(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)-精品.docx
2019-2020学年(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)-可编辑修改
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()。
A. 0.5B. 1C. 2D. 42.把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为()A. -7 B . -3 C.7 D. 3 4.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B . 40° C.60° D.80°5.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A. x2+4=0B. 4x2-4x+1=0C. x2+x+3=0D. x2+2x-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. 12π−1 B. 12π−2 C. π−2 D. π−17.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B . 30° C.40° D.50°8.一元二次方程x2﹣6x+5=0配方后可变形为()A. (x﹣3)2=14B. (x﹣3)2=4 C. (x+3)2=14 D. (x+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果ππππ=13,那么ππππ=()A. 12B. 13C. 14D. 3410.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A. 15%﹣5%=xB. 15%﹣5%=2xC. (1﹣5%)(1+15%)=2(1+x)D. (1﹣5%)(1+15%)=(1+x)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程x2=﹣3x的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.(2017•眉山)已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1, x2,则(x1﹣1)(x2﹣1)的值是________.15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= √2 AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠1=∠2,ππ=6,ππ=12,ππ=4,ππ=8 .试说明:∠πππ=∠πππ24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(√5﹣1)16.【答案】70°17.【答案】4x2﹣14x﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴ 弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴ ππππ=ππππ=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D 、C 、B 四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE 是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB, ∴ ππππ=ππππ,∴AB 2=AD •AC .26.【答案】解:设梯子的长为xm .在Rt△ABO 中,∵cos∠ABO= , ∴OB=AB •cos∠ABO=x •cos60°=x , 在Rt△CDO 中,∵cos∠CDO=, ∴OD=CD •cos∠CDO=x •cos45°=x . ∵BD=OD﹣OB ,∴ x ﹣x=1,解得x=2 +2.故梯子的长是(2+2)米. 27.【答案】解:(1)△ADE 与△ABC 相似.∵DE∥BC,∴△ABC∽△ADE; (2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE 和△ABC 的对应顶点的连线BD ,CE 相交于点A , ∴△ADE 和△ABC 是位似图形,位似中心是点A .28.【答案】解:(1)如图,在Rt△BCE 中,∵sinα=ππππ,∴BC=ππsin π=0.80.5=1.6,∵四边形ABCD 是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE 中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD 中,∵cos∠FCD=ππππ,∴CD=ππcos 32°=1.60.8=2,∴矩形图案的长和宽分别为2cm 和1.6cm ; 面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH 中,易求得∠DAH=32°. ∵cos∠DAH=ππππ,∴AH=ππcos 32°=1.60.8=2,在Rt△CGH 中,∠GCH=32°,∵tan∠GCH=ππππ,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
青岛版九年级上册数学期末测试卷及含答案(易错题)
青岛版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°2、如图,⊙O中,弦AB的长为6cm,圆心O到AB的距离为4cm,则⊙O的半径长为()A.3cmB.4cmC.5cmD.6cm3、如图,AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为()A.30°B.35°C.40°D.45°4、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A. k<1且k≠0B. k≠0C. k<1D. k>15、如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为A.57°B.66°C.67°D.44°6、已知圆锥的底面半径为1cm,母线长为3cm,则其全面积为()。
A.πB.3πC.4 πD.7 π7、已知关于x方程x2-kx-6=02的一个根是x=3,则实数k的值为()A.1B.-1C.2D.-28、如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADCB.∠ABDC.∠BACD.∠BAD9、下列语句中,正确的是()A.经过三点一定可以作圆B.等弧所对的圆周角相等C.相等的弦所对的圆心角相等D.三角形的外心到三角形各边距离相等10、给出一种运算:对于函数y=x n,规定y′=nx n﹣1.例如:若函数y=x4,则有y′=4x3.已知函数y=x3,则方程y′=12的解是()A.x1=4,x2=﹣4 B.x1=2,x2=﹣2 C.x1=x2=0 D.x1=2,x2=﹣211、下列方程中①;②;③;④,是一元二次方程的有()A. 个B. 个C. 个D. 个12、如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A. B. C. D.13、如图,在△ABC中,∠C=90°,AB=13,AC=12,下列三角函数表示正确的是()A. =B. =C. =D. =14、已知mn≠1,且5m2+2010m+9=0,9n2+2010n+5=0,则的值为()A.﹣402B.C.D.15、方程x(x﹣3)=5(x﹣3)的解的情况是()A.x=3B.x=5C.x1=3,x2=5 D.无解二、填空题(共10题,共计30分)16、李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m =时,n=________.17、如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点的对应点B′的横坐标是2,则点B的横坐标是________ .18、如图,从一块直径为的圆形铁皮上剪出一个圆心角为的扇形,则此扇形的面积为________ .19、如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB 为5,则该梯形的周长是________.20、已知a、b是方程x2﹣x﹣2=0的两个不相等实数根,则a•b的值是________ .21、如图,在△ABC中,AB=AC,BD、CE分别为两腰上的中线,且BD⊥CE,则tan∠ABC=________.22、已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是________ .23、半径为5cm的圆中有两条平行弦,长度分别为6cm和8cm,则这两条弦的距离为________ 。
【名师精编】(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A. B. C. D.2.把一个五边形改成和它相似的五边形,如果面积扩大到原的49倍,那么对应的对角线扩大到原的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程2-5+2=0的两个解分别为1、2,则1+2-1•2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于的一元二次方程中,有两个不相等的实数根的方程是()A. 2+4=0B. 42-4+1=0C. 2++3=0D. 2+2-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. B. C. D.7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程2﹣6+5=0配方后可变形为()A. (﹣3)2=14B. (﹣3)2=4C. (+3)2=14D. (+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为,则满足的方程是()A. 15%﹣5%=B. 15%﹣5%=2C. (1﹣5%)(1+15%)=2(1+)D. (1﹣5%)(1+15%)=(1+)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程2=﹣3的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.(2017•眉山)已知一元二次方程2﹣3﹣2=0的两个实数根为1,2,则(1﹣1)(2﹣1)的值是________.15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原铁皮的面积一半,若设盒子的高为dm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠∠,,,,.试说明:∠∠24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(﹣1)16.【答案】70°17.【答案】42﹣14﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∴AB2=AD•AC.26.【答案】解:设梯子的长为m.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=•cos60°= ,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=•cos45°= .∵BD=OD﹣OB,∴﹣=1,解得=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=,∴BC===1.6,∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD中,∵cos∠FCD=,==2,∴CD=°∴矩形图案的长和宽分别为2cm和1.6cm;面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH中,易求得∠DAH=32°.∵cos∠DAH=,==2,∴AH=°在Rt△CGH中,∠GCH=32°,∵tan∠GCH=,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
