2019—2020年人教版七年级上学期数学《几何图形初步》综合检测及答案解析(基础提分试卷).doc
2019—2020年最新人教版七年级数学上册《几何图形初步》单元综合测试题及答案(同步试卷).doc
(1)C B AD15︒65︒东(5)B AO北西南 第一学期七年级数学第四章:几何图形单元测试卷(时间:90分钟 总分:100分)班级: 姓名: 得分: 一、填空题:(每空1分,共28分) 1.82°32′5″+______=180°.2.如图(1),线段AD 上有两点B 、C,图中共有______条线段.(2)CBA O E D 4321(3)CBA O ED(4)C BAO ED3.一个角是它补角的一半,则这个角的余角是_________.4.线段AB=8cm,CJ 是线段AB 上的一点,BC=5cm,则AC=________.5.如图(2),直线AB 、CD 相交于点O,OE 平分∠COD,则∠BOD 的余角______, ∠COE 的补角是_______,∠AOC 的补角是______________________.6.如图(3),直线AB 、CD 相交于点O,∠AOE=90°,从给出的A 、B 、C 三 个答案中选择适当答案填空.(1)∠1与∠2的关系是( ) (2)∠3与∠4的关系是( )(3)∠3与∠2的关系是( ) (4)∠2与∠4的关系是( )A.互为补角B.互为余角C.即不互补又不互余7.如图(4),∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对.8.如图(5)所示,射线OA表示_____________方向,射线OB表示______________方向.9.四条直线两两相交时,交点个数最多有_______个.10.如果一个角是30°,用10倍的望远镜观察,这个角应是_______°.11.38°41′的角的余角等于________,123°59′的角的补角等于________.12.如果∠1的补角是∠2,且∠1>∠2,那么∠2的余角是________(用含∠1 的式子表示).13.如果∠α与∠β互补,且∠α:∠β=5:4,那么,∠α=_______,∠β=_________.14.根据下列多面体的平面展开图,填写多面体的名称.(1)__________,(2)__________,(3)_________.15.圆锥由_______面组成,其中一个是_______面,另一个是_______面.16.已知:∠AOB=35°,∠BOC=75°,则∠AOC=.二、选择题:(每题2分,共14分)17、如图,是一个正方体纸盒的展开图,若在其中三个正方形A、B、C中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A、B、C、中的三个数依次是()A、1、-3、0 B、0、-3、1 C、-3、0、1 D、-3、1、0ABC-10318.如图(8),直线a 、b 相交,∠1=130°,则∠2+∠3=( ) A.50° B.100° C.130° C.180°b a312(8)cba (9)O19.轮船航行到C 处观测小岛A 的方向是北偏西48°,那么从小岛A 观测轮船在C 处的方向是( )A.南偏东48°B.东偏北48°C.东偏南48°D.南偏东42° 20.如图(9),三条直线相交于O 点,则图中相等的角(平角除外)有( )对 A.3对 B.4对 C.6对 D.8对 21.下列图形不是正方体展开图的是()ABCD22.从正面、上面、左面看四棱锥,得到的3个图形是()ABC23.某测绘装置上一枚指针原来指向南偏西55°,把这枚指针按逆时针方向旋转80°, 则结果指针的指向( )A .南偏东35º B.北偏西35º C .南偏东25º D.北偏西25º东西南北55°三、判断题:(每题1分,共10分)24.射线AB 与射线BA 表示同一条射线.( ) 25.直角都相等.( )26.若∠1+∠2=900,∠1+∠3=900,则∠2=∠3.( ) 27.钝角的补角一定是锐角.( )28.一条射线把一个角分成两个角,这条射线叫这个角的平分线.( ) 29.两点之间,直线最短.( )30.连结两点的线段叫做两点之间的距离.( ) 31.20050ˊ=20.50.( ) 32.互余且相等的两个角都是450.( ) 33.若AC+CB=AB,则C 点在线段AB 上.( ) 四、计算题:(35小题6分,其余每题5分,共36分)34. 如图(10),已知C 是AB 的中点,D 是AC 的中点,E 是BC 的中点. (1)若AB=18cm,求DE 的长;(2)若CE=5cm,求DB 的长.D C A BE(10)35.如图(11),已知直线AB 和CD 相交于O 点,∠COE 是直角,OF 平分∠AOE, ∠COF=34°,求∠BOD 的度数.C B AEODF(11) 36.一个角的余角比它的补角的13还少20°,求这个角.37.一个角的补角是123°24′16″,则这个角的余角是多少?38.如图,A 、B 两地隔着湖水,从C 地测得CA=50m,CB=60m,∠ACB=145°,用1 厘米代表10米(就是1:1000的比例尺)画出如图的图形.量出AB 的长(精确到1毫米), 再换算出A 、B 间的实际距离.CAB39.如图,直线AB 与CD 相交于点O,那么∠1=∠2吗?请说明你的理由.O ABCEF231OBADC40.(8分)如图3所示,︒=∠90AOB ,OE 、OF 分别平分AOB ∠、BOC ∠,如果︒=∠60EOF ,求BOC ∠的度数.五、作图题:(每题4分,共12分)41. 如图,已知∠1,∠2,画出一个角,使它等于3∠1-∠2.1242.用三角板画出一个75°的角和一个105°的角.43、如图,是由小立方块塔成的几何体,请分别从前面看、左面看和上面看,试将你所看到的平面图形画出来。
人教版数学七年级上册《几何图形初步》单元综合检测卷(带答案)
人教版数学七年级上学期第四章单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·四川初一期中)有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是( )A .4B .3C .2D .12.(2019·西安交通大学附属中学初一月考)用如图所示的图形,旋转一周所形成的几何体是( )A .B .C .D .3.(2019·河北初二期中)一副三角板按如图方式摆放,已知∠1=5∠2,则∠1的度数是( )A .15°B .18°C .72°D .75°4.(2019·山西初三)如图,点O 是直线AB 上的一点,AOC 40∠=,OM 平分BOC ∠,则BOM ∠等于( )A .60B .65C .70D .755.(2019·贵州省织金县第六中学初一期中)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市6.(2019·福建聚龙外国语学校初二月考)下列说法正确的是( )A.延长线段AB和延长线段BA的含义相同B.射线AB的长度为12cmC.经过两点可以画一条直线,并且只能画一条直线D.延长直线AB7.(2019·济宁高新区第五中学初一期末)下面说法错误的是( )A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等8.(2019·广东正德中学初一月考)下列说法正确的有()①长方体、正方体都是棱柱;②圆锥和圆柱的底面都是圆;③若直棱柱的底面边长相等,则它的各个侧面的面积相等;④棱锥底面的边数与侧棱数相等;⑤直棱柱的上、下底面是形状、大小相同的多边形,侧面都是长方形.A.2个B.3个C.4个D.5个9.(2018·河北省保定市第十七中学初一期末)已知线段AB=6cm,线段BC=8cm,则线段AC 的长度为( ) A.14cm B.2cm C.14cm或2cm D.不能确定10.(2019·山东初一期中)如图,在正方形网格中,∠1+∠2+∠3=( )A.90°B.120°C.135°D.150°二、填空题(每小题4分,共24分)11.(2019·河北初一期中)如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.12.(2019·重庆市第一一0中学校初一期中)三条直线两两相交,它们的交点个数是________个。
2019-2020人教版七年级数学上册第四章几何图形初步测试题含答案
第四章 几何图形初步测试题一、选择题( 本大题共10小题,每小题3分,共30分)1.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学: 它有8条棱.该模型的形状对应的立体图形可能是( )A.三棱柱 B.四棱柱 C.三棱锥D.四棱锥2. 由图1的五种基本图形中的两种拼接成图2,这两种基本图形是( ) A. ①⑤ B. ②④ C. ③⑤D. ②⑤3.已知一个角为55°,下列说法错误的是( ) A. 这个角的余角为45° B. 这个角的补角为125°C. 这个角的补角比这个角的余角大90°D. 这个角的一半为27.5°4.观察图4,有下列说法:①直线BA 和直线AB 是同一条直线;②射线AC 和射线AD 是 同一条射线;③AB+BD >AD ;④三条直线两两相交时,一定有三个交点.其中正确的有( ) A. 1个B. 2个C. 3个D. 4个5.从一个钝角的顶点,在它的内部引5条互不相同的射线,则该图中共有角的个数是( ) A. 28B. 21C. 15D. 66. 如图4所示的立体图形,从正面看得到的平面图形是( )7.如图5,已知OA 表示北偏东30°方向,若射线OB 与射线OA 垂直,则OB 表示的是( ) A. 北偏西30° B. 北偏西60° C. 东偏北30°D. 东偏北60°8. 已知∠α=10°15′,∠β=610′,∠γ=10.2°,下列比较大小正确的是( )图1图2图3图4图 5A. ∠α>∠β>∠γB. ∠α>∠γ>∠βC. ∠β>∠γ>∠αD. ∠γ>∠β>∠α9. 如图6,一个几何体上半部为正四棱椎,下半部为正方体,且有一个面涂有颜色,下列图形中是该几何体的表 面展开图的是 ( )A BCD10. 在数轴上,点A (表示整数a )在原点O 的左侧,点B (表示整数b )在原点O 的右侧,若|a-b|=2019,且AO =2BO ,则a +b 的值为()A. -1246B. 1246C.-673D. 673二、填空题 (本大题共6小题,每小题3分,共18分) 11. 如图7,射线有 条,线段有 条.12. 34.37°= ° ' ".13. 有下列说法:①3时30分,时针与分针的夹角为75°;②若∠1与∠2互余,∠3与∠2互补,则∠3=∠1+90°; ③若AB=BC ,则点B 是线段AC 的中点.其中正确的有 .(填序号)14.图8是正方体的展开图,已知正方体的相对的面上的符号相同,其中不符合的是 (填序号).15.如图9,C ,D 是线段AB 上的两个点,CD =3cm ,M 是AC 的中点,N 是DB 的中点, MN =5.4cm ,那么线 段AB 的长为 .16. 小英利用量角器作∠AOB=80°,以OB 为始边作∠BOC=20°,OD 平分∠AOB ,则∠COD 的度数为 . 三、解答题(本大题共6小题,共52分)图6图7图9①②③图817. (6分)仔细观察图10所示的几何体,并完成以下问题: (1)请你写出各个几何体的名称;(2)柱体有 ,椎体有 ,球体有 ; (3)构成几何体的面不超过3个的几何体有____________.① ② ③ ④ ⑤ ⑥ 图10 18.(8分)已知∠α=76°,∠β=41°31′,求: (1)∠β的余角; (2)∠α的2倍与∠β的21的差.19.(8分)如图11,是由7个完全相同的小正方体组成的一个几何体. (1)画出从三个方向看该几何体的平面图形.(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个从正面看和从上面看的平面图形不变,那么可以再添加 个小正方体.20.(10分)如图12,已知∠BOC=3∠AOC ,OD 平分∠AOB ,OE 平分∠AOC ,∠AOE=15°. (1)求∠AOB 的度数; (2)求∠DOE 的度数.21.(10分)如图13所示的硬纸片可以折成一个无盖的正方体盒子,每个面上都标有一个数字,且相对面上的数字和相等.(1)用式子表示出a ,b 之间的等量关系;(2)图14为一张3×5的长方形硬纸片,请你把它分割成三块,要求每块都能折成一个无盖的正方体盒子.图11图12图13 图1422.(12分)如图15,已知点C在线段AB上,AC=8 cm,BC=6 cm,点M,N分别是线段AC,BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+BC=a cm,其他条件不变,你能求出MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC-BC=b cm,M,N分别为线段AC,BC的中点,你能求出MN的长度吗?请画出图形,写出你的结论,并说明理由.附加题(共20分,不计入总分)1.(6分)图1是从上面看一个由多个相同小正方体搭成的几何体得到的平面图形,图中所标数字为该位置小正方体的个数,则从正面看这个几何体的平面图形是()A B C D2. (14分)如图2所示,把一根绳子对折成线段AB,从P处把绳子剪断,已知AP=21PB,若剪断后的各段绳子中最长的一段为40 cm,求这根绳子的长度.图2第四章几何图形初步测试题参考答案图15图1一、1.D 2. D 3. A 4. C 5. B 6. D 7. B 8.B 9. B 10. C 二、11. 4 6 12. 34 22 12 13. ①② 14. ③ 15.7.8 16. 20°或60° 三、17. 解:(1)依次为圆锥,长方体,圆柱,三棱柱,球,四棱锥. (2)②③④ ①⑥ ⑤ (3)①③⑤18. 解:(1)∠β的余角=90°-∠β=90°-41°31′=48°29′; (2)2∠α-21∠β=2×76°-21×41°31′=152°-20°45′30″=131°14′30″. 19. 解:(1)如图1所示:(2)120. 解:(1)因为OE 平分∠AOC ,∠AOE=15°, 所以∠AOC=2∠AOE=30°.因为∠BOC=3∠AOC ,所以∠BOC=3×30°=90°. 所以∠AOB=∠BOC+∠AOC=90°+30°=120°.(2)因为OD 平分∠AOB ,∠AOB=120°,所以∠AOD=60°. 所以∠DOE=∠AOD-∠AOE=60°-15°=45°.21. 解:(1)根据题意,观察图形可知4+a=2+b ,则a+2=b ; (2)如图2所示:22. 解:(1)因为点M ,N 分别是AC ,BC 的中点,所以MC=21AC ,CN=21BC.所以MN=MC+CN=21AC+21BC=21(AC+BC )=21×(8+6)=7(cm ). (2)MN=21a cm ,理由如下: 因为点M ,N 分别是AC ,BC 的中点,所以MC=21AC ,CN=21BC. 图 1从正面看 从左面看 从上面看图2所以MN=MC+CN=21AC+21BC=21(AC+BC )=21a cm. (3)如图3:MN=21b cm ,理由如下: 因为点M ,N 分别是AC ,BC 的中点,所以MC=21AC ,CN=21BC. 所以MN=MC-CN=21AC-21BC=21(AC-BC )=21b cm. 附加题1. C 提示:根据图中标注的数字,先确定从正面看有3列,再根据每一列中最大的数字确定这一列的层数,第一列有1层,第2列有3层,第3列有2层.2. 解:(1)当点A 是绳子的对折点时,将绳子展开如图1.因为AP :BP=1:2,剪断后的各段绳子中最长的一段为40 cm ,所以2AP=40cm ,AP=20 cm ,所以PB=40cm. 绳子的原长=2AB=2(AP+PB )=2×(20+40)=120(cm );(2)当点B 是绳子的对折点时,将绳子展开如图2.因为AP :BP=1:2,剪断后的各段绳子中最长的一段为40cm ,所以2BP=40cm ,BP=20cm ,所以AP=10cm . 绳子的原长=2AB=2(AP+BP )=2×(20+10)=60(cm ).综上绳子的长度为120 cm 或60 cm .图3图1图 2。
2019-2020学年人教版七年级数学上册 第四章 几何图形初步 单元测试题 含答案
2019-2020学年人教版七年级数学上册第四章水平测试卷(时间:100分钟 满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1.如图4-1所示是由6个大小相同的小立方体搭成的几何体,这个几何体从正面看到的图形是( A )图4-12. 一个正方体的表面展开图如图4-2所示,将其折叠成正方体后,“你”字对面的字是( C )图4-2A . 中B . 考C . 顺D . 利3. 下列说法:①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB =BC ,则点B 是线段AC 的中点.其中正确的有( B )A . 1个B . 2个C . 3个D . 4个4. 如图4-3,B 是线段AD 的中点,C 是BD 上一点,则下列结论错误的是( C )图4-3A . BC =AB -CD B . BC =12AD -CD C . BC =12(AD +CD) D . BC =AC -BD5.已知线段AB =10 cm ,直线AB 上有一点C ,且BC =4 cm ,M 是线段AC 的中点,则AM 的长为( C )A .7 cmB .3 cmC .3 cm 或7 cmD .7 cm 或9 cm 6. 若∠C =90°,∠A =25°30′,则∠C -∠A 的结果是( D ) A . 75°30′ B . 74°30′ C . 65°30′ D . 64°30′7. 李强同学用棱长为1的正方体在桌面上堆成如图4-4所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为( B )A . 37B . 33C . 24 D. 21图4-4图4-58. 如图4-5,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为( C )A. 69°B. 111°C. 141°D. 159°9. 如果∠1与∠2互补,∠2与∠3互余,那么∠1与∠3的关系是( C )A. ∠1=∠3B. ∠1=180°-∠3C. ∠1=90°+∠3D. 以上都不对10.一副三角板按图4-6所示方式摆放,且∠1的度数比∠2的度数小20°,则∠1的度数为( A )图4-6A.35°B.30°C.25°D.20°二、填空题(本大题6小题,每小题4分,共24分)11.若∠1=30°28′,则∠1的余角等于59°32′ .12. 如图4-7,从甲村到乙村共有三条路,小明选择第②条路最近,所用的数学知识为两点之间,线段最短.图4-7图4-813.如图4-8所示是由若干个大小相同的小正方体所搭成的几何体从三个方向看到的图形,则搭成这个几何体的小正方体的个数是7 个.14. 如果∠α与∠β互补,且∠α:∠β=5:4,那么∠α=100°,∠β=80° .15.延长线段AB到C,使BC=4,若AB=8,则线段AC的长为12 .16. 32.48°=32 度28 分48 秒.教与学广东学导练数学七年级上册配人教版第四章水平测试卷第2页(共4页)三、解答题(一)(本大题3小题,每小题6分,共18分)17. 计算:(1)48°39′+67°31′;(2)78°-47°34′56″;(3)22°16′×5.解:原式=116°10′.解:原式=30°25′4″.解:原式=111°20′.18. 如图4-9,已知A,B,C,D四点,根据下列语句画图.(1)画直线AB;(2)连接AC,BD,相交于点O;(3)画射线AD,BC,交于点P.图4-9答图4-1解:(1)如答图4-1,直线AB即为所求.(2)如答图4-1,线段AC,BD,点O即为所求.(3)如答图4-1,射线AD,BC,点P即为所求.19. 一个角的补角和这个角的余角的2倍互为补角,求这个角的度数.解:设这个角为x°,则这个角的余角为(90-x)°,补角为(180-x)°. 