2018-2019学年上海市金山区初三一模数学试卷真题
2019年上海市金山区中考数学一模试卷-解析版
2019年上海市金山区中考数学一模试卷一、选择题(本大题共6小题,共24.0分)1.下列函数是二次函数的是()A. y=xB. y=1x C. y=x−2+x2 D. y=1x22.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. ACAB B. BCABC. ACBCD. BCAC3.如图,已知BD与CE相交于点A,ED//BC,AB=8,AC=12,AD=6,那么AE的长等于()A. 4B. 9C. 12D. 164.已知e⃗是一个单位向量,a⃗、b⃗ 是非零向量,那么下列等式正确的是()A. |a⃗|e⃗=a⃗B. |e⃗|b⃗ =b⃗C. 1|a⃗ |a⃗=e⃗ D. 1|a⃗ |a⃗=1|b⃗|b⃗5.已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A. a<0、b>0、c>0B. a<、b<0、c>0C. a<0、b>0、c<0D. a<0、b<0、c<06.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A. 点B、点C都在⊙A内B. 点C在⊙A内,点B在⊙A外C. 点B在⊙A内,点C在⊙A外D. 点B、点C都在⊙A外二、填空题(本大题共12小题,共48.0分)7.已知二次函数f(x)=x2−3x+1,那么f(2)=______.8.已知抛物线y=12x2−1,那么抛物线在y轴右侧部分是______(填“上升的”或“下降的”).9.已知xy =52,那么x+yy=______.10.已知α是锐角,sinα=12,那么cosα=______.11.一个正n边形的中心角等于18°,那么n=______.12.已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=______.13.如图,为了测量铁塔AB的高度,在离铁塔底部(点B)60米的C处,测得塔顶A的仰角为30°,那么铁塔的高度AB=______米.14.已知⊙O1、⊙O2的半径分别为2和5,圆心距为d,若⊙O1与⊙O2相交,那么d的取值范围是______.15.如图,已知O为△ABC内一点,点D、E分别在边AB、AC上,且ADAB =25,DE//BC,设OB⃗⃗⃗⃗⃗⃗ =b⃗ 、OC⃗⃗⃗⃗⃗ =c⃗,那么DE⃗⃗⃗⃗⃗⃗ =______(用b⃗ 、c⃗表示).16.如图,已知⊙O1与⊙O2相交于A、B两点,延长连心线O1O2交⊙O2于点P,联结PA、PB,若∠APB=60°,AP=6,那么⊙O2的半径等于______.17.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=45,那么GE=______.18.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6.在边AB上取一点O,使BO=BC,以点O为旋转中心,把△ABC逆时针旋转90°,得到△A′B′C′(点A、B、C的对应点分别是点A′、B′、C′),那么△ABC与△A′B′C′的重叠部分的面积是______三、解答题(本大题共7小题,共78.0分)19.计算:cos245°−cot30°2sin60∘+tan260°−cot45°⋅sin30°.20.已知二次函数y=x2−4x−5,与y轴的交点为P,与x轴交于A、B两点.(点B在点A的右侧)(1)当y=0时,求x的值.(2)点M(6,m)在二次函数y=x2−4x−5的图象上,设直线MP与x轴交于点C,求cot∠MCB的值.21.如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高24米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:2.求(1)背水坡AB的长度.(2)坝底BC的长度.22.如图,已知AB是⊙O的直径,C为圆上一点,D是BC⏜的中点,CH⊥AB于H,垂足为H,联OD交弦BC于E,交CH于F,联结EH.(1)求证:△BHE∽△BCO.(2)若OC=4,BH=1,求EH的长.23.如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H.(1)求证:AM2=MF⋅MH.(2)若BC2=BD⋅DM,求证:∠AMB=∠ADC.24.已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=−x−2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).(1)求抛物线y=x2+bx+c的解析式.(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).25.已知多边形ABCDEF是⊙O的内接正六边形,联结AC、FD,点H是射线AF上的一个动点,联结CH,直线CH交射线DF于点G,作MH⊥CH交CD的延长线于点M,设⊙O的半径为r(r>0).(1)求证:四边形ACDF是矩形.(2)当CH经过点E时,⊙M与⊙O外切,求⊙M的半径(用r的代数式表示).(3)设∠HCD=α(0<α<90°),求点C、M、H、F构成的四边形的面积(用r及含α的三角比的式子表示).答案和解析1.【答案】C【解析】解:A、y=x属于一次函数,故本选项错误;B、y=1x的右边不是整式,不是二次函数,故本选项错误;C、y=x−2+x2=x2+x−2,符合二次函数的定义,故本选项正确;D、y=1x2的右边不是整式,不是二次函数,故本选项错误;故选:C.根据二次函数的定义判定即可.本题考查二次函数的定义.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.2.【答案】A【解析】解:∵∠C=90°,∴sin∠B=ACAB,故选A.我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义是解此题的关键.3.【答案】B【解析】【分析】本题考查了平行线分线段成比例定理的运用,注意:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.根据平行线分线段成比例定理即可得到结论.【解答】解:∵ED//BC,∴ABAD =ACAE,即86=12AE,∴AE=9,故选B.4.【答案】B【解析】解:A.由于单位向量只限制长度,不确定方向,故本选项错误;B.符合向量的长度及方向,故本选项正确;C.得出的是a的方向不是单位向量,故本选项错误;D.左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故本选项错误.故选B.长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.本题考查了向量的性质,属于基础题.5.【答案】D【解析】解:由图象开口可知:a<0,由图象与y轴交点可知:c<0,<0,由对称轴可知:−b2a∴b<0,即a<0,b<0,c<0,故选D.根据二次函数的图象与性质即可求出答案.本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.6.【答案】D【解析】【分析】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.也考查了含30°角的直角三角形的性质.先解直角△ABC,求出AB、AC的长,再根据点到圆心距离与半径的关系可以确定点B、点C与⊙A的位置关系.【解答】解:∵在Rt△ABC中,∠C=90°,BC=2,∠B=60°,∴∠A=30°,∴AB=2BC=4,AC=√3BC=2√3,∵⊙A的半径为3,4>3,2√3>3,∴点B、点C都在⊙A外.故选:D.7.【答案】−1【解析】【分析】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.计算自变量为2对应的函数值即可.【解答】解:把x=2代入f(x)=x2−3x+1得f(2)=22−3×2+1=−1.故答案为−1.8.【答案】上升的【解析】【分析】本题主要考查二次函数的增减性,掌握开口向上的二次函数在对称轴右侧y随x的增大而增大是解题的关键.根据抛物线解析式可求得其对称轴,结合抛物线的增减性可得到答案.【解答】x2−1,解:∵y=12∴其对称轴为y轴,且开口向上,∴在y轴右侧,y随x增大而增大,∴其图象在y 轴右侧部分是上升的, 故答案为:上升的.9.【答案】72【解析】 【分析】此题主要考查了比例的性质,正确表示出x ,y 的值是解题关键.直接根据已知用同一未知数表示出各数,进而得出答案. 【解答】 解:∵xy =52,∴设x =5a ,则y =2a , 那么x+y y =2a+5a 2a =72. 故答案为:72.10.【答案】√32【解析】 【分析】本题考查了特殊角的三角函数值,解决问题的关键是熟记一些特殊角的三角函数值.先确定α的度数,即可得出cosα的值. 【解答】解:∵α是锐角,sinα=12, ∴α=30°, ∴cosα=√32. 故答案为:√32.11.【答案】20【解析】 【分析】本题考查的是正多边形和圆,熟知正多边形的中心角和为360°是解答此题的关键.根据正多边形的中心角和为360°计算即可. 【解答】 解:n =360°18∘=20,故答案为:20. 12.【答案】2√5−2【解析】 【分析】本题考查了黄金分割的概念.应该识记黄金分割的公式:较短的线段=原线段的3−√52,较长的线段=原线段的√5−12.根据黄金分割点的定义,知AP 是较长线段;则AP =√5−12AB ,代入数据即可得出AP 的长. 【解答】解:由于P 为线段AB =4的黄金分割点, 且AP 是较长线段;则AP =√5−12AB =√5−12×4=2√5−2. 故答案为2√5−2. 13.【答案】20√3【解析】 【分析】此题主要考查了解直角三角形的应用−仰角俯角问题,正确掌握锐角三角函数关系是解题关键.直接利用锐角三角函数关系得出AB 的值进而得出答案. 【解答】解:由题意可得:tan30°=AB CB=AB 60=√33, 解得:AB =20√3,答:铁塔的高度AB 为20√3m. 故答案为:20√3. 14.【答案】3<d <7【解析】 【分析】本题考查了圆与圆的位置关系:两圆的圆心距为d 、两圆的半径分别为r 、R :①两圆外离⇔d >R +r ;②两圆外切⇔d =R +r ;③两圆相交⇔R −r <d <R +r(R ≥r);④两圆内切⇔d =R −r(R >r);⑤两圆内含⇔d <R −r(R >r).利用两圆相交⇔R −r <d <R +r(R ≥r)求解. 【解答】解:∵⊙O 1与⊙O 2相交, ∴3<d <7.故答案为3<d <7. 15.【答案】−25b ⃗+25c ⃗【解析】 【分析】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用,注意掌握数形结合思想的应用.根据三角形法则和平行线分线段成比例来求DE⃗⃗⃗⃗⃗⃗ . 【解答】解:∵ADAB =25,DE//BC , ∴DEBC =ADAB =25, ∴DE =25BC . ∵OB ⃗⃗⃗⃗⃗⃗ =b ⃗ 、OC ⃗⃗⃗⃗⃗=c ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗⃗ =c ⃗ −b ⃗ , ∴DE ⃗⃗⃗⃗⃗⃗ =−25b ⃗ +25c ⃗ .故答案是:−25b ⃗+25c ⃗ . 16.【答案】2√3【解析】 【分析】本题考查了相交两圆的性质,圆周角定理,正确的作出辅助线是解题的关键.连接AB 交O 1P 于C ,根据相交两圆的性质得到AB ⊥O 1P ,AC =BC ,得到∠APC =12∠APB =30°,根据直角三角形的性质得到AC =12AP =3,连接AO 2,解直角三角形即可得到结论. 【解答】解:连接AB 交O 1P 于C , 则AB ⊥O 1P ,AC =BC , ∴AP =PB ,∴∠APC =12∠APB =30°,∴AC =12AP =3, 连接AO 2, ∵AO 2=PO 2, ∴∠AO 2C =60°, ∴AO 2=ACsin60∘=√32=2√3,∴⊙O 2的半径等于2√3.17.【答案】√172【解析】 【分析】本题考查等腰三角形的性质、相似三角形的判定和性质以及锐角三角函数定义,解答本题的关键是正确作出辅助线构造相似三角形,作EF ⊥BC 于点F ,根据余弦定义求出CD 长,根据等腰三角形性质求出BC 长,根据平行关系易证△BDG∽△BFE ,再根据相似三角形的对应边成比例结合线段的和差关系求出GE 即可. 【解答】解:作EF ⊥BC 于点F ,∵AD 、BE 分别是边BC 、AC 上的中线,AB =AC =5,cos∠C =45, ∴AD ⊥BC ,AD =3,CD =4, ∴AD//EF ,BC =8,∴EF =1.5,DF =2,△BDG∽△BFE ,∴DGFE =BDBF=BGBE,BF=6,∴DG=1,∴BG=√17,∴46=√17BE,得BE=3√172,∴GE=BE−BG=3√172−√17=√172,故答案为√172.18.【答案】5.76【解析】【分析】本题考查了旋转的性质,勾股定理,相似三角形的判定和性质,正确的画出图形是解题的关键.根据勾股定理得到AB=10,根据旋转的性质得到OA′=OA=4,∠A′=∠A,根据相似三角形的性质得到OM=3,求得AM=1,根据相似三角形的性质得到S△AON=6,同理,S△AMP= 0.24,于是得到结论.【解答】解:∵在Rt△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,∴BO=BC=6,∵把△ABC逆时针旋转90°,得到△A′B′C′,∴OA′=OA=4,∠A′=∠A,∵∠A′OM=∠C=90°,∴△A′OM∽△ACB,∴OMBC =OA′AC,∴OM=3,∴AM=1,∵∠A′MO=∠AMP,∴∠APM=∠A′ON=90°,∴△AON∽△ACB,∴S△AONS△ACB =(AOAC)2=14,∵S△ABC=12×8×6=24,∴S△AON=6,同理,S△AMP=0.24,∴△ABC与△A′B′C′的重叠部分的面积是6−0.24=5.76.故答案为:5.76.19.【答案】解:原式=(√22)2−√32×√32+(√3)2−1×12=12−1+3−12 =2.【解析】直接利用特殊角的三角函数值代入进而得出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.【答案】解:(1)把y =0代入y =x 2−4x −5,得x 2−4x −5=0,解得,x 1=5,x 2=−1,即当y =0时,x 的值是−1或5;(2)∵点M(6,m)在二次函数y =x 2−4x −5的图象上,∴m =62−4×6−5=7,∴点M(6,7),∵二次函数y =x 2−4x −5,与y 轴的交点为P ,∴点P 的坐标为(0,−5),设直线MP 的函数解析式为y =kx +b ,{6k +b =7b =−5,得{k =2b =−5, 即直线MP 的解析式为y =2x −5,当y =0时,x =52,即点C 的坐标为(52,0),由(1)知,当y =0时,x 的值是−1或5,∵二次函数y =x 2−4x −5与x 轴交于A 、B 两点(点B 在点A 的右侧),∴点B 的坐标为(5,0),∴cot∠MCB =6−527=12.【解析】(1)根据题目中的函数解析式,可以求得当y −0时对应的x 值;(2)根据题意可以求得点M 的坐标,点C 的坐标和点B 的坐标,从而可以求得cot∠MCB 的值.本题考查抛物线与x 轴的交点、一次函数与二次函数图象上点的坐标特征,解直角三角形,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答. 21.【答案】解:(1)分别过点A 、D 作AM ⊥BC ,DN ⊥BC ,垂足分别为点M 、N ,根据题意,可知AM =DN =24(米),MN =AD =6(米),在Rt △ABM 中,∵AM BM =13,∴BM =72(米),∵AB 2=AM 2+BM 2,∴AB =√242+722=24√10(米),答:背水坡AB 的长度为24√10米;(2)在Rt△DNC中,DNCN =12,∴CN=48(米),∴BC=72+6+48=126(米),答:坝底BC的长度为126米.【解析】(1)直接分别过点A、D作AM⊥BC,DN⊥BC垂足分别为点M、N,得出AM= DN=24(米),MN=AD=6(米),进而利用坡度以及勾股定理进而得出答案;(2)利用(1)中所求,进而得出BC的长.此题考查了解直角三角形的应用−坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.22.【答案】(1)证明:∵OD为圆的半径,D是BC⏜的中点,∴OD⊥BC,BE=CE=12BC,∵CH⊥AB,∴∠CHB=90°,∴HE=12BC=BE,∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B∴△BHE∽△BCO.(2)解:∵△BHE∽△BCO,∴BHBC =BEOB,∵OC=4,BH=1,∴OB=4,得12BE =BE4,解得BE=√2,∴EH=BE=√2.【解析】(1)根据两角对应相等的两个三角形相似即可证明;(2)由△BHE∽△BCO,可得BHBC =BEOB,由此即可解决问题;本题考查垂径定理,相似三角形的判定和性质,圆心角、弧、弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD//BC,AB//CD,∴AMMF =DMMB,DMMB=MHAM,∴AMMF =MHAM,即AM2=MF⋅MH.(2)∵四边形ABCD是平行四边形,∴AD=BC,又∵BC2=BD⋅DM,∴AD 2=BD ⋅DM 即AD DB =DM AD ,又∵∠ADM =∠BDA ,∴△ADM∽△BDA ,∴∠AMD =∠BAD ,∵AB//CD ,∴∠BAD +∠ADC =180°,∵∠AMB +∠AMD =180°,∴∠AMB =∠ADC .