高考数学一轮复习 第3章 三角函数解三角形 第7节 正弦定理余弦定理应用举例教师用书
高考数学第一轮章节复习课件 第三章 三角函数 解三角形
【注意】 若角α的终边落在某条直线上,一般要分类讨论.
已知角α的终边在直线3x+4y=0上,求sinα, cosα,tanα的值.
.
解析:tan= 答案:
5.某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀 地绕点O旋转,当时间t=0时,点A与钟面上标12的点B
重
合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d
=
,其中t∈[0,60].
解析:∵经过t(s)秒针转了 弧度
d
5. t
, d
t
10 sin
.
2 60
)内的单调性.
知识点
考纲下载
考情上线
函数y= Asin(ωx +φ)的图 象
1.考查图象的变换和 1.了解函数y=Asin(ωx+φ)
解析式的确定,以 的
及通过图象描绘, 物理意义;能画出y=
观察讨论有关性质. Asin(ωx+φ)的图象,了解
2.以三角函数为载体, 参数A、ω、φ对函数图象
考查数形结合的思想. 变化的影响.
当且仅当α= ,即α=2时取等号, 此时 故当半径r=1 cm,圆心角为2弧度时,扇形面积最大, 其最大值为1 cm2.
法二:设扇形的圆心角为α(0<α<2π),半径为r,面积为S,
则扇形的弧长为rα,由题意有:2r+rα=4⇒α=
×r2=2r-r2=-(r-1)2+1,
∴当r=1(cm)时,S有最大值1(cm2),
为余弦线
有向线段 AT 为正切线
高三数学一轮复习 第3章第7课时 正弦定理和余弦定理精品课件
微能力认证作业
• 第7课时 正弦定理和余弦定理
• 正弦定理和余弦定理
定理
正弦定理
余弦定理
内容
a sin
A=sinb
B=sinc
C
=
a2=b2+c2-2bc·cos_A , b2=c2+a2-2ca·cos_B ,
1.(2010·天津卷)在△ABC 中,内角 A,B,C 的对边分别是 a,b,
c,若 a2-b2= 3bc,sin C=2 3sin B,则 A=( )
• 3.在解三角形中的三角变换问题时,要注意两点:一是要用到三 角形的内角和及正、余弦定理,二是要用到三角变换、三角恒等 变形的原则和方法.“化繁为简”“化异为同”是解此类问题的 突破口.
• 从近两年的高考试题来看,正弦定理、余弦定理是高考的热 点.主要考查利用正弦定理、余弦定理解决一些简单的三角形的 度量问题,常与同角三角函数的关系、诱导公式、和差角公式, 甚至三角函数的图象和性质等交汇命题,多以解答题的形式出现, 属解答题中的低档题.
方法二:∵(2b-c)cos A-acos C=0, 由余弦定理,得(2b-c)·b2+2cb2c-a2-a·a2+2ba2b-c2=0. 整理,得 b2+c2-a2=bc, ∴cos A=b2+2cb2c-a2=12. ∵0<A<π,∴A=π3.
(2)∵S△ABC=12bcsin A=34 3,
即12bcsinπ3=34 3, ∴bc=3. ∵a2=b2+c2-2bccos A,∴b2+c2=6, 由①②得 b=c= 3,∴△ABC 为等边三角形.
常用的三角形面积公式 (1)S=12absin C=12bcsin A=12acsin B; (2)S=12ah.
高考数学一轮复习第三章三角函数、解三角形3.7正弦定理、余弦定理
【步步高】(浙江通用)2017版高考数学一轮复习 第三章 三角函数、解三角形 3.7 正弦定理、余弦定理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3.在△ABC 中,已知a 、b 和A 时,解的情况如下:在△ABC 中,常有以下结论: (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sinA +B2=cos C2;cos A +B2=sin C2.(5)tan A +tan B +tan C =tan A ·tan B ·tan C . (6)A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B . 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × )(4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形;当b 2+c 2-a 2=0时,三角形为直角三角形;当b 2+c 2-a 2<0时,三角形为钝角三角形.( × ) (5)在三角形中,已知两边和一角就能求三角形的面积.( √)1.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =120°,a =2,b =233,则B等于( ) A.π3B.5π6C.π6或5π6 D.π6答案 D解析 ∵A =120°,a =2,b =233,∴由正弦定理a sin A =bsin B 可得,sin B =b a sin A =2332×32=12.∵A =120°,∴B =30°,即B =π6.2.(2015·北京)在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=________.答案 1解析 由余弦定理:cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,∴sin A =74, cos C =a 2+b 2-c 22ab =16+25-362×4×5=18,∴sin C =378,∴sin 2Asin C =2×34×74378=1.3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则边a =________;△ABC 的面积等于________. 答案6+ 2 1+ 3解析 A =π-B -C =7π12,sin 7π12=sin ⎝ ⎛⎭⎪⎫π3+π4=32×22+12×22=64+24.由正弦定理,得a sin A =bsin B ,即asin 7π12=2sinπ6,解得a =6+2, ∴△ABC 的面积等于12ab sin C =12×(6+2)×2×22=3+1. 4.(教材改编)△ABC 中,若b cos C +c cos B =a sin A ,则△ABC 的形状为________三角形. 答案 直角三角形解析 由已知得sin B cos C +cos B sin C =sin 2A , ∴sin(B +C )=sin 2A , ∴sin A =sin 2A ,又sin A ≠0,∴sin A =1,A =π2,∴△ABC 为直角三角形.5.(2015·杭州二中高中第二次月考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0,则角B =________.答案π3解析 由正弦定理知,sin B cos C +3sin B sin C -sin A -sin C =0. ∵sin A =sin(B +C )=sin B cos C +cos B sin C , 代入上式得3sin B sin C -cos B sin C -sin C =0. ∵sin C >0,∴3sin B -cos B -1=0,∴2sin ⎝ ⎛⎭⎪⎫B -π6=1,即sin ⎝⎛⎭⎪⎫B -π6=12.∵B ∈(0,π),∴B =π3.题型一 利用正弦定理、余弦定理解三角形例1 (1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.(3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________. 答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6×22=3,∴b sin A <a <b . ∴满足条件的三角形有2个.(2)由题意知a =2b ,a 2=b 2+c 2-2bc cos A , 即2b 2=b 2+c 2-2bc cos A , 又c 2=b 2+2bc , ∴cos A =22,A =45°,sin B =12,B =30°,∴C =105°.(3)因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,B +C <π,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=b sinπ6,解得b =1.思维升华 (1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2B .x <2C .2<x <2 2D .2<x <2 3(2)在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________. 答案 (1)C (2)1解析 (1)若三角形有两解,则必有a >b ,∴x >2,又由sin A =a b sin B =x 2×22<1,可得x <22,∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB cos A ,化简得x 2-2x +1=0, ∴x =1,即AB =1.题型二 和三角形面积有关的问题例2 (2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π4,b 2-a 2=12c 2.(1)求tan C 的值;(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=12c 2及正弦定理得sin 2B -12=12sin 2C .所以-cos 2B =sin 2C .① 又由A =π4,即B +C =34π,得-cos 2B =-cos2⎝ ⎛⎭⎪⎫34π-C =-cos ⎝ ⎛⎭⎪⎫32π-2C=sin 2C =2sin C cos C ,② 由①②解得tan C =2. (2)由tan C =2,C ∈(0,π)得 sin C =255,cos C =55,因为sin B =sin(A +C )=sin ⎝ ⎛⎭⎪⎫π4+C , 所以sin B =31010,由正弦定理得c =223b ,又因为A =π4,12bc sin A =3,所以bc =62,故b =3.思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.(2015·天津七校4月联考)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =3b sin A -a cos B .(1)求角B ;(2)若b =2,△ABC 的面积为3,求a ,c .解 (1)由a =3b sin A -a cos B 及正弦定理,得sin A =3sin B ·sin A -sin A ·cos B , ∵0<A <π,∴sin A >0,∴3sin B -cos B =1,即sin ⎝⎛⎭⎪⎫B -π6=12.又∵0<B <π,∴-π6<B -π6<5π6,∴B =π3.(2)∵S =12ac sin B =3,∴ac =4,①又∵b 2=a 2+c 2-2ac cos B ,即a 2+c 2=8.② 由①②联立解得a =c =2.题型三 正弦、余弦定理的简单应用 命题点1 判断三角形的形状例3 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c b<cos A ,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .等边三角形(2)在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .等边三角形 B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 (1)A (2)B解析 (1)已知c b <cos A ,由正弦定理,得sin Csin B<cos A ,即sin C <sin B cos A ,所以sin(A+B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sinA >0,于是有cosB <0,B 为钝角,所以△ABC 是钝角三角形.(2)∵cos 2B 2=1+cos B 2,cos 2B 2=a +c 2c , ∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a,∴2a 2=a 2+c 2-b 2, ∴a 2+b 2=c 2,∴△ABC 为直角三角形. 