信息光学07-抽样定理

合集下载

抽样定理

抽样定理

实验一 抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性2、掌握自然抽样及平顶抽样的实现方法3、理解低通采样定理的原理4、理解实际的抽样系统5、理解低通滤波器的幅频特性对抽样信号恢复的影响6、理解低通滤波器的相频特性对抽样信号恢复的影响7、理解平顶抽样产生孔径失真的原理8、理解带通采样定理的原理二、实验内容1、验证低通采样定理原理2、验证低通滤波器幅频特性对抽样信号恢复的影响3、验证低通滤波器相频特性对抽样信号恢复的影响4、验证带通抽样定理原理5、验证孔径失真的原理三、实验原理抽样定理原理:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H f 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

(具体可参考《信号与系统》)我们这样开展抽样定理实验:信号源产生的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。

抽样定理实验的原理框图如下:抽样/保持被抽样信号抽样脉冲低通滤波器抽样恢复信号图1抽样定理实验原理框图抽样/保持被抽样信号抽样脉冲低通滤波器抽样恢复信号低通滤波器图2实际抽样系统为了让学生能全面观察并理解抽样定理的实质,我们应该对被抽样信号进行精心的安排和考虑。

在传统的抽样定理的实验中,我们用正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种方案放弃了。

另一种方案是采用较复杂的信号,但这种信号不便于观察,如图所示:被抽样信号抽样恢复后的信号图3复杂信号抽样恢复前后对比你能分辨图中抽样恢复后信号的失真吗?因此,我们选择了一种不是很复杂,但又包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所示:图1被抽样信号波形及频谱示意图对抽样脉冲信号的考虑大家都知道,理想的抽样脉冲是一个无线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有一定宽度的,很显然,这个脉冲宽度(简称脉宽)对抽样的结果是有影响的,这就是课本上讲的“孔径失真”,用不同的宽度的脉冲信号来抽样所带来的失真程度是不一样的,为了让大家能很好地理解和观察孔径失真现象,我们将抽样脉冲信号设计为脉宽可调的信号,在实验中大家可以一边调节脉冲宽度,一边从频域和时域两个方面来观察孔径失真现象。

抽样定理

抽样定理

fs=2B
(7.1 - 11)
(2) 若最高频率fH不为带宽的整数倍,
fH=nB+kB, 0<k<1
(7.1 - 12)
, fH/B=n+k,由定理知,m是一个不超过n+k的最大整 数,显然,m=n,所以能恢复出原信号m(t)的最小抽样速率为
fs =
2 fH m
=
2(nB + n
kB) =
2B(1+
M (w-
nws )D2wH (w) =
1 M (w) T
所以 M (w) = Ts[M s (w)D2wH (w)]
(7.1 - 8)
将时域卷积定理用于式(7.1 - 8), 有
m(t) =
Ts[ms (t) *
wH p
Sa (wHt)]
m(t)
×
ms(t)
T (t)
(a)
ms(t) 低 通 m(t) 滤波器 (b)
此定理告诉我们:若m(t)的频谱在某一角频率ωH以上为 零,则m(t)中的全部信息完全包含在其间隔不大于1/(2fH)秒 的均匀抽样序列里。
换句话说,在信号最高频率分量的每一个周期内起码应抽样 两次。 或者说,抽样速率fs(每秒内的抽样点数)应不小于2fH,若 抽样速率fs<2fH,则会产生失真,这种失真叫混叠失真。
这时信号便可用数字通信方式传输。在接收端,则将接 收到的数字信号进行译码和低通滤波,恢复原模拟信号。本 章在介绍抽样定理和脉冲幅度调制的基础上, 重点讨论模拟 信号数字化的两种方式,即PCM和ΔM的原理及性能,并简要 介绍它们的改进型:差分脉冲编码调制(DPCM)、 自适应差 分脉冲编码调制(ADPCM)和增量总和调制、数字压扩自适应 增量调制的原理。

抽样定理

抽样定理

抽样定理定义:在一个频带限制在(0,f h)内的时间连续信号f(t),如果以1/2 f h的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续的全部信息。

抽样定理在实际应用中应注意在抽样前后模拟信号进行滤波,把高于二分之一抽样频率的频率滤掉。

这是抽样中必不可少的步骤。

07年的抽样定理:设时间连续信号f(t),其最高截止频率为f m ,如果用时间间隔为T<=1/2f m的开关信号对f(t)进行抽样时,则f(t)就可被样值信号唯一地表示。

什么是A/D转换和D/A转换?什么是A/D转换和D/A转换?一。

什么是a/d.d/a转换:随着数字技术,特别是信息技术的飞速发展与普及,在现代控制。

通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。

由于系统的实际对象往往都是一些模拟量(如温度。

压力。

位移。

图像等),要使计算机或数字仪表能识别。

处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析。

处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。

这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路-模数和数模转换器。

将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d转换器或adc,analog to digital converter);将数字信号转换为模拟信号的电路称为数模转换器(简称d/a转换器或dac,digital to analog converter);a/d转换器和d/a转换器已成为信息系统中不可缺俚慕涌诘缏贰?br>为确保系统处理结果的精确度,a/d转换器和d/a转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,a/d与d/a转换器还要求具有较高的转换速度。

转换精度与转换速度是衡量a/d与d/a转换器的重要技术指标。

抽样定理的理论证明与实际应用分析

抽样定理的理论证明与实际应用分析

信号与线性系统分析综合练习题目:抽样定理的理论证明与实际应用一、抽样和抽样定理数字信号处理技术的优势和快速发展使得数字设备和数字媒体广泛应用,如手机、MP3、CD 和DVD 等。

