罗格列酮对脂多糖作用下及高糖对大鼠腹膜间皮细胞TLR2 mRNA表达的影响

合集下载

基于leptin-AMPK-ACC通路探究西格列汀对2型糖尿病大鼠糖脂代谢的改善作用

基于leptin-AMPK-ACC通路探究西格列汀对2型糖尿病大鼠糖脂代谢的改善作用

乔鹏等基于leytii-AMPK-ACC通路探究西格列汀对2型糖尿病大鼠糖脂代谢的改善作用第7期•30•基于leiUv-AMPK-ACC通路探究西格列汀对0型糖尿病大鼠糖脂代谢的改善作用乔鹏朱亮张华马妍菁王晓晖(苏州大学附属第二医院药剂科,江苏苏州215004)〔摘要〕目的探究西格列汀对2型糖尿病(T2DM)大鼠糖脂代谢的改善作用及对瘦素(lexUh--腺苷酸活化蛋白激酶(AMPK)-乙酰辅酶A羧化酶(ACC)通路的影响。

方法选取44只SD雄性大鼠,分12只为正常对照组,在18~26t下,湿度45%-55%的干净笼子里用新鲜干燥的饲料进行随时采食。

剩余34只大鼠建立T2DM大鼠模型,通过喂养高糖高脂饲料联合腹腔注射链脲佐菌素(STZ)进行建模。

建模成功的26只大鼠随机分为T2DM模型组(8只)、西格列汀组(9只)、二甲双胍对照组(9只1。

西格列汀组进行34mg/kg灌胃,连续给药4w;二甲双胍对照组给药二甲双胍腹腔注射104mg/kg。

正常对照组与糖尿病模型组均给予等量生理盐水。

采用放射免疫法测量血清中空腹胰岛素(FIAS),采用酶法测定空腹血糖(FBG),采用糖化血红蛋白分析仪测定血浆中糖化血红蛋白(H b A5),采用酶比色法测定三酰甘油(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-P)和高密度脂蛋白胆固醇(HDLT)、内脂素(Visfad/)、抵抗素(ReWsti/)、脂联素(APN)水平。

采用Western 印迹法检测LepU/、AMPK、ACC,使用苏木素-伊红(HE)染色法对大鼠肝脏细胞进行观察分析。

结果与正常对照组比较,T2DM 模型组FINS、HDLN、AMPK均显著下降,FBG、HbA-c、TG、TC、LDLN、Lepti/、ACC均显著上升(P<4.45);与T2DM模型组比较,西格列汀组FINS、HDL-C、AMPK、ACC均显著上升,FBGIHbAlc、TGITC、LDLN、Leptih显著下降(P<4.45);与西格列汀组比较,二甲双胍对照组TC、TG、LDLN、Visfad/、LepUv显著上升,FINS、AMPK、FBG、HbA-c、ACC、HDLN显著下降(P<045)。

SGLT2抑制剂治疗糖尿病心血管并发症的机制研究进展

SGLT2抑制剂治疗糖尿病心血管并发症的机制研究进展
糖尿病、心衰以及血管功能障碍之间存在着恶 性循环的关系,每一种疾病都可能引发或加重另外 两种疾病⑴。在T2DM中,心衰的发生发展通常与 高血压、高血脂、血栓前状态以及糖尿病性心肌病密 切相关。虽然传统的抗糖尿病药物在降糖方面具有 良好的效果,但是很少具有显著的心血管益处 。据
报道⑵,仅有二甲双肌能够降低心肌梗死以及全因 死亡的风险,但是并不能缓解心衰的发展。而其他 一些降糖药物,如磺酰类甲苯磺丁服、嗟輕烷二酮 类罗格列酮、二肽基肽酶-4抑制剂西格列汀等,甚 至可能会提高心衰发生的风险。因此,2008年美国 食品和药物管理局要求抗糖尿病药物在进入临床前 都必须进行心血管事件的风险评价。在这种背景之 下,钠-葡萄糖协同转运蛋白2 ( sodium-glucose co­ transporter type 2, SGLT2 )抑制剂的发现不仅满足了 临床降糖需求,其心血管方面的获益也被意外发现。
蛋白激酶1是否是SGLT2抑制剂在心肌细胞的直 接靶点值得进一步研究。 3.2.2抑制炎症及氧化应激慢性系统性炎症与 氧化应激密切相关,在糖尿病性心血管疾病中发挥 关键作用。大量研究已经证实,糖尿病患者的微血 管、大血管和心脏功能缺陷不能作为独立的个体进 行评估,因为它们在功能上相互关联,并直接受到全 身氧化应激和炎症反应的影响。在代谢紊乱的前驱 糖尿病大鼠模型以及T2DM模型db/db小鼠中,恩 格列净给药处理的动物心脏氧化应激和炎症反应均 被显著抑制,这是SGLT2抑制剂直接保护心脏的原 因之一问。在心肌梗死的大鼠模型中,达格列净通
过增加巨噬细胞的活化以及抑制心肌成纤维细胞分 化,起到抗心肌纤维化的作用。 3.2.3调控心肌能量代谢心肌能量代谢与心衰 的发生发展关系密切,能量代谢障碍相伴的心室重 构被认为是慢性心衰的主要病理机制「切。在生理

Toll样受体简介及TLR2在类风湿关节炎中的研究进展

Toll样受体简介及TLR2在类风湿关节炎中的研究进展

Toll样受体简介及TLR2在类风湿关节炎中的研究进展Toll样受体(Toll like receptors,TLRs)作为天然免疫分子的成员已经成为目前免疫学研究的热点,迄今为止人类TLR家族至少包括有11个成员[1],主要表达在单核细胞和树突状细胞,它们参与多种免疫反应,对类风湿关节炎(rheumatoid arthritis,RA)的发病也有突出影响。

TLR2是Toll样受体家族的重要成员,本文就TLRs做一简介,并对TLR2在RA中的研究进展做一综述。

1 Toll样受体简介Toll样受体最早是在研究果蝇的胚胎发育中发现的,称为Toll受体,它们不仅是果蝇胚胎发育过程中的必须成份蛋白,同时也能介导天然免疫,抵抗微生物的感染[2]。

1997年Janeway[3]等首次发现与果蝇同源的人的Toll蛋白,并命名为TLRs。

1.1 TLRs的结构和分布哺乳动物的TLRs均为Ⅰ型跨膜蛋白受体,主要由三个功能区构成:胞外区、跨膜区和胞内区。

胞外区含有18-31个富含亮氨酸的重复序列(leucine rich repeats,LRR),研究发现TLR家族成员胞外区的同源性差,提示不同的TLR成员与不同的配体结合[4],亦即表示LRR具有决定TLRs与配体结合部位的特异性。

TLR的胞内区与人白介素-Ⅰ受体(IL-IR)胞内区结构相似,故称为TIR结构域(Toll/IL-IR domain,TIR)[5],TIR结构负责向下游进行信号转导,它是TLR和IL-IR向下游转导信号的核心元件,其关键位点的突变或序列缺失会阻断信号下传。

TLRs分布广泛,大部分组织至少表达一种TLR,有些甚至表达全部,其中所有淋巴组织都有TLRs的表达,在外周血白细胞中表达水平最高,单核/巨噬细胞、B细胞、T细胞及DC都表达TLR mRNA。

1.2 TLRs的配体TLRs是一类Ⅰ型跨膜形式识别受体(pattern recognition receptors,PRR),它主要识别广泛存在于病原体细胞表面的分子标志,即病原相关分子模式(pathogen associated molecular patterns,PAMPs),从而迅速激活免疫反应的。