命题点2 求解几何计算问题例4 (2015·课标全国Ⅱ)如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C ;(2)若AD =1,DC =22,求BD 和AC 的长. 解 (1)S △ABD =12AB ·AD sin∠BAD ,S △ADC =12AC ·AD sin∠CAD .因为S △ABD =2S △ADC , ∠BAD =∠CAD , 所以AB =2AC . 由正弦定理可得 sin B sin C =AC AB =12. (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6, 由(1)知AB =2AC ,所以AC =1. 思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a-b )cos A ,则△ABC 的形状为( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin∠BAC =223,AB =32,AD =3,则BD 的长为______.答案 (1)D (2) 3解析 (1)∵c -a cos B =(2a -b )cos A ,C =π-(A +B ),∴由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,∴s in A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ∴cos A (sin B -sin A )=0, ∴cos A =0或sin B =sin A , ∴A =π2或B =A 或B =π-A (舍去),∴△ABC 为等腰或直角三角形.(2)sin∠BAC =sin(π2+∠BAD )=cos∠BAD ,∴cos∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.二审结论会转换典例 (14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎪⎫2A -π6的值.规范解答解 (1)△ABC 中,由b sin B =csin C ,及sin B =6sin C ,可得b =6c ,[2分] 又由a -c =66b ,有a =2c ,[4分] 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c2=64.[7分] (2)在△ABC 中,由cos A =64, 可得sin A =104.[9分] 于是,cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154.[12分] 所以,cos ⎝ ⎛⎭⎪⎫2A -π6=cos 2A cos π6+sin 2A sin π6 =⎝ ⎛⎭⎪⎫-14×32+154×12=15-38.[14分] 温馨提醒 (1)本题将正弦定理、余弦定理和和差公式综合进行考查,具有一定的综合性,要求考生对公式要熟练记忆;通过审题理清解题方向.(2)本题还考查考生的基本运算求解能力,要求计算准确无误,尽量简化计算过程,减少错误.[方法与技巧]1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.解题中要灵活使用正弦定理、余弦定理进行边、角的互化,一般要只含角或只含边. [失误与防范]1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.在解三角形或判断三角形形状时,要注意三角函数值的符号和角的范围,防止出现增解、漏解.A 组 专项基础训练 (时间:35分钟)1.在△ABC 中,若a =4,b =3,cos A =13,则B 等于( )A.π4 B.π3C.π6D.2π3答案 A解析 因为cos A =13,所以sin A =1-19=223, 由正弦定理,得4sin A =3sin B ,所以sin B =22, 又因为b <a ,所以B <π2,B =π4,故选A.2.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则角C 等于( ) A.2π3B.π3C.3π4D.5π6答案 A解析 因为3sin A =5sin B ,所以由正弦定理可得3a =5b .因为b +c =2a ,所以c =2a -35a=75a .令a =5,b =3,c =7,则由余弦定理c 2=a 2+b 2-2ab cos C ,得49=25+9-2×3×5cosC ,解得cos C =-12,所以C =2π3. 3.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 答案 C解析 由正弦定理a sin A =b sin B =csin C=2R (R 为△ABC 外接圆半径)及已知条件sin A ∶sinB ∶sinC =5∶11∶13,可设a =5x ,b =11x ,c =13x (x >0).则cos C =x2+x 2-x22·5x ·11x=-23x 2110x2<0, ∴C 为钝角.∴△ABC 为钝角三角形.4.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A .3B.932C.332D .3 3答案 C解析 ∵c 2=(a -b )2+6, ∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B 等于( ) A.π6B.π4C.π3D.3π4答案 C解析 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin A =sin B cos C ,则B =______.若A =π6,则ac =________.答案π2 33解析 由sin A =sin B cos C ,得sin(B +C )=sin B cos C ,得sin B cos C +cos B sin C =sin B cos C ,得cos B sin C =0,显然sin C ≠0, ∴cos B =0,∴B =π2.若A =π6,则C =π-A -B =π3.由正弦定理,得a c =sin A sin C =1232=33.7.(2015·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.答案 8解析 ∵cos A =-14,0<A <π,∴sin A =154,S △ABC =12bc sin A =12bc ×154=315,∴bc =24, 又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52, 由余弦定理得,a 2=b 2+c 2-2bc cos A=52-2×24×⎝ ⎛⎭⎪⎫-14=64,∴a =8. 8.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________. 答案3解析 由正弦定理,可得(2+b )(a -b )=(c -b )·c . ∵a =2,∴a 2-b 2=c 2-bc ,即b 2+c 2-a 2=bc .由余弦定理,得cos A =b 2+c 2-a 22bc =12.∴si n A =32. 由b 2+c 2-bc =4,得b 2+c 2=4+bc . ∵b 2+c 2≥2bc ,即4+bc ≥2bc ,∴bc ≤4. ∴S △ABC =12bc ·sin A ≤3,即(S △ABC )max = 3.9.设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c 且b (cos A -3cos C )=(3c -a )cosB .(1)求sin A sin C的值;(2)若cos B =16,且△ABC 的周长为14,求b 的值.解 (1)由正弦定理得到:sin B cos A +sin A cos B =3(sin B cos C +cos B sin C ), 即sin(A +B )=3sin(B +C ),由三角形内角和为π,得到:sin C =3sin A ⇒sin A sin C =13. (2)由sin A sin C =13可得:a c =13⇒c =3a ,△ABC 的周长a +b +c =14⇒b =14-4a ,由余弦定理cos B =a 2+c 2-b 22ac =16,解得a =2(a =14舍去),则b =6.10.(2015·山东)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知cos B =33,sin(A +B )=69,ac =23, 求sin A 和c 的值. 解 在△ABC 中,由cos B =33,得sin B =63, 因为A +B +C =π,所以sin C =sin(A +B )=69.因为sin C <sin B ,所以C <B ,可知C 为锐角. 所以cos C =539.因此sin A =sin(B +C )=sin B cos C +cos B sin C =63×539+33×69=223. 由a sin A =c sin C ,可得a =c sin Asin C =223c 69=23c , 又ac =23,所以c =1.B 组 专项能力提升 (时间:20分钟)11.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( ) A.32B.332C.3+62D.3+394答案 B解析 设AB =c ,则由AC 2=AB 2+BC 2-2AB ·BC ·cos B 知7=c 2+4-2c ,即c 2-2c -3=0,∴c =3(负值舍去).∴BC 边上的高为AB ·sin B =3×32=332. 12.若△ABC 中,若3cos 2A -B2+5cos 2C2=4,则tan C 的最大值为( )A .-34B .-43C .-24D .-2 2答案 B解析 由条件得3×A -B +12+5×cos C +12=4,即3cos(A -B )+5cos C =0,所以3cos(A -B )-5cos(A +B )=0,所以3cos A cos B +3sin A sin B -5cos A cos B +5sin A sin B =0,即cos A cos B =4sin A sin B ,所以tan A tan B =14,tan A +tan B ≥2tan A tan B =1.又tan C =-tan(A +B )=-tan A +tan B 1-tan A tan B =-43(tan A +tan B )≤-43,故选B.13.(2015·重庆)在△ABC 中,B =120°,AB =2,A 的角平分线AD =3,则AC =________.答案 6解析 由正弦定理得ABsin∠ADB =AD sin B ,即2sin∠ADB =3sin 120°,解得sin∠ADB =22,所以∠ADB =45°,从而∠BAD =15°=∠DAC ,所以C =180°-120°-30°=30°,AC =2×sin 120°sin 30°= 6.14.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________. 答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A,∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a 2-(b -c )2=(2-3)bc ,sin A sinB =cos 2C2,BC 边上的中线AM 的长为7.(1)求角A 和角B 的大小; (2)求△ABC 的面积.解 (1)由a 2-(b -c )2=(2-3)bc , 得a 2-b 2-c 2=-3bc ,∴cos A =b 2+c 2-a 22bc =32,又0<A <π,∴A =π6.由sin A sin B =cos 2 C 2,得12sin B =1+cos C 2, 即sin B =1+cos C , 则cos C <0,即C 为钝角,∴B 为锐角,且B +C =5π6,则sin(5π6-C )=1+cos C ,化简得cos(C +π3)=-1,解得C =2π3,∴B =π6.(2)由(1)知,a =b ,由余弦定理得AM 2=b 2+(a2)2-2b ·a2·cos C =b 2+b 24+b 22=(7)2,解得b =2,故S △ABC =12ab sin C =12×2×2×32= 3.。
高考数学一轮复习:正弦、余弦定理与解三角形
角,该三角形具有不唯一性,通常根据三角函数值的“有界性”和“大边对大
角”进行判断.
