北京四中八年级下册数学因式分解全章复习与巩固(基础)知识讲解
北师大版八年级数学下册第四章因式分解小结与复习课件
⑸(2x+y)2-2(2x+y)+1
(6) (x-y)2 - 6x +6y+9
解:原式=(2x+y-1)2
解:原式=(x-y)2-6(x-y)+9 =(x-y-3)2
(8) (x+1)(x+5)+4
解:原式=(x-y)2-6(x-y)+9 =(x-y-3)2
2. 若 100x2-kxy+49y2 是一个完全平方式, 则k= ( ±140)
3.计算(-2)101+(-2)100
解:原式=(-2)(-2)100+ (-2)100
=(-2)100(-2+1) =2100·(-1)=-2100
4.已知:2x-3=0,求代数式x(x2-x)+x2(5-x)-9的值
解:原式=x3-x2+5x2-x39
=4x2-9 =(2x+3)(2x-3) 又∵ 2x-3=0, ∴ 原式=0
三分 ③再考虑分组分解法
四查 ④检查:特别看看多项式因式 是否分解彻底
课堂小结
因 式 分 解
概念
与整式乘法的关系
提公因式法
方法 公式法
平方差公式
完全平方差公式
提:公因式 步骤 运:运用公式
查:检测结果是否彻底
首页
随堂训练
1.把下列各式分解因式:
(1) 4x2-16y2
(2) x2+xy+ y2.
第四章 因式分解
小结与复习
知识 归纳
复习点一 (一)分解因式的概念:
把一个多项式化成几个整式的积的情势, 叫做多项式的分解因式。也叫做因式分解。
即:一个多项式 →几个整式的积
北师大版八年级下册数学[《因式分解》全章复习与巩固(基础)知识点整理及重点题型梳理]
北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《因式分解》全章复习与巩固(基础)【学习目标】1.理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算;2.掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法;3. 了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m,另一个因式是,即,而正好是除以m所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()22a b a b a b-=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-. 形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 对于二次三项式2x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等. 因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、(2016•长春模拟)先将代数式因式分解,再求值:()()222x a y a ---,其中05152a .,x .,y ===-.【思路点拨】原式变形后,提取公因式化为积的形式,将字母的值代入计算即可.【答案与解析】解:原式=()()()()22222x a y a a x y -+-=-+,当05152a .,x .,y ===-时,原式=()()0523215..-⨯-=-.【总结升华】此题主要考查了提取公因式法分解因式.类型二、公式法分解因式2、已知2x -3=0,求代数式()()2259x x x x x -+--的值.【思路点拨】对所求的代数式先进行整理,再利用整体代入法代入求解.【答案与解析】解:()()2259x x x x x -+--,=322359x x x x -+--,=249x -.当2x -3=0时,原式=()()2492323x x x -=+-=0. 【总结升华】本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解.举一反三:【变式】()()33a y a y -+是下列哪一个多项式因式分解的结果( )A .229a y+ B .229a y -+ C .229a y - D .229a y -- 【答案】C ;3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式324x xy -,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式324x xy -进行因式分解,得到()()32422x xy x x y x y -=+-,然后把x =10,y =10代入,分别计算出()2x y +及()2x y -的值,从而得出密码.【答案与解析】解:()()()32224422x xy x x y x x y x y -=-=+-,当x =10,y =10时,x =10,2x +y =30,2x -y =10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型.考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.举一反三:【变式】利用因式分解计算(1)16.9×18+15.1×18(2) 22683317-【答案】解:(1)16.9×18+15.1×18=()116.915.18⨯+ =13248⨯= (2)22683317-=()()683317683317+⨯-=1000×366=366000.4、因式分解:(1)()()269a b a b ++++;(2)222xy x y--- (3)()()22224222x xy y x xy y -+-+.【思路点拨】都是完全平方式,所以都可以运用完全平方公式分解.完全平方公式法:()2222a b a ab b ±=±+.【答案与解析】解:(1)()()()22693a b a b a b ++++=++(2)()()2222222xy x y xy x yx y ---=-++=-+ (3)()()22224222x xy y x xy y -+-+=()()24222x xy y x y -+=-【总结升华】本题考查了完全平方公式法因式分解,(3)要两次分解,注意要分解完全. 举一反三:【变式】(2015春•禅城区校级期末)分解因式:(1)(a 2+b 2)2﹣4a 2b 2(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1.【答案】解:(1)(a 2+b 2)2﹣4a 2b 2=(a 2+b 2+2ab )(a 2+b 2﹣2ab )=(a+b )2(a ﹣b )2;(2)(x 2﹣2xy+y 2)+(﹣2x+2y )+1=(x ﹣y )2﹣2(x ﹣y )+1 =(x ﹣y ﹣1)2.5、先阅读,再分解因式:()24422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.【思路点拨】根据材料,找出规律,再解答.【答案与解析】解:442264166416x x x x +=++-=()222816x x +-=()()228484x x x x +++-.【总结升华】此题要综合运用配方法,完全平方公式,平方差公式,熟练掌握公式并读懂题目信息是解题的关键.类型三、十字相乘法或分组分解法分解因式6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系.(1)根据你发现的规律填空:2x px qx pq +++=()2x p q x pq +++=______; (2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2712y y -+. 【思路点拨】(1)根据一个正方形和三个长方形的面积和等于由它们拼成的这个大长方形的面积作答;(2)根据(1)的结论直接作答.【答案与解析】解:(1)()()x p x q +⨯+(2)①()()271025x x x x ++=++ ②()()271234y y y y -+=--【总结升华】本题实际上考查了利用十字相乘法分解因式.运用这种方法的关键是把二次项系数a 分解成两个因数12,a a 的积12a a ,把常数项c 分解成两个因数12c c 的积12,c c ,并使1221a c a c +正好是一次项b ,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.举一反三:【变式】已知A =2a +,B =25a a -+,C =2519a a +-,其中a >2.(1)求证:B -A >0,并指出A 与B 的大小关系;(2)指出A 与C 哪个大?说明理由.解:(1)B -A =()21a -+2>0,所以B >A ;(2)C -A =25192a a a +---,=2421a a +-,=()()73a a +-.因为a >2,所以a +7>0,从而当2<a <3时,A >C ;当a =3时,A =C ;当a >3时,A <C .。
专题14 因式分解(2)八年级数学下册强化巩固专题知识(北师大版)
专题14 因式分解(2)教师讲义64x6-1=(8x3)2-1=(8x3+1)(8x3-1)=[(2x)3+1][(2x)3-1]=(2x+1)(4x2-2x+1)(2x-1)(4x2+2x+1) 方法二64x6-1=(4x2)3-1=(4x2-1)(16x4+4x2+1)=(2x+1)(2x-1)(16x4+8x2+1-4x2)=(2x+1)(2x-1)[(4x2+1)2-(2x)2]=(2x+1)(2x-1)(4x2+2x+1)(4x2-2x+1)例5 解 (x+y)2-6(x+y)+9=(x+y)2-2×3×(x+y)+32=(x+y-3)2.例6 解方法一x2+6x-7=x2+6x+9-9-7=(x+3)2-16=(x+3+4)(x+3-4)=(x+7)(x-1)方法二 x2+6x-7=(x+7)(x-1)例7 解方法一方法二 3x2-7x-6=(3x+2)(x-3).例8 解 2ax-10ay+5by-bx=2ax-10ay-bx+5by=(2ax-10ay)-(bx-5by)=2a(x-5y)-b(x-5y)=(x-5y)(2a-b).例9 解(1)x2-2xy+y2-1=(x2-2xy+y2)-1=(x-y)2-1=(x-y+1)(x-y-1)(2)x2-2y-y2-1=x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x+y+1)(x-y-1)例10 解 x2+4xy+3y2+x+3y=(x2+4xy+3y2)+(x+3y)=(x+y)(x+3y)+(x+3y)=(x+3y)(x+y+1).例11 解(1)a2+2ab+b2+2a+2b+1=(a2+2ab+b2)+(2a+2b)+1=(a+b)2+2(a+b)+1=(a+b+1)2.(2)a2+2ab+b2+2a+2b-3=(a2+2ab+b2)+(2a+2b)-3=(a+b)2+2(a+b)-3=(a+b+3)(a+b-1).(3)a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3=(a+b)(a+2b)+(2a+b)-3=(a+b-1)(a+2b+3).例12 证明因为4x2+4xy+y2-4x-2y+1=0,所以(2x+y)2-2(2x+y)+1=0,(2x+y-1)2=0.所以2x+y-1=0.又因为2x2+3xy+y2-x-y=(x+y)(2x+y-1).而2x+y-1=0,所以2x2+3xy+y2-x-y=0.例13 解设3x2-4xy-7y2+13x-37y+m=[(3x-7y)+a][(x+y)+b]=3x2-4xy-7y2+(a+3b)x+(a-7b)y+ab.对应项系数相等,所以由(1)(2)解得a=-2,b=5.将a=-2,b=5代入(3),得m=-10,所以 3x2-4xy-7y2+13x-37y+m=3x2-4xy-7y2+13x-37y-10=(3x-7y+a)(x+y+b)=(3x-7y-2)(x+y+5).例14 解因为|x-3y-1|+x2+4y2=4xy,所以|x-3y-1|+x2-4xy+4y2=0即|x-3y-1|+(x-2y)2=0所以解这个方程组,得x=-2,y=-1.例15 解(1)x4+4y4=x4+4x2y2+4y4-4x2y2=(x2+2y2)2-(2xy)2=(x2+2xy+2y2)(x2-2xy+2y2).(2)x3+5x-6=x3-x+6x-6=(x3-x)+(6x-6)=x(x+1)(x-1)+6(x-1)=(x-1)(x2+x+6)例16 解因为x2-2xy-3y2=5,所以(x-3y)(x+y)=5.依题意x,y为整数,所以x-3y和x+y都是整数,于是有:解上述方程组得:例17 证明因为A=(x+2)(x-3)(x+4)(x-5)+49=(x2-x-6)(x2-x-20)+49=(x2-x)2-26(x2-x)+169=(x2-x-13)2所以A是一个完全平方数.五、课堂练习A卷:基础题A、选择题1.下列各式从左到右的变形是分解因式的是()A.a(a-b)=a2-ab B.a2-2a+1=a(a-2)+1C.x2-x=x(x-1) D.xy2-x2y=x(y2-xy)2.(x-5)(x-3)是多项式x2-px+15分解因式的结果,则p的值是()1-2004 = 100123456689。
专题4.14 因式分解(全章复习与巩固)(知识讲解)八年级数学下册基础知识专项讲练(北师大版)
专题4.14因式分解(全章复习与巩固)(知识讲解)【知识点一】因式分解与整式乘法的识别把一个多项式化成几个整式的积的形式,叫因式分解。
【知识点二】因式分解的方法(1)提取公因式法:)(c b a m mc mb ma ++=++(2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+±(3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解。
(5)运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x ,则有:))((212x x x x a c bx ax --=++【知识点三】因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法;(3)对二次三项式,应先尝试用十字相乘法分解,不行的再用求根公式法。
(4)最后考虑用分组分解法。
【典型例题】类型一、因式分解的概念✭✭求参数1.下列各式从左到右的变形属于因式分解的是()A .()2212x x x x+=+B .()()2111a a a -=+-C .()()2111x x x +-=-D .()222312a a a -+=-+【答案】B【分析】根据因式分解的定义解答即可.解:A .()2212x x x x +=+不是将多项式化成整式乘积的形式,故A 选项不符合题意;B .()()2111a a a -=+-是将多项式化成整式乘积的形式,故B 选项符合题意;C .()()2111x x x +-=-不是将多项式化成整式乘积的形式,故C 选项不符合题意;D .()222312a a a -+=-+不是将多项式化成整式乘积的形式,故D 选项不符合题意;故选:D .【点拨】本题主要考查了分解因式的定义,掌握定义是解题的关键.即把一个多项式化成几个整式乘积的形式,这种变形叫做分解因式.举一反三:【变式】下列各式,从左到右的变形中,属于因式分解的是()A .()a m n am an+=+B .()()2222a b c a b a b c+-=+--C .()2221x x x x -=-D .()()2166446x x x x -+=+-+【答案】C【分析】根据因式分解的定义去判断即可.解:A 、因为()a m n am an +=+是单项式乘以多项式,不是因式分解,故A 不符合题意;B 、因为()()2222a b c a b a b c +-=+--不是因式乘积的形式,不是因式分解,故B 不符合题意;C 、因为()2221x x x x -=-是因式分解,故C 符合题意;D 、因为()()2166446x x x x -+=+-+不是因式乘积的形式,不是因式分解,故D 不符合题意;故选C .【点拨】本题考查了因式分解即把一个多项式写成几个因式积的形式,熟练掌握定义是解题的关键.2.三个多项式:24x y y -,22x y xy -,244x y xy y -+的最大公因式是()A .()2y x +B .()4y x -C .2(2)y x -D .()2y x -【答案】D【分析】先把三个多项式因式分解,再进行解答即可.解:∵()()2422x y y y x x -=+-,()222x y xy xy x -=-,2244(2)x y xy y y x -+=-,∴最大公因式是()2y x -.故选D .【点拨】本题主要考查了最大公因式,熟练掌握最大公因式的定义,将三个多项式分解因式,是解题的关键.举一反三:【变式】下列各组中,没有公因式的一组是()A .ax bx -与by ay -B .ab ac -与ab bc -C .268xy x y -与43x -+D .()3a b -与()2b ya -【答案】B【分析】将每一组因式分解,找公因式即可解:A.()ax bx x a b -=-,()by ay y a b -=--,有公因式a b -,故不符合题意;B.