2018年高考数学(人教A版)一轮复习课件:2.10变化率与导数、导数的计算

合集下载

高考数学一轮总复习第三章导数及应用1导数的概念及运算课件理

高考数学一轮总复习第三章导数及应用1导数的概念及运算课件理

(2)求过点 P 的曲线的切线方程的步骤为: 第一步,设出切点坐标 P′(x1,f(x1)); 第二步,写出过 P′(x1,f(x1))的切线方程为 y-f(x1)=f′ (x1)(x-x1); 第三步,将点 P 的坐标(x0,y0)代入切线方程,求出 x1; 第四步,将 x1 的值代入方程 y-f(x1)=f′(x1)(x-x1)可得过 点 P(x0,y0)的切线方程.
第二十五页,共46页。
(5)y=-lnx+e-2x,∴y′=-1x+e-2x·(-2x)′=-1x-2e-2x. 【答案】 (1)y′=24x3+9x2-16x-4 (2)y′=(ln3+1)·(3e)x-2xln2 (3)y′=x2+x(1-x2+2x12·)l2nx (4)y′=2sin(4x+23π) (5)y′=-1x-2e-2x
第十二页,共46页。
2.计算: (1)(x4-3x3+1)′=________; (2)(ln1x)′=________; (3)(xex)′=______; (4)(sinx·cosx)′=______. 答案 (1)4x3-9x2 (2)-xln12x (3)ex+xex (4)cos2x
第十三页,共46页。
为 k1,k2,则 k1,k2 的大小关系为( )
A.k1>k2
B.k1<k2
C.k1=k2
D.不确定
答案 A
解析 ∵y=sinx,∴y′=(sinx)′=cosx.
π k1=cos0=1,k2=cos 2 =0,∴k1>k2.
第十五页,共46页。
5.(2018·陕西检测)已知直线 y=-x+m 是曲线 y=x2-3lnx
第二十二页,共46页。
题型二 导数的基本运算
求下列函数的导数: (1)y=(3x3-4x)(2x+1); (3)y=x2ln+x1; (5)y=ln1x+e-2x.

课标通用2018届高考数学一轮复习第三章导数及其应用第1节变化率与导数导数的计算课件理201709023115

课标通用2018届高考数学一轮复习第三章导数及其应用第1节变化率与导数导数的计算课件理201709023115

(2)曲线的切线不一定与曲线只有一个公共点.(
(3) 与 曲 线 只 有 一 个 公 共 点 的 直 线 一 定 是 曲 线 的 切 线.( )
(4)[f(ax+b)]′=f ′(ax+b).(
2
) )
1 (5)若 f(x)=f ′(a)x +lnx(a>0), 则 f ′(x)=2x f ′(a)+ x .(
1 3 4 y-3x0+3=x2 0(x-x0),
2 3 4 2 y=x0·x- x0+ . 3 3
∵点
2 3 4 2 P(2,4)在切线上,∴4=2x0- x0+ , 3 3
2 3 2 2 即 x3 - 3 x + 4 = 0 ,∴ x + x - 4 x 0 0 0 0 0+4=0,
x 1 x (2)由题可得:y=sin -cos2 =- sinx, 2 2
1 1 1 ∴y′= -2sinx ′=- (sinx)′=- cosx. 2 2
1+ x+1- x 1 1 2 (3)y= + = = , 1- x 1+ x (1- x)(1+ x) 1-x
f(x)=ex f(x)=logax (a>0 且 a≠1) f(x)=lnx
f ′(x)=ex
1 f ′(x)=xlna(a>0,且 a≠1)
1 f ′(x)=x
4.导数运算法则
f (x)±g′(x) ; (1)[f(x)± g(x)]′=____________
f ′(x)g(x)+f(x)g′(x) ; (2)[f(x)·g(x)]′=__________________ f ′(x)g(x)-f(x)g′(x) f (x) 2 [ g ( x )] (3) ′=___________________ (g(x)≠0). g(x)

一轮复习课时训练§2.10:变化率与导数、导数的计算

一轮复习课时训练§2.10:变化率与导数、导数的计算

第二章§10:变化率与导数、导数的计算(与一轮复习课件对应的课时训练)满分100,训练时间45分钟一、选择题:本大题共5小题,每小题8分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若曲线y =x 2+ax +b 在点(0,b)处的切线方程是x -y +1=0,则A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-12.若f(x)满足f(x)=13x 3-f ′(1)x 2-x ,则f ′(1)的值为 A .0 B .2 C .1 D .-13.已知函数f(x)在R 上满足f(x)=2f(2-x)+e x -1+x 2,则曲线y =f(x)在点(1,f(1))处的切线方程是A .2x -y -1=0B .x -y -3=0C .3x -y -2=0D .2x +y -3=04.设函数y =xsinx +cosx 的图象上的点(x ,y)处的切线斜率为k ,若k =g(x),则函数 k =g(x)的图象大致为5.如图为一圆锥形容器,其底面圆的直径等于圆锥母线长,现以每分钟9.3升的速度将水注入容器内,则注入水的高度在t =127分钟时瞬时变化率为(取π=3.1) A .27分米/分钟 B .9分米/分钟C .81分米/分钟D .99分米/分钟二、填空题:本大题共3小题,每小题8分,共24分.6.已知函数f(x)=kcosx 的图象经过点P(π3,1),则函数图象上过点P 的切线斜率 等于________.7.函数y =x -1x 2的导数为________. 8.设f(x)是偶函数.若曲线y =f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在点 (-1,f(-1))处的切线斜率为________.三、解答题:本大题共2小题,共36分.解答应写出文字说明、证明过程或演算步骤.9.(本小题满分18分)设抛物线C 1:y =x 2-2x +2与抛物线C 2:y =-x 2+ax +b 在它们的一个交点处的切线互相垂直.求a ,b 之间的关系.10.(本小题满分18分)已知函数f(x)=ax -6x 2+b的图象在点M(-1,f(-1))处的切线方程为x +2y +5=0,求函数y =f(x)的解析式.参考答案及其解析一、选择题:本大题共5小题,每小题8分,共40分.1.解析:y ′=2x +a ,y ′|x =0=2×0+a =1.∴a =1,又∵(0,b)在直线x -y +1=0上, ∴b =1.答案:A2.解析:f ′(x)=x 2-2xf ′(1)-1,∴f ′(1)=1-2f ′(1)-1,∴f ′(1)=0. 答案:A3.解析:令x =1得f(1)=-2.对等式两边求导得f ′(x)=-2f ′(2-x)+e x -1+2x ,令x =1,解得f ′(1)=1,所以切线方程为y +2=x -1,即x -y -3=0.答案:B4.解析:y ′=sinx +xcosx -sinx =xcosx ,则g(x)=xcosx ,而g(-x)=-xcos(-x)=-g(x),∴g(x)为奇函数,图象关于(0,0)对称.而x >0,接近于0时,g(x)>0,∴B 项正确.答案:B5.解析:设t 时刻水面高度为h ,半径为r ,则r =33h ,此时水的体积V =13πr 2h =19πh 3,又V =9.3t.∴19πh 3=9.3t ,把π=3.1代入得h =3t 13,求导得h ′=t -23,∴当t =127时, 瞬时变化率为(127)-23=9. 答案:B二、填空题:本大题共3小题,每小题8分,共24分.6.解析:由已知f(π3)=kcos π3=1,∴k =2,∴f(x)=2cosx ,∴f ′(x)=-2sinx ,∴过点P 处的切线斜率f ′(π3)=-2sin π3=- 3. 答案:- 37.解析:y ′=(x -1)′x 2-(x -1)·(x 2)′x 4=x 2-2x (x -1)x 4=x 2-2x 2+2x x 4=-x 2+2x x 4=2-x x3. 答案:y ′=2-x x38.解析:由f(x)是偶函数,∴f(x)的图象关于y 轴对称.从而由已知得在(-1,f(-1))处的切线斜率为-1.答案:-1三、解答题:本大题共2小题,共36分.9.(本小题满分18分)解:设两抛物线的交点为M(x 0,y 0).由题意知x 20-2x 0+2=-x 20+ax 0+b ,整理得2x 20-(2+a)x 0+2-b =0,①由导数可知抛物线C 1、C 2在交点M 处的切线斜率为k 1=2x 0-2,k 2=-2x 0+a.∵两切线垂直,∴k 1k 2=-1.即(2x 0-2)(-2x 0+a)=-1,整理得2[2x 20-(2+a)x 0]+2a -1=0,②联立①②消去x 0,得a +b =52. 10.(本小题满分18分)解:由函数f(x)的图象在点M(-1,f(-1))处的切线方程为x +2y +5=0知-1+2f(-1)+5=0,即f(-1)=-2,f ′(-1)=-12. ∵f ′(x)=a (x 2+b )-2x (ax -6)(x 2+b )2, ∴⎩⎪⎨⎪⎧ -a -61+b =-2a (1+b )+2(-a -6)(1+b )2=-12,即⎩⎪⎨⎪⎧ a =2b -4a (1+b )-2(a +6)(1+b )2=-12. 解得a =2,b =3(∵b +1≠0,∴b =-1舍去).所以所求的函数解析式是f(x)=2x -6x 2+3 .。