对点训练1(1)(2020福建福州三模,理15)在△ABC中,内角A,B,C的对边分别
为a,b,c,若2sin2A+cos B=1,则 − 的取值范围为
又因为 0<A<π,所以
π
A=3.
由余弦定理可得a2=b2+c2-bc,
因为sin A,sin B,sin C成等差数列,
所以2sin B=sin A+sin C,即2b=a+c,
即(2b-c)2=b2+c2-bc,可得b=c.
所以△ABC为等边三角形.
方案二:选条件②.
由 4S=√3(b2+c2-a2),可得 2bcsin A=2√3bccos A,所以 tan A=√3.
(1)利用正弦定理、余弦定理把已知条件转化为边边关系,通过因式分解、
配方等得出边的相应关系,从而判断三角形的形状.
(2)利用正弦定理、余弦定理把已知条件转化为内角的三角函数之间的关
系,通过三角恒等变换,得出内角的关系,从而判断出三角形的形状,此时要
注意应用A+B+C=π这个结论.
对点训练2设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos
1
(3)S=2r(a+b+c)(r
为内切圆半径).
A= .
4
2.正弦定理和余弦定理
在△ABC中,若角A,B,C所对的边分别是a,b,c,则
正弦定理
余弦定理
语言
高考数学一轮复习 3.8 正弦定理、余弦定理的应用举例
点的地方有一个人骑摩托车出发想把一件东西送给汽车司机.问 骑摩托车的人至少以多大的速度匀速行驶才能实现他的愿望,此 时他驾驶摩托车行驶了多少公里?
解:作 MI 垂直公路所在直线于点 I,则 MI=3, ∵OM=5,∴OI=4,∴cos∠MOI=45 设骑摩托车的人的速度为 v 公里/小时,追上汽车的时间为 t 小时 由余弦定理(vt)2=52+(50t)2-2×5×50t×45
⇒v2=2t25-40t 0+2500=251t -82+900≥900. ∴当 t=18时,v 的最小值为 30,∴其行驶距离为 vt=380=145 公里, 故骑摩托车的人至少以 30 公里/小时的速度行驶才能实现他 的愿望,他驾驶摩托车行驶了145公里.
考点2 测量高度问题 测量高度问题一般是利用地面上的观测点,通过测量仰角、
-1)2+22-2·( 3-1)·2·cos 120°=6,
∴BC= 6,
且
sin∠ABC=ABCC·sin∠BAC=
26·23=
2 2.
∴∠ABC=45°,∴BC 与正北方向垂直.
∵∠CBD=90°+30°=120°, 在△BCD 中,由正弦定理,得 sin∠BCD=BD·siCn∠D CBD=10t1s0in 132t 0°=12, ∴∠BCD=30°. 即缉私船沿东偏北 30°方向能最快追上走私船.
俯角等数据计算物体的高度,这类问题一般用到立体几何知识, 先把立体几何问题转化为平面几何问题,再通过解三角形加以解 决.
为了应对日益严重的气候问题,某气象仪器科研单 位研究出一种新的弹射型气象仪器,这种弹射型仪器可以弹射到 空中进行气象观测.如图所示,假设这种仪器在 C 地进行弹射实
验,在 A,B 两地进行观察弹射效果.已知 A,B 两地相距 100 米,∠BAC=60°,在 A 地听到弹射声音的时间比在 B 地晚127秒.在 A 地测得该仪器在 C 处时的俯角为 15°,在弹射最高点 H 处的仰 角为 30°.
2022版高考数学一轮复习第3章三角函数解三角形36正弦定理和余
2022版高考数学一轮复习第3章三角函数解三角形36正弦定理和余3.6正弦定理和余弦定理[知识梳理]1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC中,已知a,b和A时,三角形解的情况3.三角形中常用的面积公式1(1)S=ah(h表示边a上的高).2111(2)S=bcinA=acinB=abinC.222(3)S=r(a+b+c)(r为三角形的内切圆半径).24.在△ABC中,常有的结论(1)∠A+∠B+∠C=π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.[诊断自测]1.概念思辨(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.()aa+b-c(2)在△ABC中,=.()inAinA+inB-inC(3)若a,b,c是△ABC的三边,当b+c-a>0时,△ABC为锐角三角形;当b+c-22222a2=0时,△ABC为直角三角形;当b2+c2-a2<0时,△ABC为钝角三角形.()(4)在△ABC中,若inAinBin2A(1)(必修A5P10A组T4)在△ABC中,a=4,b=5,c=6,则=________.inC答案1解析由正弦定理得inA∶inB∶inC=a∶b∶c=4∶5∶6,又由余弦定理知coA=b2+c2-a225+36-163in2A2inAcoA43==,所以==2某某=1.2bc2某5某64inCinC64(2)(必修A5P20A组T11)若锐角△ABC的面积为103,且AB=5,AC=8,则BC等于________.答案711解析因为△ABC的面积S△ABC=AB·ACinA,所以103=某5某8inA,解得inA=223122222,因为角A为锐角,所以coA=.根据余弦定理,得BC=5+8-2某5某8coA=5+8221-2某5某8某=49,所以BC=7.23.小题热身(1)(2022·天津高考)在△ABC中,若AB=13,BC=3,∠C=120°,则AC=()A.1B.2C.3D.4答案A解析在△ABC中,设A,B,C所对的边分别为a,b,c,则由c=a+b-2abcoC,222122得13=9+b-2某3b某-,即b+3b-4=0,解得b=1(负值舍去),即AC=1.故选A.24(2)(2022·全国卷Ⅲ)△ABC的内角A,B,C的对边分别为a,b,c,若coA=,coC55=,a=1,则b=________.13答案21133123541263inAinB3135题型1利用正、余弦定理解三角形b(2022·郑州预测)在△ABC中,角A,B,C所对的边分别为a,b,c,若典例13coB=,则coB=()inA1133A.-B.C.-D.2222a边角互化法.答案B解析由正弦定理知inBinAπ==1,即tanB=3,由B∈(0,π),所以B=,33coBinAπ1所以coB=co=.故选B.32典例2(2022·重庆期末)在△ABC中,已知AB=43,AC=4,∠B=30°,则△ABC的面积是()A.43B.83C.43或83D.3注意本题的多解性.答案C解析在△ABC中,由余弦定理可得AC=4=(43)+BC-2某43BCco30°,解得BC=4或BC=8.当BC=4时,AC=BC,∠B=∠A=30°,△ABC为等腰三角形,∠C=120°,111△ABC的面积为AB·BCinB=某43某4某=43.222111当BC=8时,△ABC的面积为AB·BCinB=某43某8某=83.故选C.222方法技巧正、余弦定理在解三角形中的应用技巧1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形,正弦定理的形式多样,其中a=2RinA,b=2RinB,c=2RinC能够实现边角互化.见典例1.2.已知两边和它们的夹角、已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形.见典例2.3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.见典例2.冲关针对训练1.(2022·河西五市联考)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(b-a)inA=(b-c)·(inB+inC),则角C等于() A.πππ2πB.C.D.36432222答案Aa2+b2-c21解析由题意,得(b-a)a=(b-c)(b+c),∴ab=a+b-c,∴coC==,2ab2222π∴C=.故选A.32.(2022·山东师大附中模拟)在△ABC中,角A,B,C的对边分别是a,b,c,已知1co2A=-,c=3,inA=6inC.3(1)求a的值;(2)若角A为锐角,求b的值及△ABC的面积.解(1)在△ABC中,c=3,inA=6inC,由正弦定理=,得a=6c=6inAinC某3=32.12π622(2)由co2A=1-2inA=-得,inA=,由03323则coA=1-inA=2222ac3.3由余弦定理a=b+c-2bccoA,化简,得b-2b-15=0,解得b=5(b=-3舍去).11652所以S△ABC=bcinA=某5某3某=.22322题型2利用正、余弦定理判断三角形的形状典例(2022·陕西模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,若bcoC+ccoB=ainA,则△ABC的形状为()A.锐角三角形C.钝角三角形B.直角三角形D.不确定用边角互化法.答案B解析∵bcoC+ccoB=ainA,由正弦定理得inBcoC+inCcoB=inA,∴in(Bπ22+C)=inA,即inA=inA.又inA>0,∴inA=1,∴A=,故△ABC为直角三角形.故2选B.[条件探究1]将本典例条件变为“若2inAcoB=inC”,那么△ABC一定是()A.直角三角形C.等腰直角三角形B.等腰三角形D.等边三角形2答案B解析解法一:由已知得2inAcoB=inC=in(A+B)=inAcoB+coAinB,即in(A-B)=0,因为-πa2+c2-b222由余弦定理得2a·=ca=ba=b.故选B.2ac[条件探究2]将本典例条件变为“若△ABC的三个内角满足inA∶inB∶inC=5∶11∶13”,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形答案C解析在△ABC中,inA∶inB∶inC=5∶11∶13,∴a∶b∶c=5∶11∶13,故设a=5k,b=11k,c=13k(k>0),由余弦定理可得a2+b2-c225k2+121k2-169k223coC===-<0,22ab2某5某11k110π又∵C∈(0,π),∴C∈,π,2∴△ABC为钝角三角形.故选C.[条件探究3]将本典例条件变为“若bcoB+ccoC=acoA”,试判断三角形的形状.