()ab ac a b c -=-,()ab bc b a c -=-,没有公因式,符合题意;C.()268234xy x y xy x -=-,4334x x -+=-,有公因式34x -,故不符合题意;D.()3a b -与()2b y a -有公因式a b -,故不符合题意;故选:B【点拨】本题考查公因式,熟练掌握因式分解是解决问题的关键类型二、公因式✭✭提取公因式进行因式分解3.若关于x 的二次三项式23x x k -+的因式是()2x -和()1x -,则k 的值是____.【答案】2【分析】先利用多项式乘以多项式法则计算,再利用多项式相等的条件求出k 的值即可.解:由题意得:()()2232132x x k x x x x -+=--=-+,2k ∴=.故答案为:2.【点拨】此题考查了多项式乘以多项式法则,因式分解的意义,以及多项式相等的条件,熟练掌握因式分解的意义是解本题的关键.举一反三:【变式】已知多项式4x mx n ++能分解为()()2223x px q x x +++-,则p =______,q =______.【答案】2-;7.【分析】把()()2223x px q x x +++-展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.解:∵()()2223x px q x x +++-432322222333x px qx x px qx x px q=+++++---()()()432223233x p x q p x q p x q=++++-+--4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+-=⎩,解得:27p q =-⎧⎨=⎩.故答案为:2-,7.【点拨】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.4.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;【答案】(1)()24bc a c -;(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点拨】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】把下列多项式因式分解:(1)2x xy x -+;(2)22m n mn mn -+;(2)33322292112x y x y x y -+;(4)()()22x x y y x y -+-.【答案】(1)()1x x y -+;(2)()1mn m n -+;(3)()223374x y xy x -+;(4)()()22x y x y-+【分析】(1)直接提取公因式x ,进而分解因式得出答案;(2)直接提取公因式mn ,进而分解因式得出答案;(3)直接提取公因式223x y ,进而分解因式得出答案;(4)直接提取公因式()x y -,进而分解因式得出答案.(1)解:()21x xy x x x y -+=-+(2)解:()221m n mn mn mn m n -+=-+(3)解:()33322222921123374x y x y x y x y xy x +--=+(4)解:()()()()2222xx y y x y x y x y -+-=-+【点拨】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.类型三、公式法进行因式分解➽➼平方差公式✭✭完全平方公式5.因式分解:(1)﹣2a 3+12a 2﹣18a(2)9a 2(x ﹣y )+4b 2(y ﹣x )【答案】(1)﹣2a (a ﹣3)2(2)(x ﹣y )(3a +2b )(3a ﹣2b )【分析】(1)原式提取公因式,再利用完全平方公式分解即可.(2)原式变形后,提取公因式,再利用平方差公式分解即可.解:(1)原式=﹣2a (a 2﹣6a +9)=﹣2a (a ﹣3)2(2)原式=(x ﹣y )(9a 2﹣4b 2)=(x ﹣y )(3a +2b )(3a ﹣2b ).【点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.举一反三:【变式】因式分解:(1)224x y -(2)32296a a b ab -+【答案】(1)()()22x y x y +-;(2)()23a a b -.【分析】(1)利用平方差公式进行因式分解即可;(2)先提公因式,然后利用完全平方公式进因式分解即可.解:(1)22224(2)(2)(2)x y x y x y x y -=-=+-;(2)232222(96)(963)=-+=--+a a ab b a b a a b b a a .【点拨】本题主要考查了多项式的因式分解,解题的关键是熟练掌握各种因式分解的方法,并会根据多项式的特征选取合适的方法,还要注意要分解彻底.6.分解因式:(1)2225()9()m n m n +--(2)22441a b a --+【答案】(1)()()444m n n m ++;(2)()()2121a b a b +---【分析】(1)将m n +和m n -看成两个整体,利用平方差公式分解因式得到()()8228m n m n ++,再提取公因式即可.(2)利用分组法先将原式分成2441a a -+和2b -两组,2441a a -+可利用完全平方公式分解,再和2b -组合,由平方差公式分解即可.(1)解:2225()9()m n m n +--()()()()5353m n m n m n m n =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()55335533m n m n m n m n =++-+-+()()8228m n m n =++()()444m n m n =++.(2)22441a b a --+()22441a a b =-+-()2221a b =--()()2121a b a b =-+--()()2121a b a b =+---.【点拨】本题考查了因式分解的方法,分组法、公式法和提公因式法本题都涉及了,熟练掌握完全平方公式、平方差公式是解题的关键.举一反三:【变式】分解因式:(1)228168ax axy ay -+-(2)()22222936x y x y +-;【答案】(1)28()a x y --;(2)22(3)(3)x y x y +-【分析】(1)先提公因式,再根据完全平方公式分解因式即可;(2)根据平方差公式和完全平方公式分解因式即可.解:(1)原式228(2)a x xy y =--+28()a x y =--(2)原式2222(9)(6)x y xy =+-2222(96)(96)x y xy x y xy =+++-22(3)(3)x y x y =+-【点拨】本题考查了因式分解,涉及提公因式法和公式法,熟练掌握分解因式的步骤是解题的关键.类型四、因式分解➽➼十字相乘法✭✭分组分解法7.将下列各式分解因式:(1)256x x --;(2)21016x x -+;(3)2103x x --【答案】(1)(7)(8)x x +-;(2)(2)(8)x x --;(3)(5)(2)x x -+-【分析】(1)用十字相乘法,分解因式即可;(2)用十字相乘法,分解因式即可;(3)用十字相乘法,分解因式即可.(1)解:∵78x x ⨯-,即78x x x -=-,∴256(7)(8)x x x x --=+-;(2)解:∵28x x ⨯--,即2810x x x --=-,∴21016(2)(8)x x x x -+=--;(3)解:22103(310)x x x x --=-+-,∵52x x ⨯-,即523x x x -=,∴原式(5)(2)x x =-+-.【点拨】本题主要考查了利用十字相乘法分解因式,解题的关键在于能够熟练掌握十字相乘法:常数项为正,分解的两个数同号;常数项为负,分解的两个数异号.二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【变式】用十字相乘法解方程:(1)2560x x +-=;(2)2230x x --=.【答案】(1)6x =-或1x =;(2)3x =或=1x -【分析】根据十字相乘法可分别求解(1)(2).(1)解:2560x x +-=(6)(1)0x x +-=,60x +=或10x -=,6x =-或1x =;(2)解:2230x x --=,(3)(1)0x x -+=,30x -=或10x +=,3x =或=1x -.【点拨】本题主要考查利用因式分解进行求解方程,熟练掌握因式分解是解题的关键.8.因式分解:323412x x y x y +--.【答案】(3)(2)(2)x y x x ++-【分析】原式第一、三项结合,二、四项结合,提取公因式后再提取公因式,利用平方差公式分解即可.解:原式=324312x x x y y-+-=22(4)3(4)x x y x -+-=2(3)(4)x y x +-=(3)(2)(2)x y x x ++-.【点拨】本题考查了因式分解:分组分解法:对于多于三项以上的多项式的因式分解,先进行适当分组,再把每组因式分解,然后利用提公因式法或公式法进行分解.举一反三:【变式】因式分解:(1)a 2-ab +ac -bc ;(2)x 3+6x 2-x -6.【答案】(1)(a -b)(a +c);(2)(x +1)(x -1)(x +6)试题分析:根据因式分解的方法进行因式分解即可.解:(1)原式()()()()a a b c a b a b a c =-+-=-+.(2)原式()()()()()()()()()322226616116116x x x x x x x x x x x =-+-=-+-=-+=+-+类型五、因式分解综合9.将下列各式分解因式.(1)3416x x -;(2)()2212a x ax +-;(3)()24a b a b --;(4)()()()()2233a b a b a b b a -+++-.【答案】(1)()()41212x x x +-;(2)()221a x x ++;(3)()22a b --;(4)()()28a b a b -+【分析】(1)先提取公因式,然后进一步利用平方差公式进行因式分解即可;(2)利用提公因式法进行因式分解即可;(3)先将括号去掉,然后移项,根据完全平方公式进行因式分解即可;(4)利用提公因式法以及平方差公式综合进行因式分解即可.解:(1)3416x x -=()2414x x -=()()41212x x x +-;(2)()2212a x ax +-=()221a x x ⎡⎤+-⎣⎦=()221a x x ++;(3)()24a b a b --=2244ab a b --=()2244a ab b --+=()22a b --;(4)()()()()2233a b a b a b b a-+++-=()()()()2233a b a b a b a b -+-+-=()()()2233a b a b a b ⎡⎤-+-+⎣⎦=()()()4422a b a b a b -+-=()()28a b a b -+.【点拨】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.举一反三:【变式】因式分解:(1)2273xy x-(2)2292a b ab+-+(3)228x x --【答案】(1)3(3+1)(31)-x y y ;(2)(3)(3)+++-a b a b ;(3)(2)(4)x x +-【分析】(1)根据提取公因式,平方差公式,即可分解因式;(2)根据完全平方公式法、平方差公式,即可分解因式;(3)根据十字相乘法分解因式,即可得到答案.解:(1)2273xy x-23(91)x y =-3(31)(31)x y y =+-;(2)2292a b ab+-+2229a ab b =++-22()3a b =+-(3)(3)a b a b =+++-;(3)228x x --(2)(4)x x =+-.【点拨】本题主要考查分解因式,掌握提取公因式法、公式法、十字相乘法分解因式,是解题的关键.类型五、因式分解的应用10.阅读材料,回答下列问题:若22228160m mn n n -+-+=,求m ,n 的值.解:∵22228160m mn n n -+-+=,∴222(2)(816)0m mn n n n -++-+=,即22()(4)0m n n +--=,又2()0m n -≥,2(4)0n -≥,∴2()0m n -=,2(4)0n -=,∴4n =,4m =.(1)若22440a b a +-+=,求a ,b 的值;(2)已知ABC 的三边a ,b ,c 满足2222220a b c ab ac ++--=.判断ABC 的形状,并说明理由.【答案】(1)2,0a b ==;(2)等边三角形,理由见分析.【分析】(1)参照例题,将等式转化为两个完全平方的和等于0的形式,进而求得a ,b 的值;(2)方法同(1).解:(1)∵22440a b a +-+=,∴()22440a a b ++-=,即2220()a b -+=,又22(2)0,0a b -≥≥,22(2)0,0a b ∴-==,2,0a b ∴==.(2)∵2222220a b c ab ac ++--=,2222(2)(2)0a ab b b ac c ∴-++-+=,即22()()0a b b c -+-=,又22()0,()0a b b c -≥-≥,∴22()0,()0a b b c -=-=,,a b b c ∴==,a b c ==∴.ABC ∴ 是等边三角形.【点拨】本题考查了因式分解的应用,完全平方公式,掌握完全平方公式是解题的关键.举一反三:【变式】已知:1a b +=,154ab =-(1)求22ab a b +的值(2)求22a b +的值(3)若22a b k -=-,求非负数k 的值【答案】(1)154-;(2)172;(3)k =【分析】(1)将代数式22ab a b +用提公因式法因式分解为()ab a b +,再将1a b +=,154ab =-代入计算即可;(2)将22a b +变形为()22a b ab +-,再将1a b +=,154ab =-代入计算即可;(3)类似的方法将()2a b -变形为()24a b ab +-,代入计算后求出a b -的值,继而根据22a b k -=-计算出符合条件的k 的值即可.(1)解:∵1a b +=,154ab =-,∴()221515144ab a b ab a b +=+=-⨯=-;(2)解:∵1a b +=,154ab =-,∴()2222a b a b ab+=+-15124⎛⎫=-- ⎪⎝⎭1512=+172=;(3)解:∵()()224a b a b ab-=+-1514164⎛⎫=--= ⎪⎝⎭,∴4a b -=±当4a b -=时,224k -=,k =∵k 为非负数,∴k =当4a b -=-时,224k -=-,22k =-(舍去),∴k =【点拨】本题考查了完全平方公式的应用以及提取公因式分解因式,能够灵活应用完全平方公式是解题的关键.11.阅读材料:()()()2222244454529232322x x x x x x x ⎛⎫⎛⎫+-=++--=+-=+++- ⎪ ⎪⎝⎭⎝⎭()()51x x =+-上面的方法称为多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解.根据以上材料,解答下列问题:(1)因式分解:223x x +-;(2)求多项式2610x x +-的最小值;(3)已知a 、b 、c 是△ABC 的三边长,且满足222506810a b c a b c +++=++,求△ABC 的周长.【答案】(1)()()31x x +-;(2)19-;(3)12【分析】(1)先配方后,再利用平方差公式进行因式分解;(2)配方后根据平方的非负性求最小值;(3)配方后根据非负性求出a ,b ,c 的值即可.(1)解:223x x +-222113x x =++--2(1)4x =+-(12)(12)x x =+++-;(3)(1)x x =+-;(2)2226106919(3)19x x x x x +-=++-=+-,∵2(3)0x +≥,∴多项式2610x x +-的最小值为19-;(3)由题意得:2226810500a b c a b c ++---+=,∴2226981610250a a b b c c +++++--=-.∴222(3)4)(0(5)a b c -+-+-=.又∵2(3)0a -≥,2(04)b -≥,2(05)c -≥,∴30a -=,40b -=,50c -=,∴3a =,4b =,5c =,∴ABC 的周长为34512++=.【点拨】本题考查了配方法因式分解以及因式分解的应用,掌握完全平方公式是解题的关键.举一反三:【变式】先阅读下面的内容,再解决问题,例题:若2222690m mn n n ++-+=,求m 和n 的值.解:因为2222690m mn n n ++-+=,所以2222690m mn n n n +++-+=.所以22()(3)0m n n ++-=.所以0,30m n n +=-=.所以3,3m n =-=.问题:(1)若224212120++-+=x y xy y ,求xy 的值;(2)已知a ,b ,c 是等腰ABC 的三边长,且a ,b 满足2210841a b a b +=+-,求ABC 的周长.【答案】(1)-4;(2)13或14【分析】(1)仿照例题的思路,配成两个完全平方式,然后利用偶次方的非负性,进行计算即可解答;(2)仿照例题的思路,配成两个完全平方式,再利用偶次方的非负性,先求出a ,b 的值,然后分两种情况,进行计算即可解答.解:(1)∵22421212x y xy y ++-+222231212x xy y y xy =+++-+2()3x y =++2(2)y -,=∴0x y +=,20y -=,∴2x =-,2y =,∴2(2)4=⨯-=-xy .(2)∵2210841a b a b +=+-,∴2210258160a a b b -+++=-,∴22(5)(4)0a b -+-=,∴50a -=,40b -=,∴5a =,4b =.由于ABC 是等腰三角形,所以5c =或4.①若5c =,则ABC 的周长为55414++=;②若4c =,则ABC 的周长为54413++=.所以ABC 的周长为13或14.【点拨】本题考查了配方法的应用,偶次方的非负性,三角形的三边关系,熟练掌握完全平方式是解题的关键.。