2019-2020学年(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)-优质资料
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()。
A. 0.5B. 1C. 2D. 42.把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A. x2+4=0B. 4x2-4x+1=0C. x2+x+3=0D. x2+2x-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. 12π−1 B. 12π−2 C. π−2 D. π−17.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程x 2﹣6x+5=0配方后可变形为( )A. (x ﹣3)2=14B. (x ﹣3)2=4C. (x+3)2=14D. (x+3)2=49.如图,点D 是△ABC 的边AC 的上一点,且∠ABD=∠C;如果ππππ=13,那么ππππ =( )A. 12B. 13C. 14D. 3410.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x ,则x 满足的方程是( )A. 15%﹣5%=xB. 15%﹣5%=2xC. (1﹣5%)(1+15%)=2(1+x )D. (1﹣5%)(1+15%)=(1+x )2 二、填空题(共10题;共30分)11.如图,AB 为⊙O 的直径,弦CD⊥AB 于点E ,已知CD=6,EB=1,则⊙O 的半径为________.12.一元二次方程x 2=﹣3x 的解是________.13.如图,⊙O 的半径为6,四边形ABCD 内接于⊙O,连接OB ,OD ,若∠BOD=∠BCD,则弧BD 的长为________.14.(2017•眉山)已知一元二次方程x 2﹣3x ﹣2=0的两个实数根为x 1, x 2,则(x 1﹣1)(x 2﹣1)的值是________.15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC 中,AB=AC ,BD 是∠ABC 的角平分线,交AC 于D ,若AC=4cm ,则BC=________cm .16.如图,已知△ABC 的内切圆⊙O 与BC 边相切于点D ,连结OB ,OD .若∠ABC=40°,则∠BOD 的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= √2AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠1=∠2,ππ=6,ππ=12,ππ=4,ππ=8.试说明:∠πππ=∠πππ24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE 是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(√5﹣1)16.【答案】70°17.【答案】4x2﹣14x﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴ 弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴ ππππ=ππππ=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D 、C 、B 四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE 是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB, ∴ ππππ=ππππ,∴AB 2=AD•AC.26.【答案】解:设梯子的长为xm .在Rt△ABO 中,∵cos∠ABO= , ∴OB=AB•cos∠ABO=x•cos60°=x , 在Rt△CDO 中,∵cos∠CDO=, ∴OD=CD•cos∠CDO=x•cos45°=x . ∵BD=OD﹣OB ,∴ x ﹣x=1,解得x=2 +2.故梯子的长是(2+2)米. 27.【答案】解:(1)△ADE 与△ABC 相似.∵DE∥BC,∴△ABC∽△ADE; (2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE 和△ABC 的对应顶点的连线BD ,CE 相交于点A , ∴△ADE 和△ABC 是位似图形,位似中心是点A .28.【答案】解:(1)如图,在Rt△BCE 中,∵sinα=ππππ,∴BC=ππsin π=0.80.5=1.6,∵四边形ABCD 是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE 中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD 中,∵cos∠FCD=ππππ,∴CD=ππcos 32°=1.60.8=2,∴矩形图案的长和宽分别为2cm 和1.6cm ; 面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH 中,易求得∠DAH=32°. ∵cos∠DAH=ππππ,∴AH=ππcos 32°=1.60.8=2,在Rt△CGH 中,∠GCH=32°,∵tan∠GCH=ππππ,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
【名师精选】(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A. B. C. D.2.把一个五边形改成和它相似的五边形,如果面积扩大到原的49倍,那么对应的对角线扩大到原的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程2-5+2=0的两个解分别为1、2,则1+2-1•2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于的一元二次方程中,有两个不相等的实数根的方程是()A. 2+4=0B. 42-4+1=0C. 2++3=0D. 2+2-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. B. C. D.7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程2﹣6+5=0配方后可变形为()A. (﹣3)2=14B. (﹣3)2=4C. (+3)2=14D. (+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为,则满足的方程是()A. 15%﹣5%=B. 15%﹣5%=2C. (1﹣5%)(1+15%)=2(1+)D. (1﹣5%)(1+15%)=(1+)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程2=﹣3的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.(2017•眉山)已知一元二次方程2﹣3﹣2=0的两个实数根为1,2,则(1﹣1)(2﹣1)的值是________.15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原铁皮的面积一半,若设盒子的高为dm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠∠,,,,.试说明:∠∠24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(﹣1)16.【答案】70°17.【答案】42﹣14﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∴AB2=AD•AC.26.【答案】解:设梯子的长为m.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=•cos60°= ,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=•cos45°= .∵BD=OD﹣OB,∴﹣=1,解得=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=,∴BC===1.6,∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD中,∵cos∠FCD=,==2,∴CD=°∴矩形图案的长和宽分别为2cm和1.6cm;面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH中,易求得∠DAH=32°.∵cos∠DAH=,==2,∴AH=°在Rt△CGH中,∠GCH=32°,∵tan∠GCH=,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