解由已知得a2+c2-b2a2+b2-c2b2+c2-a2b·+c·=a·,2ac2ab2bc∴b(a+c-b)+c(a+b-c)=a(b+c-a).∴(a+c-b)(b +a-c)=0.ππ222222∴a+c=b或b+a=c,即B=或C=.22∴△ABC为直角三角形.方法技巧判定三角形形状的两种常用途径222222222222222222提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后答案B解析解法一:由已知得2inAcoB=inC=in(A+B)=inAcoB+coAinB,即in(A-B)=0,因为-πa2+c2-b222由余弦定理得2a·=ca=ba=b.故选B.2ac[条件探究2]将本典例条件变为“若△ABC的三个内角满足inA∶inB∶inC=5∶11∶13”,则△ABC()A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形答案C解析在△ABC中,inA∶inB∶inC=5∶11∶13,∴a∶b∶c=5∶11∶13,故设a=5k,b=11k,c=13k(k>0),由余弦定理可得a2+b2-c225k2+121k2-169k223coC===-<0,22ab2某5某11k110π又∵C∈(0,π),∴C∈,π,2∴△ABC为钝角三角形.故选C.[条件探究3]将本典例条件变为“若bcoB+ccoC=acoA”,试判断三角形的形状.解由已知得a2+c2-b2a2+b2-c2b2+c2-a2b·+c·=a·,2ac2ab2bc∴b(a+c-b)+c(a+b-c)=a(b+c-a).∴(a+c-b)(b +a-c)=0.ππ222222∴a+c=b或b+a=c,即B=或C=.22∴△ABC为直角三角形.方法技巧判定三角形形状的两种常用途径222222222222222222提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后。
高考数学一轮复习 正弦定理、余弦定理及其应用
(3)若三角形三边 a,b,c 成等差数列,则 2b=____________
⇔
2sinB
=
____________
⇔
2sin
B 2
=
cos
A-C 2
解:由正弦定理得ab=ssiinnAB,所以
sinB=
2× 7
sinπ3=
721,
由余弦定理得 a2=b2+c2-2bccosA,所以 7= 4+c2-2c,所
以 c=3(负值舍去).故填 721;3.
(2018·全国卷Ⅰ) △ABC 的内角 A,B,C 的对边 分别为 a,b,c,已知 bsinC+csinB=4asinBsinC,b2+c2
-a2=8,则△ABC 的面积为________.
解:根据题意,结合正弦定理
可得 sinBsinC+sinCsinB=4sinAsinBsinC,即 sinA=12, 结合余弦定理可得 b2+c2-a2=2bccosA=8,
所以 A 为锐角,且 cosA= 23,从而求得 bc=8 3 3,
所以△ABC 的面积为 S=12bcsinA=12×8 3 3×
所 以 AB2 = BC2 + AC2 - 2BC·AC·cosC = 1 + 25 -
2×1×5×-35=32,所以 AB=4 2.故选 A.
(2017·山东)在△ABC 中,角 A,B,C 的对边分
别为 a,b,c.若△ABC 为锐角三角形,且满足 sinB(1+2cosC)
=2sinAcosC+cosAsinC,则下列等式成立的是( )
第7讲正弦定理余弦定理应用举例
第7讲正弦定理、余弦定理应用举例【2013年高考会这样考】考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.【复习指导】1.本讲联系生活实例,体会建模过程,掌握运用正弦定理、余弦定理解决实际问题的基本方法.2.加强解三角形及解三角形的实际应用,培养数学建模能力.基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.双基自测1.(人教B版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ).A .50 2 mB .50 3 mC .25 2 m D.2522m解析 由正弦定理得AB sin ∠ACB =ACsin B,又∵B =30°∴AB =AC ·sin ∠ACB sin B =50×2212=502(m).答案 A2.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=β C .α+β=90° D .α+β=180° 解析 根据仰角与俯角的定义易知α=β. 答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ).A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ).A .5海里B .53海里C .10海里 D .103海里 解析如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里),于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=ABsin (180°-60°-75°).解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长. [审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a .(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA .又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620km.考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系. 解如图,设CD =x m , 则AE =x -20 m ,tan 60°=CDBD ,∴BD =CD tan 60°=x 3=33x (m).在△AEC 中,x -20=33x ,解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理. 【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β,由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β)在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin (α+β).考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长. [审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可.解 在△ABC 中,AB =5,AC =9,∠BCA =30°.由正弦定理,得AB sin ∠ACB =ACsin ∠ABC ,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC ,于是sin ∠BAD =sin ∠ABC =910.同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10, AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.规范解答9——如何运用解三角形知识解决实际问题【问题研究】(1)解三角形实际应用问题的一般步骤是:审题——建模(准确地画出图形)——求解——检验作答.(2)三角形应用题常见的类型:①实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理解之;②实际问题经抽象概括后,已知量与未知量涉及两个三角形,这时需按顺序逐步在两个三角形中求出问题的解;③实际问题经抽象概括后,涉及的三角形只有一个,但由题目已知条件解此三角形需连续使用正弦定理或余弦定理.【解决方案】航海、测量问题利用的就是目标在不同时刻的位置数据,这些数据反映在坐标系中就构成了一些三角形,根据这些三角形就可以确定目标在一定的时间内的运动距离,因此解题的关键就是通过这些三角形中的已知数据把测量目标归入到一个可解三角形中.【示例】►(本题满分12分)如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距102海里.问:乙船每小时航行多少海里?(1)分清已知条件和未知条件(待求).(2)将问题集中到一个三角形中.(3)利用正、余弦定理求解.[解答示范] 如图,连接A1B2由已知A2B2=102,A1A2=302×2060=102,∴A1A2=A2B2.又∠A1A2B2=180°-120°=60°,∴△A1A2B2是等边三角形,∴A1B2=A1A2=10 2.由已知,A1B1=20,∠B1A1B2=105°-60°=45°,(8分)在△A1B2B1中,由余弦定理得B1B22=A1B21+A1B22-2A1B1·A1B2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)利用解三角形知识解决实际问题要注意根据条件画出示意图,结合示意图构造三角形,然后转化为解三角形的问题进行求解.【试一试】 如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,求cos θ.[尝试解答] 如图所示,在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,所以BC =207.由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217. 由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos(∠ACB +30°) =cos ∠ACB cos 30°-sin ∠ACB sin 30° =277×32-217×12=2114.。
2020年高三数学第一轮复习教案-三角函数-第七节 正弦定理和余弦定理
2.S=12
absinC=
1 2
acsinB=
1 2
bcsinA.
1.三角形中的必备结论 (1)a>b⇔A>B(大边对大角).