电针对高脂饮食诱导的胰岛素抵抗大鼠下丘脑β淀粉样蛋白、Tau蛋白磷酸化水平与糖原合成酶激酶-3的影响

电针对高脂饮食诱导的胰岛素抵抗大鼠下丘脑β淀粉样蛋白、Tau蛋白磷酸化水平与糖原合成酶激酶-3的影响

ʌ实验研究ɔ电针对高脂饮食诱导的胰岛素抵抗大鼠下丘脑β淀粉样蛋白㊁Tau 蛋白磷酸化水平与糖原合成酶激酶-3的影响❋王静芝1,杜艳军1ә,陈㊀丽1,黄浏娇2,瞿㊀涛1,周焕娇1,陈㊀茜1(1.湖北中医药大学针灸骨伤学院/针灸治未病湖北省协同创新中心,武汉㊀430061;2.湖北中医药大学中医临床学院,武汉㊀430061)㊀㊀摘要:目的:观察电针对IR 大鼠下丘脑β淀粉样蛋白(Aβ42)㊁Tau 蛋白磷酸化(p-Tau )水平表达与糖原合成酶激酶-3(GSK-3)蛋白表达的影响㊂方法:70只Wistar 大鼠随机分为正常组㊁模型组㊁预防组㊁电针组㊁预防+阻滞剂组㊁电针+阻滞剂组和脑脊液组各10只,电针治疗后ELISA 法检测各组空腹血糖(FPG )㊁胰岛素(FINS )与胰岛素抵抗指数(IRI )水平变化,免疫组织化学检测下丘脑Aβ42㊁p-Tau 阳性表达,Western blot 检测GSK-3α和GSK-3β蛋白表达㊂结果:(1)较模型组大鼠,预防组和电针组大鼠FPG ㊁FIN ㊁IRI 降低(P <0.01),下丘脑Aβ42和p-Tau 阳性表达减少(P <0.05或P <0.01),下丘脑GSK-3α和GSK-3β蛋白表达降低(P <0.05或P <0.01);(2)较电针组大鼠,预防组大鼠FPG ㊁FIN ㊁IRI 降低(P <0.05),下丘脑GSK-3α和GSK-3β蛋白表达降低(P <0.05);(3)较电针+阻滞剂组,预防+阻滞剂组大鼠FPG ㊁FINS 与IRI 均降低(P <0.01),GSK-3β蛋白表达增加(P <0.05)㊂结论:电针改善IR 大鼠FPG ㊁FINS 及IRI 水平,其作用机制可能与电针抑制GSK-3α和GSK-3β蛋白表达㊁降低Aβ42和p-Tau 阳性表达相关㊂㊀㊀关键词:电针治疗;胰岛素抵抗;Aβ42;p-Tau ;GSK-3α;GSK-3β㊀㊀中图分类号:R245.9+7㊀㊀文献标识码:B㊀㊀文章编号:1006-3250(2021)05-0760-05❋基金项目:国家自然科学基金面上项目(81473786)-基于针灸抗炎作用防治阿尔茨海默病星形胶质细胞介导的β-淀粉样蛋白代谢机制研究;国家自然科学基金青年基金项目(81804170)-电针通过SIRT1/ATG7介导的自噬途径调节肝脏脂质代谢改善胰岛素抵抗的机制研究;国家自然科学基金青年基金项目(81904276)-电针通过mTORC1/S6K1自噬途径改善胰岛素抵抗大鼠认知功能损害的机制研究作者简介:王静芝(1983-),女,讲师,博士研究生,从事腧穴配伍及其效应机制研究㊂ә通讯作者:杜艳军(1975-),女,江苏连云港人,教授,博士研究生,博士研究生导师,从事针灸防治神经系统疾病的临床与实验研究,Tel :136****4878,E-mail :1051700031@ ㊂Effects of Electro-acupuncture on The Amyloid Protein βand Phosphorylation Levelsof Tau Protein and GSK-3in Hypothalamus of Insulin ResistanceRats Induced by High-fat DietWANG Jing-zhi 1,DU Yan-jun 1ә,CHEN li 1,HUANG Liu-jiao 2,QU Tao 1,ZHOU Huan-jiao 1,CHEN Qian 1(1.College of Acupuncture Moxibustion and Orthopaedics,Hubei University of Chinese Medicine /Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion,Wuhan 430061,China,2.Clinical College of Chinese Medicine,Hubei University of Chinese Medicine,Wuhan 430061,China)㊀㊀Abstract :Objective :To observe the electro-acupuncture effect on the hypothalamic expression levels of Aβ42,phosphorylated Tau protein ,GSK-3αand GSK-3βin insulin resistance model rats.Method :70Wistar rats were divided into 7groups ,10rats in each group.Fasting plasma glucose and FINs will detect after the treatment by Elisa method ,expression levels of hypothalamic Aβ42,phosphorylated Tau protein will detected via immunohistochemistry method ;expression levels of hypothalamic GSK-3αand GSK-3βwill detected via western-blotting.Result :(1)Compared with model group ,FPG ,FINS ,ISI reduced (P <0.01),expression levels of hypothalamic Aβ42,phosphorylated Tau protein decreased (P <0.05or P <0.01),expression levels of hypothalamic GSK-3αand GSK-3βdecreased (P <0.05or P <0.01)in pre-EA group and EA group ;(2)Compared with EA group ,FPG ,FINS ,ISI reduced (P <0.05),expression levels of hypothalamic GSK-3αand GSK-3βdecreased (P <0.05)in pre-EA group ;(3)Compared with electro-acupuncture plus blocker LY294002group ,FPG ,FINS ,ISI reduced (P <0.05),expression levels of hypothalamic GSK-3βincreased (P <0.05)in pre-EA plus blocker LY294002group ;Conclusion :The mechanism of electro-acupuncture improvement on peripheral blood levels of FPG ,FINS and IRI in insulin resistance model rats ,is pertaining to the regulation of inhibiting the expression of GSK-3αand GSK-3β,and reduces the positive expression of Aβ42and p-Tau.㊀㊀Key words :Electro-Acupuncture ;Insulin Resistance ;Aβ42;p-Tau ;GSK-3α;GSK-3β㊀㊀随着人口老龄化日益严重,老年期痴呆的发病率呈上升趋势㊂轻度认知功能损害(mild cognitive impairment,MCI)是介于正常老化和痴呆之间的一种不稳定的认知损伤状态,每3~4年有20%~66%的MCI患者认知功能持续恶化,最终导致痴呆的发生,其中大部分为阿尔茨海默型痴呆(alzheimer disease,AD),MCI是AD的重要危险因素[1-2]㊂胰岛素对中枢神经系统的影响包括摄食行为㊁能量储存㊁记忆认知功能[3],中枢胰岛素抵抗(insulin resistance,IR)可以引起轻度认知功能损害,轻㊁中度认知功能下降[4]㊂Aβ是由淀粉样前体蛋白(APP)经β-和γ-分泌酶的蛋白水解作用产生,Aβ的増加与沉积可通过生成具有神经毒性的老年斑诱发神经元变性与死亡㊂神经元微管相关蛋白(Tau蛋白)过度磷酸化则是认知功能损害的又一发病机制[5-6]㊂胰岛素信号转导通路PKB/Akt的生理底物糖原合成酶激酶-3 (glucogen synthase kinase-3,GSK3),具有GSK-3α和GSK-3β2种形式的异构体,其活性与Aβ沉积㊁tau 蛋白过度磷酸化密切相关[7]㊂本研究在造模同时给予受试动物电针预防性治疗,与造模成功后的电针治疗组作为对照,旨在观察电针预防性治疗对胰岛素抵抗大鼠认知功能的保护作用㊂并通过观察各组大鼠下丘脑Aβ42㊁p-tau㊁GSK-3α与GSK-3β表达变化与差异,探讨电针治疗在防治胰岛素抵抗大鼠轻度认知功能损害的效应机制㊂1 材料与方法1.1㊀实验动物选用清洁级雄性Wistar大鼠70只,8周龄,体质量(180ʃ20)g,购自湖北省实验动物研究中心,实验动物许可证号SCXK(鄂)2015-0018㊂饲养于湖北中医药大学实验动物中心,饲养环境温度18~ 25ħ,湿度45%~55%㊂1.2㊀主要试剂与仪器高脂饲料(上海斯莱克实验动物有限责任公司),Aβ42㊁p-Tau(美国abcam,b10148㊁ab109390), Dako REAL EnVision Detection System(安捷伦(Dako),K5007)㊂小鼠单抗β-actin(42KD)(武汉博士德生物工程有限公司,BM0627),兔多抗GSK3α(51KD)㊁兔多抗GSK3β(48KD)(武汉三鹰生物技术有限公司,13419-1-AP㊁22104-1-AP), HRP标记羊抗小鼠二抗㊁HRP标记羊抗兔二抗(武汉博士德生物工程有限公司,BA1051㊁BA1054),磷酸酶抑制剂㊁PMSF㊁RIPA裂解液㊁BCA蛋白浓度测定试剂盒(碧云天,S1873㊁ST506㊁P0013B㊁P0010), TEMED㊁Trise-Base(Amresco,Amresc00761㊁Exp2017/12),HCl(信阳市化学试剂厂,GB622-89),Tris-base(西格玛奥的(上海)贸易有限公司,v900483)㊂RM2016轮转式病理切片机(德国Leica公司);JK-6生物组织摊烤片机(武汉俊杰电子有限公司);SKG抗原修复用电陶炉;电泳仪(Bio-Rad);转膜仪(Bio-Rad);凝胶扫描成像系统(Bio-Rad); BX53型显微镜(奥林巴斯生物显微镜),LP115pH 计(德国Metter-Toledo GmbH公司);酶标仪(Thermo,mμLISKANMK3);HI650离心机(湖南湘仪实验室仪器开发有限公司);华佗牌毫针(苏州医疗用品厂有限公司)㊂1.3㊀分组与造模适应性喂养3d后按随机数字表法分为正常组(normal,N)㊁模型组(model,M)㊁预防组(preventing electro-acupuncture,p-EA)㊁电针组(electro-acupuncture,EA)㊁预防+阻滞剂组(p-EA+ blocker LY294002,p-EA+b)㊁电针+阻滞剂组(EA+ blocker LY294002,EA+b)㊁脑脊液组(cerebrospinal fluid,CSF)各10只㊂正常组(N)给予标准饮食(3.8kcal/g,含70%碳水化合物,20%蛋白质,10%脂肪),其余各组采用高脂饲料(5.4kcal/g,含38.5%碳水化合物,15%蛋白质,46.5%脂肪)㊂喂养8周后大鼠尾静脉采血检测FPG㊁FINS,IRI=[FPG (mmol/L)ˑFINS(mIU/L)]/22.5,模型大鼠IRI与正常大鼠比较明显升高时(P<0.001)为造模成功[8]㊂1.4㊀电针干预1.4.1㊀EA组㊀大鼠于造模成功后,使用0.30ˑ25mm不锈钢毫针,参照李忠仁主编‘实验针灸学“[9],以标本配穴电针方法选择关元㊁足三里(后三里)㊁丰隆和百会进行毫针针刺㊂足三里和丰隆穴直刺5~10mm,关元穴向剑突方向斜刺5~7mm,百会向后方平刺5mm㊂采用电针治疗仪(HANS-100 A型)连续波㊁频率(2Hz)㊁强度(1mA)㊁通电(10 min),同侧足三里穴和丰隆穴连接同一输出的2个电极,刺激强度根据局部肌肉收缩情况决定㊂每日电针10min,每周5次治疗,总疗程为8周㊂以上采取的刺激频率和电针时间㊁疗程综合文献报道决定[10]㊂1.4.2㊀p-EA组㊀从造模开始进行电针治疗,电针方法同EA组,持续16周㊂1.4.3㊀p-EA+b组㊀大鼠称重后以10%水合氯醛(30mg/kg)腹腔麻醉㊂将大鼠固定于脑立体定位仪,头顶局部常规备皮㊁消毒,依照立体定位图谱进行定位,于前囟后0.8mm在中位颅盖骨处用牙科钻钻一直径2mm的孔[11-12],以不锈钢导管插入(长18.0mm,外径0.64mm,内径0.39mm)留置(如图1);用带帽的不锈钢制导丝插入导管内封闭导管㊂手术后预防感染,将大鼠置于空笼内待6~8 h可清醒㊂术后2d起取LY294002(10μm, 10μL;1μL/min)缓慢注射,留针8~10min,以防药物沿针道返流颅外㊂电针治疗同p-EA 组,共计16周㊂1.4.4㊀EA +b 组㊀造模成功后,每日电针干预前1h ,大鼠称重后进行脑室灌注LY294002㊂脑室灌注同p-EA +b 组㊂电针治疗同EA 组,持续8周㊂1.4.5㊀CSF 组㊀大鼠称重后脑室留管同EA +b 组㊂脑脊液:Na +145.5ml /L ,K +2.8mol /L ,Ca2+2.3mol /L ,Mg2+2.2mol ,Cl -128.5mol /L ,HCO3-23.1mol /L ,H2Po4-l.lmol /L ,葡萄糖0.6lg /L ,渗透压289.omosM /L ,PH 值7.3配置完成等量灌注,操作方法同EA +b 组㊂电针治疗同EA 组㊂图1㊀大鼠脑立体定位及置管示意图1.5㊀指标收集与检测1.5.1㊀ELISA 法检测㊀大鼠空腹FPG ㊁FIN 实验16th 周治疗结束后,各组大鼠禁食12h 以尾静脉采血静置,离心取上清㊂ELISA 法按试剂盒操作要求检测各组大鼠空腹FPG ㊁FIN 并计算各组大鼠IRI ㊂1.5.2㊀免疫组化㊀各组大鼠禁食12h 颈椎脱臼法处死,冰上剥取下丘脑,右侧下丘脑组织-80ħ保存备用㊂左侧下丘脑组织用多聚甲醛(4%)固定后,酒精脱水并进行浸蜡及包埋㊂切片厚度4μm ,经脱蜡㊁抗原修复,滴加一抗(Aβ421ʒ100,p-tau ㊀㊀㊀1ʒ100)㊁二抗,镜下观察并完成镜检拍照㊂使用IPP6.0软件对免疫组化照片进行光密度分析,每张切片选取3张400倍照片做光密度分析,area 为面积,IOD 为积分光密度,density (mean )为平均光密度㊂1.5.3㊀Western blot 检测㊀从-80ħ冰箱中取出下丘脑组织,加入400μL 裂解液(含PMSF )碾磨㊁裂解离心取上清,使蛋白变性㊂BSA 标准品稀释为1㊁0.8㊁0.6㊁0.4㊁0.2标准蛋白,采用DG-3022A 酶标仪测定OD568并计算蛋白浓度㊂蛋白样品(40μg )和Marker 加入上样孔,电泳1.5h ㊂凝胶根据Marker 切下目的条带,PVDF 膜甲醇浸泡后同滤纸浸泡于电转缓冲液㊂PVDF 膜浸泡于含5%脱脂奶粉TBST ,室温摇床封闭2h ;浸泡一抗(β-actin 1ʒ200,GSK3-α1ʒ500,GSK3-β1ʒ1000),封闭液稀释相应的HRP 标记二抗(1ʒ50000),采用BandScan 分析胶片灰度值㊂1.6㊀统计学方法采用SPSS 统计软件Version 24.0进行统计分析,所有数据以均数ʃ标准差(x ʃs)表示,采用单因素方差分析,组间两两比较采用LSD 检验,P <0.05为差异有统计学意义㊂2㊀结果2.1㊀各组大鼠FPG ㊁FINS 与IRI 水平变化比较表1示,治疗结束与N 组比较,其他各组大鼠FPG ㊁FINS 与IRI 明显升高(P <0.05或P <0.01);与M 组比较,p-EA 组㊁EA 组㊁p-EA +b 组与CSF 组大鼠FPG ㊁FINS 和IRI 均有不同程度降低(P <0.05或P <0.01);与EA 组比较,p-EA 组大鼠的FINS 与IRI 降低(P <0.05),EA +b 组FPG ㊁FINS 与IRI 升高(P <0.05),p-EA +b 组大鼠的FPG 与IRI 升高(P <0.05);与EA +b 组比较,p-EA 与CSF 组大鼠的FPG ㊁FINS 和IRI 降低(P <0.05),p-EA +b 组大鼠的FINS 与IRI 升高(P <0.05);与CSF 组比较,p-EA +b 组大鼠的FPG ㊁FINS 与IRI 升高(P <0.05)㊂表1㊀各组大鼠FPG ㊁FINS ㊁IRI 水平比较(x ʃs )组别鼠数FPG (mmol /L )FINS (mU /L )IRIN 组10 6.02ʃ0.5513.89ʃ0.323.71ʃ0.37M 组1012.42ʃ1.16∗∗29.73ʃ9.32∗∗16.41ʃ5.47∗∗p-EA 组107.98ʃ0.60∗##һ26.07ʃ0.48∗∗#ʏһ9.24ʃ0.68∗#ʏһEA 组108.81ʃ1.62∗#һ28.76ʃ0.92∗∗#11.26ʃ2.12∗∗#EA +b 组1011.86ʃ1.39∗ʏ33.02ʃ0.75∗∗ʏ17.41ʃ7.49∗∗ʏp-EA +b 组1011.11ʃ1.71∗#ʏӘ28.96ʃ4.79∗∗һӘ14.29ʃ3.49∗∗ʏһӘCSF 组107.48ʃ0.66∗#һ29.86ʃ0.77∗∗#һ9.93ʃ4.27∗#һ㊀㊀注:与N 组比较:∗∗P <0.01,∗P <0.05;与M 组比较:##P <0.01,#P <0.05;与EA 组比较:ʏP <0.05;与EA +b 组比较:һP <0.05;与CSF 组比较:ӘP <0.05㊀㊀2.2㊀各组大鼠下丘脑Aβ42与p-Tau 表达比较图2示,第16周电针治疗结束时,黑色箭头所示棕黄色或棕褐色细胞膜是各组大鼠下丘脑Aβ42㊁p-Tau 的阳性表达㊂N 组与p-EA 组大鼠下丘脑见极少量棕黄色或棕褐色淡染的阳性细胞;EA 组㊁p-EA +b 组与CSF 组大鼠下丘脑偶见棕黄色或棕褐色淡染的阳性细胞;M 组㊁EA +b 组棕黄色或棕褐色阳性表达聚集数量多,着色深㊂图2㊀各组大鼠下丘脑Aβ42与p-Tau 免疫组织化学(ˑ400)㊀㊀表2示,M 组㊁p-EA 组㊁EA 组㊁EA +b 组㊁p-EA +b 组㊁CSF 组大鼠Aβ42㊁p-Tau 的阳性表达明显高于N 组(P <0.05或P <0.01);p-EA 组㊁EA 组大鼠Aβ42㊁p-Tau 的阳性表达低于M 组㊁EA +b 组㊁CSF 组(P <0.05或P <0.01);EA 组与p-EA 组大鼠之间Aβ42㊁p-Tau 的阳性表达差异无统计学意义;p-EA +b 组与CSF 组大鼠Aβ42阳性表达差异无统计学意义㊂表2㊀各组大鼠下丘脑Aβ42㊁p-Tau 平均光密度比值及下丘脑GSK-3α㊁GSK-3β蛋白表达比较(/β-actin ,x ʃs )组别鼠数density (mean )Aβ42p-TauGSK-3αGSK-3βN 组100.0047ʃ0.001㊀㊀㊀0.0007ʃ0.003㊀㊀㊀0.284ʃ0.02㊀㊀㊀0.349ʃ0.01㊀㊀㊀M 组100.0142ʃ0.002∗∗0.0117ʃ0.001∗∗0.598ʃ0.02∗∗0.770ʃ0.01∗∗p-EA 组100.0061ʃ0.008∗∗##һһӘ0.0012ʃ0.001∗##һһ0.329ʃ0.01∗##ʏһ0.404ʃ0.02∗##ʏһEA 组100.0092ʃ0.008∗#ʏӘ0.0013ʃ0.002∗##0.401ʃ0.02∗#0.436ʃ0.03∗##EA +b 组100.0136ʃ0.003∗∗ʏ0.0062ʃ0.001∗∗##ʏ0.442ʃ0.03∗∗#ʏӘ0.497ʃ0.03∗##ʏӘp-EA +b 组100.0110ʃ0.002∗∗ʏʏ0.0047ʃ0.002∗∗##ʏһӘӘ0.475ʃ0.02∗∗#ʏӘ0.587ʃ0.03∗∗#ʏʏһӘCSF 组100.0107ʃ0.008∗∗#ʏһ0.0017ʃ0.002∗##һ0.539ʃ0.01∗∗ʏ0.641ʃ0.04∗∗#ʏʏһһ㊀㊀注:与N 组比较:∗∗P <0.01,∗P <0.05;与M 组比较:##P <0.01,#P <0.05;与EA 组比较:ʏʏP <0.01,ʏP <0.05;与EA +b 组比较:һһP <0.01,һP <0.05;与CSF 组比较:ӘӘP <0.01,ӘP <0.05㊀㊀2.3㊀各组大鼠下丘脑GSK-3α和GSK-3β蛋白表达比较表2图3示,与N 组比较,其他各组大鼠下丘脑GSK-3α㊁GSK-3β蛋白表达增加(P <0.05或P <0.01);与M 组比较,p-EA ㊁EA 组和p-EA +b 组大鼠下丘脑GSK-3α㊁GSK-3β蛋白表达减少(P <0.05或P <0.01),CSF 组大鼠GSK-3α差异无统计学意义,GSK-3β蛋白表达减少(P <0.05);与EA 组比较,p-EA 组大鼠下丘脑GSK-3α㊁GSK-3β蛋白表达减少(P <0.05),EA +b 组㊁p-EA +b 组CSF 组大鼠下丘脑GSK-3α㊁GSK-3β蛋白表达增加(P <0.05);与EA +b 组比较,p-EA 组大鼠下丘脑GSK-3α(P <0.05),p-EA +b 组㊁CSF 组大鼠下丘脑GSK-3β蛋白表达减少(P <0.05);与CSF 组比较,EA +b 组和p-EA +b 组大鼠下丘脑GSK-3α㊁GSK-3β蛋白表达减少(P <0.05)㊂图3㊀各组大鼠下丘脑GSK-3α和GSK-3β蛋白表达电泳图㊀㊀3㊀讨论胰岛素与大脑的生物活性㊁神经结构和生理功能密切相关,对中枢神经系统认知功能有着重要影响,胰岛素相关信号分子传导异常是IR 发生的关键[13]㊂IR 时,由胰岛素介导的神经能量代谢出现异常引起神经元糖代谢紊乱,从而导致神经元功能障碍及中枢神经系统疾病的发生[14]㊂本研究依据中医针灸 治未病 理论,以足三里㊁关元㊁丰隆与百会四穴配伍,旨在培补先天之本㊁后天气血生化之源的同时,祛痰消脂㊁疏通脑络㊂研究中预防组受试动物在造模的同时给予电针治疗,以期通过电针干预激发受试动物机体内在的抗病能力,预防IR 与IR 相关的认知功能损害,强调电针早期干预的预防效应㊂GSK3是PI3K /Akt 信号通路的生理底物,通过负反馈调节该通路的效应蛋白对IR 的发生发展有重要影响㊂GSK-3α和GSK-3β是GSK3两种形式的异构体㊂活化的GSK-3a 可以激活APPγ分泌酶使得Aβ沉积增加[15-16],GSK-3β会造成tau 蛋白过度磷酸化并导致神经纤维缠结;此外,GSK-3β通过提高胰岛素受体底物的丝∕苏氨酸磷酸化水平来抑制胰岛素受体对胰岛素受体底物的酪氨酸磷酸化,通过抑制胰岛素信号传导加重IR[17-18]㊂因此,GSK-3α与GSK-3β的活化是IR与认知功能损害共同的病理改变㊂本研究中,M组㊁EA+b组和p-EA+b组大鼠下丘脑GSK-3α与GSK-3β蛋白表达增加,这与其下丘脑中Aβ42与p-Tau阳性表达聚集数量多㊁着色深的结果一致㊂同时,这3组受试动物外周血FPG㊁FINS及IRI水平升高㊂电针治疗后,p-EA组㊁EA组外周胰岛素抵抗程度显著降低,下丘脑Aβ42与p-Tau阳性表达减少,GSK-3α与GSK-3β蛋白表达降低,且p-EA组治疗效果优于EA组,p-EA组与EA 组p-Tau阳性表达结果无明显差异㊂在中枢微量注入PI3K抑制剂LY294002的条件下,电针防治效应被阻断,EA+b组㊁p-EA+b组大鼠的FPG㊁FINS与IRI升高,Aβ42与p-Tau阳性表达聚集数量多㊁着色深,且GSK-3α与GSK-3β蛋白表达增加,说明电针对IR大鼠认知功能损伤的防治效应或可通过PI3K/Akt信号通路实现㊂这与我们前期研究中发现,电针调节PI3K/Akt信号通路相关分子活性,从而促进改善IR大鼠学习记忆能力的实验结果相一致㊂然而CSF组大鼠在经过电针治疗后,下丘脑GSK-3α与GSK-3β蛋白表达增加的同时,Aβ42与p-Tau阳性表达聚集数量减少㊁着色浅,且外周血FPG㊁FINS及IRI水平降低㊂考虑PI3K/Akt信号通路不是参与针灸防治IR认知功能损害的唯一途径,因此电针防治胰岛素抵抗相关认知功能损伤的作用机制值得更进一步的研究㊂参考文献:[1]㊀BIESSELS GJ,REAGAN LP.Hippocampal insulin resistanceand cognitive dysfunction[J].Nat Rev Neurosci,2015,16:660-671.[2]㊀杨莘,乔雨晨,吴晓光,等.不同护理干预方法在轻度认知功能障碍患者中的应用效果[J].中华护理杂志,2012,47(1):77-79.[3]㊀GRAY SM,MEIJER RI,BARRETT EJ.Insulin regulates brainfunction,but how does it get there?[J].Diabetes,2014,63(12):3992–3997.[4]㊀莫巍,钱国锋.二甲双胍对高脂诱导胰岛素抵抗大鼠空间认知㊁学习记忆及脑能量代谢的影响[J].中国老年学杂志,2014,34(10):2813-2816.㊀㊀㊀[5]㊀李娜,康建华,杨立顺.阿尔茨海默病(AD)患者外周血Aβ42及Aβ40的变化研究[J].中国实验诊断学,2016,20(10):1664-1664.[6]㊀姜美驰,梁静,张玉杰,等.针刺 四关 穴对阿尔茨海默病大鼠学习记忆及海马区β淀粉样蛋白42㊁白介素-1β和白介素-2的影响[J].针刺研究,2016,41(2):113-119.[7]㊀黄晓巍,王艳玲,李哲,等.鹿茸多肽对冈田酸致大鼠海马神经元损伤时Tau㊁Bcl-2和Caspase-3表达的影响[J].吉林大学学报(医学版),2017,43(1):26-33.[8]㊀HALLSCHMID M,HATKE A,et al.Intranasal insulin improvesmemory in humans[J].Psychoneuroendocrinology,2004,29(10):1326-1334.[9]㊀李忠仁.实验针灸学[M].北京:中国中医药出版社,2003:334-336.[10]㊀MANNERAS L,JONSDOTTIR IH,HOLMANG A,et al.Low-frequency electro-acupuncture and physicalexercise improvemetabolic disturbances and modulate gene expression in adiposetissue in rats with dihydrotestosterone-induced polycystic ovarysyndrome[J].Endocrinology,2008,149(7):3559-3568. [11]㊀刘凌云,马媛媛,李欣,等.缺氧诱导因子-1α在老年性痴呆模型鼠海马中的表达[J].中国老年学杂志,2010,30(8):1104-1106.[12]㊀孙超峰,殷艳蓉,吕颖,等.自发性高血压大鼠下丘脑视上核和室旁核γ-adducin表达的增龄改变及高盐摄入的影响[J].第四军医大学学报,2007,28(17):1563-1566. [13]㊀MA L,WANG J,LI Y.Insulin resistance and cognitivedysfunction[J].Clin Chim Acta,2015,444:l8-23. [14]㊀CHIRANJIB CHAKRABORTY,SANJIBAN S.ROY,MINNA J.HSU,et ndscape Mapping of Functional Proteins in InsulinSignal Transduction and Insulin Resistance:A Network-BasedProtein-Protein Interaction Analysis[J].PLoS One,2011,6(1):e16388.[15]㊀QUAN Q,WANG J,LI X,et al.Decreases Api-42Level byUpregulating PPARγand IDE Expression in the Hippocampus ofa Rat Model of Alzheimer's Disease[J].PLoS One,2013,8(3):e59155.[16]㊀YIN QQ,PEI JJ,XU S,et al.Pioglitazone Improves CognitiveFunction via Increasing Insulin Sensitivity and StrengtheningAntioxidant Defense System in Fructose-Drinking InsulinResistance Rats[J].PLoS One,2013,8(3):e59313. [17]㊀WANG H,ZHANG Q,WEN Q,et al.Proline-rich Akt substrate of40kDa(PRAS40):a novel downstream target of PI3k/Akt signalingpathway[J].Cell Signal,2012,24(1):17-24.[18]㊀王静蓉,张玉杰,姜美驰,等.艾灸对AD大鼠学习记忆㊁GSK-3β和磷酸化tau蛋白的影响[J],中国中医基础医学杂志,2015,21(10):1287-1292.收稿日期:2020-07-27(上接第744页)[8]㊀周平生,贾冬梅,程仕萍.类风湿性关节炎骨破坏的中医药研究进展[J].辽宁中医杂志,2016,43(11):2446-2449. [9]㊀程仕萍,贾冬梅,周平生,等.基于文本挖掘的中医药治疗类风湿关节炎骨破坏用药规律[J].中医杂志,2016,57(11):970-974. [10]㊀李建波,张莉,张洁.药对配伍理论及相关研究概述[J].中医杂志,2013,54(15):1335-1340.[11]㊀吴坚,高想,朱金凤,等.国医大师朱良春教授痹证临诊三要诀[J].中华中医药杂志,2017,3(32):1087-1089. [12]㊀葛琳,梁军,张华东.类风湿关节炎继发骨质疏松症病机探析[J].中华中医药杂志,2011,26(1):100-102.[13]㊀吕泽康,李翊森. 培补肾阳汤 方义与应用体会[J].环球中医药,2015,12(8):1509-1510.[14]㊀朱良春.临床中医[M].北京:中国中医药出版社,2008:113.[15]㊀缪希雍.神农本草经疏[M].太原:山西科学技术出版社,2012:286.[16]㊀朱良春.朱良春医集[M].长沙:中南大学出版社,2012:183.[17]㊀LIU L-C,LU M-C,WANG S-Y,et al.Association of use ofrehabilitation services with development of osteoporosis amongpatients with rheumatoid arthritis:a nationwide population-basedcohort study[J].Osteoporos Int,2018,29(8):1897-1903.收稿日期:2020-06-15。

罗格列酮对内毒素诱导气道MUC5AC表达的调控

罗格列酮对内毒素诱导气道MUC5AC表达的调控
MUC5 AC mRNA 表达 呈 正 相 关 ( r分 别 为 0 8 l 0 8 3 P< 0 0 ) I 一0浓 度 与 MUC5 . 5 ,. 0 。 . 5 ;L 1 AC mRNA
表 达 呈 负相 关( r为一 0 8 2 P 0 0 ) . 1 , < . 5 。给 予低 、 、 剂 量 罗格 列酮 干 预 后 , 组 、 中 高 D E组 和 F组 B L A F 中 TN — F a浓度 及 MU 5 C 蛋 白、 NA 表 达 均逐 渐 降 低 ,L 1 C A mR I 一O水 平逐 渐 升 高 , 组 间 差 异 有 统 计 各 学意义( P均 < O 0 ) . 5 。结 论 罗格 列 酮对 内毒 素 诱 导 的 气道 黏 液 高分 泌 有 拮 抗 作 用 , 具 体 机 制 可 能 其
致 大 鼠 气道 MUC AC表 达 的 影 响及 其 机 制 。方 法 将 3 5 6只雄 性 S 大 鼠 随 机 分 为 生 理 盐 水 对 照 组 D ( 组 ) 罗格 列 酮对 照 组 ( A 、 B组 ) 脂 多糖 组 ( P 、 L S组 ) C组 ) 以及 低 、 、 剂量 罗格 列 酮 组 ( ( 、 中 高 D组 、 组 E 和 F组 ) 。采 用酶 联 免 疫 吸 附 测 定 ( L S 法 检 测 支 气 管 肺 泡 灌 洗 液 ( AL ) E l A) B F 中肿 瘤 坏 死 因子 一 a ( NF a 、 T — ) 白细 胞 介 素一 p I 一 B 和 I — O浓度 。免 疫 组 化 染 色及 实 时 荧 光 定 量 逆 转 录一 C 检 测 气 n a g—a Zh n e g, n a — ig.De a t n f Rep r tr d — ja, a g Xin y n, a g Ch n Fe g Du n z n p rme t s iao y Me i o

糖尿病视网膜病变与血-视网膜屏障损伤机制研究进展

糖尿病视网膜病变与血-视网膜屏障损伤机制研究进展

第39卷第3期20 2 1年3月中华中医药学刊C H I N E S E A R C H I V E S O F T R AD I T I O N A L C H I NE S E M E D I C I N EVol. 39 No. 3Mar. 2 0 2 1D()I:10. 13193/j.issn. 1673-7717.2021.03.027糖尿病视网膜病变与血-视网膜屏障损伤机制研究进展张瀚文,石岩(辽宁中医药大学,辽宁沈阳110847)摘要:糖尿病视网膜病变(diabetic retinopathy,D R)是糖尿病较常见的并发症之一,是成人致盲的主要原因,严重影 响糖尿病患者的生存质量。

对于D R的发病机制研究目前尚未完善,相关假说涉及到血流动力学改变、血管内皮生长因 子表达、晚期糖基化终产物增多、氧化应激反应等。

血-视网膜屏障(blood- retina barrier,B R B)是由内皮细胞间的紧密 连接、周细胞、色素上皮细胞等组成的具有选择性滤过的组织,起到保护视网膜细胞、视神经并提供稳定代谢环境的作 用。

B R B的结构破坏和通透性增加是D R的重要病理改变之一,从B R B的生理病理机制、宏观及微观变化两方面详细 探讨D R中B R B的损伤机制,以期待为D R的临床病机及治疗手段提供更多的方向。

