辽宁省大连市中山区2016届九年级上学期期末考试数学试题解析(解析版)
2016年大连市中考数学试题解析版
2016年辽宁省大连市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分13的相反数是()A . B. -4 C. 3 D .- 33 32.在平面直角坐标系中,点(1, 5)所在的象限是()A .第一象限B .第二象限C.第三象限D.第四象限3•方程2x+3=7的解是( )A . x=5B . x=4C . x=3.5D . x=2E, /ACD=40。
,则/ BAE 的度数是()"2x+2> 黑5 .不等式组的解集是A . x>—2B . x v 1C . - 1v x v 2D . - 2v x v 16. 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 1 , 2, 3, 4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A. B . C . : D .7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为X,则该文具店五月份销售铅笔的支数是( )2 2A . 100 (1+x)B . 100 (1+x) C. 100 ( 1+x ) D. 100 (1+2x)8 .如图,按照三视图确定该几何体的全面积是(图中尺寸单位: cm)(解:画树状图得:4 8 12•••共有12种等可能的结果,两次摸出的小球标号的积小于4 1•••两次摸出的小球标号的积小于 4的概率是:…=.一.JL 忆 0 故选C .【点评】此题考查了列表法或树状图法求概率•注意此题是不放回实验•用到的知识点为:概率 数与总情况数之比.二、填空题:本大题共 8小题,每小题3分,共24分29 •因式分解:x - 3x=【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集, 再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6 •一个不透明的口袋中有四个完全相同的小球,把它们分别标号为 3, 4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于 4的概率是(A .「B . D 「【考点】 列表法与树状图法.【分析】 首先根据题意画出树状图, 然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于 的情况, 再利用概率公式求解即可求得答案./T\ /K /1\i/1\1 2 3 4的有4种情况,=所求情况2 2 265 冗cm C . 80 mm D . 105 mm开姐7 •某文具店三月份销售铅笔100支,四、五两个月销售量连续增长•若月平均增长率为x,则该文具店五月份销售铅笔的支数是( )2 2A • 100 (1+x) B• 100 (1+x) C• 100 ( 1+x ) D. 100 (1+2x)【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是100 (1+x),五月份的产量是100 ( 1+x ) 2,据此列方程即可.【解答】解:若月平均增长率为X,则该文具店五月份销售铅笔的支数是:100 (1+x) 2,故选:B •【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程•原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a x (1±(),再经过第二次调整就是a x(1±() (1 ±<) =a (1±<) 2•增长用+ ”,下降用■”.cm)( )【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥; 根据三视图知:该圆锥的母线长为8cm,底面半径为10吃=5cm ,, 2 2 2故表面积=n l+ n = n XX3+ n X =65 冗cm • 故选:B •【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.、填空题:本大题共8小题,每小题3分,共24分29 •因式分解:x - 3x= x (x- 3).【考点】因式分解-提公因式法.【专题】因式分解.【分析】确定公因式是x,然后提取公因式即可.【解答】解:x2- 3x=x (x - 3).故答案为:x (x- 3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式•一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10•若反比例函数y的图象经过点(1,- 6),则k的值为 -6 .X【考点】反比例函数图象上点的坐标特征.【分析】直接把点(1,- 6)代入反比例函数y=—,求出k的值即可.【解答】解:•••反比例函数y=—的图象经过点(1,- 6),••• k=1 x (- 6)= - 6.故答案为:-6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,将厶ABC绕点A逆时针旋转的到△ ADE,点C和点E是对应点,若/ CAE=90 ° AB=1 ,则BD=【考点】旋转的性质.【分析】由旋转的性质得:AB=AD=1,/ BAD= / CAE=90 °再根据勾股定理即可求出BD .【解答】解:•••将△ ABC绕点A逆时针旋转的到△ ADE,点C和点E是对应点,• AB=AD=1,/ BAD= / CAE=90 °• BD=「「- L J I =』/■;『= •.故答案为 -.【点评】本题考查了旋转的性质:① 对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③ 旋转前、后的图形全等•也考查了勾股定理,掌握旋转的性质是解决问题的关键.则该校女子排球队队员的平均年龄是15岁.【考点】加权平均数;频数与频率.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(13 Xl + 14 XI + 15 >7+16X3)已2=15 (岁),即该校女子排球队队员的平均年龄为15岁.故答案为:15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13•如图,在菱形ABCD中,AB=5 , AC=8,则菱形的面积是24【分析】直接利用菱形的性质结合勾股定理得出BD的长,再利用菱形面积求法得出答案.【解答】解:连接BD,交AC于点0,•••四边形ABCD是菱形,••• AC 丄BD , A0=C0=4 ,二B0=让鼻3,故BD=6 ,则菱形的面积是:>6X3=24 .故答案为:24.【点评】此题主要考查了菱形的性质以及勾股定理,正确求出14.若关于x 的方程2X 2+X - a=0有两个不相等的实数根,则实数 a 的取值范围是a >^ —8【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于 a 的一元一次不等式,解不等式即可得出结论.【解答】解:•••关于 X 的方程2X 2+X - a=0有两个不相等的实数根,•••△ =12- 4X2X ( - a ) =1+8a >0,解得:a >- 一.故答案为:a > —D【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出 1+8a > 0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.如图,一艘渔船位于灯塔 P 的北偏东30。
九年级上册大连数学期末试卷达标检测(Word版 含解析)
九年级上册大连数学期末试卷达标检测(Word 版 含解析)一、选择题1.如图,矩形ABCD 的对角线交于点O ,已知CD a =,DCA β∠=∠,下列结论错误的是( )A .BDC β∠=∠B .2sin aAO β=C .tan BC a β=D .cos aBD β=2.一组数据0、-1、3、2、1的极差是( ) A .4B .3C .2D .13.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定4.已知2x =3y (x ≠0,y ≠0),则下面结论成立的是( ) A .23x y = B .32=y xC .23x y = D .23=y x5.方程2x x =的解是( ) A .x=0 B .x=1 C .x=0或x=1 D .x=0或x=-1 6.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .12B .1:2C .1:3D .1:47.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=8.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( )A .86B .87C .88D .899.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>10.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π- C .32π-D .3π-11.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm12.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 14.一元二次方程290x 的解是__.15.已知tan (α+15°)=3,则锐角α的度数为______°. 16.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.17.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.18.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.19.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.20.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________; 21.如图是二次函数2y ax bx c =++的部分图象,由图象可知不等式20ax bx c ++>的解集是_______.22.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.23.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 . 