【知识必备】 (2)A+B+C=π(三角形内角和定理). (3)sin(A+B)=sinC, cos(A+B)=-cosC, sinA+2 B=cosC2, cosA+2 B=sinC2. (4)射影定理:bcosC+ccosB=a, bcosA+acosB=c, acosC+ccosA=b.
第四章 三角函数、解三角形
第七节 正弦定理和余弦定理
【知识必备】
知识点一 正弦定理和余弦定理
【知识必备】
知识点二 在△ABC中,已知a、b和A时,解的情况
【知识必备】
知识点二 在△ABC中,已知a、b和A时,解的情况
【知识必备】
知识点三 三角形常用面积公式
1.S=12 a·ha(ha表示边a上的高).
2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角 的范围的限制.
【典型例题】
【典型例题】
【典型例题】
【典题演练】
B
C
【典题演练】
C
【作 业】
1、完成新数学中的【典例剖析】 2、完成课时作业(二十三)
再见
2020年高考数学一轮总复习第三章三角函数、解三角形3_7正弦定理和余弦定理课时规范练文(含解析)新人教A版
3-7 正弦定理和余弦定理课时规范练 A 组 基础对点练1.(2016·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( D )A. 2B. 3 C .2D.32.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( D ) A .10 B.9 C .8D.53.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( B )A .5 B. 5 C .2D.1解析:∵钝角三角形ABC 的面积是12,AB =c =1,BC =a =2,∴S =12ac sin B =12,即sin B =22,当B 为钝角时,cos B =-1-sin 2B =-22, 利用余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B =1+2+2=5,即AC =5, 当B 为锐角时,cos B =1-sin 2B =22, 利用余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B =1+2-2=1,即AC =1, 此时AB 2+AC 2=BC 2,即△ABC 为直角三角形,不合题意,舍去, 则AC = 5.故选B.4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( A ) A .a =2b B.b =2a C .A =2BD.B =2A5.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B ,则B =( C ) A.π6B.π4C.π3D.π26.(2018·衡阳联考)已知△ABC 的三边长为三个连续的自然数,且最大内角是最小内角的2倍,则最小内角的余弦值是( B ) A.23 B.34 C.56D.710解析:设三边长依次是x -1,x ,x +1,其中x 是自然数,且x ≥2, 令三角形的最小角为A ,则最大角为2A ,由正弦定理,有x -1sin A =x +1sin 2A =x +12sin A cos A,∴cos A =x +1x -,由余弦定理,有cos A =x 2+x +2-x -22x x +,∴x +1x -=x 2+x +2-x -22x x +,即x +1x -1=x 2+4x x 2+x =x +4x +1,整理得(x +1)2=(x -1)(x +4), 解得x =5, 三边长为4,5,6, 则cos A =52+62-422×5×6=34.7.(2018·西安模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cosB =a sin A ,且sin 2B =sin 2C ,则△ABC 的形状为(D )A .等腰三角形 B.锐角三角形 C .直角三角形D.等腰直角三角形解析:因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A , 所以sin(B +C )=sin 2A , 所以sin A =sin 2A . 因为0<A <π, 所以sin A ≠0, 所以sin A =1. 所以A =π2.因为sin 2B =sin 2C ,所以由正弦定理得b 2=c 2. 因为b >0,c >0, 所以b =c .所以△ABC 是等腰直角三角形. 综上所述,故选D.8.(2016·高考北京卷)在△ABC 中,∠A =2π3,a =3c ,则bc=__1__.9.在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是__45°,30°,105°__.10.在△ABC 中, A =30°,AB =4,满足此条件的△ABC 有两解,则BC 边长度的取值范围为__(2,4)__.解析:由正弦定理可得BC sin A =ABsin C ,∴BC =AB ·sin A sin C =2sin C,∵△ABC 有两个解,∴30°<C <150°,且C ≠90°, ∴12<sin C <1, ∴BC =2sin C∈(2,4). 11.已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是152,cos ∠BDC = 104. 解析:如图,取BC 中点E ,DC 中点F ,由题意知AE ⊥BC ,BF ⊥CD . 在Rt △ABE 中,cos ∠ABE =BE AB =14, ∴cos ∠DBC =-14,sin ∠DBC =1-116=154.∴S △BCD =12×BD ×BC ×sin∠DBC =152.∵cos ∠DBC =1-2sin 2∠DBF =-14,且∠DBF 为锐角,∴sin ∠DBF =104.在Rt △BDF 中,cos ∠BDF =sin ∠DBF =104. 综上可得,△BCD 的面积是152,cos ∠BDC =104. 12.四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积. 解析:(1)由题设及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cosC .②由①②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2sin 60° =2 3.13.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin Bsin C;(2)若∠BAC =60°,求∠B . 解析:(1)由正弦定理,得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC , 所以sin B sin C =DC BD =12.(2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°, 所以sin C =sin(∠BAC +∠B )=32cos B +12sin B.由(1)知2sin B =sin C ,所以tan B =33,即∠B =30°. B 组 能力提升练1.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( A ) A.725 B.-725C .±725D.2425解析:由C =2B ,得sin C =sin 2B =2sin B cos B ,由正弦定理及8b =5c ,得cos B =sin C2sin B=c 2b =45, 所以cos C =cos 2B =2cos 2B -1=2×⎝ ⎛⎭⎪⎫452-1=725.故选A.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-a 2=3bc ,且b =3a ,则下列关系一定不成立的是( B ) A .a =c B.b =c C .2a =cD.a 2+b 2=c 2解析:由余弦定理,得cos A =b 2+c 2-a 22bc =3bc 2bc =32,则A =30°.又b =3a ,由正弦定理得sin B =3sin A =3sin 30°=32,所以B =60°或120°.当B =60°时,△ABC 为直角三角形,且2a =c ,可知C ,D 成立;当B =120°时,C =30°,所以A =C ,即a =c ,可知A 成立,故选B.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若满足c =2,a cos C =c sin A 的△ABC 有两个,则边长BC 的取值范围是( D ) A .(1,2) B.(1,3) C .(3,2)D.(2,2)解析:因为a cos C =c sin A ,由正弦定理得sin A cos C =sin C sin A ,易知sin A ≠0,故tan C =1,所以C =π4.过点B 作AC 边上的高BD (图略),垂足为D ,则BD =22BC ,要使满足条件的△ABC 有两个,则BC >2>22BC ,解得2<BC <2.故选D. 4.在△ABC 中,已知2a cos B =c ,sin A sin B ·(2-cos C )=sin 2 C 2+12,则△ABC 为( D )A .等边三角形B.钝角三角形C .锐角非等边三角形 D.等腰直角三角形解析:由2a cos B =c ⇒2a ·a 2+c 2-b 22ac=c ⇒a 2=b 2,所以a =b .因为sin A sin B (2-cos C )=sin 2 C 2+12, 所以2sin A sin B (2-cos C )-2+1-2sin 2C2=0,所以2sin A sin B (2-cos C )-2+cos C=0,所以(2-cos C )(2sin A sin B -1)=0,因为cos C ≠2,所以sin A sin B =12,因为a =b ,所以sin 2A =12,所以A =B =π4,所以C=π2,所以△ABC 是等腰直角三角形,故选D. 5.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为3 .解析:由正弦定理得(2+b )(a -b )=(c -b )c ,即(a +b )·(a -b )=(c -b )c ,即b 2+c 2-a2=bc ,所以cos A =b 2+c 2-a 22bc =12,又A ∈(0,π),所以A =π3,又b 2+c 2-a 2=bc ≥2bc -4,当且仅当b =c =2时,等号成立,即bc ≤4,故S △ABC =12bc sin A ≤12×4×32=3,则△ABC 面积的最大值为 3.6.(2017·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cosC +c cos A ,则B =π3. 解析:由正弦定理可得2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B ⇒cos B =12⇒B =π3. 7.在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若b sin A -3a cos B =0,且b 2=ac ,则a +c b的值为__2__.解析:由题意及正弦定理得sin B sin A -3sin A cos B =0,因为sin A ≠0,所以sin B -3cos B =0,所以tan B =3,又0<B <π,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cosB =a 2+c 2-ac ,即b 2=(a +c )2-3ac ,又b 2=ac ,所以4b 2=(a +c )2,解得a +cb=2.8.(2018·高考北京卷)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =__60°__;ca的取值范围是__(2,+∞)__. 解析:∵S △ABC =34(a 2+c 2-b 2)=12ac sin B , ∴a 2+c 2-b 22ac =sin B3,即cos B =sin B 3,∴sin B cos B =3,∠B =π3,则c a =sin C sin A =sin ⎝ ⎛⎭⎪⎫2π3-A sin A =32cos A -⎝ ⎛⎭⎪⎫-12·sin A sin A =32·1tan A +12, ∴∠C 为钝角,∠B =π3,∴0<∠A <π6,∴tan A ∈⎝ ⎛⎭⎪⎫0,33,1tan A ∈(3,+∞), 故c a∈(2,+∞).9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知cos 2B +cos B =1-cos A cosC . (1)求证:a ,b ,c 成等比数列; (2)若b =2,求△ABC 的面积的最大值.