【解析】(1)根据平行线分线段成比例定理即可解决问题;(2)由△ADM∽△BDA ,推出∠AMD =∠BAD ,由AB//CD ,推出∠BAD +∠ADC =180°,由∠AMB +∠AMD =180°,可得∠AMB =∠ADC ;本题考查平行四边形的性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】解:(1)把点A 、B 坐标代入y =x 2+bx +c 得:{c =63=1+b +c ,解得:{b =−4c =6, 则抛物线的表达式为:y =x 2−4x +6;(2)y =x 2−4x +6=(x −2)2+2,故顶点坐标为(2,2),把点P 坐标代入直线l 1表达式得:2=2k ,即k =1,∴直线l 1表达式为:y =x ,设:点M(2,m)代入直线l 2的表达式得:m =−4,即点M 的坐标为(2,−4),设:点N(n,−4)代入直线l 1表达式得:n =−4,则点N 坐标为(−4,−4),同理得:点D 、E 的坐标分别为(−2,0)、(0,−2)、联立l 1、l 2得{y =x y =−x −2,解得:{x =−1y =−1,即:点C 的坐标为(−1,−1), ∴OC =√(−1−0)2+(−1−0)2=√2,CE =√2=OC ,∵点C 在直线y =x 上,∴∠COE =∠OEC =45°,∴∠OCE =90°,即:NC ⊥l 2,NC =√(−1+4)2+(−1+4)2=3√2>4,∴以点N 为圆心,半径长为4的圆与直线l 2相离;(3)①当点F 在直线l 2下方时,设:∠OBK =α,点A 、B 的坐标分别为(0,6),(1,3),则AO =6,AB =BO =√10, 过点B 作BL ⊥y 轴交于点L ,则tan∠OAB =13,sin∠OAB =√10,OK =AOsin∠OAB =√10×6√10,sinα=OK OB =35, ∵等腰△MHF 和等腰△OAB 相似,∴∠HFM =∠ABO ,则∠KBO =∠OFM =α,点C 、M 的坐标分别为(−1,−1)、(2,−4), 则CM =3√2,FM =CM sinα=5√2,CF =4√2,OF =OC +FC =5√2,则点F 的坐标为(−5,−5),∵FH =FM =5√2,OH =OF +FH =10√2,则点H 的坐标为(−10,−10);②当点F 在直线l 2上方时,同理可得点F 的坐标为(8,8),点H 的坐标为(3,3)或(−10,10);故:点F 、H 的坐标分别为(−5,−5)、(−10,−10)或(8,8)、(3,3)或(8,8)、(−10,−10).【解析】(1)把点A 、B 坐标代入y =x 2+bx +c ,即可求解;(2)求而出点N 、点C 的坐标,计算NC 得长度即可求解;(3)分点F 在直线l 2下方、点F 在直线l 2上方两种情况,求解即可.本题考查的是二次函数综合运用,难点在(3),利用等腰三角形相似得出∠KBO =∠OFM =α,再利用解直角三角形的方法求线段的长度,从而求解.25.【答案】解:(1)证明:∵多边形ABCDEF 是⊙O 的内接正六边形,∴AB =AC ,∠ABC =∠BAF =180×(6−2)6=120°,∴∠BAC =∠BCA ,∵∠BAC +∠BCA +∠ABC =180°,∴∠BAC =30°,得∠CAF =90°,同理∠ACD =90°,∠AFD =90°,∴四边形ACDF 是矩形;(2)如图1,连接OC 、OD ,由题意得:OC =OD ,∠COD =360°6=60°,∴△OCD 为等边三角形,∴CD =OC =r ,∠OCD =60°,作ON ⊥CD ,垂足为N ,即ON 为CD 弦的弦心距,∴CN =12CD =12r ,由sin∠OCD =ON OC =√32得ON =√32r , 作OP ⊥AC 垂足为P ,即OP 为AC 弦的弦心距,∴CP=12AC,∵∠OCP=90°−60°=30°,∴CP=OC⋅cos30°=√32r,得AC=√3r,当CH经过点E时,可知∠ECD=30°,∵四边形ACDF是矩形,∴AF//CD,∴∠AHC=∠ECD=30°,∴在Rt△ACH中,CH=2AC=2√3r,∵MH⊥CH,∴cos∠HCM=CHCM =√32,得CM=4r,∴MN=72r,∴在Rt△MON中,OM=√ON2+MN2=√13r,∵⊙M与⊙O外切,∴r Q+r M=OM,即⊙M的半径为(√13−1)r.(3)如图2,作HQ⊥CM垂足为Q,由∠HCD=α,MH⊥CH可得∠QHM=α,∵AF//CD,AC⊥CD,∴HQ=AC=√3r,∴CQ=HQ·1tan∠HCQ =√3r⋅1tanα,MQ=HQ⋅tan∠QHM=√3r⋅tanα,即CM=√3r(tanα+1tanα),①当0°<α<60°时,点H在边AF的延长线上,此时点C、M、H、F构成的四边形为梯形,∵FH=DQ=CQ−CD=√3r⋅1tanα−r,∴S=(FH+CM)⋅HQ2=(6×1tana)2.②当α=60°时,点H与点F重合,此时点C、M、H、F构成三角形,非四边形,所以舍去.③当60°<α<90°时,点H在边AF上,此时点C、M、H、F构成的四边形为梯形,∵FH=DQ=CD−CQ=r−√3r⋅1tanα,∴S=(FH+CM)⋅HQ2=(√3+3tanα)⋅r22.综上所述,当∠HCD=α(0°<α<90°)时,点C、M、H、F构成的四边形的面积为(6tan+3tana−√3)·r22或(√3+3tanα)⋅r22.【解析】(1)根据正多边形的性质和矩形的判定解答即可;(2)连接OC、OD,证△OCD为等边三角形得CD=OC=r,∠OCD=60°,作ON⊥CD求得ON=√32r,再作OP⊥AC,求得AC=√3r,由四边形ACDF是矩形知∠AHC=∠ECD=30°,据此得CH=2AC=2√3r,由cos∠HCM=CHCM =√32,得CM=4r,MN=72r,利用勾股定理求得OM=√ON2+MN2=√13r,依据⊙M与⊙O外切可得答案;(3)作HQ⊥CM垂足为Q,由∠HCD=α,MH⊥CH可得∠QHM=α,再由AF//CD,AC⊥CD知HQ=AC=√3r,继而求得CQ=√3r⋅1tanα,MQ=√3r⋅tanα,则CM=√3r(tanα+1tanα),再分0°<α<60°、α=60°和60°<α<90°三种情况分别求解可得.本题是圆的综合问题,解题的关键是掌握矩形的判定与性质、垂径定理、平行线的性质、圆与圆的位置关系、三角函数的应用及分类讨论思想的运用等知识点.。
2019上海初三数学一模18题解析
2019年上海市初三一模数学考试18题解析2019.1一、宝山18.如图,Rt △A BC 中,90∠=︒ACB ,4=AC ,5BC =, 点P 为AC 上一点,将BCP △沿直线BP 翻折,点C 落在 C '处,连接A C ',若AC BC '∥,那么CP 的长为 . 【答案】52. 【解析】如图,BPC BPC '△≌△, 222A C A D DC A D BC BD '''=-=--=,设(04)CP C P x x '==<<,则4AP x =-, 由22252C P A C A P x ''=+⇒=,即CP 的长为52.二、崇明18.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如图的四边形ABCD 中, 点M 在CD 边上,连结A M 、BM ,90AMB ∠=︒,则 点M 为直角点.若点E 、F 分别为矩形ABCD 边AB 、CD 上的直角点,且5AB =,6BC =,则线段EF 的长为 .【答案】6或7.【解析】① 当线段EF AB ⊥时,6EF =; ② 当线段EF 不垂直于AB 时,取CD 中点M ,由直角三角形斜边上的中线等于斜边的一半可知11522M E CD ==,从而222111112M F M F M E E F ==-=,∴121F F =,221212117E F F F E F =+=; 综上,线段EF 的长为6或7.三、奉贤18.如图,在A BC △中,5AB AC ==,3sin 5C =,将A BC △绕点A 逆时针旋转得到ADE △,点B 、C 分别与点D 、E 对应,A D 与 边BC 交于点F .如果AE BC ∥,那么BF 的长是 .【答案】258. 【解析】过点A 作AH BC ⊥,垂足为H ,∵5AB AC ==,3sin 5C =,∴B C ∠=∠且28BC CH ==, ∵A BC A DE △≌△,∴BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,即BAF EAC ∠=∠, ∵AE BC ∥,∴EAC C ∠=∠,从而BAF C ∠=∠, 于是A BC FBA △∽△,∴258A B BC BF BF A B =⇒=. 四、虹口18.如图,正方形ABCD 的边长为4,点O 为对角线AC 、BD 的交点,点E 为边AB 的中点,BED △绕着点B 旋转至11BE D △, 如果点1D E D 、、在同一直线上,那么1E E 的长为 . 【答案】610. 【解析】过点B 作1DD 的垂线,垂足为H ,由题意,2,42,25BE BD ED ===,由等面积法可得1122BDE S BE A D ED BH =⋅=⋅△,解得45BH =,从而22124522DD DH BD BH ==-=, ∵11D BE DBE ∠=∠,∴1111D BE D BE D BE DBE ∠+∠=∠+∠, 即11EBE DBD ∠=∠,又1BE BE =,1BD BD =, ∴11EBE DBD △∽△,∴111610EE BE EE DD BD =⇒=.五、黄浦18.如图,在矩形ABCD 中,点E 是边A D 上的点,EF BE ⊥, 交边CD 于点F ,联结CE 、BF ,如果3tan 4A BE ∠=,那么 :CE BF = .【答案】45. 【解析】由3tan 4A BE ∠=可得::3:4:5AE AB BE =, 由一线三直角模型可知,A BE DEF △∽△,∴A B BEDE EF=, ∵AB CD =,∴CD BE CD DE DE EF BE EF =⇒=,从而Rt Rt CDE BEF △∽△,∴45CE CD BF BE ==.六、嘉定18.在A BC △中,90ACB ∠=︒,点D 、E 分别在边BC 、AC 上,3A C A E =,45CDE ∠=︒(如图),DCE △沿直线DE 翻折,翻 折后的点C 落在A BC △内部的点F ,直线A F 与边BC 相交于点G , 如果BG AE =,那么tan B = . 【答案】37. 【解析】如图,易得四边形CDFE 为正方形,设(0)A E BG a a ==>,则3AC a =,2FE EC a ==, ∵EF BC ∥,∴FE A E GC A C =,得6GC a =,∴33tan 77A C aB BC a ===.七、金山18.如图,在Rt A BC △中,90C ∠=︒,8AC =,6BC =.在边AB 上取一点O ,使BO OC =,以点O 为旋转中心,把A BC △逆时针旋转90︒, 得到A B C '''△(点A 、B 、C 的对应点分别是点A '、B '、C '),那么 A BC △与A B C '''△的重叠部分的面积是 . 【答案】14425【解析】如图,易证A BC A FO A DE A DO '△∽△∽△∽△, 224116844A FO A FO A BC A BC S A O S S S A C ⎛⎫⎛⎫===⇒== ⎪ ⎪⎝⎭⎝⎭△△△△, 3314OD OD AD OA =⇒=⇒=',2211161010010025A DE A DE A BC A BCS A D S S S A B ⎛⎫⎛⎫===⇒== ⎪ ⎪⎝⎭⎝⎭△△△△,则14425ODEF A FO A DE S S S S ==-=△△重叠. 八、静安18.如图,将矩形ABCD 沿对角线BD 所在直线翻折后, 点A 与点E 重合,且ED 交BC 于点F ,联结A E .如果 2tan 3DFC ∠=,那么BD A E的值是 . 【答案】13. 【解析】2222313tan 3DF DFC CD +∠=⇒==, 易证Rt Rt BFE DFC △≌△,∴BF DF =,∵90BAE ABD ABD FBD ∠+∠=∠+∠=︒,∴BAE FBD ∠=∠,又AB EB =,∴可证A BE BFD △∽△,∴13BD BF DF A E A B CD ===.九、闵行18.如图,在Rt A BC △中,90ACB ∠=︒,3BC =,4AC =,点D 为边AB 上一点.将BCD △沿直线CD 翻折,点B 落在点E 处,联结A E . 如果AE CD ∥,那么BE = .【答案】245. 【解析】联结BE ,交CD 于点M ,易证DM 为EB 的垂直平分线, ∵AE CD ∥,∴AE EB ⊥,又∵EM M B =,∴D 为AB 中点,∴1522CD A B ==,由等面积法可得1122BCD A BC BM CD S S ⋅==△△,1224255BM BE BM ⇒=⇒==. 十、浦东18.将矩形纸片ABCD 沿直线A P 折叠,使点D 落在原矩形ABCD 的边BC 上的点E 处,如果AED ∠的余弦值为35,那么A BBC= .【答案】2425. 【解析】联结DE ,交A P 于点M ,易证A M 为ED 的垂直平分线,由AED ∠的余弦值为35,设3,5(0)EM a A E A D a a ===>,则26ED EM a ==,4AM a =,易证Rt Rt A EM DEC △∽△, ∴42455CD A M CD a ED A E ==⇒=,从而2425A B CD BC A D ==.十一、普陀18.如图,A BC △中,8AB AC ==,3cos 4B =,点D 在边BC 上,将A BD △沿直线A D 翻折得到AED △,点B 的对应点为E ,A E 与边BC 相交于点F ,如果2BD =, 那么EF = .【答案】3215. 【解析】过点A 作BC 的垂线,垂足为H ,由题意,6CH =,27A H =,A BD A ED △≌△,∴B E C ∠=∠=∠,2DE BD ==,8AE AB ==,从而可证DEF A CF △∽△, ∴14EF DE CF A C ==,设(0)EF x x =>,则4CF x =,46FH x =-,8AF x =- ∵222AF AH FH =+,∴22(8)28(46)x x -=+-,解得3215x =或0x =(舍),即3215EF =.十二、青浦18.对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都在图形内或图形上,那么这样的点 S 称为“亮点”.如图,对于封闭图形ABCDE ,1S 是“亮点”, 2S 不是“亮点”,如果AB DE ∥,AE DC ∥,2AB =,1AE =,60B C ∠=∠=︒,那么该图形中所有“亮点”组成的图形的 面积为 .【答案】3. 【解析】由“亮点”的定义,可得所有“亮点”组成的图形为 图中的正三角形EFG ,其边长为1,∴面积为3.十三、松江18.如图,在直角坐标平面xOy 中,点A 坐标为(3,2),90AOB ∠=︒,30OAB ∠=︒,AB 与x 轴交于点C ,那么:AC BC 的值为 . 【答案】23. 【解析】如图,过点A 、B 作y 轴的垂线,垂足为D 、E , 过点A 、B 作x 轴的垂线,垂足为F 、G ,于是,由题意可得3,2,3OAA D OD OB===, 由一线三直角模型可知,A OD OBE △∽△, ∴23,3A O OD A D BE OE OB BE OE ==⇒==, 易证,CGA CFB △∽△,∴233A C A G OD BC BF OE ====.十四、徐汇18.在梯形ABCD 中,AB DC ∥,90B ∠=︒,6BC =,2CD =,3tan 4A =.点E 为BC 上一点,过点E 作EF AD ∥交边AB 于点F .将BEF △沿直线EF 翻折得到GEF △,当EG 过点D 时,BE 的长 为 .【答案】6512. 【解析】如图,过点D 作EF 的垂线,垂足为H ,交BC 于点I ,∵EF AD ∥,∴A EFB ∠=∠,由同角的余角相等,可得EFB DIC ∠=∠, ∵3tan 4A =,∴3810tan ,433CD DIC CI DI CI ∠==⇒==,易证,DEH IEH △≌△,∴DH HI =,1523H I DI ==,由34525tan 45412H I DIC EI H I EI ∠=⇒=⇒==,∴712CE CI EI =-=,6512BE BC CE =-=.十五、杨浦18.Rt A BC △中,90C ∠=︒,3AC =,2BC =,将此三角形绕点A 旋转,当点B 落在直线BC 上的点D 处时,点C 落在点E 处,此时点E 到直线BC 的距离为 . 【答案】2413. 【解析】如图,A BC A DE △≌△且四边形ACFG 为矩形, ∴2BC DE ==,3AC AE ==,由一线三直角模型可知,A GE EFD △∽△,∴32GE A E FD ED ==, 设3,2GE x DF x ==,则33EF x =-, 由勾股定理,得222DE DF EF =+,解得513x =,∴点E 到直线BC 的距离243313EF x =-=.十六、长宁18.如图,点P 在平行四边形ABCD 的边BC 上,将A BP △ 沿直线A P 翻折,点B 恰好落在边A D 的垂直平分线上,如果 5AB =,8A D =,4tan 3B =,那么BP 的长为 . 【答案】257或7. 【解析】记A D 的垂直平分线为l 交A D 、BC 分别于点E 、F ,过点A 作BC 的垂线,垂足为H , 由已知条件,易得5AB AB '==,3BH =,223EB A B A E ''=-=,4AH EF ==,7BF =, 设(08)BP BP x x '==<<,则7PF x =-,如图,情况一(B 点翻折后的对称点B '在线段EF 上),此时1B F '=,在Rt B PF '△中应用勾股定理,得222B P PF B F ''=+,解得257x =或0x =(舍);情况二(B 点翻折后的对称点B '在线段EF 的延长线上),此时7B F '=, 类似有222B P PF B F ''=+,解得7x =(表示P 与F 重合)或0x =(舍);综上,BP 的长为257或7.。
2018年上海金山区初三一模数学试卷答案
选择题(每小题4分,共24分) 填空题(每小题4分,共48分) 解答题(本题共7题,满分78分)
学生版
教师版
答案版
2018年上海金山区初三一模数学试卷
选择题(每小题4分,共24分)
1. 已知a、b是不等于0的实数,2a = 3b,那么下列等式中正确的是( ).