八年级因式分解的知识点
八年级因式分解知识点总结因式分解是数学中一个重要的知识点,不仅在初中阶段就开始学习,还贯穿了高中乃至大学的数学学习。
因此,掌握好八年级的因式分解知识点,对于后续数学学习的顺利进行具有重要的作用。
本文将就八年级因式分解的知识点进行总结,希望对于大家的学习有所帮助。
一、公因数与最大公因数公因数是指同时能够整除两个或多个数的因数,在因式分解中有着重要的作用。
求两个或多个数的最大公因数的方法,可以通过列举其公因数,然后筛选出最大的一个。
例如,求两个数72和96 的最大公因数。
首先列出它们的公因数,有1、2、3、4、6、8、12、24 八个数,在这个基础上,筛选能够整除72 和96 的最大整数,即24,因此,72 和96 的最大公因数为24。
二、公式在因式分解中,常用到一些公式,例如差平方公式、和平方公式等。
这些公式的掌握对于因式分解的顺利进行具有非常重要的作用。
1. 差平方公式$(a+b)\cdot(a-b)=a^2-b^2$2. 和平方公式$(a+b)^2=a^2+2ab+b^2$$(a-b)^2=a^2-2ab+b^2$三、因式分解在因式分解中,一个重要的概念是质因数分解。
质因数分解是指将一个正整数分解成若干个质数的积的形式。
例如,24=2×2×2×3,即24的质因数分解为$2^3\cdot3$。
在因式分解中,常用到一些方法,例如提公因式、分组、取因式等。
这些方法的运用可以简化计算过程,提高计算效率。
四、例题下面列举两个例题,帮助大家更好地理解因式分解的知识点。
1. $6x^2+5x-6$的因式分解式是解:先求出这个多项式的根,即$x_1=\frac{-5+\sqrt{5^2+4\cdot6\cdot6}}{2\cdot6}=-\frac{2}{3}$,$x_2=\frac{-5-\sqrt{5^2+4\cdot6\cdot6}}{2\cdot6}=1$。
因此,将原式分解成$(2x+3)(3x-2)$。
八年级数学下册知识点总结:因式分解
书山有路勤为径;学海无涯苦作舟八年级数学下册知识点总结:因式分解为了帮助大家在考试前,巩固知识点,对所学的知识更好的掌握,为大家编辑了八年级数学下册知识点总结,希望对大家有用。
一、知识点总结:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:5、同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
6、幂的乘方法则:mnnmaa)((nm,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(幂的乘方法则可以逆用:即mnnmmnaaa)()(如:23326)4()4(47、积的乘方法则:nnnbaab)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2zyx=5101555253532)()()2(zyxzyx& #61623;8、同底数幂的除法法则:今天的努力是为了明天的幸福。
北京四中八年级下册数学一元一次不等式与不等式组全章复习与巩固(基础)知识讲解
《一元一次不等式与不等式组》全章复习与巩固(基础)知识讲解【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过讨论一次函数与方程(组)及不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程(组)及不等式等内容的再认识.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a≤等;另一种是>,x a用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式.要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.方程ax b +=0(a ≠0)的解值为0?(即直线y =0)交点的横坐标.求关于x 、y 的二元一次方程组1122=+⎧⎨=+⎩,.y a x b y a x b 的解.x 为何值时,函数11y a x b =+与函数22y a x b =+的值相等? 确定直线11y a x b =+与直线22y a x b =+的交点的坐标.求关于x 的一元一次不等式ax b +>0(a ≠0)的解集 x 为何值时,函数y ax b =+的值大于0?确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.【典型例题】 类型一、不等式1.用适当的符号语言表达下列关系: (1)a 与5的和是正数. (2)b 与-5的差不是正数. (3)x 的2倍大于x. (4)2x 与1的和小于零.(5)a 的2倍与4的差不少于5. 【答案与解析】解:(1)a+5>0;(2)b-(-5)≤0; (3)2x>x ; (4)2x+1<0;(5)2a-4≥5. 【总结升华】正确运用不等符号翻译表述一些数学描述是学好不等式的关键,要关注一些常见的描述语言,如此处:不是、不少于、不大于…… . 举一反三:【变式】用适当的符号语言表达下列关系:(1)y 的12与3的差是负数.(2)x 的12与3的差大于2.(3)b 的12与c 的和不大于9. 【答案】(1)1302y -<; (2)1322x ->;(3)192b c +≤.2.用适当的符号填空:(1)如果a<b ,那么a-3__b-3; 7a__7b ;-2a__-2b. (2)如果a<b ,那么a-b__0;a+5b__6b ;11__22a b b -. 【思路点拨】不等式的基本性质1,2,3. 【答案】(1)<; <;>. (2)<;<;<. 【解析】(1)在不等式a<b 两边同减去3,得a-3<b-3;在不等式a<b 两边同乘以7,得7a <7b ; 在不等式a<b 两边同乘以﹣2,得-2a >-2b . (2)在不等式a<b 两边同减去b ,合并得a-b <0;在a<b 两边同加上5b ,合并得a+5b <6b ; 在a<b 两边同减去12b ,合并得1122a b b -<. 【总结升华】刚开始在面对不等式的基本变形时,要不断强化在变形上所运用的具体性质,同时也要逐步积累一些运用性质变形后的化简结果,这样学习到的不等式的基本性质才能落在实处.举一反三:【变式1】用适当的符号填空: (1)7a+6__7a-6;(2)若ac >bc ,且c <0,则a b . 【答案】(1)>;(2)<. 【变式2】判断(1)如果a b >,那么22ac bc >; (2)如果22ac bc >,那么a b >. 【答案】(1)×;(2)√. 类型二、一元一次不等式3. 解不等式:3(1)5182x x x +-+>-. 【思路点拨】不等式中含有分母,应先根据不等式的基本性质2去掉分母,再作其他变形.去分母时,不要忘记给分子加括号. 【答案与解析】解:去分母,得8x+3(x+1)>8-4(x -5), 去括号,得8x+3x+3>8-4x+20, 移项,得8x+3x+4x >8+20-3,合并同类项,得15x >25,系数化为1.得53x >. ∴不等式的解集为53x >.ax =bax >bax <b解:当a ≠0时,b x a=; 当a =0,b ≠0时,无解; 当a =0,b =0时,x 为任意有理数. 解:当a >0时,b x a>; 当a <0时,b x a<; 当a =0,b ≥0时,无解; 当a =0,b <0时,x 为任意有理数. 解:当a >0时,b x a<; 当a <0时,b xa>;当a =0,b ≤0时,无解; 当a =0,b >0时,x 为任意有理数.举一反三:【变式】(湖南益阳)解不等式5113x x -->,并把解集在数轴上表示出来.【答案】解:去分母得5x -1-3x >3,移项、合并同类项,得2x >4, 系数化为1,得x >2,解集在数轴上的表示如图所示.4.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商店准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?【思路点拨】利润=售价-进价,售价=进价+利润=进价×(1+利润率). 【答案与解析】解:设商店降价x 元出售该商品,则225x -≥150(110%)⨯+, 解得x ≤60.答:商店最多降价60元出售商品。
因式分解知识要点
因式分解知识要点因式分解在代数式的恒等变形、根式运算、分式通分与约分、一元二次方程以及三角函数的变形求解等方面均有着十分重要的应用,下面对因式分解中的有关知识要点进行归纳说明,供大家学习和参考。
1、因式分解的定义把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解(也可叫做把这个多项式分解因式)。
本定义可从以下几方面进行理解:⑴、因式分解是一种恒等变形,如22()()-=+-,无论字母a和b取何值,代数式22a b a b a ba b-与()()+-的值总是相等的;a b a b⑵、因式分解的结果必须是整式的积的形式,分解后的因式可以是单项式,也可以是多项式,但必须都是整式;⑶、由于因式分解是整式乘法运算的逆运算,故因式分解是否正确,通常可以用整式乘法进行检验,看乘得的结果是否等于原多项式;⑷、多项式的因式分解,必须进行到每个因式都不能再分解为止,但要注意是在何种数集内进行因式分解(如无特殊说明,教材一般只要求在有理数范围内进行分解)。
2、因式分解的方法⑴、提公因式法:如果一个多项式的各项都含有公因式,则可利用分配律将此多项式的公因式提出来,从而将原多项式分解成两个因式的积的形式,像这种因式分解的方法,叫做提公因式法。
如:()++=++。
ma mb mc m a b c⑵、运用公式法:利用等式的性质将乘法公式逆用从而实现多项式的因式分解,像这种因式分解的方法就称为公式法。
公式法主要有以下两种:①平方差公式:22()()-=+-;a b a b a b②完全平方公式:222±+=±。
2()a ab b a b⑶、分组分解法(教材中未给出但作业中有所涉及):将一个多项式中所含的各项分成若干组,然后再利用提公因式法或公式法等方法对多项式进行因式分解,像这种因式分解的方法就称为分组分解法。
运用分组分解法的目的和作用主要有两个——①分组后能直接提公因式;②分组后能直接运用公式(平方差公式或完全平方公式)。
新北师大版八年级数学下册第四章分解因式的知识点归纳
分解因式及其应用一、知识点归纳1、因式分解的定义:定义:把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式. 因式分解和整式的乘法互为逆运算.2、分解因式的四种方法(1)提公因式法需要注意三点:①公因式要提尽;②首项是负时,要提出负号;③防止漏项.(2)公式法两项通常考虑平方差公式,三项通常考虑完全平方公式.运用公式法的时候需要注意两点:①能提公因式的先提公因式;②找准公式中的a 和b .(3)分组分解法多项式项数比较多常考虑分组分解法,首先找公因式,然后再考虑平方差公式或者完全平方公式.(4)十字相乘法十字相乘法常用于二次三项式,其原理是:2()()()x p q x pq x p x q +++=++分解因式是有顺序的,记住口诀:“_一提二套三分四查”;分解因式是有范围的,目前我们是在有理数范围分解因式.3、分解因式的应用分解因式结果的形式要求:没有大括号和中括号;每个因式不能含有同类项,如果有需要合并的同类项,合并后要注意能否再分解;单项式的因式写在多项式因式的前面;每个因式第一项系数一般不为负数;形式相同的因式写成幂的形式。
分解因式应用的核心原则是简化运算,主要有以下几种情况:①复杂多项式的化简;②简化方程;③多项式除以多项式;④几何拼图.题型一:基本概念及因式分解1、下列由左到右的变形,是分解因式的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+;⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-;⑦2244(2)y y y -+=-.2、分解因式(提公因式法):(1)32a a a --+; (2)()(1)()(1)a b m b a n -+---;(3)22()()x x y y y x ---;3、分解因式(公式法):(1)216249x x ++; (2)2244x xy y -+-;(3)44x y -; (4)4221a a -+;4、分解因式(十字相乘法):(1)2310x x --; (2)223x x -++;(3)3228x x x --;(4)42712x x -+;5、分解因式(分组分解法):(1)22144a ab b ---;(2)22699a a b ++-;(3)222221a ab b a b ++--+;6、用适当的方法分解因式:(1)222816a ab b c -+-;(2)22344xy x y y --;(3)(1)(2)12x x ++-; (4)22224a ab b c -+-.题型二:综合应用 7、若2249y kxy x +-是一个完全平方式,则k 的值是 .如果多项式x 2+2(m -3)x +16是一个完全平方式,那么m =_____.8、若c b a ,,是三角形的三边,求证:02222<---bc c b a已知a,b,c 是三角形的三边满足022=-+-bc ac b a 则该三角形是 三角形9、若a ,b ,c 是三角形三边长,且a 2-16b 2-c 2+6ab +10bc =0,则2b -a -c =______.10、若a ,b ,c 是△ABC 的三边长,且满足a 2+b 2+c 2=ab +bc +ac ,试判断△ABC 的形状.11、化简201222)1()1()1()1(1x x x x x x x x x ++⋯++++++++12、若22228440a b ab a b -+++=,则201332b a ⎛⎫+ ⎪⎝⎭=________. 13、多项式x 2-mx -4分解因式后,其结果中有一个因式是x +1,求m 的值和另一个因式.14、已知a 为常数,多项式y 2+3y -a 中含有因式y -3,那么另一个因式是________.15、已知关于x 的多项式3x 2+x +m 分解因式以后有一个因式为(3x -2),试求m 的值并将多项式分解因式.。
北京四中八年级下册数学平行四边形全章复习与巩固(基础)知识讲解