则有(180-x)+2(90-x)=180.解得x=60.答:这个角的度数为60°.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 如图4-10,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.图4-10解:因为OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,且∠AOC =130°, 所以∠AOD =∠BOD ,∠BOE =∠COE.所以∠DOE =12∠AOC =65°.21.如图4-11所示是由5个相同的小正方体搭成的几何体,已知小正方体的棱长为1.图4-11(1)在网格中画出从三个方向看这个几何体得到的图形; (2)求出这个几何体的表面积(含底面积). 解:(1)如答图4-2.答图4-2(2)这个几何体的表面积为2×(4+4+3)=22.22.如图4-12,已知线段A B .(1)作图:延长线段AB 到点C ,使AC =3AB ;(2)在(1)所画图中,若AB =1 cm ,D 为AB 的中点,E 为AC 的中点,求DE 的长.图4-12解:(1)如答图4-3.答图4-3(2)因为AB =1 cm ,D 为AB 的中点,所以AD =0.5 cm . 因为AC =3AB ,所以AC =3 cm .因为E 为AC 的中点,所以AE =1.5 cm . 所以DE =AE -AD =1 cm.五、解答题(三)(本大题3小题,每小题9分,共27分)23. 一个几何体由若干个相同的小正方体组成,如图4-13是从上面看得到的图形,其中每个小正方形中的数字代表该位置小正方体的个数,请画出该几何体从正面和从左面看得到的图形.图4-13解:从正面看和从左面看得到的图形如答图4-4.答图4-424.如图4-14,已知线段AB.(1)请用尺规按下列要求作图:①延长线段AB到C,使BC=AB,②延长线段BA到D,使AD=AC(不写画法,但要保留画图痕迹);(2)请直接回答线段BD与线段AC长度之间的大小关系;(3)如果AB=2 cm,请求出线段BD和CD的长度.图4-14解:(1)如答图4-5,BC,AD即为所求.答图4-5(2)由答图4-5可得,BD>AC.(3)因为AB=2 cm,所以AC=2AB=4 cm.所以AD=4 cm.所以BD=4+2=6(cm).所以CD=2AD=8 cm.25. 如图4-15,已知∠AOM与∠MOB互为余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果已知中∠AOB=80°,其他条件不变,求∠MON的度数;(3)如果已知中∠BOC=60°,其他条件不变,求∠MON的度数;(4)从(1)(2)(3)中你能发现什么规律?图4-15 解:(1)因为OM 平分∠AOC ,所以∠MOC =12∠AOC.又ON 平分∠BOC ,所以∠NOC =12∠BOC.所以∠MON =∠MOC -∠NOC =12∠AOC -12∠BOC =12∠AOB.而∠AOB =90°,所以∠MON =45°.(2)当∠AOB =80°,其他条件不变时,∠MON =12×80°=40°.(3)当∠BOC =60°,其他条件不变时,∠MON =45°. (4)分析(1)(2)(3)的结果和(1)的解答过程可知,∠MON 的大小总等于∠AOB 的一半,而与锐角∠BOC 的大小无关。
最新2019-2020年度人教版七年级数学上册《几何图形初步》同步测试题及答案-经典试题
第四章几何图形初步检测题(本试卷满分120分,含附加题20分)一、选择题(每小题3分,共30分)1. 如图1所示的包装盒,可近似看做的立体图形是()A. 棱锥B. 棱柱C. 圆锥D. 圆柱2. 图2是一把茶壶,则它的主视图是()A B C D3. 图3是菲律宾的国旗,该国旗上的平面图形有()A. 三角形B. 五边形C. 三角形和五边形D. 三角形、四边形和五边形4. 如图4,将一块铁皮折叠起来,总会有一道折痕,这说明()A. 两点之间线段最短B. 两点确定一条直线C. 面与面相交成线段D. 线段与线段相交成点5. 将一副三角尺按图5所示摆放,则∠ABC的度数为()A. 70°B. 75°C. 80°D. 85°6. 图6是一个正方体的表面展开图,则与原正方体中“伟”字所在的面相对面上标的字是()A. 中B. 大C. 国D. 的7. 下列基本图形的表示方法不正确的是()A B C D8. 下列各式不正确的是()A. 18 000″<360′B. 2°30′>2.4°C. 36 000″<8°D. 1°10′20″>4219″9. 明明借助一副三角尺和量角器,先画∠AOB=90°,再以点O为顶点,OB为始边,作∠BOC=30°,最后作∠AOC的平分线OD,则∠COD的度数为()A. 30°B. 60°C. 30°或60°D. 15°或45°10.由4个相同的小正方体搭建了一个积木,从不同方向看积木,所得到的图形如图7所示,则这个积木可能是()图7二、填空题(每小题3分,共24分)11. 上午9:30,某校学生进行阳光体育锻炼活动,地面上留下他们的影子,这种现象属于(填“中心”或“平行”)投影.12. 如图8,铅球投掷场地呈扇形,其中投掷区的角度为40°,则这个角的余角为°,补角为°.13. 从多边形的一个顶点与其他顶点连线段,若多边形被分成了八个三角形,则该多边形是_____边形.14. 若一个立体图形的三视图都是圆,则这个立体图形是.15. 图9所示是一个立体图形的表面展开图,请写出这个立体图形的名称:.16. 如图10,甲、乙、丙三只七星瓢虫分别落在操场草坪的点A,B,C处,连接AB,AC,BC,线段BC(填“<”“>”)线段AC,若乙瓢虫在甲瓢虫的北偏东30°,则甲瓢虫在乙瓢虫南偏西°.17. 如图11,点C在线段AB上,D是线段AC的中点,若BD=5 cm,BC=2 cm,则AB的长度为cm.18. 如图12,如图8所示,一个正方体的每一个面分别标有数字1、2、3、4、5、6,根据图中的正方体①、②、③三种状态所显示的数字,可推出“?”处的数字是.①②③图12三、解答题(共46分)19.(6分)仔细观察图13所示几何体,并完成以下问题:(1)请你写出几何体的名称;(2)柱体有______________;(3)构成几何体的面不超过3个的几何体有____________.①②③④⑤⑥图1320.(6分)已知∠A=24.1°+6°,∠B=56°-26°30′,∠C=18°12′+11.8°,试通过计算,比较∠A,∠B和∠C的大小.21.(6分)如图14,是美丽的蒙古包,它可以近似看做由两个常见的立体图形组合而成,试画出它的三视图.22. (8分)如图15,已知点O在直线AB上,OD、OE分别平分∠BOC、∠AOC,∠BOC=80°. (1)求∠AOD的度数;(2)∠DOC和∠COE有什么关系?简单说明理由.(3)若∠BOC=60°,其他条件不变(2)中的结论还成立吗?23.(9分)图16是一个常见立体图形的三视图,根据三视图,回答下列问题:(1)该立体图形是什么图形?(2)求该立体图形的表面积.24.(10分)如图17,已知线段AB,点E、F分别是线段AC、BD的中点,CD=4 cm,AC+BD=10cm.(1)求线段EF的长度;(2)若CD=a,AC+BD=b,则EF=.附加题(共20分)25. (8分)如图9,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,∠COE=70°.(1)设∠1=x°,用含x的式子表示∠2的度数.(2)若∠2=3∠1,求∠2的度数.图1826. (12分)经过平面内的两个点可以确定一条直线,根据这个性质,完成下列问题:探索知识:(1)在同一平面内有三点,经过其中的两点作直线,则所做直线的条数为;(2)在同一平面内有四个点,经过其中的两点作直线,有几种情况?画出每种情况中的所有直线.(3)由(1)、(2)可知,在同一平面内有五个点,且任意三个点都不在同一条直线上,则经过其中的两点作直线,最多能作条直线;归纳总结:(4)在同一平面内有n(n≥2)个点,且任意三个点都不在同一条直线上,则经过其中的两点作直线,最多能作条直线;运用知识:(5)某市举行篮球赛,进入第二轮比赛共有15个球队,如果采用循环赛(每两个球队都进行一场比赛),那么第二轮共有场比赛.参考答案一、1. A 2. D 3. D 4. C 5. B 6. D 7. C 8. C 9. C 10. D二、11. 平行12. 50 140 13. 十14. 球体15. 圆锥16. <30 17. 8 18. 6三、19. (1)几何体的名称依次为圆锥,长方体,圆柱,三棱柱,球,正方体.(2)②③④⑥(3)①③⑤20. 解:因为∠A=24.1°+6°=30.1°,∠B=56°-26°30′=29°30′=29.5°,∠C=18°12′+11.8°=18.2°+11.8°=30°,所以∠A>∠C>∠B.21. 解:如图所示:1∠BOC=40°,所以∠AOD=180°22. 解:(1)因为OD平分∠BOC,∠BOC=80°,所以∠BOD=2-∠BOD=180°-40°=140°.(2)∠DOC 和∠COE 互余.理由:由(1)得∠COD=40°.因为∠BOC=80°,所以∠AOC=180°-∠BOC=100°.因为OE 平分∠AOC ,所以∠EOC=50°.所以∠DOC+∠COE=40°+50°=90°.(3)成立.23. 解:(1)长方体;(2)2(2×6+2×4+4×6)=88,即该立体图形的表面积为88.24. 解:(1)因为点E 、F 分别是线段AC 、BD 的中点,所以CE=21AC ,DF=21BD. CE+DF=21(AC+BD)=21×10=5(cm). 因为CD=4 cm ,所以EF=CE+DF+CD=5+4=9(cm).(2)a+21b 25. 解:(1)因为∠1=x °,所以∠3=∠COE-∠1=70°-x °.又OC 平分∠AOD ,所以∠4=∠3=70°-x °.由∠1+∠2+∠3+∠4=180°,得∠2=180°-∠1-∠3-∠4=180°-x °-2(70°-x °)= 40°+x °.(2)由∠2=3∠1,得40+x=3x ,解得x=20.所以∠2=3∠1=3×20°=60°.26. (1)1或3;(2)有3种情况,各种情况画出的直线如图所示;(3)10(4)2)1( n n (5)105。
2019-2020人教版七年级数学上册《第4章几何图形初步》单元测试题含解析
人教版七年级数学上册《第4章几何图形初步》单元测试题一.选择题(共10小题)1.在一条直线上,依次有E、F、G、H四点.如果点F是线段EG的中点,点G是线段FH的中点,则有()A.EF=2GH B.EF>GH C.EF>2GH D.EF=GH2.如图,海平面上,有一个灯塔分别位于海岛A的南偏西30°和海岛B的南偏西60°的方向上,则该灯塔的位置可能是()A.O1B.O2C.O3D.O43.下列图形中属于棱柱的有()A.5个B.4个C.3个D.2个4.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱5.如图所示,下列图形绕直线l旋转360°后,能得到空心圆柱的是()A.B.C.D.6.已知∠1与∠2互为补角,∠1=120°,则∠2的余角的度数为()A.30°B.40°C.60°D.120°7.如图,右边的平面图形绕虚线l旋转一周,可以得到左边图形的是()A.B.C.D.8.点A,B,C在同一直线上,已知AB=3cm,BC=1cm,则线段AC的长是()A.2cm B.3cm C.4cm D.2cm或4cm9.如图,OC平分∠AOB,下列结论错误的是()A.∠AOB=2∠AOC B.∠AOC=∠BOCC.∠AOC=∠AOB D.∠BOC=∠AOB10.如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D,E分别为AC和AB的中点,则线段DE的长为()A.B.1C.D.2二.填空题(共8小题)11.已知∠a=76°35′,则∠a的补角为.12.子弹从枪膛中射出去的轨迹、汽车的雨刷把玻璃上的雨水刷干净,可分别看作是、的实际应用.13.如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=.14.如图,OA表示南偏东32°,OB表示北偏东57°,那么∠AOB=°.15.若一个棱柱有十个顶点,则它有个面,有条棱.16.如图,点C、D是线段AB的三等分点,如果点M、N分别是线段AC、BD的中点,那么MN:AB的值等于.17.如图,把某直三棱柱的表面展开图围成三棱柱后与A重合的字母是.18.如图,按虚线剪去长方形纸片相邻的两个角,则这个角的度数是.三.解答题(共8小题)19.太阳体积约是地球体积的130万倍,如果将它们近似地看成球体,估算太阳半径约是地球半径的多少倍(球体体积公式为V=)20.如图:已知AB=9cm,BD=3cm,C为AB的中点,求线段DC的长.21.如图,Rt△ABC中,∠BAC=90°.(1)尺规作图(保留作图痕迹)作∠BAC的平分线AD,交BC于点D;(2)已知AB=4,AC=3,求D到AB的距离.22.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为8cm、宽为4cm的长方形,统它的一条边所在的直线旋转一周,求得到的圆柱体的体积是多少?23.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.24.如图所示的长方形是圆柱的侧面展开图,如果这个长方形相邻的两边长分别为6,4π,求圆柱的体积(温馨提示:考虑问题要全面哦!).25.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照下图并思考,完成下列各题:(1)如果点A表示数﹣4,将点A向右移动7个单位长度,到达点B,那么点B表示的数是,A、B两点间的距离是;(2)如果将A点向左移动7个单位长度,再向右移动5个单位长度,到达点B,点B表示数3,那么点A表示的数是,A、B两点间的距离为;(3)如果点A表示数﹣4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是,A、B两点间的距离是;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,到达点B,那么请你猜想终点B表示什么数?A、B两点间的距离为多少?26.问题情境:以直线AB上一点O为端点作射线OM、ON,将一个直角三角形的直角顶点放在O 处(∠COD=90°).(1)如图1,直角三角板COD的边OD放在射线OB上,OM平分∠AOC,ON和OB重合,则∠MON=°;(2)直角三角板COD绕点O旋转到如图2的位置,OM平分∠AOC,ON平分∠BOD,求∠MON 的度数.(3)直角三角板COD绕点O旋转到如图3的位置,OM平分∠AOC,ON平分∠BOD,猜想∠MON的度数,并说明理由.参考答案与试题解析一.选择题(共10小题)1.解:如图,∵点F是线段EG的中点,点G是线段FH的中点,∴EF=FG,FG=GH,∴EF=GH,故选:D.2.解:由题意知,若灯塔位于海岛A的南偏西30°、南偏西60°的方向上,如图所示,灯塔的位置可以是点O1,故选:A.3.解:根据棱柱的定义可得:符合棱柱定义的有第一、二、三、七、八个几何体都是棱柱,共5个.故选:A.4.解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.5.解:以与长方形的一边平行的直线为轴,旋转一周可以得到一个空心圆柱体.故选:D.6.解:∵∠1与∠2互为邻补角,∠1=120°,∴∠2=180°﹣∠1=180°﹣120°=60°,∴∠2的余角的度数为90°﹣60°=30°.故选:A.7.解:由图可知,只有D选项图形绕直线l旋转一周得到如图所示立体图形,故选:D.8.解:本题有两种情形:(1)当点C在线段AB上时,如图,AC=AB﹣BC,又∵AB=3cm,BC=1cm,∴AC=3﹣1=2cm;(2)当点C在线段AB的延长线上时,如图,AC=AB+BC,又∵AB=3cm,BC=1cm,∴AC=3+1=4cm.故线段AC=2cm或4cm.故选:D.9.解:OC平分∠AOB,可得∠AOB=2∠AOC=2∠BOC;∠AOC=∠BOC=∠AOB.正确的是选项ABC.故选:D.10.解:由线段的和差,得AC=AB﹣BC=10﹣3=7cm,由点D是AC的中点,所以AD=AC=×7=cm;由点E是AB的中点,得AE=AB=×10=5cm,由线段的和差,得DE=AE﹣AD=5﹣=cm.故选:C.二.填空题(共8小题)11.解:180°﹣76°35′=102°25′.所以∠a的补角为102°25′.故答案为:102°25′.12.解:子弹从枪膛中射出去的轨迹可以看作点动成线的实际应用;汽车的雨刷把玻璃上的雨水刷干净,可分别看作是线动成面的实际应用,故答案为:点动成线,线动成面.13.解:∵D是AB中点,E是BC中点,∴AD=DB,BE=EC,∴AB=AC﹣BC=3,∴AD=1.5.故答案为:1.5.14.解:∵OA表示南偏东32°,OB表示北偏东57°,∴∠AOB=(90°﹣32°)+(90°﹣57°)=58°+33°=91°,故答案为:91.15.解:由棱柱的特点可知,这是一个五棱柱,故它有7个面,15个顶点.故答案为:7、15.16.解:∵点C、D是线段AB的三等分点,∴AC=CD=BD=AB,M和N分别是AC和BD的中点,∴MC=AC=AB,DN=BD=AB,∴MN=MC+DN+CD=AB+AB+AB=AB,∴MN:AB=,故答案为:.17.解:根据这个多面体的表面展开图可得与点A重合的字母是M和D.故答案为:M和D.18.解:∵∠1=∠A+∠ABE,∠2=∠C+∠DBC,∠ABE+∠DBC=180°﹣90°=90°,∴∠1+∠2=∠A+∠C+∠ABE+∠DBC=90°+90°+90°=270°,故答案为:270°.三.解答题(共8小题)19.解:由题意,得=1300000,则=10.答:太阳半径约是地球半径的10倍.20.解:∵AB=9cm,BD=3cm,∴AD=AB﹣BD=6cm,∵C为AB的中点,∴AC=AB=4.5cm,∴CD=AD﹣AC=1.5cm.21.解:(1)如图所示,AD即为所求.(2)如图,过点D作DM⊥AB,DN⊥AC于点N,∵AD平分∠BAC,∴DM=DN,∵S△ABC =S△ABD+S△ACD,∴AB•AC=AB•DM+AC•DN,即×4×3=×4×DM+×3×DM,解得:DM=,∴D到AB的距离为.22.解:①绕长所在的直线旋转一周得到圆柱体积为:π×42×8=128π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×82×4=256π(cm3).答:得到的圆柱体的体积是分别是128π(cm3)和256π(cm3)23.解:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=∠BOC,∠2=∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.24.解:①底面周长为6高为4π,π×()2×4π=π××4π=36;②底面周长为4π高为6,π×()2×6=π×4×6=24π.答:这个圆柱的体积可以是36或24π.25.解:(1)如果点A表示数﹣4,将点A向右移动7个单位长度,那么终点B表示的数是3,A、B两点间的距离是7;(2)如果将A点向左移动7个单位长度,再向右移动5个单位长度,终点B表示的数是3,那么点A表示数5,A、B两点间的距离为2;(3)如果点A表示数﹣4,将A点向右移动168个单位长度,再向左移动25个单位长度,那么终点B表示的数是﹣92,A、B两点间的距离是88;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么可以猜想终点B表示m+n﹣p,A、B两点间的距离为|n﹣p|.故答案为:(1)3,7;(2)5,2;(3)﹣92,88.26.解:(1)∵∠COD=90°,OM平分∠AOC,ON和OB重合,∴∠MOC=∠AOC=(∠AOB﹣∠COD)=45°,∴∠MON=∠MOC+∠COD=45°+90°=135°,故答案为:135;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC,∠DON=∠BOD,∵∠COD=90°,∴∠MOC+∠DON=∠AOC+∠BOD=(∠AOC+∠BOD)=(∠AOB﹣∠COD)=(180°﹣90°)=45°,∴∠MON=∠MOC+∠DON+∠COD=45°+90°=135°,即∠MON的度数是135°;(3)猜想∠MON的度数是135°,理由是:∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC,∠BON=∠BOD,∵∠COD=90°,∴∠MOC+∠BON=∠AOC+∠BOD=(∠AOC+∠BOD)=(∠AOB﹣∠COB+∠BOD)=[∠AOB﹣(∠COD﹣∠BOD)+∠BOD]=[∠AOB﹣∠COD+∠BOD+∠BOD]=[180°﹣90°+∠BOD+∠BOD]=45°+∠BOD∴∠MON=∠MOC+∠BON+∠COB=45°+∠BOD+∠COB=45°+∠COD=135°,即∠MON的度数是135°.。