24.23x +x 这样的方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=3时,9=3满足题意;当x 2=﹣1时,1=﹣1不符合题意;所以原方程的解是x =3.运用以上经验,则方程x +5x +=1的解为_____.三、解答题25.如图,在矩形纸片ABCD 中,已知2AB =,6=BC ,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°; (2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长.26.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数. 27.抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上. (1)求b 、c 的值;(2)画出抛物线的简图并写出它与y 轴的交点C 的坐标;(3)根据图象直接写出:点C 关于直线x =2对称点D 的坐标 ;若E(m ,n)为抛物线上一点,则点E 关于直线x =2对称点的坐标为 (用含m 、n 的式子表示).28.问题背景:如图1设P是等边△ABC内一点,PA=6,PB=8,PC=10,求∠APB的度数.小君研究这个问题的思路是:将△ACP绕点A逆时针旋转60°得到△ABP',易证:△APP'是等边三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.简单应用:(1)如图2,在等腰直角△ABC中,∠ACB=90°.P为△ABC内一点,且PA=5,PB=3,PC=22,则∠BPC=°.(2)如图3,在等边△ABC中,P为△ABC内一点,且PA=5,PB=12,∠APB=150°,则PC=.拓展廷伸:(3)如图4,∠ABC=∠ADC=90°,AB=BC.求证:2BD=AD+DC.(4)若图4中的等腰直角△ABC与Rt△ADC在同侧如图5,若AD=2,DC=4,请直接写出BD的长.29.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB.(1)证明:△ADC∽△ACB;(2)若AD=2,BD=6,求边AC的长.30.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.31.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的a,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的b,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y轴右侧的概率.32.如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD.(1)求证:CD与⊙O相切;(2)若AB=8,求图中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据矩形的性质得对角线相等且互相平分,再结合三角函数的定义,逐个计算即可判断.【详解】解:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO, ∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、BDC DCAβ∠=∠=∠,故A选项正确;B、在Rt△ADC中,cos∠ACD=DCAC, ∴cosβ=2aAO,∴AO=2cosa,故B选项错误;C、在Rt△BCD中,tan∠BDC=BCDC, ∴ tanβ=BCa∴BC=atanβ,故C选项正确;D、在Rt△BCD中,cos∠BDC=DCDB, ∴ cosβ=aBD∴cosaBDβ=,故D选项正确.故选:B.【点睛】本题考查矩形的性质及三角函数的定义,掌握三角函数的定义是解答此题的关键. 2.A解析:A【解析】根据极差的概念最大值减去最小值即可求解. 【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4. 故选A . 【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.3.C解析:C 【解析】分析:连接BD ,根据平行四边形的性质得出BP=DP ,根据圆的性质得出PM=PN ,结合对顶角的性质得出∠DPN=∠BPM ,从而得出三角形全等,得出答案.详解:连接BD ,因为P 为平行四边形ABCD 的对称中心,则P 是平行四边形两对角线的交点,即BD 必过点P ,且BP=DP , ∵以P 为圆心作圆, ∴P 又是圆的对称中心, ∵过P 的任意直线与圆相交于点M 、N , ∴PN=PM , ∵∠DPN=∠BPM , ∴△PDN ≌△PBM (SAS ), ∴BM=DN .点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.4.D解析:D 【解析】 【分析】根据比例的性质,把等积式写成比例式即可得出结论. 【详解】A.由内项之积等于外项之积,得x :3=y :2,即32x y=,故该选项不符合题意, B.由内项之积等于外项之积,得x :3=y :2,即32x y=,故该选项不符合题意, C.由内项之积等于外项之积,得x :y =3:2,即32x y =,故该选项不符合题意,D.由内项之积等于外项之积,得2:y =3:x ,即23=y x,故D 符合题意;故选:D . 【点睛】本题考查比例的性质,熟练掌握比例内项之积等于外项之积的性质是解题关键.解析:C【解析】【分析】根据因式分解法,可得答案.【详解】=,解:2x x方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.6.D解析:D【解析】【分析】根据相似三角形面积的比等于相似比的平方解答即可.【详解】解:∵两个相似三角形的相似比是1:2,∴这两个三角形们的面积比为1:4,故选:D.【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.7.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289+=-,x x222++=-+,8494x xx+=,所以()247故选D.【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.8.C解析:C 【解析】 【分析】利用加权平均数按照比例进一步计算出个人总分即可. 【详解】 根据题意得:92580390288532⨯+⨯+⨯=++(分),∴小莹的个人总分为88分; 故选:C . 【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.9.A解析:A 【解析】 【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小. 【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.B解析:B 【解析】 【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可. 【详解】 连接BD ,∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°, ∴△DAB 是等边三角形, ∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H , 在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠, ∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯=233π故选B .11.B解析:B 【解析】 【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可. 【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°,∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】 此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A 、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B 、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C 、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D 、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A .【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题13.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x 1=3,x 2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵290x -=∴2x =9,∴x =±3,即x 1=3,x 2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.15.15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,解析:15【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.16.50【解析】【分析】连接AC,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可. 【详解】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∵DC=CB∴∵AB 是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径 ∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 17.∠P=∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.18.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.19.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。
大连市中山区2015-2016学年九年级上期末数学试卷含答案解析
一、选择题(共 8 小题,每小题 3 分,满分 24 分)
1.已知四条线段满足
,将它改写成为比例式,下面正确的是( )
A.
B.
C.
D.