《平行四边形》全章复习与巩固(基础)【学习目标】1.掌握平行四边形的性质定理和判定定理.2.掌握三角形的中位线定理.3.了解多边形的定义以及内角、外角、对角线等概念.掌握多边形的内角和与外角和公式.4.积累数学活动经验,发展推理能力.【知识网络】【要点梳理】要点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“口ABCD”,读作“平行四边形ABCD”.要点诠释:平行四边形是中心对称图形,两条对角线的交点是它的对称中心.要点二、平行四边形的性质定理平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线互相平分;要点诠释:(1)平行四边形的性质定理中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系. (2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.要点三、平行四边形的判定定理1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.要点四、平行线间的距离1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.2.平行线性质定理及其推论夹在两条平行线间的平行线段相等.平行线性质定理的推论:夹在两条平行线间的垂线段相等.要点五、三角形的中位线三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点六、多边形内角和、外角和n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于(2)180nn-⋅°;多边形的外角和为360°.n边形的外角和恒等于360°,它与边数的多少无关. 【典型例题】类型一、平行四边形的性质与判定1、如图,在口ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交与点M,CE与DF交于点N.求证:四边形MFNE是平行四边形.【答案与解析】证明:∵四边形ABCD是平行四边形.∴AD=BC,AD∥BC(平行四边形的对边相等且平行)又∵DF∥BE(已知)∴四边形BEDF是平行四边形(两组对边分别平行的四边形是平行四边形)∴DE=BF(平行四边形的对边相等)∴AD-DE=BC-BF,即AE=CF又∵AE∥CF∴四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形)∴AF∥CE∴四边形MFNE是平行四边形(两组对边分别平行的四边形是平行四边形)【总结升华】要证明一个四边形是平行四边形首先要根据已知条件选择一种合理的判定方法,如本题中已有一边平行,只须说明另一边也平行即可,故选用“两组对边分别平行的四边形是平行四边形”来证明.举一反三:【变式】如图,等腰△ABC中,D是BC边上的一点,DE∥AC,DF•∥AB,•通过观察分析线段DE,DF,AB三者之间有什么关系,试说明你的结论.【答案】AB=DE+DF,理由:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠C=∠EDB∴DF=AE.∵等腰△ABC,∴∠B=∠C,∴∠B=∠EDB,∴DE=BE,∴AB=AE+BE=DF+DE2、完成下列各题:(1)如图1,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD的周长.(2)已知:如图2,在△ABC中,D为边BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC.求证:AB=AC.【思路点拨】(1)首先判定四边形ABCD是平行四边形,再根据平行四边形的性质和周长公式计算即可;(2)由已知条件证明△ADE≌△ADC可得到∠E=∠C,又∠E=∠B,所以∠B=∠C,进而证明AB=AC.【答案与解析】(1)解:∵AB∥CD,∴∠B+∠C=180°,又∵∠B=∠D,∴∠C+∠D=180°,∴AD∥BC,∴ABCD是平行四边形,∴AB=CD=3,BC=AD=6,∴四边形ABCD的周长=2×6+2×3=18;(2)证明:∵AD平分∠EDC,∴∠ADE=∠ADC,又DE=DC,AD=AD,∴△ADE≌△ADC,∴∠E=∠C,又∠E=∠B,∴∠B=∠C,∴AB=AC.【总结升华】(1)本题考查了平行四边形的判定和平行四边形的性质以及求平行四边形的周长;(2)本题考查了全等三角形的判定和全等三角形的性质以及等腰三角形的证明.举一反三:【变式】如图,已知口ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.【答案】证明:∵F是BC边的中点,∴BF=CF,∵四边形ABCD是平行四边形,∴AB=DC ,AB∥CD,∴∠C=∠FBE,∠CDF=∠E,∵在△CDF 和△BEF 中C FBE CDF E CF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BEF(AAS ),∴BE=DC ,∵AB=DC ,∴AB=BE .3、如图,已知:AB∥CD,BE⊥AD,垂足为点E ,CF⊥AD,垂足为点F ,并且AE =DF . 求证:四边形BECF 是平行四边形.【思路点拨】通过全等三角形(△AEB≌△DFC)的对应边相等证得BE =CF ,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE∥CF.则四边形BECF 是平行四边形.【答案与解析】证明:∵BE⊥AD,CF⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB 与△DFC 中,AEB DFC AE DFA D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEB≌△DFC(ASA ),∴BE=CF .∵BE⊥AD,CF⊥AD,∴BE∥CF.∴四边形BECF 是平行四边形.【总结升华】本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.4、如图,D 是△ABC 的边AB 上一点,CN∥AB,DN 交AC 于点M ,若MA =MC .(1)求证:CD =AN ;(2)若AC⊥DN,∠CAN=30°,MN =1,求四边形ADCN 的面积.【思路点拨】(1)利用“平行四边形ADCN 的对边相等”的性质可以证得CD =AN ;(2)根据“直角△AMN 中的30度角所对的直角边是斜边的一半”求得AN =2MN =2,然后由勾股定理得到AM =3,则S 四边形ADCN =4S △AMN =23.【答案与解析】(1)证明:∵CN∥AB,∴∠1=∠2.在△AMD 和△CMN 中,12MA MCAMD CMN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMD≌△CMN(ASA ),∴AD=CN .又AD∥CN,∴四边形ADCN 是平行四边形,∴CD=AN ;(2)解:∵AC⊥DN,∠CAN=30°,MN =1,∴AN=2MN =2,∴AM=223AN MN -=,∴S △AMN =12AM•MN=12×3×1=3. ∵四边形ADCN 是平行四边形,∴S 四边形ADCN =4S △AMN =23.【总结升华】本题考查了平行四边形的判定与性质、勾股定理以及全等三角形的判定与性质.解题时,还利用了直角三角形的性质:在直角三角形中,30°角所对的直角边是斜边的一半.类型二、三角形的中位线5、如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6 B.8 C.10 D.12【思路点拨】本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于12小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于6而小于10,看哪个符合就可以了.【答案与解析】、、,令a=4,b=6,解:设三角形的三边分别是a b c则2<c<10,12<三角形的周长<20,故6<中点三角形周长<10.故选B.【总结升华】本题重点考查了三角形的中位线定理,利用三角形三边关系,确定原三角形的周长范围是解题的关键.类型三、多边形内角和与外角和6、一个多边形的内角和与外角和相等,则这个多边形是()A.四边形 B.五边形 C.六边形 D.八边形【思路点拨】首先设此多边形是n边形,由多边形的外角和为360°,即可得方程180(n-2)=360,解此方程即可求得答案.【答案】A;【解析】解:设此多边形是n边形,∵多边形的外角和为360°,∴180(n-2)=360,解得:n=4.∴这个多边形是四边形.【总结升华】此题考查了多边形的内角和与外角和的知识.此题难度不大,注意多边形的外角和为360°,n边形的内角和等于180°(n-2).举一反三:【变式】若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.6【答案】A;解:设边数为n,根据题意得(n-2)•180°<360°解之得n<4.∵n为正整数,且n≥3,∴n=3.故选A.。
(学生)第 2讲 八下第4章 因式分解讲义
第2讲 因式分解(2)
因式分解的方法:
用顺口溜的形式总结:首先提公因式,然后选用公式;两项平方又异号,平方差式直接套;两项平方积2倍,完全平方公式对;若遇二次三项式,十字相乘试一试;四项以上常分组,可按系数和字母;相同因式写成幂,彻底分解得第一。
三.简便运算的运用
例1.(1) (2)
(3)
代数式的化简运用
例2.已知,求多项式的值。
例3.已知,试求代数式的值。
例4.已知三项式有一个因式为,求m的值,并将这个三项式因式分解。
整除问题以及证明的应用
例5.试说明两个连续奇数的平方差是8的倍数。
例6.已知a、b、c是三角形ABC的三边长。
试说明
例7.当x、y是何实数时,多项式取最小值?最小值是多少?例8.已知
、
、
是△ABC的三边,且满足
,求证:△ABC为等边三角形。
例9.(1)计算:
(2)计算:
例10.问题二如果二次三项式
(
为整数)在整数范围内可以分解因式,那么
可以取那些值?
求值:
1. 若是一个完全平方式,求m的值.
2. 若,求的值.
3. 若,求的值.
阅读下列因式分解的过程,再回答所提出的问题:(1)上述分解因式的方法是______________,共应用了______________次.
(2)若分解,则需应用上述方法____________次,结果是______________.
(3)分解因式:(n为正整数).。
北师大版八年级数学下册第四章因式分解知识点归纳复习总结
因式分解一、 什么是因式分解把一个多项式化成几个整式积的形式,这种变化叫做因式分解。
如例1、下列各式中,哪些是因式分解?(1)22)2(44-=+-a a a (2))1)(1(3-+=-x x x x x (3))11(1aa a +=+ (4)1))((122+-+=+-b a b a b a (5))13(3392-=-x x x x 二、提公因式法(一)公因式多项式各项都含有的相同因式,叫做这个多项式各项的公因式。
★确定一个多项式的公因式时,应从系数和字母进行分别考虑对于系数:如果各项系数都是整数,取各项系数的最大公约数作为公因式的系数;如果各项系数中有分数时,则公因式的系数为分数,分母取各项系数分母的最小公倍数,分子取各项系数分子的最大公约数。
对于字母:首先取各项相同字母(或因式),之后取各项相同字母(或因式)的指数取其次数最低的。
注意:(1)公因式的系数的“+”“-”,一般由首相来决定。
(2)在因式分解时,经常应用下列关系:)(a b b a --=- 22)()(a b b a -=- 33)()(a b b a --=-偶偶)()(a b b a -=- 奇奇)()(a b b a --=-例2、指出下列各式的公因式(1)mx 2-,mx 3(2)xyz 12,z y x 329-,226z x (3)2)(3y x +,3)(6-y x +,)(9y x + (4)2)(n m -,2)(3m n - (5)2278xy ,yz 94(二)提公因式法如果一个多项式的各项式含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫作提公因式法。
例3、把下列各式因式分解(1))1()1(-+-x b x a =(2)m m m 24164-23-+=(3)32)(6)(3x y y x ---=(4)22)(6)(2m n m n m ---= (5))2()2(m b m a ---=三、公式法根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法。
北京四中初二 因式分解
因式分解编稿:白真审稿:范兴亚责编:邵剑英【内容综述】本讲主要介绍因式分解的概念,方法和技巧。
【要点讲解】一.因式分解的概念和基本要求把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式,因式分解的基本方法有:提公因式法;运用公式法;分组分解法;十字相乘法,难点是如何灵活的运用这些基本方法。
在进行多项式的因式分解时,要注意以下几点:(1)如果多项式的各项含有公因式,那么要先提出这个公因式,再进一步分解因式。
(2)分解因式时,必须进行到每一个多项式因式都不能再分解为止。
(3)因式分解过程的每一步必须都是恒等变形。
这一部分中,通过一系列的由易到难的题目的解决过程的讲解,同学们不但要体会因式分解的基本方法的灵活运用,而且还将学习到拆项法、添项法等其它的因式分解方法。
举出因式分解的例子。
结合举例让学生明白以下几个问题:这一概念的特点是:(1)多项式因式分解的结果一定是积的形式;(2)每个因式必须是整式(单项式或多项式);(3)各因式要分解到不能再分为止(本章,只在有理数范围内研究因式分解)。
二.因式分解与整式乘法的区别和联系整式乘法是把几个整式相乘化为一个多项式,而因分解是把一个多项式化为几个整式相乘,也就是说,因式分解是整式乘法的逆变形,例如(1)明了因式分解的意义;(2)把整式乘法的过程反过来得到因式分解的一些基本方法;(3)利用整式乘法检验因式分解的结果是否正确。
练习:判断下例式子变形是否是因式分解?(1)(2)(3)(4)三.因式分解的基本方法(1)提公因式法:这是因式分解的基本方法,只要多项式各项有公因式,首先把它提出来(2)运用公式法:本章学习了三个公式。
平方差公式:完全平方公式:这里的a、b既可以是单项式,也可以是多项式。
(3)分组分解法:分组的原则是:分组后每组之间、组与组之间有公因式可提,或分组后可用公式。
四.手把手点拨:1.把下列各式分解因式:(1);(2);(3);(4)。
八年级数学下册《分解因式》知识点归纳北师大版
八年级数学下册《分解因式》知识点概括北师大版第二章分解因式一、分解因式1.把一个多项式化成几个整式的积的形式 , 这类变形叫做把这个多项式分解因式 .2.因式分解与整式乘法是互逆关系 .因式分解与整式乘法的差别和联系:整式乘法是把几个整式相乘, 化为一个多项式;因式分解是把一个多项式化为几个因式相乘.二、提公共因式法1、假如一个多项式的各项含有公因式, 那么就能够把这个公因式提出来, 进而将多项式化成两个因式乘积的形式. 这类分解因式的方法叫做提公因式法.如:2、观点内涵 :因式分解的最后结果应该是" 积";公因式可能是单项式, 也可能是多项式;提公因式法的理论依照是乘法对加法的分派律, 即:3、易错点评论 :注意项的符号与幂指数能否搞错;公因式能否提 " 洁净 ";多项式中某一项恰为公因式, 提出后 , 括号中这一项为+1, 不遗漏 .三、运用公式法1.假如把乘法公式反过来 , 就能够用来把某些多项式分解因式 . 这类分解因式的方法叫做运用公式法 .2.主要公式 :平方差公式 :完整平方公式 :3.易错点评论 :因式分解要分解究竟. 如就没有分解究竟.4、运用公式法 :平方差公式 :①应是二项式或视作二项式的多项式;②二项式的每项都是一个单项式的平方;③二项是异号 .完整平方公式 :①应是三项式 ;②此中两项同号, 且各为一整式的平方;③还有一项可正负, 且它是前两项幂的底数乘积的 2 倍 .5、因式分解的思路与解题步骤:先看各项有没有公因式, 如有 , 则先提取公因式;再看可否使用公式法;用分组分解法, 即经过分组后提取各组公因式或运用公式法来达到分解的目的;因式分解的最后结果一定是几个整式的乘积, 不然不是因式分解 ;因式分解的结果一定进行到每个因式在有理数范围内不可以再分解为止.四、分组分解法:1、分组分解法 : 利用分组来分解因式的方法叫做分组分解法 .如:2、观点内涵 :分组分解法的重点是怎样分组, 要试试经过分组后能否有公因式可提, 而且可持续分解, 分组后能否可利用公式法持续分解因式 .3、注意 : 分组时要注意符号的变化.五、十字相乘法:1、关于二次三项式, 将 a 和 c 分别分解成两个因数的乘积,,, 且知足 , 常常写成的形式 , 将二次三项式进行分解 . 如:2、二次三项式的分解:3、规律内涵 :理解 : 把分解因式时 , 假如常数项q 是正数 , 那么把它分解成两个同号因数, 它们的符号与一次项系数p 的符号同样.假如常数项q 是负数, 那么把它分解成两个异号因数, 其中绝对值较大的因数与一次项系数p 的符号同样 , 关于分解的两个因数 , 还要看它们的和能否是等于一次项系数p.4、易错点评论 :十字相乘法在对系数分解时易犯错;分解的结果与原式不等, 这时往常采纳多项式乘法复原后查验分解的能否正确.。
北京四中八年级下册数学可化为一元一次方程的分式方程(基础)知识讲解