关键词:糖尿病视网膜病变;血-视网膜屏障;发病机制;生理结构;病理变化;视网膜内皮细胞;周细胞;Miiller细胞 中图分类号:R259.872 文献标志码:A文章编号:1673-7717(2021 )034105名5Recent Progress on Diabetic Retinopathy and Mechanism of Blood - Retinal Barrier InjuryZ H A N G H a n w e n,S H I Y a n(Liaoning University of Traditional Chinese Medicine, Shenyang 110847 ,Liaoning, China)Abstract:Diabetic retinopathy(D R)is one of the most c o m m o n complications of diabetes.I t is the m a i n cause of adult blindness a n d seriously affects the quality of life of diabetic patients.T h e study o n the pathogenesis of D R has not yet b e e n c o m­pleted,a n d the relevant hypothesis involves h e m o d y n a m i c c h a n g e s,expression of vascular endothelial growth fartor(V E G F) ,in­creased of glycosylation e n d products(A G E s),oxidative stress reaction,etc.T h e blood —retina barrier(B R B)is a selectively filtered tissue c o m p o s e d of tight junctions between endothelial cells,pericytes,pigment epithelial cells,etc. ,whi c h protects reti­nal cells,optic nerves a n d provides a stable metabolic environment.T h e role of B R B in structural destruction a n d permeability increase is o n e of the important pathological changes of D R.In this p a p e r,the d a m a g e m e c h a n i s m of B R B in D R w a s discussed in detail from the physiological a n d pathological m e c h a n i s m s as well as macroscopic a n d microscopic changes of B R B,in order to provide m o r e directions for the clinical pathogenesis a n d treatment of D R.K e y w o r d s:diabetic retinopathy;blood —retinal barrier;pathogenesis;physiological structure;pathological c h a n g e s;retinal endothelial cells;pericytes;Muller cells糖尿病视网膜病变(diabetic retinopathy,D R)是由于糖尿 病患者糖代谢功能障碍导致的眼部视网膜微循环持续病变的 眼部疾病,是糖尿病较常见的并发症之一。

罗格列酮对尿酸诱导HPMC表达炎症因子的影响

罗格列酮对尿酸诱导HPMC表达炎症因子的影响
13 细胞 及 实验 分 组 . 人 腹 膜 间皮 细胞 株 ( 中山 大 学
水平检测整合素 连接激 酶 (L 、 IK) 转化 生长 因子 一p 1
(G T F—B ) 达 变 化 , 察 尿 酸 诱 导 人 腹 膜 间 皮 细 胞 1表 观
( P C 的炎症效 应。 已有研 究证 实 , 鼠腹膜 问皮 H M ) 大 细胞结构性地 表达 P A ,P R~ 配体 可显著抑 P R— P A 制脂多糖 ( P ) 导的 C 4 R A和 IA 一1 白 LS 介 D 0m N CM 蛋
的表 达 , 提示 大 鼠腹 膜 间皮 细 胞 功 能 性 表 达 P A — PR
s n l g公 司 ) i ai g n 。
段就出现 高尿酸血症 ; 连续性非卧床腹膜透析 ( A D) CP 患者血清 、 腹膜 透 析灌 洗液 中尿 酸水 平 皆异常 升 高。
我们 假 设 , 酸 可 以影 响 腹 膜 问皮 细 胞 的生 理 功 能 , 尿 进
12 仪 器 .
C, O 培养 箱 ( e es 司 ) 医用净化 工 Hr u 公 a , ;
【 关键词 】 罗格列 酮; 酸;炎症因子 尿
尿酸是多种代谢性疾病 、 心脑血管疾病 、 肾病预后 的独立危险因素 …。从 细胞分子水平上进一步深入研
究发现 , 酸能够 活化血管 平滑肌细胞 、 尿 内皮细胞 , 产
生 活 化 因子 。 慢性 肾病 患 者 在 肾小 球 滤 过 率 下 降 阶
作台( S O,igpr) E IA分析系统 ( oMa r, E C Snao ; LS e Sf xPo t D ul ) Bo g t t 低温高速离心机 ( 国H res og s ; iueSr o a f as 德 e u a

PPARγ在慢性免疫性炎症疾病中的作用

PPARγ在慢性免疫性炎症疾病中的作用

来调节。

如果少阳之气不升,就要求助于中焦脾胃。

故方中以干姜、桂枝之辛温升散,合黄芩之苦寒降泄,寒温并用,辛开苦降,使中焦气机调畅,升降有序,少阳之气自然就随之升发出来了。

3.3 瓜蒌根、牡蛎 清热生津,软坚散结。

瓜蒌根苦寒泄热,甘寒生津〔1〕。

牡蛎咸能软坚,寒能清热。

阴伤有热或下焦湿热壅盛,逐水散邪又恐有伤阴之虞时,仲景常以此两味相伍,而取清热生津,软坚散结之效。

如瓜蒌牡蛎散、牡蛎泽泻散等。

本汤证除有枢机不利、气机不畅之主证外,尚有邪陷化热、损伤津液之兼证,故方中用此两味于病机甚合,同时还可牵制干姜、桂枝之温燥。

综上所述,本汤证病机虚实并存,寒热互见。

既有邪入少阳,枢机不利,气机郁滞,郁而化热之实证、热证,又有汗下失宜,折损稚阳,相火式微,水饮微结之虚证、寒证。

病在少阳,又有内陷三阴之机转。

治疗上虚实兼顾,寒热并用,刚柔相济。

方中柴胡、黄芩枢转少阳之邪;干姜、桂枝、甘草温养相火,使三焦恢复决渎之职,水道通行,水津四布,饮邪得除;干姜、黄芩相伍,寒温并用,辛开苦降,使中焦升降有序,助少阳之气升达,以防邪入三阴而致阴证迭起;瓜蒌根、牡蛎清热生津,软坚散结,还可牵制姜桂之刚燥。

方药的构成亦反映了本证复杂的病机。

【参考文献】〔1〕 刘力红.思考中医⁃对自然与生命的时间解读[M ].桂林:广西师范大学出版社,2002:424.(收稿日期:2010⁃01⁃27 修回日期:2010⁃04⁃19)PPAR γ在慢性免疫性炎症疾病中的作用 作者单位:610500成都,成都医学院第一附属医院心血管内科通讯作者:梁红亮,E ⁃mail :popoliang2000cn@魏 倩,梁红亮,王昌明,李晓辉[关键词] PPAR γ;慢性免疫性炎症疾病;支气管哮喘;炎症性肠病;类风湿性关节炎中图分类号 R 364.5 文献标识码 A文章编号 1004⁃0188(2010)11⁃1268⁃03 doi :10.3969/j.issn.1004⁃0188.2010.11.054过氧化物酶体增殖物激活受体⁃γ(peroxisome proliferator activated receptors γ,PPAR γ)是一类由配体激活的核转录因子,属Ⅱ型核受体超家族成员,活化后可以调控多种核内靶基因的表达,具有多种生物学效应。

西格列汀联合罗格列酮对2型糖尿病患者糖脂代谢及安全性的影响

西格列汀联合罗格列酮对2型糖尿病患者糖脂代谢及安全性的影响

西格列汀联合罗格列酮对2型糖尿病患者糖脂代谢及安全性的影响方怀远DOI :10.19522/ki.1671⁃5098.2020.09.045作者单位:350007福建省福州市第二医院内分泌科2型糖尿病是由多种病因导致体内胰岛素分泌不足或机体不能有效利用胰岛素,进而引起血糖升高,诱发大血管、微血管、神经等功能发生病变[1]。

西格列汀是一种降糖药,主要针对2型糖尿病患者,其作用是能够有效刺激人体内胰岛分泌胰岛素,同时还可以缓解胰岛素抵抗的现象,使体内的胰岛对糖分代谢的功能恢复[2]。

而罗格列酮也是一类降糖药,可加大胰岛素敏感功能,提升细胞利用葡萄糖的能力,达成降低血糖的功效[3]。

基于此,本研究主要是探讨西格列汀联合罗格列酮对2型糖尿病患者糖脂代谢及安全性的影响,现报告如下。

1资料与方法1.1临床资料:本研究经我院医学伦理委员会批准,选取2019年1月至12月在我院诊治的80例2型糖尿病患者,纳入标准:①口服葡萄糖耐量试验后2h 血糖值≥11.1mmol/L ;国L 。

排除标准:①存在严重性并发症;②心肺等功能存在不全者;③对西格列汀或罗格列酮过敏者。

随机分为2组对照组40例和观察组40例。

对照组女性22例,男性18例,年龄35~68岁,平均(43±5)岁;病程2~7年,平均(4.4±1.2)年;体质量指数(BMI )24.89~31.58kg/m 2,平均(27.6±3.0)kg/m 2。

观察组女性20例,男性20例,年龄37~66岁,平均(43±5)岁;病程1.5~6.0年,平均(4.1±1.2)年;BMI 25.03~32.14kg/m 2,平均(27.8±3.1)kg/m 2。

2组一般资料对比,差异无统计学意义(P >0.05),研究有可对比性。

患者并家属均已自愿签订知情同意书。

1.2方法:对照组采用罗格列酮联合二甲双胍治疗,口服罗格列酮片(成都恒瑞制药有限公司,国药准字H20041422,规格:每片4mg ),每次4mg ,每日2次;同时,服用盐酸二甲双胍片(寿光富康制药有限公司,国药准字H20066996,规格:每片0.85g ),每次0.5g ,每日2次,持续治疗15周。

PPAR-γ作用及其相关信号转导途径

PPAR-γ作用及其相关信号转导途径

万方数据 万方数据 万方数据 万方数据 万方数据PPAR-γ作用及其相关信号转导途径作者:陈永熙, 王伟铭, 周同, 陈楠, Yong-Xi Chen, Wei-Ming Wang, Tong Zhou, Nan Chen作者单位:上海交通大学医学院附属瑞金医院肾内科,上海,200032刊名:细胞生物学杂志英文刊名:CHINESE JOURNAL OF CELL BIOLOGY年,卷(期):2006,28(3)被引用次数:86次1.Rocchi S查看详情 19992.Sundvold H查看详情 20013.Rosen ED查看详情 20024.Fajas L查看详情 19985.Tautenhahn A查看详情 20036.Werman A查看详情 19977.Hah J查看详情 20008.Hsi LC查看详情 20019.Nolte RT查看详情 199810.Zingarelli B查看详情 200511.Li M查看详情 200012.Li Q查看详情 2002(02)13.Bohrer H查看详情 199714.Ghosh S查看详情 199815.Straus DS查看详情 200016.Chung SW查看详情 200017.Sanchez-Hidalgo M查看详情 200518.Desvergne B查看详情 199919.Guan Y查看详情 200120.Tontonoz P查看详情 199821.Bruemmer D查看详情 200322.Delerive P查看详情 199923.Marx N查看详情 199924.Verrier E查看详情 200425.Fan WH查看详情 200026.Fu M查看详情 200127.Bendixen AC查看详情 200128.Goetze S查看详情 200229.Anandharajan R查看详情 200530.Hegyi K查看详情 200431.Mynatt RL查看详情 200132.Chinetti G查看详情 200433.Yamauchi T查看详情 200334.Tomas E查看详情 200235.Moraes LA查看详情 200536.Farrow B查看详情 200337.Koga H查看详情 200138.Rumi MA查看详情 200139.Jung TI查看详情 200540.Hong JH查看详情 200541.Vidal-Puig AJ查看详情 199742.Wachtershauser A查看详情 200043.Ricote M查看详情 19981.陈超猪ATF4基因遗传多态性及启动子区域研究[学位论文]硕士 20112.刘江惠,李金梅,左连富,郭建文,刘亮,王静食管鳞癌组织PPARγ和MMP-7蛋白表达临床意义的探讨[期刊论文]-中华肿瘤防治杂志 2009(01)3.徐存拴,唐自阔PPAR-γ偶联的信号通路可能参与大鼠肝再生[期刊论文]-基础医学与临床 2008(08)4.戚筠,杨杨吡格列酮联用二甲双胍对新发2型糖尿病FIns、HOMA-IR和ISI指标的影响[期刊论文]-中国现代药物应用 2013(08)5.闫春芳,孙斌,尹晓艳PPAR-γpro12ala基因多态性与甲状腺相关性眼病的相关性研究[期刊论文]-中国当代医药2012(11)6.罗先钦,徐晓玉,黄崇刚,伍小波,刘剑毅,兰波,徐嘉红决明子总蒽醌对酒精性脂肪肝大鼠肝组织脂质过氧化与PPAR-γ表达的影响[期刊论文]-中国中药杂志 2011(12)7.刘杰,蔡颖,冯彦景,刘遂心运动对胰岛素抵抗小鼠PPAR-γ、Glut-4表达的影响[期刊论文]-心血管康复医学杂志 2012(06)8.陈彦平,杨凯成,梁玉林,杨会钗,王小玲PPARγ和PCNA在口腔鳞癌组织的表达及临床意义[期刊论文]-第三军医大学学报 2011(16)9.赵丽荣,苏秀兰,陈良光,王立平PPAR-γ及PGC-1的作用机制及基因多态性研究进展[期刊论文]-内蒙古医学院学报 2010(04)10.刘江惠,李金梅,左连富,郭建文,刘亮,王静食管鳞癌中PPARγ和MMP-7的表达及其意义[期刊论文]-河北医科大学学报 2009(01)11.陈心,成蓓,王洪星,何平,葛晶渥曼青霉素阻断罗格列酮对人巨噬细胞酰基辅酶A:胆固醇酰基转移酶-1表达的影响[期刊论文]-实用医学杂志 2008(07)12.赵唯含,余轶群,刘丽娟,王允亮,毛堂友,李军祥壳脂胶囊对非酒精性脂肪性肝炎大鼠肝组织PPAR-γ、IR的作用研究[期刊论文]-中国中西医结合消化杂志 2014(09)13.郭睿,李昌平舒肝颗粒对非酒精性脂肪性肝病FFA、ADI、TNF-α的影响[期刊论文]-中国社区医师(医学专业)2012(10)14.郑清梅饲料中棉粕替代豆粕对草鱼生理机能影响及相关基因表达调控的研究[学位论文]博士 201015.周晶晶吡格列酮联合二甲双胍治疗2型糖尿病的疗效观察[期刊论文]-医学信息 2014(02)16.陈渝,卜淑敏全身垂直振动对去卵巢骨质疏松大鼠骨髓细胞PPAR γ和P-GSK-3β蛋白表达的影响[期刊论文]-中国运动医学杂志 2013(11)17.陈群群,王海彬,徐秋英,周驰,董路珏,霍少川,谢学儒痰瘀蕴结型股骨头坏死脂代谢异常的信号转导途径研究[期刊论文]-广州中医药大学学报 2013(05)18.潘琳,宋扬,王真乌梅丸治疗溃疡性结肠炎大鼠作用机制初探[期刊论文]-临床合理用药杂志 2015(13)19.杨凯成PPARγ和PCNA在口腔鳞癌组织中的表达及临床意义[学位论文]硕士 201120.李丽燕,马健飞,李志明,纪晓宁,孟彦,王力宁罗格列酮对肽聚糖作用下大鼠腹膜间皮细胞Toll样受体2表达的影响[期刊论文]-中华肾脏病杂志 2008(07)21.黄成,李俊,马陶陶PPAR-γ对肝纤维化相关信号转导途径的影响[期刊论文]-安徽医药 2008(05)22.阴瑞兰原花青素对高脂饮食大鼠胸主动脉壁PPARγ—NF-κB途径的影响[学位论文]硕士 200823.陈冬,陈明卫,杨宁宁,王佑民p38MAPK信号通路对骨骼肌胰岛素抵抗模型 GLUT4表达的研究[期刊论文]-安徽医药 2012(09)24.郭海平吡格列酮对STZ诱导的糖尿病大鼠胃和皮肤免疫损伤的抑制作用[学位论文]硕士 201025.陈心,成蓓,王洪星,何平,葛晶PPAR-γ对巨噬细胞ACAT-1表达的影响及可能的信号途径[期刊论文]-山东医药2009(27)26.刘晓海,董志,付洁民PPAR的结构及其与疾病的关系[期刊论文]-国外医学(药学分册) 2007(03)27.金日明营养素介导的PPARa通路对肠道屏障功能影响的研究[学位论文]硕士 201028.蔡玮PPAR-γ及CTGF对肝癌细胞生物学行为的影响及相互关系的探讨[学位论文]硕士 200829.罗先钦净肝脂胶囊对脂肪肝的预防作用及其机制研究[学位论文]硕士 200730.姜涛,姜峰奇,金日明,朱跃坤,朱安龙,朴大勋营养素介导的PPARa通路对肠道屏障功能影响的研究[期刊论文]-结直肠肛门外科 2012(02)31.张霞,贺琴,雷飞飞,李儒贵,谭华炳基于"炎症学说"的黄连解毒汤治疗代谢性相关性疾病研究进展[期刊论文]-国际中医中药杂志 2014(01)32.史婷婷,庄让笑,周红萍,王福根,邵益丹,蔡兆斌芹菜素对大鼠非酒精性脂肪性肝炎肝组织过氧化物酶体增殖物激活受体表达的影响[期刊论文]-中华肝脏病杂志 2015(02)33.黄琼,刘梦兰,刘云p21与肥胖关系的研究进展[期刊论文]-江苏医药 2013(21)34.胡忠慧吡格列酮对STZ诱导的糖尿病大鼠睾丸和垂体免疫损伤的抑制作用[学位论文]硕士 200935.陈红黄连解毒汤治疗糖尿病的机理研究[学位论文]硕士 201036.刘菲,舒丽,胡湘南,孙文娟吡格列酮衍生物CQMUHS-03对3T3-L1细胞增殖分化的影响[期刊论文]-中国药理学通报 2014(01)37.彭绍荣过氧化物酶体增殖物激活受体γ的研究进展[期刊论文]-南昌大学学报(医学版) 2010(12)38.程娟,杨雪琴银屑病与代谢综合征[期刊论文]-中华皮肤科杂志 2008(03)39.刘菲,舒丽,胡湘南,孙文娟吡格列酮衍生物CQMUHS-03对3T3-L1细胞增殖分化的影响[期刊论文]-中国药理学通报 2014(01)40.徐自强PPAR-γ激动剂对大鼠移植动脉慢性血管病变的影响[学位论文]硕士 200841.付红PPARγ基因Prol2Ala多态性与2型糖尿病的关联性研究的Meta分析[学位论文]硕士 201142.李健西杂牛PPARγ2、PGC-1α、MEF2C基因表达量及其与肌内脂肪含量、嫩度的相关分析[学位论文]硕士 201043.郭睿,李昌平PPAR-γ对非酒精性脂肪性肝病的作用[期刊论文]-西南军医 2008(06)44.李丽燕罗格列酮对肽聚糖作用下及高糖本身对大鼠腹膜间皮细胞TLR2表达的影响[学位论文]硕士 200845.陈心胰岛素和罗格列酮对酰基辅酶A:胆固醇酰基转移酶1表达的影响及机制研究[学位论文]博士 200846.李晓霞,孙新昱,张波人类脂联素与PPARγ相互作用的分子机制及与运动的关联性研究[期刊论文]-山东体育学院学报 2007(06)47.刘翔不同激活状态巨噬细胞和BMP2在鼓室硬化发生机制中的作用研究[学位论文]博士 200848.付红,孙宏,管永斌,刘春燕,孙雪峰,王丽萍过氧化物酶体增殖体激活受体家族基因多态性与2型糖尿病的关联性研究[期刊论文]-国际遗传学杂志 2011(02)49.郭睿舒肝颗粒对非酒精性脂肪性肝病PPAR-γmRNA的影响[学位论文]硕士 200950.刘守叶过氧化物酶体增殖物激活型受体γ在子痫前期胎盘组织中的表达及意义[学位论文]硕士 200951.江珊,李萍过氧化物酶体增殖物激活受体的心血管保护作用[期刊论文]-中国现代医学杂志 2012(16)52.江珊,李萍过氧化物酶体增殖物激活受体的心血管保护作用[期刊论文]-中国现代医学杂志 2012(16)53.赵丽荣PPARG2基因Pro12Ala多态与呼市地区汉族人群心肌梗死和肥胖的关系[学位论文]硕士 201054.于文光姜黄素防治小鼠实验性急性坏死性胰腺炎的研究[学位论文]硕士 201055.马丽葡萄籽原花青素对内皮细胞直接作用及对糖基化损伤内皮细胞的影响[学位论文]硕士 200756.孙利兵FAC及EGCG对CCl<,4>致小鼠肝纤维化的干预作用及其机制研究[学位论文]硕士 200957.王浩PPARγ激动剂吡格列酮对大鼠心肌缺血再灌注损伤保护作用的机制研究[学位论文]博士 200858.刘清霞大豆苷改善3T3-L1脂肪细胞胰岛素抵抗及其作用机制[学位论文]硕士 201459.覃秀桃吡格列酮对高脂血症大鼠缺血/再灌注心肌细胞膜流动性的影响[学位论文]硕士 200760.董建梅PPARα基因多态性及基因环境交互作用与代谢综合征关系研究[学位论文]硕士 201061.丁国锋三黄泻心汤对肥胖大鼠减肥作用机制及其对脂肪组织PPARγ基因表达的影响[学位论文]博士 2007引用本文格式:陈永熙.王伟铭.周同.陈楠.Yong-Xi Chen.Wei-Ming Wang.Tong Zhou.Nan Chen PPAR-γ作用及其相关信号转导途径[期刊论文]-细胞生物学杂志 2006(3)。