抽样定理是通信理论中的一个重要定理,是模拟信号数字化的理论依据,包括时域抽样定理和频域抽样定理两部分,又称取样定理、采样定理,是由奈奎斯特(Nyquist)和香农(Shannon)分别于1928年和1949年提出的,故又称为奈奎斯特抽样定理或香农抽样定理。

“抽样”就是利用周期抽样脉冲p(t)从连续信号f(t)中抽取离散样值的过程,得到的离散信号为抽样信号,也称为抽样信号,以ƒs (t )表示。

抽样过程的数学模型就是连续信号与抽样脉冲序列相乘。

抽样过程所应遵循的规律,称抽样定理。

抽样定理说明抽样频率与信号频谱之间的关系,是连续信号离散化的基本依据。

在进行模A/D 转换过程中,当抽样频率f s.max 大于信号中最高频率f max 的2倍时(f s.max >2f max ),抽样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证抽样频率为信号最高频率的5~10倍。

抽样定理描述了在一定条件下,一个连续的信号完全可以用该信号在等时间间隔上的瞬时样本值表示,这些样本值包含了该连续时间信号的全部信息,利用这些样本值可以恢复原来的连续信号。

也就是说,抽样定理将连续信号与离散信号之间紧密的联系起来,为连续信号与离散信号的相互转换提供了依据。

通过观察抽样信号的频谱,发现它只是原信号频谱的线性重复搬移,只要给它乘以一个门函数,就可以在频域恢复原信号的频谱,然后再利用频域时域的对称关系,就能在时域上恢复原信号。

二、时域抽样定理的理论证明时域抽样定理的完整描述是这样:一个频谱在区间(-ωm ,ωm )以外为零的频带有限信号ƒ(t),可唯一地由其在均匀间隔T s (T s<1/2ƒm )上的样点值ƒs (t )=ƒ(nT s )确定。

抽样定理

抽样定理

抽样定理是通信理论中的一个重要定理,它是模拟信号数字化的理论基础,包括时域抽样定理和频域抽样定理。

抽样定理,也称为香农采样定律和奈奎斯特采样定律,是信息论特别是通信和信号处理中的重要基础结论。

E.T.惠特克(统计理论发表于1915年),克劳德·香农和哈里·奈奎斯特对此做出了重要贡献。

此外,V。

A. Kotelnikov也对该定理做出了重要贡献。

采样是将信号(即空间中的连续函数)转换为数字序列(即空间中的离散函数)。

采样后的离散信号通过保持器后,获得具有零阶保持器特性的阶跃信号。

如果信号受频带限制,并且采样频率高于信号最高频率的两倍,则可以从采样样本中完全重建原始连续信号。

限带信号转换的速度受到其最高频率分量的限制,也就是说,其在离散时间采样和表达信号细节的能力非常有限。

抽样定理意味着,如果信号带宽小于奈奎斯特频率(即采样频率的一半),那么这些离散采样点就可以完全代表原始信号。

高于或处于奈奎斯特频率的频率分量将导致混叠。

大多数应用都需要避免混叠,混叠的严重程度与这些混叠频率分量的相对强度有关。

采样过程中应遵循的定律也称为抽样定理和抽样定理。

抽样定理解释了采样频率和信号频谱之间的关系,这是连续信号离散化的基本基础。

抽样定理最早是由美国电信工程师H. Nyquist于1928年提出的,因此被称为Nyquist抽样定理。

1933年,苏联工程师科特尔尼科夫首次严格地通过公式表达了这一原理,因此在苏联文学中被称为科特尔尼科夫抽样定理。

1948年,信息理论的创始人C.E. Shannon 清楚地解释了这一原理,并将其正式引用为一个定理,因此在许多文献中也称为Shannon抽样定理。

抽样定理有很多表达式,但是最基本的表达式是时域抽样定理和频域抽样定理。

抽样定理广泛应用于数字遥测系统,时分遥测系统,信息处理,数字通信和采样控制理论中。

抽样定理

抽样定理

抽样定理抽样的分类:(1) 根据信号是低通型的还是带通型的,抽样定理分低通抽样定理和带通抽样定理;(2) 用来抽样的脉冲序列是等间隔的还是非等同间隔的,又分为均匀抽样定理和非均匀抽样定理;(3) 抽样的脉冲序列是冲击序列还是非冲击序列,又分为理想抽样和实际抽样。

低通型连续信号抽样定理抽样定理是通信原理中十分重要的定理之一,是模拟信号数字化的理论基础。

低通型连续信号的抽样定理:一个频带限制在(0,)H f 赫内的时间连续信号()m t ,若以12H f 的间隔对他进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

说明:抽样过程中满足抽样定理时,PCM 系统应无失真。

这一点与量化过程有本质区别。

量化是有失真的,只不过失真的大小可以控制。

低通型连续抽样定理证明设()m t 的频带为(0,)H f ,图中将时间连续信号()m t 和周期性冲激序列()T t δ相乘,用()s m t 表示此抽样函数,即()()()s T m t m t t δ=假设()m t 、()T t δ、()s m t 的频谱分别为()M ω、()T δω、()s M ω。

按照频域卷积定理,1()[()()]2s T M M ωωδωπ=因为 2()()T S n n T πδωδωω∞=-∞=-∑ 2S Tπω=所以, 1()[()*()]s s n M M n T ωωδωω∞=-∞=-∑由卷积关系,上式可写成1()()s s n M M n T ωωω∞=-∞=-∑ 上式表明,已抽样信号()s m t 的频谱()s M ω是无穷多个间隔为s ω的()M ω相迭加而成。