最新2019-2020年度人教版七年级数学上册《几何图形初步》综合测试题及答案-经典试题
第1题图会社谐和设建第3题图第四章几何图形初步测试题 (时限:100分钟 总分:100分)一、选择题:将下列各题正确答案的代号填在下表中。
每小题2分,共24分。
1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( ) A.和 B.谐 C.社 D.会2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )A B C D3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( ) A. 正方体、圆柱、三棱柱、圆锥 B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥DC BABAC BAβββααα4.如图,对于直线AB ,线段CD ,射线EF 中能相交的是( )5.下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长 6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( )A. 3cmB. 4cmC. 5cmD. 6cm1乙甲NM PDC BAB ()D CAD CBA第9题图BA9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A. 1B. 2C. 3D. 410.用度、分、秒表示91.34°为( )A. 91°20/24//B. 91°34/C. 91°20/4//D. 91°3/4// 11.下列说法中正确的是( )A.若∠AOB =2∠AOC ,则OC 平分∠AOBB.延长∠AOB 的平分线OCC.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOCD.若OC 平分∠AOB ,则∠AOC =∠BOC12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错 二、填空题:本大题共8小题,每小题3分,共24分。
【2019】人教版数学七年级(上)第9章《几何图形初步》单元综合练习卷(含答案).doc
人教版七年级数学上册第四章几何图形初步单元测试A卷(1)一.选择题(共10小题)1.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.2.如图所示正三棱柱的主视图是()A.B.C.D.3.如图是一根空心方管,它的俯视图是()A.B.C.D.4.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.5.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块6.某物体三视图如图,则该物体形状可能是()A.长方体B.圆锥体C.立方体D.圆柱体7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.线段D.以上都有可能9.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B.C.D.10.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的二.填空题(共4小题)11.三视图都是同一平面图形的几何体有、.(写两种即可)12.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=.13.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是.14.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.三.解答题(共9小题)15.分别画出图中几何体的主视图、左视图、俯视图.16.画出如图所示的几何体的主视图、左视图、俯视图:17.如图是某工件的三视图,求此工件的全面积和体积.18.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.19.一个几何体由几个大小相同的小立方块搭成,从上面看这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面,左侧面看到的几何体的形状图.20.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)21.有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.22.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)23.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.2019年春人教版九年级下册数学《第29章投影与视图》单元测试题参考答案与试题解析一.选择题(共10小题)1.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.【分析】根据左视图是从左面看到的视图,对各选项分析判断后利用排除法求解.【解答】解:A、圆柱的左视图是矩形,故本选项错误;B、圆锥的左视图是等腰三角形,故本选项正确;C、三棱柱的左视图是矩形,故本选项错误;D、长方体的左视图是矩形,故本选项错误.故选:B.【点评】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.2.如图所示正三棱柱的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:如图所示正三棱柱的主视图是平行排列的两个矩形,故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.注意本题不要误选C.3.如图是一根空心方管,它的俯视图是()A.B.C.D.【分析】俯视图是从物体的上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.【解答】解:如图所示:俯视图应该是.故选:B.【点评】本题考查了作图﹣三视图,注意看到的用实线表示,看不到的用虚线表示.画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等4.如图所示的几何体是由七个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【分析】根据俯视图的定义即可判断.【解答】解:如图所示的几何体的俯视图是D.故选:D.【点评】本题考查几何体的三视图,理解三视图的定义是正确解答的关键.5.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有()A.3块B.4块C.6块D.9块【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选:B.【点评】此题主要考查了由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.6.某物体三视图如图,则该物体形状可能是()A.长方体B.圆锥体C.立方体D.圆柱体【分析】由主视图和左视图确定是柱体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故选:D.【点评】主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆形就是圆柱.7.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.8.圆形的物体在太阳光的投影下是()A.圆形B.椭圆形C.线段D.以上都有可能【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:根据题意:同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变.故选:D.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.9.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B.C.D.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子的方向不相同,错误;B、影子平行,且较高的树的影子长度大于较低的树的影子,正确;C、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误;D、影子的方向不相同,错误;故选:B.【点评】本题考查了平行投影,灵活运用平行投影的性质是解题关键.10.平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【分析】解答本题关键是要理解平行投影,平行投影中的光线是平行的,如阳光等.【解答】解:平行投影中的光线是平行的.故选:A.【点评】本题考查平行投影的定义,需注意与中心投影定义的区别.二.填空题(共4小题)11.三视图都是同一平面图形的几何体有正方体、球体.(写两种即可)【分析】三视图都相同的几何体是:正方体,三视图均为正方形;球体,三视图均为圆.【解答】解:依题意,主视图、左视图以及俯视图都相同的几何体是正方体或球体.故答案为:正方体、球体.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力和对立体图形的认识.12.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=16.【分析】这种题需要空间想象能力,可以想象这样的小立方体搭了左中右三排,但最左排可以为4~6个小正方体,依此求出m、n的值,从而求得m+n的值.【解答】解:最少需要7块如图(1),最多需要9块如图(2)故m=9,n=7,则m+n=16.【点评】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力.13.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是8.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从左视图可看出每一行小正方体的层数和个数,从而算出总的个数.【解答】解:由俯视图易得最底层小正方体的个数为6,由其他视图可知第二行第2列和第三列第二层各有一个正方体,那么共有6+2=8个正方体.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.14.如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有11块小正方体;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.【解答】解:(1)根据如图所示即可数出有11块小正方体;(2)如图所示;左视图,俯视图分别如下图:故答案为:(1)11.【点评】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.三.解答题(共9小题)15.分别画出图中几何体的主视图、左视图、俯视图.【分析】从正面看从左往右4列正方形的个数依次为1,3,1,1;从左面看从左往右3列正方形的个数依次为3,1,1;从上面看从左往右4列正方形的个数依次为1,3,1,1.【解答】解:【点评】本题考查了三视图的画法;得到从各个方向看得到的每列正方形的个数是解决本题的关键.16.画出如图所示的几何体的主视图、左视图、俯视图:【分析】主视图有3列,每列小正方形数目分别为2,1,1;左视图有3列,每列小正方形数目分别为2,1,1;俯视图,3列,每列小正方形数目分别为3,1,1.【解答】解:作图如下:【点评】此题考查的知识点是简单组合体的三视图,关键明确主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.17.如图是某工件的三视图,求此工件的全面积和体积.【分析】由三视图可知,该工件为底面半径为10cm,高为30cm的圆锥体,然后由勾股定理得到该圆锥的母线长,再由圆锥的侧面积和圆锥的底面积相加为圆锥的全面积;根据圆锥的体积公式可求圆锥的体积.【解答】解:由三视图可知,该工件为底面半径为10cm,高为30cm的圆锥体,这圆锥的母线长为=10(cm),圆锥的侧面积为s=πrl=×20π×10=100π(cm2),圆锥的底面积为102π=100πcm2,圆锥的全面积为100π+100π=100(1+)π(cm2);圆锥的体积×π×(20÷2)2×30=1000π(cm3).故此工件的全面积是100(1+)πcm2,体积是1000πcm3.【点评】本题主要考查几何物体三视图及圆锥的面积和体积求法.三视图判断几何体的形状是难点,这就要求掌握几种常见几何体的三视图,并建立三视图与实物的对应关系.18.如图是由几个小正方体所搭成的几何体上面看到的图形,小正方形中的数字表示在该位置的小正方体的个数,请你画出从正面、左面可以看到的图形.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,4;左视图有2列,每列小正方形数目分别为4,2.据此可画出图形.【解答】解:作图如下:【点评】考查画几何体的三视图,用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.19.一个几何体由几个大小相同的小立方块搭成,从上面看这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面,左侧面看到的几何体的形状图.【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,3,4;从左面看有3列,每列小正方形数目分别为1,4,3.据此可画出图形.【解答】解:如图所示:【点评】考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图是小强用八块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图(在答题卡上画完图后请用黑色签字笔描图)【分析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,2;从上面看有3列,每列小正方形数目分别为1,3,2,依此画出图形即可.【解答】解:三视图如下:【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.21.有两根木棒AB,CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图所示,请你在图中画出这时木棒CD的影子.【分析】连接AE,过点C作AE的平行线,过点D作BE的平行线,相交于点F,DF即为所求.【解答】解:【点评】本题考查平行投影的作图,难度不大,体现了学数学要注重基础知识的新课标理念.会灵活运用性质作图.22.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1m长的影子如图所示,已知窗框的影子DE到窗下墙脚的距离CE=3.9m,窗口底边离地面的距离BC=1.2m,试求窗口的高度.(即AB的值)【分析】根据阳光是平行光线,即AE∥BD,可得∠AEC=∠BDC;从而得到△AEC∽△BDC,根据比例关系,计算可得AB的数值,即窗口的高度.【解答】解:由于阳光是平行光线,即AE∥BD,所以∠AEC=∠BDC.又因为∠C是公共角,所以△AEC∽△BDC,从而有.又AC=AB+BC,DC=EC﹣ED,EC=3.9,ED=2.1,BC=1.2,于是有,解得AB=1.4(m).答:窗口的高度为1.4m.【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例.要求学生通过投影的知识结合图形相似的性质巧妙地求解或解直角三角形,是平行投影性质在实际生活中的应用.23.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD =2.1m,求灯泡的高.【分析】(1)连接CB延长CB交DE于O,点O即为所求.(2)连接OG,延长OG交DF于H.线段FH即为所求.(3)根据=,可得=,即可推出DE=4m.【解答】(1)解:如图,点O为灯泡所在的位置,线段FH为小亮在灯光下形成的影子.(2)解:由已知可得,=,∴=,∴OD=4m.∴灯泡的高为4m.【点评】本题考查中心投影、解题的关键是正确画出图形,记住物长与影长的比的定值,属于基础题,中考常考题型.人教版七年级上册第四章《几何图形初步》单元测试一、选择题1、如图所示几何体的左视图是()2、下列平面图形经过折叠不能围成正方体的是()3、图为某个几何体的三视图,则该几何体是()A. B. C. D.4、汽车车灯发出的光线可以看成是( )A.线段B.射线C.直线D.弧线5、如果A、B、C三点在同一直线上,且线段AB=6 cm,BC=4 cm,若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5 cm B.1 cm C.5或1 cm D.无法确定6、下列说法正确的有( )①两点确定一条直线;②两点之间线段最短;③∠α+∠β=90°,则∠α和∠β互余;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线.A.1个 B.2个 C.3个 D.4个7、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是( )A.2(a﹣b) B.2a﹣b C.a+b D.a﹣b8、如果线段AB=13cm,MA+MB=17 cm,那么下面说法中正确的是 ( ).A.M点在线段AB上 B.M点在直线AB上C.M点在直线AB外 D.M点可能在直线AB上,也可能在直线AB外9、点C在线段AB上,不能判定点C是线段中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.AC=AB10、3点30分时,时钟的时针与分针所夹的锐角是( )A.70° B.75° C.80° D.90°11、已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是( )A.∠A=∠B B.∠B=∠C C.∠A=∠C D.三个角互不相等12、如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,∠AOB的度数是A. 