2019年(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A. B. C. D.2.把一个五边形改成和它相似的五边形,如果面积扩大到原的49倍,那么对应的对角线扩大到原的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程2-5+2=0的两个解分别为1、2,则1+2-1•2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于的一元二次方程中,有两个不相等的实数根的方程是()A. 2+4=0B. 42-4+1=0C. 2++3=0D. 2+2-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. B. C. D.7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程2﹣6+5=0配方后可变形为()A. (﹣3)2=14B. (﹣3)2=4C. (+3)2=14D. (+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为,则满足的方程是()A. 15%﹣5%=B. 15%﹣5%=2C. (1﹣5%)(1+15%)=2(1+)D. (1﹣5%)(1+15%)=(1+)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程2=﹣3的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.(2017•眉山)已知一元二次方程2﹣3﹣2=0的两个实数根为1,2,则(1﹣1)(2﹣1)的值是________.15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原铁皮的面积一半,若设盒子的高为dm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠∠,,,,.试说明:∠∠24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(﹣1)16.【答案】70°17.【答案】42﹣14﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∴AB2=AD•AC.26.【答案】解:设梯子的长为m.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=•cos60°= ,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=•cos45°= .∵BD=OD﹣OB,∴﹣=1,解得=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=,∴BC===1.6,∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD中,∵cos∠FCD=,==2,∴CD=°∴矩形图案的长和宽分别为2cm和1.6cm;面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH中,易求得∠DAH=32°.∵cos∠DAH=,==2,∴AH=°在Rt△CGH中,∠GCH=32°,∵tan∠GCH=,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
2019年(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A. B. C. D.2.把一个五边形改成和它相似的五边形,如果面积扩大到原的49倍,那么对应的对角线扩大到原的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程2-5+2=0的两个解分别为1、2,则1+2-1•2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于的一元二次方程中,有两个不相等的实数根的方程是()A. 2+4=0B. 42-4+1=0C. 2++3=0D. 2+2-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. B. C. D.7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程2﹣6+5=0配方后可变形为()A. (﹣3)2=14B. (﹣3)2=4C. (+3)2=14D. (+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为,则满足的方程是()A. 15%﹣5%=B. 15%﹣5%=2C. (1﹣5%)(1+15%)=2(1+)D. (1﹣5%)(1+15%)=(1+)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程2=﹣3的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.(2017•眉山)已知一元二次方程2﹣3﹣2=0的两个实数根为1,2,则(1﹣1)(2﹣1)的值是________.15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原铁皮的面积一半,若设盒子的高为dm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠∠,,,,.试说明:∠∠24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(﹣1)16.【答案】70°17.【答案】42﹣14﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∴AB2=AD•AC.26.【答案】解:设梯子的长为m.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=•cos60°= ,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=•cos45°= .∵BD=OD﹣OB,∴﹣=1,解得=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=,∴BC===1.6,∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD中,∵cos∠FCD=,==2,∴CD=°∴矩形图案的长和宽分别为2cm和1.6cm;面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH中,易求得∠DAH=32°.∵cos∠DAH=,==2,∴AH=°在Rt△CGH中,∠GCH=32°,∵tan∠GCH=,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
【名师推荐】(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A. B. C. D.2.把一个五边形改成和它相似的五边形,如果面积扩大到原的49倍,那么对应的对角线扩大到原的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程2-5+2=0的两个解分别为1、2,则1+2-1•2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于的一元二次方程中,有两个不相等的实数根的方程是()A. 2+4=0B. 42-4+1=0C. 2++3=0D. 2+2-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. B. C. D.7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程2﹣6+5=0配方后可变形为()A. (﹣3)2=14B. (﹣3)2=4C. (+3)2=14D. (+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为,则满足的方程是()A. 15%﹣5%=B. 15%﹣5%=2C. (1﹣5%)(1+15%)=2(1+)D. (1﹣5%)(1+15%)=(1+)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程2=﹣3的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.(2017•眉山)已知一元二次方程2﹣3﹣2=0的两个实数根为1,2,则(1﹣1)(2﹣1)的值是________.15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原铁皮的面积一半,若设盒子的高为dm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠∠,,,,.试说明:∠∠24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(﹣1)16.【答案】70°17.【答案】42﹣14﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∴AB2=AD•AC.26.【答案】解:设梯子的长为m.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=•cos60°= ,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=•cos45°= .∵BD=OD﹣OB,∴﹣=1,解得=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=,∴BC===1.6,∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD中,∵cos∠FCD=,==2,∴CD=°∴矩形图案的长和宽分别为2cm和1.6cm;面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH中,易求得∠DAH=32°.∵cos∠DAH=,==2,∴AH=°在Rt△CGH中,∠GCH=32°,∵tan∠GCH=,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
青岛版九年级数学上册期末复习综合测试卷(学生用)-最新精品
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()。