这表明()s M ω包含()M ω迭全部信息。

带通型抽样定理。

抽样定理

抽样定理

抽样定理
我们所熟知的抽样,是在数学数据处理中的从总体中抽样。

抽样定理是通信理论中的一个重要定理,是模拟信号数字化的理论依据,包括时域抽样定理和频域抽样定理两部分。

抽样定理指出,由样值序列无失真恢复原信号的条件是,为了满足抽样定理,要求模拟信号的频谱限制在0~之内(fh为模拟信号的最高频率)。

为此,在抽样之前,先设置一个前置低通滤波器,将模拟信号的带宽限制在fh以下,如果前置低通滤波器特性不良或者抽样频率过低都会产生折叠噪声。

例如,话音信号的最高频率限制在3400Hz,这时满足抽样定理的最低的抽样频率应为=6800Hz,为了留有一定的防卫带,CCITT规定话音信号的抽样率=8000Hz,这样就留出了8000-6800=1200Hz 作为滤波器的防卫带。

应当指出,抽样频率不是越高越好,太高时,将会降低信道的利用率(因为随着升高,数据传输速率也增大,则数字信号的带宽变宽,导致信道利用率降低),所以只要能满足,并有一定频带的防卫带即可。

以上讨论的抽样定理实际上是对低通信号的情况而言的,设模拟信号的频率范围为~,带宽。

如果,称之为低通型信号,例如,话音信号就是低通型信号的,若,则称之为带通信号,载波12路群信号(频率范围为60~108kHz)就属于带通型信号。

对于低通型信号来讲,应满足的条件,而对于带通型信号,如果仍然按照这个抽样,虽然能满足样值频谱不产生重叠的要求,但是无
疑太高了(因为带通信号的高),将降低信道频宽的利用率,这是不可取的。

抽样定理——精选推荐

抽样定理——精选推荐

抽样定理实验⼀抽样定理实验⼀、实验⽬的1、了解抽样定理在通信系统中的重要性2、掌握⾃然抽样及平顶抽样的实现⽅法3、理解低通采样定理的原理4、理解实际的抽样系统5、理解低通滤波器的幅频特性对抽样信号恢复的影响6、理解低通滤波器的相频特性对抽样信号恢复的影响7、理解平顶抽样产⽣孔径失真的原理8、理解带通采样定理的原理⼆、实验内容1、验证低通采样定理原理2、验证低通滤波器幅频特性对抽样信号恢复的影响3、验证低通滤波器相频特性对抽样信号恢复的影响4、验证带通抽样定理原理5、验证孔径失真的原理三、实验原理抽样定理原理:⼀个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤H f 21秒的间隔对它进⾏等间隔抽样,则()m t 将被所得到的抽样值完全确定。

(具体可参考《信号与系统》)我们这样开展抽样定理实验:信号源产⽣的被抽样信号和抽样脉冲经抽样/保持电路输出抽样信号,抽样信号经过滤波器之后恢复出被抽样信号。

抽样定理实验的原理框图如下:抽样/保持被抽样信号抽样脉冲低通滤波器抽样恢复信号图1抽样定理实验原理框图抽样/保持被抽样信号抽样脉冲低通滤波器抽样恢复信号低通滤波器图2实际抽样系统为了让学⽣能全⾯观察并理解抽样定理的实质,我们应该对被抽样信号进⾏精⼼的安排和考虑。

在传统的抽样定理的实验中,我们⽤正弦波来作为被抽样信号是有局限性的,特别是相频特性对抽样信号恢复的影响的实验现象不能很好的展现出来,因此,这种⽅案放弃了。

另⼀种⽅案是采⽤较复杂的信号,但这种信号不便于观察,如错误!未找到引⽤源。

所⽰:被抽样信号抽样恢复后的信号图3复杂信号抽样恢复前后对⽐你能分辨错误!未找到引⽤源。

中抽样恢复后信号的失真吗因此,我们选择了⼀种不是很复杂,但⼜包含多种频谱分量的信号:“3KHz正弦波”+“1KHz正弦波”,波形及频谱如所⽰:图1被抽样信号波形及频谱⽰意图对抽样脉冲信号的考虑⼤家都知道,理想的抽样脉冲是⼀个⽆线窄的冲激信号,这样的信号在现实系统中是不存在的,实际的抽样脉冲信号总是有⼀定宽度的,很显然,这个脉冲宽度(简称脉宽)对抽样的结果是有影响的,这就是课本上讲的“孔径失真”,⽤不同的宽度的脉冲信号来抽样所带来的失真程度是不⼀样的,为了让⼤家能很好地理解和观察孔径失真现象,我们将抽样脉冲信号设计为脉宽可调的信号,在实验中⼤家可以⼀边调节脉冲宽度,⼀边从频域和时域两个⽅⾯来观察孔径失真现象。

抽样定理

抽样定理

又有:
x(t ) = cos(Φ ) cos(
x p (t ) =
+∞ n = −∞
ωs
2
t ) − sin(Φ ) sin(
nT )δ (t − nT )
ωs
2
t)
∑ cos(Φ) cos( 2