70°B. 80°C. 100°D. 110°13、如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°,则∠AOB等于()A.50° B.75° C.100° D.120°14、用一副三角板不能画出的角为( )A.15° B.85° C.120° D.135°15、如图所示的四条射线中,表示南偏西60°的是()A.射线OA B.射线OB C.射线OC D.射线OD二、填空题16、计算33°52′+21°54′= .17、将18.25°换算成度、分、秒的结果是__________.18、上午6点45分时,时针与分针的夹角是__________度.19、如图是由一些大小相同的小正方体搭成的几何体的主视图和俯视图,则搭成该几何体的小正方体最多是___个.20、A,B,C三点在同一条直线上,若BC=2AB且AB=m,则AC=__________.21、如图,若CB=3cm,DB=7cm,且D是AC的中点,则AC= cm.22、如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .23、已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段BC的中点,则AM的长是 cm.24、已知线段AB=4cm,延长线段AB至点C,使BC=2AB,若D点为线段AC的中点,则线段BD长为cm.25、已知 A、B、C 三点在同一条直线上,M、N 分别为线段 AB、BC 的中点,且 AB=60,BC=40,则 MN 的长为26、已知∠AOC=2∠BOC, 若∠BOC=30°,则∠AOB=27、如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.三、简答题28、按要求作图(1)如图,已知线段a,b,用尺规作一条线段CD=2a+b.(2)如图,在平面上有A、B、C三点.①画直线AC,线段BC,射线AB;②在线段BC上任取一点D(不同于B、C),连接线段AD.29、如图,B是线段AD上一动点,沿A→D→A以2cm/s的速度往返运动1次,C是线段BD的中点,AD=10cm,设点B运动时间为t秒(0≤t≤10).(1)当t=2时,①AB= cm.②求线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.30、已知,如图,B,C两点把线段AD分成2:5:3三部分,M为AD的中点,BM=6cm,求CM和AD的长.31、如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.32、(1)已知:如图,点C在线段AB上,线段AC=12,BC=4,点M、N分别是AC、BC的中点,求MN的长度.(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜出MN的长度吗?请用一句简洁的语言表达你发现的规律.33、如图,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,试求∠BOC的大小.34、如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)写出图中小于平角的角.(2)求出∠BOD的度数.(3)小明发现OE平分∠BOC,请你通过计算说明道理.35、如图,直线AB上有一点O,∠DOB=90°,另有一顶点在O点的直∠EOC.(1)如果∠DOE=50°,则∠AOC的度数为;(2)直接写出图中相等的锐角,如果∠DOC≠50°,它们还会相等吗?(3)若∠DOE变大,则∠AOC会如何变化?(不必说明理由)36、如图所示,OM平分∠BOC,ON平分∠AOC,(1)若∠AOB=90°,∠AOC=30°,求∠MON的度数;(2)若(1)中改成∠AOB=60°,其他条件不变,求∠MON的度数;(3)若(1)中改成∠AOC=60°,其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?参考答案一、选择题1、A.【解析】分析:找到从左面看所得到的图形即可.解答:解:从左面看可得到上下两个相邻的正方形,故选A2、D3、D【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为矩形判断出是柱体,由俯视图是正方形可判断出这个几何体应该是长方体.故选D.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、B5、C6、C【考点】直线的性质:两点确定一条直线;线段的性质:两点之间线段最短;角平分线的定义;余角和补角.【分析】根据直线的性质可得①正确;根据线段的性质可得②正确;根据余角定义可得③正确;根据角平分线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得④错误.【解答】解:①两点确定一条直线,说法正确;②两点之间线段最短,说法正确;③∠α+∠β=90°,则∠α和∠β互余,说法正确;④一条直线把一个角分成两个相等的角,这条直线叫做角的平分线,说法错误;正确的共有3个,故选:C.【点评】此题主要考查了直线和线段的性质,以及余角和角平分线的定义,关键是熟练掌握课本基础知识.7、B【考点】比较线段的长短.【专题】计算题.【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解答】解:∵MN=MB+CN+BC=a,BC=b,∴MB+CN=a﹣b,∵M是AB的中点,N是CD中点∴AB+CD=2(MB+CN)=2(a﹣b),∴AD=2(a﹣b)+b=2a﹣b.故选B.【点评】本题考查了比较线段长短的知识,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.8、D9、C10、B11、C【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:∠A=35°12′=25.2°=∠C>∠B,故选:C.【点评】本题考查了度分秒的换算,小单位华大单位除以进率是解题关键.12、D13、C【考点】角的计算;角平分线的定义.。
2019-2020学年人教版初中数学七年级(上)《第4章几何图形初步》单元测试卷解析版
2019学年人教版初中数学七年级(上)《第4章几何图形初步》单元测试卷一.选择题(共10小题)1.下列表述能确定一个地点的位置的是()A.北偏西45°B.东北方向C.距学校200m D.学校正南1000m2.下列图形中表示北偏东60°的射线是()A.B.C.D.3.如图,是某住宅小区平面图,点B是某小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路,从居民楼点A到“菜鸟驿站”点B的最短路径是()A.A﹣C﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B4.如图线段AB和线段CD,在平面内找一点P,使得它到四端点的距离和P A+PB+PC+PD最小,则点P()A.线段AB的中点B.线段CD的中点C.线段AB和线段CD的交点D.线段AD和线段BC的交点5.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b6.如图,AB⊥AC,AD⊥BC垂足分别为A,D,图中互余的角共有()A.2对B.3对C.4对D.5对7.如果∠α和∠β互补,且∠α<∠β,则下列表示∠α的余角的式子中①90°﹣∠α;②∠β﹣90°③(∠α+∠β)④(∠β﹣∠α)其中正确的有()A.1个B.2个C.3个D.4个8.如图,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=40°,射线OM平分∠BOC,ON平分∠AOC,则∠MON的度数为()A.45°B.65°C.50°D.25°9.如图,矩形纸片ABCD,M为AD边的中点将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠1=30°,则∠BMC=()A.75°B.150°C.120°D.105°10.如图,图1和图2中,两个剪刀张开的角度α和β的大小关系为()A.α>βB.α<βC.α=βD.不能确定二.填空题(共6小题)11.矩形长和宽分别为8cm、6cm,以其中一边所在直线为轴旋转一周,得到的几何体的底面积是.12.如图是一个正方体的展开图,将它折叠成正方体后,字母B的对面是.(用图中字母表示)13.如图,已知A、B、C三点在同一直线上,AB=24m,BC=AB,E是AC的中点,D是AB的中点,则DE的长.14.点A、B、C在直线l上,AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,EF=.15.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.若∠ABE=30°,则∠DBC为度.16.如图将一副三角板的直角顶点重合,摆放在桌面上,若∠AOC=110°,则∠BOD=°.三.解答题(共7小题)17.做大小两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘来?(2)做大纸盒比做小纸盒多用料多少平方厘米?(3)若a=6,b=5,c=3,则大纸盒的体积是多少cm3?18.邮递员骑摩托车从邮局出发在一条东西向的道路上送快递,他先向西骑行2千米到达A村,继续向西骑行3千米到达B村,然后向东骑行9千米到达C村,最后回到邮局.(1)规定郎局为原点,向东为正方向,1千米为1个单位长度,画出数轴并在数轴上标出A、B、C三个村子的位置;(2)求C村到A村的距离;(3)若摩托车每10千米需用1.5升汽油邮递员从邮局出发到最后回到邮局时,一共用了多少升汽油?19.如图,圆柱的高为15cm,全面积(也称表面积)为200π平方厘米,则圆柱底面半径为多少?20.一个六棱柱模型如所示,它的底面边长都是6cm,侧棱长4cm,观察这个模型,回答下列问题:(1)这个六棱柱的几个面分别是什么形状?哪些面的形状、大小完全相同?(2)这个六棱柱的所有侧面的面积之和是多少?21.已知∠AOB=108°,∠BOC=22°,射线OD、OE分别是∠AOB和∠BOC的平分线,求∠DOE的度数.22.数形结合(1)如图已知线段AB=10cm,点N在AB上,NB=2cm,M是AB的中点,那么线段MN的长为多少?(2)如图所示,射线OA的方向是北偏东15.8°,射线OB的方向是北偏西40°30',若∠AOC=∠AOB,则射线OC的方向是北偏东多少度?23.如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一直角边OM在射线OB上,另一直角边ON在直线AB的下方,(1)将图①中的三角板绕点O逆时针方向旋转至图②,使边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON大小;(2)将图①中的三角板绕点O逆时针方向旋转至图③.①如果ON恰好是∠AOC的角平分线,则∠AOM﹣∠NOC的度数为;②如果ON始终在∠AOC的内部,∠AOM﹣∠NOC的度数不会变化,请猜测出∠AOM﹣∠NOC的度数并说明理由.2019学年人教版初中数学七年级(上)《第4章几何图形初步》单元测试卷参考答案与试题解析一.选择题(共10小题)1.【解答】解:确定一个地点的位置需要两个条件:方向和距离,符合条件的只有D选项.故选:D.2.【解答】解:北偏东60°就是从北向东偏60°,即从上往右偏60°,故选:A.3.【解答】解:由题意可得BE是必须经过的路段,∴由两点之间线段最短,可得点A到点E的最短路径A﹣F﹣E,∴从居民楼点A到“菜鸟驿站”点B的最短路径是A﹣F﹣E﹣B,故选:D.4.【解答】解:线段AB和线段CD,在平面内找一点P,使得它到四端点的距离和P A+PB+PC+PD最小,则点P 是线段AD和线段BC的交点,故选:D.5.【解答】解:∵x﹣c+2b=2a,∴x+2a=2x+2b﹣c,故选项A错误;∵2a﹣2b=x﹣c,故选项B错误;∵x+b=2a+c﹣b,故选项C正确;∵2a﹣2b=x﹣c,∴﹣x+2a=﹣c+2b,故选项D错误,故选:C.6.【解答】解:在Rt△ABC中,∵AD⊥BC于D,∴∠B+∠C=90°,∠B+∠BAD=90°,∠BAD+∠CAD=90°,∠CAD+∠C=90°,则互余的角共有4个.故选:C.7.【解答】解:∵∠α和∠β互补,∴∠α+∠β=180°,∴∠α=180°﹣∠β,于是有:∠α的余角为:90°﹣∠α,故①正确,∠α的余角为:90°﹣∠α=90°﹣(180°﹣∠β)=∠β﹣90°,故②正确,∠α的余角为:90°﹣∠α=∠α+∠β﹣∠α=∠β﹣∠α,故④正确,而(∠α+∠β)=90°,而∠α不一定是直角,因此③不正确,因此正确的有①②④,故选:C.8.【解答】解:∵∠AOB=90°,且∠AOC=40°,∴∠COB=∠AOB+∠AOC=90°+40°=130°,∵OM平分∠BOC,∴∠BOM=∠BOC=65°,∴∠AOM=∠AOB﹣∠BOM=25°,∵ON平分∠AOC,∴∠AON=∠AOC=20°,∴∠MON=∠AOM+∠AON=45°.∴∠MON的度数是45°.故选:A.9.【解答】解:∵∠1=30°,∠AMA1+∠1+∠DMD1=180°,∴∠AMA1+∠DMD1=180°﹣30°=150°.∴∠BMA1+∠CMD1=75°.∴∠BMC=∠BMA1+∠CMD1+∠1=105°.故选:D.10.【解答】解:由图可得,两个剪刀张开的角度α和β的大小关系为α=β,故选:C.二.填空题(共6小题)11.【解答】解:当把矩形8cm的一边所在直线为轴旋转一周,那么圆柱的底面半径为6cm,高和母线长都为8cm,∴圆柱的侧面积为π×6×2×8=96π(cm2),两个底面的面积为π×62×2=72π(cm2),∴圆柱体的表面积为168πcm2;当把矩形6cm的一边所在直线为轴旋转一周,那么圆柱的底面半径为8cm,高和母线长都为6cm,∴圆柱的侧面积为π×8×2×6=96π(cm2),两个底面的面积为π×82×2=128π(cm2),∴圆柱体的表面积为224πcm2;故得到的几何体的底面积是168πcm2或224πcm2.故答案为:168πcm2或224πcm2.12.【解答】解:正方体的平面展开图中,相对的面一定相隔一个正方形,字母B的对面是“D”.故答案为:D.13.【解答】解:∵AB=24cm,BC=AB,∴BC=9,∴AC=AB+BC=33,∵E是AC的中点,D是AB的中点,∴AE=AC=,AD=AB=12,∴DE=AE﹣AD=.故答案为:.14.【解答】解:如图,∵AB=4cm,BC=6cm,点E是AB中点,点F是BC的中点,∴BE=AB=2cm,BF=BC=3cm,①点B在A、C之间时,EF=BE+BF=2+3=5cm;②点A在B、C之间时,EF=BF﹣BE=3﹣2=1cm.∴EF的长等于5cm或1cm.故答案为:5cm或1cm.15.【解答】解:∵BD、BE为折痕,∴BD、BE分别平分∠CBC′、∠ABA′∴∠A′BE=∠ABE=30°,∠DBC=∠DBC′∵∠A′BE+∠ABE+∠DBC+∠DBC′=180°∴∠ABE+∠DBC=90°∴∠DBC=60°.故答案为60°16.【解答】解:∵∠AOB=∠COD=90°,∴∠AOD=∠AOC﹣∠COD=110°﹣90°=20°,∴∠BOD=∠AOB﹣∠AOD=90°﹣20°=70°.故答案为:70.三.解答题(共7小题)17.【解答】解:(1)做这两个纸盒共用料(单位:cm2)(2ab+2bc+2ac)+(20ab+16ac+10bc),=2ab+2bc+2ac+20ab+16ac+10bc,=22ab+12bc+18ac;(2)做大纸盒比做小纸盒多用料(单位:cm2),(20ab+16ac+10bc)﹣(2ab+2bc+2ac)=20ab+10bc+16ac﹣2ab﹣2bc﹣2ac=18ab+8bc+14ac;(3)大纸盒的体积V=4a×2.5b×2c=20abc,当a=6,b=5,c=3时V=20×6×5×3=1800cm3.18.【解答】解:(1)A、B、C三个村庄的位置如图所示:(2)4﹣(﹣2)=6,答:C村离A村有6km;(3)2+3+9+4=18,18÷100×1.5=27(升).答:一共用了27升汽油.19.【解答】解:设圆柱的底面半径为rcm,由题意得,πr2×2+2πr×15=200π,解得,r=5,或r=﹣20(舍去)答:圆柱的底面半径为5cm.20.【解答】解:(1)这个六棱柱由8个面,其中2个底面是大小和形状相同的正六边形,6个侧面是长为6cm,宽为4cm的长方形;(2)其侧面积为:6×4×6=144cm2,答:这个六棱柱的所有侧面的面积之和为144cm2.21.【解答】解:(1)当OC在∠AOB的内部时,如图1所示:∵OE是∠BOC的平分线,∴∠BOE=∠COE=,又∵∠BOC=22°,∴∠COE=11°,∵OD是∠AOB的平分线,∴∠AOD=∠BOD=,又∵∠AOB=108°,∴∠BOD=54°,又∵∠BOC+∠COD=∠BOD,∵∠COD=54°﹣22°=32°,又∵∠DOE=∠DOC+COE,∴∠DOE=32°+11°=43°;(2)当OC在∠AOB的外部时,如图2所示:∵OE是∠BOC的平分线,∴∠BOE=∠COE=,又∵∠BOC=22°,∴∠BOE=11°,∵OD是∠AOB的平分线,∴∠AOD=∠BOD=,又∵∠AOB=108°,∴∠BOD=54°,又∵∠DOE=∠BOD+∠BOE,∴∠DOE=54°+11°=65°;综合所述,∠DOE的度数为43°或65°.22.【解答】解:(1)∵AB=10cm,M是AB的中点,∴MA=MB=AB=5cm,∵NB=2cm,∴MN=5﹣2=3cm,答:线段MN的长度为3cm.(2)如图,由题意得,∠DOA=15.8°,∠DOB=40°30'=40.5°,∴∠AOB=15.8°+40.5°=56.3°=∠AOC,∴∠DOC=∠DOA+∠AOC=15.8°+56.3°=72.1°,答:射线OC的方向是北偏东72.1度.23.【解答】解:(1)∵OM平分∠BOC,∠BOC=120°,∴∠BOM=∠MON=60°,∵∠MON=90°,∴∠BON=∠MON﹣∠BOM=90°﹣60°=30°;(2)①∠AOM﹣∠NOC=30°;故答案为:30°②∠AOM﹣∠NOC=30°,理由如下:∵∠AOM=∠MON﹣∠AON=90°﹣∠AON,∠NOC=∠AOC﹣∠AON=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.。
人教版2019-2020学年度七年级上册 第四章 几何图形初步 单元检测题含答案
2019—2020学年度第一学期七年级数学单元检测题(四)检测内容:第四章几何图形初步考试时间:100分钟;满分:120分班级:___________姓名:___________:考号___________:分数___________一、选择题(本题共10 道题,每小题 3分,共计30 分)1.下列图形能比较大小的是( )A.直线与线段B.直线与射线C.两条线段D.射线与线段2.如图所示,下列表示∠1的方法中,正确的是( )A.∠CB.∠DC.∠ADBD.∠BAC3.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A. 垂线段最短B. 线段有两个端点C. 两点确定一条直线D. 两点之间线段最短4.如图,海上有两艘军舰A和B,由A测得B的方向是( )A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°第2题图第3题图第4题图5.如图,钟表8时30分时,时针与分针所成的角的度数为()A. 90°B.75°C. 60°D. 30°6.如图,直线a ,b相交于点O,若∠1等于40°,则∠2等于()A. 50°B. 60°C. 140°D. 160°7.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A. 3cmB. 4cmC. 5cmD. 6cm第5题图 第6题图 第8题图8.将两块直角三角板的直角顶点重合,如图所示,若128AOD = ∠,则∠BOC 的度数是( ).A. 45°B.52°C. 60°D. 50°9.下列哪个角不能由一副三角板作出( )A .︒105B . ︒15C .︒175D .︒13510.下列各图不是正方体展开图的是( )A. B. C. D.二、填空题 (本题共6 道题,每小题4 分,共计24 分)11."横看成岭恻成峰,远近高低各不同,不识庐山真面目,只缘身在此山中"这是宋代诗人苏轼的著名诗句,你能说出:"横看成岭恻成峰"中蕴涵的数学道理吗? _________________________________________。