2.二次函数 y=﹣2(x﹣1)2+3的图象的顶点坐标是( )
A.(1,3) B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3) 3.下列事件中,必然事件是( ) A.抛出一枚硬币,落地后正面向上 B.打开电视,正在播放广告 C.篮球队员在罚球线投篮一次,未投中 D.实心铁球投入水中会沉入水底 4.如图,点 A,B,C,D 都在⊙O 上,AC,BD相交于点 E,则∠ABD=( )
A.∠ACD B.∠ADB C.∠AED D.∠ACB 5.用配方法解一元二次方程 x2﹣4x=5 时,此方程可变形为( ) A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9 6.若△ABC∽△A′B′C′,相似比为 1:2,则△ABC与△A′B′C′的面积的比为( ) A.1:2 B.2:1 C.1:4 D.4:1 7.已知函数 y=x2+2x﹣3,当 x=m时,y<0,则 m 的值可能是( ) A.﹣4 B.0 C.2 D.3 8.一个圆锥的高为 4cm,底面圆的半径为 3cm,则这个圆锥的侧面积为( ) A.12πcm2 B.15πcm2 C.20πcm2 D.30πcm2
二、填空题(本大题共有 10 小题,每小题 3 分,共 30 分)
第 1 页(共 29 页)
三、解答题(本大题共有 4 小题,共 39 分) 17.解方程: (1)x2﹣4x+1=0; (2)x(x﹣2)+x﹣2=0. 18.如图,△ABC的三个顶点都在格点上,每个小方格边长均为 1 个单位长度. (1)请你作出△ABC关于点 O 成中心对称的△A1B1C1(其中 A 的对称点是 A1,B 的对称点是 B ,C
辽宁省大连市2016届九年级中考模拟考试数学试题解析(解析版)
辽宁省大连市2016届九年级中考模拟考试数学试题一、选择题:本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确1.﹣34的相反数是()A.43B.﹣34C.﹣43D.34【答案】D【解析】试题分析:根据互为相反数的两个数的和为0,求出答案即可.【解答】解:因为34+(﹣34)=0,所以﹣34的相反数是34,故选D.考点:相反数2.据大连市公安局统计,2016年全市约有410000人换二代居民身份证,将410000用科学记数法表示应为()A.0.41×104B.41×104C.4.1×106D.4.1×105【答案】D【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将410000用科学记数法表示为:4.1×105.故选:D.考点:科学记数法—表示较大的数3.如图,点A、B、C都在⊙O上,若∠ACB=29°,则∠AOB的度数为()A.14.5°B.29° C.58° D.61°【答案】C【解析】试题分析:由∠ACB=29°,∠ACB与∠AOB是同弧所对的圆周角与圆心角,根据圆周角定理即可得∠AOB=2∠ACB=58°.故选C.考点:圆周角定理4.不等式2x<﹣6的解集为()A.x<﹣3 B.x>﹣3 C.x>3 D.x<3【答案】A【解析】试题分析:利用不等式的基本性质解答不等式2x<﹣6的解集为:x<﹣3.故选A.考点:解一元一次不等式5.在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y=﹣2x C.y=﹣2xD.y=﹣x2+1【答案】B【解析】试题分析: A、y=-2x+1与坐标轴有两个交点,但是不经过原点,故此选项错误;B、y=-2x,经过原点,故此选项正确;C、y=-2x,图象分布在第二、四象限,故此选项错误;D、y=-x2+1,图象与y轴交于(0,1),不经过原点,故此选项错误.故选:B.考点:1、二次函数的图象;2、一次函数的图象;3、正比例函数的图象6.如图,正方形ABCD的对角线AC、BD相交于点O,OA=3,则此正方形的面积为()A.B.12 C.18 D.36【答案】C考点:正方形的性质7.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,然后放回,再随机摸出一个小球,两次摸出的小球标号的和为5的概率是()A.16B.29C.13D.12【答案】B【解析】试题分析:根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号的和为5的有2种,因此两次摸出的小球标号的和为5的概率是29.故选:B.考点:列表法与树状图法8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2B.160πcm2C.176πcm2D.192πcm2【答案】D【解析】试题分析:首先根据几何体的主视图和左视图是相同的矩形,俯视图是圆,可得该几何体为圆柱,且圆柱的高为20cm,底面直径为8cm,因此圆柱的表面积为2×π×42+2π×4×20=32π+160π=192πcm2.故选D.考点:由三视图判断几何体二、填空题:本题共8小题,每小题3分,共24分9.因式分解:x3﹣x= .【答案】x(x+1)(x﹣1)【解析】试题分析:原式提取x,再利用平方差公式分解即可得x3-x=x(x2﹣1)=x(x+1)(x﹣1).考点:提公因式法与公式法的综合运用10.方程3221xx=-的解是.【答案】x=2【解析】试题分析:观察可得最简公分母是(2x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程:3x=2(2x﹣1),解得:x=2.检验:把x=2代入(2x﹣1)=3≠0,即x=2是原分式方程的解,故原方程的解为:x=2.考点:解分式方程11.某校男子足球队队员的年龄分布如表所示:则这些队员年龄的中位数是 岁. 【答案】15 【解析】试题分析:先求出总人数2+6+8+3+3=22人,再根据中位数的定义进行解得这些队员年龄的中位数是15152=15. 考点:中位数12.如图,△ABC 中,AB=AC ,将△ABC 绕点A 逆时针旋转60°后得到△ADE ,若AB=1,则CE 的长为 .【答案】1 【解析】试题分析:由旋转的性质得:AC=AE ,∠CAE=60°,由等边三角形的判定得到△ACE 是等边三角形,由等边三角形的性质即可得到CE=AB=1.考点:1、旋转的性质,2、等边三角形的判定和性质13.如图,平行线AB 、CD 被直线EF 所截,过点E 作EG ⊥EF ,与直线CD 相交于点G ,若∠AEF=39°,则∠EGF 的度数为 °.【答案】51 【解析】试题分析:根据垂直的定义得到∠FEG=90°,根据平行线的性质得到∠EFG=∠AEF=39°,根据三角形的内角和即可得到∠EGF=51°.考点: 1、平行线的性质,2、垂直定义14.如图,菱形ABCD的对角线BD与x轴平行,点B、C的坐标分别是(0,1)、(2,0),点A、D在函数y=kx(x>0)的图象上,则k的值为.【答案】4【解析】试题分析:连结AC,如图,根据菱形的性质得AC与BD互相垂直平分,再利用BD∥x轴得到AC⊥x轴,则可写出A点坐标(2,2),然后根据反比例函数图象上点的坐标特征求k =2×2=4.考点:1、反比例函数图象上点的坐标特征;2、菱形的性质15.在平面直角坐标系中,点A、B的坐标分别是(﹣3,1)、(﹣1,﹣2),将线段AB沿某一方向平移后,得到点A的对应点A′的坐标为(﹣1,0),则点B的对应点B′的坐标为.【答案】(1,﹣3)【解析】试题分析:由A(﹣3,1)的对应点A′的坐标为(﹣1,0),根据点A、A′的坐标确定出平移规律:横坐标加2,纵坐标减1,然后根据规律由点B(﹣1,﹣2)的对应点为B′(1,﹣3).考点:坐标与图形变化﹣平移16.某飞机模型的机翼形状如图所示,其中AB∥DC,∠BAE=90°,根据图中的数据计算CD的长为cm (精确到1cm)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】22 【解析】试题分析:作DM ⊥AB 于M ,在Rt △BCN 中,由三角函数求出BC ≈83.3(cm ),BN ≈66.7(cm ),求出AN=AB+BN=34+37.5=71.5cm ,证出△ADM 是等腰直角三角形,得出AM=DM=50cm ,即可得出CD =MN=AN ﹣AM=71.5﹣50≈22(cm ).考点:1、解直角三角形的应用,2、三角函数,3、等腰直角三角形的判定与性质三、解答题:本题共4小题,17、18、19各9分,20题12分.17.(9分)计算:02()|3|5-+-【答案】 【解析】试题分析:原式利用零指数幂法则,绝对值的代数意义,以及立方根定义计算即可得到结果.试题解析:02()|3|5-+-=1+3 4=考点:1、实数的运算;2、零指数幂18.(9分)先化简,再求值:a(a﹣2)﹣(a+1)(a﹣1),其中a=﹣12.【答案】-2a+1,2【解析】试题分析:原式利用单项式乘以多项式,平方差公式计算,去括号合并得到最简结果,把a的值代入计算即可求出值.