2018版高考数学人教A版理一轮复习课件:第2章 第10节 变化率与导数、导数的计算 精品

2018版高考数学人教A版理一轮复习课件:第2章 第10节 变化率与导数、导数的计算 精品

[变式训练 1] (1)f(x)=x(2 017+ln x),若 f′(x0)=2 018,则 x0 等于( )
A.e2
B.1
C.ln 2
D.e
(2)(2015·天津高考)已知函数 f(x)=axln x,x∈(0,+∞),其中 a 为实数,f′(x)
为 f(x)的导函数.若 f′(1)=3,则 a 的值为________. (1)B (2)3 [(1)f′(x)=2 017+ln x+x×1x=2 018+ln x,故由 f′(x0)=2 018,
1 [∵f′(x)=3ax2+1, ∴f′(1)=3a+1. 又 f(1)=a+2, ∴切线方程为 y-(a+2)=(3a+1)(x-1). ∵切线过点(2,7),∴7-(a+2)=3a+1,解得 a=1.]
导数的计算
求下列函数的导数: (1)y=exln x; (2)y=xx2+1x+x13; (3)y=x-sin2xcos2x; (4)y=ln(2x-9).

第十节 变化率与导数、导数的计算


· 自
[考纲传真] 1.了解导数概念的实际背景.2.通过函数图象直观理解导数
主 学 习
的几何意义.3.能根据导数的定义求函数 y=C(C 为常数),y=x,y=1x,y=x2,
课 时 分
明 y=x3,y= x的导数.4.能利用基本初等函数的导数公式和导数的四则运算法
4.复合函数的导数 复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的导数间的关系为 yx′= yu′·ux′ ,即 y 对 x 的导数等于 y对u 的导数与 u对x 的导数的乘积.
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)f′(x0)与(f(x0))′表示的意义相同.( ) (2)求 f′(x0)时,可先求 f(x0)再求 f′(x0).( ) (3)曲线的切线与曲线不一定只有一个公共点.( ) (4)若 f(x)=e2x,则 f′(x)=e2x.( ) [答案] (1)× (2)× (3)√ (4)×

高中数学一轮复习课件:变化率与导数

高中数学一轮复习课件:变化率与导数

数学
高考总复习人教A版 ·(理)
【例3】 已知函数f(x)=x3+x-16. (1)求曲线y=f(x)在点(2,-6)处的切线的方程; (2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的
方程及切点坐标;
(3)如果曲线y=f(x)的某一切线与直线y=- x +3垂
直,求切点坐标与切线的方程.
数学
高考总复习人教A版 ·(理)
变式迁移 1 用导数的定义求函数y=x2+ax+b(a,b 为常数)的导数.
第二模块 函数、导数及其应用
第二十三页,编辑于星期日:二十三点 五分。
数学
高考总复习人教A版 ·(理)
【例 2】 求下列函数的导数: (1)y=xx++csoinsxx; (2)y=(2x-3)5; (3)y= 3-x; (4)y=ln(x+ 1+x2).
【例1】 一物体在某一受力状态下的位移s(t)(单位: m)与运动时间t(单位:s)的关系为:s(t)=t3(t>0).
(1)利用导数的定义求s′(t); (2)求该物体在t=2秒时的瞬时速度v(2).
第二模块 函数、导数及其应用
第二十页,编辑于星期日:二十三点 五分。
数学
高考总复习人教A版 ·(理)
数学
高考总复习人教A版 ·(理)
第二模块 函数、导数及其应用
第一页,编辑于星期日:二十三点 五分。
数学
高考总复习人教A版 ·(理)
考纲 要求
热点 提示
1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义求函数 y=c,y=x,y=x2,y=x3, y=1x,y= x的导数. 4.能利用给出的基本初等函数的导数公式和导数的 四则运算法则求简单函数的导数.能求简单的复合函

2018高考文科数学一轮复习 变化率与导数、导数的计算

2018高考文科数学一轮复习  变化率与导数、导数的计算
(2)函数 y=f(x)在 x=x0 处的导数:
①定义:称函数 y=f(x)在 x=x0 处的瞬时变化率
Δy fx0+Δx-fx0 lim Δx Δx lim _________________ =_______ 为函数 y=f(x)在 x=x0 处的导数, Δx→0 Δx 0 fx0+Δx-fx0 lim Δy Δx 记作 f′(x0)或 y′|x x0 即 f′(x0)= lim Δx=____________________. Δx→0
y0 f ( x0 ) (2)解方程组 求出切点坐标; f ( x0 ) b , f (x 0 ) x a 0
(3)利用点斜式写出切线方程.
高三(8)班高考数学第一轮复习
13 4 例 3、 已知曲线 y=3x +3. (1)求曲线在点 P(2,4)处的切线方程; 4x-y-4=0 (2)求曲线过点 P(2,4)的切线方程. x-y+2=0或4x-y-4=0
高三(8)班高考数学第一轮复习
变化率与导数、导数的计算
高三(8)班高考数学第一轮复习
考纲要求
1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数定义,求函数y 2, =c(c为常数 ) , y = x , y = x 1 3 y = y=x , x,y= x 的导数. 4.能利用给出的基本初等函 数的导数公式和导数的四则运 算法则求简单函数的导数.
高三(8)班高考数学第一轮复习
考点 2 导数的几何意义 f ′(x0)表示函数 f ′(x0)的几何意义就 1.函数 y=f(x)在点 P(x0,y0)处的导数 y=f(x)在 x=x0 处的瞬时变化率, 导数 y-y0= f ′(x0)(x-x0).
是函数 y=f(x)在 P(x0,y0)处的切线的斜率,其切线方程为 2. 在求切线方程时, 应先判断已知点 Q(a,b)是否为切点, 若不是切点,则应先求出切点的坐标.其求法如下: (1)设出切点的坐标 P(x0,y0);