A. 0.5B. 1C. 2D. 42.把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的()A. 49倍B. 7倍 C. 50倍 D. 8倍3.已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40° C. 60°D. 80°5.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A. x2+4=0B. 4x2-4x+1=0C. x2+x+3=0D. x2+2x-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. 12π−1 B. 12π−2 C. π−2 D. π−17.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程x2﹣6x+5=0配方后可变形为()A. (x﹣3)2=14B. (x﹣3)2=4 C. (x+3)2=14 D. (x+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果ππππ=13,那么ππππ=()A. 12B. 13C. 14D. 3410.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A. 15%﹣5%=xB. 15%﹣5%=2xC. (1﹣5%)(1+15%)=2(1+x)D. (1﹣5%)(1+15%)=(1+x)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程x2=﹣3x的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.(x2﹣1)的值是________.14.(2017•眉山)已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1, x2,则(x1﹣1)15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= √2 AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠1=∠2,ππ=6,ππ=12,ππ=4,ππ=8 .试说明:∠πππ=∠πππ24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(√5﹣1)16.【答案】70°17.【答案】4x 2﹣14x ﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A 1B 1C 1,即为所求,点B 1的坐标为:(5,5)(2)解:如图所示:△A 2B 2C 222.【答案】证明:∵QN=MP ,∴ 弧QN=弧MP ,∴弧MN=弧PQ ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8, ∴ ππππ=ππππ =2, ∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D 、C 、B 四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE 是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB, ∴ ππππ=ππππ,∴AB 2=AD•AC.26.【答案】解:设梯子的长为xm .在Rt△ABO 中,∵cos∠ABO= , ∴OB=AB•cos∠ABO=x•cos60°=x , 在Rt△CDO 中,∵cos∠CDO=, ∴OD=CD•cos∠CDO=x•cos45°=x . ∵BD=OD﹣OB ,∴ x ﹣x=1,解得x=2 +2.故梯子的长是(2+2)米. 27.【答案】解:(1)△ADE 与△ABC 相似.∵DE∥BC,∴△ABC∽△ADE; (2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE 和△ABC 的对应顶点的连线BD ,CE 相交于点A , ∴△ADE 和△ABC 是位似图形,位似中心是点A .28.【答案】解:(1)如图,在Rt△BCE 中,∵sinα=ππππ,∴BC=ππsin π=0.80.5=1.6,∵四边形ABCD 是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE 中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD 中,∵cos∠FCD=ππππ,∴CD=ππcos 32°=1.60.8=2, ∴矩形图案的长和宽分别为2cm 和1.6cm ;面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH 中,易求得∠DAH=32°. ∵cos∠DAH=ππππ, ∴AH=ππcos 32°=1.60.8=2,在Rt△CGH 中,∠GCH=32°,∵tan∠GCH=ππππ,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
【最新】2019秋(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用).docx
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A. B. C. D.2.把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A. x2+4=0B. 4x2-4x+1=0C. x2+x+3=0D. x2+2x-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. B. C. D.7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程x2﹣6x+5=0配方后可变形为()A. (x﹣3)2=14B. (x﹣3)2=4C. (x+3)2=14D. (x+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A. 15%﹣5%=xB. 15%﹣5%=2xC. (1﹣5%)(1+15%)=2(1+x)D. (1﹣5%)(1+15%)=(1+x)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程x2=﹣3x的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.(2017•眉山)已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则(x1﹣1)(x2﹣1)的值是________.15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠∠,,,,.试说明:∠∠24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(﹣1)16.【答案】70°17.【答案】4x2﹣14x﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∴AB2=AD•AC.26.【答案】解:设梯子的长为xm.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=x•cos60°= x,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=x•cos45°= x.∵BD=OD﹣OB,∴x﹣x=1,解得x=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=,∴BC===1.6,∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD中,∵cos∠FCD=,==2,∴CD=°∴矩形图案的长和宽分别为2cm和1.6cm;面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH中,易求得∠DAH=32°.∵cos∠DAH=,==2,∴AH=°在Rt△CGH中,∠GCH=32°,∵tan∠GCH=,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)【精品】
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()。
A. 0.5B. 1C. 2D. 42.把一个五边形改成和它相似的五边形,如果面积扩大到原的49倍,那么对应的对角线扩大到原的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程2-5+2=0的两个解分别为1、2,则1+2-1•2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于的一元二次方程中,有两个不相等的实数根的方程是()A. 2+4=0B. 42-4+1=0C. 2++3=0D. 2+2-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. 12π−1 B. 12π−2 C. π−2 D. π−17.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程2﹣6+5=0配方后可变形为()A. (﹣3)2=14B. (﹣3)2=4C. (+3)2=14D. (+3)2=49.如图,点D 是△ABC 的边AC 的上一点,且∠ABD=∠C ;如果AD CD =13,那么BDBC =( )A. 12B. 13C. 14D. 3410.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为,则满足的方程是( )A. 15%﹣5%=B. 15%﹣5%=2C. (1﹣5%)(1+15%)=2(1+)D. (1﹣5%)(1+15%)=(1+)2 二、填空题(共10题;共30分)11.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD=6,EB=1,则⊙O 的半径为________.12.一元二次方程2=﹣3的解是________.13.如图,⊙O 的半径为6,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD=∠BCD ,则弧BD 的长为________.14.(2017•眉山)已知一元二次方程2﹣3﹣2=0的两个实数根为1, 2,则(1﹣1)(2﹣1)的值是________. 15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC 中,AB=AC ,BD 是∠ABC 的角平分线,交AC 于D ,若AC=4cm ,则BC=________cm .16.如图,已知△ABC 的内切圆⊙O 与BC 边相切于点D ,连结OB ,OD .若∠ABC=40°,则∠BOD 的度数是________.17.一块长方形铁皮长为4dm ,宽为3dm ,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原铁皮的面积一半,若设盒子的高为dm ,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= √2AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠1=∠2,AC=6,AB=12,AE=4,AF=8.试说明:∠ACE=∠ABF24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:si n32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(√5﹣1)16.【答案】70°17.【答案】42﹣14﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴ACAB =AEAF=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴ABAC =ADAB,∴AB2=AD•AC.26.【答案】解:设梯子的长为m.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=•cos60°= ,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=•co s45°= .∵BD=OD﹣OB,∴﹣=1,解得=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=CEBC,∴BC=CE sinα=0.80.5=1.6,∵四边形ABCD 是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt △BCE 中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt △FCD 中,∵cos ∠FCD=FC CD ,∴CD=FC cos32°=1.60.8=2,∴矩形图案的长和宽分别为2cm 和1.6cm ; 面积=2×1.6=3.2(平方厘米)(2)如图,在Rt △ADH 中,易求得∠DAH=32°. ∵cos ∠DAH=AD AH ,∴AH=AD cos32°=1.60.8=2,在Rt △CGH 中,∠GCH=32°,∵tan ∠GCH=GH CG ,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