试题解析:原式=a2﹣2a﹣a2+1=﹣2a+1,当a=-12时,原式=1+1=2考点:整式的混合运算—化简求值19.(9分)如图,△ABC中,AB=AC,点D在AB上,过点D作BC的平行线,与AC相交于点E,点F在BC 上,EF=EC.求证:四边形DBFE是平行四边形.【答案】证明见解析【解析】试题分析:由等腰三角形的性质证出∠B=∠EFC,得出AB∥EF,由DE∥BC,即可得出四边形DBFE是平行四边形.试题解析:∵AB=AC,∴∠B=∠C,∵EF=EC,∴∠EFC=∠C,∴∠B=∠EFC,∴AB∥EF,又∵DE∥BC,∴四边形DBFE是平行四边形.考点:1、平行四边形的判定,2、等腰三角形的性质,3、平行线的判定20.(12分)某校1200名学生参加了全区组织的“经典诵读”活动,该校随机选取部分学生,对他们在三、四两个月的诵读时间进行调查,下面是根据调查数据制作的统计图表的一部分.根据以上信息,解答下列问题:(1)本次调查的学生数为人;(2)图表中的a、b、c的值分别为,,;(3)在被调查的学生中,四月份日人均诵读时间在1<x≤1.5范围内的人数比三月份在此范围的人数多人;(4)试估计该校学生四月份人均诵读时间在1小时以上的人数.四月日人均诵读时间的统计表三月日人均诵读时间的频数分布直方图【答案】(1)100;(2)6,4,4%;(3)44;(4)768【解析】试题分析:(1)由统计表可以得到本次调查的学生数;(2)由统计图和统计表可以分别求得a、b、c的值;(3)由统计图和统计表可以求得四月份日人均诵读时间在1<x≤1.5范围内的人数比三月份在此范围的人数多多少人;(4)根据统计表可以求得该校学生四月份人均诵读时间在1小时以上的人数.考点:1、频数分布直方图,2、频数分布表,3、用样本估计总体四、解答题:本题共3小题,其中21、22题各9分,23题10分21.(8分)如图用一段长为30m的篱笆,围成一个一边靠墙的矩形花圃,若花圃面积为108m2,墙的长度不限,求矩形花圃的长和宽.【答案】矩形的长为18m,宽为6m或长12m,宽为9米【解析】试题分析:设所围矩形的长为x米,则宽为12(30﹣x)米,根据矩形面积的计算方法列出方程求解.试题解析:设矩形与墙平行的一边长为xm,则另一边长为12(30﹣x)m.根据题意,得12(30﹣x)x=108,解方程,得x=18或x=12(舍去).当x=18时,12(30﹣x)=6.当x=12时,12(30﹣x)=9.答:矩形的长为18m,宽为6m或长12m,宽为9米.考点:一元二次方程的应用22.(8分)如图,直线y=kx+b与双曲线y=3x相交于点A,B,与x轴相交于点C,矩形DEFG的端点D在直线AB上,E,F在x轴上,点G在双曲线上,若DE=32,CE=2,点A的横坐标是1.(1)求点A,G的坐标;(2)求直线AB的解析式.【答案】(1)(2,32)(2)y=34x+94.【解析】试题分析:(1)由矩形的性质结合DE=32,可知点G的纵坐标为32,分别令双曲线y=32中x=1、y=32,即可求出点A、G的坐标;(2)分别令直线y=kx+b中y=0、y=32,求出点C、E的横坐标,结合线段CE=2即可得出关于k的一元一次方程,解方程即可得出k值,将k值和点A的坐标代入到直线y=kx+b中得出关于b的一元一次方程,解方程即可得出结论.试题解析:(1)∵DE=32,且四边形DEFG为矩形,∴GF=DE=32.令双曲线y=3x中x=1,则y=31=3,∴点A的坐标为(1,3);令双曲线y=3x中y=32,则32=3x,解得:x=2,∴点G的坐标为(2,32).(2)令直线y=kx+b中y=32,则32=kx+b,解得:x=32bk-,即点D的坐标为(32bk-,32),点E的坐标为(32bk-,0);令直线y=kx+b中y=0,则0=kx+b,解得:x=﹣bk,即点C的坐标为(﹣bk,0).∵CE=32bk-﹣(﹣bk)=2,∴32=2k,解得:k=34,∴直线AB的解析式为y=34x+b,∵点A(1,3)在直线AB上,∴3=34+b,解得:b=94,∴直线AB的解析式为y=34x+94.考点:反比例函数与一次函数的交点问题23.(10分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD与BC相交于点M,且BM=MC,过点D作BC的平行线,分别与AB、AC的延长线相交于点E、F;(1)求证:EF与⊙O相切;(2)若CE的长.【答案】(1)证明见解析(2【解析】试题分析:(1)根据垂径定理证得AD⊥BC,然后根据平行线的性质证得AD⊥EF,即可证得结论;(2)连接OB,根据勾股定理求得OB和OM,由BC∥EF,证得△ABC∽△AEF,根据相似三角形的性质求得EF的长,解直角三角形ACM求得∠CAM=30°,进而求得CN的长和∠FCN=∠CAM=30°,解直角三角形求得NF,得出EN,然后根据勾股定理即可求得.试题解析:(1)∵AD是⊙O的直径,AD与BC相交于点M,且BM=MC,∴AD⊥BC,∵EF∥BC,∴AD⊥EF,∴EF与⊙O相切;(2)连接OB,在△OBM中,BM2+OM2=OB+(OB=OB2,∴∵BC∥EF,∴△ABC∽△AEF∴AM BC AD EF=,∴EF=AD BCAM⋅==,∵tan∠CAM=MCAM==,∴∠CAM=30°,作CN⊥EF,∵AD⊥EF,∴CN∥AD,∴∠FCN=∠CAM=30°,∵BC∥EF,∴四边形MDNC是矩形,∴∴EN=EF﹣∴考点:1、切线的判定,2、垂径定理的应用,3、平行线的性质,4、三角形相似的判定和性质,5、解直角三角形五、解答题:本题共3小题,其中24题11分,25、26题各12分24.(11分)如图1,两个全等的△ABC和△DEF中,∠ACB=∠DFE=90°,AB=DE,其中点B和点D重合,点F在BC上,将△DEF沿射线BC平移,设平移的距离为x,平移后的图形与△ABC重合部分的面积为y,y 关于x的函数图象如图2所示(其中0≤x≤m,m<x≤3,3<x≤4时,函数的解析式不同)(1)填空:BC的长为;(2)求y关于x的函数关系式,并写出x的取值范围.【答案】(1)4(2)22211(02) 1212(23)3816(34)x x xy x xx x x⎧-++⎪⎪⎪=-+⎨⎪⎪-+⎪⎩≤≤<≤<≤【解析】试题分析:(1)通过图2观察可知y=0时x=4,即D点从B运动到C平移的距离为4;(2)当△DEF在平移过程中,与△ABC的重合部分有三种情况,将三种图形分别画出,通过作辅助线构造相似三角形,通过相似三角形对应边的关系,将各边用x表示出来,即可以列出y与x的函数关系式.试题解析:(1)由图2得当x=4时,y=0,说明此时△DEF与△ABC无重合部分,则点D从B到C运动的距离为4,即BC=4;故答案为:4.(2)当DE经过点A时(如图1),BD=3,CD=1,∵△ABC≌△DEF.∴∠EDF=∠BAC.∵∠ACD=∠BCA∴△ADC∽△BAC.∴AC DC BC AC=,即14ACAC=.AC=2∴n=2当0≤x≤2时(如图2),设ED、EF与AB分别相交于点M,G,作MN⊥BC,垂足为N.则∠MNB=90°=∠EFD=∠C.∵∠MDN=∠EDF.∴△DMN∽△DEF.∴MN DN EF DF=, 即42MN DN =. ∴MN=2DN .设DN=n ,则MN=2n .同理△BMN ∽△BAC . ∴MN BN AC BC=. 即224n BN =, ∴BN=4n ,即x+n=4n .∴n=13x . ∴S △BDM =12•BD•MN=2121233x x x ⋅= 同理△BGF ∽△BAC ∴GF BF AC BC=, 即224GF x +=. ∴GF=1(2)2x +, ∴y=BGF BDM S S ﹣=221111(2)(2)122312x x x x x +⋅+-=-++. 当2<x ≤3时(如图3),由①知,BDM S =13x 2. ∴y=ABC BDM S S ﹣ =22111244233x x ⨯⨯-=-+ 当3<x ≤4时(如图4),设DE与AB相交于点H.同理△DHC∽△DEF.∴HC DC EF DF=,即4 42 HC x-=∴HC=24﹣x.∴y=11(4)2(4)22DC HC x x⋅=-⋅-=x2﹣8x+16∴22211(02)1212(23)3816(34)x x xy x xx x x⎧-++⎪⎪⎪=-+⎨⎪⎪-+⎪⎩≤≤<≤<≤.考点:1、平移的性质,2、相似三角形性质25.(12分)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,∠A=90°,∠B=30°,点D,E分别在AB,BC上,且∠CDE=90°.当BE=2AD时,图1中是否存在与CD相等的线段?若存在,请找出并加以证明,若不存在,说明理由.小明通过探究发现,过点E作AB的垂线EF,垂足为F,能得到一对全等三角形(如图2),从而将解决问题.请回答:(1)小明发现的与CD相等的线段是.