课标通用2018届高考数学一轮复习第三章导数及其应用第1节变化率与导数导数的计算课件理201709023115

课标通用2018届高考数学一轮复习第三章导数及其应用第1节变化率与导数导数的计算课件理201709023115

)
D.有 2 条,它们的方程分别为 y=0,x=0
[解析]
∵y′=3x2,∴k=y′|x=0=0,∴曲线 y=x3 在原点
处的切线方程为 y=0.
[答案] B
6.气球中充入空气,气球中空气的体积 V(单位:L)从 1 L 到 2 L 时,气球半径 r(单位:dm)的平均变化率约为 (气球近似看作球体).
[答案]
(1)√
(2)√
(3)×
(4)×
(5)√ቤተ መጻሕፍቲ ባይዱ
2.(2016· 唐山模拟)曲线 y=ex-lnx 在点(1,e)处的切线方 程为( ) B.(1-e)x-y-1=0 D.(e-1)x-y-1=0
A.(1-e)x-y+1=0 C.(e-1)x-y+1=0
[解析]
1 由于 y′=e-x ,所以 y′|x=1=e-1,故曲线 y=ex
1 1 ∵f ′(x)=- 2cosx+ x (-sinx), x
π 1 2 3 ′ =- + ·(-1)=- . π π π 2
∴f(π)+f
[答案]
C
x 4.曲线 y= 在点(-1,-1)处的切线方程为( x +2 A.y=2x+1 C.y=-2x-3 B.y=2x-1 D.y=-2x-2
知 识
梳 理 诊 断
1.导数的概念 (1)f(x)在 x=x0 处的导数 函数 y=f(x)在 x=x0 处的瞬时变化率是
f(x0+Δx)-f(x0) Δ y lim lim Δx→0Δ x ,称其为函数 y= _______________________ =________ Δx→0 Δx
y′|x=x0 , f(x)在 x=x0 处的导数,记作 f ′(x0)或________

高考数学一轮复习 211变化率与导数、导数的计算课件 新人教A版

高考数学一轮复习 211变化率与导数、导数的计算课件 新人教A版
答案 C
4.曲线y=x(3lnx+1)在点(1,1)处的切线方程为________. 解析 y′=3lnx+1+3=3lnx+4,所以曲线在点(1,1)处的 切线斜率为4,所以切线方程为y-1=4(x-1),即y=4x-3.
答案 y=4x-3
5.已知f(x)=x2+3xf′(2),则f′(2)=________. 解析 由题意,得f′(x)=2x+3f′(2). ∴f′(2)=2×2+3f′(2),∴f′(2)=-2.
(g(x)≠0).
5.(理)复合函数的导数
设u=v(x)在点x处可导,y=f(u)在点u处可导,则复合函数 f[v(x)]在点x处可导,且f′(x)= f′[v(x)]v′(x) ,即y′x= y′u·u′x .
疑点清源 1.利用导数定义求导数时,要注意到x与Δx的区别,这里的 x是常量,Δx是变量. 2.利用公式求导时要特别注意除法公式中分子的符号,防 止与乘法公式混淆. 3.求曲线的切线时,要分清点P处的切线与过P点的切线的 区别,前者只有一条,而后者包括了前者.
(2)几何意义:
函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上 点 (x0,f(x0)) 处的 切线的斜率. 相应地,切线方程为 y-y0=f′(x0)(x-x0).
2.函数f(x)的导函数 fx+Δx-fx
称函数f′(x)=
lim
Δx→0
Δx
函数有时也记作y′.
=axlna,其中正确的个数是( )
A.1
B.2
C.3
D.4
答案 D
2.若f(x)=x2-2x-4lnx,则f′(x)>0的解集为( ) A.(0,+∞) B.(-1,0)∪(2,+∞) C.(2,+∞) D.(-1,0)解析令f′(x)=2x-2-

人教版高考总复习一轮数学精品课件 主题二 函数 第四章 第一节 导数的概念及其意义、导数的运算

人教版高考总复习一轮数学精品课件 主题二 函数 第四章 第一节 导数的概念及其意义、导数的运算

(2)过点处的切线,该点不一定是切点,切线至少有一条.
1
3.[

]′ =
−′
[ ]2
≠0 .
4.奇函数的导数是偶函数,偶函数的导数是奇函数.
自测诊断
1.下列函数的求导正确的是( B )
A. −2 ′ = −2B. cos ′ = cos − sin
C. ln 10 ′ =
A.6.8 m/s2 B.7.6 m/s2 C.7 m/s 2 D.7.8 m/s 2
[解析]因为 = . + . ,所以′ = . + . .令 = ,得
. + . = ,解得 = 或 = −

(舍去),则当

= 时,
′ = . + . × = . ,即速度首次达到 /时的加速度为. / .故选B.
函数 = 在点0 处的导数的几何意义就是曲线 = 在点 0 , 0 处的
切线的斜率
′ 0
_____________.也就是说,曲线
= 在点 0 , 0 处的切线的斜率是_______.
− 0 = ′ 0 − 0
相应的切线方程为______________________.
三、导数的运算
1.基本初等函数的导数公式
基本初等函数
导函数
= (为常数)
0
′ =___
= ( ∈ ,且 ≠ 1)
−1
′ =_______
= sin
cos
′ =______
= cos
−sin
′ =________
= ′ ⋅ .
知识拓展