易错题解析青岛版九年级数学上册期末复习计划综合测试卷
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单项选择题〔共10题;共30分〕1.一根水平放置的圆柱形输水管道横截面如下图,其中有水局部水面宽米,最深处水深米,那么此输水管道的直径是〔〕。
A. B. C. D.【答案】B【考点】垂径定理【解析】【分析】根据题意,此题考查弦心距;【解答】设输水管道的半径为;最深处水深米,那么弦心距等于;一根水平放置的圆柱形输水管道横截面如下图,其中有水局部水面宽米,那么;由勾股定理得,解得,所以输水管道的直径等于。
【点评】此题考查弦心距,掌握弦心距的性质是解答此题的关键,要求考生能从实际问题中抽象出数学图形来。
2.把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的〔〕A.49倍B.7倍C.50倍D.8倍【答案】B【考点】相似图形【解析】【解答】五边形改成与它相似的五边形,如果面积扩大为原来的49倍,即得到的五边形与原来的五边形的面积的比是49:1,因而相似比是7:1,相似形对应边的比等于相似比,因而对应的边扩大为原来的7倍.故答案为:B.【分析】相似图形的面积比等于相似比的平方,相似比为对应边所成比例.3.方程x2-5x+2=0的两个解分别为x1、x2,那么x1+x2-x1?x2的值为〔〕A.-7B.-3C.7D.3【答案】D【考点】根与系数的关系【解析】【分析】根据根与系数的关系,先求出x1+x2与x1x2的值,然后再把它们的值整体代入所求代数式求值即可.【解答】根据题意可得x1+x2=-=5,x1x2==2,∴x1+x2-x1?x2=5-2=3.应选D4.如图,⊙O是△ABC的外接圆,假设∠ABC=40°,那么∠AOC等于〔〕A.20°B.40C.60 °D.80 °°【答案】D【考点】圆周角定理【解析】【分析】由⊙O是△ABC的外接圆,假设∠ABC=40°,根据圆周角定理,即可求得答案。
青岛版九年级数学上册期末综合检测试卷(学生用)-最新精品
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O 的半径为5.若OP=6,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内B.点P 在⊙O 上C.点P 在⊙O 外D.无法判断2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是( )A. 1:2 ;B. 1:4 ;C. 1:5 ;D. 1:16 ; 3.用配方法解方程:x 2-4x+2=0,下列配方正确的是( ) A. (x-2)2=2 B. (x+2)2=2 C. (x-2)2=-2 D. (x-2)2=64.如图,下列条件不能判定△ADB∽△ABC 的是( )A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB 2=AD•ACD. =5.在△ABC 中,∠A=120°,∠B=45°,∠C=15°,则cosB 等于( ) A.2B.12C. D. 226.如图,△ABC 内接于⊙O,∠A=50°,∠ABC=60°,BD 是⊙O 直径BD 交AC 于E ,连结DC ,则∠BEC 等于( )A. 50°B. 60°C. 70°D. 110°7.如图,正方形ABCD 内接于⊙O,AB=2 2,则 的长是( )A.πB. 2πC.2πD.12π8.如图,在半径为R的⊙O中,和度数分别为 6°和108°,弦CD与弦AB长度的差为(用含有R的代数式表示).()A. RB. 1R C. 2R D. 3R29.如图,矩形ABCD中,AB=4,AD=7,其中点E为CD的中点.有一动点P,从点A按A→B→C→E的顺序在矩形ABCD的边上移动,移动到点E停止,在此过程中以点A,P,E三点为顶点的直角三角形的个数为()A. 2B. 3C. 4D. 510.某树主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支总数是43.若设主干长出x个支干,则可列方程()A.(x+1)2=43B.x2+2x+1=43C.x2+x+1=43D.x(x+1)=43二、填空题(共10题;共30分)11.4cos 0°+ 12012 +|﹣2|=________.12.如图,从甲楼底部A处测得乙楼顶部C处的仰角是 0°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是________m(结果保留根号)13.已知关于x的一元二次方程2x2﹣3kx+4=0的一个根是1,则k=________.14.如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),则该圆的直径为________。
【推荐】(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A. B. C. D.2.把一个五边形改成和它相似的五边形,如果面积扩大到原的49倍,那么对应的对角线扩大到原的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程2-5+2=0的两个解分别为1、2,则1+2-1•2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于的一元二次方程中,有两个不相等的实数根的方程是()A. 2+4=0B. 42-4+1=0C. 2++3=0D. 2+2-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. B. C. D.7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程2﹣6+5=0配方后可变形为()A. (﹣3)2=14B. (﹣3)2=4C. (+3)2=14D. (+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为,则满足的方程是()A. 15%﹣5%=B. 15%﹣5%=2C. (1﹣5%)(1+15%)=2(1+)D. (1﹣5%)(1+15%)=(1+)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程2=﹣3的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.(2017•眉山)已知一元二次方程2﹣3﹣2=0的两个实数根为1,2,则(1﹣1)(2﹣1)的值是________.15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原铁皮的面积一半,若设盒子的高为dm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠∠,,,,.试说明:∠∠24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(﹣1)16.【答案】70°17.【答案】42﹣14﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∴AB2=AD•AC.26.【答案】解:设梯子的长为m.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=•cos60°= ,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=•cos45°= .∵BD=OD﹣OB,∴﹣=1,解得=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=,∴BC===1.6,∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD中,∵cos∠FCD=,==2,∴CD=°∴矩形图案的长和宽分别为2cm和1.6cm;面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH中,易求得∠DAH=32°.∵cos∠DAH=,==2,∴AH=°在Rt△CGH中,∠GCH=32°,∵tan∠GCH=,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
最新(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是()。
A. 0.5B. 1C. 2D. 42.把一个五边形改成和它相似的五边形,如果面积扩大到原的49倍,那么对应的对角线扩大到原的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程2-5+2=0的两个解分别为1、2,则1+2-1•2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于的一元二次方程中,有两个不相等的实数根的方程是()A. 2+4=0B. 42-4+1=0C. 2++3=0D. 2+2-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. 12π−1 B. 12π−2 C. π−2 D. π−17.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程2﹣6+5=0配方后可变形为()A. (﹣3)2=14B. (﹣3)2=4C. (+3)2=14D. (+3)2=49.如图,点D 是△ABC 的边AC 的上一点,且∠ABD=∠C ;如果AD CD =13,那么BDBC =( )A. 12B. 13C. 14D. 3410.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为,则满足的方程是( )A. 15%﹣5%=B. 15%﹣5%=2C. (1﹣5%)(1+15%)=2(1+)D. (1﹣5%)(1+15%)=(1+)2 二、填空题(共10题;共30分)11.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD=6,EB=1,则⊙O 的半径为________.12.一元二次方程2=﹣3的解是________.13.如图,⊙O 的半径为6,四边形ABCD 内接于⊙O ,连接OB ,OD ,若∠BOD=∠BCD ,则弧BD 的长为________.14.(2017•眉山)已知一元二次方程2﹣3﹣2=0的两个实数根为1, 2,则(1﹣1)(2﹣1)的值是________. 