A.
a =
2
b
3
C. a + b
4
=
).
A. a = b ⋅ cos A
B. c = a ⋅ sin A
C. a ⋅ cot A = b
D. a ⋅ tan A = b
答案 C
解析
,即 , 错. b
cos A =
cos A ⋅ c = b A
c
,即 , 错. a
sin A =
sin A ⋅ c = a B
c
,即 , 正确. b
cot A =
∴ , △BF D ∽ △DF C
∴ . 2 DF = BF ⋅ C F
(2) 在AB上取一点G,如果AE ⋅ AC = AG ⋅ AD,求证:EG ⋅ C F = ED ⋅ . DF
编辑
答 案 证明见解析.
解析
∵ , AE ⋅ AC = ED ⋅ DF
∴ . AE
AG
=
AD
AC
又∵∠A = ∠A ,
式.
/04
目录
选择题(每小题4分,共24分) 填空题(每小题4分,共48分) 解答题(本题共7题,满分78分)
学生版
答案 解析
教师版
答案版
2018/12/04
. −−→
MN =
1 a⃗ −
最新-2018届上海市金山区中考一模(即期末)数学试题及答案 精品
金山区2018-2018学年第一学期期末质量检测 初三数学试卷 2018.1(时间100分钟,满分150分)一、选择题(本题共6小题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.抛物线122+=x y 的顶点坐标是( )(A ))1,2(; (B ))1,0(; (C ))0,1(; (D ))2,1(.2.在ABC Rt ∆中, ︒=∠90C ,3,5==BC AB ,那么A sin 的值等于( ) (A )43; (B )34; (C )53; (D )54.3.已知ABC ∆∽DEF ∆,点A 、B 、C 对应点分别是D 、E 、F ,4:9:=DE AB ,那么D EF ABC S S ∆∆:等于( )(A )3:2; (B )9:4; (C )16:81; (D )81:16.4.正多边形的中心角是36º,那么这个正多边形的边数是( ) (A )10; (B )8; (C );6 (D )5.5.已知⊙M 与⊙N 的半径分别为1和5,若两圆相切,那么这两圆的圆心距MN 的长等于( )(A )4; (B )6; (C )4或5; (D )4或66.已知反比例函数)0(≠=a xa y ,当0 x 时,它的图像y 随x 的增大而减小,那么二次函数ax ax y -=2 的图像只可能是( )(A) (B) (C)(D)二、填空题(本题共12题,每小题4分,满分48分) 7.已知23x y=,那么=+-yx y x8.计算:()+-b a 22________313=⎪⎭⎫⎝⎛-b a9.将抛物线11-22+=)(x y 向上平移3个单位,那么平移后得到的抛物线的解析式是10.如图,已知ABC ∆中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,若4=AD ,2=BD ,3=DE ,那么=BC11.在ABC Rt ∆中,︒=∠90C ,如果4:3:=BC AC ,那么A cos 的值为 12.已知⊙O 的半径为5,点A 在⊙O 外,那么线段OA 的的取值范围是13.如图,斜坡AB 的坡度3:1=i ,该斜坡的水平距离=AC 6米,那么斜坡AB 的长等于 米14.如图,已知直线AB 与⊙O 相交于A 、B 两点, 30=∠OAB ,半径2=OA ,那么弦AB =_________15.已知⊙A 与⊙B 的半径分别为3和2,若两圆相交,那么这两圆的圆心距AB 的取值 范围是16.如图,在ABC Rt ∆中,︒=∠90ACB ,CD ⊥AB ,CD =4,A cos =32,那么BC =17.如图, 在ABC ∆中,BE AD 、分别是边AC BC 、上的中线,BE AD 、相交于点G .设=a →,=b →,那么= (用 a →、b →的 式子表示)18.如图,在ABC Rt ∆中,︒=∠90C ,4=AC ,3=BC .将ABC ∆绕着点C 旋转︒90,点A 、B 的对应点分别是D 、E ,那么ADE ∠tan 的值为三、(本题共有7题,满分78分) 19.(本题满分10分)CBD 第17题第16题第18题CA BAECBD G计算:︒︒︒︒︒︒⋅-+-30cot 45cos 60tan 30cos 45tan 45sin 220.(本题满分10分) 如图,ABC ∆中,PC 平分ACB ∠,PC PB = (1)求证:APC ∆∽ACB ∆; (2)若2=AP ,6=PC ,求AC 的长.21.(本题满分10分)如图,小明在广场上的C 处用测角仪正面测量一座楼房墙上的广告屏幕AB 的长度,测得屏幕下端B 处的仰角为 30,然后他正对大楼方向前进10米到达D 处,又测得该屏幕上端A 处的仰角为45,已知该楼高7.18米,测角仪MC、ND 的高度为1.7米.求广告屏幕AB 的长.ABCP22.(本题满分10分)抛物线2(0)y ax bx c a=++≠向右平移2个单位得到抛物线1)3(2--=xay,且平移后的抛物线经过点)12(,A.(1)求平移后抛物线的解析式;(2)设原抛物线与y轴的交点为B,顶点为P,平移后抛物线的对称轴与x轴交于点M,求BPM∆的面积.23.(本题满分12分)x yO如图,已知⊙O 与⊙1O 外离,OC 与D O 1分别是⊙O 与⊙1O 的半径,OC ∥D O 1.直线CD 交1OO 于点P ,交⊙O 于点A ,交⊙1O 于点B . 求证:(1)OA ∥B O 1;(2)BPAP=24.(本题满分12分)如图,已知直线62+=x y 与x 轴、y 轴分别交于A 、D 两点,抛物线)0(22≠++=a bx ax y 经过点A 和点)01(,B . (1)求抛物线的解析式;(2)在线段AD 上取一点F (点F 不与点A 重合),过点F 作x 轴的垂线交抛物线于点G 、交x 轴于点H.当GH FG =时,求点H 的坐标; (3)设抛物线的对称轴与直线AD 交于点E ,抛物线与y 轴的交点为C ,点MB在线段AB上,当AEM∆与BCM∆相似时,求点M的坐标.25.(本题满分14分)如图,在ABC ∆中,10==AC AB ,12=BC ,点E 、F 分别在边BC 、AC 上(点F 不与点A 、C 重合)EF ∥AB .把ABC ∆沿直线EF 翻折,点C 与点D 重合,设x FC =. (1)求B ∠的余切值;(2)当点D 在ABC ∆的外部时,DE 、DF 分别交AB 于M 、N ,若写y MN =,求y 关于x 的函数关系式并出定义域;(3)(下列所有问题只要直接写出结果即可)以E 为圆心、BE 长为半径的⊙E 与边AC①没有公共点时,求x 的取值范围. ②一个公共点时,求x 的取值范围. ③两个公共点时,求x 的取值范围.AECBF。
上海市金山区2019-2020学年中考一诊数学试题含解析
上海市金山区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=.反比例函数y=在第一象限图象经过点A,与BC交于点F.S△AOF=,则k=()A.15 B.13 C.12 D.52.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b23.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>04.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,155.下列各数中,为无理数的是()A38B4C.13D26.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是()A.参加本次植树活动共有30人B.每人植树量的众数是4棵C.每人植树量的中位数是5棵D.每人植树量的平均数是5棵7.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a 8.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个9.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-310.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣311.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.①B.②C.③D.④12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在菱形ABCD中,DE⊥AB于点E,cosA=35,BE=4,则tan∠DBE的值是_____.14.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.15.分解因式:2m2-8=_______________.16.如图,E是▱ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=__.17.函数y=2中,自变量x的取值范围是18.因式分解:x2﹣4= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?20.(6分)(5分)计算:.21.(6分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°12;(2)解方程:x(x﹣4)=2x﹣822.(8分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线;(3)若CF=4,求图中阴影部分的面积.23.(8分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:A.书法比赛,B.绘画比赛,C.乐器比赛,D.象棋比赛,E.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:图1 各项报名人数扇形统计图:图2 各项报名人数条形统计图:根据以上信息解答下列问题:(1)学生报名总人数为人;(2)如图1项目D所在扇形的圆心角等于;(3)请将图2的条形统计图补充完整;(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.24.(10分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。
2018-2020年上海市中考数学各地区模拟试题分类(一)——《二次函数》(含解析)
2018-2020年上海市中考数学各地区模拟试题分类(一)——《二次函数》一.选择题1.(2019•闵行区一模)已知二次函数y=ax2+bx+c的图象如图所示,那么根据图象,下列判断中不正确的是()A.a<0 B.b>0 C.c>0 D.abc>0 2.(2019•金山区一模)已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A.a<0、b>0、c>0 B.a<0、b<0、c>0C.a<0、b>0、c<0 D.a<0、b<0、c<03.(2019•浦东新区一模)已知二次函数y=﹣(x+3)2,那么这个二次函数的图象有()A.最高点(3,0)B.最高点(﹣3,0)C.最低点(3,0)D.最低点(﹣3,0)4.(2019•闵行区一模)将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后所得图象的函数解析式为()A.y=2(x﹣2)2﹣4 B.y=2(x﹣1)2+3C.y=2(x﹣1)2﹣3 D.y=2x2﹣35.(2019•浦东新区一模)如果将抛物线y=x2+4x+1平移,使它与抛物线y=x2+1重合,那么平移的方式可以是()A.向左平移2个单位,向上平移4个单位B.向左平移2个单位,向下平移4个单位C.向右平移2个单位,向上平移4个单位D.向右平移2个单位,向下平移4个单位6.(2019•嘉定区一模)下列函数中,是二次函数的是()A.y=2x+1 B.y=(x﹣1)2﹣x2C.y=1﹣x2D.y=7.(2019•金山区一模)下列函数是二次函数的是()A.y=x B.y=C.y=x﹣2+x2D.y=8.(2019•长宁区一模)抛物线y=2(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,3)9.(2019•黄浦区一模)在平面直角坐标系中,如果把抛物线y=﹣2x2向上平移1个单位,那么得到的抛物线的表达式是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2+1 D.y=﹣2x2﹣1 10.(2019•杨浦区模拟)二次函数的复习课中,夏老师给出关于x的函数y=2kx2﹣(4k+1)x﹣k+1(k为实数).夏老师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生独立思考后,黑板上出现了一些结论.夏老师作为活动一员,又补充了一些结论,并从中选择了如下四条:①存在函数,其图象经过点(1,0);②存在函数,该函数的函数值y始终随x的增大而减小;③函数图象有可能经过两个象限;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.上述结论中正确个数为()A.1个B.2个C.3个D.4个11.(2018•虹口区二模)如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2D.y=(x﹣1)2.12.(2018•金山区二模)如果将抛物线y=﹣2x2向上平移1个单位,那么所得新抛物线的表达式是()A.y=﹣2(x+1)2B.y=﹣2(x﹣1)2C.y=﹣2x2﹣1 D.y=﹣2x2+1 13.(2018•浦东新区模拟)将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣214.(2018•金山区一模)将抛物线y=﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为()A.向下平移3个单位B.向上平移3个单位C.向左平移4个单位D.向右平移4个单位15.(2018•黄浦区一模)已知二次函数y=ax2+bx+c的图象大致如图所示,则下列关系式中成立的是()A.a>0 B.b<0 C.c<0 D.b+2a>0二.填空题16.(2020•静安区一模)某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为x(x>0),六月份的营业额为y万元,那么y关于x的函数解析式是.17.