高考数学一轮复习变化率与导数、导数的计算

高考数学一轮复习变化率与导数、导数的计算

第1讲 变化率与导数、导数的计算最新考纲考向预测1.了解导数概念的实际背景,通过函数图象直观理解导数的几何意义. 2.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2的导数. 3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.命题趋势 本讲主要考查导数的运算、求导法则以及导数的几何意义.常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等.核心素养数学运算、数学抽象1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =limΔx →0f (x 0+Δx )-f (x 0)Δx .(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=a x (a >0且a ≠1) f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln a f (x )=ln x (x >0)f ′(x )=1x3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.常见误区1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现以下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .3.求曲线的切线时,要分清在点P 处的切线与过点P 的切线的区别,前者只有一条,而后者包括了前者.1.判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(多选)下列求导运算正确的有( ) A .(sin x )′=cos x B .⎝ ⎛⎭⎪⎫1x ′=1x 2C .(log 3x )′=13ln xD .(ln x )′=1x解析:选AD.因为(sin x )′=cos x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,(log 3x )′=1x ln 3,(ln x )′=1x ,所以A ,D 正确.3.(2020·高考全国卷Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1解析:选B.因为f (x )=x 4-2x 3,所以f ′(x )=4x 3-6x 2,f ′(1)=-2,所以切线的斜率为-2,排除C ,D.又f (1)=1-2=-1,所以切线过点(1,-1),排除A.故选B.4.函数f (x )=x 2在区间[1,2]上的平均变化率为________,在x =2处的导数为________.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3;因为f ′(x )=2x ,所以f (x )在x =2处的导数为2×2=4.答案:3 45.(易错题)函数y =ln xe x 的导函数为________. 解析:y ′=1x e x -e xln x (e x )2=1-x ln xx e x .答案:y ′=1-x ln xx e x导数的运算 角度一 求已知函数的导数求下列函数的导数: (1)y =ln x +1x ;(2)f (x )=sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (3)y =3x e x -2x +e.【解】 (1)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(2)因为f (x )=sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x ,所以f ′(x )=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.[注意]求导之前,应利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则先化简,这样可避免使用商的求导法则,减少运算量.角度二求抽象函数的导数值已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+ln x,则f′(2)=________.【解析】因为f(x)=x2+3xf′(2)+ln x,所以f′(x)=2x+3f′(2)+1x,所以f′(2)=4+3f′(2)+12=3f′(2)+92,所以f′(2)=-94.【答案】-9 4对解析式中含有导数值的函数,即解析式类似f(x)=f′(x0)g(x)+h(x)(x0为常数)的函数,解决这类问题的关键是明确f′(x0)是常数,其导数值为0.因此先求导数f′(x),令x=x0,即可得到f′(x0)的值,进而得到函数解析式,求得所求导数值.1.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=() A.2B.4C.6D.8解析:选C.由已知得,f′(x)=6x+2f′(2),令x=2,得f′(2)=-12.再令x=5,得f′(5)=6×5+2f′(2)=30-24=6.2.(2020·成都摸底考试)设函数f(x)的导函数为f′(x),若f(x)=e x ln x+1x-1,则f′(1)=()A.e-3 B.e-2 C.e-1 D.e解析:选C.由题意,得f ′(x )=(e xln x )′-1x 2=e xln x +e x x -1x 2,所以f ′(1)=0+e-1=e -1,故选C.3.求下列函数的导数: (1)y =x (ln x +cos x ); (2)y =sin x +x x ;(3)y =x ln x .解:(1)y ′=ln x +cos x +x ⎝ ⎛⎭⎪⎫1x -sin x =ln x +cos x -x sin x +1.(2)y ′=(cos x +1)x -(sin x +x )x 2=x cos x -sin xx 2.(3)y ′=⎝⎛⎭⎪⎫12·1x ln x +x ·1x =2+ln x 2x .导数的几何意义 角度一 求切线方程(1)(2021·广州调研检测)已知f (x )=x ⎝ ⎛⎭⎪⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为___________________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为____________________________.【解析】 (1)因为f (x )为奇函数,所以f (-1)+f (1)=0,即e +a e -1e -a e =0.解得a =1,所以f (x )=x ⎝ ⎛⎭⎪⎫e x +1e x ,所以f ′(x )=⎝ ⎛⎭⎪⎫e x +1e x +x ⎝ ⎛⎭⎪⎫e x -1e x ,所以曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,所以曲线y =f (x )在x =0处的切线的方程为2x -y =0.(2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0).又因为f ′(x )=1+ln x , 所以直线l 的方程为y +1=(1+ln x 0)x .所以由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以直线l 的方程为y =x -1,即x -y -1=0. 【答案】 (1)2x -y =0 (2)x -y -1=0求曲线切线方程的步骤(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率.(2)由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[注意] “过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.角度二 求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)【引申探究】 (变条件、变问法)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为____________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,所以y 0=0,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.角度三 已知切线方程(或斜率)求参数(1)(2021·西安五校联考)已知函数f (x )=a e x +b (a ,b ∈R )的图象在点(0,f (0))处的切线方程为y =2x +1,则a -b =________.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.【解析】 (1)方法一:由题意,得f ′(x )=a e x ,则f ′(0)=a ,又f (0)=a +b ,所以函数f (x )的图象在点(0,f (0))处的切线方程为y -(a +b )=a (x -0),即y =ax +a +b .又该切线方程为y =2x +1,所以⎩⎨⎧a =2,a +b =1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.方法二:由题意,得f ′(x )=a e x ,则f ′(0)=a .因为函数f (x )的图象在点(0,f (0))处的切线方程为y =2x +1,所以⎩⎨⎧a =2,f (0)=a +b =2×0+1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.(2)由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以实数a 的取值范围是(-∞,2). 【答案】 (1)3 (2)(-∞,2)利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.1.(2020·高考全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为____________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =⎝ ⎛⎭⎪⎫1x +1|x =x 0=1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:y =2x2.如图,已知直线l 是曲线y =f (x )在点(2,f (2))处的切线,则直线l 的方程是________;f (2)+f ′(2)的值为________.解析:由题图可得直线l 经过点(2,3)和(0,4),则直线l 的斜率为k =4-30-2=-12,可得直线l 的方程为y =-12x +4,即为x +2y -8=0;由导数的几何意义可得f ′(2)=-12, 则f (2)+f ′(2)=3-12=52. 答案:x +2y -8=0 52[A 级 基础练]1.已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( )A .0B .1C .2D .4解析:选A.因为f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,所以sin π2+π2cos π2+a =1,即a =0.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (高度单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( )A .9.1米/秒B .6.75米/秒C .3.1米/秒D .2.75米/秒解析:选C.因为函数关系式是h (t )=10-4.9t 2+8t ,所以h ′(t )=-9.8t +8,所以在t =0.5秒的瞬时速度为-9.8×0.5+8=3.1(米/秒).3.已知函数f (x )可导,则lim Δx →0f (2+2Δx )-f (2)2Δx=( )A .f ′(x )B .f ′(2)C .f (x )D .f (2)解析:选B.因为函数f (x )可导, 所以f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx,所以lim Δx →0f (2+2Δx )-f (2)2Δx =f ′(2).4.(2021·广东广州综合测试一)已知点P (x 0,y 0)是曲线C :y =x 3-x 2+1上的点,曲线C 在点P 处的切线与直线y =8x -11平行,则( )A .x 0=2B .x 0=-43 C .x 0=2或x 0=-43D .x 0=-2或x 0=43解析:选B.由y =x 3-x 2+1可得y ′=3x 2-2x ,则切线斜率k =y ′|x =x 0=3x 20-2x 0,又切线平行于直线y =8x -11,所以3x 20-2x 0=8,所以x 0=2或x 0=-43.①当x 0=2时,切点为(2,5),切线方程为y -5=8(x -2),即8x -y -11=0,与已知直线重合,不合题意,舍去;②当x 0=-43时,切点为⎝ ⎛⎭⎪⎫-43,-8527,切线方程为y +8527=8⎝ ⎛⎭⎪⎫x +43,即y =8x +20327,与直线y =8x -11平行,故选B.5.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1xD .f (x )=e x +x解析:选BC.对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y 轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.6.(2020·江西南昌一模)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e7.(2021·四川绵阳一诊改编)若函数f (x )=x 3+(t -1)x -1的图象在点(-1,f (-1))处的切线平行于x 轴,则t =________,切线方程为________.解析:因为函数f (x )=x 3+(t -1)x -1,所以f ′(x )=3x 2+t -1.