2019—2020年人教版七年级数学第一学期《几何图形初步》达标测试卷及答案.docx
《第4章几何图形初步》一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25°B.35°C.45°D.55°8.如图,∠1+∠2等于()A.60°B.90°C.110° D.180°9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是.12.如图,以图中A,B,C,D,E为端点的线段共有条.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= .14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= °.15.如图是某几何体的平面展开图,则这个几何体是.16.如图绕着中心最小旋转能与自身重合.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于度.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转度,就可以形成一个球体.19.已知∠A=40°,则它的补角等于.20.两条直线相交有个交点,三条直线相交最多有个交点,最少有个交点.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.27.一个角的余角比它的补角的还少20°,求这个角.《第4章几何图形初步》参考答案与试题解析一、选择题1.分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是三角形可判断出此几何体为三棱柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选C.【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.2.从左面看图中四个几何体,得到的图形是四边形的几何体共有()A.1个B.2个C.3个D.4个【考点】简单几何体的三视图.【分析】四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是()A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥【考点】几何体的展开图.【分析】根据正方体、圆锥、三棱柱、圆柱及其表面展开图的特点解题.【解答】解:观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是正方体、圆柱、三棱柱、圆锥.故选A.【点评】可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′【考点】度分秒的换算.【专题】计算题.【分析】进行度、分、秒的加法、减法计算,注意以60为进制.【解答】解:A、83.5°=83°50′,错误;B、37°12′=37.48°,错误;C、24°24′24″=24.44°,错误;D、41.25°=41°15′,正确.故选D.【点评】此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可.6.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③不在同一直线上的四个点可画6条直线;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.1个B.2个C.3个D.4个【考点】垂线;直线、射线、线段;对顶角、邻补角.【分析】根据垂线的性质可得①错误;根据对顶角的性质可得②正确;根据两点确定一条直线可得③错误;根据邻补角互补可得④正确.【解答】解:①一条直线有且只有一条垂线,说法错误;②不相等的两个角一定不是对顶角,说法正确;③不在同一直线上的四个点可画6条直线,说法错误,应为4或6条;④如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,说法正确.故选:B.【点评】此题主要考查了垂线、邻补角、对顶角,关键是熟练掌握课本知识.7.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是()A.25°B.35°C.45°D.55°【考点】角平分线的定义;对顶角、邻补角.【专题】计算题.【分析】根据角平分线的定义求出∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵OA平分∠EOC,∠EOC=110°,∴∠AOC=∠COE=55°,∴∠BOD=∠AOC=55°.故选D.【点评】本题主要考查了角平分线的定义以及对顶角相等的性质,认准图形是解题的关键.8.如图,∠1+∠2等于()A.60°B.90°C.110° D.180°【考点】余角和补角.【专题】计算题.【分析】根据平角的定义得到∠1+90°+∠2=180°,即有∠1+∠2=90°.【解答】解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.【点评】本题考查了平角的定义:180°的角叫平角.9.C是线段AB上一点,D是BC的中点,若AB=12cm,AC=2cm,则BD的长为()A.3cm B.4cm C.5cm D.6cm【考点】两点间的距离.【分析】先求出BC,再根据线段中点的定义解答.【解答】解:∵AB=12cm,AC=2cm,∴BC=AB﹣AC=12﹣2=10cm.∵D是BC的中点,∴BD=BC=×10=5cm.故选C.【点评】本题考查了两点间的距离,主要利用了线段中点的定义,熟记概念是解题的关键,作出图形更形象直观.10.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对 B.甲对乙错 C.甲错乙对 D.甲乙都错【考点】翻折变换(折叠问题).【分析】甲沿正方形的对角线进行折叠,根据正方形对角线的性质,可得∠1=45°,故甲的做法是正确的;乙进行折叠后,可得两对等角,而四个角的和为90°,故∠MAN=45°是正确的,这样答案可得.【解答】解:∵AC为正方形的对角线,∴∠1=×90°=45°;∵AM、AN为折痕,∴∠2=∠3,4=∠5,又∵∠DAB=90°,∴∠3+∠4=×90°=45°.∴二者的做法都对.故选A.【点评】本题考查了图形的翻折问题;解答此类问题的关键是找着重合的角,结合直角进行求解.二、填空题11.如图,各图中的阴影部分绕着直线l旋转360°,所形成的立体图形分别是圆柱;圆锥;球.【考点】点、线、面、体.【分析】三角形旋转可得圆锥,长方形旋转得圆柱,半圆旋转得球,结合这些规律直接连线即可.【解答】解:根据分析可得:各图中的阴影图形绕着直线l旋转360°,各能形成圆柱、圆锥、球.故答案为:圆柱、圆锥、球.【点评】本题考查面动成体的知识,难度不大,熟记常见平面图形旋转可得到什么立体图形是解决本题的关键.12.如图,以图中A,B,C,D,E为端点的线段共有10 条.【考点】直线、射线、线段.【分析】分别写出各个线段即可得出答案.【解答】解:图中的线段有:线段AB,线段AC,线段AD,线段AE,线段BC,线段BD,线段BE,线段CD,线段CE,线段DE,线段共10条.故答案为:10.【点评】本题考查了直线上点与线段的数量关系,同学们可以记住公式:线段数=.13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果∠AOD=128°,那么∠BOC= 52°.【考点】角的计算.【专题】计算题.【分析】根据题意得到∠AOB=∠COD=90°,再计算∠BOD=∠AOD﹣90°=38°,然后根据∠BOC=∠COD ﹣∠BOD进行计算即可.【解答】解:∵∠AOB=∠COD=90°,而∠AOD=128°,∴∠BOD=∠AOD﹣90°=38°,∴∠BOC=∠COD﹣∠BOD=90°﹣38°=52°.故答案为52°.【点评】本题考查了角的计算:1直角=90°;1平角=180°.14.如图,直线AB,CD相交于点0,OE平分∠AOD,若∠BOC=80°,则∠AOE= 40 °.【考点】对顶角、邻补角;角平分线的定义.【分析】根据对顶角相等可得∠AOD=80°,再根据角平分线的性质可得∠AOE的度数.【解答】解:∵∠BOC=80°,∴∠AOD=80°,∵OE平分∠AOD,∴∠AOE=80°÷2=40°,故答案为:40.【点评】此题主要考查了角平分线定义,以及对顶角性质,关键是掌握对顶角相等,角平分线平分角.15.如图是某几何体的平面展开图,则这个几何体是三棱柱.【考点】几何体的展开图.【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【解答】解:由几何体展开图可知,该几何体是三棱柱,故答案为:三棱柱.【点评】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键.16.如图绕着中心最小旋转90°能与自身重合.【考点】旋转对称图形.【分析】该图形被平分成四部分,因而每部分被分成的圆心角是90°,并且圆具有旋转不变性,因而旋转90°的整数倍,就可以与自身重合.【解答】解:该图形围绕自己的旋转中心,最少顺时针旋转360°÷4=90°后,能与其自身重合.故答案为:90°.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.17.如图所示,一艘船从A点出发,沿东北方向航行至B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC等于60 度.【考点】方向角.【分析】根据南北方向是平行的得出∠ABF=45°,再和∠CBF相加即可得出答案.【解答】解:∵AE∥BF,∴∠ABF=∁EAB=45°,∴∠ABC=∠ABF+∠CBF=45°+15°=60°,故答案为:60.【点评】本题考查了方向角和角的有关计算的应用,主要考查学生的计算能力.18.一个圆绕着它的直径只要旋转180度,就形成一个球体;半圆绕着直径旋转360 度,就可以形成一个球体.【考点】点、线、面、体.【分析】一个半圆围绕直径旋转一周,根据面动成体的原理即可解.【解答】解:半圆绕它的直径旋转360度形成球.故答案为360.【点评】本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.19.已知∠A=40°,则它的补角等于140°.【考点】余角和补角.【专题】计算题.【分析】根据补角的和等于180°计算即可.【解答】解:∵∠A=40°,∴它的补角=180°﹣40°=140°.故答案为:140°.【点评】本题考查了补角的知识,熟记互为补角的两个角的和等于180°是解题的关键.20.两条直线相交有 1 个交点,三条直线相交最多有 3 个交点,最少有 1 个交点.【考点】直线、射线、线段.【分析】解析:两条直线相交有且只有1个交点;三条直线两两相交且不交于一点时,有3个交点;当三条直线交于同一点时,有1个交点.【解答】解:两条直线相交有1个交点,三条直线相交最多有3个交点,最少有1个交点.故答案为:1;3;1.【点评】本题考查了直线、射线、线段,主要利用了相交线的交点,是基础题.三、解答题(21、22、26、27小题各12分,23、24、25题各14分,共90分)21.如图,若CB=4cm,DB=7cm,且D是AC的中点,求线段DC和AB的长度.【考点】两点间的距离.【分析】根据线段的和差,CB、DB的长,可得DC的长,根据线段中点的性质,可得AD与DC 的关系,根据线段的和差,可得答案.【解答】解:DC=DB﹣CB=7﹣4=3(cm);D是AC的中点,AD=DC=3(cm),AB=AD+DB=3+7=10(cm).【点评】本题考查了两点间的距离,线段的和差,线段中点的性质是解题关键.22.如图所示,直线AB、CD相交于O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.【考点】对顶角、邻补角;角平分线的定义.【专题】计算题.【分析】由已知∠FOC=90°,∠1=40°结合平角的定义,可得∠3的度数,又因为∠3与∠AOD互为邻补角,可求出∠AOD的度数,又由OE平分∠AOD可求出∠2.【解答】解:∵∠FOC=90°,∠1=40°,AB为直线,∴∠3+∠FOC+∠1=180°,∴∠3=180°﹣90°﹣40°=50°.∠3与∠AOD互补,∴∠AOD=180°﹣∠3=130°,∵OE平分∠AOD,∴∠2=∠AOD=65°.【点评】本题主要考查邻补角的概念以及角平分线的定义.23.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?【考点】角的计算;角平分线的定义.【专题】计算题.【分析】(1)根据∠AOB是直角,∠AOC=40°,可得∠AOB+∠AOC=90°+40°=130°,再利用OM是∠BOC的平分线,ON是∠AOC的平分线,即可求得答案.(2)根据∠MON=∠MOC﹣∠NOC,又利用∠AOB是直角,不改变,可得.【解答】解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.【点评】此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.24.如图是一个正方体的平面展开图,标注了A字母的是正方体的正面,如果正方体的左面与右面标注的式子相等.(1)求x的值.(2)求正方体的上面和底面的数字和.【考点】专题:正方体相对两个面上的文字.【分析】(1)正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;(2)确定出上面和底面上的两个数字3和1,然后相加即可.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“﹣2”是相对面,“3”与“1”是相对面,“x”与“3x﹣2”是相对面,(1)∵正方体的左面与右面标注的式子相等,∴x=3x﹣2,解得x=1;(2)∵标注了A字母的是正方体的正面,左面与右面标注的式子相等,∴上面和底面上的两个数字3和1,∴3+1=4.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.如图,将书页一角斜折过去,使角的顶点A落在A′处,BC为折痕,BD平分∠A′BE,求∠CBD 的度数.【考点】角的计算;翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠ABC=∠A′BC,再根据角平分线的定义可得∠A′BD=∠EBD,再根据平角等于180°列式计算即可得解.【解答】解:由翻折的性质得,∠ABC=∠A′BC,∵BD平分∠A′BE,∴∠A′BD=∠EBD,∵∠ABC+∠A′BC+∠A′BD+∠EBD=180°,∴∠A′BC+∠A′BD=90°,即∠CBD=90°.【点评】本题考查了角的计算,主要利用了翻折变换的性质,角平分线的定义,熟记概念与性质是解题的关键.26.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长;(2)若CE=5cm,求DB的长.【考点】比较线段的长短.【专题】计算题.【分析】(1)根据中点的概念,可以证明:AB=2DE,故AB的长可求;(2)由CE的长先求得BC的长,再根据C是AB的中点,D是AC的中点求得CD的长,最后即可求得BD的长.【解答】解:(1)∵D是AC的中点,E是BC的中点,∴AC=2CD,BC=2CE,∴AB=AC+BC=2DE=18cm;(2)∵E是BC的中点,∴BC=2CE=10cm,∵C是AB的中点,D是AC的中点,∴DC=AC=BC=5cm,∴DB=DC+CB=10+5=15cm.【点评】考查了线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.27.一个角的余角比它的补角的还少20°,求这个角.【考点】余角和补角.【专题】计算题.【分析】首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),根据题意可,得90°﹣x=(180°﹣x)﹣20°,解得x=75°.故答案为75°.【点评】此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.。
人教版初中数学七年级数学上册第四单元《几何图形初步》检测题(含答案解析)
一、选择题1.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个2.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个 B .2个 C .3个 D .4个3.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .64.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°5.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A.①②B.①③C.②③D.①②③6.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.圆锥,正方体,三棱柱,圆柱7.下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是3cmAB CD相交于点P D.两点确定一条直线C.直线,8.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°∠=∠的图形的个数是()9.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.410.下图是一个三面带有标记的正方体,它的表面展开图是()A.B.C.D.11.下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线12.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线二、填空题13.请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.14.如图是一个多面体的表面展开图,则折叠后与棱AB重合的棱是________.15.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B为顶点的角共有______个,分别表示为_______________________.16.钟表在8:30时,时针与分针所成角的度数为________,2:40时,时针与分针所成角的度数是_________.17.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若17MN cm =,则BD =__cm .18.下面的几何体中,属于柱体的有______个.19.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =_______.20.如图,上午6:30时,时针和分针所夹锐角的度数是_____.三、解答题21.如图,OC 是∠AOB 的平分线,∠AOD 比∠BOD 大30°,则∠COD 的度数为________.22.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)23.如图,射线OA 的方向是北偏东15°,射线OB 的方向是北偏西40°,∠AOB =∠AOC ,射线OE 是射线OB 的反向延长线.(1)求射线OC 的方向角;(2)求∠COE 的度数;(3)若射线OD 平分∠COE ,求∠AOD 的度数.24.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?25.已知点C是线段AB的中点(1)如图,若点D在线段CB上,且BD=1.5厘米,AD=6.5厘米,求线段CD的长度;(2)若将(1)中的“点D在线段CB上”改为“点D在线段CB的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD的长度.26.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