(2)证明小明发现的结论;参考小明思考问题的方法,解决下面的问题:(3)如图3,△ABC中,AB=AC,∠BAC=90°,点D在BC上,BD=2DC,点E在AD上,且∠BEC=135°,求BE CE的值.【答案】(1)DE(2)证明见解析(3【解析】试题分析:(1)直接写出答案;(2)先判断出∠ADC=ADC=∠FEDFED,在判断出FE=AD,即可判断出△FEDFED≌△ADCADC即可;(3)先判断出∠FBE=FBE=∠GECGEC,进而得出△BFEBFE∽△EGC,得出BE BF FECE EG GC==,再判断出FE=2EG,即可得出结论.试题解析:(1)DE;故答案为:DE;(2)证明:作EF⊥AB,垂足为F.则∠BFE=∠DFE=90°═∠A═∠CDE.∵∠ADC+∠CDE=∠ADE=∠DFE+∠FED,∴∠ADC=∠FED.∵∠BFE=90°,∠B=30°,∴BE=2FE.∵BE=2AD,∴FE=AD.在△FED和△ADC中,FED ADCDFE CAD FE AD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△FED≌△ADC.∴DE=CD(3)如图3,过点E作BC的平行线,与AB、AC分别相交于点F、G.∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°.∵FG∥BC,∴∠AFG=∠ABC=∠ACB=∠AGF=45°,∠BFE=135°=∠EGC.∴AF=AG.BF=GC.∵∠GEC+∠CEB=∠GEB=∠EFB+∠FBE,∴∠FBE=∠GEC∴△BFE∽△EGC.∴BE BF FE CE EG GC==,∵FG∥BC,∴△AFE∽△ABD,△AFG∽△ADC,∴FE AEBD AD=,AE EGAD DC=∴FE EG BD DC=∵BD=2DC,∴FE=2EG,∴2BF EG EG BF=,∴BFEG=,∴BE BF CE EG==考点:1、同角的余角相等,2、全等三角形的判定和性质,3、相似三角形的判定和性质26.(12分)在平面直角坐标系xOy中,抛物线y=ax2+bx经过点A(﹣3,4),直线l与x轴相交于点B,与∠AOB的平分线相交于点C,直线l的解析式为y=kx﹣5k(k≠0),BC=OB.(1)若点C在此抛物线上,求抛物线的解析式;(2)在(1)的条件下,过点A 作y 轴的平行线,与直线l 相交于点D ,设P 为抛物线上的一个动点,连接PA 、PD ,当PAD COB 2S S 3=时,求点P 的坐标.【答案】(1)y=23x 2+23x ;(2)(﹣1,0)或(﹣5,403) 【解析】试题分析:(1)如图,先求出B 点坐标,则可得到OA=OB=5,再证明AO ∥CB ,加上OB=BC=5,则可判断四边形AOBC 为平行四边形,所以AC ∥OB ,AC=OB=5,于是得到C (2,4),然后利用待定系数法求抛物线解析式;(2)如图,先确定直线l 的解析式为y=﹣43x+203,再确定D 点坐标,则可求出AD 的长,设P (t ,23t 2+23t ),利用三角形面积公式和PAD COB 2SS 3=得到12•203•|t+3|=23•12•5•4,然后解绝对值方程求出t 的值,从而可确定点P 的坐标.试题解析:(1)如图,A (﹣3,4),∴,当y=0时,kx ﹣5k=0,解得x=5,则B (5,0),∵BC=BO=5,∴∠BOC=∠BCO ,∵OC 平分∠AOB ,∴∠AOC=∠BOC ,∴∠AOC=∠BCO ,∴AO ∥CB ,而OA=BC=5,∴四边形AOBC 为平行四边形,∴AC ∥OB ,AC=OB=5,∴C (2,4),把A (﹣3,4),C (2,4)代入y=ax 2+bx 得934424a b a b -=⎧⎨+=⎩, 解得a=23,b=23, ∴抛物线的解析式为y=23x 2+23x ; (2)如图,把C (2,4)代入y=kx ﹣5k 得2k ﹣5k=4,解得k=﹣43, ∴直线l 的解析式为y=﹣43x+203,当x=﹣2时,y=﹣43x+203=323,则D (﹣3,323),∴AD=323﹣4=203,设P (t ,23t 2+23t ), ∵PAD COB 2S S 3=, ∴12•203•|t+3|=23•12•5•4,解得t=﹣1或t=﹣5,∴点P 的坐标为(﹣1,0)或(﹣5,403).考点:二次函数的综合题。
九年级(上)期末数学试卷附答案解析
九年级(上)期末数学试卷一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<23.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.64.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm25.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4二、填空题9.一元二次方程x2=3x的解是:.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.参考答案与试题解析一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.【点评】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<2【考点】根的判别式;一元一次方程的解;一元二次方程的定义.【分析】分类讨论:当m=0,方程变形为﹣4x+2=0,一元一次方程有实数解;当m≠0,根据判别式的意义得到△=(﹣4)2﹣4m×2≥0,解得m≤2,然后综合两种情况即可.【解答】解:当m=0,方程变形为﹣4x+2=0,方程的解为x=;当m≠0,△=(﹣4)2﹣4m×2≥0,解得m≤2;综上所知当m≤2时,方程有实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.6【考点】垂径定理的应用;勾股定理.【分析】过O作OD⊥AB交AB于C,交圆于点D,根据垂径定理求出BC的长,再根据勾股定理求出OC的长,由CD=OD﹣OC即可得出结论.【解答】解:过O作OD⊥AB交AB于C,交圆于点D,如图所示:∴OD=OB=10,∵AB=16,∴由垂径定理得:BC=AB=8,∴OC===6,∴CD=OD﹣OC=10﹣6=4.故选A.【点评】本题考查了垂径定理的应用、勾股定理等知识;熟练掌握垂径定理与勾股定理是解决问题的关键.4.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm2【考点】正多边形和圆.【分析】根据正六边形的边长等于半径进行解答即可.【解答】解:∵正六边形内接于半径为2cm的圆内,∴正六边形的半径为2cm,∵正六边形的半径等于边长,∴正六边形的边长a=2cm;∴正六边形的面积S=6××2×2sin60°=6cm2.故选B.【点评】本题考查的是正六边形的性质,熟知正六边形的边长等于半径是解答此题的关键.5.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°【考点】圆周角定理.【分析】首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°﹣∠ABD=35°,∴∠BCD=∠A=35°.故选A.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】根据x1、x2与对称轴的大小关系,判断y1、y2的大小关系.【解答】解:∵y=﹣2x2﹣8x+m,∴此函数的对称轴为:x=﹣=﹣=﹣2,∵x1<x2<﹣2,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y2.故选:A.【点评】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.【考点】二次函数的图象;一次函数的图象.【分析】可根据a>0时,﹣a<0和a<0时,﹣a>0分别判定.【解答】解:当a>0时,﹣a<0,二次函数开口向上,当b>0时一次函数过一,二,四象限,当b <0时一次函数过二,三,四象限;当a<0时,﹣a>0,二次函数开口向下,当b>0时一次函数过一,二,三象限,当b<0时一次函数过一,三,四象限.所以B正确.故选:B.【点评】本题主要考查了二次函数及一次函数的图象,解题的关键是根据a,b的取值来判定二次函数及一次函数的图象的正误.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4【考点】平面展开-最短路径问题.【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P 在展开图中的距离,就是这只小猫经过的最短距离.【解答】解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是3m.