因为函数f (x )的图象在点(-1,f (-1))处的切线平行于x 轴,所以f ′(-1)=3×(-1)2+t -1=2+t =0,解得t =-2.此时f (x )=x 3-3x -1,f (-1)=1,切线方程为y =1.答案:-2 y =18.(2021·江西重点中学4月联考)已知曲线y =1x +ln xa 在x =1处的切线l 与直线2x +3y =0垂直,则实数a 的值为________.解析:y ′=-1x 2+1ax ,当x =1时,y ′=-1+1a .由于切线l 与直线2x +3y =0垂直,所以⎝ ⎛⎭⎪⎫-1+1a ·⎝ ⎛⎭⎪⎫-23=-1,解得a =25. 答案:259.求下列函数的导数. (1)y =(1-x )⎝⎛⎭⎪⎫1+1x ; (2)y =x ·tan x ; (3)y =cos xe x .解:(1)因为y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x -12-x 12,所以y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x .(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求点P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1. 令3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又点P 0在第三象限,所以切点P 0的坐标为(-1,-4). (2)因为直线l ⊥l 1,l 1的斜率为4, 所以直线l 的斜率为-14.因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1),即x +4y +17=0.[B 级 综合练]11.已知函数f (x )在R 上可导,其部分图象如图所示,设f (2)-f (1)2-1=a ,则下列不等式正确的是( )A .f ′(1)<f ′(2)<aB .f ′(1)<a <f ′(2)C .f ′(2)<f ′(1)<aD .a <f ′(1)<f ′(2)解析:选B.由题图可知,在(0,+∞)上,函数f (x )为增函数,且曲线切线的斜率越来越大,因为f (2)-f (1)2-1=a ,所以易知f ′(1)<a <f ′(2).12.(多选)(2021·山东青岛三模)已知曲线f (x )=23x 3-x 2+ax -1上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 的取值可能为( )A.196 B .3 C.103D.92解析:选AC.f ′(x )=2x 2-2x +a ,因为曲线y =f (x )上存在两条斜率为3的不同切线,所以f ′(x )=3有两个不相等的实数根,即2x 2-2x +a -3=0有两个不相等的实数根,所以Δ=(-2)2-4×2×(a -3)>0,① 设两切点的横坐标分别为x 1,x 2. 因为切点的横坐标都大于零, 所以x 1>0,x 2>0,所以⎩⎪⎨⎪⎧x 1+x 2=--22=1>0,x 1·x 2=a -32>0,②联立①②解得3<a <72, 故选AC.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2). (1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 14.已知函数f (x )=x 2-ln x .(1)求曲线f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎢⎡⎦⎥⎤12,1上?若存在,求出这两点的坐标;若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x ,所以f ′(1)=2-1=1,则所求切线方程为y -1=1×(x -1),即y =x .(2)存在.假设存在两点满足题意,设切点坐标为(x 1,y 1),(x 2,y 2),则x 1,x 2∈⎣⎢⎡⎦⎥⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝ ⎛⎭⎪⎫2x 1-1x 1⎝ ⎛⎭⎪⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,函数的值域为[-1,1],故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎪⎨⎪⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝ ⎛⎭⎪⎫x 1=-1,x 2=-12舍去, 故存在两点⎝ ⎛⎭⎪⎫12,ln 2+14,(1,1)满足题意.[C 级 创新练]15.(多选)已知函数f (x )及其导数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.给出下列四个函数,其中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x解析:选AC.对于A ,若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,这个方程显然有解,得x =0或x =2,故A 符合要求;对于B ,若f (x )=e -x ,则f ′(x )=-e -x ,即e -x =-e -x ,此方程无解,B 不符合要求;对于C ,若f (x )=ln x ,则f ′(x )=1x ,若ln x =1x ,利用数形结合法可知该方程存在实数解,C 符合要求;对于D ,若f (x )=tan x ,则f ′(x )=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,令f (x )=f ′(x ),即sin x cos x =1,变形可得sin 2x=2,无解,D 不符合要求.16.定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,如果函数g (x )=x ,h (x )=ln x ,φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .α>β>γB .β>γ>αC .γ>α>βD .γ>β>α解析:选D.由题意,得g ′(α)=1=g (α),所以α=1.由h (x )=ln x ,得h ′(x )=1x .令r (x )=ln x -1x ,可得r (1)<0,r (2)>0,故1<β<2.由φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π,得φ′(γ)=-sin γ=cos γ,所以cos γ+sin γ=0,且γ∈⎣⎢⎡⎦⎥⎤π2,π,所以γ=3π4.综上可知,γ>β>α.故选D.第1讲 变化率与导数、导数的计算最新考纲考向预测1.了解导数概念的实际背景,通过函数图象直观理解导数的几何意义. 2.能根据导数的定义求函数y =c (c 为常数),y =x ,y =1x ,y =x 2的导数. 3.能利用基本初等函数的导数公式和导数的运算法则求简单函数的导数.命题趋势 本讲主要考查导数的运算、求导法则以及导数的几何意义.常以选择题、填空题的形式出现,有时也出现在解答题的第一问,难度中等.核心素养数学运算、数学抽象1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =limΔx →0f (x 0+Δx )-f (x 0)Δx .(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos__x f (x )=cos x f ′(x )=-sin__x f (x )=a x (a >0且a ≠1) f ′(x )=a x ln__a f (x )=e x f ′(x )=e x f (x )=log a x (x >0,a >0且a ≠1)f ′(x )=1x ln a f (x )=ln x (x >0)f ′(x )=1x3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 常用结论1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.常见误区1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常量,其导数一定为0,即(f (x 0))′=0.2.求导常见易错点:①公式(x n )′=nx n -1与(a x )′=a x ln a 相互混淆;②公式中“+”“-”号记混,如出现以下错误:⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )+f (x )g ′(x )[g (x )]2,(cos x )′=sin x .3.求曲线的切线时,要分清在点P 处的切线与过点P 的切线的区别,前者只有一条,而后者包括了前者.1.判断正误(正确的打“√”,错误的打“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( )(5)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 2.(多选)下列求导运算正确的有( ) A .(sin x )′=cos x B .⎝ ⎛⎭⎪⎫1x ′=1x 2C .(log 3x )′=13ln xD .(ln x )′=1x解析:选AD.因为(sin x )′=cos x ,⎝ ⎛⎭⎪⎫1x ′=-1x 2,(log 3x )′=1x ln 3,(ln x )′=1x ,所以A ,D 正确.3.(2020·高考全国卷Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为( )A .y =-2x -1B .y =-2x +1C .y =2x -3D .y =2x +1解析:选B.因为f (x )=x 4-2x 3,所以f ′(x )=4x 3-6x 2,f ′(1)=-2,所以切线的斜率为-2,排除C ,D.又f (1)=1-2=-1,所以切线过点(1,-1),排除A.故选B.4.函数f (x )=x 2在区间[1,2]上的平均变化率为________,在x =2处的导数为________.解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3;因为f ′(x )=2x ,所以f (x )在x =2处的导数为2×2=4.答案:3 45.(易错题)函数y =ln xe x 的导函数为________. 解析:y ′=1x e x -e xln x (e x )2=1-x ln xx e x .答案:y ′=1-x ln xx e x导数的运算 角度一 求已知函数的导数求下列函数的导数: (1)y =ln x +1x ;(2)f (x )=sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4; (3)y =3x e x -2x +e.【解】 (1)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2.(2)因为f (x )=sin x 2⎝ ⎛⎭⎪⎫-cos x 2=-12sin x ,所以f ′(x )=⎝ ⎛⎭⎪⎫-12sin x ′=-12(sin x )′=-12cos x .(3)y ′=(3x e x )′-(2x )′+e′=(3x )′e x +3x (e x )′-(2x )′ =3x e x ln 3+3x e x -2x ln 2 =(ln 3+1)·(3e)x -2x ln 2.[注意]求导之前,应利用代数、三角恒等式等对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则先化简,这样可避免使用商的求导法则,减少运算量.角度二求抽象函数的导数值已知函数f(x)的导函数为f′(x),且满足关系式f(x)=x2+3xf′(2)+ln x,则f′(2)=________.【解析】因为f(x)=x2+3xf′(2)+ln x,所以f′(x)=2x+3f′(2)+1x,所以f′(2)=4+3f′(2)+12=3f′(2)+92,所以f′(2)=-94.【答案】-9 4对解析式中含有导数值的函数,即解析式类似f(x)=f′(x0)g(x)+h(x)(x0为常数)的函数,解决这类问题的关键是明确f′(x0)是常数,其导数值为0.因此先求导数f′(x),令x=x0,即可得到f′(x0)的值,进而得到函数解析式,求得所求导数值.1.已知函数f(x)的导函数为f′(x),且满足f(x)=3x2+2x·f′(2),则f′(5)=() A.2B.4C.6D.8解析:选C.由已知得,f′(x)=6x+2f′(2),令x=2,得f′(2)=-12.再令x=5,得f′(5)=6×5+2f′(2)=30-24=6.2.(2020·成都摸底考试)设函数f(x)的导函数为f′(x),若f(x)=e x ln x+1x-1,则f′(1)=()A.e-3 B.e-2 C.e-1 D.e解析:选C.由题意,得f ′(x )=(e xln x )′-1x 2=e xln x +e x x -1x 2,所以f ′(1)=0+e-1=e -1,故选C.3.求下列函数的导数: (1)y =x (ln x +cos x ); (2)y =sin x +x x ;(3)y =x ln x .解:(1)y ′=ln x +cos x +x ⎝ ⎛⎭⎪⎫1x -sin x =ln x +cos x -x sin x +1.(2)y ′=(cos x +1)x -(sin x +x )x 2=x cos x -sin xx 2.(3)y ′=⎝⎛⎭⎪⎫12·1x ln x +x ·1x =2+ln x 2x .导数的几何意义 角度一 求切线方程(1)(2021·广州调研检测)已知f (x )=x ⎝ ⎛⎭⎪⎫e x +a e x 为奇函数(其中e 是自然对数的底数),则曲线y =f (x )在x =0处的切线方程为___________________________.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为____________________________.【解析】 (1)因为f (x )为奇函数,所以f (-1)+f (1)=0,即e +a e -1e -a e =0.解得a =1,所以f (x )=x ⎝ ⎛⎭⎪⎫e x +1e x ,所以f ′(x )=⎝ ⎛⎭⎪⎫e x +1e x +x ⎝ ⎛⎭⎪⎫e x -1e x ,所以曲线y =f (x )在x =0处的切线的斜率为2,又f (0)=0,所以曲线y =f (x )在x =0处的切线的方程为2x -y =0.