ωs
结论
xp(t)作为输入加到截止频率为ωs/2的理想
低通滤波器上,其输出为
y (t ) = cos(Φ) cos(
2 假定以频率为二倍于该正弦信号频率的周 期单位冲激函数对它抽样。即抽样频率为 ω s。 抽样的冲激信号作为输入加到一个截至频 率为ωs/2的理想低通滤波器上。 x(t ) = cos(
ωs
t + Φ)
x p (t ) =
n = −∞
∑ x(nT )δ (t − nT )
+∞
其中T = 2π / ω s。
问题的提出:
抽样定理要求抽样频率大于或等于信号中最 高频率的两倍,但是等于的时候,会出现一 些问题。
为什么?
实际的例子
目的:确定圆盘的旋转方向。(抽样率ωs) ω0<ωs<2ω0 圆盘看起来是在倒转。(Why?)
考虑另一种情况
当ωs=2ω0时,不能确定圆 盘旋转方向。
信号的例子:
考虑下面正弦信号
ωs
2
t)
结果可见,x(t)的完全恢复仅仅发生在相位是 零的情况(或者2π整数倍的情况),否则信 号y(t)不等于x(t)。
极端的例子
考虑φ=-π/2的情况。这样有:
x(t ) = sin(
ωs
2
t)
该信号在抽样周期2π/ωs整倍数点上的 值都是零。在这个抽样率下所产生的信 号全是零。 当这个零输入加到该理想低通滤波器上 时,所得输出当然也都是零。

抽样定理

抽样定理

實驗一 抽樣定理實驗一、實驗目の1、瞭解抽樣定理在通信系統中の重要性2、掌握自然抽樣及平頂抽樣の實現方法3、理解低通採樣定理の原理4、理解實際の抽樣系統5、理解低通濾波器の幅頻特性對抽樣信號恢復の影響6、理解低通濾波器の相頻特性對抽樣信號恢復の影響7、理解平頂抽樣產生孔徑失真の原理8、理解帶通採樣定理の原理二、實驗內容1、驗證低通採樣定理原理2、驗證低通濾波器幅頻特性對抽樣信號恢復の影響3、驗證低通濾波器相頻特性對抽樣信號恢復の影響4、驗證帶通抽樣定理原理5、驗證孔徑失真の原理三、實驗原理抽樣定理原理:一個頻帶限制在(0,H f )內の時間連續信號()m t ,如果以T ≤H f 21秒の間隔對它進行等間隔抽樣,則()m t 將被所得到の抽樣值完全確定。

(具體可參考《信號與系統》)我們這樣開展抽樣定理實驗:信號源產生の被抽樣信號和抽樣脈衝經抽樣/保持電路輸出抽樣信號,抽樣信號經過濾波器之後恢復出被抽樣信號。

抽樣定理實驗の原理框圖如下:被抽样信号抽样脉冲抽样恢复信号圖1抽樣定理實驗原理框圖被抽样信号抽样恢复信号圖2實際抽樣系統為了讓學生能全面觀察並理解抽樣定理の實質,我們應該對被抽樣信號進行精心の安排和考慮。

在傳統の抽樣定理の實驗中,我們用正弦波來作為被抽樣信號是有局限性の,特別是相頻特性對抽樣信號恢復の影響の實驗現象不能很好の展現出來,因此,這種方案放棄了。

另一種方案是採用較複雜の信號,但這種信號不便於觀察,如圖所示:被抽樣信號抽樣恢復後の信號圖3複雜信號抽樣恢復前後對比你能分辨圖中抽樣恢復後信號の失真嗎?因此,我們選擇了一種不是很複雜,但又包含多種頻譜分量の信號:“3KHz 正弦波”+“1KHz 正弦波”,波形及頻譜如所示:圖1被抽樣信號波形及頻譜示意圖對抽樣脈衝信號の考慮大家都知道,理想の抽樣脈衝是一個無線窄の沖激信號,這樣の信號在現實系統中是不存在の,實際の抽樣脈衝信號總是有一定寬度の,很顯然,這個脈衝寬度(簡稱脈寬)對抽樣の結果是有影響の,這就是課本上講の“孔徑失真”,用不同の寬度の脈衝信號來抽樣所帶來の失真程度是不一樣の,為了讓大家能很好地理解和觀察孔徑失真現象,我們將抽樣脈衝信號設計為脈寬可調の信號,在實驗中大家可以一邊調節脈衝寬度,一邊從頻域和時域兩個方面來觀察孔徑失真現象。

抽样定理

抽样定理

抽样定理词义就是对时间连续的信号隔一定的时间间隔T抽取一个瞬时幅度值分类时域抽样定理、频域抽样定理基本定义所谓抽样,就是对时间连续的信号隔一定的时间间隔T 抽取一个瞬时幅度值(样值),抽样是由抽样门完成的。

在一个频带限制在(0,f h)内的时间连续信号f(t),如果以小于等于1/(2 f h)的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

或者说,如果一个连续信号f(t)的频谱中最高频率不超过f h,这种信号必定是个周期性的信号,当抽样频率f S≥2 f h时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。

根据这一特性,可以完成信号的模-数转换和数-模转换过程。

意义介绍抽样定理指出,由样值序列无失真恢复原信号的条件是f S≥2 f h ,为了满足抽样定理,要求模拟信号的频谱限制在0~f h之内(fh为模拟信号的最高频率)。

为此,在抽样之前,先设置一个前置低通滤波器,将模拟信号的带宽限制在fh以下,如果前置低通滤波器特性不良或者抽样频率过低都会产生噪声。

例如,话音信号的最高频率限制在3400HZ,这时满足抽样定理的最低的抽样频率应为fS=6800HZ,为了留有一定的防卫带,CCITT规定话音信号的抽样率fS=8000HZ,这样就留出了8000-6800=1200HZ作为滤波器的防卫带。