解析:(1)证明:在△ABC 中,cos B =-cos(A +C ). 由已知,得(1-sin 2B )-cos(A +C )=1-cos A cos C , ∴-sin 2B -(cos A cosC -sin A sin C )=-cos A cos C , 化简,得sin 2B =sin A sinC . 由正弦定理,得b 2=ac , ∴a ,b ,c 成等比数列. (2)由(1)及题设条件,得ac =4.则cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时,等号成立. ∵0<B <π,∴sin B =1-cos 2B ≤ 1-122=32, ∴S △ABC =12ac sin B ≤12×4×32= 3.即△ABC 的面积的最大值为 3.10.(2018·海口调研)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )cos C =c (3cos B -cos A ).(1)求sin B sin A的值;(2)若c =7a ,求角C 的大小.解析:(1)由正弦定理,得(sin A -3sin B )cos C =sin C (3cos B -cos A ), ∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B , 即sin(A +C )=3sin(C +B ),即sin B =3sin A , ∴sin B sin A=3. (2)由(1)知b =3a ,∵c =7a ,∴cos C =a 2+b 2-c 22ab =a 2+9a 2-7a 22×a ×3a =3a 26a 2=12,又C ∈(0,π),∴C =π3.。
数学一轮复习第三章三角函数解三角形第7讲解三角形应用举例学案含解析
第7讲解三角形应用举例[考纲解读]1。
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(重点)2.利用正、余弦定理解决实际问题,主要考查根据实际问题建立三角函数模型,将实际问题转化为数学问题.(难点)[考向预测]从近三年高考情况来看,本讲是高考中的一个考查内容.预计2021年会强化对应用问题的考查.以与三角形有关的应用问题为主要命题方向,结合正、余弦定理求解平面几何中的基本量,实际背景中求距离、高度、角度等均可作为命题角度.试题可以为客观题也可以是解答题,难度以中档为主。
1.仰角和俯角在视线和水平线所成的角中,视线在水平线错误!上方的角叫仰角,在水平线错误!下方的角叫俯角(如图①).2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).3.方向角相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③).(2)北偏西α,即由指北方向逆时针旋转α到达目标方向.(3)南偏西等其他方向角类似.4.坡角与坡度(1)坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).(2)坡度:坡面的铅直高度与水平长度之比(如图④,i为坡度).坡度又称为坡比.1.概念辨析(1)东北方向就是北偏东45°的方向.()(2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.()(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.()(4)方位角大小的范围是[0,2π),方向角大小的范围一般是错误!。
()答案(1)√(2)×(3)√(4)√2.小题热身(1)在某测量中,设A在B的南偏东34°27′,则B在A的() A.北偏西34°27′ B.北偏东55°33′C.北偏西55°33′ D.南偏西34°27′答案A解析由方向角的概念知,B在A的北偏西34°27′。
第三章 第七节 正弦定理和余弦定理
第三章
考点一
第七节 正弦定理和余弦定理
回顾教材·夯实基础 考点二 典例剖析·突破考点 考点三 真题感悟·体验考场 课时规范练
∴a=c, π 又 B= , 3 ∴△ABC 为等边三角形.
[答案] B
第三章
考点一
第七节 正弦定理和余弦定理
回顾教材·夯实基础 考点二 典例剖析·突破考点 考点三 真题感悟·体验考场 课时规范练
第三章
考点一
第七节 正弦定理和余弦定理
回顾教材·夯实基础 考点二 典例剖析·突破考点 考点三 真题感悟·体验考场 课时规范练
(2)△ABC 的三个内角 A,B,C 所对边的长分别为 a,b,c, b asin Asin B+bcos A= 2a,则a=(
2
)
A. 2 3 C. 3
B.2 2 D. 2
第三章
考点一
第七节 正弦定理和余弦定理
回顾教材·夯实基础 考点二 典例剖析·突破考点 考点三 真题感悟·体验考场 课时规范练
[方法提升] 常见类型及解题策略 1 1 1 (1)求三角形的面积.对于面积公式S= absin C= acsin B= 2 2 2 bcsin A,一般是已知哪一个角就使用含哪个角的公式. (2)已知三角形的面积解三角形.与面积有关的问题,一般要 利用正弦定理或余弦定理进行边和角的互化.
数表示边
角化边: 将表达式中的 等式两边是角的齐次形式 角用边的形式表示 或 a2+b2-c2=λab
第三章
考点一
第七节 正弦定理和余弦定理
回顾教材·夯实基础 考点二 典例剖析·突破考点 考点三 真题感悟·体验考场 课时规范练
判断三角形的形状|易错突破 [例 2] 已知△ABC 中,内角 A、B、C 成等差数列,其对边为 )
【方向】高考数学一轮复习第3章三角函数解三角形第7节正弦定理余弦定理应用举例教师用书
【关键字】方向第七节正弦定理、余弦定理应用举例1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图3-7-1①).①②图3-7-12.方向角和方向角(1)方向角:从指北方向顺时针转到目标方向线的水平角,如B点的方向角为α(如图3-7-1②).(2)方向角:相对于某正方向的水平角,如南偏东30°等.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.( )(2)俯角是铅垂线与视线所成的角,其范围为.( )(3)方向角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )(4)如图3-7-2,为了测量隧道口AB的长度,可测量数据a,b,γ进行计算.( )图3-7-2[答案] (1)×(2)×(3)√(4)√2.(教材改编)海面上有A,B,C三个灯塔,AB=10 n mile,从A望C和B成60°视角,从B望C和A成75°视角,则BC等于( )A.10 n mile B. n mileC.5 n mile D.5 n mileD [如图,在△ABC中,AB=10,∠A=60°,∠B=75°,∠C=45°,∴=,∴BC=5.]3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B 的( )A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°B [如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°,∴点A在点B的北偏西15°.]4.如图3-7-3,要测量底部不能到达的电视塔的高度,选择甲、乙两观测点.在甲、乙两点测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距,则电视塔的高度是( )A. m B.C. m D.图3-7-3D [设塔高为x m,则由已知可得BC=x m,BD=x m,由余弦定理可得BD2=BC2+CD2-2BC·CDcos ∠BCD,即3x2=x2+5002+500x,解得x=500(m).]5.如图3-7-4,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=,∠ACB=45°,∠CAB=105°,则A,B两点的距离为( ) A. mB. mC. mD. m图3-7-4D [因为∠ACB=45°,∠CAB=105°,所以∠B=30°.由正弦定理可知=,即=,解得AB= m.]如图3-7-567°,30°,此时气球的高是,则河流的宽度BC约等于________m.(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,≈1.73)图3-7-560 [如图所示,过A作AD⊥CB且交CB的延长线于D.在Rt△ADC中,由AD=46 m,∠ACB=30°得AC=92 m.在△ABC中,∠BAC=67°-30°=37°,∠ABC=180°-67°=113°,AC=92 m,由正弦定理=,得=,即=,解得BC=≈60(m).][规律方法] 应用解三角形知识解决实际问题需要下列三步:(1)根据题意,画出示意图,并标出条件;(2)将所求问题归结到一个或几个三角形中(如本例借助方向角构建三角形),通过合理运用正、余弦定理等有关知识正确求解;(3)检验解出的结果是否符合实际意义,得出正确答案.[变式训练1] 江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 【导学号:】 10 3 [如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300 =103(m).]测量高度问题如图376,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =______m.图376100 6 [由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m. 在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m).][规律方法] 1.在测量高度时,要准确理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.2.分清已知条件与所求,画出示意图;明确在哪个三角形内运用正、余弦定理,有序地解相关的三角形,并注意综合运用方程、平面几何、立体几何等知识.[变式训练2] 如图377,从某电视塔CO 的正东方向的A 处,测得塔顶的仰角为60°,在电视塔的南偏西60°的B 处测得塔顶的仰角为45°,AB 间的距离为35米,则这个电视塔的高度为________米. 【导学号:】图377521 [如图,可知∠CAO =60°,∠AOB =150°,∠OBC =45°,AB =35米.设OC =x 米,则OA =33x 米,OB =x 米. 在△ABO 中,由余弦定理, 得AB 2=OA 2+OB 2-2OA ·OB ·cos ∠AOB ,即352=x 23+x 2-233x 2·cos 150°, 整理得x =521,所以此电视塔的高度是521米.]测量角度问题 在海岸A 处,发现北偏东45°方向、距离A 处(3-1)海里的B 处有一艘走私船;在A 处北偏西75°方向、距离A 处2海里的C 处的缉私船奉命以103海里/小时的速度追截走私船.同时,走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多长时间?[解] 设缉私船t 小时后在D 处追上走私船,则有CD =103t ,BD =10t .在△ABC 中,AB =3-1,AC =2,∠BAC =120°.4分根据余弦定理,可得BC =3-12+22-2×2×3-1cos 120°=6, 由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =26×32=22,∴∠ABC =45°,因此BC 与正北方向垂直.8分 于是∠CBD =120°.在△BCD 中,由正弦定理,得sin ∠BCD =BD sin ∠CBD CD =10t ·sin 120°103t=12, ∴∠BCD =30°,又CD sin 120°=BC sin 30°, 即103t3=6,得t =610.∴当缉私船沿北偏东60°的方向能最快追上走私船,最少要花610小时.14分 [规律方法] 解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为解三角形的问题后,注意正弦、余弦定理的“联袂”使用.[变式训练3] 如图378,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.