
A . a 0, c 1
B. a 1,0 c 1
C. 0 a 1, c 1
பைடு நூலகம்
D. 0 a 1,0 c 1
16.( 2014 安徽)设 a log 3 7 , b 21.1 , c 0.83.1,则
A. b a c
B . c a b C. c b a D. a c b
17.(2014 浙江) 在同意直角坐标系中, 函数 f ( x) xa (x 0), g (x) log a x 的图像可能是