应当指出,抽样频率fS不是越高越好,太高时,将会降低信道的利用率(因为随着fS升高,数据传输速率也增大,则数字信号的带宽变宽,导致信道利用率降低。

)所以只要能满足fS≥2f h,并有一定频带的防卫带即可。

以上讨论的抽样定理实际上是对低通信号的情况而言的,设模拟信号的频率范围为f0~fh,带宽B=fh - f0.如果f0<B,称之为低通型信号,例如,话音信号就是低通型信号的,弱f0>B,则称之为带通信号,载波12路群信号(频率范围为60~108KHZ)就属于带通型信号。

信息光学07-抽样定理

信息光学07-抽样定理
g(x)
comb(x/X)
gs(x)x0.源自0x =x
0 #
§1.4 抽样定理
1、函数的抽样:二维情形
§1.4 抽样定理 抽样函数gs(x,y)的频谱
x y g s ( x, y) comb comb g ( x, y) X Y
Gs ( f x , f y )
经过抽样后函数的频谱,是原连续函数的 频谱以间隔1/X, 1/Y重复平移并叠加.
§1.4 抽样定理 二、函数的抽样
抽样后函数gs(x,y)的频谱
n m Gs(fx, fy) G f x , f y X Y n m 如果G (fx, fy)频带无限制, 则这
函数不可能在空域和频域都被限制在某一范围内.只要 信号存在于有限的时空范围,就会有所有的频率分量. 严格的限带函数在物理上是不存在的.
但是,实际信号的大部分能量被一定范围的频率分量所携带. 高频分量携带的能量甚少.由于忽略高频分量, 所引入的误差 可以忽略, 故可近似看作限带函数.
因而抽样理论在信息的传输和处理中有重要的意义.
n m
g s x, y hx, y g x, y
f y fx rect hx,y F rect 2B 2 B x y 4 Bx By s inc2 Bx x sinc2 By y g nX,m Yδx nX,y m Y
第一章复习 二、基本技能
简单和复合孔径的数学描述:矩孔、圆孔、单缝、多缝、线光栅、 位相板等; 脉冲函数的运算,卷积和相关的运算,图解表示; 常用基本函数的傅里叶变换和逆变换,利用傅里叶变换的性质和 定理求较复杂函数的傅里叶变换,图解表示。