(2020•金山区一模)如果一条抛物线经过点A(2,5),B(﹣3,5),那么它的对称轴是直线.18.(2020•静安区一模)已知二次函数y=a2x2+8a2x+a(a是常数,a≠0),当自变量x分别取﹣6、﹣4时,对应的函数值分别为y1、y2,那么y1、y2的大小关系是:y1y2(填“>”、“<”或“=”).19.(2020•浦东新区一模)将抛物线y=﹣3x2向下平移4个单位,那么平移后所得新抛物线的表达式为.20.(2020•浦东新区一模)二次函数y=﹣2(x+1)2的图象在对称轴左侧的部分是.(填“上升”或“下降”)21.(2020•青浦区一模)如果抛物线y=ax2﹣1的顶点是它的最低点,那么a的取值范围是.22.(2020•金山区一模)抛物线y=2x2﹣1在y轴左侧的部分是.(填“上升”或“下降”)23.(2020•松江区一模)在直角坐标平面中,将抛物线y=2(x+1)2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线表达式是.24.(2020•嘉定区一模)将抛物线y=x2+4x+5向右平移2个单位后,所得抛物线的表达式为.三.解答题25.(2020•金山区二模)在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),其顶点为C.(1)求抛物线的解析式和顶点C的坐标;(2)我们把坐标为(n,m)的点叫做坐标为(m,n)的点的反射点,已知点M在这条抛物线上,它的反射点在抛物线的对称轴上,求点M的坐标;(3)点P是抛物线在第一象限部分上的一点,如果∠POA=∠ACB,求点P的坐标.26.(2020•徐汇区二模)如图,抛物线y=ax2﹣2ax+3与x轴交于点A(﹣1,0)和B,与y轴交于点C,顶点为点D.(1)求抛物线的表达式、点B和点D的坐标;(2)将抛物线y=ax2﹣2ax+3向右平移后所得新抛物线经过原点O,点B、D的对应点分别是点B',D',联结B'C,B'D',CD',求△CB'D'的面积.27.(2020•闵行区一模)如图,已知一个抛物线经过A(0,1),B(1,3),C(﹣1,1)三点.(1)求这个抛物线的表达式及其顶点D的坐标;(2)联结AB、BC、CA,求tan∠ABC的值;(3)如果点E在该抛物线的对称轴上,且以点A、B、C、E为顶点的四边形是梯形,直接写出点E的坐标.28.(2020•虹口区一模)在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B两点,与y轴交于点C(0,3),点P在该抛物线的对称轴上,且纵坐标为2.(1)求抛物线的表达式以及点P的坐标;(2)当三角形中一个内角α是另一个内角β的两倍时,我们称α为此三角形的“特征角”.①当D在射线AP上,如果∠DAB为△ABD的特征角,求点D的坐标;②点E为第一象限内抛物线上一点,点F在x轴上,CE⊥EF,如果∠CEF为△ECF的特征角,求点E的坐标.29.(2020•虹口区一模)在平面直角坐标系中,将抛物线C1:y=x2﹣2x向左平移2个单位,向下平移3个单位得到新抛物线C2.(1)求新抛物线C2的表达式;(2)如图,将△OAB沿x轴向左平移得到△O′A′B′,点A(0,5)的对应点A′落在平移后的新抛物线C2上,求点B与其对应点B′的距离.30.(2020•青浦区一模)如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P 的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.参考答案一.选择题1.解:(A)由图象的开口方向可知:a<0,故A正确;(B)由对称轴可知:x=<0,∴b<0,故B错误;(C)由图象可知:c>0,故C正确;(D)∵a<0,b<0,c>0,∴abc>0,故D正确;故选:B.2.解:由图象开口可知:a<0,由图象与y轴交点可知:c<0,由对称轴可知:<0,∴a<0,b<0,c<0,故选:D.3.解:在二次函数y=﹣(x+3)2中,a=﹣1<0,∴这个二次函数的图象有最高点(﹣3,0),故选:B.4.解:由“上加下减,左加右减”的原则可知,将二次函数y=2(x﹣2)2的图象向左平移1个单位,再向下平移3个单位后,得以新的抛物线的表达式是,y=2(x﹣2+1)2﹣3,即y=2(x﹣1)2﹣3,故选:C.5.解:∵抛物线y=x2+4x+1=(x+2)2﹣3的顶点坐标为(﹣2,﹣3),抛物线y=x2+1的顶点坐标为(0,1),∴顶点由(﹣2,﹣3)到(0,1)需要向右平移2个单位再向上平移4个单位.故选:C.6.解:A、y=2x+1,是一次函数,故此选项错误;B、y=(x﹣1)2﹣x2,是一次函数,故此选项错误;C、y=1﹣x2,是二次函数,符合题意;D、y=,是反比例函数,不合题意.故选:C.7.解:A、y=x属于一次函数,故本选项错误;B、y=的右边不是整式,不是二次函数,故本选项错误;C、y=x﹣2+x2=x2+x﹣2,符合二次函数的定义,故本选项正确;D、y=的右边不是整式,不是二次函数,故本选项错误;故选:C.8.解:∵y=2(x+2)2﹣3∴抛物线的顶点坐标是(﹣2,﹣3)故选:B.9.解:把抛物线y=﹣2x2向上平移1个单位,则得到的抛物线的表达式是:y=﹣2x2+1.故选:C.10.解:①将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,解得:k=0,此选项正确.②当k=0时,y=﹣x+1,该函数的函数值y始终随x的增大而减小;此选项正确;③当k=0时,y=﹣x+1,经过3个象限,当k≠0时,△=(4k+1)2﹣4×2k(﹣k+1)=24k2+1>0,∴抛物线必与x轴相交,∴图象必经过三个象限,此选项错误;④当k=0时,函数无最大、最小值;k≠0时,y=﹣,当k>0时,有最小值,最小值为负;当k<0时,有最大值,最最大值为正;此选项正确.正确的是①②④.故选:C.11.解:∵抛物线y=x2向左平移1个单位后,所得新抛物线的表达式为y=(x+1)2,故选:C.12.解:∵将抛物线y=﹣2x2向上平移1个单位,∴平移后的抛物线的解析式为:y=﹣2x2+1.故选:D.13.解:抛物线y=(x﹣1)2的顶点坐标为(1,0),∵向左平移2个单位,∴平移后的抛物线的顶点坐标为(﹣1,0),∴所得抛物线的表达式为y=(x+1)2.故选:A.14.解:y=﹣(x+1)2+4=﹣x2﹣2x+3向下平移3个单位,使它经过原点y=﹣x2﹣2x,故选:A.15.解:∵抛物线开口向下,对称轴大于1,与y轴交于正半轴,∴a<0,﹣>1,c>0,∴b>﹣2a,∴b+2a>0.故选:D.二.填空题(共9小题)16.解:根据题意,得y=200(1+x)2=200x2+400x+200.故答案为y=200x2+400x+200.17.解:因为A(2,5),B(﹣3,5)的纵坐标相同,∴A、B关于x==﹣对称,∴抛物线的对称轴x=﹣,故答案为x=﹣.18.解:y=a2x2+8a2x+a=a2(x2+8x)+a=a2(x+4)2+a﹣16a2,∴对称轴x=﹣4,∵x分别取﹣6、﹣4时,在对称轴左侧,∴y随x的增大而减小,∴y1>y2,故答案为>.19.解:∵抛物线y=﹣3x2向下平移4个单位,∴抛物线的解析式为y=﹣3x2﹣4,故答案为:y=﹣3x2﹣4.20.解:∵﹣2<0,∴二次函数的开口向下,则图象在对称轴左侧的部分y随x值的增大而增大,故答案为上升.21.解:∵抛物线y=ax2﹣1的顶点是它的最低点,∴抛物线的开口向上,∴a>0,故答案为a>0.22.解:抛物线y=2x2﹣1的对称轴x=0,抛物线开口向上,∴在对称轴左侧y随x的增加而减小,故答案为下降.23.解:抛物线y=2(x+1)2向上平移1个单位后的解析式为:y=2(x+1)2+1.再向右平移1个单位所得抛物线的解析式为:y=2x2+1.故答案为:y=2x2+1.24.解:∵y=x2+4x+5=(x+2)2+1,∴抛物线y=x2+4x+5向右平移2个单位后,所得抛物线的表达式为y=x2+1.故答案为:y=x2+1.三.解答题(共6小题)25.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0)和B(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,∴顶点C(1,4).(2)设M(m,﹣m2+2m+3),∴M的反射点为(﹣m2+2m+3,m),∵M点的反射点在抛物线的对称轴上,∴﹣m2+2m+3=1,∴m2﹣2m﹣2=0,解得m=1±,∴M(1+,1)或(1﹣,1).(3)如图,设P(a,﹣a2+2a+3).∵A(3,0),B(0,3),C(1,4),∴BC=,AB=3,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴tan∠ACB===3,∵∠POA=∠ACB,∴tan∠POA=3,∴=3,整理得:a2+a﹣3=0解得a=或(舍弃),∴P(,).26.解:(1)将点A的坐标代入抛物线表达式得:0=a+2a+3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3;抛物线的对称轴为:x=1,点D的坐标为:(1,4),令y=0,y=﹣x2+2x+3=0,解得:x=3或﹣1,令x=0,则y=3,故点B的坐标为:(3,0)、点C(0,3);故抛物线的表达式为:y=﹣x2+2x+3,B的坐标为(3,0)、点D的坐标为(1,4);(2)设抛物线向右平移了m个单位,则B'、D'的坐标分别为:(m+3,0)、(m+1,4),平移后抛物线的表达式为:y=﹣(x﹣m﹣1)2+4,∵新抛物线经过原点O,∴当x=0时,y=﹣(0﹣m﹣1)2+4=0,解得:m=1或﹣3(舍去﹣3),故点B'、D'的坐标分别为:(4,0)、(2,4),如下图,过点D′作D′H∥y轴交B′C于点H,设直线B′C的表达式为:y=kx+b,则,解得:,故直线B′C的表达式为:y=﹣x+3,当x=2时,y=,故D′H=4﹣=;+S△D′HB′=×D′H×OB′=××4=5.△CB'D'的面积=S△D′HC27.解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0).由题意可得:解得:∴抛物线的解析式为:y=x2+x+1,∵y=x2+x+1=(x+)2+,∴顶点D的坐标(﹣,);(2)如图,过点B作BF⊥x轴于F,延长CA交BF于点D,过点A作AM⊥BC于M,∴BF=3,∵A(0,1),C(﹣1,1),∴AC∥x轴,∴CD⊥BF,∴CD=BD=2,AD=1,CA=1,∴BC=2,∠BCD=∠CBD=45°,∵AM⊥BC,∴∠MAC=∠MCA=45°,∴CM=AM,∴CM=AM==,∴BM=BC﹣CM=,∴tan∠ABC==;(3)∵A(0,1),B(1,3),C(﹣1,1),∴直线AC解析式为:y=1,直线AB解析式为:y=2x+1,直线BC解析式为:y=x+2,若BE∥AC,则点E的纵坐标为3,且点E在对称轴上,∴点E(﹣,3);若CE∥AB,则CE的解析式为;y=2x+3,∵点E在对称轴上,∴x=﹣,∴y=2,即点E(﹣,2);若AE∥BC,则AE解析式为:y=x+1,∵点E在对称轴上,∴x=﹣,∴y=,即点E(﹣,),综上所述:点E的坐标为(﹣,3)或(﹣,2)或(﹣,).28.解:(1)抛物线y=﹣x2+bx+c与y轴交于点C(0,3),则c=3,将点A的坐标代入抛物线表达式并解得:b=2,故抛物线的表达式为:y=﹣x2+2x+3;点P(1,2);(2)由点A、P的坐标知,∠PAB=60°,直线AP的表达式为:y=(x+1)…①,当α=60°,∠DBA==30°时,△ABD为直角三角形,由面积公式得:y D×AB=AD•BD,即y D×4=2×,解得:y D=,点D在AP上,故点D(0,);当∠ADB=β时,则∠ABD=90°,故点D(3,4);综上,点D的坐标为:(0,)或(3,4);(3)∠CEF为△ECF的特征角,则△CEF为等腰直角三角形,过点E分别作x轴、y轴的垂线交于点M、N,则△CNE≌△EMF(AAS),则EN=EM,即x=y,x=y=﹣x2+2x+3,解得:x=,故点E(,).29.解:(1)由抛物线C1:y=x2﹣2x=(x﹣1)2﹣1知,将其向左平移2个单位,向下平移3个单位得到新抛物线C2的表达式是:y=(x﹣1+2)2﹣1﹣3,即y=(x+1)2﹣4;(2)由平移的性质知,点A与点A′的纵坐标相等,所以将y=5代入抛物线C2,得(x+1)2﹣4=5,则x=﹣4或x=2(舍去)所以AA′=4,根据平移的性质知:BB′=AA′=4,即点B与其对应点B′的距离为4个单位.30.解:(1)∵对称轴为直线x=2,点A的坐标为(1,0),∴点B的坐标是(3,0).将A(1,0),B(3,0)分别代入y=x2+bx+c,得.解得.则该抛物线解析式是:y=x2﹣4x+3.由y=x2﹣4x+3=(x﹣2)2﹣1知,该抛物线顶点坐标是(2,﹣1);(2)如图1,过点P作PN⊥x轴于N,过点C作CM⊥PN,交NP的延长线于点M,∵∠CON=90°,∴四边形CONM是矩形.∴∠CMN=90°,CO=MN、∴y=x2﹣4x+3,∴C(0,3).∵B(3,0),∴OB=OC=3.∵∠COB=90°,∴∠OCB=∠BCM=45°.又∵∠ACB=∠PCB,∴∠OCB﹣∠ACB=∠BCM﹣∠PCB,即∠OCA=∠PCM.∴tan∠OCA=tan∠PCM.∴=.故设PM=a,MC=3a,PN=3﹣a.∴P(3a,3﹣a),将其代入抛物线解析式y=x2﹣4x+3,得(3a)2﹣4(3﹣a)+3=3﹣a.解得a1=,a2=0(舍去).∴P(,).(3)设抛物线平移的距离为m,得y=(x﹣2)2﹣1﹣m.∴D(2,﹣1﹣m).如图2,过点D作直线EF∥x轴,交y轴于点E,交PQ延长线于点F,∵∠OED=∠QFD=∠ODQ=90°,∴∠EOD+∠ODE=90°,∠ODE+∠QDP=90°.∴∠EOD=∠QDF.∴tan∠EOD=tan∠QDF,∴=.∴=.解得m=.故抛物线平移的距离为.。
2019年上海市金山区初三数学一模试卷A3
1 拿到试卷:熟悉试卷
刚拿到试卷一般心情比较紧张, 建议拿到卷子以后看看考卷一共几页, 有多少道题, 了解试卷结构,
通览全卷是克服 “前面难题做不出, 后面易题没时间做” 的有效措施, 也从根本上防止了 “漏做题”。 2 答题顺序:从卷首依次开始 一般来讲,全卷大致是先易后难的排列。所以,正确的做法是从卷首开始依次做题,先易后难,最
9. 已知 x 5 ,那么 x y =_____________.
y2
y
10. 已知 是锐角, sin
1 ,那么 cos =_____________.