吡格列酮和罗格列酮对脂多糖诱导大鼠血管平滑肌细胞增殖的影响

吡格列酮和罗格列酮对脂多糖诱导大鼠血管平滑肌细胞增殖的影响

类新 的药物 , 其代表药为 罗格列酮 (oilao eRoi和 吡 rs i zn , s) gt
格列酮 (igi z n , I 。近年研究 发现此类 药在心 血管保 p lao eP O) o t
护、 炎症 形 成 的 抑 制 中起 关 键 作 用 l 。本 研 究 通 过 观 察 吡 格 _ 2 ]
( 2 2 ,8 7 h ; 1mg・L L S与 Po 1 1 , 0 u l 1 ,4 4 ,2 ) ③ 0 P i( , 0 1 0 mo ・
反应 。而 VS s MC 的增殖与迁移是 动脉粥样硬化发生 、 发展 的 重要环节 , 加速动 脉粥 样硬 化 的进 程 。胰 岛素 增敏 剂 一 一 可 噻唑烷二酮类 ( Z 药物 , 目前 临床上 治疗 2型糖 尿病 的 T D) 是
(P ) L Sc 。血流 中的 L S可损伤 内皮 细胞 、 P 血小板 , 至经破 甚 损 的 血 管 壁 直 接 作 用 于 血 管 平 滑 肌 细胞 ( ac l mot vsua s oh r
mucecl , S s , 致 其 增 殖 和迁 移 , 起 一 系列 心 血 管 sl el V MC ) 导 s 引
关 键 词 : 脂 多 糖 ; 血 管 平 滑 肌 细 胞 ; 增 殖 ; 吡格 列 酮 ; 罗 格 列 酮
目前 认 为 动 脉 粥 样 硬 化 (rh rsl oi; S 是 一 种 免 疫 ateoce ssA ) r
mmX1mmXlnr, l 均匀 种植 于瓶底 壁 , 入含 2 胎 牛 血 n 加 O

L ) 同作 用 7h 共 2。
12 3 M1r法测定 细胞增 殖 . . v
用 0 2 胰 蛋 白酶 消化 细 .5

高脂肪饮食促进TLR2_的表达促进3T3L1_脂肪细胞分泌IFN-γ_诱导胰岛素抵抗的发生及发展

高脂肪饮食促进TLR2_的表达促进3T3L1_脂肪细胞分泌IFN-γ_诱导胰岛素抵抗的发生及发展

17803.[9]㊀Li Wenfan ,Fan Pei ,Wang Xiaobo ,et al.Loganin alleviatesmyocardial ischemia -reperfusion injury through GLP -1R /NLRP3-mediated pyroptosis pathway [J ].Environmental Toxicology ,2023,38(11):2730-2740.[10]㊀Zhu Xiangmei ,Tan Yang ,Shi Yuhe ,et al.TMT -basedquantitative proteomics analysis of the effects of JiaweiDanshen decoction myocardial ischemia -reperfusion injury[J ].Proteome Science ,2022,20(1):17.[11]㊀Zhou Fuqiong ,Zhang Zhengguang ,Wang Meiyuan ,et al.Guanxin V attenuates myocardial ischaemia reperfusion in-jury through regulating iron homeostasis [J ].Pharmaceuti-cal Biology ,2022,60(1):1884-1898.[12]㊀Zhang Yu ,Zhu Yuming ,Wang Dong ,et al.Cardiac index :asuperior parameter of cardiac function than left ventricularejection fraction in risk stratification of hypertrophic cardio-myopathy [J ].Heart Rhythm ,2023,20(7):958-967.[13]㊀Xie Dina ,Guo Hanliang ,Li Mingbiao ,et al.Splenic mono-cytes mediate inflammatory response and exacerbate myo-cardial ischemia /reperfusion injury in a mitochondrial cell -free DNA -TLR9-NLRP3-dependent fashion [J ].Basic Re-search in Cardiology ,2023,118(1):44.ʌ文章编号ɔ1006-6233(2024)03-0405-07高脂肪饮食促进TLR2的表达促进3T3L1脂肪细胞分泌IFN -γ诱导胰岛素抵抗的发生及发展白继昌1,㊀谈力欣1,㊀刘赞朝1,㊀杨㊀洋1,㊀朱亚军2(1.河北省石家庄市第二医院,㊀河北㊀石家庄㊀0500002.河北省人民医院内分泌科,㊀河北㊀石家庄㊀050000)ʌ摘㊀要ɔ目的:探讨高脂饮食诱导胰岛素抵抗的机制,以及了解高脂饮食诱导胰岛素抵抗的脂肪细胞的表型变化㊂方法:雄性C57BL /6J 小鼠,给予正常饮食和高脂饮食㊂从正常饮食或高脂饮食喂养2周的小鼠中分离附睾脂肪组织㊂实时荧光定量RT -PCR 检测γ-干扰素(Interferon γ,IFN -γ)和toll 样受体2(toll -like receptor 2,TLR2)mRNA 的表达㊂流式细胞术来检测表达TLR2或IFN -γ的脂肪细胞的数量㊂苏木精-伊红染色分析胰腺组织㊂免疫组化分析脂肪组织中TLR2和IFN -γ的表达㊂FFA 或Zymosan A 处理3T3-L1脂肪细胞,并通过实时荧光定量RT -PCR 检测IFN -γ和TLR2mRNA 的表达㊂结果:对脂肪细胞中基因表达谱的分析表明,高脂肪摄入诱导了IFN -γ和TLR2的表达提高㊂流式细胞术分析显示存在共表达TLR2和IFN -γ的脂肪细胞(TLR2/IFN -γ脂肪细胞),与皮下脂肪组织相比,高脂肪摄入增加了内脏脂肪组织中TLR2/IFN -γ脂肪细胞的数量㊂游离脂肪酸通过TLR2信号增加3T3-L1脂肪细胞中IFN -γ的表达㊂结论:TLR2/IFN -γ脂肪细胞可能通过诱导内脏脂肪组织IFN -γ的表达,参与高脂诱导的胰岛素抵抗的发生㊂ʌ关键词ɔ㊀TLR2;㊀脂肪细胞;㊀IFN -γ;㊀胰岛素抵抗ʌ文献标识码ɔ㊀A㊀㊀㊀㊀㊀ʌdoi ɔ10.3969/j.issn.1006-6233.2024.03.010TLR2Mediates High -Fat Diet -Induced IFN -γSecretionand Insulin Resistance in 3T3L1AdipocytesBAI Jichang ,TAN Lixin ,LIU Zanchao ,et al(The Second Hospital of Shijiazhuang ,Hebei Shijiazhuang 050000,China )ʌAbstract ɔObjective :To explore the mechanism of insulin resistance induced by high -fat diet ,and to understand the phenotypic changes of adipocytes induced by high -fat diet.Methods :Male C57BL /6J mice were fed with normal diet or high -fat diet.Epididymal adipose tissue was isolated from mice fed with normaldiet or high -fat diet for 2weeks.The expression of interferon -γ(IFN -γ)and toll -like receptor 2(TLR2)mRNA was detected by real -time fluorescence quantitative RT -PCR.Flow cytometry was used to detect the㊃504㊃ʌ基金项目ɔ河北省2018年度医学科学研究重点课题计划项目,(编号:20180352)ʌ通讯作者ɔ朱亚军number of adipocytes expressing TLR2or IFN-γ.Pancreatic tissue was analyzed by hematoxylin-eosin stai-ning.The expression of TLR2and IFN-γin adipose tissue was analyzed by immunohistochemistry.3T3-L1 adipocytes were treated with FFA or Zymosan A,and the expression of IFN-γand TLR2mRNA was detected by real-time fluorescence quantitative RT-PCR.Results:Analysis of gene expression profiles in adipocytes showed that high-fat intake induced increased expression of IFN-γand TLR2.Flow cytometry analysis showed that there were adipocytes co-expressing TLR2and IFN-γ(TLR2/IFN-γadipocytes).Compared with subcutaneous adipose tissue,high fat intake increased the number of TLR2/IFN-γadipocytes in viscer-al adipose tissue.Free fatty acids increased the expression of IFN-γin3T3-L1adipocytes through TLR2sig-naling.Conclusion:TLR2/IFN-γadipocytes may be involved in high-fat-induced insulin resistance by in-ducing IFN-γexpression in visceral adipose tissue.ʌKey wordsɔ㊀TLR2;㊀Adipocyte;㊀IFN-γ;㊀Insulin resistance㊀㊀脂肪细胞通过调节细胞因子分泌在脂肪和葡萄糖代谢中发挥重要作用㊂脂肪细胞中细胞因子分泌调节的紊乱被认为是代谢综合征的发病机制[1]㊂此外,内脏区域脂肪细胞的过度积累与肿瘤坏死因子α( tumor necrosis factor a,TNF-α)的表达升高有关㊂与内脏脂肪堆积相关的脂肪细胞对细胞因子产生的异常调节似乎导致了代谢综合征中的血脂紊乱㊁高血压和葡萄糖不耐受㊂脂肪细胞的大小根据代谢条件而变化㊂这种特征实际上似乎是肥胖和代谢综合征发病机制的一个因素㊂这些细胞大小的变化伴随着甘油三酯合成㊁游离脂肪酸(FFA)产生和细胞因子产生的变化㊂较大的脂肪细胞倾向于分泌细胞因子IFN-γ和抵抗素,较小的脂肪细胞分泌脂联素[2]㊂因此,脂肪细胞的大小似乎是脂肪组织中细胞因子产生类型的组织学标志㊂研究表明,内脏脂肪的堆积而非皮下脂肪的堆积,是由于堆积的脂肪细胞分泌TNF-α增多而引起系统性胰岛素抵抗[3]㊂IFN-γ通过激活JAK/STAT途径减弱人类脂肪细胞中的胰岛素信号传导㊁脂质储存和分化[4]㊂因此,脂肪细胞根据脂肪组织的积聚位置调节细胞因子的产生,脂肪细胞的功能变化随后导致胰岛素抵抗㊂基因芯片分析发现,内脏区域聚集的脂肪细胞表达多种基因,尤其是蛋白酶基因家族,导致胰岛素抵抗的发生[5]㊂因此,了解积聚在内脏区域的脂肪细胞功能变化的潜在机制,了解分泌IFN-γ和其他细胞因子的细胞的特征是十分重要的㊂本研究的目的是确定哪些类型的脂肪细胞表达IFN-γ,并阐明内脏脂肪细胞功能变化与高脂肪摄入有关的机制㊂1㊀材料与方法1.1㊀从小鼠脂肪组织中分离脂肪细胞:从8周龄开始,给予雄性C57BL/6J小鼠(Charles River,MA)正常饮食或含有20%蛋白质㊁20%碳水化合物和60%脂肪的高脂肪饮食(Research Diet,New Brunswick,NJ)㊂14d后处死两组小鼠,此时对照组平均体重为25.1g,高脂喂养组平均体重为28.3g㊂取附睾㊁肠系膜或皮下脂肪组织,称重,用磷酸盐缓冲盐水冲洗,切碎,在含有4%牛血清白蛋白(BSA)和1mg/mL I型胶原酶(NITTA GELATIN,Osaka,日本)的Krebs-Ringer磷酸盐缓冲液(pH7.4)中37ħ消化60min㊂将消化的组织通过250μm尼龙网过滤以去除未消化的组织,并以400rpm离心4min㊂洗涤漂浮的脂肪细胞部分,并用70μm尼龙过滤器将大脂肪细胞与小脂肪细胞分离㊂1.2㊀细胞培养:3T3-L1细胞(American Type Culture Collection,美国)维持在含有25mM葡萄糖(DMEM-H)培养基(Sigma Chemicals,St.Louis,MO)的DMEM 中,该培养基补充有10%胎牛血清(Gemini Bio Prod-ucts,美国)和庆大霉素硫酸盐(Schering-Plough,美国),温度为37ħ,湿度为5%CO2/95%空气㊂3T3-L1脂肪细胞参照前面描述的方法分化㊂1.3㊀酶联免疫吸附试验(Enzyme-linked immunosor-bent assay,ELISA):将缺乏血清的3T3-L1脂肪细胞与由肉豆蔻酸盐和棕榈酸盐组成的FFAs混合物(Sigma Chemicals)或500μM Zymosan A(Wako Chemicals,Osa-ka,Japan)孵育,并根据制造商的说明书(BioLegend,美国)对培养基中的小鼠TNF-a进行测定㊂1.4㊀使用定量实时逆转录聚合酶链式反应(quantita-tive real-time reverse transcriptase-polymerase chain re-action,RT-PCR)测量mRNA水平:用ISOGEN(Nip-pon gene,日本)从附睾脂肪组织分离的脂肪细胞或3T3-L1脂肪细胞中分离总RNA㊂小鼠TLR2和TNF-a mRNA表达水平通过定量实时RT-PCR测定,基本上如前所述[6]㊂1.5㊀流式细胞仪分析:从脂肪组织中分离的脂肪细胞(1ˑ106个细胞)用4%多聚甲醛固定,PBS洗涤㊂将固定的脂肪细胞与2μg鼠Toll样受体2(toll-like re-㊃604㊃ceptor2,TLR2)单克隆抗体偶联的藻红蛋白(PE)( e-bioscience,美国)在Hanks平衡盐溶液(HBSS)中室温避光孵育60min㊂然后将小鼠TNF-α多克隆抗体(Rockland Immunochemicals,美国)偶联异硫氰酸荧光素(FITC)与含有0.1%皂甙(Wako chemicals,日本)的HBSS在室温下避光孵育脂肪细胞60min㊂细胞用PBS洗涤3次,用FACS流式细胞仪流式细胞仪( Becton-Dickinson)分析㊂使用与正常IgG缀合的PE 或FITC孵育的细胞作为阴性对照㊂1.6㊀TLR2的siRNA敲除:用5nmoL TLR2siRNA或Allstars阴性对照siRNA(Qiagen,德国)通过电穿孔转染3T3-L1脂肪细胞㊂处理后的细胞立即在37ħ,湿度为5%CO2/95%空气㊂然后对细胞进处理㊂1.7㊀苏木精-伊红染色和免疫组化分析:石蜡包埋后,切片(4μm厚度)用苏木精-伊红染色㊂使用Im-ageJ软件计算胰岛的大小㊂用抗TLR2和IFN-γ的特异性抗体(Santa Cruz,美国)进行免疫组织化学染色,以检测脂肪组织中的炎症因子和胰岛素途径蛋白表达㊂使用链霉亲和素过氧化物酶组织染色SP试剂盒检测抗体反应性㊂免疫组化阳性染色定义为黄棕色㊂1.8㊀统计分析:本研究的数据以平均值ʃSE的形式表示㊂均值之间差异的显著性通过使用Statistica软件(Tulsa,OK)的单向或双向方差分析和不平衡设计的Tukey检验进行评估,或通过使用Statview软件(Aba-cus Concepts,Berkeley)的双尾不配对Student t检验进行评估㊂P<0.05被认为是具有显著性差异㊂2㊀结㊀果2.1㊀高脂摄入小鼠附睾脂肪中脂肪细胞IFN-γ的表达与脂肪细胞肥大:为了解IFN-γ基因表达与脂肪细胞肥大的关系,分析了高糖摄入对小鼠脂肪组织中IFN-γ表达的影响㊂喂食高脂饮食2周的小鼠和喂食正常饮食的小鼠在口服葡萄糖负荷后血糖水平没有显著差异㊂胰岛素耐受试验表明,与对照组小鼠相比,喂食高脂肪饮食的小鼠胰岛素敏感性降低㊂(胰岛素负荷后30min,血糖水平分别为147.7ʃ30.9mg/dL和43.3ʃ32.0mg/dL㊂)与正常组相比,高脂饮食组小鼠附睾脂肪组织中IFN-γmRNA表达水平显著升高(图1A)㊂为了确定脂肪细胞中IFN-γmRNA表达与其大小的关系,我们使用胶原酶处理,然后用2%四氧化锇固定,测量了从附睾脂肪垫分离的脂肪细胞的直径㊂喂食高糖的小鼠中的大脂肪细胞数量高于喂食正常饮食的小鼠(图1B)㊂我们通过尼龙网筛过滤将分离的漂浮脂肪细胞分为两组㊂小脂肪细胞被定义为直径< 70μm,而大脂肪细胞则被定义为具有>70μm的直径㊂在喂食高脂肪饮食的小鼠中,两组细胞中的IFN-γmRNA表达水平均增加(图1C)㊂一个值得注意的发现是,高脂肪摄入在较大脂肪细胞中的影响比在较小脂肪细胞中更明显㊂这些结果表明,高糖摄入诱导脂肪细胞,特别是大脂肪细胞中IFN-γ的表达㊂图1㊀附睾脂肪组织和脂肪细胞的细胞大小和IFN-γmR-NA表达㊂从正常饮食或高脂饮食喂养2周的小鼠中分离附睾脂肪组织㊂(A)提取细胞总RNA,实时荧光定量RT-PCR检测IFN-γmRNA的表达㊂结果用18S r RNA表示㊂正常饮食喂养的小鼠附睾脂肪组织作为对照㊂(B)从附睾脂肪组织中提取的脂肪细胞用2%四氧化锇固定,并进行显微拍照㊂使用scion im-age软件测量脂肪细胞的直径㊂(C)从喂食正常饮食或高脂肪饮食2周的小鼠的附睾脂肪组织中分离脂肪细胞,并通过70μm尼龙过滤器分离大小脂肪细胞㊂从脂肪细胞中提取总RNA,并通过定量实时RT-PCR评估IFN-γmRNA的表达㊂通过18S rRNA对结果进行校正㊂使用来自喂食正常饮食的小鼠的小脂肪细胞作为对照㊂∗表示与正常食物喂养的小鼠相比, P<0.05㊂2.2㊀高脂肪饮食小鼠和正常饮食的小鼠在大脂肪细胞中基因表达谱的比较:为了阐明高脂肪摄入诱导分离脂肪细胞中IFN-γ表达的机制,我们使用微阵列分㊃704㊃析了高脂肪饮食小鼠和正常饮食小鼠的大脂肪细胞的基因表达谱㊂对喂食高脂肪饮食的小鼠脂肪细胞中表达显著增加的560个基因进行了进一步分析(图2)㊂在这些基因中,我们关注TLR2基因,因为它对免疫细胞中IFN -γmRNA 表达的影响[9]㊂为了确定TLR2表达对分离的脂肪细胞中IFN -γ表达的影响,我们使用流式细胞术来检测表达TLR2或IFN -γ的脂肪细胞的数量㊂在喂食正常饮食的小鼠的附睾脂肪组织中检测到表达TLR2的脂肪细胞㊂我们还观察到,在喂食高脂肪饮食的小鼠中,脂肪细胞的数量急剧增加(图3A )㊂在高脂肪摄入的小鼠中,表达IFN -γ的细胞数量也显著增加(图3B )㊂因此,我们试图确定表达TLR2的细胞是否也表达IFN -γ㊂流式细胞术分析清楚地检测到在所有小鼠中存在TLR2/IFN -γ共表达的脂肪细胞;然而,在高脂肪摄入的小鼠中,这些双阳性脂肪细胞的数量急剧增加(图3C -E )㊂因此,我们确定了TLR2和IFN -γ共表达的脂肪细胞的数量在小鼠中通过高脂肪摄入而增加㊂图2㊀正常饮食和高脂饮食喂养小鼠脂肪细胞中的差异表达基因图3㊀流式细胞术分析正常或高脂饮食小鼠附睾脂肪组织中表达TLR2/IFN -γ的脂肪细胞㊂从正常或高脂饮食喂养2周的小鼠中收集附睾脂肪组织,随后分离脂肪细胞㊂脂肪细胞用4%多聚甲醛固定,用PE 标记的抗小鼠TLR2抗体(FL2-H )和抗小鼠TIFN -γ抗体孵育,然后用FITC 标记的二抗(FL1-H )染色㊂从附睾脂肪组织制备的脂肪细胞暴露于PE 偶联的抗小鼠TLR2抗体(A )或抗小鼠INF -γ抗体,然后用FITC 连接的二抗染色(B )㊂(C )将从喂食高脂肪饮食的小鼠制备的脂肪细胞暴露于PE 缀合的抗兔正常IgG ,然后用FITC 连接的第二抗体染色作为阴性对照㊂来自喂食正常饮食(D )或高脂肪饮食(E )的小鼠的脂肪细胞暴露于PE 缀合的抗小鼠TLR2抗体和抗小鼠IFN -γ抗体,然后用FITC 连接的二抗体染色㊂2.3㊀TLR2/IFN -γ阳性脂肪细胞主要存在于内脏脂肪组织中:我们还检测了不同类型脂肪组织中TLR2/IFN -γ阳性脂肪细胞的比例(表1)㊂在附睾和肠系膜脂肪组织中,TLR2/IFN -γ阳性脂肪细胞的比例分别为脂肪细胞总数的7.0%和7.7%㊂皮下脂肪中TLR2/IFN -γ阳性脂肪细胞的比例较低(2.0%)㊂高脂肪饮食使附睾和肠系膜脂肪中TLR2/IFN -γ阳性脂肪细胞分别增加到26.9%和18.5%㊂但皮下脂肪(1.2%)中双阳性脂肪细胞比例无明显变化㊂这些结果表明,TLR2/IFN -γ阳性脂肪细胞主要存在于内脏脂肪中,其数量随着高脂摄入而增加㊂表1㊀在正常饮食和高脂饮食小鼠的不同脂肪组织中共表达TLR2和IFN -γ的脂肪细胞的数量脂肪组织附睾脂肪肠系膜脂肪皮下脂肪正常饮食7.0ʃ0.67.7ʃ3.3 2.0ʃ1.9高脂饮食26.9ʃ6.1∗18.5ʃ3.6∗1.2ʃ1.0㊀㊀注:从正常或高脂饮食喂养的小鼠中提取附睾㊁肠系膜和皮下脂肪组织,并分离脂肪细胞㊂4%多聚甲醛固定脂肪细胞,㊃804㊃加入PE 标记的抗TLR2抗体㊁抗IFN -γ抗体和FITC 标记的二抗孵育㊂流式细胞仪计数10000个细胞,计算TLR2/IFN -γ阳性细胞占总脂肪细胞的比例(%)㊂数值为3次独立实验的平均值ʃ标准差;∗表示与正常食物喂养的小鼠相比,P<0.05㊂2.4㊀高脂肪饮食对小鼠胰腺功能及炎症反应的影响:H&E 结果显示,与正常饮食小鼠相比,高脂饮食组小鼠的胰岛大小和空泡化有代偿性增加(图4A )㊂与正常饮食小鼠相比,高脂饮食诱导小鼠的胰岛面积显著增加(图4B )㊂免疫组织化学结果显示,与正常饮食小鼠相比,高脂饮食小鼠脂肪组织中TLR2和IFN -γ的表达显著提高(图4C -D)㊂图4㊀高脂肪饮食对小鼠胰腺功能及炎症反应的影响(A )H&E 染色胰腺切片㊂(B )胰岛面积㊂(C )不同组小鼠脂肪组织中TLR2的表达㊂(D )不同组小鼠脂肪组织中IFN-γ的表达㊂∗表示与正常食物喂养的小鼠相比,P<0.05㊂2.5㊀FFAs 诱导TLR2mRNA 表达,TLR2激动剂诱导3T3-L1脂肪细胞分泌IFN -γ:与喂食正常饮食的小鼠相比,喂食高脂肪饮食的小鼠的血浆FFA 水平增加(图5A )㊂为了确定TLR2表达是否有助于脂肪细胞中IFN -γ的表达,我们检测了FFA 水平对3T3-L1脂肪细胞中TLR2表达与IFN -γ表达的影响㊂用棕榈酸盐和肉豆蔻酸盐的混合物处理以时间依赖的方式诱导3T3-L1脂肪细胞中TLR2mRNA 的表达(图5B )㊂用已知的TLR2激活剂Zymosan A 处理也诱导3T3-L1脂肪细胞分泌IFN -γ(图5C )㊂为了分析TLR2表达对FFA 诱导的IFN -γ表达的影响,我们通过用TLR2特异性siRNA 预处理3T3L1脂肪细胞来敲低TLR2途径㊂在用对照siRNA 转染的3T3-L1脂肪细胞中,FFAs 诱导IFN -γmRNA 表达增加三倍㊂用TLR2特异性siRNA 处理使FFA 诱导的IFN -γmRNA 表达水平降低40%(图5D )㊂因此,我们得出结论,TLR2的表达通过培养的脂肪细胞中的受体激活引起IFN -γ的表达㊂图5㊀FFA 诱导3T3-L1脂肪细胞中TLR2和IFN -γ的表达3T3-L1脂肪细胞用含0.1%BSA 的DMEM -H 孵育过夜后,加入FFA (0.5m M 棕榈酸和0.5m M 肉豆蔻酸)或Zymo-san A (500ng /mL )孵育㊂(A )FFAs 刺激0㊁4㊁8h 后,提取细胞总RNA ,实时荧光定量RT -PCR 检测TLR2mRNA 的表达㊂用18S rRNA 基因表达量对结果进行校正㊂以0时刻的样品作为对照㊂(B )Zymosan A 孵育48h 后,收集条件培养基,ELISA 检测IFN -γ浓度㊂(C )3T3-L1脂肪细胞转染TLR2-siRNA 或control -siRNA 后,用或不用1mM FFA 处理4h ㊂提取细胞总㊃904㊃RNA,并通过定量RT-PCR评估IFN-γmRNA表达㊂结果用18S rRNA基因表达进行校正㊂使用对照siRNA处理的和用FFA未处理的脂肪细胞作为对照㊂∗,P<0.05㊂3㊀讨㊀论本研究的目的是了解小鼠脂肪细胞在高脂肪摄入导致胰岛素抵抗过程中的表型变化㊂本研究进行了微阵列分析,以全面比较喂食高脂肪饮食或正常饮食的小鼠中脂肪细胞的基因表达模式㊂本研究结果表明, TLR2和IFN-γ基因在高脂饮食的小鼠脂肪细胞中高度表达㊂流式细胞术分析鉴定出一组同时表达TLR2和IFN-γ蛋白的脂肪细胞㊂在喂食高脂肪饮食的小鼠中,共表达TLR2和IFN-γ的脂肪细胞的数量显著增加㊂附睾和肠系膜脂肪组织中共表达TLR2和IFN -γ的脂肪细胞数量也显著高于皮下脂肪组织㊂在3T3-L1脂肪细胞中,FFA(棕榈酸盐和肉豆蔻酸盐的混合物)诱导TLR2和IFN-γmRNA表达,而TLR2特异性siRNA抑制FFA诱导的IFN-γmRNA的表达㊂脂肪细胞分泌多种细胞因子,参与调节葡萄糖和脂质稳态㊂肥胖个体的脂肪细胞表现出分泌功能的改变,从而导致更高水平的细胞因子或促炎分子(包括TNFa㊁白细胞介素-6㊁血管紧张素原和抵抗素)的释放[7-8]㊂此外,Wada T等研究指出,Ⅰ型和Ⅱ型IFN 通过诱导不同的SOCS亚型诱导胰岛素抵抗,IL-6通过增强STAT3介导的3T3-L1脂肪细胞中SOCS3的诱导而协同增强IFN-γ诱导的胰岛素抵抗[9]㊂因此,我们重点研究了高脂肪摄入和脂肪细胞中IFN-γ表达之间的关系,以阐明IFN-γ在积聚的内脏脂肪组织中表与喂食正常饮食的小鼠相比,喂食高脂肪饮食的小鼠中的大脂肪细胞和小脂肪细胞都表达更高水平的IFN-γmRNA㊂先前已经表明,脂肪细胞肥大与胰岛素抵抗有关[10]㊂然而,脂肪细胞中TNFa基因的表达与胰岛素信号传导受损有关,而与脂肪细胞大小无关[11]㊂我们的研究结果表明,IFN-γ的表达在很大程度上取决于高脂肪摄入以及脂肪细胞肥大㊂微阵列分析表明,高脂肪饮食改变了大脂肪细胞中的各种基因㊂达诱导背后的机制㊂除了IFN-γ表达外,喂食高脂肪饮食的小鼠的脂肪细胞中TLR2基因表达水平显著增加㊂由于TLRs 在固有免疫和适应性免疫中的重要作用,其功能主要在免疫细胞中进行研究[12-13]㊂最近的研究表明,TLR2基因多态性的不同频率与胰岛素抵抗及其相关疾病的高风险显著相关[14]㊂这些观察结果以及我们的观察结果表明,脂肪组织中TLR2的表达可能与人类的胰岛素抵抗有关㊂棕榈酸酯是一种饱和脂肪酸,可激活TLR2并诱导促炎途径,导致肌管中的胰岛素抵抗[15]㊂在本研究中,发现FFA刺激显著增加了3T3-L1脂肪细胞中TLR2和IFN-γmRNA的表达水平,并且脂肪细胞中的TLR2表达的敲低未能通过FFA增加IFN-γ基因的表达㊂因此,脂肪细胞中的TLR2信号被认为是由FFA激活的㊂健康受试者的FFA升高会短暂诱导胰岛素抵抗,肌肉细胞中的FFA暴露会通过NF-κB 和蛋白激酶Cs激活炎症途径[16]㊂FFA水平的升高也可能激活脂肪细胞中的炎症途径,TLR2似乎通过诱导IFN-γ的产生来促进该途径㊂在本研究中,初步鉴定了内脏脂肪组织中共表达IFN-γ和TLR2的脂肪细胞,并且脂肪细胞的数量因高脂肪摄入而增加㊂共表达IFN-γ和TLR2的脂肪细胞可能是脂肪组织中的 病理 细胞,参与代谢综合征中胰岛素抵抗的发展㊂细胞的进一步表征将提供关于脂肪细胞在胰岛素抵抗发病机制中的作用的重要信息㊂ʌ参考文献ɔ[1]㊀Corvera S.Cellular heterogeneity in adipose Tissues[J].An-nu Rev Physiol,2021(83):257-278.[2]㊀Wentworth JM,Zhang JG,Bandala-Sanchez E,et al.Interfer-on-gamma released from omental adipose tissue of insulin-resistant humans alters adipocyte phenotype and impairs re-sponse to insulin and adiponectin release[J].Int Obes(Lond),2017,41(12):1782-1789.[3]㊀Hadrich F,Mahmoudi A,Chamkha M,et al.Olive leaves ex-tract and oleuropein improve insulin sensitivity in3T3-L1 cells and in high-Fat diet-treated rats via PI3K/AkT signa-ling pathway[J].Oxid Med Cell Longev,2023(2023): 6828230.[4]㊀McGillicuddy FC,Chiquoine EH,Hinkle CC,et al.Interferongamma attenuates insulin signaling,lipid storage,and differ-entiation in human adipocytes via activation of the JAK/STAT pathway[J].Biol Chem,2009,284(46):31936-44.[5]㊀Unoki H,Bujo H,Shibasaki M,Saito Y.Increased matrixmetalloproteinase-3mRNA expression in visceral fat inmice implanted with cultured preadipocytes[J].BiochemBiophys Res Commun,2006,350(2):392-398. [6]㊀Arko-Mensah J,Julian E,Singh M,et al.TLR2but notTLR4signalling is critically involved in the inhibition of IFN-gamma-induced killing of mycobacteria by murine macro-phages[J].Scand Immunol,2007,65(2):148-157. [7]㊀Muzurovic E,Cojic M,Stankovic Z,et al.Epicardial adipo-cyte-derived TNF-αmodulates local inflammation in pa-tients with advanced coronary artery disease[J].Curr Vasc㊃014㊃Pharmacol,2022,20(1):94-95.[8]㊀Luan D,Dadpey B,Zaid J,et al.Adipocyte-secreted IL-6sensitizes macrophages to IL-4signaling[J].Diabetes,2023,72(3):367-374.[9]㊀Wada T,Hoshino M,Kimura Y,et al.Both typeⅠandⅡIFN induce insulin resistance by inducing different isoformsof SOCS expression in3T3-L1adipocytes[J].Am PhysiolEndocrinol Metab,2011,300(6):1112-1123. [10]㊀Jung TW,Park HS,Choi GH,et al.β-aminoisobutyric acidattenuates LPS-induced inflammation and insulin resistancein adipocytes through AMPK-mediated pathway[J].Bi-omed Sci,2018,25(1):27.[11]㊀Nam SW,Kim MS,Han Y,et al.WJCPR11reverses theTNF-α-induced inhibition of adipocyte differentiation andglucose uptake[J].Biochem Biophys Res Commun,2021(578):150-156.[12]㊀Duan T,Du Y,Xing C,et al.Toll-like receptor signalingand its role in cell-mediated immunity[J].Front Immu-nol,2022(13):812774.[13]㊀Zhang ZD,Li HX,Gan H,et al.RNF115inhibits the post-ER trafficking of TLRs and TLRs-mediated immune re-sponses by catalyzing K11-linked ubiquitination of RAB1Aand RAB13[J].Adv Sci(Weinh),2022,9(16):2105391.[14]㊀Yim JJ,Ding L,Schaffer AA,et al.A microsatellite poly-morphism in intron2of human Toll-like receptor2gene:functional implications and racial differences[J].FEMSImmunol Med Microbiol,2004,40(2):163-9. [15]㊀Senn JJ.Toll-like receptor-2is essential for the develop-ment of palmitate-induced insulin resistance in myotubes[J].Biol Chem,2006,281(37):26865-26875. [16]㊀Itani SI,Ruderman NB,Schmieder F,et al.Lipid-inducedinsulin resistance in human muscle is associated with chan-ges in diacylglycerol,protein kinase C,and IkappaB-alpha[J].Diabetes,2002,51(7):2005-2011.ʌ文章编号ɔ1006-6233(2024)03-0411-06槐耳多糖调节SPHK1/S1P/S1PR3信号通路对宫颈癌细胞恶性生物学行为的影响李丽品,㊀马素艳,㊀安入征(河北省石家庄市平安医院肿瘤科,㊀河北㊀石家庄㊀050000)ʌ摘㊀要ɔ目的:探究槐耳多糖(HP)调节SPHK1/S1P/S1PR3信号通路对宫颈癌细胞恶性生物学行为的影响㊂方法:MTT检测槐耳多糖(0㊁25㊁50㊁100㊁200㊁400μg/mL)处理的宫颈癌细胞活力,筛选最佳药物浓度㊂实验分为对照组(Control组)㊁槐耳多糖低㊁中㊁高浓度组(HP-L㊁HP-M㊁HP-H组)和槐耳多糖高浓度+SphK1激活剂K6PC-5组(HP-H+K6PC-5组),观察细胞增殖㊁迁移和侵袭情况;west-ern blot检测SPHK1㊁S1P㊁S1PR3㊁Snail㊁N-cadherin㊁E-cadherin蛋白水平㊂结果:处理24㊁48㊁72h后,与0μg/mL比较,50μg/mL㊁100μg/mL㊁200μg/mL和400μg/mL的HP处理的细胞活力显著降低(P<0.05)㊂HP-L组㊁HP-M组和HP-H组细胞Edu阳性率㊁侵袭细胞数㊁划痕愈合率及Snail㊁N-cadherin㊁SPHK1㊁S1P㊁S1PR3水平显著低于Control组(P<0.05),E-cadherin水平显著升高(P<0.05)㊂HP-H+ K6PC-5组细胞Edu阳性率㊁侵袭细胞数㊁划痕愈合率及Snail㊁N-cadherin㊁SPHK1㊁S1P㊁S1PR3水平显著高于HP-H组(P<0.05),E-cadherin水平显著降低(P<0.05)㊂结论:HP可能通过抑制SPHK1/ S1P/S1PR3信号通路抑制宫颈癌细胞的增殖㊁侵袭和迁移㊂ʌ关键词ɔ㊀槐耳多糖;㊀SPHK1/S1P/S1PR3信号通路;㊀宫颈癌;㊀恶性生物学行为ʌ文献标识码ɔ㊀A㊀㊀㊀㊀㊀ʌdoiɔ10.3969/j.issn.1006-6233.2024.03.011Impacts of Polysaccharide of Trametes Robiniophila Murr on the Malignant Biological Behavior of Cervical Cancer Cells by Regulating theSPHK1/S1P/S1PR3Signaling PathwayLI Lipin,MA Suyan,AN Ruzheng㊃114㊃ʌ基金项目ɔ河北省中医药管理局科研计划项目,(编号:2010132)。