15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC 中,AB=AC ,BD 是∠ABC 的角平分线,交AC 于D ,若AC=4cm ,则BC=________cm .16.如图,已知△ABC 的内切圆⊙O 与BC 边相切于点D ,连结OB ,OD .若∠ABC=40°,则∠BOD 的度数是________.17.一块长方形铁皮长为4dm ,宽为3dm ,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原铁皮的面积一半,若设盒子的高为dm ,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= √2AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠1=∠2,AC=6,AB=12,AE=4,AF=8.试说明:∠ACE=∠ABF24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(√5﹣1)16.【答案】70°17.【答案】42﹣14﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴ACAB =AEAF=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴ABAC =ADAB,∴AB2=AD•AC.26.【答案】解:设梯子的长为m.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=•cos60°= ,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=•cos45°= .∵BD=OD﹣OB,∴﹣=1,解得=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=CEBC,∴BC=CE sinα=0.80.5=1.6,∵四边形ABCD 是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt △BCE 中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt △FCD 中,∵cos ∠FCD=FC CD ,∴CD=FC cos32°=1.60.8=2,∴矩形图案的长和宽分别为2cm 和1.6cm ; 面积=2×1.6=3.2(平方厘米)(2)如图,在Rt △ADH 中,易求得∠DAH=32°. ∵cos ∠DAH=AD AH ,∴AH=AD cos32°=1.60.8=2,在Rt △CGH 中,∠GCH=32°,∵tan ∠GCH=GH CG ,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
【名师精品】(易错题)青岛版九年级数学上册期末复习综合测试卷(学生用)
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A. B. C. D.2.把一个五边形改成和它相似的五边形,如果面积扩大到原的49倍,那么对应的对角线扩大到原的()A. 49倍B. 7倍C. 50倍D. 8倍3.已知方程2-5+2=0的两个解分别为1、2,则1+2-1•2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°5.下列关于的一元二次方程中,有两个不相等的实数根的方程是()A. 2+4=0B. 42-4+1=0C. 2++3=0D. 2+2-1=06.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. B. C. D.7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()A. 25°B. 30°C. 40°D. 50°8.一元二次方程2﹣6+5=0配方后可变形为()A. (﹣3)2=14B. (﹣3)2=4C. (+3)2=14D. (+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()A. B. C. D.10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为,则满足的方程是()A. 15%﹣5%=B. 15%﹣5%=2C. (1﹣5%)(1+15%)=2(1+)D. (1﹣5%)(1+15%)=(1+)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程2=﹣3的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.(2017•眉山)已知一元二次方程2﹣3﹣2=0的两个实数根为1,2,则(1﹣1)(2﹣1)的值是________.15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原铁皮的面积一半,若设盒子的高为dm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠∠,,,,.试说明:∠∠24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】4π14.【答案】-415.【答案】2(﹣1)16.【答案】70°17.【答案】42﹣14﹣6=018.【答案】65°19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴=2,∵∠1=∠2,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴,∴AB2=AD•AC.26.【答案】解:设梯子的长为m.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=•cos60°= ,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=•cos45°= .∵BD=OD﹣OB,∴﹣=1,解得=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=,∴BC===1.6,∵四边形ABCD是矩形,∴∠BCD=90°,∴∠BCE+∠FCD=90°,又∵在Rt△BCE中,∴∠EBC+∠BCE=90°,∴∠FCD=32°.在Rt△FCD中,∵cos∠FCD=,==2,∴CD=°∴矩形图案的长和宽分别为2cm和1.6cm;面积=2×1.6=3.2(平方厘米)(2)如图,在Rt△ADH中,易求得∠DAH=32°.∵cos∠DAH=,==2,∴AH=°在Rt△CGH中,∠GCH=32°,∵tan∠GCH=,∴GH=CGtan32°=0.8×0.6=0.48,又∵6×2+0.48>12,5×2+0.48<12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
青岛版九年级数学上册期末复习综合测试卷(学生用)-精华版
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A.B.C.D.2.把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的()A. 49倍B. 7倍 C. 50倍 D. 8倍3.已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC= °,则∠AOC等于()A. °B. 40°C. 6 °D. °5.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A. x2+4=0B. 4x2-4x+1=0C. x2+x+3=0D. x2+2x-1=06.如图,在半径为2,圆心角为9 °的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. B.C.D.7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB= °,则∠ACD的度数为()A. °B. 30°C. °D. °8.一元二次方程x2﹣6x+5=0配方后可变形为()A. (x﹣3)2=14B. (x﹣3)2=4 C. (x+3)2=14 D. (x+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么 =()A.B.C.D.10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A. 15%﹣5%=xB. 15%﹣5%=2xC. (1﹣5%)(1+15%)=2(1+x)D. (1﹣5%)(1+15%)=(1+x)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程x2=﹣3x的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.14.(2017•眉山)已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1, x2,则(x1﹣1)(x2﹣1)的值是________.15.顶角为 6°的等腰三角形被称为黄金三角形,在∠A= 6°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC= °,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC= °,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE= °,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH= CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转9 °后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠ =∠,6,,, .试说明:∠ ∠24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=6 °;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO= °,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α= °.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin °≈ . ,cos °≈ . ,tan °≈ .6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】 π14.【答案】-415.【答案】2(﹣1)16.【答案】7 °17.【答案】4x2﹣14x﹣6=018.【答案】6 °19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴ 弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴ =2,∵∠ =∠ ,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴ ,∴AB2=AD•AC.26.【答案】解:设梯子的长为xm.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=x•cos6 °= x,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=x•cos °= x.∵BD=OD﹣OB,∴ x﹣x=1,解得x=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=,∴BC===1.6,sin∵四边形ABCD是矩形,∴∠BCD=9 °,∴∠BCE+∠FCD=9 °,又∵在Rt△BCE中,∴∠EBC+∠BCE=9 °,∴∠FCD= °.在Rt△FCD中,∵cos∠FCD=,∴CD==6=2,cos °∴矩形图案的长和宽分别为2cm和1.6cm;面积= × .6= . (平方厘米)(2)如图,在Rt△ADH中,易求得∠DAH= °.∵cos∠DAH=,=6=2,∴AH=cos °在Rt△CGH中,∠GCH= °,∵tan∠GCH=,∴GH=CGtan °= . × .6= . ,又∵6× + . >12, × + . <12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