故选C.【点评】本题考查的是平面展开﹣最短路线问题,根据题意画出圆锥的侧面展开图,利用勾股定理求解是解答此题的关键.二、填空题9.一元二次方程x2=3x的解是:x1=0,x2=3.【考点】解一元二次方程-因式分解法.【分析】利用因式分解法解方程.【解答】解:(1)x2=3x,x2﹣3x=0,x(x﹣3)=0,解得:x1=0,x2=3.故答案为:x1=0,x2=3.【点评】本题考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为y=3(x+2)2﹣5.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=3x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律得到点(0,﹣2)平移后所得对应点的坐标为(﹣2,﹣5),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向左平移2个单位,再向下平移3个单位所得对应点的坐标为(﹣2,﹣5),所以所得抛物线的解析式为y=3(x+2)2﹣5.故答案为y=3(x+2)2﹣5.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为13.【考点】根与系数的关系.【分析】根据根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故答案为:13.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为(﹣3,2).【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】如图,作PQ⊥y轴于点Q,由P点坐标得PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,根据旋转的性质得∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,然后根据第二象限点的坐标特征可写出P′点的坐标.【解答】解:如图,作PQ⊥y轴于点Q,∵点P坐标为(﹣2,3),∴PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,∴∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,∴P′点的坐标为(﹣3,2).故答案为(﹣3,2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是把点旋转的问题转化为直角三角形旋转的问题和画出旋转图形.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.【考点】抛物线与x轴的交点;一次函数的性质.【专题】分类讨论.【分析】需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m的值.【解答】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4﹣4m=0,解得:m=1.故答案为:0或1.【点评】此题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160°.【点评】本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【考点】二次函数的图象.【专题】压轴题.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【点评】此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【考点】旋转的性质;扇形面积的计算.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.【解答】解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=++×2×2=π+2,故答案为:π+2.【点评】本题考查了扇形的面积计算,勾股定理,含30度角的直角三角形的性质的应用,本题的关键是弄清顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的图形的形状.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.【考点】实数的运算;平方根;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出解;(2)原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义计算,第三项利用负整数指数幂、零指数幂法则计算,最后一项化为最简二次根式,计算即可得到结果.【解答】解:(1)开方得:2x﹣3=3或2x﹣3=﹣3,解得:x1=3,x2=0;(2)原式=﹣1﹣+1+4﹣2=4﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.【考点】根的判别式;根与系数的关系.【专题】计算题.【分析】(1)先计算出△=(m+2)2﹣4(2m﹣1),变形得到△=(m﹣2)2+4,由于(m﹣2)2≥0,则△>0,然后根据△的意义得到方程有两个不相等的实数根;(2)利用根与系数的关系得到x1+x2=0,即m+2=0,解得m=﹣2,则原方程化为x2﹣5=0,然后利用直接开平方法求解.【解答】(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,所以方程有两个不相等的实数根;(2)设方程的两个根为x1,x2,由题意得:x1+x2=0,即m+2=0,解得m=﹣2,当m=﹣2时,方程两根互为相反数,当m=﹣2时,原方程为x2﹣5=0,解得:x1=﹣,x2=.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程和根与系数的关系.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?【考点】一元二次方程的应用.【专题】销售问题.【分析】首先根据1月份和3月份的销售量求得月平均增长率,然后求得4月份的销量即可【解答】解:设前4个月自行车销量的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得x1=﹣225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).答:该商城4月份卖出125辆自行车.【点评】本题考查了一元二次方程的应用,解题关键是根据题意列出方程,这也是本题的难点.20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.【考点】作图-旋转变换;作图-轴对称变换.【专题】计算题;作图题.【分析】(1)根据关于x轴对称的点的坐标特征,写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质,画出点A、C的对应点A2、C2,则可得到△A2BC2;(3)C点旋转到C2点所经过的路径是以B点为圆心,BC为半径,圆心角为90°的弧,然后根据弧长公式计算即可;(4)利用一个矩形的面积分别减去三个三角形的面积可计算出△A2BC2的面积.【解答】解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)BC==,所以C点旋转到C2点所经过的路径长==π;(4)△A2BC2的面积=3×3﹣×1×2﹣×1×3﹣×2×3=.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式,结合摸出一个球是白球的概率为求出答案;(2)采用列表法或树状图法,解题时要注意是放回实验还是不放回实验.【解答】解:(1)设蓝球个数为x个,则由题意得=,解得:x=1,答:蓝球有1个;(2)故两次摸到都是白球的概率==.【点评】此题主要考查了树状图法求概率,解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【考点】二次函数的应用.【专题】方程思想.【分析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式为y=90﹣3(x﹣50),然后根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)由题意得:y=90﹣3(x﹣50)化简得:y=﹣3x+240;(3分)(2)由题意得:w=(x﹣40)y(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3分)(3)w=﹣3x2+360x﹣9600∵a=﹣3<0,∴抛物线开口向下.