人教版初中数学七年级上册第四章《几何图形初步》综合水平测试(含答案)
人教版初中数学七年级上册第四章《几何图形初步》综合水平测试一、选择题(每题3分,共30分)1.把一条弯曲的河道改成直道,可以缩短航程,其中的道理可以解释为( ).(A )线段有两个端点 (B )过两点可以确定一条直线(C )两点之间,线段最短 (D )线段可以比较大小2.下列四个图中,能用∠1、∠AOB 、∠O 三种方法表示同一个角的是( )3.若一个立体图形的正视图、左视图都是长方形,俯视图圆,则这个图形可能 ( )A .圆柱B 球C 圆锥D 三棱锥4.操场上,小明对小亮说:“你在我的北偏东30°方向上”,那么小亮可以对小明说:“你在我的( )方向上”.(A )南偏西30° (B )北偏东30° (C )北偏东60° (D )南偏西60°5.若∠A 的余角是70°,则∠A 的补角是( )A .70°B .110°C .20°D .160°6.如图,下列说法错误的是( )A .∠B 也可以表示为∠ABCB .∠BAC 也可以表示为∠AC .∠1也可以表示为∠CD .以C 为顶点且小于180º的角有3个 7.已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是( ).(A )12(∠1+∠2) (B )12∠1 (C )12(∠1-∠2) (D )12∠2 8.将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后B E B A ''与与在同一条直线上,则∠CBD 的度数A. 大于90°B.等于90° C. 小于90° D.不能确定9.小丽制作了一个对面图案均相同的正方体礼品盒(如图1所示),则这个正方体礼品盒的平面展开图可能是( ).A B C D第2题图 A E B DCA ' E ' 第8题图 第6题图图110.如图7,是由四个11⨯的小正方形组成的大正方形,则1234+++=∠∠∠∠( ) A.180B.150 C.135 D.120二、填空题(每题3分,共30分)11.圆柱的侧面展开图是_______形.12.拿一个硬币,将其立在桌面上用力一转,它形成的是一个_______体,由此说明_______________________________________________13.如图, OC 平分∠AOB ,∠BOC =20°,则∠AOB =.14.如图,点C 是∠AOB 的边OA 上一点,D 、E 是OB 上两点,则图中共有_______条线段,________条射线, ________个小于平角的角.15.有四个点,每三个点都不在一条直线上,过其中每两个点画直线,可以画________条直线.16.已知五角星的五个顶点在同一圆上,且均分布,五角星的中心是这个圆的圆心,则圆心与两个相邻顶点的连线,构成的角度为______.17.∠α的补角为125°,∠β的余角为37°,则α、β的大小关系为α______β.18.一次测验从开始到结束,手表的时针转了50的角,这次测验的时间是________.19.在直线l 上取A B C ,,三点,使得4cm AB =,3cm BC =,如果点O 是线段AC 的中点,则线段OB 的长度为________.20.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=11O °,则∠BOC= .三、解答题(共50分)21.画图题(共12分) (1)(本题6分)如图,∠AOB 为已知角,请用圆规和直尺准确地画一个角等于∠AOB (请保留作图痕迹)(2)(本题6分)如图,分别从正面、左面、上面观察这个图形,请画出你看到的平面图形 A B第10题图 第14题图第13题图 第21题图第20题图22.(本题8分)一个角的余角比它的补角的13还少20°,求这个角.23. (本题10分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18cm,求DE的长;(2)若CE=5cm,求DB的长.24.(本题10分)如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)指出图中∠AOD的补角,∠BOE的补角;(2)若∠BOC=68°,求∠COD和∠EOC的度数;(3)∠COD与∠EOC具有怎样的数量关系?25.(本题10分)国外有一种流行的拼图游戏,称为“俄罗斯方块”,它的基本图形有如下两性质:①由四个连在一起的同样大小的正方形组成;②每个小正方形至少和另一个小正方形有一条公共边。
最新2019-2020年度人教版七年级数学上册《几何图形初步》综合检测及答案解析-经典试题
第四章几何图形初步检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③2.(2013•浙江温州中考)下列各图中,经过折叠能围成一个立方体的是()3.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝B.0.5㎝C.1.5㎝D.1㎝4.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④5.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B第5题图6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A .美B .丽C .云D .南 7.如图所示的立体图形从上面看到的图形是( )8.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是( ) A.21∠1 B.21∠2 C.21(∠1-∠2) D.21(∠1+∠2) 9.若∠=40.4°,∠=40°4′,则∠与∠的关系是( ) A.∠=∠ B.∠>∠ C.∠<∠ D.以上都不对10.(2013•重庆中考)已知∠A=65°,则∠A 的补角等于( ) A.125° B.105° C.115° D.95° 二、填空题(每小题3分,共24分)11.(2013•山东枣庄中考)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小 正方体,得到一个如图所示的零件,则这个零件的表面积为_________.12.(2012•山东菏泽中考)已知线段AB=8 cm ,在直线AB 上画线段BC ,使它等于3 cm ,则线段AC=_______cm .13.若一个角的补角是这个角的余角的3倍,则这个角的度数是 . 14.已知直线上有A,B,C 三点,其中,则_______. 15.计算:__________.16.如图甲,用一块边长为10 cm 的正方形的厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图乙),这座桥的阴影部分的面积是 .第7题图第16题图17.如图,AB ⊥CD 于点B,BE 是∠ABD 的平分线,则∠CBE= 度.18.如图,OC ⊥AB ,OD ⊥OE ,图中与∠1 互余的角是 .三、解答题(共46分)19.(6分)(2012•浙江宁波中考)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2 013颗黑色棋子?请说明理由.20.(6分)如图所示,线段AD=6 cm ,线段AC=BD=4 cm ,E 、F 分别是线段AB 、CD 的中点,求线段EF 的长.AEDBC第17题图第18题图OAB1DEC第21题图21.(6分)如图所示,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长.(2)若C 为线段AB 上任意一点,满足,其他条件不变,你能猜想出MN 的长度吗?并说明理由.(3)若C 在线段AB 的延长线上,且满足,M 、N 分别为AC 、BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由.22.(6分) 如图所示由四个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.23.(6分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).24.(8分)火车往返于A 、B 两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票.(1)共有多少种不同的车票?(2)如果共有n (n≥3)个站点,则需要多少种不同的车票.左面正面上面第22题图第23题图第25题图25.(8分)如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE 与∠AOB是否互补,并说明理由.第四章几何图形初步检测题参考答案1.C 解析:教科书是立体图形,所以①不对;②③都是正确的,故选C.2.A 解析:A.可以折叠成一个正方体;B项含有“凹”字格,故不能折叠成一个正方体;C.折叠后有两个面重合,缺少一个底面,所以也不能折叠成一个正方体;D项含有“田”字格,故不能折叠成一个正方体.故选A.3.D 解析:因为是顺次取的,所以AC=8 cm.因为O是线段AC的中点,所以OA=OC=4 cm,OB=AB-OA=5-4=1(cm). 故选D. 4.D 解析:①②是两点确定一条直线的体现,③④可以用“两点之间,线段最短”来解释.故选D.5.B 解析:本题考查了“两点之间,线段最短”.6.D 解析:由正方体的展开图特点可得:“建”和“南”相对;“设”和“丽”相对;“美”和“云”相对.故选D.7.C 解析:从上面看为C,从前面看为D.8.C 解析:因为∠1与∠2互为补角,所以∠1+∠2=180°,∠2=180°-∠1,所以∠2的余角为90°-(180°-∠1)=∠1-90°=.9.B 解析:因为40.4°=40°24′,所以∠∠.10.C 解析:∵∠A =65°,∴∠A的补角=180°-65°=115°.故选C.11.24 解析:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则这个零件的表面积是2×2×6=24.故答案为24.12. 5或11 解析:根据题意,点C可能在线段AB上,也可能在线段AB的延长线上.若点C在线段AB上,则AC=AB-BC=8-3=5(cm);若点C在线段AB的延长线上,则AC=AB+BC=8+3=11(cm).故答案为5或11.13.45°解析:设这个角为,根据题意可得,所以,所以.14.3 cm 或7 cm 解析:当三点按的顺序排列,则;当 三点按的顺序排列时,. 15.156°46′54″ 解析:原式=179°59′60″-23°13′6″156°46′54″. 16.50 解析:因为阴影部分的面积等于整个正方形面积的一半,且正方形的面积为 100 ,所以阴影部分的面积为5017.135 解析:由题意可知∠ABC=∠ABD=90°,∠ABE=45°, 所以.18.∠COD、∠BOE 解析:因为OC⊥AB,所以∠1+∠DOC=90°.又因为OD ⊥OE ,所以∠1+∠BOE=90°.所以∠1与∠DOC 互余,也与∠BOE 互余. 19.解:(1)第1个图形有6颗黑色棋子, 第2个图形有9颗黑色棋子, 第3个图形有12颗黑色棋子, 第4个图形有15颗黑色棋子, 第5个图形有18颗黑色棋子, …第n 个图形有颗黑色棋子.答:第5个图形有18颗黑色棋子. (2)设第n 个图形有2 013颗黑色棋子, 根据(1)得,解得,所以第670个图形有2 013颗黑色棋子. 20.解:∵ AD=6 cm , AC=BD=4 cm , ∴ 4462(cm)BC AC BD AD =+-=+-=. ∴ 624(cm)AB CD AD BC +=-=-=. 又∵ E 、F 分别是线段AB 、CD 的中点,∴ 11,22EB AB CF CD == , ∴ 111()2(cm).222EB CF AB CD AB CD +=+=+= ∴ 224(cm).EF EB BC CF =++=+=答:线段EF 的长为4 cm. 21.解:(1)如题图,∵ AC = 8 cm ,CB = 6 cm ,∴ 8614(cm).AB AC CB =+=+= 又∵ 点M 、N 分别是AC 、BC 的中点, ∴ 11,,22MC AC CN BC == ∴ 1111()7(cm).2222MN AC CB AC CB AB =+=+== 答:MN 的长为7 cm.(2)若C 为线段AB 上任意一点,且满足,其他条件不变,则 cm. 理由是:∵ 点M 、N 分别是AC 、BC 的中点,∴ 11,.22MC AC CN BC == ∵ cm, AC CB a +=∴ 1111(c ) 222m.2MN AC CB AC CB a =+=+= (3)解:如图.∵ 点M 、N 分别是AC 、BC 的中点,∴ 11,.22MC AC NC BC ==∵ cm, AC CB b -= ∴22.解:如图所示.第23题答图第21题答图23.解:答案不唯一,如图所示.24.解:(1)由不同的车站来往需要不同的车票,知共有6×5=30(种)不同的车票. (2)个站点需要种不同的车票.25. 解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠A OB=180°-120°=60°.(2)∠DOC=∠BOC=×70°=35°,∠AOE=∠AOC=×50°=25°.∠DOE与∠AOB互补.理由如下:因为∠DOC=35°,∠AOE=25°,所以∠DOE=∠DOC+∠COE =∠DOC+∠AOE=60°.所以∠DOE+∠AOB=60°+120°=180°,所以∠DOE与∠AOB互补.。
2019-2020人教版初中数学七年级(上)《第4章几何图形初步》单元测试题解析版
人教版初中数学七年级(上)《第4章几何图形初步》单元测试题2019学年一.选择题(共12小题)1.围成三棱柱的面共有()A.3个B.4个C.5个D.6个2.下列图形中属于棱柱的有()A.5个B.4个C.3个D.2个3.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.4.在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的有()①用两颗钉子就可以把木条固定在墙上②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.A.1个B.2个C.3个D.4个5.如图,下列关于图中线段之间的关系一定正确的是()A.x=2x+2b﹣c B.c﹣b=2a﹣2b C.x+b=2a+c﹣b D.x+2a=3c+2b6.如图,已知线段AB=16cm,点C为线段AB上的一个动点,点D、E分别是AC和BC的中点,则DE的长()A.4cm B.8cm C.10cm D.16cm7.下列条件能说明OC是∠AOB的平分线的是()A.∠AOC=∠AOB B.∠AOC=∠BOCC.∠BOC=∠AOB D.∠AOB=2∠BOC8.一船沿正东方向航行,行至A处折向南偏东60°,行至B处后若该船仍向正东方向行驶,应如何调整航向?下列正确的是()A.向左转30°B.向左转60°C.向右转30°D.向右转60°9.若将一副三角板按如图所示的不同方式摆放,则图中∠a与∠β相等的是()A.B.C.D.10.若∠1与∠2互余,∠2与∠3互补,则∠1与∠3的关系是()A.∠1=∠3B.∠1与∠3互余C.∠1与∠3互补D.∠3﹣∠1=90°11.如图所示,OA⊥BE,OC⊥OD,则图中与∠BOC互余的角有()个.A.1个B.2个C.3个D.4个12.如图,台湾一艘渔轮在公海遇险停泊在A处,船长向相距30nmile位于B处的我国的一艘巡洋舰报警求助,舰长当即决定前往救援,这艘渔轮相对于巡洋舰的位置可以用方向和距离表示为()A.北偏东47°,30nmile B.北偏东43°,15nmileC.南偏西53°,15nmile D.南偏西47°,30nmile二.填空题(共6小题)13.一个棱柱有16个顶点,则这个棱柱有个侧面,有条棱.14.一个小立方体的六个面分别标有数字1、2、3、4、5、6.从三个不同的方向看到的情形如图所示,则数字6的对面是.15.如图,已知A、B、C三点在同一直线上,AB=24m,BC=AB,E是AC的中点,D是AB的中点,则DE的长.16.已知线段AB=8cm,点C在线段AB上,且BC=3AC,点D为线段BC的中点,则AD的长为cm.17.已知∠AOB=60°,以点O为端点作射线OC,使∠BOC=20°,再作∠AOC的平分线OD,则∠AOD的度数为.18.如图,可以测得A在B的方向.三.解答题(共8小题)19.湿地公园有一个圆形花坛,周长是25.12米,现在工人叔叔要围绕花坛在外面修条宽为2米的圆环形小路,(取3.14)(1)这条小路的面积是多少平方米?(2)如果每平方米用水泥15千克,铺这条小路一共需要水泥多少千克?20.如果一个棱柱一共有12顶点,底边长是侧棱长的一半,并且所有的棱长的和是120cm,求每条侧棱的长.21.做大小两个长方体纸盒,尺寸如图(单位:cm)(1)用a、b、c的代数式表示做这两个纸盒共需用料多少cm2.(2)试计算做大纸盒比做小纸盒多用料多少cm2.22.已知A,B,C,D四点共线,AB=8cm,BC=3cm,点D是AC的中点.(1)根据题意画出图形;(2)求线段BD的长度.23.已知,点A、B、C在同一条直线上,点M为线段AC的中点、点N为线段BC的中点(1)如图,当点C在线段AB上时:①若线段AC=8,BC=6,求MN的长度②若AB=a,求MN的长度(2)若AC=m,BC=n,求M的长度(m>n用含mn的代数式表示)24.如图,点A、O、B在同一直线上,OC平分∠AOB,若∠COD=35°(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠AOE的度数.25.如图,点O在直线AB上,过点O作射线OC,OM平分∠AOC,ON平分∠MOB.(1)若∠AOC=36°,求∠CON的度数;(2)若∠CON=60°,求∠AOC的度数.26.如图1,点O是直线AB上的一点.(1)如图1,当∠AOD是直角,3∠AOC=∠BOD,求∠COD的度数;(2)在(1)中∠COD绕着点O顺时针旋转(OD与OB重合即停止),如图2,OE、OF分别平分∠AOC、∠BOD,则在旋转过程中∠EOF的大小是否变化?若不变,求出∠EOF的大小;若改变,说明理由;(3)在(1)中线段OC、OD绕着点O顺时针旋转,速度分别为每秒20°和每秒10°(当OD与OB重合时旋转都停止),OM、ON分别平分∠BOC、∠BOD,多少秒时∠COM=∠BON(直接写出答案,不必写出过程).人教版初中数学七年级(上)《第4章几何图形初步》单元测试题2019学年参考答案与试题解析一.选择题(共12小题)1.【解答】解:三棱柱由三个侧面、两个底面围成的,故选:C.2.【解答】解:根据棱柱的定义可得:符合棱柱定义的有第一、二、三、七、八个几何体都是棱柱,共5个.故选:A.3.【解答】解:由长方体和第一部分所对应的几何体可知,第一部分所对应的几何体上面有二个正方体,下面有二个正方体,并且与选项B相符.故选:B.4.【解答】解:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释.故选:B.5.