抽样定理文档

抽样定理文档

抽样定理什么是抽样定理?抽样定理是统计学中一个重要的概念,它指出了当样本数量足够大时,从一个总体中得到的样本均值的分布将趋向于正态分布。

抽样定理广泛应用于各个领域的统计研究中,为我们提供了一种有效的估计总体参数的方法。

抽样定理的背景抽样定理最早由俄国数学家切比雪夫在1874年提出。

他证明了当总体为无限大且服从一定规律时,从总体中随机抽取的样本均值的分布将逐渐趋近于正态分布。

这个定理被广泛应用于概率论、数理统计以及其他与随机变量有关的领域中。

抽样定理的假设抽样定理的有效性基于以下几个重要的假设:1.总体是无限大的;2.样本的抽取是随机的;3.样本之间是相互独立的;4.样本的大小足够大。

这些假设是抽样定理成立的前提条件,只有在满足这些条件的情况下,我们才能应用抽样定理进行推断统计。

抽样定理的应用抽样定理为统计学的推断统计提供了有力的工具。

通过从总体中随机抽取样本,我们可以利用抽样定理来估计总体的参数。

例如,我们可以根据样本均值来估计总体的均值,根据样本标准差来估计总体的标准差等。

除了参数估计,抽样定理还可以用于假设检验。

通过计算样本均值与总体均值之间的差异,在一定的统计显著性水平下,我们可以判断总体均值是否与某个假设值相差显著。

抽样定理的局限性尽管抽样定理在统计学中有着广泛的应用,但我们也需要注意它的局限性。

抽样定理仅适用于样本数量足够大的情况下,当样本数量较小时,抽样定理可能并不成立。

此外,抽样定理假设总体分布为正态分布,然而实际情况中总体的分布并不总是正态分布,这也是抽样定理的一大限制。

总结抽样定理是统计学中一个重要的概念,它指出了从一个总体中得到的样本均值的分布将趋向于正态分布。

抽样定理为我们提供了一种有效的估计总体参数的方法。

然而,我们需要注意抽样定理的前提条件和限制,在应用抽样定理时要考虑到这些因素。

抽样定理在统计学中有着广泛的应用,为我们理解和推断总体提供了有力的工具。

以上是关于抽样定理的文档,希望能对您有所帮助!。

抽样定理实验原理

抽样定理实验原理

抽样定理实验原理
抽样定理是统计学中的一项重要原理,它可以帮助研究者在分析数据时得出准确的结论。

抽样定理的实验原理是通过从总体中随机抽取一部分样本,并对这些样本进行观察和分析,从而推断出总体的性质。

实际操作中,研究者需要按照一定的规则从总体中选择样本。

这种选择需要具备随机性,确保每个样本都有被选择的机会,并且不会受到任何外部因素的干扰。

通过随机抽样,可以减小样本选择的偏差,提高对总体的推断准确性。

在实验开始前,研究者需要确定样本的大小。

通常情况下,样本越大,推断总体特征的准确性就越高。

然而,样本大小的选择也需要考虑实际操作的可行性以及经济成本等因素。

当样本被选定后,研究者可以对样本进行观察和测量。

通过对样本数据的分析,可以获取有关总体的统计信息,如均值、方差等。

同时,抽样定理指出,样本均值的分布会逐渐接近总体均值,而样本方差的分布也会逐渐接近总体方差。

基于抽样定理的实验原理,研究者可以运用统计学中的各种方法,如假设检验、置信区间估计等,来推断总体的特征。

这些方法可以帮助研究者对数据进行分析和解释,进而得出科学结论。

总之,抽样定理的实验原理是通过随机抽样和样本观察来推断总体性质的一种统计学原理。

它在现实应用和科学研究中扮演
着重要角色,帮助研究者从有限的样本中获取对总体的准确认识。

抽样定理的原理及应用

抽样定理的原理及应用

抽样定理的原理及应用1. 抽样定理的原理抽样定理是概率论中的一个重要定理,它指出了在一定条件下,通过抽样可以准确地推断出总体的参数或分布情况。

抽样定理的原理基于大数定律和中心极限定理。

1.1 大数定律大数定律是概率论中的一个基本定律,它描述了在重复独立试验中,随着试验次数的增加,样本均值(或频率)将收敛于总体均值(或概率)。

换句话说,大数定律表明,通过增加样本数量,可以增加估计的准确性。

1.2 中心极限定理中心极限定理是概率论中的另一个重要定理,它描述了在一定条件下,大量相互独立的随机变量之和的分布将趋近于正态分布。

换句话说,中心极限定理表明,无论总体分布是什么样的,当样本容量足够大时,样本均值的分布都接近于正态分布。

2. 抽样定理的应用抽样定理在实际应用中具有广泛的用途。

下面将介绍抽样定理在统计学、市场调研和质量控制等领域的应用。

2.1 统计学中的应用在统计学中,抽样定理被广泛应用于构造信赖区间和进行参数估计。

信赖区间用于描述参数估计的不确定度,通过抽样获得的样本数据可以帮助我们估计总体参数的范围。

例如,通过抽样后的样本数据可以估计总体均值的信赖区间,从而推断总体均值的范围。

2.2 市场调研中的应用在市场调研中,抽样定理被用于确定样本容量的大小。

通过抽样的方式,可以从总体中选择一部分样本进行调研,以了解总体的特征。

抽样定理告诉我们,样本容量的大小与估计的准确性有关,通常情况下,样本容量越大,估计的准确性越高。

因此,在市场调研中,我们可以根据抽样定理计算出所需的样本容量,以确保研究结果的可靠性。

2.3 质量控制中的应用在质量控制中,抽样定理被用于进行抽样检验。

通过抽样的方式,可以从生产过程中选择一部分产品进行检验,以判断整体质量水平是否合格。

抽样定理告诉我们,当样本容量足够大时,可以通过抽样得到的样本数据准确地反映整体质量水平。

因此,在质量控制中,我们可以根据抽样定理确定合适的抽样容量,以保证检验结果的可靠性。

抽样定理

抽样定理

采样定理,又称香农采样定律、奈奎斯特采样定律,是信息论,特别是通讯与信号处理学科中的一个重要基本结论.E. T. Whittaker (1915年发表的统计理论),克劳德·香农与Harry Nyquist都对它作出了重要贡献。

另外,V. A. Kotelnikov 也对这个定理做了重要贡献。

采样是将一个信号(即时间或空间上的连续函数)转换成一个数值序列(即时间或空间上的离散函数)。

采样得到的离散信号经保持器后,得到的是阶梯信号,即具有零阶保持器的特性。

如果信号是带限的,并且采样频率高于信号最高频率的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。

带限信号变换的快慢受到它的最高频率分量的限制,也就是说它的离散时刻采样表现信号细节的能力是非常有限的。

采样定理是指,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。

高于或处于奈奎斯特频率的频率分量会导致混叠现象。

大多数应用都要求避免混叠,混叠问题的严重程度与这些混叠频率分量的相对强度有关。

采样过程所应遵循的规律,又称取样定理、抽样定理。

采样定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。

采样定理是1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。

1933年由苏联工程师科捷利尼科夫首次用公式严格地表述这一定理,因此在苏联文献中称为科捷利尼科夫采样定理。

1948年信息论的创始人C.E.香农对这一定理加以明确地说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。

采样定理有许多表述形式,但最基本的表述方式是时域采样定理和频域采样定理。

采样定理在数字式遥测系统、时分制遥测系统、信息处理、数字通信和采样控制理论等领域得到广泛的应用[1]。

抽样定理

抽样定理

通信原理实验实验报告实验一:抽样定理一.实验名称抽样定理的仿真验证二.实验目的通过使用Systemview搭建流程图,对奈奎斯特采样定理进行验证,加深理解。

三.实验原理1.奈奎斯特采样定理(抽样定理):设时间连续信号,其最高截止频率为,如果用时间间隔为的开关信号对进行抽样时,则就可被样值信号唯一地表示。

在一个频带限制在内的时间连续信号,如果以小于等于的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。

或者说,如果一个连续信号的频谱中最高频率不超过,这种信号必定是个周期性的信号,当抽样频率时,抽样后的信号就包含原连续信号的全部信息,而不会有信息丢失,当需要时,可以根据这些抽样信号的样本来还原原来的连续信号。

根据这一特性,可以完成信号的模-数转换和数-模转换过程。

2.抽样定理系统框图四.实验过程1.步骤设置3个相同幅度不同频率的信号相加作为连续信号,设置新的脉冲信号通过乘法器对连续信号采样,通过滤波器处理采样信号后回复信号。

分别在加法器输出端、乘法器输出端、滤波器输出端设置信宿库作为示波器观察对应的信号。

通过观察信号采样恢复前后图像是否一致来验证抽样定理。

2.参数设置组成信源的3个信号分别设置:1V,10HZ;1V,12HZ;1V,14HZ。

脉冲信号分别设置3个采样频率:13HZ,28HZ,50HZ。

时钟设置:截止时间1.023s,时间间隔1e-3s,采样点数1024,其他随系统默认。

滤波器设置截止频率为16HZ。

3.模块连接图4.实验结果(1)采样频率13HZ(2)采样频率28HZ(3) 采样频率50HZ五.实验分析与总结1. 结论:当采样频率2s m f f <(抽样频率为13HZ )时,抽样信号恢复以后与原信号差距较大;当采样频率2s m f f =(抽样频率为28HZ )时,抽样信号恢复以后与原信号差距较小;当采样频率2s m f f >(抽样频率为50HZ )时,抽样信号恢复以后与原信号吻合较好。