罗格列酮

罗格列酮

罗格列酮(文迪雅)在治疗糖尿病中的研究进展山东省微山县医院郑忠良高雪玲邮编277600随着人们生活水平的不断提高,以及社会经济的发展,及由此而产生的不良生活方式,使我国的糖尿病人数逐年增加。

而糖尿病是一个慢性疾病并发症多,为临床治疗带来了极大的挑战。

对2型糖尿病的治疗也是近几年全世界研究的热点,尤其在药物方面。

2型糖尿病患者存在胰岛素抵抗、β细胞功能减退,极易引起心血管并发症,加重2型糖尿病的负担。

因此,保持血糖的长期稳定预防心血管并发症始终是糖尿病治疗的重要目标。

而在糖尿病的治疗药物中罗格列酮的临床心血管作用个研究机构分歧较大,观察结果也不尽一致。

为此,笔者将近几年罗格列酮治疗糖尿病的有关研究,结合自己的临床应用体会总结如下。

一:罗格列酮的药理和临床罗格列酮是一种新型的口服抗糖尿病药物,化学结构属于噻唑烷二酮类,通过增强肌肉和脂肪组织对胰岛素的敏感性,抑制肝糖原产生而用于胰岛素抵抗的病人。

作用机制和药理作用罗格列酮可增加肌肉和内脏脂肪组织对胰岛素的敏感性,促进肝糖原合成并抑制肝糖异生,能明显降低患者的血糖、胰岛素水平;通过直接抑制肝甘油三酯合成和增加外周清除,能降低甘油三酯水平,从而减低2型糖尿病患者的心血管病变的危险性。

罗格列酮与过氧化物酶体增殖活化受体γ选择性高亲和力结合,通过调节多种基因的表达,增强内源性胰岛素作用,改善组织对葡萄糖的摄取,抑制肝糖产生,并降低基础胰岛素水平。

此外,罗格列酮可显著延长葡萄糖转运子1和葡萄糖转运子4的信使核糖核酸的半衰期,提高后者的稳定性,从而增加葡萄糖转运子的表达,提高胰岛素效能。

罗格列酮的生物利用度高达99%,血浆蛋白结合率达99.8%。

分布容积为17.6L,口服1小时血药浓度达峰值,半衰期约3.5小时。

罗格列酮主要在肝脏代谢清除,通过细胞色素P450(cytochromeP450,CYP)酶系中CYP2C8和CYP2C9两种酶作用脱甲基化和羟基化,分解为基本无活性的产物。