(2)因为点(0,-1)不在曲线f (x )=x ln x 上, 所以设切点为(x 0,y 0).又因为f ′(x )=1+ln x , 所以直线l 的方程为y +1=(1+ln x 0)x .所以由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.所以直线l 的方程为y =x -1,即x -y -1=0. 【答案】 (1)2x -y =0 (2)x -y -1=0求曲线切线方程的步骤(1)求出函数y =f (x )在点x =x 0处的导数,即曲线y =f (x )在点P (x 0,f (x 0))处切线的斜率.(2)由点斜式方程求得切线方程为y -f (x 0)=f ′(x 0)·(x -x 0).[注意] “过”与“在”:曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.角度二 求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【解析】 设切点P 的坐标为(x 0,y 0),因为y ′=ln x +1, 所以切线的斜率k =ln x 0+1,由题意知k =2,得x 0=e ,代入曲线方程得y 0=e. 故点P 的坐标是(e ,e). 【答案】 (e ,e)【引申探究】 (变条件、变问法)若本例变为:若曲线y =x ln x 上点P 处的切线与直线x +y +1=0垂直,则该切线的方程为____________.解析:设切点P 的坐标为(x 0,y 0), 因为y ′=ln x +1,由题意得ln x 0+1=1, 所以ln x 0=0,x 0=1,所以y 0=0,即点P (1,0), 所以切线方程为y =x -1,即x -y -1=0. 答案:x -y -1=0求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.角度三 已知切线方程(或斜率)求参数(1)(2021·西安五校联考)已知函数f (x )=a e x +b (a ,b ∈R )的图象在点(0,f (0))处的切线方程为y =2x +1,则a -b =________.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.【解析】 (1)方法一:由题意,得f ′(x )=a e x ,则f ′(0)=a ,又f (0)=a +b ,所以函数f (x )的图象在点(0,f (0))处的切线方程为y -(a +b )=a (x -0),即y =ax +a +b .又该切线方程为y =2x +1,所以⎩⎨⎧a =2,a +b =1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.方法二:由题意,得f ′(x )=a e x ,则f ′(0)=a .因为函数f (x )的图象在点(0,f (0))处的切线方程为y =2x +1,所以⎩⎨⎧a =2,f (0)=a +b =2×0+1,解得⎩⎨⎧a =2,b =-1,所以a -b =3.(2)由题意知f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以实数a 的取值范围是(-∞,2). 【答案】 (1)3 (2)(-∞,2)利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.1.(2020·高考全国卷Ⅰ)曲线y =ln x +x +1的一条切线的斜率为2,则该切线的方程为____________.解析:设切点坐标为(x 0,ln x 0+x 0+1).由题意得y ′=1x +1,则该切线的斜率k =⎝ ⎛⎭⎪⎫1x +1|x =x 0=1x 0+1=2,解得x 0=1,所以切点坐标为(1,2),所以该切线的方程为y -2=2(x -1),即y =2x .答案:y =2x2.如图,已知直线l 是曲线y =f (x )在点(2,f (2))处的切线,则直线l 的方程是________;f (2)+f ′(2)的值为________.解析:由题图可得直线l 经过点(2,3)和(0,4),则直线l 的斜率为k =4-30-2=-12,可得直线l 的方程为y =-12x +4,即为x +2y -8=0;由导数的几何意义可得f ′(2)=-12, 则f (2)+f ′(2)=3-12=52. 答案:x +2y -8=0 52[A 级 基础练]1.已知函数f (x )=x sin x +ax ,且f ′⎝ ⎛⎭⎪⎫π2=1,则a =( )A .0B .1C .2D .4解析:选A.因为f ′(x )=sin x +x cos x +a ,且f ′⎝ ⎛⎭⎪⎫π2=1,所以sin π2+π2cos π2+a =1,即a =0.2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是h (t )=10-4.9t 2+8t (高度单位:米,时间单位:秒),则他在0.5秒时的瞬时速度为( )A .9.1米/秒B .6.75米/秒C .3.1米/秒D .2.75米/秒解析:选C.因为函数关系式是h (t )=10-4.9t 2+8t ,所以h ′(t )=-9.8t +8,所以在t =0.5秒的瞬时速度为-9.8×0.5+8=3.1(米/秒).3.已知函数f (x )可导,则lim Δx →0f (2+2Δx )-f (2)2Δx=( )A .f ′(x )B .f ′(2)C .f (x )D .f (2)解析:选B.因为函数f (x )可导, 所以f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx,所以lim Δx →0f (2+2Δx )-f (2)2Δx =f ′(2).4.(2021·广东广州综合测试一)已知点P (x 0,y 0)是曲线C :y =x 3-x 2+1上的点,曲线C 在点P 处的切线与直线y =8x -11平行,则( )A .x 0=2B .x 0=-43 C .x 0=2或x 0=-43D .x 0=-2或x 0=43解析:选B.由y =x 3-x 2+1可得y ′=3x 2-2x ,则切线斜率k =y ′|x =x 0=3x 20-2x 0,又切线平行于直线y =8x -11,所以3x 20-2x 0=8,所以x 0=2或x 0=-43.①当x 0=2时,切点为(2,5),切线方程为y -5=8(x -2),即8x -y -11=0,与已知直线重合,不合题意,舍去;②当x 0=-43时,切点为⎝ ⎛⎭⎪⎫-43,-8527,切线方程为y +8527=8⎝ ⎛⎭⎪⎫x +43,即y =8x +20327,与直线y =8x -11平行,故选B.5.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1xD .f (x )=e x +x解析:选BC.对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y 轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.6.(2020·江西南昌一模)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e7.(2021·四川绵阳一诊改编)若函数f (x )=x 3+(t -1)x -1的图象在点(-1,f (-1))处的切线平行于x 轴,则t =________,切线方程为________.解析:因为函数f (x )=x 3+(t -1)x -1,所以f ′(x )=3x 2+t -1.因为函数f (x )的图象在点(-1,f (-1))处的切线平行于x 轴,所以f ′(-1)=3×(-1)2+t -1=2+t =0,解得t =-2.此时f (x )=x 3-3x -1,f (-1)=1,切线方程为y =1.答案:-2 y =18.(2021·江西重点中学4月联考)已知曲线y =1x +ln xa 在x =1处的切线l 与直线2x +3y =0垂直,则实数a 的值为________.解析:y ′=-1x 2+1ax ,当x =1时,y ′=-1+1a .由于切线l 与直线2x +3y =0垂直,所以⎝ ⎛⎭⎪⎫-1+1a ·⎝ ⎛⎭⎪⎫-23=-1,解得a =25. 答案:259.求下列函数的导数. (1)y =(1-x )⎝⎛⎭⎪⎫1+1x ; (2)y =x ·tan x ; (3)y =cos xe x .解:(1)因为y =(1-x )⎝ ⎛⎭⎪⎫1+1x =1x-x =x -12-x 12,所以y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x .(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x.10.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求点P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1. 令3x 2+1=4,解得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又点P 0在第三象限,所以切点P 0的坐标为(-1,-4). (2)因为直线l ⊥l 1,l 1的斜率为4, 所以直线l 的斜率为-14.因为l 过切点P 0,点P 0的坐标为(-1,-4),所以直线l 的方程为y +4=-14(x +1),即x +4y +17=0.[B 级 综合练]11.已知函数f (x )在R 上可导,其部分图象如图所示,设f (2)-f (1)2-1=a ,则下列不等式正确的是( )A .f ′(1)<f ′(2)<aB .f ′(1)<a <f ′(2)C .f ′(2)<f ′(1)<aD .a <f ′(1)<f ′(2)解析:选B.由题图可知,在(0,+∞)上,函数f (x )为增函数,且曲线切线的斜率越来越大,因为f (2)-f (1)2-1=a ,所以易知f ′(1)<a <f ′(2).12.(多选)(2021·山东青岛三模)已知曲线f (x )=23x 3-x 2+ax -1上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 的取值可能为( )A.196 B .3 C.103D.92解析:选AC.f ′(x )=2x 2-2x +a ,因为曲线y =f (x )上存在两条斜率为3的不同切线,所以f ′(x )=3有两个不相等的实数根,即2x 2-2x +a -3=0有两个不相等的实数根,所以Δ=(-2)2-4×2×(a -3)>0,① 设两切点的横坐标分别为x 1,x 2. 因为切点的横坐标都大于零, 所以x 1>0,x 2>0,所以⎩⎪⎨⎪⎧x 1+x 2=--22=1>0,x 1·x 2=a -32>0,②联立①②解得3<a <72, 故选AC.13.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2). (1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 14.已知函数f (x )=x 2-ln x .(1)求曲线f (x )在点(1,f (1))处的切线方程;(2)在函数f (x )=x 2-ln x 的图象上是否存在两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在区间⎣⎢⎡⎦⎥⎤12,1上?若存在,求出这两点的坐标;若不存在,请说明理由.解:(1)由题意可得f (1)=1,且f ′(x )=2x -1x ,所以f ′(1)=2-1=1,则所求切线方程为y -1=1×(x -1),即y =x .(2)存在.假设存在两点满足题意,设切点坐标为(x 1,y 1),(x 2,y 2),则x 1,x 2∈⎣⎢⎡⎦⎥⎤12,1,不妨设x 1<x 2,结合题意和(1)中求得的导函数解析式可得⎝ ⎛⎭⎪⎫2x 1-1x 1⎝ ⎛⎭⎪⎫2x 2-1x 2=-1, 又函数f ′(x )=2x -1x 在区间⎣⎢⎡⎦⎥⎤12,1上单调递增,函数的值域为[-1,1],故-1≤2x 1-1x 1<2x 2-1x 2≤1,据此有⎩⎪⎨⎪⎧2x 1-1x 1=-1,2x 2-1x 2=1,解得x 1=12,x 2=1⎝ ⎛⎭⎪⎫x 1=-1,x 2=-12舍去, 故存在两点⎝ ⎛⎭⎪⎫12,ln 2+14,(1,1)满足题意.[C 级 创新练]15.(多选)已知函数f (x )及其导数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.给出下列四个函数,其中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x解析:选AC.对于A ,若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,这个方程显然有解,得x =0或x =2,故A 符合要求;对于B ,若f (x )=e -x ,则f ′(x )=-e -x ,即e -x =-e -x ,此方程无解,B 不符合要求;对于C ,若f (x )=ln x ,则f ′(x )=1x ,若ln x =1x ,利用数形结合法可知该方程存在实数解,C 符合要求;对于D ,若f (x )=tan x ,则f ′(x )=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,令f (x )=f ′(x ),即sin x cos x =1,变形可得sin 2x=2,无解,D 不符合要求.16.定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,如果函数g (x )=x ,h (x )=ln x ,φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( )A .α>β>γB .β>γ>αC .γ>α>βD .γ>β>α解析:选D.由题意,得g ′(α)=1=g (α),所以α=1.由h (x )=ln x ,得h ′(x )=1x .令r (x )=ln x -1x ,可得r (1)<0,r (2)>0,故1<β<2.由φ(x )=cos x ⎝ ⎛⎭⎪⎫π2≤x ≤π,得φ′(γ)=-sin γ=cos γ,所以cos γ+sin γ=0,且γ∈⎣⎢⎡⎦⎥⎤π2,π,所以γ=3π4.综上可知,γ>β>α.故选D.。