图378[解] 在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207.4分 由正弦定理,得AB sin ∠ACB =BC sin ∠BAC ⇒sin ∠ACB =AB BC ·sin∠BAC =217.8分 由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277. 由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114.14分 [思想与方法]解三角形应用题的两种情形(1)已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.[易错与防范]1.“方位角”与“方向角”的区别:方位角大小的范围是[0,2π),方向角大小的范围一般是⎣⎢⎡⎭⎪⎫0,π2. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.课时分层训练(二十一)正弦定理、余弦定理应用举例A 组 基础达标(建议用时:30分钟)一、选择题1.如图379所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )图379A .a km B.3a km C.2a km D .2a kmB [在△ABC 中,AC =BC =a ,∠ACB =120°,∴AB 2=a 2+a 2-2a 2cos 120°=3a 2,AB =3a .]2.如图3710,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )【导学号:】图3710A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D [由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.]3.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里A [如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°, 解得BC =102(海里).]4.如图3711,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为 ( )图3711A .8 km/hB .6 2 km/hC .234 km/hD .10 km/h B [设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝ ⎛⎭⎪⎫110v 2=⎝ ⎛⎭⎪⎫110×22+12-2×110×2×1×45,解得v =6 2.]5.如图3712,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为 ( )图3712A .30°B .45°C .60°D .75°B [依题意可得AD =2010(m),AC =305(m),又CD =50(m),所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=3052+20102-5022×305×2010= 6 0006 0002=22, 又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.]二、填空题6.在地上画一个∠BDA =60°,某人从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点B ,则B 与D 之间的距离为________米. 【导学号:】16 [如图所示,设BD =x m ,则142=102+x 2-2×10×x ×cos 60°,整理得x 2-10x -96=0,x =-6(舍去),x =16,∴x =16(米).]7.如图3713,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米. 【导学号:】图3713 10 6 [在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=AB BC,AB =BC tan 60°=106(米).]8.如图3714所示,一艘海轮从A 处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B 处,海轮按北偏西60°的方向航行了30分钟后到达C 处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分钟.图371463[由已知得∠ACB =45°,∠B =60°, 由正弦定理得AC sin B =ABsin ∠ACB ,所以AC =AB ·sin B sin ∠ACB =20×sin 60°sin 45°=106, 所以海轮航行的速度为10630=63(海里/分钟).] 三、解答题9.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A ,B ,且AB 长为80米,当航模在C 处时,测得∠ABC =105°和∠BAC =30°,经过20秒后,航模直线航行到D 处,测得∠BAD =90°和∠ABD =45°.请你根据以上条件求出航模的速度.(答案可保留根号)图3715[解] 在△ABD 中,∵∠BAD =90°,∠ABD =45°,∴∠ADB =45°,∴AD =AB =80,∴BD =80 2.4分在△ABC 中,BC sin 30°=ABsin 45°, ∴BC =AB sin 30°sin 45°=80×1222=40 2.8分 在△DBC 中,DC 2=DB 2+BC 2-2DB ·BC cos 60°=(802)2+(402)2-2×802×402×12=9 600. ∴DC =406,航模的速度v =40620=26米/秒. 14分 10.如图3716,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.图3716(1)求渔船甲的速度;(2)求sin α的值. 【导学号:】[解] (1)依题意知,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.4分 在△ABC 中,由余弦定理,得 BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC=122+202-2×12×20×cos 120°=784,解得BC =28.所以渔船甲的速度为BC2=14海里/小时.8分(2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°,10分 即sin α=AB sin 120°BC =12×3228=3314.14分 B 组 能力提升(建议用时:15分钟)1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是 ( )A .50 mB .100 mC .120 mD .150 mA [设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m .]2.如图3717,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图3717150 [根据图示,AC =100 2 m.在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°⇒AM =100 3 m. 在△AMN 中,MN AM=sin 60°,∴MN =1003×32=150(m).] 3.如图3718已知在东西方向上有M ,N 两座小山,山顶各有一个发射塔A ,B ,塔顶A ,B 的海拔高度分别为AM =100米和BN =200米,一测量车在小山M 的正南方向的点P 处测得发射塔顶A 的仰角为30°,该测量车向北偏西60°方向行驶了1003米后到达点Q ,在点Q 处测得发射塔顶B 处的仰角为θ,且∠BQA =θ,经测量tan θ=2,求两发射塔顶A ,B 之间的距离.图3718[解]在Rt△AMP中,∠APM=30°,AM=100,∴PM=1003,连接QM(图略),在△PQM 中,∠QPM=60°,4分又PQ=1003,∴△PQM为等边三角形,∴QM=100 3.8分在Rt△AMQ中,由AQ2=AM2+QM2,得AQ=200.在Rt△BNQ中,tan θ=2,BN=200,∴BQ=1005,cos θ=55.12分在△BQA中,BA2=BQ2+AQ2-2BQ·AQ cos θ=(1005)2,∴BA=100 5.即两发射塔顶A,B之间的距离是1005米.14分此文档是由网络收集并进行重新排版整理.word可编辑版本!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七节 正弦定理、余弦定理应用举例1.仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图371①).① ②图3712.方位角和方向角(1)方位角:从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图371②).(2)方向角:相对于某正方向的水平角,如南偏东30°等.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( )(2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.( ) (3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )(4)如图372,为了测量隧道口AB 的长度,可测量数据a ,b ,γ进行计算.( )图372[答案] (1)× (2)× (3)√ (4)√2.(教材改编)海面上有A ,B ,C 三个灯塔,AB =10 n mile ,从A 望C 和B 成60°视角,从B 望C 和A 成75°视角,则BC 等于( )A .10 3 n mile B.1063 n mile C .5 2 n mileD .5 6 n mileD [如图,在△ABC 中,AB =10,∠A =60°,∠B =75°,∠C =45°,∴BC sin 60°=10sin 45°, ∴BC =5 6.]3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°B [如图所示,∠ACB =90°,又AC =BC ,∴∠CBA =45°,而β=30°,∴α=90°-45°-30°=15°,∴点A 在点B 的北偏西15°.]4.如图373,要测量底部不能到达的电视塔的高度,选择甲、乙两观测点.在甲、乙两点测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500 m ,则电视塔的高度是( )A .100 2 mB .400 mC .200 3 mD .500 m图373D [设塔高为x m ,则由已知可得BC =x m ,BD =3x m ,由余弦定理可得BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD ,即3x 2=x 2+5002+500x ,解得x =500(m).]5.如图374,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=50 m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为( ) A.50 3 mB.25 3 mC.25 2 mD.50 2 m图374D[因为∠ACB=45°,∠CAB=105°,所以∠B=30°.由正弦定理可知ACsin B =ABsin C,即50sin 30°=ABsin 45°,解得AB=50 2 m.]如图375,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46 m,则河流的宽度BC约等于________m.(用四舍五入法将结果精确到个位.参考数据:sin 67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)图37560[如图所示,过A作AD⊥CB且交CB的延长线于D.在Rt△ADC中,由AD=46 m,∠ACB=30°得AC=92 m.