【解答】解:∵x﹣c+2b=2a,∴x+2a=2x+2b﹣c,故选项A错误;∵2a﹣2b=x﹣c,故选项B错误;∵x+b=2a+c﹣b,故选项C正确;∵2a﹣2b=x﹣c,∴﹣x+2a=﹣c+2b,故选项D错误,故选:C.6.【解答】解:∵点D、E分别是AC和BC的中点,∴DE=DC+CE=AC+BC=AB而AB=16cm,∴DE=×16=8(cm).故选:B.7.【解答】解:∠AOC=∠AOB,当OC在∠AOB的外部时,OC不是∠AOB平分线,故A错误;∠AOC=∠BOC,OC是∠AOB平分线,故B正确;∠BOC=∠AOB,当OC在∠AOB的外部时,OC不是∠AOB平分线,故C错误;∠AOB=2∠BOC时,OC不是∠AOB平分线,故D错误;故选:B.8.【解答】解:如图,根据题意,AC∥BD,∠CAB=60°+90°=150°,∴∠1=∠CAB=150°,∴∠2=180°﹣150°=30°,故须向左转30°.故选:A.9.【解答】解:A、由图形得:∠α+∠β=90°,不合题意;B、由图形得:∠β=45°,∠α=90°﹣45°=45°,符合题意;C、由图形得:∠α=90°﹣45°=45°,∠β=90°﹣30°=60°,不合题意;D、由图形得:90°﹣∠β=60°﹣∠α,即∠α+30°=∠β,不合题意.故选:B.10.【解答】解:由题意得,①∠1+∠2=90°,②∠2+∠3=180°②﹣①得,∠3﹣∠1=180°﹣90°=90°,故选:D.11.【解答】解:∵OA⊥BE,∴∠AOB=90°,∴∠AOC与∠BOC互余,∵OC⊥OD,∴∠COD=90°,∴∠BOD与∠BOC互余,∴与∠BOC互余的角是∠AOC和∠BOD,故选:B.12.【解答】解:A在B的南偏西47°,30nmile处,故选:D.二.填空题(共6小题)13.【解答】解:∵一个棱柱有16个顶点,∴该棱柱是八棱柱,∴这个棱柱有8个侧面,有24条棱.故答案为:8,24.14.【解答】解:由图可知,∵与1相邻的面的数字有2、3、4、6,∴1的对面数字是5,∵与4相邻的面的数字有1、3、5、6,∴4的对面数字是2,∴数字6的对面是3,故答案为:3.15.【解答】解:∵AB=24cm,BC=AB,∴BC=9,∴AC=AB+BC=33,∵E是AC的中点,D是AB的中点,∴AE=AC=,AD=AB=12,∴DE=AE﹣AD=.故答案为:.16.【解答】解:如图:∵AB=8cm,BC=3AC,∴4AC=8cm,∴AC=2cm,∵点D是线段BC的中点,∴CD=BC=×(8﹣2)cm=3cm,∴AD=AC+CD=2+3=5(cm).故答案为:5.17.【解答】解:(1)当OC在∠AOB的内部时,如图1所示:∵∠BOC=20°,∠AOB=60°,∠AOB=∠AOC+∠BOC,∴∠AOC=60°﹣20°=40°,又∵OD是∠AOC的平分线,∴∠AOD=∠COD==20°;(2)当OC在∠AOB的外部时,如图2所示:∵∠AOC=∠AOB+∠BOC,∠AOB=60°,∠BOC=20°,∴AOC=80°,又∵OD是∠AOC的平分线,∴∠AOD=∠COD==40°;综合所述∠AOD的度数有两个,故答案为20°或40°.18.【解答】解:A在B的北偏西60°方向,故答案为:北偏西60°.三.解答题(共8小题)19.【解答】解:(1)圆形花坛的半径:25.12÷3.14÷2=4(米),大圆半径:4+2=6(米),小路的面积:3.14×(62﹣42)=3.14×(36﹣16)=3.14×20=62.8(平方米),答:这条小路的面积是62.8平方米;(2)62.8×15=942(千克),答:铺这条小路一共需要水泥942千克.20.【解答】解:设底边长为xcm,则侧棱长为2xcm,根据题意得:12x+12x=120,解得:x=5,∴2x=10,答:侧棱长为10cm.21.【解答】解:(1)小长方体用料为:2ab+2bc+2ac;大长方体用料为:2×1.5a×2b+2×2b×2c+2×1.5a×2c=6ab+8bc+6ac,∴这两个纸盒共需用料2ab+2bc+2ac+6ab+8bc+6ac=8ab+10bc+8ac(cm2);(2)(6ab+8bc+6ac)﹣(2ab+2bc+2ac)=4ab+6bc+4ac,所以做大纸盒比做小纸盒多用料(4ab+6bc+4ac)cm2.22.【解答】解:(1)当点C在线段AB上时如图1所示,当点C在AB的延长线上时如图2所示,(2)如图1,∵AB=8cm,BC=3cm,∴AC=5cm,∵点D是线段AC的中点,∴CD=AC=2.5cm,∵BC=3cm,∴BD=BC+CD=5.5cm;如图2,∵AB=8cm,BC=3cm,∴AC=11cm,点D是线段AC的中点,∴CD=AC=5.5cm,∵BC=3cm,∴BD=CD﹣BC=2.5cm,即线段BD的长是5.5cm或2.5cm,23.【解答】解:(1)当C在线段AB上时①∵点M、N分别是AC、BC的中点,AC=8,BC=6∴CM=AC=4,CN=BC=3∴MN=CM+CN=4+3=7;②∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=AC+BC=(AC+BC)=AB=a;(2)当点C在线段AB上时,MN=m n,当点C在线段AB的延长线时,MN=m﹣n,当点C在线段BA的延长线时,MN=n﹣m.24.【解答】解:如图所示:(1)∵OC平分∠AOB,∠AOB=180°∴∠AOC=∠BOC=90°又∵∠COD=35°,∠BOC=∠BOD+∠COD,∴∠BOD=90°﹣35o=55o(2)∵OE平分∠BOD,∴∠DOE=∠EOB,又∵∠BOD=55°,∴∠DOE===27.5°又∵∠AOE=∠AOC+∠COD+∠DOE,∴∠AOE=90°+35°+27.5°=152.5°25.【解答】解:(1)∵OM平分∠AOC,∠AOC=36°,∴∠AOM=∠COM=∠AOC=18°,∴∠BOM=180°﹣∠AOM=180°﹣18°=162°,∵ON平分∠MOB,∴∠MON=∠BOM=81°,∴∠CON=∠MON﹣∠COM=81°﹣18°=63°,(2)设∠AOM=x,根据题意,得∠COM=x,∠MON=∠BON=60°+x可列方程为x+2(60°+x)=180°,解得x=20°,所以∠ACO=2x=40°.26.【解答】解:(1)∵∠AOD是直角,∴∠BOD=∠AOD=90°,∵3∠AOC=∠BOD=90°,∴∠AOC=30°,∴∠COD=90°﹣30°=60°;(2)不会变化,理由如下:∵OE、OF分别平分∠AOC、∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∵∠AOC+∠BOD=180°﹣∠COD,∴∠COE+∠DOF=(180°﹣∠COD)=90°﹣∠COD,∴∠EOF=∠COE+∠DOF+∠COD=90°﹣∠COD+∠COD=120°(3)如图设运动时间为t秒,则∠BOC=150﹣20t,∠BOD=90﹣10t所以∠COM=∠BOC=(150﹣20t)∠BON=∠BOD=(90﹣10t)∴(150﹣20t)=(90﹣10t)解得t=6所以6秒时∠COM=∠BON.。
2019—2020年人教版七年级数学第一学期《几何图形初步》达标测试题及答案.doc
第8题图第7题图 第四章图形认识初步自主学习达标检测(时间90分钟 满分100分)班级 学号 姓名 得分一、填空题(每题2分,共32分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 .3.如图,该图中不同的线段共有_______条.4.在植树造林活动中,为了使所栽的小树整齐成行,小颖建议大家先确定两个树坑的位置,然后就能确定同一行树坑的位置了,这是根据我们学的________________.5.如图,数一数,图中共有_____________个三角形.6.一个几何体从不同方向看到的平面图形都一样,则这个几何体是 .7.已知,如图,∠1=∠2,∠3=∠4,∠AOF =︒=∠9021AOB . (1)射线OD 是∠AOC 的__________; (2)∠AOC 的补角是____________;(3)_______________是∠AOC 的余角; (4)∠DOC 的余角是____________;(5)∠COF 的补角____________.第3题图第5题图第14题图 8.直线AB 与CD 相交于E 点,∠1=∠2,EF 平分∠AED ,且∠1=50°,则∠AEC = ,∠CEF = .9.已知一个角的补角比这个角的余角3倍大10°,则这个角的度数是 .10.如图,折叠围成一个正方体时,数字 会在与数字2所在的平面相对的平面上.11.平面内两两相交的三条直线,如果它们最多有a 个交点,最少有b 个交点,则a+b = .12.已知线段AB =6cm ,在直线AB 上画线段AC =2cm ,则BC 的长是_________cm .13.当10kg 的菜放在称上时,指示盘上的指针转了180°,当1.5kg 的菜放在称上时,指针转过__________度,如果指针转了36°,这些菜有___________kg .14.如图,POQ 是一线段,有一只蚂蚁从A 点出发,按顺时针方向沿着图中实线爬行,最后又回到A 点,则该蚂蚁共转过_________°.15.把一张正方形纸条按图中那样折叠后,若得到∠AOB /=700,则∠B /OG =______.16.在∠AOB 的内部引一条射线,图中共有___________个角;若引两条射线,图中共有__________个角;若引n 条射线,图中共有________个角;当引99条射线时,图中共有____________个角.二、解答题(共68分)第10题图第15题图17.根据下列语句画图,并回答相应问题:((1)~(4)每小问1分,(5)~(7)每小问2分,共10分)已知:∠AOB .(1)作射线OA 的反向延长线OE ;(2)向上作射线OC ,使∠AOC =90°;(3)作射线OD ,使∠COD =∠AOB ;(4)图中共有_________个角;(包括平角)(5)锐角是 ,钝角是 ,直角是 ,平角是 .(6)你能找出图中所有相等的角吗?(除∠COD =∠AOB 外)尽可能都写出来.(7)与∠COD 互余的角有_______个,互补的角有_______个.18.(本题4分)已知2AOB AOC ∠=∠,那么OC 是不是AOB ∠的平分线?请画图说明(保留作图痕迹,不写作法).19.(本题6分)如图,有一个几何体,请画出从不同方向看它的平面图形(1)从正面看:(2)从左面看O BA(3)从上面看20.(本题4分)如图,已知AOB 是一条直线,∠1=∠2,∠3=∠4,OF ⊥AB .则(1)∠AOC 的补角是 ;(2) 是∠AOC 的余角;(3)∠DOC 的余角是 ;(4)∠COF 的补角是 .21.(本题6分)如图,直线AB 与CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF=65°.求:(1)∠BOE 的度数;(2)∠AOC 的度数.22.(本题4分)如图,12BC AB =,D 为AC 的中点,2DC cm =,求AB 的长. A D B C23.(本题4分)AB 是一段火车行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制几种车票?24.(本题6分)已知:如图,点C 是线段AB 上一点,且3AC=2AB .D 是AB 的中点,E 是CB 的中点,DE=6,求:(1)AB 的长 ;(2)求AD :CB .25.(本题6分)已知2αβ∠=∠,α∠的余角的3倍等于β∠的补角,求α∠、β∠的度数.26.(本题6分)如图,(1)已知∠AOB 为直角,∠AOC 为锐角,OE 平分∠BOC ,OF平分∠AOC ,求∠EOF 的度数;(2)若将(1)中的条件“∠AOB 为直角”改为“∠AOB 为任意一个角”,则∠AOB 与∠EOF的大小关系如何?发现结论并说明理由.27.根据题意填空:((1)~(2)每小问1分,(3)每小问2分,共6分)(1)l 1与l 2是同一平面内两条相交直线,他们有一个交点,如果在这个平面内,再画第三条直线l 3,那么这三条直线最多有 ____________个交点.(2)如果在(1)的基础上在这个平面内再画第四条直线l 4,那么这四条直线最多可有______________个交点.(3)由(1)(2)我们可以猜想:在同一平面内,6条直线最多可有_________个交点,n (n >1)条直线最多可有__________条交点.(用含有n 的代数式表示)28.(本题6分)灯塔A 在灯塔B 的南偏东60°方向上,A 、B 相距30海里,轮船C 在B 的正南方向,在灯塔A 的南偏西60°方向上,通过画图(用1个单位代表10海里)确定轮船C 的位置,求∠BAC 和∠ACB 的度数,并求出轮船C 与灯塔B 的距离.第四章图形认识初步自主学习达标检测一、填空题1.12,8,6 2.矩形,扇形,矩形3.10 4.两点确定一条直线 5.22 6.正方体7.(1)角平分线;(2)COB ∠;(3)3∠;(4)DOF ∠;(5)AOE ∠8.80,130︒︒ 9.50° 10.5 11.4 12.4cm 或8cm 13.27,2 14.108015.55︒ 16.3,6,1(2)(1)2n n ++,5050 二、解答题17.(1)作图略;(4)10;(7)2,118.略 19.略20.(1)COB ∠;(2)3∠;(3)DOF ∠;(4)AOE ∠21.(1)65;(2)25°22.83cm 23.20种24.(1)18;(2)3︰225.36,18αβ∠=︒∠=︒26.(1)45°(2)2AOB OF ∠=∠27.(1)3;(2)6;(3)15;(4)22n n - 28.作图略,30海里。
人教版初中数学七年级数学上册第四单元《几何图形初步》检测题(包含答案解析)
一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 3.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 4.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个B .2个C .3个D .4个 5.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm6.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .167.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 8.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论:①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③ 9.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠B D .∠C >∠A >∠B 10.下列图形中,不可以作为一个正方体的展开图的是( )A .B .C .D . 11.若射线OA 与射线OB 是同一条射线,下列画图正确的是( )A .B .C .D . 12.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题13.在直线AB 上,点A 与点B 的距离是8cm ,点C 与点A 的距离是2cm ,点D 是线段AB 的中点,则线段CD 的长为________.14.要整齐地栽一行树,只要确定了两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是_________.15.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.16.如图,OC AB ⊥于点O ,OE 为COB ∠的平分线,则AOE ∠的度数为______.17.如图,在自来水管道AB 的两旁有两个住宅小区C ,D ,现要在主水管道上开一个接口P 往C ,D 两小区铺设水管,为节约铺设水管的用料,接口P 应在如图所示的位置,请说明依据的数学道理是:___________________________________________________________________.18.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度.20.如图,OE 平分AOC ∠,OF 平分BOC ∠,124EOF ︒∠=,则AOB ∠的度数为________.三、解答题21.如图所示,点A 、O 、C 在同一直线上,OE 是BOC ∠的平分线,90EOF ∠=︒,()1420x ∠=+︒,()210x ∠=-︒.(1)求1∠的度数(请写出解题过程).(2)如以OF 为一边,在COF ∠的外部画DOF COF ∠=∠,问边OD 与边OB 成一直线吗?请说明理由.22.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)23.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.24.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.25.直线上有,两点,,点是线段上的一点,.(1)__________,___________;(2)若点是线段上的一点,且满足,求的长;(3)若动点,分别从,同时出发向右运动,点的速度为,点的速度为,设运动时间为,当点与点重合时,,两点停止运动.①当为何值时,;②当点经过点时,动点从点出发,以的速度向右运动.当点追上点Q后立即返回.以同样的速度向点运动,遇到点后立即返回,又以同样的速度向点运动,如此往返,直到点,停止时,点也停止运动.在此过程中,点行驶的总路程为___________.26.如图是由几个完全相同的小立方体所搭成的几何体从上面看到的形状图,小正方形中的数字表示在该位置的小立方体的个数,请你画出这个几何体从正面和左面看到的形状图.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据线段中点的定义解答.【详解】∵点C为线段AB的中点,∴AC=BC,AC=12AB,BC=12AB,AB=2AC,AB=2BC,故选:D.【点睛】此题考查线段中点的定义及计算,掌握线段中点是将线段两等分的点是解题的关键.2.B解析:B【分析】先求出∠COB=60°,再根据具体位置确定答案.【详解】如图,∵∠AOB =90°,∠AOC =30°,∴∠COB =60°,∴OB 的方位角是北偏西60°,故选:B ..【点睛】此题考查方位角,已知一个角求其余角,正确理解方位角的确定方法及表示方法是解题的关键.3.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.4.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.5.A解析:A【分析】根据C 点为线段AB 的中点,D 点为BC 的中点,可知AC=CB=12AB ,CD=12CB ,AD=AC+CD ,又AB=4cm ,继而即可求出答案.【详解】∵点C 是线段AB 的中点,AB=20cm ,∴BC=12AB=12×20cm=10cm , ∵点D 是线段BC 的中点, ∴BD=12BC=12×10cm=5cm , ∴AD=AB-BD=20cm-5cm=15cm .故选A .【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.6.B解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口. 7.C【分析】根据柱体的体积V=S•h ,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2,∴形成的几何体的体积等于:3πr 2h .故选:C .