高考数学第一轮总复习 2.10 变化率与导数、导数的计算课件 文 新人教A版

高考数学第一轮总复习 2.10 变化率与导数、导数的计算课件 文 新人教A版

(2)[f(x)·g(x)]′=_f_′__(_x_)_g_(_x_)_+__f_(_x_)_g_′__(_x_)_.
f xgx f xgx
(3)[
f g
x x
]=_______[_g__x__]_2 _______(g(x)≠0).
【考点自测】 1.(思考)给出下列命题: ①y′=f′(x)在点x=x0处的函数值就是函数y=f(x)在点x=x0处 的导数值; ②求f′(x0)时,可先求f(x0)再求f′(x0); ③曲线的切线不一定与曲线只有一个公共点; ④与曲线只有一个公共点的直线一定是曲线的切线;
原函数 f(x)=ax(a>0,且a≠1)
f(x)=ex f(x)=logax(a>0,且a≠1)
f(x)=lnx
导函数
f′(x)=_a_xl_n_a_ f′(x)=_e_x
1
f′(x)=__x_ln_a__
1
f′(x)=___x__
4.导数四则运算法则
(1)[f(x)±g(x)]′=_f_′__(_x_)_±__g_′__(_x_)_.
12年(2考):新课标全国卷T13 辽宁T12 11年(5考):新课标全国卷T21 湖南T7
山东T4 江苏T12 辽宁T20
考情 播报
1.导数的运算、导数的几何意义是高考命题的热点 2.导数的运算一般不单独命题,常在考查导数的应用中 同时考查,而导数的几何意义常与解析几何中的直线交 汇命题 3.题型主要以选择题、填空题或解答题中的基本的一 步的形式出现,属中低档题
6.(2014·济南模拟)曲线y= x 在点(-1,-1)处的切线方程为
x2
________.
【解析】y′=
(
x

最新-2018届高考数学一轮复习 导数的应用 导数变化率与导数调研课件 文 新人教A版 精品

最新-2018届高考数学一轮复习 导数的应用 导数变化率与导数调研课件 文 新人教A版 精品

(lnx)′ (x2+ 1)- lnx· (x2+ 1)′
(4)y′=
(x2+ 1)2
1
x·(x2+1)-lnx·2x x2+1-2x2·lnx

(x2+ 1)2

x(x2+ 1)2
• 探究2 (1)由本例要求熟记初等函数导数公式及法则. • (2)求导数时应先化简函数为初等函数的和差.
探究2 (1)由本例要求熟记初等函数导数公式及法则.
1)+(3x3-4x)·2 • (2)y′=(x2)′sinx+x2(sinx)′=2xsinx+x2cosx. • (3)y′=(3xex)′-(2x)′+e′ • =(3x)′ex+3x(ex)′-(2x)′ • =3xln3·ex+3xex-2xln2 • =(ln3+1)·(3e)x-2xln2.
则l2的方程为y= (2b+1)x- b2-2.
1
2
因为l1⊥l2,则有2b+1=-3,b=-3,
1 22 所以直线 l2的方程为y=-3x- 9 .
y= 3x- 3
x=16
②解方程y=-13x-292
,得
5
y=-2
.
1
5
所以直线 l1和 l2的交点的坐标为 (6,-2).
22 l1、 l2与 x轴交点的坐标分别为 (1,0)、 (- 3 , 0).
1 25
5 125
所以所求的三角形的面积为S=2× 3 × |-2|= 12 .
(2)求 过 点 (1, - 1)的曲线 y= x3- 2x的 切线方 程. 【解析】 设P(x0,y0)为切点,则切线的斜率为 f′ (x0)= 3x20- 2, 故 切线方程 为 y- y0= (3x20- 2)(x- x0), 即 y- (x30- 2x0)= (3x20- 2)(x- x0), 又知切线过点(1,-1),代入上述方程,

高三数学一轮复习 第二章 第十节 变化率与导数、导数的计算课件 理 新人教A版

高三数学一轮复习 第二章 第十节 变化率与导数、导数的计算课件 理 新人教A版
2.求函数的导数的方法 (1)连乘积的形式:先展开化为多项式的形式,再求导; (2)根式形式:先化为分数指数幂,再求导; (3)复合函数:确定复合关系,由外向内逐层求导. (4)不能直接求导的:适当恒等变形,转化为能求导的形 式再求导.
第十六页,共39页。
求下列函数的导数: (1)y=(1+ x)(1+ 1x); (2)y=3xex-ln x+e; (3)y= 3-x+e2x. 【解】 (1)∵y=(1+ x)(1+ 1x)=2+x-12+x12, ∴y′=-12x-32+12x-12.
第三十四页,共39页。
易错辨析之五 求导时忽视(hūshì)函数定义域致误
(2011·江西高考)若f(x)=x2-2x-4ln x,则f′(x)>0的 解集为( )
A.(0,+∞)
B.(-1,0)∪(2,+∞)
C.(2,+∞)
D.(-1,0)
【错解】 ∵f′(x)=2x-2-4x=2x2-x2x-4, ∴由f′(x)>0,可得x2-xx-2>0, 解得x>2或-1<x<0.
【答案】 B
第十页,共39页。
3.已知f(x)=xln x,若f′(x0)=2,则x0等于( )
A.e2
B.e
ln 2 C. 2
D.ln 2
【解析(jiě xī)】 f(x)的定义域为(0,+∞),f′(x)=ln x+ 1,
由f′(x0)=2,即ln x0+1=2,解得x0=e. 【答案】 B
第十一页,共39页。
C.B>A>C
D.C>B>A
第二十二页,共39页。
【解析】 (1)由已知得:f′(x)=excos x-exsin x= ex(cos x-sin x). ∴f′(1)=e(cos 1-sin 1).