青岛版九年级数学上册期末综合检测试题(学生用)
【期末解析】青岛版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.已知⊙O 的半径为5.若OP=6,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内B.点P 在⊙O 上C.点P 在⊙O 外D.无法判断2.若两个相似三角形的面积之比为1:4,则它们的最大边的比是( )A. 12 ;B. 14 ;C. 15 ;D. 116 ; 3.用配方法解方程:2-4+2=0,下列配方正确的是( )A. (-2)2=2B. (+2)2=2C. (-2)2=-2D. (-2)2=6 4.如图,下列条件不能判定△ADB ∽△ABC 的是( )A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB 2=AD•ACD. AD AB = ABBC 5.在△ABC 中,∠A=120°,∠B=45°,∠C=15°,则cosB 等于( )A. √32B. 12 C. √3 D. √226.如图,△ABC 内接于⊙O ,∠A=50°,∠ABC=60°,BD 是⊙O 直径BD 交AC 于E ,连结DC ,则∠BEC 等于( )A. 50°B. 60°C. 70°D. 110° 7.如图,正方形ABCD 内接于⊙O ,AB=2 √2,则AB̂的长是( )A.πB.32πC.2πD.12π8.如图,在半径为R 的⊙O 中,AB ∧和CD ∧度数分别为36°和108°,弦CD 与弦AB 长度的差为(用含有R 的代数式表示).( )A. RB. 1R C. 2R D. 3R29.如图,矩形ABCD中,AB=4,AD=7,其中点E为CD的中点.有一动点P,从点A按A→B→C→E的顺序在矩形ABCD的边上移动,移动到点E停止,在此过程中以点A,P,E三点为顶点的直角三角形的个数为()A. 2B. 3C. 4D. 510.某树主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支总数是43.若设主干长出个支干,则可列方程()A.(+1)2=43B.2+2+1=43C.2++1=43D.(+1)=43二、填空题(共10题;共30分)11.4cos30°+ (1−√2)0−√12+|﹣2|=________.12.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是________m(结果保留根号)13.已知关于的一元二次方程22﹣3+4=0的一个根是1,则=________.14.如图,一圆与平面直角坐标系中的轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),则该圆的直径为________。
青岛版九年级数学上册期末复习综合测试卷(学生用)-最新推荐
【易错题解析】青岛版九年级数学上册期末复习综合测试卷一、单选题(共10题;共30分)1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A.B.C.D.2.把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的()A. 49倍B. 7倍 C. 50倍 D. 8倍3.已知方程x2-5x+2=0的两个解分别为x1、x2,则x1+x2-x1•x2的值为()A. -7B. -3C. 7D. 34.如图,⊙O是△ABC的外接圆,若∠ABC= °,则∠AOC等于()A. °B. 40°C. 6 °D. °5.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A. x2+4=0B. 4x2-4x+1=0C. x2+x+3=0D. x2+2x-1=06.如图,在半径为2,圆心角为9 °的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()A. B.C.D.7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB= °,则∠ACD的度数为()A. °B. 30°C. °D. °8.一元二次方程x2﹣6x+5=0配方后可变形为()A. (x﹣3)2=14B. (x﹣3)2=4 C. (x+3)2=14 D. (x+3)2=49.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么 =()A.B.C.D.10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A. 15%﹣5%=xB. 15%﹣5%=2xC. (1﹣5%)(1+15%)=2(1+x)D. (1﹣5%)(1+15%)=(1+x)2二、填空题(共10题;共30分)11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.12.一元二次方程x2=﹣3x的解是________.13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.(x2﹣1)的值是________.14.( 7•眉山)已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1, x2,则(x1﹣1)15.顶角为 6°的等腰三角形被称为黄金三角形,在∠A= 6°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC= °,则∠BOD的度数是________.17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm,根据题意列出方程,并化成一般形式为________.18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC= °,则∠DAB的度数是________.19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.20.如图,在△ABC中,AD和BE是高,∠ABE= °,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH= CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转9 °后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.23.如图,∠ =∠,6,,, .试说明:∠ ∠24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=6 °;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO= °,求梯子的长(结果保留根号)27.如图所示,在△ABC中,已知DE∥BC.(1)△ADE与△ABC相似吗?为什么?(2)它们是位似图形吗?如果是,请指出位似中心.28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α= °.(1)求矩形图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?(参考数据:sin °≈ . ,cos °≈ . ,tan °≈ .6)答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】D6.【答案】D7.【答案】D8.【答案】A9.【答案】A10.【答案】D二、填空题11.【答案】512.【答案】0或-313.【答案】 π14.【答案】-415.【答案】2(﹣1)16.【答案】7 °17.【答案】4x2﹣14x﹣6=018.【答案】6 °19.【答案】220.【答案】①②③三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】证明:∵QN=MP,∴ 弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴ =2,∵∠ =∠ ,∴△ACE∽△ABF,∴∠ACE=∠ABF24.【答案】证明:∵A、D、C、B四点共圆,∴∠A=∠BCE,∵BC=BE,∴∠BCE=∠E,∴∠A=∠E,∴AD=DE,即△ADE是等腰三角形.25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,∴ ,∴AB2=AD•AC.26.【答案】解:设梯子的长为xm.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=x•cos6 °= x,在Rt△CDO中,∵cos∠CDO= ,∴OD=CD•cos∠CDO=x•cos °= x.∵BD=OD﹣OB,∴ x﹣x=1,解得x=2 +2.故梯子的长是(2 +2)米.27.【答案】解:(1)△ADE与△ABC相似.∵DE∥BC,∴△ABC∽△ADE;(2)是位似图形.由(1)知:△ADE∽△ABC.∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,∴△ADE和△ABC是位似图形,位似中心是点A.28.【答案】解:(1)如图,在Rt△BCE中,∵sinα=,==1.6,∴BC=sin∵四边形ABCD是矩形,∴∠BCD=9 °,∴∠BCE+∠FCD=9 °,又∵在Rt△BCE中,∴∠EBC+∠BCE=9 °,∴∠FCD= °.在Rt△FCD中,∵cos∠FCD=,=6=2,∴CD=cos °∴矩形图案的长和宽分别为2cm和1.6cm;面积= × .6= . (平方厘米)(2)如图,在Rt△ADH中,易求得∠DAH= °.∵cos∠DAH=,=6=2,∴AH=cos °在Rt△CGH中,∠GCH= °,∵tan∠GCH=,∴GH=CGtan °= . × .6= . ,又∵6× + . >12, × + . <12,∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【易错题解析】青岛版九年级数学上册期末复习综合测试卷
一、单选题(共10题;共30分)