【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.8.D解析:D【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒, ∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′,∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.9.C【分析】根据度分秒之间的换算,先把∠C的度数化成度、分、秒的形式,再根据角的大小比较的法则进行比较,即可得出答案.【详解】解:∵∠C=20.25°=20°15′,∴∠A>∠C>∠B,故选:C.【点睛】此题考查了角的大小比较,先把∠C的度数化成度、分、秒的形式,再进行比较是本题的关键.10.C解析:C【解析】【分析】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【详解】A.可以作为一个正方体的展开图,B.可以作为一个正方体的展开图,C.不可以作为一个正方体的展开图,D.可以作为一个正方体的展开图,故选:C.【点睛】本题考查正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.11.B解析:B【解析】【分析】根据射线的表示法即可确定.【详解】A、射线OA与OB不是同一条射线,选项错误;B、射线OA与OB是同一条射线,选项正确;C、射线OA与OB不是同一条射线,选项错误;D、射线OA与OB不是同一条射线,选项错误.故选B.【点睛】本题考查了射线的表示法,射线的端点写在第一个位置,第二个字母是射线上除端点以外任意一点.12.D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题13.2cm或6cm【分析】分两种情况:①当C在线段BA的延长线上时②当C 在线段AB上时根据线段的和差可得答案【详解】①当C在线段BA的延长线上时∵点D是线段AB的中点点A与点B的距离是8cm∴DA=4c解析:2cm或6cm【分析】分两种情况:①当C在线段BA的延长线上时,②当C在线段AB上时,根据线段的和差,可得答案.【详解】①当C在线段BA的延长线上时,∵点D是线段AB的中点,点A与点B的距离是8cm,∴DA=4cm,∴CD=4+2=6cm;②当C在线段BA上时,∵点D是线段AB的中点,点A与点B的距离是8cm,∴DA=4cm,∴CD=4-2=2cm;综上所述:AC=6 cm或2cm.【点睛】本题考查了两点间的距离,利用线段的中点是解题关键,要分类讨论,以防遗漏.14.两点确定一条直线【分析】本题要根据过平面上的两点有且只有一条直线的性质解答【详解】根据两点确定一条直线故答案为两点确定一条直线【点睛】本题考查了两点确定一条直线的公理难度适中解析:两点确定一条直线【分析】本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故答案为两点确定一条直线.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.15.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故解析:三角形【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键. 16.135°【解析】【分析】先根据垂直的定义求得∠AOC∠BOC的度数是90°然后由角平分线的定义可知∠COE=∠BOC最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE【详解】因为于点O所以∠AO解析:135°【解析】【分析】先根据垂直的定义求得∠AOC、∠BOC的度数是90°,然后由角平分线的定义可知∠COE=12∠BOC,最后根据∠AOE=∠COE+∠AOC从而可求得∠AOE.【详解】因为OC AB⊥于点O,所以∠AOC=∠BOC=90°,因为OE为COB∠的平分线,所以∠COE=12∠BOC=45°,又因为∠AOE=∠COE+∠AOC,所以∠AOE=90°+45°=135°.故答案为:135°.【点睛】本题主要考查垂直的定义和角平分线的定义,解决本题的关键是要熟练掌握垂直定义,角平分线的定义.17.两点之间线段最短【解析】【分析】根据两点之间线段最短可知在CD小区之间沿直线铺设可使用料最少即可解答【详解】解:根据两点之间线段最短可知:当P在线段CD上时PC+PD最小即此时所用的铺设水管的材料最解析:两点之间,线段最短【解析】【分析】根据两点之间线段最短可知,在C、D小区之间沿直线铺设可使用料最少,即可解答.【详解】解:根据两点之间线段最短可知:当P在线段CD上时,PC+PD最小,即此时所用的铺设水管的材料最少.故答案为两点之间,线段最短.【点睛】此题考查两点之间线段最短,解题关键在于掌握其定义.18.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.19.180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB 据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB ,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB 转化成∠COD+∠AOB 是解决本题的关键.20.【分析】根据角平分线的性质计算出再根据角的关系即可求解【详解】∵平分平分∴∴∴【点睛】本题考查了角的平分线定义及性质熟练掌握角平分线的意义是解本题的关键解析:112︒【分析】根据角平分线的性质计算出2AOC COE ∠=∠,2BOC COF ∠=∠,再根据角的关系,即可求解.【详解】∵OE 平分AOC ∠,OF 平分BOC ∠,∴2AOC COE ∠=∠,2BOC COF ∠=∠,∴2()2248AOC BOC COE COF EOF ︒∠+∠=∠+∠=∠=,∴360248112AOB ︒︒︒∠=-=.【点睛】本题考查了角的平分线定义及性质,熟练掌握角平分线的意义是解本题的关键.三、解答题21.(1)1140∠=︒;(2)边OD 与边OB 成一直线,理由详见解析.【分析】(1)因为OE 是∠BOC 的平分线 所以∠BOC=2∠2,再根据点A 、O 、C 在一直线上,求出∠1和∠2关于x 的关系式,列出等式求出x 的值;(2)根据∠EOF=∠EOC+∠COF=90°和∠EOC=12∠BOC ,∠FOC=12∠DOC ,12∠BOC+12∠DOC=90°,得出∠BOC+∠DOC=180°,进而可可判断边OD 与边OB 成一直线.【详解】(1)因为OE 是BOC ∠的平分线,所以22BOC ∠=∠,因为点A 、O 、C 在同一直线上,所以1180BOC ∠+∠=︒,又因为()1420x ∠=+︒,()210x ∠=-︒,所以()()420210180x x ++-=,解得:30x =,1140∠=︒(2)边OD 与边OB 成一直线.理由:因为90EOF EOC COF ∠=∠+∠=︒,又因为12EOF BOC ∠=∠,12FOC DOC ∠=∠. ∴119022BOC DOC ∠+∠=︒, 即180BOC DOC ∠+∠=︒,所以点D 、O 、B 在同一直线上,即边OD 与边OB 成一直线.【点睛】本题主要考查角的计算和角平分线的知识点,解答本题的关键是熟练运用角之间的等量关系.22.(1)BC= 7cm ;(2)MN= 6.5cm ;(3)MN=2b 【分析】(1)根据线段中点的性质,可得MC 的长,根据线段的和差,可得BC 的长;(2)根据线段中点的性质,可得MC 、NC 的长,根据线段的和差,可得MN 的长; (3)根据(1)(2)的结论,即可解答.【详解】解:(1)∵AC=6cm ,点M 是AC 的中点,∴12MC AC ==3cm , ∴BC=MB ﹣MC=10﹣3=7cm .(2)∵N 是BC 的中点,∴CN=12BC=3.5cm , ∴MN=MC+CN=3+3.5=6.5cm .(3)如图,MN=MC ﹣NC=1122AC BC -=12(AC ﹣BC )=12b .MN=2b . 【点睛】 本题考查两点间的距离.23.(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.24.(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可; (3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可.【详解】解:(1)∵90DOE ∠=︒,70AOC ∠=︒∴907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒,∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)∵90COD DOE COE COE =∠-∠=︒-∠∠,70COD AOC AOD AOD =∠-∠=︒-∠∠∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【点睛】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.25.(1),;(2);(3)①t= 或16s;②48. 【解析】【分析】(1)由OA=2OB ,OA+OB=24即可求出OA 、OB .(2)设OC=x ,则AC=16-x ,BC=8+x ,根据AC=CO+CB 列出方程即可解决.(3)①分两种情形①当点P 在点O 左边时,2(16-2t )-(8+t )=8,当点P 在点O 右边时,2(2t-16)-(8+x )=8,解方程即可.②点M 运动的时间就是点P 从点O 开始到追到点Q 的时间,设点M 运动的时间为ts 由题意得:t (2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB ,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设的长为. 由题意,得. 解得. 所以的长为.(3)①当点P 在点O 左边时,2(16−2t)−(8+t)=8,t=, 当点P 在点O 右边时,2(2t−16)−(8+t)=8,t=16,∴t= 或16s 时,2OP−OQ=8.②设点M 运动的时间为ts,由题意:t(2−1)=16,t=16,∴点M 运动的路程为16×3=48cm.故答案为48cm.【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程.26.见解析.【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为1,4,2;从左面看有3列,每列小正方形数目分别为3,4,2.据此可画出图形.【详解】解:如图所示.【点睛】本题考查了作图-三视图,由三视图判断几何体,能根据俯视图对几何体进行推测分析,有一定的挑战性,关键是从俯视图中得出几何体的排列信息.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章几何图形初步检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③2.(2013•浙江温州中考)下列各图中,经过折叠能围成一个立方体的是()3.在直线l上顺次取A、B、C三点,使得AB=5㎝,BC=3㎝,如果O是线段AC的中点,那么线段OB的长度是()A.2㎝B.0.5㎝C.1.5㎝D.1㎝4.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有()A.①②B.①③C.②④D.③④5.如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B第5题图6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A .美B .丽C .云D .南 7.如图所示的立体图形从上面看到的图形是( )8.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是( ) A.21∠1 B.21∠2 C.21(∠1-∠2) D.21(∠1+∠2) 9.若∠=40.4°,∠=40°4′,则∠与∠的关系是( ) A.∠=∠ B.∠>∠ C.∠<∠ D.以上都不对10.(2013•重庆中考)已知∠A=65°,则∠A 的补角等于( ) A.125° B.105° C.115° D.95° 二、填空题(每小题3分,共24分)第7题图11.(2013•山东枣庄中考)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小 正方体,得到一个如图所示的零件,则这个零件的表面积为_________.12.(2012•山东菏泽中考)已知线段AB=8 cm ,在直线AB 上画线段BC ,使它等于3 cm ,则线段AC=_______cm .13.若一个角的补角是这个角的余角的3倍,则这个角的度数是 . 14.已知直线上有A,B,C 三点,其中,则_______. 15.计算:__________.16.如图甲,用一块边长为10 cm 的正方形的厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图乙),这座桥的阴影部分的面积是 .17.如图,AB ⊥CD 于点B,BE 是∠ABD 的平分线,则∠CBE= 度.AEDBC第17题图第18题图OAB1DEC第16题图18.如图,OC ⊥AB ,OD ⊥OE ,图中与∠1 互余的角是 .三、解答题(共46分)19.(6分)(2012•浙江宁波中考)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2 013颗黑色棋子?请说明理由.20.(6分)如图所示,线段AD=6 cm ,线段AC=BD=4 cm ,E 、F 分别是线段AB 、CD 的中点,求线段EF 的长.21.(6分)如图所示,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长.(2)若C 为线段AB 上任意一点,满足,其他条件不变,你能猜想出MN 的长度吗?并说明理由.(3)若C 在线段AB 的延长线上,且满足,M 、N 分别为AC 、BC 的中点,你能猜想出MN 的长度吗?请画出图形,写出你的结论,并说明理由.第21题图22.(6分) 如图所示由四个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.23.(6分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).24.(8分)火车往返于A 、B 两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票.(1)共有多少种不同的车票?(2)如果共有n (n ≥3)个站点,则需要多少种不 同的车票.25.(8分)如图所示,OD 平分∠BOC ,OE 平分 ∠AOC.若∠BOC=70°,∠AOC=50°. (1)求出∠AOB 及其补角的度数;左面正面上面第22题图第23题图第25题图(2)请求出∠DOC和∠AOE的度数,并判断∠DOE 与∠AOB是否互补,并说明理由.第四章几何图形初步检测题参考答案1.C 解析:教科书是立体图形,所以①不对;②③都是正确的,故选C.2.A 解析:A.可以折叠成一个正方体;B项含有“凹”字格,故不能折叠成一个正方体;C.折叠后有两个面重合,缺少一个底面,所以也不能折叠成一个正方体;D项含有“田”字格,故不能折叠成一个正方体.故选A.3.D 解析:因为是顺次取的,所以AC=8 cm.因为O是线段AC的中点,所以OA=OC=4 cm,OB=AB-OA=5-4=1(cm). 故选D.4.D 解析:①②是两点确定一条直线的体现,③④可以用“两点之间,线段最短”来解释.故选D.5.B 解析:本题考查了“两点之间,线段最短”.6.D 解析:由正方体的展开图特点可得:“建”和“南”相对;“设”和“丽”相对;“美”和“云”相对.故选D.7.C 解析:从上面看为C,从前面看为D.8.C 解析:因为∠1与∠2互为补角,所以∠1+∠2=180°,∠2=180°-∠1,所以∠2的余角为90°-(180°-∠1)=∠1-90°=.9.B 解析:因为40.4°=40°24′,所以∠∠.10.C 解析:∵∠A =65°,∴∠A的补角=180°-65°=115°.故选C.11.24 解析:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则这个零件的表面积是2×2×6=24.故答案为24.12. 5或11 解析:根据题意,点C可能在线段AB上,也可能在线段AB的延长线上.若点C在线段AB上,则AC=AB-BC=8-3=5(cm);若点C在线段AB的延长线上,则AC=AB+BC=8+3=11(cm).故答案为5或11.13.45°解析:设这个角为,根据题意可得,所以,所以.14.3 cm或7 cm 解析:当三点按的顺序排列,则;当三点按的顺序排列时,.15.156°46′54″解析:原式=179°59′60″-23°13′6″156°46′54″.16.50 解析:因为阴影部分的面积等于整个正方形面积的一半,且正方形的面积为100 ,所以阴影部分的面积为5017.135 解析:由题意可知∠ABC=∠ABD=90°,∠ABE=45°,所以.18.∠COD、∠BOE 解析:因为OC⊥AB,所以∠1+∠DOC=90°.又因为OD⊥OE,所以∠1+∠BOE=90°.所以∠1与∠DOC互余,也与∠BOE互余.19.解:(1)第1个图形有6颗黑色棋子,第2个图形有9颗黑色棋子,第3个图形有12颗黑色棋子,第4个图形有15颗黑色棋子,第5个图形有18颗黑色棋子,…第n个图形有颗黑色棋子.答:第5个图形有18颗黑色棋子.(2)设第n个图形有2 013颗黑色棋子,根据(1)得,解得,所以第670个图形有2 013颗黑色棋子. 20.解:∵ AD=6 cm , AC=BD=4 cm , ∴ 4462(cm)BC AC BD AD =+-=+-=. ∴ 624(cm)AB CD AD BC +=-=-=.又∵ E 、F 分别是线段AB 、CD 的中点,∴ 11,22EB AB CF CD == , ∴ 111()2(cm).222EB CF AB CD AB CD +=+=+= ∴ 224(cm).EF EB BC CF =++=+= 答:线段EF 的长为4 cm. 21.解:(1)如题图,∵ AC = 8 cm ,CB = 6 cm ,∴ 8614(cm).AB AC CB =+=+= 又∵ 点M 、N 分别是AC 、BC 的中点,∴ 11,,22MC AC CN BC == ∴ 1111()7(cm).2222MN AC CB AC CB AB =+=+== 答:MN 的长为7 cm.(2)若C 为线段AB 上任意一点,且满足,其他条件不变,则 cm.理由是:∵ 点M 、N 分别是AC 、BC 的中点,∴ 11,.22MC AC CN BC ==∵ cm, AC CB a +=∴ 1111(c ) 222m.2MN AC CB AC CB a =+=+= (3)解:如图.∵ 点M 、N 分别是AC 、BC 的中点,∴ 11,.22MC AC NC BC ==∵ cm, AC CB b -= ∴22.解:如图所示.23.解:答案不唯一,如图所示.24.解:(1)由不同的车站来往需要不同的车票,知共有6×5=30(种)不同的车票. (2)个站点需要种不同的车票.25. 解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°, 其补角为180°-∠AOB=180°-120°=60°.第23题答图第21题答图(2)∠DOC=∠BOC=×70°=35°,∠AOE=∠AOC=×50°=25°.∠DOE与∠AOB互补.理由如下:因为∠DOC=35°,∠AOE=25°,所以∠DOE=∠DOC+∠COE =∠DOC+∠AOE=60°. 所以∠DOE+∠AOB=60°+120°=180°,所以∠DOE与∠AOB互补.。