在△ABC 中,∠BAC =67°-30°=37°,∠ABC =180°-67°=113°,AC =92 m ,由正弦定理AC sin ∠ABC =BCsin ∠BAC,得 92sin 113°=BC sin 37°,即92sin 67°=BC sin 37°, 解得BC =92sin 37°sin 67°≈60(m).] [规律方法] 应用解三角形知识解决实际问题需要下列三步:(1)根据题意,画出示意图,并标出条件;(2)将所求问题归结到一个或几个三角形中(如本例借助方位角构建三角形),通过合理运用正、余弦定理等有关知识正确求解;(3)检验解出的结果是否符合实际意义,得出正确答案.[变式训练1] 江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 【导学号:51062125】 10 3 [如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300 =103(m).]如图376,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =______m.图376 100 6 [由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m. 在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m).][规律方法] 1.在测量高度时,要准确理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.2.分清已知条件与所求,画出示意图;明确在哪个三角形内运用正、余弦定理,有序地解相关的三角形,并注意综合运用方程、平面几何、立体几何等知识.[变式训练2] 如图377,从某电视塔CO 的正东方向的A 处,测得塔顶的仰角为60°,在电视塔的南偏西60°的B 处测得塔顶的仰角为45°,AB 间的距离为35米,则这个电视塔的高度为________米. 【导学号:51062126】图377521 [如图,可知∠CAO =60°,∠AOB =150°,∠OBC =45°,AB =35米.设OC =x 米,则OA =33x 米,OB =x 米. 在△ABO 中,由余弦定理,得AB 2=OA 2+OB 2-2OA ·OB ·cos ∠AOB ,即352=x 23+x 2-233x 2·cos 150°, 整理得x =521,所以此电视塔的高度是521米.]在海岸A 处,发现北偏东45°方向、距离A 处(3-1)海里的B 处有一艘走私船;在A 处北偏西75°方向、距离A 处2海里的C 处的缉私船奉命以103海里/小时的速度追截走私船.同时,走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多长时间?[解] 设缉私船t 小时后在D 处追上走私船,则有CD =103t ,BD =10t .在△ABC 中,AB =3-1,AC =2,∠BAC =120°.4分 根据余弦定理,可得BC =3-2+22-3-=6, 由正弦定理,得sin ∠ABC =AC BC sin ∠BAC =26×32=22,∴∠ABC =45°,因此BC 与正北方向垂直.8分 于是∠CBD =120°.在△BCD 中,由正弦定理,得 sin ∠BCD =BD sin ∠CBD CD =10t ·sin 120°103t=12, ∴∠BCD =30°,又CD sin 120°=BC sin 30°, 即103t3=6,得t =610.∴当缉私船沿北偏东60°的方向能最快追上走私船,最少要花610小时.14分 [规律方法] 解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为解三角形的问题后,注意正弦、余弦定理的“联袂”使用.[变式训练3] 如图378,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.图378[解] 在△ABC 中,AB =40,AC =20,∠BAC =120°,由余弦定理得,BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207.4分 由正弦定理,得AB sin ∠ACB =BC sin ∠BAC ⇒sin ∠ACB =AB BC ·sin∠BAC =217.8分 由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277. 由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114.14分[思想与方法]解三角形应用题的两种情形(1)已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.[易错与防范]1.“方位角”与“方向角”的区别:方位角大小的范围是[0,2π),方向角大小的范围一般是⎣⎢⎡⎭⎪⎫0,π2. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.课时分层训练(二十一)正弦定理、余弦定理应用举例A 组 基础达标(建议用时:30分钟)一、选择题1.如图379所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )图379A .a km B.3a km C.2a km D .2a kmB [在△ABC 中,AC =BC =a ,∠ACB =120°,∴AB 2=a 2+a 2-2a 2cos 120°=3a 2,AB =3a .]2.如图3710,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )【导学号:51062127】A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D [由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.]3.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里A [如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=AB sin 45°, 解得BC =102(海里).]4.如图3711,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为 ( )图3711A .8 km/hB .6 2 km/hC .234 km/hD .10 km/hB [设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝ ⎛⎭⎪⎫110v 2=⎝ ⎛⎭⎪⎫110×22+12-2×110×2×1×45,解得v =6 2.]5.如图3712,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为 ( )A .30°B .45°C .60°D .75°B [依题意可得AD =2010(m),AC =305(m),又CD =50(m),所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=52+102-5022×305×2010= 6 0006 0002=22, 又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.]二、填空题6.在地上画一个∠BDA =60°,某人从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点B ,则B 与D 之间的距离为________米. 【导学号:51062128】16 [如图所示,设BD =x m ,则142=102+x 2-2×10×x ×cos 60°,整理得x 2-10x -96=0,x =-6(舍去),x =16,∴x =16(米).]7.如图3713,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米. 【导学号:51062129】图371310 6 [在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°,BC sin 45°=CD sin 30°,BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=AB BC,AB =BC tan 60°=106(米).]8.如图3714所示,一艘海轮从A 处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B 处,海轮按北偏西60°的方向航行了30分钟后到达C 处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分钟.图3714 63[由已知得∠ACB =45°,∠B =60°, 由正弦定理得AC sin B =AB sin ∠ACB, 所以AC =AB ·sin B sin ∠ACB =20×sin 60°sin 45°=106, 所以海轮航行的速度为10630=63(海里/分钟).] 三、解答题9.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A ,B ,且AB 长为80米,当航模在C 处时,测得∠ABC =105°和∠BAC =30°,经过20秒后,航模直线航行到D 处,测得∠BAD=90°和∠ABD =45°.请你根据以上条件求出航模的速度.(答案可保留根号)图3715[解] 在△ABD 中,∵∠BAD =90°,∠ABD =45°,∴∠ADB =45°,∴AD =AB =80,∴BD =80 2.4分在△ABC 中,BC sin 30°=ABsin 45°, ∴BC =AB sin 30°sin 45°=80×1222=40 2.8分 在△DBC 中,DC 2=DB 2+BC 2-2DB ·BC cos 60°=(802)2+(402)2-2×802×402×12=9 600. ∴DC =406,航模的速度v =40620=26米/秒. 14分10.如图3716,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.图3716(1)求渔船甲的速度;(2)求sin α的值. 【导学号:51062130】[解] (1)依题意知,∠BAC =120°,AB =12,AC =10×2=20,∠BCA =α.4分 在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC=122+202-2×12×20×cos 120°=784,解得BC =28.所以渔船甲的速度为BC 2=14海里/小时.8分 (2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α,由正弦定理,得AB sin α=BC sin 120°,10分 即sin α=AB sin 120°BC =12×3228=3314.14分 B 组 能力提升(建议用时:15分钟)1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是 ( )A .50 mB .100 mC .120 mD .150 mA [设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m .]2.如图3717,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图3717150 [根据图示,AC =100 2 m.在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°⇒AM =100 3 m. 在△AMN 中,MN AM=sin 60°,∴MN =1003×32=150(m).] 3.如图3718已知在东西方向上有M ,N 两座小山,山顶各有一个发射塔A ,B ,塔顶A ,B 的海拔高度分别为AM =100米和BN =200米,一测量车在小山M 的正南方向的点P 处测得发射塔顶A 的仰角为30°,该测量车向北偏西60°方向行驶了1003米后到达点Q ,在点Q 处测得发射塔顶B 处的仰角为θ,且∠BQA =θ,经测量tan θ=2,求两发射塔顶A ,B 之间的距离.图3718[解] 在Rt △AMP 中,∠APM =30°,AM =100,∴PM =1003,连接QM (图略),在△PQM 中,∠QPM =60°,4分又PQ =1003,∴△PQM 为等边三角形,∴QM =100 3.8分在Rt △AMQ 中,由AQ 2=AM 2+QM 2,得AQ =200.在Rt △BNQ 中,tan θ=2,BN =200,∴BQ =1005,cos θ=55.12分 在△BQA 中,BA 2=BQ 2+AQ 2-2BQ ·AQ cos θ=(1005)2,∴BA=100 5.即两发射塔顶A,B之间的距离是1005米.14分。