2
11. 一个正 n 边形的中心角等于 18°,那么 n =_____________.
12. 已知点 P 是线段 AB 上的黄金分割点, AP >BP, AB=4 , 那么 AP=_____________.
AD 2
15. 如图, 已知 O 为△ ABC 内一点, 点 D、E 分别在边 AB 和 AC 上, 且
2019 年上海市金山区初三第一学期调研测试
一 . 选择题 (本大题共 6 题,每题 4 分,共 24 分 )
后攻坚。但也不是坚决地“依次”做题,虽然考卷大致是先易后难,但试卷前部特别是中间出现难
1. 下列函数是二次函数的是(
)
题也是常见的,执着程度适当,才能绕过难题,先做好有保证的题,才能尽量多得分。 3 答题策略
第 16 題
第 17 題
三、 解答題 (19- 22 题,毎题 10 分, 23- 24 毎题 12 分, 25 题 14 分,共 78 分)
19. 计算 : cos2 45 cot 30 tan2 60 cot 2 45 sin30 . 2sin60
上海初三九年级2018届金山区中考数学一模试卷及参考答案
18. 如图 4,在矩形 ABCD 中, E 是 AD 上一点,把 V ABE 沿直 线 BE 翻折,点 A 正好落在 BC 边上的点 F 处,如果四边形 CDEF 和矩形 ABCD 相似,那么四边形 CDEF 和矩形 ABCD 面积比是
的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是
()
A. 30 厘米、45 厘米
B. 40 厘米、80 厘米
C. 80 厘米、120 厘米
D. 90 厘米、120 厘米
6. 在 RtV ABC 中, ÐACB = 90o, AC = 12, BC = 9 , D 是 AB 的中点, G 是 V ABC 的重心,
14. 点 (- 1, a), (- 2, b) 是 抛 物 线 y = x2 + 2x - 3 上 的 两 个 点 , 那 么 a 和 b 的 大 小 关 系 是 a
________ b (填“>”或“<”或“=”). 15. 如图 3, AB 是 e O 的弦, ÐOAB = 30o,OC ^ OA ,交 AB 于点 C ,若 OC = 6 ,则 AB 的
2018 年上海市金山区九年级第一学期期末考试数学试题
一、选择题(每小题 4 分,共 24 分)
1. 已知 a 、 b 是不等于 0 的实数, 2a = 3b ,那么下列等式中正确的是( )
A. a = 2 b3
B. a = 3 b2
2018上海初三数学一模卷
2018上海初三数学一模卷全文共四篇示例,供读者参考第一篇示例:2018年上海初三数学一模卷是学生们备战中考的第一道考题,这份试卷的设计和命题将直接影响着学生们的中考成绩。
数学作为中考科目之一,在学生们的中考成绩中占据着重要的比例,因此对于这份试卷的复习和备考是至关重要的。
2018年上海初三数学一模卷的命题从往年来看会有所变化,但它会涵盖初中阶段所学的各个知识点,涉及到的题型会比较多样化,涉及的难度也会有一定的提升。
数学考试的命题会分为选择题和解答题两部分,选择题考查学生对知识点的掌握和运用能力,解答题则考查学生们的解决问题的能力和思维逻辑能力。
在备考这份试卷的过程中,学生们需要系统地复习和总结初中数学的知识点,包括代数、几何、数学应用等各个方面。
针对选择题的备考,学生们需要熟练掌握各种题型的解题方法和技巧,提高解题速度和准确率;针对解答题的备考,学生们需要多做一些综合性的练习题,培养自己的解决问题的能力和思维逻辑能力。
2018年上海初三数学一模卷的命题具有一定的难度和挑战性,对学生们的综合能力和解决问题的能力提出了较高的要求。
在备考这份试卷的过程中,学生们需要克服困难,坚持不懈地努力学习,保持积极的心态和良好的学习状态,相信自己能够取得优异的成绩。
2018年上海初三数学一模卷是学生们备战中考的第一道考题,对学生们的数学综合能力和解决问题的能力提出了一定的挑战。
在备考这份试卷的过程中,学生们需要系统地复习和总结数学知识点,注重解题方法和技巧的掌握,提升解题思维和逻辑推理能力。
相信只要学生们保持努力和坚持,认真备考,一定能够取得令人满意的成绩,实现自己的中考梦想。
希望各位学生都能在这份试卷上取得理想的成绩,为自己的中考之路打下坚实的基础。
加油!第二篇示例:2018年上海初三数学一模卷是对初中生进行数学学科综合能力和知识掌握情况的考核。
本次考试分为选择题和主观题两个部分,旨在通过考试内容的涵盖全面,考查学生对数学理论知识的掌握能力,解题技巧的运用和灵活应用能力。
上海市金山区2019-2020学年中考数学一模考试卷含解析
上海市金山区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.据报道,南宁创客城已于2015年10月开城,占地面积约为14400平方米,目前已引进创业团队30多家,将14400用科学记数法表示为( )A .14.4×103B .144×102C .1.44×104D .1.44×10﹣42.已知⊙O 的半径为13,弦AB ∥CD ,AB=24,CD=10,则四边形ACDB 的面积是( ) A .119 B .289 C .77或119 D .119或2893.如图,两个反比例函数y 1=1k x (其中k 1>0)和y 2=3x 在第一象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF ⊥x 轴于F 点,且图中四边形BOAP 的面积为6,则EF :AC 为( )A .3:1B .2:3C .2:1D .29:144.如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠A=∠ABED .∠C=∠ABC 5.函数y=2x 的自变量x 的取值范围是( ) A .x≠2 B .x <2 C .x≥2 D .x >2 6.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A .πB .32πC .6﹣πD .3﹣π7.下列运算中,正确的是( )A .(a 3)2=a 5B .(﹣x )2÷x=﹣xC .a 3(﹣a )2=﹣a 5D .(﹣2x 2)3=﹣8x 68.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .9.用配方法解方程x 2﹣4x+1=0,配方后所得的方程是( )A .(x ﹣2)2=3B .(x+2)2=3C .(x ﹣2)2=﹣3D .(x+2)2=﹣3 10.﹣23的绝对值是( ) A .﹣322 B .﹣23 C .23 D .322 11.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为( ) A .8.23×10﹣6 B .8.23×10﹣7 C .8.23×106 D .8.23×10712.已知关于x 的一元二次方程2230x kx -+=有两个相等的实根,则k 的值为( )A .26±B .6±C .2或3D .2或3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,AB=4,AD=2,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,则»BE的长度为______.14.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.15.若分式22x x +的值为正,则实数x 的取值范围是__________________. 16.分解因式:a 3-a=17.如图,在平面直角坐标系xOy 中,A (-2,0),B (0,2),⊙O 的半径为1,点C 为⊙O 上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为cm.18.如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P.若OP=10,则k的值为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CF∥AB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判断四边形BDCF的形状,并证明你的结论.20.(6分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x (万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?21.(6分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.22.(8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.23.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是度.若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.24.(10分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB 交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.25.(10分)如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高0.2米,且AC =17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE =10米,现有一老人坐在MN 这层台阶上晒太阳.(3取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.26.(12分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品; 方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x()件. (1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m 件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w 与m 之间的关系式;利用w 与m 之间的关系式说明怎样购买最实惠.27.(12分)如图,在ABC V 中,90ACB ∠=︒,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在射线DE 上,并且EF AC =.(1)求证:AF CE =;(2)当B ∠的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】14400=1.44×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D【解析】【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四边形ACDB 的面积()124107=1192+⨯ ②当弦AB 和CD 在圆心异侧时,如图2,∵AB=24cm ,CD=10cm ,∴.AE=12cm ,CF=5cm ,∵OA=OC=13cm ,∴EO=5cm ,OF=12cm ,∴EF=OF+OE=17cm.∴四边形ACDB 的面积()1241017=2892+⨯ ∴四边形ACDB 的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.3.A【解析】试题分析:首先根据反比例函数y 2=3x 的解析式可得到ODB OAC S S =V V =12×3=32,再由阴影部分面积为6可得到PDOC S 矩形=9,从而得到图象C 1的函数关系式为y=6x ,再算出△EOF 的面积,可以得到△AOC 与△EOF 的面积比,然后证明△EOF ∽△AOC ,根据对应边之比等于面积比的平方可得到EF ﹕3. 故选A .考点:反比例函数系数k 的几何意义4.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠C=∠ABE 不能判断出EB ∥AC ,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.D【解析】【分析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】解:∵函数y=2x-有意义,∴x-2>0,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.6.C【解析】【分析】根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.【详解】由题意可得,BC=CD=4,∠DCB=90°,连接OE,则OE=12 BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴阴影部分面积为:2••90222360 BC CD OE OBπ⨯⨯--=4422904 22360π⨯⨯⨯⨯--=6-π,故选C.【点睛】本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.7.D【解析】【分析】根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.【详解】∵(a3)2=a6,∴选项A不符合题意;∵(-x)2÷x=x,∴选项B不符合题意;∵a3(-a)2=a5,∴选项C不符合题意;∵(-2x2)3=-8x6,∴选项D符合题意.故选D.【点睛】此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.8.D【解析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A 不符合题意;B 、以点A 为圆心,略小于AB 的长为半径,画弧,交线段BC 两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A 点作直线,该直线是BC 的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B 不符合题意;C 、以AB 为直径作圆,该圆交BC 于点D ,根据圆周角定理,过AD 两点作直线该直线垂直于BC ,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C 不符合题意;D 、以点B 为圆心BA 的长为半径画弧,交BC 于点E ,再以E 点为圆心,AB 的长为半径画弧,在BC 的另一侧交前弧于一点,过这一点及A 点作直线,该直线不一定是BE 的垂线;从而就不能保证两个小三角形相似;D 符合题意;故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键. 9.A【解析】【分析】方程变形后,配方得到结果,即可做出判断.【详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.10.C【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】│-2│=2,A 错误;│-23│=23,B 错误;│322│=322,D 错误; │23│=23,故选C. 【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.11.B【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.000000823=8.23×10-1. 故选B .点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.A【解析】【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k 的方程,解之即可得出结论.【详解】∵方程2230x kx -+=有两个相等的实根,∴△=k 2-4×2×3=k 2-24=0,解得:k=26±.故选A .【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23π 【解析】试题解析:连接AE ,在Rt 三角形ADE 中,AE=4,AD=2,∴∠DEA=30°,∵AB ∥CD ,∴∠EAB=∠DEA=30°,∴»BE 的长度为:304180π⨯=23π. 考点:弧长的计算.14.6【解析】设这个扇形的半径为r ,根据题意可得:2606360r ππ=,解得:6r =. 故答案为6.15.x >0【解析】【分析】分式值为正,则分子与分母同号,据此进行讨论即可得. 【详解】∵分式2x x 2+的值为正, ∴x 与x 2+2的符号同号,∵x 2+2>0,∴x>0,故答案为x>0.【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.16.(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+17 【解析】【分析】【详解】当AC 与⊙O 相切于点C 时,P 点纵坐标的最大值,如图,直线AC 交y 轴于点D ,连结OC ,作CH ⊥x 轴于H ,PM ⊥x 轴于M ,DN ⊥PM 于N ,∵AC为切线,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=33OA=33,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=12BD=12(233在Rt△DPN中,∵∠PDN=30°,∴PN=12DP=123而MN=OD=33,∴3+233=132,即P点纵坐标的最大值为132+.【点睛】本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.18.1【解析】设点P(m,m+2),∵10,,解得m 1=1,m 2=﹣1(不合题意舍去),∴点P (1,1),∴1=1k , 解得k=1.点睛:本题考查了反比例函数与一次函数的交点坐标,仔细审题,能够求得点P 的坐标是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)证明见解析;(2)四边形BDCF 是矩形,理由见解析.【解析】(1)证明:∵CF ∥AB ,∴∠DAE =∠CFE .又∵DE =CE ,∠AED =∠FEC ,∴△ADE ≌△FCE ,∴AD =CF .∵AD =DB ,∴DB =CF .(2)四边形BDCF 是矩形.证明:由(1)知DB =CF ,又DB ∥CF ,∴四边形BDCF 为平行四边形.∵AC =BC ,AD =DB ,∴CD ⊥AB .∴四边形BDCF 是矩形.20.(1)y=110x 1.z=﹣110x+30(0≤x≤100);(1)年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)今年最多可获得毛利润1080万元【解析】【分析】(1)利用待定系数法可求出y 与x 以及z 与x 之间的函数关系式;(1)根据(1)的表达式及毛利润=销售额﹣生产费用,可得出w 与x 的函数关系式,再利用配方法求出最值即可;(3)首先求出x 的取值范围,再利用二次函数增减性得出答案即可.【详解】(1)图①可得函数经过点(100,1000),设抛物线的解析式为y =ax 1(a≠0),将点(100,1000)代入得:1000=10000a ,解得:a =110, 故y 与x 之间的关系式为y =110x 1. 图②可得:函数经过点(0,30)、(100,10),设z=kx+b,则1002030k bb+=⎧⎨=⎩,解得:1k10b30⎧⎪⎨⎪⎩==,故z与x之间的关系式为z=﹣110x+30(0≤x≤100);(1)W=zx﹣y=﹣110x1+30x﹣110x1=﹣x1+30x=﹣15(x1﹣150x)=﹣15(x﹣75)1+1115,∵﹣15<0,∴当x=75时,W有最大值1115,∴年产量为75万件时毛利润最大,最大毛利润为1115万元;(3)令y=360,得110x1=360,解得:x=±60(负值舍去),由图象可知,当0<y≤360时,0<x≤60,由W=﹣15(x﹣75)1+1115的性质可知,当0<x≤60时,W随x的增大而增大,故当x=60时,W有最大值1080,答:今年最多可获得毛利润1080万元.【点睛】本题主要考查二次函数的应用以及待定系数法求一次函数解析式,注意二次函数最值的求法,一般用配方法.21.证明见解析【解析】试题分析:通过全等三角形△ADE≌△CBF的对应角相等证得∠AED=∠CFB,则由平行线的判定证得结论.证明:∵平行四边形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE与△CBF中,AD=BC,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.22.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)23.