抽样定理

抽样定理

抽样定理以一定的时间间隔T提取时间连续信号的瞬时振幅值(采样值),并由采样门完成采样。

采样定理指出,从采样序列中恢复原始信号的条件是f S≥2 f h。

为了满足采样定理,有必要将模拟信号的频谱限制为0〜f h(fh是模拟信号的最高频率)。

因此,在采样之前,请设置一个低通滤波器以将模拟信号的带宽限制在fh以下。

如果预低通滤波器的特性很差或采样频率太低,则会产生折叠噪声。

例如,语音信号的最大频率被限制为3400HZ。

此时,满足采样定理的最小采样频率应为fS = 6800HZ。

为了离开某个防御区域,CCITT指定语音信号的采样率fS = 8000HZ,因此将8000-6800 = 1200HZ用作滤波器的防御区域。

应当注意,采样频率fS将不会尽可能高。

如果过高,则会降低信道利用率(由于fS的增加,数据传输速率也会提高,数字信号的带宽也会变宽,从而导致信道利用率下降。

)当fS≥2f h时,具有一定的防御频段。

上面讨论的采样定理实际上是针对低通信号的。

假设模拟信号的频率范围为f0〜fh,带宽B = fh-f0。

如果f0 <B,则称为低通信号。

例如,语音信号是低通信号,并且弱f0> B称为带通信号。

12组载波信号(频率范围60〜108KHZ)为带通信号。

对于低通信号,应满足fS≥2fh的条件;对于带通信号,如果仍然使用此采样,尽管可以满足采样频谱中不重叠的要求,但fS无疑太高(由于高频段,通过信号fh高),这会降低信道带宽利用率,这是不希望的。

采样定理:假设一个时间连续信号f(t),如果时间间隔T <= 1 / 2f m,则最高截止频率为f m当f(t)的开关信号被采样时,则f(t)可以由采样信号唯一地表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章复习 二、基本技能
简单和复合孔径的数学描述:矩孔、圆孔、单缝、多缝、线光栅、 位相板等; 脉冲函数的运算,卷积和相关的运算,图解表示; 常用基本函数的傅里叶变换和逆变换,利用傅里叶变换的性质和 定理求较复杂函数的傅里叶变换,图解表示。
第一章复习 三、综合能力
利用傅里叶变换及其定理求解一些特殊函数的积分; 会用解析法和图解法处理线性空不变系统的输入输出问题(空域、 频域).
fx
0
*
0
1 1 2Bx 2Bx
=
频域滤波相当于 空域的插值运算
连续函数具有的信息内容等效于一系列的信息抽样.重新恢 复连续函数所必需的离散值的最小数目由抽样定理决定.
§1.4 抽样定理 抽样和还原的图示
抽样
空域 g(x,y)(fx,fy) g(x,y)= gs(x,y)* h(x,y)
频域 G(fx,fy)
Gs(fx,fy)
G(fx,fy)= Gs(fx,fy)· x,fy) H(f
comb(x/X)comb(y/Y) 抽样定理表明: 在一定条件下可以由插值准确恢复原函数。 一个连续的限带函数可以由其离散的抽样序列代替,而不丢 失任何信息。
§1.4 抽样定理
抽样定理的适用性
在数学上, 限带函数在空域上一定是无限扩展的函数
只要以小于或等于奈奎斯特间隔对g(x,y)抽样,则gs(x,y)的频 谱就是G (fx, fy)的周期性复现,包含了g(x,y)的全部信息.
§1.4 抽样定理
2、原函数的复原 理想低通滤波
为了从gs(x,y)中还原出g(x,y), 将gs(x,y)通 过一个理想低通滤波器,只允许所有频率 |fx|<Bx, |fy|<By 的频率分量无畸变地通过, 而将此区域以外的频率分量完全阻塞.
原函数在分立点上的抽样值
插值函数
插值:由抽样点函数值计算非抽样点函数值
§1.4 抽样定理 抽样和还原的图示
g(x) x 0
comb(x/X)
gs(x) x 0 F.T. Gs(fx)
.
0
x =
X<1/(2Bx)
?
F.T. rect(fx/2Bx) F.T. G(fx)
F.T. G(fx) fx
F.T. Xcomb(Xfx)
§1.4 抽样定理
3、空间带宽积
若 限带函数g(x,y)在频域中|fx|<Bx, |fy|<By 以外恒等于零, 即函数的带宽为Bx 和By, 则函数在空域中|x| <X 和|y| <Y 的范围内最少的抽样点数为:
2X 2Y 4XY 4 Bx By 16XYBx By 1 1 2 Bx 2 By
n m
g s x, y hx, y g x, y
f y fx rect hx,y F rect 2B 2 B x y 4 Bx By s inc2 Bx x sinc2 By y g nX,m Yδx nX,y m Y
由抽样值还原出原函数的条件
n m Gs(fx, fy) n m G f x X , f y Y