脂质代谢和糖代谢在PRRSV感染宿主细胞中作用研究进展

脂质代谢和糖代谢在PRRSV感染宿主细胞中作用研究进展

中国畜牧兽医 2024,51(4):1686-1695C h i n aA n i m a lH u s b a n d r y &V e t e r i n a r y Me d i c i n e 脂质代谢和糖代谢在P R R S V 感染宿主细胞中作用研究进展罗 琴1,2,刘宝玲1,乔常宏1,2,陈翔宇1,2,刘丁语1,王晓虎1,王 刚1,刘 昊2,蔡汝健1(1.广东省农业科学院动物卫生研究所,广东省畜禽疫病防治研究重点实验室,农业农村部兽用药物与诊断技术广东科学观测实验站,广州510640;2.佛山科学技术学院生命科学与工程学院,佛山528225)摘 要:猪繁殖与呼吸综合征病毒(P o r c i n e r e p r o d u c t i v ea n dr e s p i r a t o r y s y n d r o m ev i r u s ,P R R S V )感染可引起母猪繁殖障碍㊁仔猪呼吸道疾病及公猪精液质量下降,给世界养猪业造成了巨大的经济损失㊂P R R S V 不能自主复制,其生命周期的各个阶段均依赖于宿主的代谢系统㊂宿主细胞也可调节其代谢过程,以防止P R R S V 复制和维持其正常生理功能㊂脂质代谢和糖代谢在P R R S V 感染中均扮演了重要角色,P R R S V 作为一种囊膜病毒对脂质代谢系统的依赖性较其他代谢系统更强㊂脂质参与了P R R S V 生命周期的各个阶段,包括吸附㊁进入㊁复制㊁组装和释放,此外还与细胞炎症㊁免疫和凋亡有关㊂糖代谢也可干扰P R R S V 的生命活动,从而促进或抑制P R R S V 复制㊂文章综述了脂质代谢中脂肪酸㊁胆固醇㊁磷脂㊁脂滴和脂筏以及糖代谢中糖酵解和三羧酸循环在P R R S V 感染宿主细胞中的作用,以期为阐明P R R S V 的致病机制以及疫苗和抗P R R S V 药物的研发提供基本理论依据㊂关键词:猪繁殖与呼吸综合征病毒(P R R S V );宿主细胞;脂质代谢;糖代谢中图分类号:S 852.65+9.6文献标识码:AD o i :10.16431/j .c n k i .1671-7236.2024.04.036 开放科学(资源服务)标识码(O S I D ):收稿日期:2023-10-16基金项目:广东省省级科技计划项目(2023B 020*******);广州市农村科技特派员项目(20212100015);2021年英德市科技计划项目;云浮市云安区生猪产业园科技支撑和技术示范(动卫合经2022k 06-005);生猪智能化动物疫病防疫与诊疗系统(动卫合经2022k 11-006)联系方式:罗琴,E -m a i l :l u o q i n 121104@163.c o m ㊂通信作者刘昊,E -m a i l :l i u h a o _l h @h o t m a i l .c o m ;蔡汝健,E -m a i l :466866569@q q.c o m R e s e a r c hP r o g r e s s o n t h eR o l e o fL i p i dM e t a b o l i s ma n d G l u c o s eM e t a b o l i s mi nP R R S V -i n f e c t e dH o s t C e l l sL U O Q i n 1,2,L I U B a o l i n g 1,Q I A OC h a n g h o n g 1,2,C H E N X i a n g y u 1,2,L I U D i n g yu 1,WA N G X i a o h u 1,WA N G G a n g 1,L I U H a o 2,C A IR u ji a n 1(1.S c i e n t i f i c O b s e r v a t i o na n dE x p e r i m e n t a lS t a t i o no f V e t e r i n a r y D r u g s a n dD i a g n o s t i c T e c h n i q u e s o f G u a n g d o n g P r o v i n c e o f M i n i s t r y o f A g r i c u l t u r e a n dR u r a lA f f a i r s ,K e yL a b o r a t o r y o f L i v e s t o c ka n dP o u l t r y D i s e a s eP r e v e n t i o no f G u a n g d o n g Pr o v i n c e ,I n s t i t u t e o f A n i m a lH e a l t h ,G u a n g d o n g A c a d e m y o f A g r i c u l t u r a lS c i e n c e s ,G u a n gz h o u 510640,C h i n a ;2.S c h o o l o f L i f eS c i e n c e a n dE n g i n e e r i n g ,F o s h a nU n i v e r s i t y ,F o s h a n 528225,C h i n a )A b s t r a c t :P o r c i n e r e p r o d u c t i v ea n dr e s p i r a t o r y s yn d r o m ev i r u s (P R R S V )i n f e c t i o ni sk n o w nt o c a u s e r e p r o d u c t i v ed i s o r d e r s i ns o w s ,r e s p i r a t o r y d i s e a s e i n p i g l e t s ,a n dr e d u c es e m e n q u a l i t y in b o a r s ,r e s u l t i n g i ns i g n i f i c a n te c o n o m i cl o s s e st ot h e g l o b a l p i g i n d u s t r y.P R R S Vi su n a b l et o r e p l i c a t e o n i t s o w na n dr e l i e so nt h eh o s tm e t a b o l i c s y s t e mf o r a l l s t a g e so f i t s l i f ec yc l e .H o s t c e l l s ,i n t u r n ,r e g u l a t e t h e i rm e t a b o l i c p r o c e s s e s t oh i nde rP R R S Vr e pl i c a t i o na n d m a i n t a i nt h e i r4期罗琴等:脂质代谢和糖代谢在P R R S V感染宿主细胞中作用研究进展n o r m a l p h y s i o l o g i c a l f u n c t i o n s.B o t h l i p i dm e t a b o l i s ma n d g l u c o s em e t a b o l i s m p l a y c r u c i a l r o l e s i n P R R S Vi n f e c t i o n.A sa n e n v e l o p e d v i r u s,P R R S V i s p a r t i c u l a r l y r e l i a n to nl i p i d m e t a b o l i s m s y s t e m s.L i p i d sa r ei n v o l v e di nv a r i o u ss t a g e so ft h eP R R S Vl i f ec y c l e,i n c l u d i n g a d s o r p t i o n, e n t r y,r e p l i c a t i o n,a s s e m b l y a n d r e l e a s e,i t i s a l s oa s s o c i a t e dw i t hc e l l u l a r i n f l a m m a t i o n,i m m u n i t y a n d a p o p t o s i s.G l u c o s e m e t a b o l i s m c a n a l s o i n t e r f e r e w i t h P R R S V l i f e a c t i v i t i e s,t h e r e b y p r o m o t i n g o r i n h i b i t i n g P R R S Vr e p l i c a t i o n.T h er o l e so f f a t t y a c i d s,c h o l e s t e r o l,p h o s p h o l i p i d s, l i p i dd r o p l e t sa n dl i p i dr a f t si nl i p i d m e t a b o l i s m a r er e v i e w e d,a l o n g w i t ht h ei n v o l v e m e n to f g l y c o l y s i s a n d t h e t r i c a r b o x y l i c a c i d c y c l e i n g l u c o s em e t a b o l i s mi nP R R S V-i n f e c t e dh o s t c e l l s,s o t o p r o v i d e a t h e o r e t i c a l b a s i s f o r e l u c i d a t i n g t h e p a t h o g e n i cm e c h a n i s mo fP R R S Va n dc o n t r i b u t e t o t h e d e v e l o p m e n t o f v a c c i n e s a n d a n t i-P R R S Vd r u g s.K e y w o r d s:P o r c i n er e p r o d u c t i v ea n dr e s p i r a t o r y s y n d r o m ev i r u s(P R R S V);h o s tc e l l s;l i p i d m e t a b o l i s m;g l u c o s em e t a b o l i s m猪繁殖与呼吸综合征(p o r c i n e r e p r o d u c t i v e a n d r e s p i r a t o r y s y n d r o m e,P R R S)是由猪繁殖与呼吸综合征病毒(P o r c i n er e p r o d u c t i v e a n d r e s p i r a t o r y s y n d r o m e v i r u s,P R R S V)引起猪的一种高度传染性疾病㊂P R R S V主要导致妊娠母猪流产㊁产死胎㊁木乃伊胎,仔猪严重呼吸道疾病及公猪精液质量下降[1-2]㊂P R R S于1987年在美国首次报道,随后在北美和欧洲流行并逐渐蔓延至亚洲[3]㊂中国于1996年首次发现P R R S,此后全国各地均有该病报道[4]㊂2006年,高致病性猪繁殖与呼吸综合征病毒(H i g h l y p a t h o g e n i c p o r c i n e r e p r o d u c t i v e a n d r e s p i r a t o r y s y n d r o m ev i r u s,H P-P R R S V)在中国暴发,导致感染猪的病变更严重,死亡率更高[5]㊂P R R S对世界养猪业造成了巨大的经济损失,然而目前一直没有针对P R R S V的有效药物,商业疫苗提供的保护也有限,不断重组与变异的P R R S V使得P R R S防控形势更加严峻㊂因此,对P R R S V感染机制及防治方法的研究仍是世界范围内一项极为紧迫的任务㊂病毒作为细胞寄生物,不能自主复制,依赖宿主代谢提供能量和各类代谢产物完成复制等生命活动㊂脂质广泛分布于生物体中,不仅是细胞的重要组成成分,而且还参与了许多重要生理活动㊂作为细胞内寄生的病毒,脂质及其代谢在病毒生命周期中扮演着十分重要的角色㊂脂质几乎参与了甲型流感病毒(I n f l u e n z aAv i r u s,I A V)生命周期的所有阶段,包括I A V与宿主细胞的初始相互作用㊁膜融合㊁核的输入和输出以及协调病毒颗粒的组装和出芽[6]㊂病毒感染宿主细胞之后,脂质代谢也会发生相应的改变,如巨细胞病毒(C y t o m e g a l o v i r u s, C MV)感染细胞后脂质代谢中脂肪酸代谢的生物合成增加;反之,抑制脂肪酸的生物合成也可抑制C MV感染[7-8]㊂脂质代谢的改变在病毒感染中也发挥了重要作用,如在登革热病毒(D e n g u ev i r u s, D E N V)㊁寨卡病毒(Z i k av i r u s,Z I K V)㊁黄热病病毒(Y e l l o w f e v e rv i r u s,Y F V)和西尼罗病毒(W e s t N i l e v i r u s,WN V)感染期间,宿主胆固醇水平的调节促进了病毒的进入㊁复制复合物的形成㊁组装㊁释放及对Ⅰ型干扰素(i n t e r f e r o n-Ⅰ,I F N-Ⅰ)反应的控制[9]㊂同样,P R R S V作为一种囊膜病毒,其生命周期各阶段均与脂质代谢相关(图1),脂质代谢在P R R S V感染中也起着调控作用㊂病毒除了引起宿主细胞脂质代谢变化外,还可特异性干扰糖代谢途径㊂病毒可操纵宿主细胞内的糖代谢水平,从而为细胞生化反应提供能量,如Z I K V感染可增加三羧酸循环中的葡萄糖使用量,重编程宿主细胞中的葡萄糖代谢[10]㊂新型冠状病毒(S e v e r ea c u t er e s p i r a t o r y s y n d r o m ec o r o n a v i r u s 2,S A R S-C o V-2)在宿主细胞中的复制依赖于葡萄糖代谢的改变[11]㊂糖代谢在肠道病毒(E n t e r o v i r u s 71,E V71)复制中起着正向作用,抑制葡萄糖代谢E V71的复制也会受到抑制[12]㊂目前有关糖代谢在P R R S V感染中的研究还相对较少,大多针对P R R S V复制具有重要作用㊂作者就脂质代谢中脂肪酸㊁胆固醇㊁磷脂㊁脂滴和脂筏以及糖代谢中糖酵解和三羧酸循环在P R R S V感染宿主细胞中的作用进行综述,以阐明P R R S V的致病机制,对疫苗和药物研发具有重要意义㊂7861中 国 畜 牧 兽 医51卷F A ,脂肪酸(黄色);C h o l ,胆固醇(绿色);P L ,磷脂(浅紫);L D ,脂滴(棕色)F A ,F a t t y a c i d (y e l l o w );C h o l ,C h o l e s t e r o l (g r e e n );P L ,P h o s p h o l i p i d (l a v e n d e r );L D ,L i p i dd r o p l e t s (b r o w n )图1 脂质代谢在P R R S V 感染中的作用F i g .1 T h e r o l e o f l i pi dm e t a b o l i s mi nP R R S Vi n f e c t i o n 1 脂质代谢在P R R S V 感染中的作用1.1 脂肪酸在P R R S V 感染中的作用脂肪酸在多种病毒感染中都起到了重要作用㊂研究表明,干扰脂肪酸生物合成途径的药物对多种囊膜病毒具有抗病毒作用,包括人类巨细胞病毒(H u m a n c y t o m e g a l o v i r u s ,H C MV )[13]㊁乙型肝炎病毒(H e pa t i t i s B v i r u s ,H B V )[14]㊁丙型肝炎病毒(H e p a t i t i sCv i r u s ,H C V )[15]㊁人类免疫缺陷病毒(H u m a n i m m u n o d e f i c i e n c y vi r u s ,H I V )[16]和裂谷热病毒(R i f tV a l l e y f e v e r v i r u s ,R V F V )[17]等,证实了脂肪酸在囊膜病毒复制中的重要性㊂脂肪酸参与了P R R S V 的复制㊁组装和释放,并且与炎症和免疫反应有关㊂研究表明,G P 5和M 蛋白的棕榈酰化是病毒组装和出芽所必需的,脂肪酸能影响G P 5和M 蛋白的棕榈酰化,从而影响P R R S V 的组装与释放,表明脂肪酸对于P R R S V 的增殖至关重要[18]㊂5'-磷酸腺苷酸活化的蛋白激酶(5'-a d e n o s i n e m o n o p h o s ph a t e -a c t i v a t e d p r o t e i n k i n a s e ,AM P K )是一个调控能量代谢的关键分子,能够抑制脂肪酸合成限速酶乙酰辅酶A 羧化酶(a c e t y l -C o Ac a r b o x y l a s e1,A C C 1)的活性,从而抑制细胞内脂肪酸的合成代谢[19]㊂L o n g 等[20]研究证实,在P R R S V 感染过程中病毒通过AM P K 使A C C 1活性降低,从而抑制脂肪酸合成,且脂肪酸合成抑制剂C 75能够显著抑制P R R S V 增殖㊂熊玉剑[21]研究表明,P R R S V 及P R R S V N S P 4均能通过过氧化物氧化还原蛋白5(pe r o x i r e d o x i n 5,P R D X 5)调控AM P K -A C C 1信号通路,进而抑制脂肪酸合成,P R D X 5抑制P R R S V 增殖,并主要抑制P R R S V 的释放㊂此外,有研究发现中链脂肪酸(m e d i u m -c h a i n f a t t y ac id s ,M C F A s )能够抑制P R R S V 感染㊂Y a n g 等[22]检测了4种M C F A s 的细胞毒性及其对P R R S V 的抑制率,结果显示,在4种M C F A s 中,辛酸单甘酯(c a p r yl i c m o n o g l yc e r ide ,C MG )对细胞的毒性最小,而对P R R S V 的抑制率最高㊂经C MG 治疗后仔猪促炎细胞因子(白细胞介素6(i n t e r l e u k i n ,I L -6)㊁I L -8㊁I L -1β㊁I F N -γ㊁肿瘤坏死因子-α(t u m o r n e c r o s i s f a c t o r -α,T N F -α))水平显著下调,抗炎细胞因子(I L -10)水平显著上调㊂蓝俊虹[23]研究发现,α-单月88614期罗琴等:脂质代谢和糖代谢在P R R S V感染宿主细胞中作用研究进展桂酸甘油酯(α-g l y c e r o lm o n o l a u r a t e,α-GM L)具有显著抑制P R R S V的作用,作用机制主要是降低P R R S V的活力,减少P R R S V G P5与M蛋白及细胞受体C D163的表达,同时抑制N F-κB通路,并减少T N F-α的分泌㊂前列腺素E2(p r o s t a g l a n d i nE2,P G E2)来源于花生四烯酸,通过激活限速酶环氧化酶1/2型(c y c l o o x y g e n a s e t y p e1/2,C O X-1/2)在发热中起重要作用㊂H P-P R R S V可通过E R K1/2-p-C/E B P-β信号通路诱导C O X-1的表达,导致P G E2的增加[24]㊂H P-P R R S V N S P2还能够通过激活M E K1-E R K1/2-C/E B P-β信号通路诱导C O X-2上调,从而增加小胶质细胞中P G E2的产生[25]㊂1.2胆固醇在P R R S V感染中的作用胆固醇是真核细胞生物膜中的一种丰富的脂质,对需要生物膜来建立感染的病毒增殖中起着重要作用㊂S u n等[26]研究表明,用甲基-β-环糊精(m e t h y l-β-c y c l o d e x t r i n,MβC D)(一种用于去除细胞膜胆固醇的药物)预处理非洲绿猴肾上皮细胞(M a r c-145)可显著抑制P R R S V感染,并呈剂量依赖性,而补充外源性胆固醇后可部分恢复P R R S V 的感染性,表明P R R S V感染能力的下降是细胞膜胆固醇的去除而导致的;进一步研究发现,细胞膜胆固醇的减少显著抑制了病毒的进入,尤其是病毒的吸附和释放㊂H u a n g等[27]研究也证实了细胞膜胆固醇对P R R S V的进入至关重要,表明细胞膜中的胆固醇是P R R S V感染的关键成分㊂胆固醇-25-羟化酶(c h o l e s t e r o l-25-h y d r o x y l a s e, C H25H)是一种重要的干扰素刺激基因(i n t e r f e r o n-s t i m u l a t e d g e n e,I S G)编码的多面体膜蛋白,可以催化胆固醇氧化生成25-羟基胆固醇(25-h y d r o x y c h o l e s t e r o l,25H C)[28]㊂C H25H和25H C 在调节胆固醇代谢㊁炎症㊁免疫和抗病毒感染中发挥了重要作用[29]㊂研究发现,P R R S V N S P1β和N S P11在H E K293F T中通过溶酶体途径介导C H25H的降解,但在M a r c-145细胞中N S P1β和N S P11可以颉颃C H25H的抗P R R S V活性[28];C H25H通过阻止病毒进入而显著抑制P R R S V感染,表现出降低催化活性的C H25H具有针对P R R S V的抗病毒作用[30]㊂在另一项研究中, P R R S V E蛋白通过泛素-蛋白酶体途径降解猪C H25H(p o r c i n e C H25H,p C H25H),敲低p C H25H能降低E蛋白诱导的炎症细胞因子表达,而过表达p C H25H则具有相反的效果,表明p C H25H的表达与E蛋白诱导的炎症反应相关[31]㊂25H C在体外具有抗P R R S V感染的作用,能削弱P R R S V的吸附和进入,但不影响病毒基因组的合成和病毒体的释放[32]㊂S o n g等[30]证明了25H C可以在相对较低的剂量下显著抑制P R R S V感染猪肺泡巨噬细胞(p o r c i n e a l v e o l a rm a c r o p h a g e s,P AM s)和M a r c-145细胞,且25H C可以抑制P R R S V的复制并促进P AM s中I L-1β和I L-8的产生[33]㊂3-羟基-3-甲基戊二酰辅酶还原酶(3-h y d r o x y-3-m e t h y l g l u t a r y l-c o e n z y m eAr e d u c t a s e,HMG C R)是参与胆固醇合成的限速酶,HMG C R磷酸化水平下调是其激活形式㊂HMG C R的活性受AM P K和蛋白磷酸酶2(p r o t e i n p h o s p h a t a s e2,P P2A)2种激酶的调控,活化的P P2A激活HMG C R,而活化的AM P K抑制HMG C R的活性[19]㊂许多病毒可以通过HMG C R调节胆固醇合成,如H B V[34]㊁H C V[35]㊁H C MV[36]㊁D E N V[37]及卡波西肉瘤相关疱疹病毒(K a p o s i s s a r c o m a-a s s o c i a t e d h e r p e s v i r u s, K S H V)[38]等㊂最近研究表明,P R R S V感染通过降低P P2A磷酸化水平以激活HMG C R,导致细胞胆固醇增加,而N S P4在这一过程中发挥了重要作用㊂此外,P R R S V N S P4还可通过调节细胞胆固醇代谢抑制I F N-Ⅰ的产生[39]㊂研究表明,膜蛋白-前蛋白转化酶枯草溶菌素9(p r o p r o t e i n c o n v e r t a s e s u b t i l i s i nk e x i n9,P C S K9)在胆固醇运输过程中具有重要作用,P C S K9可与胆固醇代谢相关的受体L D L R互作,并能抑制P R R S V复制[40-41]㊂综上,胆固醇对于P R R S V的吸附㊁进入㊁复制和释放等阶段至关重要㊂此外,胆固醇还参与了炎症反应以及对I F N-Ⅰ的调控㊂1.3磷脂在P R R S V感染中的作用磷脂主要包括甘油磷脂(g l y c e r o l p h o s p h o l i p i d,G P)和鞘磷脂(s p h i n g o m y e l i n,S M)㊂G P可分为磷脂酰甘油(p h o s p h a t i d y l g l y c e r o l,P G)㊁磷脂酰丝氨酸(p h o s p h a t i d y l s e r i n e,P S)㊁磷脂酰肌醇(p h o s p h a t i d y l i n o s i t o l,P I)㊁磷脂酰胆碱(p h o s p h a t i d y l c h o l i n e,P C)㊁磷脂酰乙醇胺(p h o s p h a t i d y l e t h a n o l a m i n e,P E)和心磷脂(c a r d i o l i p i n,C L)㊂研究表明,多种病毒感染都可引起磷脂的代谢变化,如I A V感染引起P S㊁P I和S M 的代谢变化,在I A V感染中发挥了重要作用[6]㊂猪伪狂犬病病毒(P s e u d o r a b i e sv i r u s,P R V)感染猪肺泡巨噬细胞系(i P AM)可引起P E㊁P S㊁P C㊁P G㊁P I 及神经酰胺(c e r a m i d e,C e r)的代谢变化[42]㊂D E N V9861中国畜牧兽医51卷可以通过重塑循环重新配置磷脂,以改变内膜并促进复制复合物的形成[43]㊂磷脂与P R R S V感染引起的凋亡㊁炎症及病毒复制相关㊂研究表明,P S暴露在细胞表面是P R R S V感染细胞中显示的凋亡证据,可以作为一种重要的吞噬信号[44-45]㊂W a n g等[46]研究发现,抑制磷脂酰肌醇-3-激酶(p h o s p h a t i d y l i n o s i t o l-3-k i n a s e,P I3K)减少了病毒基因转录,使病毒蛋白合成显著减少,表明P I3K可影响病毒复制㊂最新研究发现,鞘磷脂磷酸二酯酶酸性样蛋白3B (s p h i n g o m y e l i n p h o s p h o d i e s t e r a s e a c i d-l i k e3B, S M P D L3B)抑制了P R R S V的吸附㊁进入㊁复制和释放,且其缺失显著抑制了P R R S V的增殖,表明S M P D L3B在P R R S V复制中起积极作用[47]㊂N-乙酰鞘氨醇脱乙酰基酶(N-a c y l s p h i n g o s i n e a m i d o h y d r o l a s e1,A S A H1)的自然底物C e r是S M途径信号系统的中心分子,A S A H1可以通过水解C e r激活N F-κB信号通路,A S A H1的上调表达在P R R S V感染引起的细胞凋亡和炎症反应中扮演着重要角色[48]㊂1.4脂滴在P R R S V感染中的作用脂滴是一种高度动态的细胞器,主要负责中性脂质的储存㊂脂滴来源于内质网,具有独特的结构,由中性脂质的疏水性核心组成㊂研究表明,病毒感染宿主细胞后可以诱导脂滴积累,宿主脂滴也可以调节病毒的生命周期,如轮状病毒(R o t a v i r u s,R V)利用脂滴进行复制,阻断脂滴积累可以显著减少R V增殖产生的子代病毒数量[49];D E N V感染增加了细胞内脂滴的数量,C75减少了D E N V感染和未感染细胞中脂滴的量,也抑制了D E N V的复制[50];H C V的核心蛋白与二酰基甘油酰基转移酶(d i a c y l g l y c e r o l a c y l t r a n s f e r a s e1,D G A T1)相互作用,使核周区脂滴增加并聚集,而抑制D G A T1活性可减少感染性病毒粒子的产生[51]㊂此外,脂滴还可作为一个平台,招募病毒蛋白,加速病毒组装,增加病毒复制[52]㊂P R R S V感染可以诱导脂滴积累,脂滴参与了P R R S V的复制和组装,且与细胞炎症相关㊂研究表明,P R R S V感染下调N-M y c下游调控基因1(N-M y cd o w n s t r e a m-r e g u l a t e d g e n e1,N D R G1)的表达,激活脂噬以促进子代病毒的复制和组装[53]㊂Y u等[54]研究表明,P R R S V感染会增加M a r c-145和P AM s细胞中的脂滴数量,而表没食子儿茶素没食子酸酯(e p i g a l l o c a t e c h i n g a l l a t e,E G C G)可以抑制P R R S V诱导的脂滴形成和脂质含量的增加㊂韩莹倩[55]选择了参与脂质合成和分解并调控脂滴趋向性的主要基因R a b18进行研究,利用R a b18基因敲低和显著负突变体证实R a b18参与P R R S V复制;进一步检测敲低R a b18基因对P R R S V生命周期的影响发现,R a b18基因参与P R R S V子代病毒的组装㊂最新研究表明,P R R S V感染可诱导脂滴积累,减少脂滴积累可显著降低P R R S V复制和抑制N F-κB 信号通路,同时下调I L-1β和I L-8的转录[56]㊂1.5脂筏在P R R S V感染中的作用脂筏是富含胆固醇和鞘脂的质膜微域(图2),参与了各种重要的细胞过程,包括胞吞作用㊁胞吐作用和细胞信号传导,基本上在病毒生命周期的每个阶段都依赖脂筏进行感染[57-59]㊂脂筏在许多病毒的生命周期中起着重要的作用,如宿主脂筏在I A V的组装和出芽中起着关键作用,且I A V可以利用脂筏依赖的内吞作用进行宿主内化[60]㊂一些病毒如S A R S-C o V-2[61]㊁黄病毒[62]及埃博拉病毒(E b o l a v i r u s,E B O V)[63]等都利用脂筏进入宿主细胞,表明病毒在进入阶段与细胞膜上的脂筏有密切关系㊂图2脂筏结构示意图F i g.2S c h e m a t i c o f l i p i d r a f t s t r u c t u r e09614期罗琴等:脂质代谢和糖代谢在P R R S V感染宿主细胞中作用研究进展一些证据表明,P R R S V进入细胞依赖脂筏㊂Y a n g等[64]证明了P R R S VG P3和G P4蛋白在病毒进入过程中与脂筏相关,细胞脂筏的破坏抑制了P R R S V的进入,且细胞膜上的脂筏在P R R S V的复制和释放中起着重要的作用㊂D u等[65]证明P R R S V G P4蛋白是一种糖基磷脂酰肌醇(g l y c o s y l-p h o s p h a t i d y l i n o s i t o l,G P I)修饰的膜相关蛋白,G P4与C D163在细胞膜脂筏上的共定位暗示了该复合物对于P R R S V进入和感染的重要作用㊂孙颖[66]用针对性抑制脂筏介导的胞吞途径的药物处理细胞以研究脂筏在P R R S V侵入M a r