高考数学一轮复习第二篇第10节导数的概念与计算课件理新人教A版

高考数学一轮复习第二篇第10节导数的概念与计算课件理新人教A版

返回导航
解:(1)∵y=x12+x5x+2 sin x=x-32+x3+sixn2 x, ∴y′=(x-32)′+(x3)′+(x-2sin x)′ =-32x-52+3x2-2x-3sin x+x-2cos x; (2)因为 y=sin 2x(-cos 2x)=-12sin x, 所以 y′=(-12sin x)′=-12(sin x)′=-12cos x.
第二篇 函数、导数及其应用 (必修1、选修2-2)
第 10 节 导数的概念与计算
最新考纲 1.了解导数概念的实际背景. 2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数 y=C(C 为常数),y=x,y=1x,y=x2,y=x3, y= x的导数. 4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的 导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如 y=f(ax +b)的复合函数)的导数.
返回导航
【教材导读】 曲线 y=f(x)“在点 P(x0,y0)处的切线”与“过点 P(x0,y0)的切线”有何不 同? 提示:(1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点,切线斜 率为 k=f′(x0)的切线,是唯一的一条切线. (2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以 是切点,也可以不是切点,而且这样的直线可能有多条.
返回导航
【即时训练】 求下列函数的导数: (1)y=( x+1) 1x-1; (2)y=xsin2x+π2cos2x+π2; (3)y=ee2xx++ee--x2x.
返回导航
解:(1)因为 y= x·1x- x+ 1x-1
=-x12+x-12,
所以 y′=-(x12)′+(x-12)′=-12x-12-12x-32
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)函数f(x)的导函数:
f (x x) f (x) lim x 0 称函数f′(x)=_____________ ___为f(x)的导函数. x
2.基本初等函数的导数公式
原函数
f(x)=c(c为常数) f(x)=xα (α ∈Q*) f(x)=sinx f(x)=cosx
导函数
5.(2016·天津高考)已知函数f(x)=(2x+1)ex,f′(x)为 f(x)的导函数,则f′(0)的值为________.
【解析】因为f′(x)=(2x+3)ex,所以f′(0)=3.
答案:3
6.(2017·枣庄模拟)已知函数f(x) 的导函数为 f′(x) ,且满足f(x) =2xf′(1) +lnx,则 f′(1) = A.-e ( B.-1 ) C.1 D.e
第十节
变化率与导数、导数的计算
【知识梳理】 1.导数的概念 (1)函Leabharlann y=f(x)在x=x0处导数的定义:
f (x 0 x) f (x 0 ) x 0 称函数y=f(x)在x=x0处的瞬时变化率_______________ x lim
=
y x 0 x lim
0
为函数y=f(x)在x=x0处的导数,记作f′(x0)
f′(x)=0 α xα -1 f′(x)=______ cosx f′(x)=_____ -sinx f′(x)=______
原函数 f(x)=ax(a>0,且a≠1) f(x)=ex f(x)=logax(a>0,且a≠1) f(x)=lnx
导函数
xlna a f′(x)=_____
ex f′(x)=__
1 f′(x)=_______ xln a 1 f′(x)=_______ x
3.导数的运算法则 f′(x)±g′(x) (1)[f(x)±g(x)]′=_______________. f′(x)g(x)+f(x)g′(x) (2)[f(x)·g(x)]′=______________________.
【解析】选B.因为f′(x) =2f′+ 1 ,那么
x
f′(1) =2f′(1) +1,所以f′(1) =-1.
7.(2016·全国卷Ⅲ)已知f(x)为偶函数,当x≤0
时,f(x)=e-x-1-x,则曲线y= f(x)在点(1,2)处的切线方 程是________.
【解析】设x>0,则-x<0,因为x≤0时,f(x)=e-x-1-x, 所以f(-x)=ex-1+x,又因为f(x)为偶函数,所以f(x)= ex-1+x,f′(x)=ex-1+1,f′(1)=e1-1+1=2,所以切线方 程为y-2=2(x-1)即:2x-y=0. 答案:2x-y=0
考点一
导数的计算
【典例1】求下列函数的导数. (1)y=lnx+ 1 .
x
(2)y=(2x2-1)(3x+1). (3)y=x-sin x cos x .
x. (4)y= cos x e
2 2
【解题导引】(1)直接求导.(2)(3)化简后再求导.
(4)利用商的导数运算法则求解.
4.(2017·商丘模拟)已知f′(x)是f(x)=sinx+acosx 的导函数,且f′( ) 2 ,则实数a的值为
4 4
2 1 3 A. B. C. D. 1 3 2 4
(
)
【解析】选B.由题意可得f′(x)=cosx-asinx,
2 2 2 2 1 由f ( ) 可得, - a ,解得a . 4 4 2 2 4 2
2.f′(x)的符号及大小的意义 函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化 趋势,其正负号反映了变化的方向,其大小|f′(x)|反 映了变化的快慢,|f′(x)|越大,曲线在这点处的切线 越“陡”.
【小题快练】 链接教材 练一练
1.(选修1-1P86T1改编)曲线y=x3+11在点P(1,12)处的 切线与y轴交点的纵坐标是 A.-9 B.-3 C.9 ( ) D.15
y lim x 0 x
或 y |xx , 即f′(x0)=
f (x 0 x) f (x 0 ) =_________________. x 0 x lim
(2)导数的几何意义: 函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线 切线的斜率 瞬时速度就是 y=f(x)上点P(x0,y0)处的___________( 位移函数s(t)对时间t的导数).相应地,切线方程为 y-y0=f′(x0)(x-x0) __________________.
【解析】选C.因为y=x3+11,所以y′=3x2,所以
y′|x=1=3,所以曲线y=x3+11在点P(1,12)处的切线 方程为y-12=3(x-1).令x=0,得y=9.
2.(选修1-1P85T5改编)已知函数f(x)=10-4x+3x2,且
f′(a)=2,则a=________. 【解析】f′(x)=-4+6x,所以f ′(a)=-4+6a=2,得a=1.
答案:1
感悟考题
试一试
e 在点(6,e2)处的切
1 x 3
3.(2017·咸阳模拟)曲线y=
线与坐标轴所围成的三角形的面积为 A. 3 e2
2
(
)
B.3e2
C.6e2
D.9e2
1 x 1 2 1 3 【解析】选A.因y′= e ,故切线的斜率k= e , 3 3 1 2 2 切线方程为y-e = e (x-6),令x=0得y=-e2;令y=0得 3 1 3 2 2 x=3,故围成的三角形的面积为S= ×3×|-e |= e . 2 2
f (x)g(x) f (x)g(x) (g x 0) f (x) 2 (3) [ ] =________________________. [g(x)] g(x)
【特别提醒】 1.函数在点P处的切线与过点P的切线的区别 曲线y=f(x)在点P(x0,y0)处的切线是以点P(x0,y0)为 切点,以f′(x0)为斜率的直线,而曲线y=f(x)过点 P(x0,y0)的切线,点P(x0,y0)不一定是切点.
相关文档
最新文档