《可化为一元一次方程的分式方程》知识讲解(基础)【学习目标】1. 了解分式方程的定义,根及增根的意义,会解可化为一元一次方程的分式方程.2. 会列出分式方程解简单的应用问题.【要点梳理】要点一、分式方程、根与增根1.分式方程分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.2.分式方程的根、增根及检验分式方程的解也叫作分式方程的根.在检验时只要把所求出的未知数的值代入最简公分母中,如果它使最简公分母的值不等于O,那么它是原分式方程的一个根;如果它使最简公分母的值为O,那么它不是原分式方程的根,称它是原方程的增根.要点诠释:(1)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取哪些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.(2)检验增根的方法:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.要点二、分式方程的解法1.解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.2.分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.要点三、分式方程的应用分式方程的应用主要就是列方程解应用题.列分式方程解应用题按下列步骤进行:(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;(2)设未知数;(3)找出能够表示题中全部含义的相等关系,列出分式方程;(4)解这个分式方程;(5)验根,检验是否是增根;(6)写出答案.要点诠释:1、列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这五5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.2、要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.【典型例题】类型一、判别分式方程1、下列方程中,是分式方程的是( ). A .3214312x x +--= B .124111x x x x x -+-=+-- C .21305x x += D .x a x a b +=,(a ,b 为非零常数) 【答案】B ;【解析】A 、C 两项中的方程尽管有分母,但分母都是常数;D 项中的方程尽管含有分母,但分母中不含未知数,由定义知这三个方程都不是分式方程,只有B 项中的方程符合分式方程的定义.【总结升华】要判断一个方程是否为分式方程,就看其有无分母,并且分母中是否含有未知数.类型二、解分式方程 2、 解分式方程(1)10522112x x +=--;(2)225103x x x x -=+-. 【答案与解析】解:(1)10522112x x+=--, 将方程两边同乘(21)x -,得10(5)2(21)x +-=-.解方程,得74x =. 检验:将74x =代入21x -,得52102x -=≠. ∴ 74x =是原方程的根. (2)225103x x x x-=+-,方程两边同乘以(3)(1)x x x +-,得5(1)(3)0x x --+=.解这个方程,得2x =.检验:把2x =代入最简公分母,得2×5×1=10≠0.∴ 原方程的解是2x =.【总结升华】将分式方程化为整式方程时,乘最简公分母时应乘原分式方程的每一项,不要漏乘常数项.特别提醒:解分式方程时,一定要检验方程的根.举一反三: 【变式】解方程:21233x x x -=---. 【答案】解:21233x x x-=---, 方程两边都乘3x -,得212(3)x x -=---,解这个方程,得3x =,检验:当3x =时,30x -=,∴ 3x =是增根,∴ 原方程无解.类型三、分式方程的增根3、m 为何值时,关于x 的方程223242mx x x x +=--+会产生增根? 【思路点拨】若分式方程产生增根,则(2)(2)0x x -+=,即2x =或2x =-,然后把2x =±代入由分式方程转化得的整式方程求出m 的值.【答案与解析】解: 方程两边同乘(2)(2)x x +-约去分母,得2(2)3(2)x mx x ++=-.整理得(1)10m x -=-.∵ 原方程有增根,∴ (2)(2)0x x -+=,即2x =或2x =-.把2x =代入(1)10m x -=-,解得4m =-.把2x =-代入(1)10m x -=-,解得6m =.所以当4m =-或6m =时,方程会产生增根.【总结升华】处理这类问题时,通常先将分式方程转化为整式方程,再将求出的增根代入整式方程,即可求解.举一反三: 【变式】如果方程11322x x x-+=--有增根,那么增根是________. 【答案】2x =;提示:因为增根是使分式的分母为零的根,由分母20x -=或20x -=可得2x =.所以增根是2x =.类型四、分式方程的应用4、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲班种 60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两班每小时各种多少棵树?【思路点拨】本题的等量关系为:甲班种60棵树所用的时间与乙班种66棵树所用的时间相等.【答案与解析】解:设甲班每小时种x 棵树,则乙班每小时种()2x +棵树.由题意可,得60662x x =+, 解这个方程,得20x =.经检验20x =是原方程的根且符合题意.所以222x +=(棵).答:甲班每小时种20棵树,乙班每小时种22棵树.【总结升华】解此题的关键是设出未知数后,用含x 的分式表示甲、乙两班种树所用的时间. 举一反三:【变式】两个工程队共同参与一个建筑工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?【答案】解:设乙队单独施工1个月能完成工程的1x,总工程量为1.根据工程的实际进度,得1111362x++=. 方程两边同时乘以6x ,得236x x x ++=.解这个方程得1x =.检验:当1x =时,6x =6≠0,所以1x =是原分式方程的解.由上可知,若乙队单独工作1个月可以完成全部任务,对比甲队1个月完成任务的13,可知乙队施工速度快.答:乙队施工速度快.。
北师大版初中数学八年级下册知识讲解,巩固练习(教学资料,补习资料):第四章 因式分解(基础)
第四章 因式分解(基础)提公因式法(基础)【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式.【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式. 要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式.(3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的. 要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法.要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、(2019•石家庄校级模拟)下列等式从左到右的变形是因式分解的是( ) m mA .6a 2b 2=3ab •2abB .2x 2+8x ﹣1=2x (x +4)﹣1C .a 2﹣3a ﹣4=(a +1)(a ﹣4)D .【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断.【答案】C.【解析】A 、是单项式乘单项式的逆运算,不符合题意;B 、右边结果不是积的形式,不符合题意;C 、a 2﹣3a ﹣4=(a +1)(a ﹣4),符合题意;D 、右边不是几个整式的积的形式,不符合题意.故选:C .【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解,等式的右边必须是整式因式积的形式. 举一反三:【变式】(2019•海南)下列式子从左到右变形是因式分解的是( )A.a +4a ﹣21=a (a+4)﹣21B.a +4a ﹣21=(a ﹣3)(a+7)C.(a ﹣3)(a+7)=a +4a ﹣21D.a +4a ﹣21=(a+2)﹣25【答案】B. 类型二、提公因式法分解因式2、(1)多项式的公因式是________;(2)多项式的公因式是________; (3)多项式的公因式是________;(4)多项式的公因式是________.【答案】(1)3 (2)4 (3) (4)【解析】解:先确定系数部分的公因式,再确定字母部分的公因式.(1)的公因式就是3、6、3的最大公约数,最后的一项中不含字母,所以公因式中也不含字母.公因式为3.(2)公因式的系数是4、16、8的最大公约数,字母部分是.公因式为4.(3)公因式是(),为一个多项式因式.(4)多项式可变形,其公因式是.【总结升华】确定公因式一定要从系数、字母及指数三方面入手,公因式可以是一个数,也可以是一个单项式,还可以是一个多项式,互为相反数的因式可变形为公因式. 举一反三:222222363x xy -+324168mn m m --()()()x b c a y b c a a b c +--+----2(3)(3)x x x -+-m b c a +-3x -m m b c a +-()()233x x x ---3x -【变式】下列多项式中,能用提公因式法分解因式的是( )A .B .C .D .【答案】B ;3、若,则E 是( )A .B .C .D .【答案】C ;【解析】解:.故选C .【总结升华】观察等式的右边,提取的是,故可把变成,即左边=.注意偶次幂时,交换被减数和减数的位置,值不变;奇次幂时,交换被减数和减数的位置,应加上负号.举一反三:【变式】把多项式提取公因式后,余下的部分是( )A .B .C .2D .【答案】D ;解:,=,=. 4、(2019春•新沂市期中)分解因式:3x (a ﹣b )﹣6y (b ﹣a ).【思路点拨】将原式变形后,提取公因式即可得到结果.【答案与解析】解:原式=3x (a ﹣b )+6y (a ﹣b )=3(a ﹣b )(x+2y ).【总结升华】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.举一反三:【变式】用提公因式法分解因式正确的是( )A .B . 2x y -22x x +2x y 2+2x xy y 2-+()()()232p q q p q p E ---=-1q p --q p -1p q +-1q p +-()()23p q q p ---=()()21q p p q -+-()2q p -()2p q -()2q p -()()21q p p q -+-()()()111m m m +-+-()1m -1m +2m 2m +()()()111m m m +-+-()()111m m -++()()12m m -+()222129343abc a b c abc ab -=-()2233632x y xy y y x x y -+=-+C .D .【答案】C ;解:A.,故本选项错误; B.,故本选项错误;C.,正确;D.,故本选项错误. 类型三、提公因式法分解因式的应用5、若,求的值.【答案与解析】解: 由,得 .【总结升华】条件求值要注意观察代数式的结构,,这样就能由已知整体代入求值了. 【巩固练习】一.选择题1. (2019•长沙模拟)下列各式从左到右的变形中,为因式分解的是( )A .x (a ﹣b )=ax ﹣bxB .x 2﹣1+y 2=(x ﹣1)(x +1)+y 2C .y 2﹣1=(y +1)(y ﹣1)D .ax +by +c=x (a +b )+c2.(2019春•东营区校级期末)多项式6ab c ﹣3a 2bc+12a b 的公因式是( )A.abcB.3a bC.3a b cD.3ab3. 多项式分解因式的结果是( )A. B. C. D.4. 分解因式的结果是( )A. B.()2a ab ac a a b c -+-=--+()2255x y xy y y x x +-=+()222129343abc a b c abc abc -=-()2233632x y xy y y x x -+=-+()2a ab ac a a b c -+-=--+()22551x y xy y y x x +-=+-0232=-+x x x x x 46223-+0232=-+x x 232x x +=()3222642342240x x x x x x x x x +-=+-=⨯-=()3222623x x x x x +=+2222222232n n n a a a +-+()321n a a a-+()22n n a a a -+()221n n a a a -+()31n n a a a -+()()2552x y x -+-()()251x y -+()()251x y --C. D.5. 下列因式分解正确的是( )A.B.C.D.6. 把提公因式得( )A .B .C .D .二.填空题7. 因式分解是把一个______________化为______________的形式.8. 的公因式是___________;的公因式是__________.9. (2019•南京)分解因式:2a (b +c )﹣3(b +c )= .10. 多项式的公因式是______________. 11.(2019•澄海区一模)分解因式:m (x ﹣y )+n (y ﹣x )=_____________________.12. 因式分解=_____________________.三.解答题13. 应用简便方法计算:(1); (2)14.已知,求和的值. 15.(2019春•常州期中)分解因式:6a (b ﹣1)﹣2(1﹣b ). 【答案与解析】一.选择题1. 【答案】C ;【解析】根据因式分解是把一个多项式转化成几个整式积,可得答案.2. 【答案】D .【解析】解:系数的最大公约数是3,相同字母a 的最低次数是1,b 的最低次数也是1,∴公因式为3ab .故选:D .()()521x y -+()()521x y --()()()m a b n a b a b mn -+-=-()()()()m x y n y x x y m n ---=--()()1mn x y mn x y mn ++=++()()()()232232y x x y x y x y -+-=---3223284x y x y xy ++2232(42)x x xy y ++32232(42)x y x y xy ++222(42)xy x xy y ++22(4)xy x xy +,,ax ay ax -236,2,4mn m n mn -33222339a b a b a b --243210515m n m n m n -+-1098222--16 3.148 3.1426 3.14⨯+⨯+⨯1,3a b ab +==-22a b ab +3322a b ab +223. 【答案】C ;【解析】.4. 【答案】B ;【解析】.5. 【答案】C ;【解析】; ;.6. 【答案】C ;【解析】.二.填空题7. 【答案】多项式;几个整式的积;8. 【答案】;9. 【答案】(b +c )(2a ﹣3).10.【答案】; 【解析】.11.【答案】(x ﹣y )(m ﹣n ).【解析】解:m (x ﹣y )+n (y ﹣x )=m (x ﹣y )﹣n (x ﹣y )=(x ﹣y )(m ﹣n ).故答案为:(x ﹣y )(m ﹣n ).12.【答案】;【解析】.三.解答题13.【解析】解:(1);(2).14.【解析】解:; ()32221n n n n n a aa a a a +-+=-+()()()()()()25522525251x y x x y x x y -+-=---=--()()()()m ab n a b a b m n -+-=-+()()()()m x y n y x x y m n ---=-+()()()()232332y x x y x y x y -+-=--+()322322284242x y x y xy xy x xy y++=++;2a mn 23a b ()332222233933a b a b a b a b ab b --=--()22523m n m mn --+()24322210515523m n m n m n m n m mn -+-=--+()109882822222212256--=--==()16 3.148 3.1426 3.14 3.1416826 3.1450157⨯+⨯+⨯=⨯++=⨯=()22313a b ab ab a b +=+=-⨯=-.15.【解析】解:6a (b ﹣1)﹣2(1﹣b )=2(b ﹣1)(3a ﹣1). 平方差公式(基础) 知识讲解【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——平方差公式1、(2019•富顺县校级模拟)下列各式能用平方差公式分解因式的有( )①x 2+y 2;②x 2﹣y 2;③﹣x 2﹣y 2;④﹣x 2+y 2;⑤﹣x 2+2xy ﹣y 2.A .1个B .2个C .3个D .4个【思路点拨】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,进而可得答案.【答案与解析】解:下列各式能用平方差公式分解因式的有;②x 2﹣y 2;④﹣x 2+y 2;,共2个,故选:B .【总结升华】能否运用平方差公式分解因式,应紧紧抓住平方差公式的特点进行判断.分别从项数、符号、平方项等方面来判断.()()233222222[2]a b ab ab a b ab a b ab +=+=+-()()23[123]42=⨯-⨯-⨯-=-222()()22a b a b a b -=+-a b a b2、分解因式:(1); (2); (3); (4). 【思路点拨】本题都符合平方差公式的特点,可以分别写成两数(式)平方差的形式,然后运用平方差公式进行因式分解.【答案与解析】解:(1).(2). (3). (4).【总结升华】(1)可以利用加法的交换律把负平方项交换放在后面.(2)“1”是平方项,可以写成“”.(3)一定要把两项写成的形式,再套用平方差公式. 举一反三:【变式1】分解因式:(1);(2). 【答案】 解:(1). (2).【变式2】(2019春•泗阳县期末)下列各式能用平方差公式计算的是( )A.(2a+b )(2b ﹣a )B.(﹣x+1)(﹣x ﹣1)C.(a+b )(a ﹣2b )D.(2x ﹣1)(﹣2x+1) 【答案】B .