c-145细胞过程中的作用,结果表明,当脂筏介导的胞吞途径被抑制时,病毒增殖能力下降;进一步用针对性抑制网格蛋白介导的胞吞途径的药物处理细胞后P R R S V的感染受到明显的抑制,表明P R R S V侵入M a r c-145细胞的胞吞途径是依赖脂筏和网格蛋白的㊂然而,H u a n g等[27]研究证明,胆固醇缺乏并不改变M a r c-145细胞中P R R S V受体C D163的表达水平,对网格蛋白介导的胞吞作用没有影响,但干扰了脂筏依赖的胞吞作用㊂2糖代谢在P R R S V感染中的作用2.1糖酵解增强对P R R S V的作用一些病毒感染可以影响宿主细胞内的糖代谢水平,如H C MV感染促进糖酵解水平显著增加,导致葡萄糖消耗增加,从而抑制病毒复制[7]㊂D E N V和I A V感染能够诱导糖酵解途径,从而促进病毒复制[67-68]㊂H C V重编程宿主细胞代谢,以利于有氧糖酵解水平的提高[69]㊂腺病毒(A d e n o v i r u s)的基因产物E4O R F1诱导宿主细胞葡萄糖代谢上调,通过激活MY C来促进上皮细胞中糖酵解的增强[70]㊂P R R S V可以通过糖酵解途径来促进病毒复制㊂L i u等[71]发现P R R S V G P5在细胞质中与甘油醛-3-磷酸脱氢酶(g l y c e r a l d e h y d e-3-p h o s p h a t e d e h y d r o g e n a s e,G A P D H)相互作用,抑制G A P D H 进入细胞核,并通过其糖酵解活性促进P R R S V复制㊂Z h a n g等[72]研究发现,P R R S V感染促进糖酵解产生乳酸,乳酸靶向MA V S抑制R L R信号,从而促进病毒复制㊂毛健等[73]研究表明,P R R S V感染M a r c-145细胞可明显提高糖酵解的关键激酶 乳酸脱氢酶A(l a c t a t e d e h y d r o g e n a s eA,L D H A)表达,并呈现病毒感染剂量依赖性㊂抑制L D H A和糖酵解可以显著抑制P R R S V N蛋白表达并降低病毒滴度,表明L D HA可显著影响P R R S V复制,糖酵解在P R R S V感染中发挥重要作用㊂2.2三羧酸循环代谢产物对P R R S V的作用三羧酸循环是有氧生物获得生命活动所需能量的主要途径㊂三羧酸循环的整个过程需要多种酶的协同作用,并产生多种中间代谢产物,以此来维持细胞稳定的生存环境㊂衣康酸是免疫反应基因1 (i m m u n o r e s p o n s i v e g e n e1,I R G1)通过催化顺乌头酸产生的三羧酸循环的代谢产物,在代谢和免疫中起重要作用㊂P a n g等[74]研究发现,衣康酸4-辛酯(4-o c t y l i t a c o n a t e,4-O I)可通过干扰病毒的吸附㊁复制和释放,剂量依赖性地抑制P R R S V增殖;还可通过增强核因子红细胞2相关因子2(n u c l e a r f a c t o r e r y t h r o i d2-r e l a t e df a c t o r2,N r f2)信号传导抑制P R R S V诱导的炎症反应,表明4-O I是一种很有前景的抗P R R S V候选药物㊂3小结与展望脂质代谢中脂肪酸㊁胆固醇㊁磷脂㊁脂滴和脂筏在P R R S V感染中发挥了重要作用㊂其中,脂肪酸对于P R R S V的增殖至关重要,参与了P R R S V的复制㊁组装及释放等阶段,且与炎症和免疫有关;胆固醇参与了P R R S V感染的多个阶段,包括P R R S V 的吸附㊁进入㊁复制和释放,同时也参与了炎症反应及对I F N-Ⅰ的调控;磷脂在P R R S V复制中起促进作用并与P R R S V感染引起的细胞凋亡有关;脂滴参与了P R R S V的复制和组装,同时与细胞炎症相关;细胞膜上的脂筏是P R R S V进入宿主细胞所必需的,并参与了P R R S V的复制和释放㊂同样,糖代谢中的糖酵解途径在P R R S V感染中具有重要作用,P R R S V通过增强糖酵解以促进病毒复制㊂此外,三羧酸代谢产物4-O I能够抑制P R R S V的复制和P R R S V诱导的炎症反应㊂总而言之,脂质代谢和糖代谢在P R R S V感染中都扮演了十分重要的角色㊂目前,P R R S V的商业疫苗仍难以提供令人满意的效果,且无有效的药物进行治疗㊂因此,对P R R S V感染机制的研究仍然是一项极为紧迫的任务㊂脂质代谢是病毒与宿主细胞的抗衡过程中重要的一部分,脂质代谢参与了P R R S V感染的多个阶段,探索脂质代谢和P R R S V之间的相互作用,有利于增加对病毒复制机理的认知,可为未来抗P R R S V药物的研发提供一些新思路,如对于一些依赖胆固醇进行复制且缺乏治疗方法的病毒而言,胆固醇可作为治疗靶点[75]㊂P R R S V通过增强糖酵1961中国畜牧兽医51卷解以促进病毒复制,三羧酸循环代谢产物又可抑制病毒复制,了解糖代谢与P R R S V感染之间的关系,有助于阐明P R R S V的复制机制㊂随着代谢组学的发展和完善,脂质代谢和糖代谢影响P R R S V感染机制的研究将会变得更为简单和快速,这也为今后抗P R R S V药物研发提供了更大的可能性㊂参考文献(R e f e r e n c e s):[1] L IP,S H E N Y,WA N G T,e ta l.E p i d e m i o l o g i c a ls u r v e y o fP R R Sa n d g e n e t i cv a r i a t i o na n a l y s i so f t h eO R F5g e n ei n S h a n d o n g p r o v i n c e,2020-2021[J].F r o n t i e r s i nV e t e r i n a r y S c i e n c e,2022,9:987667.[2] HA N J,Z H O U L,G E X,e ta l.P a t h o g e n e s i sa n dc o n t r o l o f t h e C h i n e s e h i g h l y p a t h o g e n i c P o r c i n er e p r o d u c t i v e a n d r e s p i r a t o r y s y n d r o m e v i r u s[J].V e t e r i n a r y M i c r o b i o l o g y,2017,209:30-47. [3] Z HA N G M,D U T,L O N G F,e ta l.P l a t y c o d i n Ds u p p r e s s e s t y p e2P o r c i n e r e p r o d u c t i v e a n dr e s p i r a t o r y s y n d r o m e v i r u s i n p r i m a r y a n d e s t a b l i s h e dc e l l l i n e s[J].V i r u s e s,2018,10(11):657.[4] G U OZ,C H E N XX,L IR,e t a l.T h e p r e v a l e n t s t a t u sa n d g e n e t i c d i v e r s i t y o f P o r c i n e r e p r o d u c t i v e a n dr e s p i r a t o r y s y n d r o m e v i r u si n C h i n a:A m o l e c u l a re p i d e m i o l o g i c a l p e r s p e c t i v e[J].V i r o l o g y J o u r n a l,2018,15:2.[5] Y A NJ,P E N GB,C H E N H,e t a l.O n-s i t ed i f f e r e n t i a ld i a g n o s t i c de t e c t i o n of H P-P R R S V a n d C-P R R S Vu s i n g E u N P s-m A b f l u o r e s c e n t p r o b e-b a s e di m m u n o a s s a y[J].A n a l y t i c a l a n d B i o a n a l y t i c a lC h e m i s t r y,2021,413:5799-5810.[6] Z H O U Y,P UJ,WU Y.T h e r o l eo f l i p i dm e t a b o l i s mi nI n f l u e n z a A v i r u si n f e c t i o n[J].P a t h o g e n s,2021,10(3):303.[7] MU N G E R J,B A J A D S U,C O L L E R H A,e ta l.D y n a m i c so f t h ec e l l u l a r m e t a b o l o m ed u r i n g H u m a nc y t o m e g a l o v i r u s i n f e c t i o n[J].P L o S P a t h o g e n s,2006,2(12):e132.[8] Y U Y,C L I P P I N G E RAJ,A L W I N EJC.V i r a l e f f e c t so n m e t a b o l i s m:C h a n g e si n g l u c o s e a n d g l u t a m i n eu t i l i z a t i o n d u r i n g H u m a n c y t o m e g a l o v i r u si n f e c t i o n[J].T r e n d s i n M i c r o b i o l o g y,2011,19(7):360-367.[9] O S U N A-R AMO SJF,R E Y E S-R U I ZJM,D E LA R.T h e r o l e o f h o s t c h o l e s t e r o l d u r i n g F l a v i v i r u si n f e c t i o n[J].F r o n t i e r si n C e l l u l a r a n d I n f e c t i o nM i c r o b i o l o g y,2018,8:388.[10] T HA K E R S K,C HA P A T,G A R C I A G J,e ta l.D i f f e r e n t i a lm e t a b o l i cr e p r o g r a m m i n g b y Z i k av i r u sp r o m o t e s c e l l d e a t h i n h u m a n v e r s u s m o s q u i t oc e l l s[J].C e l lM e t a b o l i s m,2019,29(5):1206-1216.[11]I C A R D P,L I N C E T H,WU Z,e t a l.T h ek e y r o l eo fW a r b u r g e f f e c t i n S A R S-C o V-2r e p l i c a t i o n a n da s s o c i a t e d i n f l a m m a t o r y r e s p o n s e[J].B i o c h i m i e,2021,180:169-177.[12]杨秀文,陆剑云,卢紫欣,等.糖代谢在肠道病毒E V71复制中的作用研究[J].中国病原生物学杂志,2022,17(2):143-148.Y A N G X W,L U J Y,L U Z X,e ta l.T h er o l eo fg l u c o s em e t a b o l i s mi nt h er e p l i c a t i o no fE n t e r o v i r u sE V71[J].J o u r n a l o f P a t h o g e n B i o l o g y,2022,17(2):143-148.(i nC h i n e s e)[13] P U R D YJG,S H E N K T,R A B I N OW I T ZJD.F a t t ya c i d e l o n g a s e7c a t a l y z e s l i p i d o m e r e m o d e l i n ge s s e n t i a lf o r H u m a nc y t o m eg a l o v i r u sr e p l i c a t i o n[J].C e l l R e p o r t s,2015,10(8):1375-1385.[14] O K AMU R A H,N I O Y,A K A H O R I Y,e ta l.F a t t ya c i db i o s y n t h e s i si si n v o l v e d i n t h e p r o d uc t i o n o fH e p a t i t i s B v i r u s p a r t i c l e s[J].B i o c h e m i c a l a n dB i o p h y s i c a lR e s e a r c hC o m m u n i c a t i o n s,2016,475(1):87-92.[15] Y AMA N E D,HA Y A S H I Y,MA T S UMO T O M,e t a l.F A D S2-d e p e n d e n tf a t t y a c i d d e s a t u r a t i o nd i c t a te s c e l l u l a r s e n s i t i v i t y t of e r r o p t o s i s a n dp e r m i s s i v e n e s sf o r H e p a t i t i sC v i r u sr e p l i c a t i o n[J].C e l l C h e m i c a lB i o l o g y,2022,29(5):799-810.[16] K U L K A R N I M M,R A T C L I F F A N,B HA T M,e t a l.C e l l u l a rf a t t y a c i ds y n t h a s e i sr e q u i r e df o r l a t es t a g e so fH I V-1r e p l i c a t i o n[J].R e t r o v i r o l o g y,2017,14(1):45.[17] MO S E R T S,S C H I E F F E R D,C H E R R Y S.AM P-a c t i v a t e d k i n a s e r e s t r i c t s R i f t V a l l e y f e v e r v i r u si n f e c t i o nb y i n h i b i t i n g f a t t y a c i ds y n t h e s i s[J].P L o SP a t h o g e n s,2012,8(4):e1002661.[18] Z HA N G M,HA N X,O S T E R R I E D E R K,e t a l.P a l m i t o y l a t i o n o ft h e e n v e l o p e m e m b r a n e p r o t e i n sG P5a n d M o fP o r c i n er e p r o d u c t i v ea n dr e s p i r a t o r ys y n d r o m e v i r u s i s e s s e n t i a l f o r v i r u s g r o w t h[J].P L o SP a t h o g e n s,2021,17(4):e1009554.[19]龙思文.脂质代谢在猪繁殖与呼吸综合征病毒感染中的作用研究[D].武汉:华中农业大学,2019.L O N GS W.T h er o l eo f l i p i d m e t a b o l i s mi nP o r c i n er e p r o d u c t i o n a n d r e s p i r a t o r y s y n d r o m e v i r u si n f e c t i o n[D].W u h a n:H u a z h o n g A g r i c u l t u r a lU n i v e r s i t y,2019.(i nC h i n e s e)[20] L O N GS,Z H O U Y,B A ID,e t a l.F a t t y a c i d s r e g u l a t e29614期罗琴等:脂质代谢和糖代谢在P R R S V感染宿主细胞中作用研究进展P o r c i n er e p r o d u c t i v ea n dr e s p i r a t o r y s y n d r o m ev i r u si n f e c t i o n v i a t h eAM P K-A C C1s i g n a l i n g p a t h w a y[J].V i r u s e s,2019,11(12):1145.[21]熊玉剑.猪P R D X5在P R R S V调控AM P K信号通路中的作用及机制研究[D].武汉:华中农业大学,2022.X I O N G YJ.S t u d y o f e f f e c t sa n d m e c h a n i s m so f p i gP R D X5i n t h e r e g u l a t i o n o fAM P Ks i g n a l i n gp a t h w a yd u r i n g P o r c i ne r e p r o d u c t i v e a n d r e s p i r a t o r y s y n d r o m ev i r u si n f e c t i o n[D].W u h a n:H u a z h o n g A g r i c u l t u r a lU n i v e r s i t y,2022.(i nC h i n e s e)[22] Y A N G L,W E N J,Z HA N G Y,e ta l.T h ea n t i v i r a la c t i v i t y o f c a p r y l i c m o n o g l y c e r i d e a g a i n s t P o r c i n er e p r o d u c t i v e a n dr e s p i r a t o r y s y n d r o m ev i r u s i nv i t r oa n d i n v i v o[J].M o l e c u l e s,2022,27(21):7263.[23]蓝俊虹.α-单月桂酸甘油酯对猪繁殖与呼吸综合征病毒抑制机制的探究[D].杭州:浙江农林大学,2021.L A N J H.I n h i b i t o r y m e c h a n i s m o fα-g l y c e r o lm o n o l a u r a t eo nP o r c i n er e p r o d u c t i v ea n dr e s p i r a t o r ys y n d r o m ev i r u s[D].H a n g z h o u:Z h e j i a n g A g r i c u l t u r a la n dF o r e s t r y U n i v e r s i t y,2021.(i nC h i n e s e)[24] B IY,G U O X K,Z HA O H,e ta l.H i g h l yp a t h o g e n i cP o r c i n er e p r o d u c t i v ea n dr e s p i r a t o r y s y n d r o m ev i r u si n d u c e s p r o s t a g l a n d i n E2p r o d u c t i o n t h r o u g hc y c l o o x y g e n a s e1,w h i c h i sde p e n d e n t o n t h eE R K1/2-p-C/E B P-b e t a p a t h w a y[J].J o u r n a l o f V i r o l o g y,2014,88(5):2810-2820.[25] D U L,WA N G H,L I U F,e t a l.N S P2i s i m p o r t a n t f o rh i g h l y p a t h o g e n i c P o r c i n e r e p r o d u c t i v e a n dr e s p i r a t o r y s y n d r o m e v i r u s t o t r i g g e r h i g h f e v e r-r e l a t e dC O X-2-P G E2p a t h w a y i n p i g s[J].F r o n t i e r si nI m m u n o l o g y,2021,12:657071.[26] S U N Y,X I A OS,WA N G D,e t a l.C e l l u l a rm e m b r a n ec h o l e s t e r o l i sr e q u i r e df o rP o r c i n er e p r od u c t i v ea n dr e s p i r a t o r y s y n d r o m e v i r u s e n t r y a n d r e l e a s e i nM a r c-145c e l l s[J].S c i e n c e C h i n a-L i f e S c i e n c e s,2011,54(11):1011-1018.[27] HU A N GL,Z HA N GYP,Y U YL,e t a l.R o l e o f l i p i dr a f t s i n P o r c i n e r e p r o d u c t i v e a n d r e s p i r a t o r ys y n d r o m e v i r u s i n f e c t i o n i n M a r c-145c e l l s[J].B i o c h e m i c a l a n d B i o p h y s i c a l R e s e a r c hC o m m u n i c a t i o n s,2011,414(3):545-550.[28] D O N G H,Z H O UL,G EX,e t a l.P o r c i n e r e p r o d u c t i v ea n d r e s p i r a t o r y s y n d r o m e v i r u sN S P1b e t a a n dN S P11a n t a g o n i z e t h e a n t i v i r a l a c t i v i t y o f c h o l e s t e r o l-25-h y d r o x y l a s e v i a l y s o s o m a l d e g r a d a t i o n[J].V e t e r i n a r yM i c r o b i o l o g y,2018,223:134-143.[29] Z HA OJ,C H E NJ,L IM,e t a l.M u l t i f a c e t e d f u n c t i o n so f C H25H a n d25H C t o m o d u l a t e t h e l i p i dm e t a b o l i s m,i m m u n er e s p o n s e s,a n db r o a d l y a n t i v i r a la c t i v i t i e s[J].V i r u s e s,2020,12(7):727.[30] S O N G Z,Z HA N G Q,L I U X,e t a l.C h o l e s t e r o l25-h y d r o x y l a s e i sa ni n t e r f e r o n-i n d u c i b l ef a c t o rt h a tp r o t e c t s a g a i n s tP o r c i n er e p r o d u c t i v ea n dr e s p i r a t o r ys y n d r o m e v i r u s i n f e c t i o n[J].V e t e r i n a r yM i c r o b i o l o g y,2017,210:153-161.[31] K E W,F A N G L,T A O R,e t a l.P o r c i n er e p r o d u c t i v ea n dr e s p i r a t o r y s y n d r o m ev i r u s E p r o t e i n d e g r a d e sp o r c i n e c h o l e s t e r o l25-h y d r o x y l a s e v i a t h eu b i q u i t i n-p r o t e a s o m e p a t h w a y[J].J o u r n a l o f V i r o l o g y,2019,93(20):e719-e767.[32] D O N G H,Z H O U L,G E X,e ta l.A n t i v i r a l e f f e c to f25-h y d r o x y c h o l e s t e r o l a g a i n s t P o r c i n e r e p r o d u c t i v ea n d r e s p i r a t o r y s y n d r o m e v i r u s i n v i t r o[J].A n t i v i r a lT h e r a p y,2018,23(5):395-404.[33] S O N G Z,B A I J,N A UWY N C K H,e t a l.25-h y d r o x y c h o l e s t e r o l p r o v i d e s a n t i v i r a l p r o t e c t i o na g a i n s th i g h l y p a t h o g e n i c P o r c i n er e p r o d u c t i v ea n dr e s p i r a t o r y s y n d r o m ev i r u si ns w i n e[J].V e t e r i n a r yM i c r o b i o l o g y,2019,231:63-70.[34] L IY J,Z HU P,L I A N G Y,e ta l.H e p a t i t i sBv i r u si n d u c e se x p r e s s i o no fc h o l e s t e r o l m e t a b o l i s m-r e l a t e dg e n e s v i a T L R2i n H e p G2c e l l s[J].W o r l d J o u r n a lo f G a s t r o e n t e r o l o g y,2013,19(14):2262-2269.[35] H S U C S,L I U W L,L IQ,e ta l.H e p a t i t i sC v i r u sg e n o t y p e s1-3i n f e c t i o n sr e g u l a t el i p o g e n i cs i g n a l i n ga n d s u p p r e s s c h o l e s t e r o lb i o s y n t h e s i s i nh e p a t o c y t e s[J].J o u r n a lo f t h e F o r m o s a n M e d i c a lA s s o c i a t i o n,2020,119(9):1382-1395.[36] G U O N,Z HA N G N,Y A N L,e ta l.D o w n-r e g u l a t i o no f s i n g l e-s t r a n d e dD N A-b i n d i n gp r o t e i n1e x p r e s s i o ni n d u c e d b y H C MV i n f e c t i o n p r o m o t e s l i p i da c c u m u l a t i o n i n c e l l s[J].B r a z i l i a n J o u r n a l o fM e d i c a la n d B i o l o g i c a l R e s e a r c h,2017,50(11):e6389.[37] S O T O-A C O S T A R,B A U T I S T A-C A R B A J A L P,C E R V A N T E S-S A L A Z A R M,e t a l.DE N V u p-r e g u l a t e st h e HMG-C o A r e d u c t a s ea c t i v i t y t h r o u g ht h e i m p a i r m e n t o f AM P K p h o s p h o r y l a t i o n:Ap o t e n t i a l a n t i v i r a l t a r g e t[J].P L o SP a t h o g e n s,2017,13(4):e1006257.[38] S E R Q U I N A A,K AM B A C H D M,S A R K E RO,e t a l.V i r a l m i c r o R N A sr e p r e s st h ec h o l e s t e r o l p a t h w a y,a n d25-h y d r o x y c h o l e s t e r o l i n h ib i t s i n f ec t i o n[J].m B i o,2017,8(4):e517-e576.[39] K E W,Z H O U Y,L A IY,e ta l.P o r c i n er e p r o d u c t i v e3961。