G(fx) fx Bx
(1) g(x,y)是限带函数, 其频谱G (fx, fy)仅在 -Bx 0 频率平面上一个有限区域 上不为零. 2 Bx, 2 By : 带宽: 包围 的最小矩形在 fx 和 fy方向上的宽度. (2) 原函数抽样时,在x方向和y方向抽样点的间隔 Gs(fx) X 和Y不得大于1/(2 Bx)和1/(2 By),
函数不可能在空域和频域都被限制在某一范围内.只要 信号存在于有限的时空范围,就会有所有的频率分量. 严格的限带函数在物理上是不存在的.
但是,实际信号的大部分能量被一定范围的频率分量所携带. 高频分量携带的能量甚少.由于忽略高频分量, 所引入的误差 可以忽略, 故可近似看作限带函数.
因而抽样理论在信息的传输和处理中有重要的意义.
g nX,m Y



n m sinc2 Bx x- n gx, y g , 2B 2B 2B n m x y x

m sinc2 By y 2 B y
XY comb Xfx combYf y G( f x , f y )

x y comb comb G( f x , f y ) X Y
n m d f x , f y G( f x , f y ) X Y n m n m G f x , f y X Y n m
滤波过程 :
fy fx G f x ,f y rect Gs f x ,f y rect 2B 2B x y
根据卷积定理,在空间域得到:
x y g s x,y comb comb g x,y X Y XY
空域中的面积 频域中的面积
在该区域中函数可以用16XYBxBy个值近似表示. 定义: 空间带宽积SW (SBP)= 16XYBxBy
§1.4 抽样定理
3、空间带宽积
空间带宽积的物理意义
• 空间信号(图像、场分布)的信息容量 • 成像系统、信息存储、处理系统,存储和处理信息的能力
• 空间物体的自由度数或自由参数数N
§1.4 抽样定理 2、原函数的复原
理想低通滤波
空域中等效于:
g x,y 4 Bx By XY

sinc2 Bx x-nX sinc 2 By y m Y
若取最大允许的抽样间隔,即X =1/(2 Bx),Y=1/(2 By) ,则用函 数的抽样值计算出原函数:
n m
些频谱函数必然会叠加 即使G (fx, fy)是频带有限的函数, 若X,Y取值不合适, 这些重复的 频谱函数之间也会互相重叠.
1/X

Gs(fx)
0
1/X
fx
Gs(fx) 0 fx
只有使这些频谱函数互不重叠, 才有可 能用滤波的方法,从中提取出原函数的 频谱, 进而求出原函数.
§1.4 抽样定理 二、函数的抽样
若g(x,y)为实函数, 每个抽样值为一个实数, N=SW 若g(x,y)为复函数, 每个抽样值为一个复数, N=2SW • 不变性, 不随空间位移或频移变化 (空间尺度变化引起频谱尺寸相反变化.)
§1.4 抽样定理
3、空间带宽积
• 空间信号(图像、场分布)的信息容量 • 成像系统、信息存储、处理系统,存储和处理信息的能力
1 2 Bx , X 1 2 By Y
-Bx 0 Bx
fx
则Gs中各个区域(间隔为1/X,1/Y)的频谱就不会重叠 有可能用滤波的方法,提取出原函数的频谱G, 进而求出原函数.
1/X
§1.4 抽样定理 二、函数的抽样
由抽样值还原出原函数的条件
1 2 Bx , X 1 2 By Y
则Gs中各个区域(间隔为1/X,1/Y) Gs(fx) 的频谱就不会重叠, 有可能用滤 波的方法,提取出原函数的频谱 -Bx 0 Bx fx G, 进而求出原函数. 1/X 1 1 X , Y 2Bx 2By 称为奈奎斯特(Niquest)间隔
经过抽样后函数的频谱,是原连续函数的 频谱以间隔1/X, 1/Y重复平移并叠加.
§1.4 抽样定理 二、函数的抽样
抽样后函数gs(x,y)的频谱
n m Gs(fx, fy) G f x , f y X Y n m 如果G (fx, fy)频带无限制, 则这
第一章 二维线性系统分析
Analysis of 2-Dimensional Linear System §1.4 抽样定理 Sampling Theorem
问题的提出: 对于一个连续的信号(模拟信号), 是否 必须连续地发送,才能传递信号所包含的全部信息? 答:为了完全描述一个频带受限制的信号(带限信号), 可以对它在离散点(时间或空间点)进行抽样. 抽样定理
此理想低通滤波器的频率 特性为频域中的门函数
Gs(fx)
-Bx 0 Bx
1/X
fx
§1.4 抽样定理 2、原函数的复原
理想低通滤波
fx 用频域中宽度2Bx和2By的位于原 H f x ,f y rect 2B 点的矩形函数作为滤波函数: x fy rect 2B y

液晶显示屏尺寸为250×250(mm2), 每个像元的 尺寸为0.25 × 0.25 (mm2), 计算: 1.像元总数 2.最高空间频率 3. 空间带宽积
第一章复习 一、基本概念
频谱, 振幅谱, 位相谱 线性系统, 脉冲响应,线性空不变系统,传递函数 滤波(高通滤波, 低通滤波) 抽样定理, 奈奎斯特间隔
g(x)
comb(x/X)
gs(x)
x
0
.
0
x =
x
0 #
§1.4 抽样定理
1、函数的抽样:二维情形
§1.4 抽样定理 抽样函数gs(x,y)的频谱
x y g s ( x, y) comb comb g ( x, y) X Y
Gs ( f x , f y )
...
0 抽样
...
1/X fx
-Bx 0 Bx * -1/X
= -3Bx -Bx
-1/X
fx . 0 Bx
1/X
3Bx
fx = fx -Bx 0 Bx -Bx 0 Bx 还原
§1.4 抽样定理 抽样和还原的图示
gs(x)
x
-2X -X
相关文档
最新文档