1.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()。
A. B. C. D.
2.把一个五边形改成和它相似的五边形,如果面积扩大到原的49倍,那么对应的对角线扩大到原的()
A. 49倍
B. 7倍
C. 50倍
D. 8倍
3.已知方程2-5+2=0的两个解分别为1、2,则1+2-1•2的值为()
A. -7
B. -3
C. 7
D. 3
4.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()
A. 20°
B. 40°
C. 60°
D. 80°
5.下列关于的一元二次方程中,有两个不相等的实数根的方程是()
A. 2+4=0
B. 42-4+1=0
C. 2++3=0
D. 2+2-1=0
6.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆交AB于点D,连接CD,则阴影部分的面积是()
A. B. C. D.
7.如图,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠CAB=25°,则∠ACD的度数为()
A. 25°
B. 30°
C. 40°
D. 50°
8.一元二次方程2﹣6+5=0配方后可变形为()
A. (﹣3)2=14
B. (﹣3)2=4
C. (+3)2=14
D. (+3)2=4
9.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C;如果,那么=()
A. B. C. D.
10.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为,则满足的方程是()
A. 15%﹣5%=
B. 15%﹣5%=2
C. (1﹣5%)(1+15%)=2(1+)
D. (1﹣5%)(1+15%)=(1+)2
二、填空题(共10题;共30分)
11.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.
12.一元二次方程2=﹣3的解是________.
13.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.
14.(2017•眉山)已知一元二次方程2﹣3﹣2=0的两个实数根为1,2,则(1﹣1)(2﹣1)的值是________.
15.顶角为36°的等腰三角形被称为黄金三角形,在∠A=36°的△ABC中,AB=AC,BD是∠ABC的角平分线,交AC于D,若AC=4cm,则BC=________cm.
16.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是________.
17.一块长方形铁皮长为4dm,宽为3dm,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原铁皮的面积一半,若设盒子的高为dm,根据题意列出方程,并化成一般形式为________.
18.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB的度数是________.
19.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.
20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)
三、解答题(共8题;共60分)
21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)
(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.
22.已知:如图,MN、PQ是⊙O的两条弦,且QN=MP, 求证:MN= PQ.
23.如图,∠∠,,,,.试说明:∠∠
24.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.
25.如图,已知△ABC中,点D在AC上且∠ABD=∠C,求证:AB2=AD•AC.
26.如图,梯子斜靠在与地面垂直(垂足为O)的墙上,当梯子位于AB位置时,它与地面所成的角∠ABO=60°;当梯子底端向右滑动1m(即BD=1m)到达CD位置时,它与地面所成的角∠CDO=45°,求梯子的长(结
果保留根号)
27.如图所示,在△ABC中,已知DE∥BC.
(1)△ADE与△ABC相似吗?为什么?
(2)它们是位似图形吗?如果是,请指出位似中心.
28.现有一张宽为12cm练习纸,相邻两条格线间的距离均为0.8cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上(如图),测得∠α=32°.
(1)求矩形图案的面积;
(2)若小聪在第一个图案的右边以同样的方式继续盖印(如图),最多能印几个完整的图案?
(参考数据:sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)
答案解析部分
一、单选题
1.【答案】B
2.【答案】B
3.【答案】D
4.【答案】D
5.【答案】D
6.【答案】D
7.【答案】D
8.【答案】A
9.【答案】A
10.【答案】D
二、填空题
11.【答案】5
12.【答案】0或-3
13.【答案】4π
14.【答案】-4
15.【答案】2(﹣1)
16.【答案】70°
17.【答案】42﹣14﹣6=0
18.【答案】65°
19.【答案】2
20.【答案】①②③
三、解答题
21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C2
22.【答案】证明:∵QN=MP,∴弧QN=弧MP,∴弧MN=弧PQ,∴MN=PQ
23.【答案】证明:∵AC=6,AB=12,AE=4,AF=8,∴=2,
∵∠1=∠2,
∴△ACE∽△ABF,
∴∠ACE=∠ABF
24.【答案】证明:∵A、D、C、B四点共圆,
∴∠A=∠BCE,
∵BC=BE,
∴∠BCE=∠E,
∴∠A=∠E,
∴AD=DE,
即△ADE是等腰三角形.
25.【答案】解:∵∠ABD=∠C,∠A=∠A,∴△ABD∽△ACB,
∴,
∴AB2=AD•AC.
26.【答案】解:设梯子的长为m.在Rt△ABO中,∵cos∠ABO= ,∴OB=AB•cos∠ABO=•cos60°= ,
在Rt△CDO中,∵cos∠CDO= ,
∴OD=CD•cos∠CDO=•cos45°= .
∵BD=OD﹣OB,
∴﹣=1,
解得=2 +2.
故梯子的长是(2 +2)米.
27.【答案】解:(1)△ADE与△ABC相似.
∵DE∥BC,
∴△ABC∽△ADE;
(2)是位似图形.由(1)知:△ADE∽△ABC.
∵△ADE和△ABC的对应顶点的连线BD,CE相交于点A,
∴△ADE和△ABC是位似图形,位似中心是点A.
28.【答案】解:(1)如图,在Rt△BCE中,
∵sinα=,
∴BC===1.6,
∵四边形ABCD是矩形,
∴∠BCD=90°,
∴∠BCE+∠FCD=90°,
又∵在Rt△BCE中,
∴∠EBC+∠BCE=90°,
∴∠FCD=32°.
在Rt△FCD中,∵cos∠FCD=,
∴CD=
==2,
°
∴矩形图案的长和宽分别为2cm和1.6cm;
面积=2×1.6=3.2(平方厘米)
(2)如图,在Rt△ADH中,易求得∠DAH=32°.
∵cos∠DAH=,
==2,
∴AH=
°
在Rt△CGH中,∠GCH=32°,
∵tan∠GCH=,
∴GH=CGtan32°=0.8×0.6=0.48,
又∵6×2+0.48>12,5×2+0.48<12,
∴最多能摆放5块矩形图案,即最多能印5个完整的图案.。