高糖高脂膳食加STZ 腹腔注射诱导2 型糖尿病大鼠模型的建立

高糖高脂膳食加STZ 腹腔注射诱导2 型糖尿病大鼠模型的建立

高糖高脂膳食加STZ 腹腔注射诱导2 型糖尿病大鼠模型的建立摘要】目的建立2 型糖尿病大鼠动物模型。

方法健康清洁级SD 雄性大鼠30 只,随机分成2 组,正常对照组(A 组),糖尿病模型组(B 组),每组15 只。

A 组给予正常普通饮食;B 组给予高糖高脂饮食造模,喂养4 周,产生胰岛素抵抗后给予STZ 25 mg/kg 一次性腹腔内注射方法复制2 型糖尿病大鼠模型。

实验结束时测定空腹血糖、血胰岛素、总胆固醇、甘油三酯。

结果 2 型糖尿病模型组大鼠空腹血糖、血胰岛素、总胆固醇、甘油三酯均较正常对照组明显升高。

结论高糖高脂膳食加STZ 诱导糖尿病大鼠模型可以用作2 型糖尿病动物模型建立的常用方法。

【关键词】 2 型糖尿病动物模型链脲佐菌素【中图分类号】R965.1 【文献标识码】A 【文章编号】2095-1752(2012)07-0083-02近年来, 随着胰岛素的广泛应用, 糖尿病的急性并发症致死率已明显下降, 但其慢性并发症如心、脑、肾的并发症已成为致死的主要因素。

糖尿病的病因和发病机制迄今尚未完全明了。

因此, 建立适当的动物模型, 才能为研究糖尿病及其并发症的病因、发病机制和病理生理改变提供重要的、可靠的基础保证。

1 材料与方法1.1 实验动物和试剂健康清洁级雄性纯种S D 大鼠30 只,体质量(180-200)g,由南昌大学动科部提供,实验动物合格证号:SCXK( 赣)2005-0001。

1.2 实验方法体质量为(180-200)g 的2 月龄健康清洁级S D 雄性大鼠30 只,随机分成2 组:正常对照组和2 型糖尿病模型组(T2DM 组),每组15 只。

适应性喂养1 周后,正常对照组继续给予正常普通饮食T2DM 组给予高糖高脂饮食(猪油10%,蔗糖20%,蛋黄3%,基础饲料67%),喂养4 周,按照HOMA 胰岛素抵抗指数【HOMA=(FPG×FNS)/22.5】判断动物出现胰岛素抵抗后,T2DM 组大鼠禁食过夜12h,将链脲佐菌素(S T Z)按25m g / k g 一次性腹腔注射,正常对照组腹腔内注射等体积柠檬酸缓冲液。

罗格列酮和双酚A型环氧树脂对脂多糖应激断奶仔猪白细胞分类计数和血液生化指标的影响

罗格列酮和双酚A型环氧树脂对脂多糖应激断奶仔猪白细胞分类计数和血液生化指标的影响
中图 分 类 号 : 8 8 ¥ 1 . ¥ 2 ;8 6 7 文献标识码 : A 文 章 编 号 : 0 6 2 7 2 1 ) 10 4 -6 1 0 —6 X( 0 0 0 - 1 5 0
免疫 应激 虽然 能够 激活 免疫 系统 以抵抗 外来 病
原对 机体 的损 伤 , 免 疫 系 统 的过度 激 活会 消 耗 大 但 量 营养物 质 , 致动 物生 长受 阻 , 畜牧 业造 成一 定 导 对 的损 失_ 。因此 , 解 或 抑 制 过度 的免 疫 应 激 反 应 】 ] 缓 对畜 牧业 意义 重大 。过 氧化物 酶体 增殖 物激 活受体
些年 , P P ARy对 炎 症 的调 节 作 用 日益 受 到 人 们 的
关注 。研究 表 明 , P P AR7对 多种 炎 症 , 溃 疡 性结 如 肠炎 、 风湿 性关 节炎 、 血症 、 脊 髓 炎 、 脓 脑 帕
双酚 A 型 Байду номын сангаас 氧树 脂 ( A B DGE) 有 效 成 分 > :
1 2 试 验 动 物 与 设 计 .
金森 氏病 _ 、 脉硬 化 症 和肺 炎_ 等 都 有 良好 的 6动 ] 8
调节 作用 。而 畜禽免 疫应 激与 炎性 介质 的过 量释放 密切 相关 _ , 9 与炎 症具 有 相 似 的特 点 , ] 因此 P AR ̄ P 也可 能与 畜禽免 疫应 激 的调节 有关 。然 而 目前 有关 这 方 面 的 研 究 鲜 见 报 道 。 因 此 , 试 验 研 究 本 P AR7的激 动 剂 ( P 罗格 列 酮 ,oil ao e rsgi z n ,ROS t )
P AR7 属 于核 受 体 超 家 族 成 员 , 与 体 内脂 类 代 P ) 参

罗格列酮对断奶仔猪肠黏膜结构和抗氧化能力的影响

罗格列酮对断奶仔猪肠黏膜结构和抗氧化能力的影响

肠 道 不仅 是 营养 物 质 消 化 吸 收 的 主要 场 所 , 还 是 机体 抵御 外界 有 害病 原物 质 的第 一道 防线 ,是 机
激 动 剂—— 罗 格 列 酮 ( O ) J 仔 猪 肠 道 损 伤 的修 R SI 6 对 复作 用 。
1 材料 与 方法
体 受威 胁最 大 的部位 之一 。早期 断奶 仔猪 肠 道结 构 和功 能发 育都不 完 善 , 在受 到应 激 的条 件下 , 道免 肠 疫 系统 会 被激 活 , 性 细胞 因 子如肿 瘤 坏死 因子 一 炎
收稿 日期 :0 9 0 — 2 修 回 日期 :0 9 1 - 2 20—7 2 ; 20— 10 基金项 目: 国家 自然科 学基金 面上项 目(0 0 3 2和 3 9 20 )教 3506 0719 ;
L S+R S组 ( O P O R S组 ) 猪 腹 腔 注 射 3m k 重 仔 d g体 的 R S 采用 马来 酸 罗格 列 酮 , O( 有效 成 分 > 99 其 9 .%,
重 的 生 理 盐 水 (P L S的溶 剂 ) L S组 仔 猪 腹 腔 注 射 ;P
其 配体 在人 、 鼠的炎 症性 肠 病 中具有 缓解 炎症 、 护 保
0 lg . A 体重 的 1 % D O,0m n 注射 10I/g 2m 0 MS 3 i 后 0 g .k z
体 重 的 L S 大 肠 杆 菌血 清 型 0 5B S m P( 5 :5,i a公 司 ) g ;
农 副产 品蛋 白质 饲料 资源教 育部 工程研 究 中心 , 湖北 武汉

4 02 ) 3 03
要 :试 验 研 究 罗格 列 酮 ( ROS 对 脂 多糖 ( P ) 激 的 断 奶 仔 猪 肠 黏 膜 结 构 和 抗 氧 化 能 力 的影 响 。试 验 包括 3 ) L S刺

罗格列酮对内毒素诱导气道MUC5AC表达的调控

罗格列酮对内毒素诱导气道MUC5AC表达的调控

罗格列酮对内毒素诱导气道MUC5AC表达的调控刘维佳;张湘燕;张程;冯端兴【摘要】目的探讨过氧化物酶体增殖物激活受体γ(PPAR γ)激动剂罗格列酮对内毒素所致大鼠气道MUC5AC表达的影响及其机制.方法将36只雄性SD大鼠随机分为生理盐水对照组(A组)、罗格列酮对照组(B组)、脂多糖组(LPS组)(C组)、以及低、中、高剂量罗格列酮组(D组、E组和F组).采用酶联免疫吸附测定(ELISA)法检测支气管肺泡灌洗液(BALF)中肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)和IL-10浓度.免疫组化染色及实时荧光定量逆转录-PCR检测气道肺组织MUC5AC蛋白及mRNA表达.结果与生理盐水对照组比较,LPS组BALF中TNF-α、IL-1β和IL-10浓度,以及气道肺组织MUC5AC蛋白和mRNA表达增加(P<0.01);TNF-α、IL-1β与MUC5AC mRNA表达呈正相关(r分别为0.851,0.803,P<0.05);IL-10浓度与MUC5AC mRNA表达呈负相关(r为-0.812,P<0.05).给予低、中、高剂量罗格列酮干预后,D组、E组和F组BALF中TNF-α浓度及MUC5AC蛋白、mRNA表达均逐渐降低,IL-10水平逐渐升高,各组间差异有统计学意义(P均<0.05).结论罗格列酮对内毒素诱导的气道黏液高分泌有拮抗作用,其具体机制可能与调节炎症反应,下调气道MUC5AC转录有关.【期刊名称】《贵州医药》【年(卷),期】2010(034)001【总页数】4页(P3-6)【关键词】罗格列酮;气道;黏液高分泌;内毒素;黏蛋白5AC【作者】刘维佳;张湘燕;张程;冯端兴【作者单位】贵州省人民医院呼吸内科,贵阳550002;贵州省人民医院呼吸内科,贵阳550002;贵州省人民医院呼吸内科,贵阳550002;贵州省人民医院呼吸内科,贵阳550002【正文语种】中文【中图分类】R562在生理条件下,气道表面分泌少量黏液,以维持正常黏液的粘弹性和黏液纤毛清除功能,是呼吸道最重要的非特异性防御机制。

periodical__zghtyyzz__zght2006__0609pdf__0609103

periodical__zghtyyzz__zght2006__0609pdf__0609103

在 , 型糖尿病进程中存在多种心血管危险因素 ’ 以胰岛 素抵抗为核心 - 可导致高血糖 ( 高血压 ( 微量白蛋白尿 ./01 ( 炎 症 (高 纤 溶 状 态 ( 脂 代 谢 异 常 (内 皮 功 能 障 碍 ( 动 脉 粥 样 硬 化 和心血管病 ’ 罗 格 列 酮 .234567589:3;%1 是 一 种 新 型 的 噻 唑 烷 二 酮 类 <=>?1 胰 岛 素 增 敏 剂 - 为 过 氧 化 物 酶 增 殖 物 激 活 的 受 体
药不影响生育能力 " 未有致畸性和致癌性的报道 !
#
禁忌证 下 列 患 者 禁 用 罗 格 列 酮 %" 糖 尿 病 酮 症 酸 中 毒 $# 对 罗
格列酮过敏 $$ 不宜用口服降糖 药治疗者 ! 有肝功能 损 害 和 心功能损害的患者慎用 " 妊娠 # 哺乳期妇女 " 以及需要避 孕 的 妇女不宜使用罗格列酮 " 以策安全 ! 目前尚无有关 儿 童 使 用 该药的资料 ! 噻唑烷二酮类药物曲格列酮因有致命的肝毒性已被多 个国家停用 " 而罗格列酮具有 降糖效果明显 # 肝损害轻微 # 药 物相互作用少 # 服用方便等优点 " 对改善胰岛素抵抗 " 保 护 胰 岛细胞功能 # 改善糖尿病的远期控制 # 减缓并发症的发 生 # 降 低病死率 # 提高患者的生 存质量具有积极的意义 ! 并 且 新 的 临床数据显示 D 罗格列酮可持久降低血压 D 对心血管 危险 因 素 如 .E0 和 FG 等的改善具有积极作用 ! 在血糖控制差的 1 型 糖尿病患者中应以早期联合治疗为基础 ! 目前罗格列酮已批 准在我国正式临床使用 " 该类药物的使用将给 1 型糖尿病患 者 " 尤其是伴胰岛素抵抗的 1 型糖尿病患者的治疗带来更为 广阔的选择空间 !
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( P )sm l e yL oo, chr e ( P )adt osr eep si fo—k cp r P t u t yhgg cs. R MC t ua db i pb acai L S n bev t xr s no ller et i R MC sm a db i l oe i t p s d o eh e o tli e o 2 n il e hu
Roi izn ( 0 ̄ f s laoe 1 mo L)ae cb td wt P ( 0 ̄gm1 o . h P r n e e smua o fhg gu oe ( .% . gt f ri u ae h L S 1 t n i / )fr2h T e R MC weeu d rt t lt n o ihlcs h i i 1 5
入 罗格 列 酮 (0t o L 再 作 用 4h组 ; 同浓度 葡 萄糖 (.%,.%,. %) 用 8h ;. 1 m ] ) x / 不 1 5 2 5 45 作 2 组 25 %葡 萄糖 作 用不 同时 间( ,02 ) 。 5 1 ,0h 组
R .C TP R技术检测 T R R A的表达。结果 L 2m N
Roila o ea d rih ! c s s i z n n lg gu o e gt Ⅱ L-a MA Ja - iW ANG L -ig i n, in f , y e i n n
( eatet f eho g ,h it flt opt , h aMei lU ie i ,hnag10 0 , hn ) D pr n N prl y T eFr i ie H silC i d a nvrt S eyn 10 1 C i m o o sA a d a n c sy a
L S及高糖均 可刺激 R MC的 T R R A表 达显 著增加 ,呈剂量依赖性 ( P P L 2m N P< LS 高 P及
00 )并且 L S作用下 R MC的 T R N 、 , 5 P P L 2mR A表达增加在 1 2h内呈时间依赖性 ( P<00 )高糖作 用下 R MC的 T R N . , 5 P L 2mR A表 达增加在 2 0h内呈时 间依赖性( P<0 5 ; 、 ) 罗格列酮可抑制由 L S刺激导致的 T R N 0 P L 2mR A表达上调 ( P<00 )结论 . 。 5 糖可上调体外培养 R Mc的 T R N P L 2mR A表 达, 罗格 列酮可拮抗 L S对 T R N P L 2mR A的表达上调作用。
维普资讯 p://
中国医科大学学报
第3 7卷
第 4期
2O O8年 8月
・5 09・
Ju a fC iaMe i Unv ri V 1 7 N . Au . 0 8 o rl o hn n dc al iest y o. o4 3 g 2 0
罗格 列酮 对 脂 多糖作 用 下 及 高 糖对 大 鼠腹 膜 间皮细 胞 丁 尺 N L 2mR A 表 达 的影 响
25 ,. %) R MCi e ot l r pw r js i ua dwt m du T R N a e c db TP R Rs l C m ae . 42 % 5 . P nt n o go ee utnb t h ei h c r u c e i m. L 2mR A w s t t yR —C . eu s dee t o pr d
A s at Obet e T bev eeet foiizn ntem N pes no ll er et t e t el st l e bt c: j i oo s eh fc o r gt oeo R A e rso fo—k cp r i r ro a me h i cl r cv r t sl a h x i tli e o 2 na pi n o ea l
关 键 词 :脂 多糖 ;罗格 列 酮 ;高糖 ;腹 膜 间 皮 细 胞 ;ol 受体 2 tl样 中图 分 类 号 :R 9 62 文 献 标 志 码 :A 文 章 编 号 :05 — 6 6 2 0 )4 0 0 — 4 2 8 4 4 (0 80 — 5 9 0
The Ex e so pr s in o TLR2 f mRNA i n Ra Pe io e l t rt n a M e o h  ̄ l s t e a Cel S i u a e by l s tm l t d Li o ls c h rde, p poy a c a i
Meh d R MC w r i l e o t o co e m dw r i u a dwt L S ( . to s P e o t f m r l m n m a e c b t i P e sad r ac i n en e h 1 0 ml1 gm ,0 gm )o mu t y ,0 ̄ / l 10 I / 1 , s l e b A rt a d i
李丽燕, 马健 飞 , 力 宁 王
( 中国 医 科 大学 附属 第一 医 院 肾 内 科 ,沈 阳 10 0 ) 1 0 1
摘要 :目的 观察 罗格列酮对脂 多糖 ( P ) L S 作用下大鼠腹 膜间皮细胞( P R MC) l样受体 2 T R ) N tl o ( L 2 mR A表达 的影响 ; 察高糖 观 对 R MC的 T R P L 2mR A表达的影响。 N 方法 胰蛋 白酶法行 R MC的原代培养和传代 , P 经鉴 定第 3 细胞融合至 8%时分组。 代 0 正 常对照组 : 不同浓度 L S 11 ,0 g 1作 用 8h组 ;0I /l P 作 用不 同时间( , ,2h 组 ;0p / P P ( ,0 10t / ) xm 1 g S xm L 26 1 ) 1  ̄ml S预孵育 2h后 , g L 加
相关文档
最新文档