类型二、平方差公式的应用3、(2019春•开江县期末)计算20192﹣2019×2019的结果是( )229a b -22251x y -22168194a b -+214m -+22229(3)(3)(3)a b a b a b a b -=-=+-2222251(5)1(51)(51)x y xy xy xy -=-=+-2222168194949494232323a b b a b a b a ⎛⎫⎛⎫⎛⎫⎛⎫-+=-=+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭22214(2)1(21)(21)m m m m -+=-=+-2122a b -212516m -22(2)16(1)x x -++-212516m -22111555444m m m ⎛⎫⎛⎫⎛⎫=-=+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭22(2)16(1)x x -++-2216(1)(2)x x =--+[4(1)(2)][4(1)(2)]x x x x =-++--+(36)(52)3(2)(52)x x x x =--=--A.﹣2B.﹣1C.0D.1【思路点拨】原式变形后,利用平方差公式计算即可得到结果.【答案】D ;【解析】解:原式=20192﹣(2019﹣1)×(2019+1)=20192﹣(20192﹣1)=20192﹣20192+1=1, 故选D.【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.举一反三:【变式1】如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式是( )A. B. C. D.【答案】A ;【变式2】用简便方法计算:(1);(2).【答案】解:(1)原式 (2)原式4、已知大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米.求两个正方形的边长.【答案与解析】解:设大正方形的边长为,则小正方形的边长为(-24).依题可列.a b )(b a >()()22a b a b a b -=+-()2222a b a ab b +=++()2222a b a ab b -=-+()()2222a b a b a ab b +-=+-2199919982000-⨯2253566465⨯-⨯()()219991999119991=--+221999199911=-+=()226535456=⨯-()()65354655354656100070420000=⨯+-=⨯⨯=a a 22(24)960a a --=运用平方差公式:[+(-24)][ -(-24)]=960.24(2-24)=960.解得=32.-24=32-24=8.答:它们的边长分别为32厘米,8厘米.【总结升华】无论在哪一方面应用因式分解,都须仔细观察,是有公因式还是符合公式,切忌不能盲目乱用,这样应用起来才能达到真正意义上的化简,不然反而走向误区,就是说不要为用因式分解而用,要因题用,能用则用,不能用千万别用,千万别硬套.【巩固练习】一.选择题1. (2019春•乐业县期末)下列各式中,哪项可以使用平方差公式分解因式( )A .﹣a 2﹣b 2B .﹣a 2+9C .p 2﹣(﹣q 2)D .a 2﹣b 3 一个多项式分解因式的结果是,那么这个多项式是(). A . B . C . D .3. 有一个因式是,则另一个因式为( )A. B. C. D.4. 在一个边长为12.75的正方形内挖去一个边长为7.25的正方形,则剩下的面积应当是( )A .B .C .D .5. (2019•赤峰模拟)已知a+b=4,a ﹣b=3,则a 2﹣b 2=( )A.4B. 3C.12D.16. 下列分解因式结果正确的是( )A. B. C. D. 二.填空题7. (2019•济南)分解因式:a 2﹣4b 2= .8. 利用因式分解计算:__________,____________.9. 分解因式:___________,______________.10.(2019•杭州模拟)若a+2b=﹣3,a 2﹣4b 2=24,则a ﹣2b+1= .11. 若多项式能用平方差公式分解因式,那么单项式M =________.(写出一个即可)12. 用公式简算:=________________.三. 解答题13. 把下列各式因式分解a a a a a a a )2)(2(33b b -+46-b 64b -46+b 46--b ()22a bc --a b c +-a b c --a b c ++a b c +-a b c -+cm cm 220cm 2200cm 2110cm 211cm ()223633x y xy xy x y +=+()()()()222233x y x y x y x y +-+=++()()422111x x x -=+-()()3312322x x x x x -=+-22401599-=2211387-=42x x -=()()244b a a -+-=24a M +22200820082009+-(1) (2) (3) (4).14. 已知,. (1)求的值; (2)求和的值.15.(2019春•牟定县校级期末)新实验中学校园正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?【答案与解析】 一.选择题1. 【答案】B ;【解析】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反,据此判断即可. 2. 【答案】B ;【解析】. 3. 【答案】D ;【解析】. 4. 【答案】C ;【解析】.5. 【答案】C ;【解析】解:∵a+b=4,a ﹣b=3,∴原式=(a+b )(a ﹣b )=12, 故选C.6. 【答案】D ;【解析】; .二.填空题7. 【答案】(a +2b )(a ﹣2b ). 8. 【答案】-198000;5200;【解析】;.9. 【答案】;2249a b -4481m n -622123a a b -()2231ab b b -+-23x y +=22415x y -=-2x y -x y 33336(2)(2)(2)(2)4b b b b b +-=+-=-()()()22a b c a b c a b c --=+--+()()2212.757.2512.757.2512.757.2520 5.5110-=+-=⨯=()()()()()()2222333x y x y x y x y x y x y +-+=+-=+-()()()()()4222111111x x x x x x -=+-=++-()()()224015994015994015991000198198000-=+-=⨯-=-()()22113871138711387200265200-=+-=⨯=()()211xx x +-()()()411a b b -+-【解析】;.10.【答案】-7;【解析】解:∵a+2b=﹣3,a 2﹣4b 2=(a+2b )(a ﹣2b )=24,∴a ﹣2b=﹣8,则原式=﹣8+1=﹣7. 故答案为:﹣7. 11.【答案】; 12.【答案】-2009;【解析】. 三.解答题 13.【解析】解:(1);(2);(3);(4).14.【解析】解:∴解方程组,解得.15.【解析】解:设原绿地的边长为x 米,则新绿地的边长为x+3米,根据题意得,(x+3)2﹣x 2=63, 由平方差公式得,(x+3+x )(x+3﹣x )=63, 解得,x=9;∴原绿地的面积为:9×9=81(平方米);答:原绿地的边长为9米,原绿地的面积为81平方米.完全平方公式(基础)()()()42222111x x x xx x x -=-=+-()()()()224444ba ab a a -+-=---()()()()()241411a b a b b =--=-+-2x -()()2220082008200920082008200920082009+-=++-200840172009=-=-()()22492323a b a b a b -=+-()()()()()442222228199933m n m n mn m n m n m n -=+-=++-()()()62224222212334322a a b a a b a a b a b -=-=+-()()()()()()223221111a b b b a b b b b a b a b -+-=---=-+-()()()224223215x y x y x y x y -=+-=-=-25x y -=-2325x y x y +=⎧⎨-=-⎩12x y =-⎧⎨=⎩【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方.即,.形如,的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【典型例题】类型一、公式法——完全平方公式1、(2019•普宁市模拟)下列各式中,能利用完全平方公式分解因式的是( ).A .B .C .D .【思路点拨】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍,对各项分析判断后利用排除法求解.【答案】B ;【解析】A 、其中有两项-x 2、12不能写成平方和的形式,不符合完全平方公式特点,故本选项错误;B 、,符合完全平方公式特点,故本选项正确;C 、其中有两项x 2、-12不能写成平方和的形式,不符合完全平方公式特点,故本选项错误;()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b 221x x -++221x x -+-221x x --224x x -+221x x -++2221(1)x x x -+-=--221x x --D 、,不符合完全平方公式特点,故本选项错误.【总结升华】本题主要考察了能用完全平方公式分解因式的式子特点,熟记公式结构是解题的关键. 举一反三:【变式】(2019春•临清市期末)若x 2+2(m ﹣3)x+16是完全平方式,则m 的值是( ) A .﹣1 B . 7 C . 7或﹣1 D . 5或1 【答案】C.2、分解因式:(1); (2); (3); (4). 【答案与解析】解:(1).(2).(3).(4).【总结升华】本题的关键是掌握公式的特征,套用公式时要注意把每一项同公式的每一项对应. 举一反三:【变式】分解因式:(1); (2);(3); (4).【答案】解:(1).(2).(3).(4)224x x -+21449x x ++29124x x -+214a a ++22111162a b ab -+22221449277(7)x x x x x ++=+⋅⋅+=+22229124(3)2322(32)x x x x x -+=-⋅⋅+=-2222111124222a a a a a ⎛⎫⎛⎫++=+⋅⋅+=+ ⎪ ⎪⎝⎭⎝⎭222221111112111162444a b ab ab ab ab ⎛⎫⎛⎫-+=-⋅⋅+=- ⎪ ⎪⎝⎭⎝⎭29()12()4a b a b +-++222()()a a b c b c ++++21025a a --22()4()()4()x y x y x y x y +++-+-29()12()4a b a b +-++22[3()]23()22a b a b =+-⋅+⋅+22[3()2](332)a b a b =+-=+-222()()a a b c b c ++++22[()]()a b c a b c =++=++()2210251025a a a a --=--+2(5)a =--22()4()()4()x y x y x y x y +++-+-22()2()2()[2()]x y x y x y x y =+++-+-.3、分解因式:(1);(2);(3). 【答案与解析】解:(1). (2).(3).【总结升华】分解因式的一般步骤:一“提”、二“套”、三“查”,即首先有公因式的提公因式,没有公因式的套公式,最后检查每一个多项式因式,看能否继续分解. 举一反三:【变式】分解因式:(1). (2). (3); (4); (5);【答案】解:(1)原式.(2)原式.(3)原式22[()2()](3)x y x y x y =++-=-2234162x y xy y ++4224168a a b b -+222(3)(1)x x x +--2234162x y xy y ++22222()()1624x xy x y y y y =++=+4224168a a b b -+222222(4)[(2)(2)](2)(2)a b a b a b a b a b =-=+-=+-222(3)(1)x x x +--22(31)(31)x x x x x x =++-+-+2222(41)(21)(41)(1)x x x x x x x =+-++=+-+224()12()()9()x a x a x b x b ++++++22224()4()()x y x y x y +--+-2244x y xy --+322344x y x y xy ++()()2222221x x x x -+-+22[2()]22()3()[3()]x a x a x b x b =++⋅+⋅+++22[2()3()](523)x a x b x a b =+++=++22[2()]22()()()x y x y x y x y =+-⋅+⋅-+-22[2()()](3)x y x y x y =+--=+()()222442x y xy x y =-+-=--(4)原式=(5)原式类型二、配方法4、(2019春•江都市期末)已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1). 【思路点拨】(1)原式利用完全平方公式变形,将已知等式代入计算即可求出值;(2)原式利用多项式乘以多项式法则计算,整理后将各自的值代入计算即可求出值. 【答案与解析】 解:(1)∵x+y=3,xy=﹣8, ∴原式=(x+y )2﹣2xy=9+16=25; (2)∵x+y=3,xy=﹣8,∴原式=x 2y 2﹣(x 2+y 2)+1=64﹣25+1=40.【总结升华】要先观察式子的特点,看能不能将式子进行变形,以简化计算. 举一反三:【变式】已知为任意有理数,则多项式-1-的值为( ). A .一定为负数 B .不可能为正数 C .一定为正数 D .可能为正数,负数或0 【答案】B ;提示:-1-=.【巩固练习】一.选择题1. (2019•长春)把多项式x 2﹣6x +9分解因式,结果正确的是( )A .(x ﹣3)2B .(x ﹣9)2C .(x +3)(x ﹣3)D .(x +9)(x ﹣9) 2.是下列哪一个多项式分解的结果( )A .B .C .D .3. (2019•邵阳)已知a+b=3,ab=2,则a 2+b 2的值为( ) A . 3 B . 4 C . 5D .64. 如果可分解为,那么的值为( ). A.30 B.-30 C.60 D.-605. 如果是一个完全平方公式,那么是( )()()222442xy x xy y xy x y ++=+()()242211x x x =-+=-x x 142x x 142x 221111042x x x ⎛⎫⎛⎫--+=--≤ ⎪ ⎪⎝⎭⎝⎭2()nm x y -22n m x y -2n n m m x x y y -+222nn m m xx y y -+2n n m m x x y y --222536a mab b ++()256a b -m 229x kxy y ++kA.6B.-6C.±6 D.18 6. 下列各式中,是完全平方式的是( )A. B. C. D. 二.填空题7. 若,那么.8. 因式分解:=____________.9.(2019•湘西州)分解因式:x 2﹣4x +4= .10.(2019春•萧山区期末)将4x 2+1再加上一项,使它成为(a+b )2的形式(这里a 、b 指代的是整式或分式),则可以添加的项是 . 11. 分解因式: =_____________. 12. (1)(2).三.解答题 13. 若,求的值. 14.(2019春•万州区期末)已知x ﹣y=1,x 2+y 2=25,求xy 的值. 15. 把称为立方和公式,称为立方差公式,据此,试将下列各式因式分解: (1); (2).【答案与解析】一.选择题1. 【答案】A ;2. 【答案】C ; 【解析】.3. 【答案】C ;【解析】解:∵a+b=3,ab=2,∴a 2+b 2=(a+b )2﹣2ab =32﹣2×2 =5, 故选C .4. 【答案】D ;【解析】.5. 【答案】C ;【解析】.2991x x --2691y y -++2169y y --2931y y --()22416-=+-x mx x ________m =()()225101a b a b -+-+()()154a a +++()()225=a a -+;()()22412m mn -+=13x x +=221x x+()()3322x y x y x xy y+=+-+()()3322xy x y x xy y -=-++38a +3271a -2222()nn m m n m xx y y x y -+=-()22256256036a b a ab b -=-+()22222229239693x kxy y x x y y x xy y x y ++=±⋅⋅+=±+=±6. 【答案】B ;【解析】.二.填空题7. 【答案】8;【解析】.8. 【答案】;【解析】. 9. 【答案】(x ﹣2)210.【答案】4x ,﹣4x ,.【解析】解:①4x 2是平方项时,4x 2±4x+1=(2x ±1)2,可加上的单项式可以是4x 或﹣4x , ②当4x 2是乘积二倍项时,4x 4+4x 2+1=(2x 2+1)2,可加上的单项式可以是4x 4,③1是乘积二倍项时,,可加上的单项式可以是,故答案为:4x ,﹣4x ,.11.