当时,w有最大值.又x<60,w随x的增大而增大.∴当x=55元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.(4分)【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.【考点】三角形的内切圆与内心.【分析】根据切线长定理,可设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.再根据题意列方程组,即可求解.【解答】解:根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.根据题意,得,解得:.即AF=4cm、BD=5cm、CE=9cm.【点评】此题要熟练运用切线长定理.注意解方程组的简便方法:三个方程相加,得到x+y+z的值,再进一步用减法求得x,y,z的值.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【考点】二次函数综合题.【分析】(1)由对称轴确定h的值,代入点A坐标即可求解;(2)设出点P坐标并表示△POC的面积根据题意列出方程求解即可;(3)设出点Q,D坐标并表示线段QD的长度,建立二次函数,运用二次函数的最值求解即可.【解答】解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y=x2+2x﹣3,当x=0时,y=﹣3,所以点C(0,﹣3),OC=3,令y=0,解得:x=﹣3,或x=1,∴点B(1,0),OB=1,设点P(m,m2+2m﹣3),此时S△POC=×OC×|m|=|m|,S△BOC==,由S△POC=4S△BOC得|m|=6,解得:m=4或m=﹣4,m2+2m﹣3=21,或m2+2m﹣3=5,所以点P的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC的解析式为:y=kx+b,把A(﹣3,0),C(0,﹣3)代入得:,解得:,所以直线AC:y=﹣x﹣3,设点Q(n,﹣n﹣3),点D(n,n2+2n﹣3)所以:DQ=﹣n﹣3﹣(n2+2n﹣3)=﹣n2﹣3n=﹣(n+)2+,所以当n=﹣时,DQ有最大值.【点评】此题主要考查二次函数综合问题,会求函数解析式,会根据面积相等建立方程并准确求解,知道运用二次函数可以解决线段最值问题,是解题的关键.。
九年级(上)期末数学试卷含答解析
九年级(上)期末数学试卷一、选择题1.下列交通标志中,是中心对称图形的是()A.B.C.D.2.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=23.如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体4.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.5.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C.D.6.如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则的长是()A.πB.πC.πD.π7.如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>48.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.410.已知抛物线y=﹣x2+4x+5与x轴交于点A,点B,与y轴交于点C,若D为AB的中点,则CD 的长为()A. B. C. D.7二、填空题11.若点(a,1)与(﹣2,b)关于原点对称,则a b=.12.如果将抛物线y=x2+2x﹣1向上平移3个单位,那么所得的新抛物线的表达式是.13.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为m(结果保留根号).14.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD 的长为.15.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=.16.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是.三、解答题17.(2015秋•江门校级期末)已知α,β均为锐角,且满足,求α+β的值.18.(2013•海珠区校级一模)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=,BC=6,求切线BD的长.19.(2015秋•江门校级期末)已知关于x的一元二次方程ax2+2x﹣1=0.(1)若该方程无解,求a的取值范围;(2)当a=1时,求该方程的解.20.(2015秋•江门校级期末)如图,在山顶上有一座电视塔,在塔顶B处,测得地面上一点A的俯角α=60°,在塔底C处测得的俯角β=45°,已知BC=60m,求山高CD(精确到1m,≈1.732)21.(2009•陕西)甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.22.(2015秋•江门校级期末)如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为C,且△AOC的面积为2,(1)求该反比例函数的解析式;(2)求△AOB的面积.四、解答题23.(2015•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.24.(2015•滕州市校级模拟)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.25.(2015秋•滦县期末)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.参考答案与试题解析一、选择题1.下列交通标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.【解答】解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;D.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;故选D.【点评】此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.2.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.3.如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体【考点】由三视图判断几何体.【分析】根据几何体的俯视图是从上面看,所得到的图形分别写出各个几何体的俯视图判断即可.【解答】解:圆柱的俯视图是圆,A错误;圆锥的俯视图是圆,且中心由一个实点,B正确;球的俯视图是圆,C错误;正方体的俯视图是正方形,D错误.故选:B.【点评】本题考查了三视图的概念,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.【考点】几何概率.【分析】利用指针落在阴影区域内的概率是:,分别求出概率比较即可.【解答】解:A、如图所示:指针落在阴影区域内的概率为:=;B、如图所示:指针落在阴影区域内的概率为:=;C、如图所示:指针落在阴影区域内的概率为:;D、如图所示:指针落在阴影区域内的概率为:,∵>>>,∴指针落在阴影区域内的概率最大的转盘是:.故选:A.【点评】此题考查了几何概率,计算阴影区域的面积在总面积中占的比例是解题关键.5.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C.D.【考点】锐角三角函数的定义;勾股定理;勾股定理的逆定理.【专题】压轴题;网格型.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.6.如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则的长是()A.πB.πC.πD.π【考点】弧长的计算;圆周角定理.【分析】根据圆周角得出圆心角为90°,再利用弧长公式计算即可.【解答】解:因为⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,所以可得圆心角∠BOC=90°,所以的长==π,故选B.【点评】此题考查弧长公式,关键是根据圆周角得出圆心角为90°.7.如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>4【考点】抛物线与x轴的交点.