(1)50;(2)①6;②1【解析】试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;(2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;②当点P与M重合时,△PBC周长的值最小,于是得到结论.试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.24.(1)证明见解析(2)当四边形BEDF 是菱形时,四边形AGBD 是矩形;证明见解析;【解析】【分析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS ,ASA ,SSS )来证明全等; (2)先由菱形的性质得出AE=BE=DE ,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD 是矩形.【详解】解:()1证明:∵四边形ABCD 是平行四边形,∴4C ∠=∠,AD CB =,AB CD =.∵点E 、F 分别是AB 、CD 的中点, ∴12AE AB =,12CF CD =. ∴AE CF =.在AED V 和CBF V 中,AD CB DAE C AE CF =⎧⎪∠=∠⎨⎪=⎩,∴()ADE CBF SAS ≅V V. ()2解:当四边形BEDF 是菱形时,四边形AGBD 是矩形.证明:∵四边形ABCD 是平行四边形,∴//AD BC .∵//AG BD ,∴四边形AGBD 是平行四边形.∵四边形BEDF 是菱形,∴DE BE =.∵AE BE =,∴AE BE DE ==.∴12∠=∠,34∠=∠.∵1234180∠+∠+∠+∠=o ,∴2223180∠+∠=o .∴2390∠+∠=o .即90ADB ∠=o .∴四边形AGBD 是矩形.【点睛】本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS ,SAS ,AAS ,ASA .25.(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.【解析】试题分析:(1)在Rt △ABE 中,根据的正切值即可求得楼高;(2)当时,从点B 射下的光线与地面AD 的交点为F,与MC 的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC 这个侧面上.即小猫仍可晒到太阳.试题解析:解:(1)当当时,在Rt △ABE 中, ∵, ∴BA=10tan60°=米. 即楼房的高度约为17.3米.当时,小猫仍可晒到太阳.理由如下: 假设没有台阶,当时,从点B 射下的光线与地面AD 的交点为F,与MC 的交点为点H. ∵∠BFA=45°, ∴,此时的影长AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.∴CH=CF=0.1米,∴大楼的影子落在台阶MC这个侧面上.∴小猫仍可晒到太阳.考点:解直角三角形.26.(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.【解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w与m之间的关系式,再根据一次函数的增减性即可得出答案.解:(1)得:;得:;(2),因为w是m的一次函数,k=-4<0,所以w随的增加而减小,m当m=20时,w取得最小值.即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.27.(1)见解析;(2)见解析【解析】【分析】(1)求出EF∥AC,根据EF=AC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CE=12AB,AC=12AB,推出AC=CE,根据菱形的判定推出即可.【详解】(1)证明:∵∠ACB=90°,DE是BC的垂直平分线,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)当∠B=30°时,四边形ACEF是菱形,证明:∵∠B=30°,∠ACB=90°,∴AC=12AB,∵DE是BC的垂直平分线,∴BD=DC,∵DE∥AC,∴BE=AE,∵∠ACB=90°,∴CE=12AB,∴CE=AC,∵四边形ACEF是平行四边形,∴四边形ACEF是菱形,即当∠B=30°时,四边形ACEF是菱形.【点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.。
2018-2019金山区初三数学一模(试卷+解析)
上海新东方中考数学教研组2018学年上海市金山区初三第一学期调研测试九年级数学试卷(满分150分,考试时间100分钟)(2019.1)考生注意:1.本试卷含三个大题,共25题;2.务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列函数是二次函数的是( )A .B .C .D .2.在中,,那么等于( )A .B .C .D .3.如图,已知与相交于点,,,,,那么的长等于( ) A .4B .9C .12D .164.已知是一个单位向量,、是非零向量,那么下列等式正确的是( ) A .B . C .D .5.已知抛物线如图所示,那么、、的取值范围是( )A .、、B .、、C .、、D .、、xy =x y 1=22x x y +−=21x y =ABC Rt ∆o90=∠C B ∠sin ABAC ABBC BC AC ACBCBD CE A BC ED //8=AB 12=AC 6=AD AE e a b a e a=e b b =1a e a=11a bab=()02≠++=a c bx ax y a b c 0<a 0>b 0>c 0<a 0<b 0>c 0<a 0>b 0<c 0<a 0<b 0<c xyOABCDEABC第6题图6.如图,在中,,,,⊙的半径为3,那么下列说法正确的是( )A .点、点都在⊙内B .点在⊙内,点在⊙外C .点在⊙内,点在⊙外D .点、点都在⊙外 二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】7.已知二次函数,那么 _ .8.已知抛物线,那么抛物线在轴右侧部分是 _ (填“上升的”或“下降的”). 9.已知,那么 _ . 10.已知是锐角,,那么 _ . 11.一个正边形的中心角等于,那么 _ .12.已知点是线段上的黄金分割点,,,那么 _ . 13.如图,为了测量铁塔的高度,在离铁塔底部(点)60米的处,测得塔顶的仰角为,那么铁塔的高度 _ 米.14.已知⊙、⊙的半径分别为2和5,圆心距为,若⊙与⊙相交,那么的取值范围是 _ .15.如图,已知为内一点,点、分别在边和上,且,,设、,那么 _ (用、表示).16.如图,已知⊙与⊙相交于、两点,延长连心线交⊙于点,联结、,若,,那么⊙的半径等于 _ .ABC Rt ∆o90=∠C 2=BC 60=∠B A B C A C A B A B A C A B C A ()132+−=x x x f ()=2f 1212−=x y y 25=y x =+yy x α21sin =α=αcos n18=n P AB BP AP >4=AB =AP AB B C A30=AB 1O 2O d 1O 2O d O ABC ∆D E AB AC 52=AB AD BC DE //b OB =c OC ==DE b c 1O 2O A B 21O O 2O P PA PB 60=∠APB 6=AP 2O ABC第13题图 BA CDEO第15题图17.如图,在中,、分别是边、上的中线,,,那么 _ .18.如图,在中,,,.在边上取一点,使,以点为旋转中心,把逆时针旋转,得到(点、、的对应点分别是点、、),那么与的重叠部分的面积是 _ .三、解答题(19—22题,每题10分,23—24每题12分,25题14分,共78分)19.计算:. 20.已知二次函数,与轴的交点为,与轴交于、两点.(点在点的右侧)(1)当时,求的值.(2)点在二次函数的图像上,设直线与轴交于点,求的值.21.如图,已知某水库大坝的横断面是梯形,坝顶宽是6米,坝高24米,背水坡的坡度为1:3,迎水坡的坡度为1:2. 求(1)背水坡的长度. (2)坝底的长度.ABC ∆AD BE BC AC 5==AC AB 54cos =∠C =GE ABC Rt ∆o90=∠C 8=AC 6=BC AB O BC BO =O ABC ∆ 90C B A '''∆A B CA 'B 'C 'ABC ∆C B A '''∆30sin 45cot 60ta 60sin 230cot 45cos 22⋅−+−n 542−−=x x y y P x A B B A 0=y x ()m M ,6542−−=x x y MP x C MCB ∠cot ABCD AD AB CD AB BC A PO 1 O 2B第16题第21题图ABCD1:31:2G A BCD E第17题xyO第20题图ABC第18题O22.如图,已知是⊙的直径,为圆上一点,是弧BC 的中点,于,垂足为,联结交弦于,交于,联结. (1)求证:∽.(2)若,,求的长.23.如图,是平行四边形的对角线上的一点,射线与交于点,与的延长线交于点.(1)求证:.(2)若,求证:.24.已知抛物线经过点,点,直线:,直线:,直线经过抛物线的顶点,且与相交于点,直线与轴、轴分别交于点、.若把抛物线上下平移,使抛物线的顶点在直线上(此时抛物线的顶点记为),再把抛物线左右平移,使抛物线的顶点在直线上(此时抛物线的顶点记为). (1)求抛物线的解析式.(2)判断以点为圆心,半径长为4的圆与直线的位置关系,并说明理由.(3)设点、在直线上(点在点的下方),当与相似时,求点、的坐标(直接写出结果).AB O C D AB CH ⊥H H OD BC E CH F EH BHE ∆BCO ∆4=OC 1=BH EH M ABCD AM BC F DCH MH MF AM ⋅=2DM BD BC ⋅=2ADC AMB ∠=∠c bx x y ++=2()6,0A ()3,1B 1l ()0≠=k kx y 2l 2−−=x y 1l c bx x y ++=2P 1l 2l C 2l x y D E 2l M 1l N c bx x y ++=2N 2l F H 1l H F MHF ∆OAB ∆F H 第24题yxOE BAO C F H 第22题图DABCDHF M第23题25.已知多边形是⊙的内接正六边形,联结、,点是射线上的一个动点,联结,直线交射线于点,作交的延长线于点,设⊙的半径为.(1)求证:四边形是矩形.(2)当经过点时,⊙与⊙外切,求⊙的半径(用的代数式表示). (3)设,求点、、、构成的四边形的面积(用及含的三角比的式子表示).ABCDEF O AC FD H AF CH CH DF G CH MH ⊥CD M O ()0>r r ACDF CH E M O M r ()900<<=∠ααHCD C M H F r αA B C D E F G O H M第25题图 第25题备用图ABCD EFO试题解析第1-17题难度不大,填空题考了不少解三角形的问题。
{3套试卷汇总}2018-2019上海市金山区中考质量调研数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE【答案】B【解析】先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键. 2.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.3.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米【答案】C 【解析】解:A .小丽从家到达公园共用时间20分钟,正确;B .公园离小丽家的距离为2000米,正确;C .小丽在便利店时间为15﹣10=5分钟,错误;D .便利店离小丽家的距离为1000米,正确.故选C .4.下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21aC .333D .(a+2)(a ﹣2)=a 2+4 【答案】C【解析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a ,故B 选项错误; C 、3﹣33C 选项正确;D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.5.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是( )A .13B .23C .34D .45【答案】C【解析】易证△DEF ∽△DAB ,△BEF ∽△BCD ,根据相似三角形的性质可得EF AB = DF DB ,EF CD =BF BD ,从而可得EF AB +EF CD =DF DB +BF BD=1.然后把AB=1,CD=3代入即可求出EF 的值. 【详解】∵AB 、CD 、EF 都与BD 垂直,∴AB ∥CD ∥EF ,∴△DEF ∽△DAB,△BEF ∽△BCD , ∴EF AB = DF DB ,EF CD =BF BD, ∴EF AB +EF CD =DF DB +BF BD =BD BD =1. ∵AB=1,CD=3, ∴1EF +3EF =1, ∴EF=34. 故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.6.已知二次函数y =﹣(x ﹣h)2+1(为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y 的最大值为﹣5,则h 的值为( )A .36或6B .36或6C .6或16D .16或6【答案】C【解析】∵当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小,∴①若h <1≤x≤3,x=1时,y 取得最大值-5,可得:-(1-h )2+1=-5,解得:6或6(舍);②若1≤x≤3<h ,当x=3时,y 取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+6或h=3-6(舍).综上,h的值为1-6或3+6,故选C.点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.7.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【答案】A【解析】由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.【详解】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选A.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.8.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.5 【答案】D【解析】根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确;⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.9.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9分B .8分C .7分D .6分【答案】C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.10.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-4【答案】B【解析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.二、填空题(本题包括8个小题)11.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.【答案】213【解析】设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.【详解】连接BE,设⊙O半径为r,则OA=OD=r,OC=r-2,∵OD⊥AB,∴∠ACO=90°,AC=BC=12AB=4, 在Rt △ACO 中,由勾股定理得:r 2=42+(r-2)2,r=5,∴AE=2r=10,∵AE 为⊙O 的直径,∴∠ABE=90°,由勾股定理得:BE=6,在Rt △ECB 中,EC =222264213BE BC +=+=.故答案是:213.【点睛】考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.12.若分式的值为零,则x 的值为________.【答案】1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.13.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.【答案】1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.14.如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC=90°,点B 在点A 的右侧,点C 在第一象限。
2018届九年级上学期期末质量检测数学试题(附答案精品)
2018-2019学年度金山区第一学期初三期末质量检测数学试卷一、选择题:(本大题共6题,每题4分,满分24分)1. 已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A. ;B. ;C. ;D. .【答案】B【解析】∵2a=3b,∴,∴,∴A、C、D选项错误,B选项正确,故选B.2. 在Rt△ABC中,,,,,下列各式中正确的是()A. ;B. ;C. ;D. .【答案】C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.3. 将抛物线平移,使平移后所得抛物线经过原点,那么平移的过程为()A. 向下平移3个单位;B. 向上平移3个单位;C. 向左平移4个单位;D. 向右平移4个单位.【答案】A【解析】将抛物线平移,使平移后所得抛物线经过原点,若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,故选A.4. 如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是()A. ;B. ;C. ;D. .【答案】D【解析】∵AD//BC,DE//AB,∴四边形ABED是平行四边形,∴,,∴选项A、C错误,选项D正确,选项B错误,故选D.5. 一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A. 30厘米、45厘米;B. 40厘米、80厘米;C. 80厘米、120厘米;D. 90厘米、120厘米【答案】C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.6. 在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG 为半径的圆和以点C为圆心半径为的圆相交,那么的取值范围是()A. ;B. ;C. ;D. .【答案】D【解析】延长CD交⊙D于点E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中点,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C与⊙D相交,⊙C的半径为r,∴ ,故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7. 计算:_________.【答案】【解析】,故答案为:.。
2019年上海市金山区中考数学模拟试卷 (含解析)