【答案】;【解析】.12.【答案】(1);(2). 三.解答题 13.【解析】解:.14.【解析】解:∵x ﹣y=1,∴(x ﹣y )2=1,即x 2+y 2﹣2xy=1; ∵x 2+y 2=25,()2269131y y y -++=-()224816x x x -=-+()2551a b -+()()()()()222251015251551a b a b a b a b a b -+-+=-+⋅-+=-+⎡⎤⎣⎦()23a +()()()22154693a a a a a +++=++=+255,42a -29,23n m n -222222111222327x x x x x x ⎛⎫+=++-=+-=-= ⎪⎝⎭∴2xy=25﹣1, 解得xy=12. 15. 【解析】解:(1)(2).十字相乘法及分组分解法(基础)【学习目标】1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.2. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法. 【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:()()333282224a a a a a +=+=+-+()()()3322713131931a a a a a -=-=-++pq x q p x +++)(22x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++2x bx c ++c 0c >p q 、0c <p q 、b p q 、2x bx c ++b c 、c b 2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点四:添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法. 【典型例题】类型一、十字相乘法1、将下列各式分解因式: (1); (2); (3)【答案与解析】1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++a 21016x x -+2310x x --解:(1)因为所以:原式=(2)因为所以:原式=(3) 【总结升华】常数项为正,分解的两个数同号;常数项为负,分解的两个数异号. 二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.举一反三:【变式1】分解因式:(1); (2); (3)【答案】解:(1) (2) (3) 【变式2】(2019秋·闵行区期末)因式分解:. 【答案】解:==.2、将下列各式分解因式:(1); (2) (3); (4).78x x x -=-()()78x x +-2810x x x --=-()()28x x --()()()2210331052x x x x x x --=-+-=-+-1072++x x 822--x x 2718x x --+()()271025x x x x ++=++()()22842x x x x --=-+()()22718(718)29x x x x x x --+=-+-=--+()()222812x xx x +-++()()222812x x x x +-++()()2226x x x x +-+-()()()()1223x x x x -+-+22355x x +-25166x x ++22616x xy y --【思路点拨】(3)题可看成常数项,.(4)题可将看成一个整体来分解因式.【答案与解析】解:(1); (2). (3);(4)因为所以:原式【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.注意观察式子结构,能够看作整体的看作整体.举一反三:【变式】将下列各式分解因式:(1); (2); (3); (4).【答案】解: (1); (2); (3);(4). 216y -21682,826y y y y y y -=-⨯-+=-()2x +22355x x +-=()315x x ⎛⎫+- ⎪⎝⎭251116623x x x x ⎛⎫⎛⎫++=++ ⎪⎪⎝⎭⎝⎭()()2261682x xy y x y x y --=-+()()()25242292x x x -+-+=-+()()225522x x =+-+-⎡⎤⎡⎤⎣⎦⎣⎦()()2158x x =-+21136x x -+251124a a --10722+-xy y x ()()342++-+b a b a 22111121366332x x x x x x ⎛⎫⎛⎫-+=+-=+- ⎪⎪⎝⎭⎝⎭2513112443a a a a ⎛⎫⎛⎫--=-+ ⎪⎪⎝⎭⎝⎭()()2271025x y xy xy xy -+=--()()()()24313a b a b a b a b +-++=+-+-3、将下列各式分解因式:(1);(2)【答案与解析】解:(1)因为所以:原式=(2)因为所以:原式=【总结升华】十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.举一反三:【变式】分解因式:(1);(2);(3);【答案】解:(1); (2); (3). 类型二、分组分解法4、(2019春•重庆校级期中)先阅读下列材料,然后回答后面问题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.能分组分解的多项式通常有四项或六项,一般的分组分解有四种形式,即“2+2”分法、“3+1”分法、“3+2”分法及“3+3”分法等.如“2+2”分法:ax+ay+bx+by=(ax+ay )+(bx+by )=a (x+y )+b (x+y )=(x+y )(a+b )如“3+1”分法:2xy+y 2﹣1+x 291019y y y +=()()2335y y ++21183x x x -=()()2379x x +-2314x x +-2344x x --+2631105x x +-()()22314341311x x x x x x +-=-+=--()()223444432123x x x x x x --+=--=+-()()263110521537x x x x +-=+-=x 2+2xy+y 2﹣1=(x+y )2﹣1=(x+y+1)(x+y ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:x 2﹣y 2﹣x ﹣y ;(2)分解因式:45am 2﹣20ax 2+20axy ﹣5ay 2;(3)分解因式:4a 2+4a ﹣4a 2b ﹣b ﹣4ab+1.【思路点拨】(1)首先利用平方差公式因式分解因式,进而提取公因式得出即可;(2)将后三项运用完全平方公式分解因式进而利用平方差公式分解因式即可;(3)重新分组利用完全平方公式分解因式得出即可.【答案与解析】解:(1)x 2﹣y 2﹣x ﹣y=(x+y )(x ﹣y )﹣(x+y )=(x+y )(x ﹣y ﹣1);(2)45am 2﹣20ax 2+20axy ﹣5ay 2=45am 2﹣5a (4x 2﹣4xy+y 2)=5a[9m 2﹣(2x ﹣y )2]=5a (3m ﹣2x+y )(3m+2x ﹣y );(3)4a 2+4a ﹣4a 2b ﹣b ﹣4ab+1=(4a 2+4a+1)﹣b (4a 2+4a+1)=(2a+1)2(1﹣b ).【总结升华】此题主要考查了提取公因式法分解因式以及分组分解法分解因式,正确分组是解题关键.举一反三:【变式】分解因式: 【答案】解:原式. 【巩固练习】一.选择题1. 将因式分解,结果是( )A. B. C. D.2.(2019秋•西城区校级期中)下列因式分解结果正确的是( )A .B .C .D . 3. 如果,那么等于( ) A. B.C. D. 4. 若,则的值为( )A.-9B.15C.-15D.922244a b ab c +--()()()22222(44)222a ab b c a b c a b c a b c =-+-=--=-+--21016a a ++()()28a a -+()()28a a +-()()28a a ++()()28a a --()3221510532a a a a a +=+()()2943434x x x -=+-()2210255a a a --=-()()231025a a a a --=+-()()2x px q x a x b -+=++p ab a b +ab -a b --()()236123x kx x x +-=-+k5. 如果,则为 ( )A .5B .-6C .-5D .66.把进行分组,其结果正确的是( )A. B.C. D.二.填空题7. 若,则= . 8. 因式分解___________. 9.(2019·潍坊三模)分解因式: .10. 因式分解:=_______________;11. 因式分解= .12.分解因式:=________.三.解答题13.若多项式可以分解成两个一次因式的积,其中、均为整数,请你至少写出2个的值.14.(宣武区校级期末)因式分解:2x 2+x ﹣3.15.分解因式:(1); (2);(3); (4); (5).【答案与解析】一.选择题1. 【答案】C ;2. 【答案】D ;【解析】A 、,故此选项错误;B 、,故此选项错误;C 、无法因式分解,故此选项错误;D 、,正确. 3. 【答案】D ;【解析】,所以. 4. 【答案】A ;b 2222a bc bc --+222()(2)a c b bc ---222()2a b c bc --+222()(2)a b c bc ---222(2)a b bc c --+()()21336m m m a m b -+=++a b -22a b ac bc -++3231215x x x --=ax bx cx ay by cy +++++()2064x x -+321a a a +--236x px ++()()x a x b ++a b p 268x x -+21024x x +-215238a a -+22568x xy y -++225533a b a b --+()3221510532a a a a +=+()()2943232x x x -=+-21025a a --()()231025a a a a --=+-()()()2x a x b x a b x ab ++=+++a b p +=-【解析】.5. 【答案】B ;【解析】由题意.6. 【答案】D ; 【解析】原式=. 二.填空题7. 【答案】±5;【解析】,所以或者. 8. 【答案】;【解析】.9. 【答案】;【解析】. 10.【答案】;【解析】原式.11.【答案】;【解析】. 12.【答案】; 【解析】.三.解答题13.【解析】 解: 由题意得,则,由、均为整数,可写出满足要求的、,进而求得,36=1×36=(-1)×(-36)=2×18=(-2)×(-18)=3×12=(-3)×(-12)=4×9=(-4)×(-9)=6×6=(-6)×(-6),所以可以取±37,±20,±15,±13,±12.取上述的两个值即可.14.【解析】解:原式=(2x+3)(x ﹣1).15.【解析】解:(1); (2); ()()2123936x x x x -+=--5306b b =-=-,()()222(2)a b bc c a b c a b c --+=+--+()()2133649m m m m -+=--9,4a b =-=-4,9a b =-=-()()a b a b c +-+22a b ac bc -++()()()()()a b a b c a b a b a b c =+-++=+-+()()315x x x +-()32231215345x x x x x x --=-+=()()315x x x +-()()a b c x y +++()()ax bx cx ay by cy =+++++()()x a b c y a b c =+++++()()a b c x y =+++()()164x x --()()()220642064164x x x x x x -+=-+=--()()211a a +-321a a a +--()()()()221111a a a a a =+-+=+-236()()x px x a x b ++=++2236()x px x a b x ab ++=+++36a b p ab +==,a b a b p p p ()()26824x x x x -+=--()()21024122x x x x +-=+-(3)(4)(5)原式.《因式分解》全章复习与巩固(基础)【学习目标】2. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算;2.掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法;3. 了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.【知识网络】【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:()()2152381581a a a a -+=--()()()2222568568542x xy y x xy y x y x y -++=---=-+-()()()()()()()225353553a b a b a b a b a b a b a b =---=+---=-+-m m ()()22a b a b a b -=+-2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即,. 形如,的式子叫做完全平方式. 要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等. 因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、提公因式法分解因式1、(2019•长春模拟)先将代数式因式分解,再求值:,其中.【思路点拨】原式变形后,提取公因式化为积的形式,将字母的值代入计算即可.【答案与解析】解:原式=,()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b 2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++()()222x a y a ---05152a .,x .,y ===-()()()()22222x a y a a x y -+-=-+。
北京四中八年级下册数学直角三角形----知识讲解(基础)
直角三角形----知识讲解(基础)【学习目标】1. 掌握勾股定理的内容及证明方法、勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题;能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够熟练地掌握直角三角形的全等判定方法(HL )及其应用.【要点梳理】要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:222a c b =-,222b c a =-, ()222c a b ab =+-. (4)勾股数:满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; 5、12、13; 8、15、17; 7、24、25; 9、40、41……②如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. ③22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; ④2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长; ⑤2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长. 要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的逆定理 如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点四、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点五、互逆命题与互逆定理如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.要点六、直角三角形全等的判定(HL )在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简 称“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备. 要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、勾股定理1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)若a =5,b =12,求c ;(2)若c =26,b =24,求a .【思路点拨】利用勾股定理222a b c +=来求未知边长.