2019年上海市金山区中考数学模拟试卷一.选择题:(本大题共6题,每题4分,满分24分)1.下列各式中,正确的是()A.a2+a2=2a4B.a3﹣a2=aC.a2•a3=a5D.(a+b)2=a2+b22.下列各数中,是无理数的为()A.B.C.π0D.cos60°3.关于二次函数y=﹣2x2+1的图象,下列说法中,正确的是()A.对称轴为直线x=1B.顶点坐标为(﹣2,1)C.可以由二次函数y=﹣2x2的图象向左平移1个单位得到D.在y轴的左侧,图象上升,在y轴的右侧,图象下降4.已知△ABC∽△DEF,顶点A、B、C分别与D、E、F对应,若△ABC和△DEF的周长分别为24、36,又∵BC=8,则下列判断正确的()A.DE=12B.EF=12C.DE=18D.EF=185.飞机在空中测得地面上某观测目标A的俯角为α,且飞机与目标A相距12千米,那么这时飞机离地面的高度为()A.12sinαB.12cosαC.12tanαD.12cotα6.下列关于向量的说法中,不正确的是()A.B.C.若(k为实数),则∥D.若,则或二.填空题:(本大题共12题,每题4分,满分48分)7.计算:3﹣2=.8.已知向量、满足,则=.(用向量表示)9.分解因式:x4+x2﹣2=.10.已知抛物线y=(1﹣a)x2+1的顶点是它的最高点,则a的取值范围是.11.如图,已知抛物线y=x2,把该抛物线向上平移,使平移后的抛物线经过点A(1,3),那么平移后的抛物线的表达式是.12.已知抛物线y=﹣x2+2x+2的顶点为A,与y轴交于点B,C是其对称轴上的一点,O为原点,若四边形ABOC是等腰梯形,则点C的坐标为.13.如图,已知平行四边形ABCD,E是边AB的中点,连接AC、DE交于点O.则的值为.14.已知一个斜坡的坡角为α,坡度为1:3,则cotα的值为.15.如图,△ABC中,点D、E、F分别在边BC、AC、AB上,且DE∥AB,DF∥AC,若BD:DC=1:2,△ABC的面积为9cm2,则四边形AEDF的面积为cm2.16.如图,已知梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,若AB=3,CD=1,那么∠A的正弦值为.17.如图,已知△ABC中,点D、E分别在边AB、AC上,且AD=2DB,AE=EC.若设,,则=.(用向量、表示)18.已知△ABC中,∠C=90°,AB=9,,把△ABC绕着点C旋转,使得点A 落在点A′,点B落在点B′.若点A′在边AB上,则点B、B′的距离为.三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分)19先化简,再求值:,其中.20.已知,(1)求的值;(2)若,求x值.21.已知一个二次函数的图象经过点A(﹣1,0)、B(0,3),且对称轴为直线x=1,(1)求这个函数的解析式;(2)指出该函数图象的开口方向和顶点坐标,并说明图象的变化情况.22.如图,已知△ABC中,AB=AC,点E、F在边BC上,满足∠EAF=∠C,求证:BF•CE=AB2.23.(如图,已知△ABC的边BC长15厘米,高AH为10厘米,长方形DEFG内接于△ABC,点E、F在边BC上,点D、G分别在边AB、AC上.(1)设DG=x,长方形DEFG的面积为y,试求y关于x的函数解析式,并写出定义域;(2)若长方形DEFG的面积为36,试求这时的值.24.据新华社12月13日电,参加湄公河联合巡逻执法的中国巡逻船顺利返航.已知在巡逻过程中,某一天上午,我巡逻船正在由西向东匀速行驶,10:00巡逻船在A处发现北偏东53.1°方向,相距10海里的C处有一个不明物体正在向正东方向移动,10:15巡逻船在B处又测得该物体位于北偏东18.4°方向的D处.若巡逻船的速度是每小时36海里,(1)试在图中画出点D的大致位置,并求不明物体移动的速度;(2)假设该不明物体移动的方向和速度保持不变,巡逻船航行的方向和速度也不变,试问什么时间该物体与我巡逻船之间的距离最近?[备用数据:sin53.1°=0.8,cos53.1°=0.6,cot53.1°=0.75;sin18.4°=0.32,cos18.4°=0.95,cot18.4°=3;].四、(本大题共2题,第25题12分,第26题14分,满分26分)25.我们知道,互相垂直且有公共原点的两条数轴构成平面直角坐标系.如果坐标系中两条坐标轴不垂直,那么这样的坐标系称为“斜坐标系”.如图1,P是斜坐标系xOy中的任意一点,与直角坐标系相类似,过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,若M、N在x轴、y轴上分别对应实数a、b,则有序数对(a,b)叫做点P在斜坐标系xOy中的坐标.(1)如图2,已知斜坐标系xOy中,∠xOy=60°,试在该坐标系中作出点A(﹣2,2),并求点O、A之间的距离;(2)如图3,在斜坐标系xOy中,已知点B(4,0)、点C(0,3),P(x,y)是线段BC上的任意一点,试求x、y之间一定满足的一个等量关系式;(3)若问题(2)中的点P在线段BC的延长线上,其它条件都不变,试判断上述x、y 之间的等量关系是否仍然成立,并说明理由.26.如图,已知线段AB,P是线段AB上任意一点(不与点A、B重合),分别以AP、BP 为边,在AB的同侧作等边△APD和△BPC,连接BD与PC交于点E,连接CD.(1)当BC⊥CD时,试求∠DBC的正切值;(2)若线段CD是线段DE和DB的比例中项,试求这时的值;(3)记四边形ABCD的面积为S,当P在线段AB上运动时,S与BD2是否成正比例,若成正比例,试求出比例系数;若不成正比例,试说明理由.参考答案一.选择题:(本大题共6题,每题4分,满分24分)1.【解答】解:A、a2+a2=2a2,本选项错误;B、a3与a2不是同类项,不能合并,本选项错误;C、a2•a3=a5,本选项正确;D、(a+b)2=a2+2ab+b2,本选项错误;故选:C.2.【解答】解:A、为无理数,故本选项正确,B、,为有理数,故本选项错误,C、π0=1,为有理数,故本选项错误,D、cos60,为有理数,故本选项错误,故选:A.3.【解答】解:A、由二次函数y=﹣2x2+1得,对称轴为x=0;故本项错误;B、由二次函数y=﹣2x2+1得,顶点坐标为(0,1);故本项错误;C、由二次函数y=﹣2x2+1的图象可由二次函数y=﹣2x2的图象向上平移1个单位得到;故本项错误;D、由二次函数y=﹣2x2+1得,其开口向下,顶点为(0,1),则在y轴的左侧,图象上升,在y轴的右侧,图象下降;故本项正确;故选:D.4.【解答】解:∵△ABC和△DEF的周长分别为24、36,∴△ABC和△DEF的相似比为=,∴=,∵BC=8,∴=,解得EF=12,∵AB的边长不知道,∴DE的长度无法求出.故选:B.5.【解答】解:如图:BC为飞机离地面的高度,所以在直角三角形ABC中,∠BAC=α,AB=12,则BC=AB•sinα=12sinα,故选:A.6.【解答】解:A、根据数与向量的乘积的模等于该数与向量的模的乘积,即,故本选项正确;B、根据数与向量和的乘积等于该数与各个向量乘积的和,即,故本选项正确;C、若(k为实数),可得与的方向相同或相反,均有∥,故本选项正确;D、向量既有大小又有方向,假如且,则或且,故本选项错误;故选:D.二.填空题:(本大题共12题,每题4分,满分48分)7.【解答】解:3﹣2=.故答案为.8.【解答】解:由题意得,﹣=+,移项得,=﹣,∴=﹣.故答案为:﹣.9.【解答】解:原式=(x2+2)(x2﹣1),=(x2+2)(x+1)(x﹣1).故答案为:(x2+2)(x+1)(x﹣1).10.【解答】解:∵抛物线y=(1﹣a)x2+1的顶点是它的最高点,∴1﹣a<0,解得a>1.故答案为:a>1.11.【解答】解:设所求的函数解析式为y=x2+k,∵点A(1,3)在抛物线上,∴k=2,∴y=x2+2.故答案为:y=x2+2.12.【解答】解:∵y=﹣x2+2x+2=y=﹣x2+2x﹣1+3=﹣(x﹣1)2+3,∴A的坐标为(1,3),当x=0时,y=2,∴B的坐标为(0,2),而C是其对称轴上的一点,O为原点,过O作OC′∥BA,∴根据平移规律知道C′的坐标为(1,1)又四边形ABOC是等腰梯形,∴C和C关于x轴对称,∴C的坐标为(1,﹣1).故答案为(1,﹣1).13.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△AOE∽△COD,∴AO:OC=AE:CD,∵E是AB中点,∴AE=AB,∴AE=CD,∴AO:OC=.故答案是.14.【解答】解:∵一个斜坡的坡角为α,坡度为1:3,∴tanα=,∴cotα=3.故答案为:3.15.【解答】解:∵DE∥AB,DF∥AC,∴△BDE∽△BCA,△CDE∽△CBA,∴,.∵BD:DC=1:2,∴BD:BC=1:3,CD:BC=2:3,∵S△ABC=9cm2,∴,,∴S△BDE=1,S△CDE=4,∴四边形AEDF的面积=9﹣1﹣4=4.故答案为:416.【解答】解:设BD=x,∵AB⊥BC,AD⊥BD,∴∠BCD=∠ADB=90°,又∵AB∥CD,∴∠BDC=∠ABD,∴△BCD∽△ADB,∴CD:BD=BD:AB,∴1:x=x:3,解得x=,在Rt△ABD中,sin∠A==.故答案是.17.【解答】解:∵AD=2DB,AE=EC,,,∴==,==,∴=﹣=﹣.故答案为:﹣+.18.【解答】解:过点C作CH⊥AB于H,∵在RT△ABC中,∠C=90,cos A=,∴AC=AB cos A=6,BC=3,在RT△ACH中,AC=6,cos A=,∴AH=AC cos A=4,由旋转的性质得,AC=A'C,BC=B'C,∴△ACA'是等腰三角形,因此H也是AA'中点,∴AA'=2AH=8,又∵△BCB'和△ACA'都为等腰三角形,且顶角∠ACA'和∠BCB'都是旋转角,∴∠ACA'=∠BCB',∴△ACA'∽△BCB',∴=,即=,解得:BB'=4.故答案为:4.三、(本大题共6题,第19--22题,每题8分;第23、24题,每题10分.满分52分)19.【解答】解:原式==当时,原式=.20.【解答】解由,设x=2k,y=3k,z=4k,(1),(2)化为,∴2k+3=k2,即k2﹣2k﹣3=0,∴k=3或k=﹣1,经检验,k=﹣1不符合题意,∴k=3,从而x=2k=6,即x=6.21.【解答】解(1)设函数的解析式为y=ax2+bx+c(a≠0)由题意得,解得∴函数解析式为y=﹣x2+2x+3(2)∵函数解析式为y=﹣x2+2x+3∴y=﹣(x﹣1)2+4∵a=﹣1<0,∴函数图象开口向下,顶点为(1,4),∵直线的对称轴为x=1,∴在对称轴的左侧,图象上升,y随x的增大而增大,在直线x=1的右侧,图象下降,y 随x的增大而减小.22.【解答】证明:∵∠AFB=∠C+∠F AC=∠EAF+∠F AC=∠EAC,又∵AB=AC,∴∠B=∠C,即∠ABF=∠ECA,∴△ABF∽△ECA,∴,∴BF•EC=AB•AC=AB2.23.【解答】(1)解:设AH与DG交于点P,∵矩形DEFG,∴DG∥BC,∴△ADG∽△ABC,且AP⊥DG,∴,即,∴,从而∴,定义域为0<x<15;(2)由已知,,解得x=6或x=9,当x=6时,;当x=9时,.24.【解答】解:(1)作AE⊥AB,CF⊥AB于点F,BG⊥CD于点G,由题意,∠EAC=53.1°,∠GBD=18.4°,在△CAF中,CF⊥AB,∠ACF=∠EAC=53.1°∴AF=AC•sin53.1°=10×0.8=8,CF=AC•cos53.1°=10×0.6=6,∴BG=CF=6又,∴FB=AB﹣AF=9﹣8=1,从而CG=BF=1在△BDG中,BG⊥CD,∠GBD=18.4°∵cot18.4°=3,∴tan18.4°=∴GD=BG•tan18.4°=6×=2,∴CD=CG+GD=1+2=3,(海里/小时),(2)由题意,不明物体沿CD移动,我巡逻船沿AB运动,且CD∥AB,∴两者之间的最近距离为直线CD与AB的距离.设又过了t分钟,不明物体移动到点P,我巡逻船到达点Q,这时PQ⊥AB,则,,∴,解得t=5.∴10:20两者之间距离最近.四、(本大题共2题,第25题12分,第26题14分,满分26分)25.【解答】解:(1)作AM∥y轴,AM与x轴交于点M,AN∥x轴,AN与y轴交于点N,则四边形AMON为平行四边形,且OM=ON,∴AMON是菱形,OM=AM∴OA平分∠MON,又∵∠xOy=60°,∴∠MOA=60°,∴△MOA是等边三角形,∴OA=OM=2;(2)过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,则PN=x,PM=y,由PN∥OB,得,即;由PM∥OC,得,即;∴,即3x+4y=12.(3)当点P在线段BC的延长线上时,上述结论仍然成立.理由如下:这时PN=﹣x,PM=y,与(2)类似,,.又∵.∴,即.26.【解答】解:(1)∵等边△APD和△BPC,∴PC=BC,∠CPD=60°,∠DP A=∠CBP=60°,∴PD∥BC,∴∠DPC=∠PCB=60°,∵BC⊥CD,∴∠DCB=∠PDC=90°,∴∠DCP=30°,∴tan∠DBC===cos30°=;(2)由已知,CD2=DE•DB,即,又∵∠CDE=∠CDE,∴△DCE∽△DBC,∴,又∵CP=BC,,∵PD∥BC,∴,∴,∴CD=BE,∴,即点E是线段BD的黄金分割点.∴,又∵PC∥AD,∴,(3)设AP=a,PB=b,∴,,因为AD∥PC,PD∥BC,∴,,∴,∴,∴,作DH⊥AB,则,,∴BD2=DH2+BH2=(a)2+(a+b)2=a2+ab+b2,∴,∴S与BD2成正比例,比例系数为.。
{3套试卷汇总}2018-2019上海市中考数学模拟联考试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形.故错误;B.不是轴对称图形,也不是中心对称图形.故错误;C.是轴对称图形,也是中心对称图形.故正确;D.不是轴对称图形,是中心对称图形.故错误.故选C.【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.2.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.2cm2B.3cm2C.4cm2D.5cm2【答案】C【解析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC 和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.3.如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是()A.150°B.140°C.130°D.120°【答案】A【解析】直接根据圆周角定理即可得出结论.【详解】∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A.4.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.13D.13【答案】A【解析】根据负数的绝对值是其相反数解答即可.【详解】|-3|=3,故选A.【点睛】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.5.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近【答案】D【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B不符合题意;C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D符合题意;故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.6.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.【答案】D【解析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,22AE BE=5,∴四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D.【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.7.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处【答案】D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.8.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.8【答案】C【解析】解:∵AD ∥BE ∥CF ,根据平行线分线段成比例定理可得AB DEBC EF =, 即123EF=, 解得EF=6, 故选C.9.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .16【答案】C【解析】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°. 所以AFI BGC DHE GHI 、、、都是等边三角形. 所以31AI AF BG BC ====,. 3317GI GH AI AB BG ∴==++=++=, 7232DE HE HI EF FI ==--=--=, 7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15; 故选C .10.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A.6 B.12 C.18 D.24【答案】B【解析】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12,故选B.二、填空题(本题包括8个小题)11.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q【答案】D【解析】D.试题分析:应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B. 若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D.考点:1.动点问题的函数图象分析;2.排他法的应用.12.因式分解:9a2﹣12a+4=______.【答案】(3a﹣1)1【解析】直接利用完全平方公式分解因式得出答案.【详解】9a 1-11a+4=(3a-1)1. 故答案是:(3a ﹣1)1. 【点睛】考查了公式法分解因式,正确运用公式是解题关键. 13.分解因式:a 3-12a 2+36a=______. 【答案】a(a-6)2【解析】原式提取a ,再利用完全平方公式分解即可. 【详解】原式=a(a 2-12a+36)=a(a-6)2, 故答案为a(a-6)2 【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键. 14.甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)经计算,x 10 x 10==甲乙,,试根据这组数据估计_____中水稻品种的产量比较稳定. 【答案】甲【解析】根据方差公式分别求出两种水稻的产量的方差,再进行比较即可. 【详解】甲种水稻产量的方差是:()()()()()2222219.8109.91010.110101010.2100.025⎡⎤-+-+-+-+-=⎣⎦, 乙种水稻产量的方差是:()()()()()2222219.41010.31010.8109.7109.8100.045⎡⎤-+-+-+-+-=⎣⎦, ∴0.02<0.124.∴产量比较稳定的小麦品种是甲.15.如图,长方形纸片ABCD 中,AB=4,BC=6,将△ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则△AFC 的面积等于___.【答案】263【解析】由矩形的性质可得AB=CD=4,BC=AD=6,AD//BC ,由平行线的性质和折叠的性质可得∠DAC=∠ACE ,可得AF=CF ,由勾股定理可求AF 的长,即可求△AFC 的面积. 【详解】解:四边形ABCD 是矩形AB CD 4∴==,BC AD 6==,AD//BC DAC ACB ∠∠∴=,折叠ACB ACE ∠∠∴=, DAC ACE ∠∠∴= AF CF ∴=在Rt CDF 中,222CF CD DF =+,22AF 16(6AF)∴=+-,13AF 3∴=AFC 111326S AF CD 42233∴=⨯⨯=⨯⨯=.故答案为:263. 【点睛】本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF 的长是本题的关键.16.在矩形ABCD 中,AB=4, BC=3, 点P 在AB 上.若将△DAP 沿DP 折叠,使点A 落在矩形对角线上的处,则AP 的长为__________.【答案】32或94【解析】①点A 落在矩形对角线BD 上,如图1, ∵AB=4,BC=3, ∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P ,∠A=∠PA′D=90°, ∴BA′=2,设AP=x ,则BP=4﹣x ,∵BP 2=BA′2+PA′2, ∴(4﹣x )2=x 2+22,解得:x=32,∴AP=32;②点A落在矩形对角线AC上,如图2,根据折叠的性质可知DP⊥AC,∴△DAP∽△ABC,∴AD ABAP BC=,∴AP=AD BCAB =334⨯=94.故答案为32或94.17.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=1x-的图象上,则y l,y2,y3的大小关系是_____.(用“<”号填空)【答案】y3<y1<y1【解析】根据反比例函数的性质k<0时,在每个象限,y随x的增大而增大,进行比较即可.【详解】解:k=-1<0,∴在每个象限,y随x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案为:y3<y1<y1【点睛】本题考查的是反比例函数的性质,理解性质:当k>0时,在每个象限,y随x的增大而减小,k<0时,在每个象限,y随x的增大而增大是解题的关键.18.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN =40°,则∠P的度数为___【答案】100°【解析】由条件可证明△AMK ≌△BKN ,再结合外角的性质可求得∠A =∠MKN ,再利用三角形内角和可求得∠P .【详解】解:∵PA =PB , ∴∠A =∠B ,在△AMK 和△BKN 中,AM BK A B AK BN =⎧⎪∠=∠⎨⎪=⎩, ∴△AMK ≌△BKN (SAS ), ∴∠AMK =∠BKN ,∵∠A+∠AMK =∠MKN+∠BKN , ∴∠A =∠MKN =40°,∴∠P =180°﹣∠A ﹣∠B =180°﹣40°﹣40°=100°, 故答案为100° 【点睛】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK ≌△BKN 是解题的关键.三、解答题(本题包括8个小题)19.如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =. ()2若20ADE ∠=,求DMC ∠的度数.【答案】阅读发现:90°;(1)证明见解析;(2)100°【解析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=, ADE ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=,15DFC DCF ADE AED ∴∠=∠=∠=∠=,601575FDE ∴∠=+=,90MFD FDM ∴∠+∠=,90FMD ∴∠=,故答案为90()1ABE 为等边三角形,60EAB ∴∠=,EA AB =. ADF 为等边三角形,60FDA ∴∠=,AD FD =.四边形ABCD 为矩形,90BAD ADC ∴∠=∠=,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=,150CDF FDA ADC ∠=∠+∠=,EAD CDF ∴∠=∠.在EAD 和CDF 中,AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴≌CDF .ED FC ∴=;()2EAD ≌CDF ,20ADE DFC ∴∠=∠=,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=.【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.20.甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.【答案】(1)13;(2)这个游戏不公平,理由见解析. 【解析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中, 故从袋中随机摸出一球,标号是1的概率为:13; (2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=59,P(乙胜)=49.∴P(甲胜)≠P(乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.【答案】见解析【解析】根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出四边形AECF是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点睛】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.22.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15) 3 0.15第二组(15≤x<30) 6 a第三组(30≤x<45)7 0.35第四组(45≤x<60) b 0.20(1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【答案】0.3 4【解析】(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.【详解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:312=14.【点睛】本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.【答案】(1)不可能;(2)1 6 .【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.24.某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?【答案】(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.【解析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W ,即W=(x ﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【详解】(1)设y 与x 之间的函数关系式为y=kx+b ,根据题意得:1205014030k b k b +=⎧⎨+=⎩,解得:1170k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y=﹣x+170;(2)W=(x ﹣90)(﹣x+170)=﹣x 2+260x ﹣1.∵W=﹣x 2+260x ﹣1=﹣(x ﹣130)2+2,而a=﹣1<0,∴当x=130时,W 有最大值2.答:售价定为130元时,每天获得的利润最大,最大利润是2元.【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x 的取值范围. 25.如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使 13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.【答案】可以求出A 、B 之间的距离为111.6米.【解析】根据OD OE OB OA=,AOB EOD ∠=∠(对顶角相等),即可判定AOB EOD ∽,根据相似三角形的性质得到13DE OE AB OA ==,即可求解. 【详解】解:∵OD OE OB OA =,AOB EOD ∠=∠(对顶角相等), ∴AOB EOD ∽, ∴13DE OE AB OA ==, ∴37.213AB =, 解得111.6AB =米.所以,可以求出A 、B 之间的距离为111.6米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.26.如图,已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .求证:△ABE ≌△CAD ;求∠BFD 的度数.【答案】(1)证明见解析;(2)60BFD ∠=︒.【解析】试题分析:(1)根据等边三角形的性质根据SAS 即可证明△ABE ≌△CAD ;(2)由三角形全等可以得出∠ABE=∠CAD ,由外角与内角的关系就可以得出结论.试题解析:(1)∵△ABC 为等边三角形,∴AB=BC=AC ,∠ABC=∠ACB=∠BAC=60°.在△ABE 和△CAD 中,AB=CA , ∠BAC=∠C ,AE =CD ,∴△ABE ≌△CAD (SAS ),(2)∵△ABE ≌△CAD ,∴∠ABE=∠CAD ,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD ,∴∠BFD=60°.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.16【答案】A【解析】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.2.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %【答案】C【解析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;C. 全班共有12+20+8+4+6=50名学生,故C选项正确;D. 最喜欢田径的人数占总人数的4100%50=8 %,故D选项错误,故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键. 3.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.4.如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.AC=AB B.∠C=12∠BOD C.∠C=∠B D.∠A=∠B0D【答案】B【解析】先利用垂径定理得到弧AD=弧BD,然后根据圆周角定理得到∠C=12∠BOD,从而可对各选项进行判断.【详解】解:∵直径CD⊥弦AB,∴弧AD =弧BD,∴∠C=12∠BOD.故选B.【点睛】本题考查了垂径定理和圆周角定理,垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE 成为矩形的是( )A .AB=BEB .BE ⊥DC C .∠ADB=90°D .CE ⊥DE【答案】B 【解析】先证明四边形DBCE 为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD=BC ,又∵AD=DE ,∴DE ∥BC ,且DE=BC ,∴四边形BCED 为平行四边形,A 、∵AB=BE ,DE=AD ,∴BD ⊥AE ,∴▱DBCE 为矩形,故本选项错误;B 、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C 、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE 为矩形,故本选项错误;D 、∵CE ⊥DE ,∴∠CED=90°,∴▱DBCE 为矩形,故本选项错误,故选B .【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键. 6.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)3B .4(,0)3C .8(,0)3D .10(,0)3【答案】D 【解析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】把11(,)3A y ,2(3,)B y代入反比例函数1y x = ,得:13y =,213y =, 11(,3),(3,)33A B ∴, 在ABP ∆中,由三角形的三边关系定理得:AP BP AB -<,∴延长AB 交x 轴于P',当P 在P'点时,PA PB AB -=,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y kx b =+,把A ,B 的坐标代入得:133133k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩, 解得:101,3k b =-=, 1215x ->∴直线AB 的解析式是103y x =-+, 当0y =时,103x =,即10(,0)3P , 故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.7.如图1,在△ABC 中,AB=BC ,AC=m ,D ,E 分别是AB ,BC 边的中点,点P 为AC 边上的一个动点,连接PD ,PB ,PE.设AP=x ,图1中某条线段长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是( )A .PDB .PBC .PED .PC【答案】C 【解析】观察可得,点P 在线段AC 上由A 到C 的运动中,线段PE 逐渐变短,当EP ⊥AC 时,PE 最短,过垂直这个点后,PE 又逐渐变长,当AP=m 时,点P 停止运动,符合图像的只有线段PE ,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.8.4的算术平方根为( ) A .2±B .2C .2±D .2 【答案】B【解析】分析:先求得4的值,再继续求所求数的算术平方根即可.详解:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选B .点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.9.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .【答案】C 【解析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,∴矩形ABCD 的面积为4×8=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP 面积变化情况是解题的关键,属于中考常考题型.10.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是()A.(0,0)B.(﹣2,1)C.(﹣2,﹣1)D.(0,﹣1)【答案】C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.二、填空题(本题包括8个小题)1182=_______________.282,再合并同类二次根式即可得解.82=222.2.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.12.若代数式33x-有意义,则x的取值范围是__.【答案】x≠3【解析】由代数式3x3-有意义,得x-3≠0,解得x≠3,故答案为: x≠3.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.13.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,则可列方程为__________.【答案】8374x x -=+【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有x 人,列出方程:8374x x +﹣=,故答案为8374x x +﹣=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.14.把多项式x 3﹣25x 分解因式的结果是_____【答案】x (x+5)(x ﹣5).【解析】分析:首先提取公因式x ,再利用平方差公式分解因式即可.详解:x 3-25x=x (x 2-25)=x (x+5)(x-5).故答案为x (x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.15.若一个多边形的内角和是900º,则这个多边形是 边形.【答案】七【解析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -⋅︒=︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.16.如图,在平面直角坐标系中,经过点A 的双曲线y=k x(x >0)同时经过点B ,且点A 在点B 的左侧,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年金山区第一学期期末考试
九年级数学试卷
(满分150分,考试时间100分钟)
一、选择题(本大题共6题,每题4分,满分24分) 1.下列函数是二次函数的是( ). A .y x = B .1y x =
C .22y x x =-+
D .21
y x
=. 2.在Rt △ABC 中,∠C=90°,那么sin ∠B 等于( ). A .
AC AB B .BC AB C .AC BC D .BC
AC
. 3.如图,已知BD 与CE 相交于点A ,ED ∥BC ,AB=8,AC=12,AD=6,那么AE 的长等于( ). A . 4 B .9 C .12 D .16.
4.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( ). A .a e a = B .e b b = C .
1
a e a = D .11a
b a b
= 5.已知抛物线2(0)y ax bx c a =++≠如图所示,那么a 、b 、c 的取值范围是( ). A .000a b c <>>,, B .000a b c <<>,, C .000a b c <><,, D .000a b c <<<,,
6.如图,在Rt △ABC 中,∠C=90°,BC=2,∠B=60°,A 的半径为3,那么下列说法正确的是( ). A .点B 、点C 都在A 内 B .点C 在
A 内,点
B 在
A 外
C .点B 在
A 内,点C 在A 外 D .点
B 、点
C 都在
A 外
二、填空题(本大题共12 题,每题4分,满分48分)
7.已知二次函数()231f x x x =-+,那么()2f = _________.
8.已知抛物线2
112
y x =
-,那么抛物线在y 轴右侧部分是 ________(填“上升的”或“下降的”
). 9.已知52x y =,那么
x y
y
+= _________. 10.已知α是锐角,1
sin 2
α=
,那么cos α=_________. 11.一个正n 边形的中心角等于18°,那么n=_________.
12.已知点P 是线段AB 上的黄金分割点,AP >BP ,AB=4,那么AP=_________.
13.如图,为了测量铁塔AB 的高度,在离铁塔底部(点B )60米的C 处,测得塔顶A 的仰角为30°,那么铁塔的高度AB=_________米.
14.已知1O 、2O 的半径分别为2和5,圆心距为d ,若1O 和2O 相交,那么d 的取值范围是_________. 15.如图,已知O 为△ABC 内一点,点D 、E 分别在边AB 和AC 上,且2
5
AD AB =,
DE ∥BC ,设O B b =,OC c =,那么DE =_________.(用b 、c 表示)
16.如图,已知1O 和2O 相交于A 、B 两点,延长连心线12O O 交2O 于点P ,联结PA 、PB ,若∠APB=60°,AP=6,那么2O 的半径等于_________.
17.如图,在△ABC 中,AD 、BE 分别是边BC 、AC 上的中线,AB=AC=5,4
cos =5
C ∠,那么GE=__________ .
18.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,在边AB 上取一点O ,使BO=BC ,以点O 为旋转中心,把△ABC 逆时针旋转90°,得到△A ′B ′C ′(点A 、B 、C 的对应点分别是点A ′、B ′、C ′),那么△ABC 与△A ′B ′C ′的重叠部分的面积是 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:22cot30cos 45tan 60cot 45sin302sin60︒
︒-+︒-︒︒︒
.
20.(本题满分10分)已知二次函数245y x x =--,与y 轴的交点为P ,与x 轴交于A 、B 两点.(点B 在点A 的右侧)
(1)当y=0时,求x 的值;
(2)点M (6,m )在二次函数245y x x =--的图像上,设直线MP 与x 轴交于点C ,求cot MCB ∠的值.
21. (本题满分10分)如图,已知某水库大坝的横截面是梯形ABCD ,坝顶宽AD 是6米,坝高24米,背水坡AB 的坡度为1:3,迎水坡CD 的坡度为1:2. 求(1)背水坡AB 的长度. (2)坝底BC 的长度.
22.(本题满分10分)如图.已知AB 是O 的直径,C 为圆上一点,D 是BC 的中点,CH ⊥AB 于H ,垂足为H .联结OD 交弦BC 于E ,交CH 于F ,联结EH . (1)求证: △BHE ∽△BCO . (2)若OC=4,BH=1,求EH 的长.
23.(本题满分12分)如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延长线交于点H .
(1)求证:2AM MF MH =⋅.
(2)若2BC BD DM =⋅求证,∠AMB=∠ADC .
24.(本题满分12分)已知抛物线2y x bx c =++经过点A (0,6),点B (1,3),直线l 1:y kx =(0k ≠),直线l 2::2y x =--,直线l 1经过抛物线2y x bx c =++的顶点P ,且l 1与l 2相交于点C ,直线l 2与x 轴、y 轴分别交于点D 、E ,若把抛物线上下平移,使抛物线的顶点在直线l 2上(此时抛物线的顶点记为M ),再把抛物线左右平移,使抛物线的顶点在直线l 1上(此时抛物线的顶点记为N ). (1)求抛物线2y x bx c =++的解析式.
(2)判断以点N 为圆心,半径长为4的圆与直线l 2的位置关系,并说明理由.
(3)设点F 、H 在直线l 1上(点H 在点F 的下方),当△MHF 与△OAB 相似时,求F 、H 的坐标(直接写出结果).
25.(本题满分14分)已知多边形ABCDEF 是⊙O 的内接正六边形,联结AC 、FD ,点H 是射线AF 上的一个动点,联结CH ,直线CH 交射线DF 于点G ,作MH ⊥CH 交CD 的延长线于点M ,设⊙O 的半径为r (r >0). (1)求证:四边形ACDF 是矩形.
(2)当CH 经过点E 时,⊙M 与⊙O 外切,求⊙M 的半径(用r 的代数式表示).
(3)当∠HCD=α(0<α<90°),求点C 、M 、H 、F 构成的四边形的面积(用r 及含α的三角比的式子表示).。