【答案与解析】解:(1)因为△ABC 中,∠C =90°,222a b c +=,a =5,b =12,所以2222251225144169c a b =+=+=+=.所以c =13.(2)因为△ABC 中,∠C =90°,222a b c +=,c =26,b =24,所以222222624676576100a c b =-=-=-=.所以a =10.【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股定理的原式还是变式.举一反三:【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c .(1)已知b =2,c =3,求a ;(2)已知:3:5a c =,b =32,求a 、c .【答案】解:(1)∵∠C =90°,b =2,c =3, ∴2222325a c b =-=-=;(2)设3a k =,5c k =.∵∠C =90°,b =32,∴222a b c +=.即222(3)32(5)k k +=.解得k =8.∴ 33824a k ==⨯=,55840c k ==⨯=.2、一圆形饭盒,底面半径为8cm ,高为12cm ,若往里面放双筷子(粗细不计),那么筷子最长不超过多少,可正好盖上盒盖?【答案与解析】解:如图所示,因为饭盒底面半径为8cm ,所以底面直径DC 长为16cm .则在Rt △BCD 中,222BD DC BC =+, 所以2222161220BD DC BC =+=+=(cm ).答:筷子最长不超过20cm ,可正好盖上盒盖.【总结升华】本题实质是求饭盒中任意两点间的最大距离,其最大距离是以饭盒两底面的一对平行直径和相应的两条高组成的长方形的对角线长.举一反三:【变式】如图所示,一旗杆在离地面5m 处断裂,旗杆顶部落在离底部12m 处,则旗杆折断前有多高?【答案】解:因为旗杆是垂直于地面的,所以∠C =90°,BC =5m ,AC =12m ,∴ 22222512169AB BC AC =+=+=.∴ 16913AB ==(m ).∴ BC +AB =5+13=18(m ).∴ 旗杆折断前的高度为18m .类型二、勾股定理的逆定理 3、判断由线段a b c ,,组成的三角形是不是直角三角形.(1)a =7,b =24,c =25;(2)a =43,b =1,c =34; (3)22a m n =-,22b m n =+,2c mn =(0m n >>);【思路点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【答案与解析】解:(1)∵ 2222724625a b +=+=,2225625c ==,∴ 222a b c +=.∴ 由线段a b c ,,组成的三角形是直角三角形. (2)∵ a b c >>,222239251141616b c ⎛⎫+=+=+= ⎪⎝⎭,2241639a ⎛⎫== ⎪⎝⎭, ∴ 222b c a +≠.∴ 由线段a b c ,,组成的三角形不是直角三角形.(3)∵ 0m n >>,∴ 222m n mn +>,2222m n m n +>-.∵2222224224224224()(2)242a c m n mn m m n n m n m m n n +=-+=-++=++, 22224224()2b m n m m n n =+=++,∴ 222a c b +=.∴ 由线段a b c ,,组成的三角形是直角三角形.【总结升华】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证2c 与22a b +是否具有相等关系,再根据结果判断是否为直角三角形.举一反三:【变式1】判断以线段a b c ,,为边的△ABC 是不是直角三角形,其中7a =,3b =,2c =.【答案】解:由于a c b >>,因此a 为最大边,只需看2a 是否等于22b c +即可.∵22(7)7a ==,22(3)3b ==,2224c ==,∴222a b c =+, ∴以线段a b c ,,为边能构成以a 为斜边的直角三角形.【变式2】一个三角形的三边之比是3:4:5 则这个三角形三边上的高之比是( )A .20:15:12B .3:4:5C .5:4:3D .10:8:2【答案】A.提示:这个三角形是直角三角形,三边上的高之比为4:3:125,即20:15:12. 4、如图所示,在四边形ABCD 中,AB =3,BC =4,CD =12,AD =13,∠B =∠90°,求四边形ABCD 的面积.【答案与解析】解:连接AC ,在△ABC 中,因为∠B =90°,AB =3,BC =4,所以222223491625AC AB BC =+=+=+=,所以AC =5,在△ACD 中,AD =13,DC =12,AC =5,所以2222225122514416913DC AC AD +=+=+===,即222DC AC AD +=.所以△ACD 是直角三角形,且∠ACD =90°. 所以1122ABC ACD ABCD S S S AB BC AC DC =+=+g g g △△四边形 113451222=⨯⨯+⨯⨯63036=+=.【总结升华】有关四边形的问题通常转化为三角形的问题来解.由AB =3,BC =4,∠B =90°,应想到连接AC ,则在Rt △ABC 中即可求出△ABC 的面积,也可求出线段AC 的长.所以在△ACD 中,已知AC ,AD ,CD 三边长,判断这个三角形的形状,进而求得这个三角形的面积.而判断△ACD 的形状,常考虑能否用勾股定理的逆定理来判断是否是直角三角形. 类型三、勾股定理、逆定理的实际应用5、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【思路点拨】我们可以根据题意画出如图所示的图形,可以看到,由于“远航”号的航向已知,如果求出两艘轮船所成的角,就能知道“海天”号的航向了.解:根据题意可画出上图,PQ =16×1.5=24,PR =12×1.5=18,QR =30,在△PQR 中,22222418576324900PQ PR +=+=+=,∴ 222PQ PR QR +=.∴ △PQR 是直角三角形且∠RPQ =90°.又∵ “远航”号沿东北方向航行,可知∠QPN =45°,∴ ∠RPN =45°.由此可知“海天”号沿西北方向航行.也可沿东南方向航行.【总结升华】根据勾股定理的逆定理,可判断一个角是不是90°,这里需注意与东北方向成90°角的有两个方向,即西北方向或东南方向.类型四、原命题与逆命题6、写出下列原命题的逆命题并判断是否正确1.原命题:猫有四只脚.2.原命题:对顶角相等.3.原命题:线段垂直平分线上的点,到这条线段两端点的距离相等.4.原命题:角平分线上的点,到这个角的两边距离相等.【答案与解析】1. 逆命题:有四只脚的是猫(不正确)2. 逆命题:相等的角是对顶角(不正确)3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.•(正确)4. 逆命题:到角两边距离相等的点,在这个角的角平分线上.(正确)【总结升华】掌握原命题与逆命题的关系. 原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误.举一反三:【变式】下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a b c ,,满足222a b c +=,那么这个三角形是直角三角形.提示:①的逆命题“两直线平行,同旁内角互补”显然正确;②的逆命题“如果两个角相等,那么它们是直角”很明显是错误的;③的逆命题“如果两个实数的平方相等,那么这两个实数相等”,两个实数可以互为相反数,所以该命题不正确;④的逆命题“如果三角形是直角三角形,那么三角形的三边长a b c ,,满足222a b c +=”也是正确的.类型五、直角三角形全等的判定——“HL”7、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.举一反三:【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E +∠EAF =90°,即∠AFE =90°即ED ⊥AC .8、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《因式分解》全章复习与巩固(基础)
【学习目标】
1. 理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算;
2.掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法;
3. 了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解.
【知识网络】
【要点梳理】
要点一、因式分解
把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.
要点二、提公因式法 把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式m ,另一个因式是,即,而正好是
除以m 所得的商,提公因式法分解因式实际上是逆用乘法分配律.
要点三、公式法
1.平方差公式
两个数的平方差等于这两个数的和与这两个数的差的积,即:
()()22a b a b a b -=+-
2.完全平方公式
两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方. 即()2222a ab b a b ++=+,()2
222a ab b a b -+=-. 形如222a ab b ++,22
2a ab b -+的式子叫做完全平方式.
要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边
是两个数(整式)的和与这两个数(整式)的差的积.
(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)
这两数之积的2倍. 右边是两数的和(或差)的平方.
(3)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以
是单项式或多项式.
要点四、十字相乘法和分组分解法
十字相乘法
利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.
对于二次三项式2
x bx c ++,若存在pq c p q b =⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++ 分组分解法
对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.
要点五、因式分解的一般步骤
因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.
因式分解步骤
(1)如果多项式的各项有公因式,先提取公因式;
(2)如果各项没有公因式那就尝试用公式法;
(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.
(4)结果要彻底,即分解到不能再分解为止.
【典型例题】
类型一、提公因式法分解因式
1、已知21x x +-=0,求3223x x ++的值.
【思路点拨】观察题意可知21x x +=,将原式化简可得出答案.
【答案与解析】
解:依题意得:21x x +=,
∴3223x x ++,
=322
3x x x +++,
=22()3x x x x +++,
=23x x ++,
=4;
【总结升华】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.
类型二、公式法分解因式
2、已知2x -3=0,求代数式()()2259x x x x x -+--的值.
【思路点拨】对所求的代数式先进行整理,再利用整体代入法代入求解.
【答案与解析】
解:()
()2259x x x x x -+--,
=322359x x x x -+--,
=249x -.
当2x -3=0时,原式=()()2492323x x x -=+-=0. 【总结升华】本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解.
举一反三:
【变式】()()33a y a y -+是下列哪一个多项式因式分解的结果( )
A .229a y
+ B .229a y -+ C .229a y - D .229a y --
【答案】C ;
3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如()()()4422x y x y x y x y -=-++,当x =9,y =9时,x y -=0,x y +=18,22x y +=162,则密码018162.对于多项式32
4x xy -,取x =10,y =10,用上述方法产生密码是什么?
【思路点拨】首先将多项式324x xy -进行因式分解,得到()()32422x xy x x y x y -=+-,然后把x =10,y =10代入,分别计算出()2x y +及()2x y -的值,从而得出密码.
【答案与解析】
解:()()()32224422x xy x x y x x y x y -=-=+-,
当x =10,y =10时,
x =10,2x +y =30,2x -y =10,
故密码为103010或101030或301010.
【总结升华】本题是中考中的新题型.考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.
举一反三:
【变式】利用因式分解计算
(1)16.9×18+15.1×18
(2) 22683317- 【答案】 解:(1)16.9×
18+15.1×18 =()1
16.915.18
⨯+ =13248
⨯= (2)22683317-
=()()683317683317+⨯-
=1000×366
=366000.
4、因式分解:
(1)()()269a b a b ++++;
(2)222xy x y
--- (3)()()22224222x xy y x xy y -+-+.
【思路点拨】都是完全平方式,所以都可以运用完全平方公式分解.完全平方公式法:()2222a b a ab b ±=±+.
【答案与解析】
解:(1)()()()22693a b a b a b ++++=++
(2)()()2222222xy x y xy x y
x y ---=-++=-+ (3)()()22224222x xy y x xy y -+-+
=()()24
222x xy y x y -+=- 【总结升华】本题考查了完全平方公式法因式分解,(3)要两次分解,注意要分解完全. 举一反三:
【变式】下列各式能用完全平方公式进行分解因式的是( )
A .21x +
B .221x x +-
C .21x x ++
D .2
44x x ++
【答案】D ;
5、先阅读,再分解因式:()2
4422224444(2)2x x x x x x +=++-=+-()()222222x x x x =-+++,按照这种方法把多项式464x +分解因式.
【思路点拨】根据材料,找出规律,再解答.
【答案与解析】
解:442264166416x x x x +=++-
=()222816x x +-
=()()228484x x x x +++-.
【总结升华】此题要综合运用配方法,完全平方公式,平方差公式,熟练掌握公式并读懂题目信息是解题的关键.
类型三、十字相乘法或分组分解法分解因式
6、将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼
成的大长方形的面积之间的关系.
(1)根据你发现的规律填空:2
x px qx pq +++=()2x p q x pq +++=______; (2)利用(1)的结论将下列多项式分解因式:①2710x x ++;②2
712y y -+. 【思路点拨】
(1)根据一个正方形和三个长方形的面积和等于由它们拼成的这个大长方形的面积作答;
(2)根据(1)的结论直接作答.
【答案与解析】
解:(1)()()x p x q +⨯+
(2)①()()2
71025x x x x ++=++ ②()()2
71234y y x x -+=-- 【总结升华】本题实际上考查了利用十字相乘法分解因式.运用这种方法的关键是把二次项系数a 分解成两个因数12,a a 的积12a a g ,把常数项c 分解成两个因数12c c g 的积12,c c ,并
使1221a c a c +正好是一次项b ,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.
举一反三:
【变式】已知A =2a +,B =25a a -+,C =2519a a +-,其中a >2.
(1)求证:B -A >0,并指出A 与B 的大小关系;
(2)指出A 与C 哪个大?说明理由.
解:(1)B -A =()2
1a -+2>0,所以B >A ;
(2)C -A =25192a a a +---,
=2421a a +-,
=()()73a a +-.
因为a >2,所以a +7>0,
从而当2<a <3时,A >C ;当a =3时,A =C ;当a >3时,A <C .。