【分析】利用当函数值y>0时,即对应图象在x轴上方部分,得出x的取值范围即可.【解答】解:如图所示:当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选:B.【点评】此题主要考查了抛物线与x轴的交点,利用数形结合得出是解题关键.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CPB,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4【考点】反比例函数与一次函数的交点问题;关于原点对称的点的坐标.【专题】计算题;压轴题.【分析】设A(t,﹣),根据关于原点对称的点的坐标特征得B(﹣t,),然后把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加消去t得2a﹣6=0,再解关于a的一次方程即可.【解答】解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.10.已知抛物线y=﹣x2+4x+5与x轴交于点A,点B,与y轴交于点C,若D为AB的中点,则CD 的长为()A. B. C. D.7【考点】抛物线与x轴的交点.【分析】根据y=﹣x2+4x+5可以求得此抛物线与x轴的交点A和点B的坐标,与y轴交点C的坐标,从而可以求得点D的坐标,进而可以求得CD的长.【解答】解:∵y=﹣x2+4x+5=﹣(x﹣5)(x+1),∴点A的坐标为(3,0),点B的坐标为(﹣1,0),点C的坐标为(0,5).又∵D为AB的中点,∴点D的坐标为(1,0).∴CD==.故选:C.【点评】本题主要考查了抛物线与x轴的交点坐标,此题利用抛物线的三种形式间的相互转换得到点A、B的坐标,求出线段AB中点D的坐标是解决问题的关键.二、填空题11.若点(a,1)与(﹣2,b)关于原点对称,则a b=.【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.12.如果将抛物线y=x2+2x﹣1向上平移3个单位,那么所得的新抛物线的表达式是y=x2+2x+2.【考点】二次函数图象与几何变换.【分析】直接根据抛物线向上平移的规律求解.【解答】解:抛物线y=x2+2x﹣1向上平移3个单位得到y=x2+2x﹣1+3=x2+2x+2.故答案为y=x2+2x+2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为10m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】由题意得,在直角三角形ACB中,知道了已知角的邻边求对边,用正切函数计算即可.【解答】解:∵自楼的顶部A看地面上的一点B,俯角为30°,∴∠ABC=30°,∴AC=AB•tan30°=30×=10(米).∴楼的高度AC为10米.故答案为:10.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.14.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD 的长为4.【考点】垂径定理;勾股定理.【专题】压轴题.【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【解答】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴OD==4.故答案为4.【点评】题考查了垂径定理、勾股定理,本题非常重要,学生要熟练掌握.15.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=﹣4.【考点】反比例函数图象上点的坐标特征;等边三角形的性质.【分析】过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(﹣4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式;【解答】解:过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB•sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4;故答案为﹣4.【点评】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.16.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是5.【考点】由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故答案为:5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题17.(2015秋•江门校级期末)已知α,β均为锐角,且满足,求α+β的值.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列出算式,根据特殊角的三角函数值计算即可.【解答】解:由题意得,sinα=0,tanβ﹣1=0,则sinα=,tanβ=1,解得α=30°,β=45°,则α+β=75°.【点评】本题考查的是特殊角的三角函数值、非负数的性质,熟记特殊角的三角函数值、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.(2013•海珠区校级一模)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=,BC=6,求切线BD的长.【考点】切线的判定与性质.【分析】(1)如图,连接OD,欲证明直线BD与⊙O相切,只需证明OD⊥BD即可;(2)连接DE.利用圆周角定理和三角形中位线定理易求DE的长度,而AD:AE=,在直角△ADE中,利用勾股定理即可求得AE的长度;最后利用切割线定理来求切线BD的长度.【解答】(1)证明:∵OA=OD,∴∠A=∠ADO(等边对等角).又∵∠A+∠CDB=90°(已知),∴∠ADO+∠CDB=90°(等量代换),∴∠ODB=180°﹣(∠ADO+∠CDB)=90°,即BD⊥OD.又∵OD是圆O的半径.∴BD是⊙O切线;(2)解:连接DE,则∠ADE=90°(圆周角定理).∵∠C=90°,∴∠ADE=∠C,∴DE∥BC,又∵D是AC中点,∴DE是△ABC的中位线,∴DE=BC=3,AE=BE.∵AD:AE=,在直角△ADE中,利用勾股定理求得AE=3,则AB=6.∴BD2=AB•BE=6×3=54,∴BD=3.【点评】本题主要考查了切线的判定与性质.其中要证某直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.19.(2015秋•江门校级期末)已知关于x的一元二次方程ax2+2x﹣1=0.(1)若该方程无解,求a的取值范围;(2)当a=1时,求该方程的解.【考点】根的判别式.【分析】(1)根据一元二次方程的定义和根的判别式的意义得到a≠0且△=22﹣4×a×(﹣1)<0,然后求出a的取值范围;(2)把a=1代入,原方程化为x2+2x﹣1=0,根据公式法即可得到结论.【解答】解:(1)∵关于x的一元二次方程ax2+2x﹣1=0无解,∴a≠0且△=22﹣4×a×(﹣1)<0,解得a<﹣1,∴a的取值范围是a<﹣1;(2)当a=1时,原方程化为x2+2x﹣1=0,∴x==﹣1,∴该方程的解为:x1=﹣1+,x2=﹣1﹣.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.20.(2015秋•江门校级期末)如图,在山顶上有一座电视塔,在塔顶B处,测得地面上一点A的俯角α=60°,在塔底C处测得的俯角β=45°,已知BC=60m,求山高CD(精确到1m,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形△DBA、△ADC,应利用其公共边AD构造等量关系,借助BC=DB﹣DC构造方程关系式,进而可求出答案.【解答】解:设山高CD=x(米),∵∠CAD=∠β=45°,∠BAD=∠α=60°,∠ADB=90°,∴AD=CD=x,BD=AD•tan60°=x.∵BD﹣CD=BC=60,∴x﹣x=60.∴x==30(+1).∴CD=30×(1.732+1)≈82(米).答:山高CD约为82米.【点评】本题考查了学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(2009•陕西)甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:这个游戏不公平,游戏所有可能出现的结果如下表:3 4 5 6第二次第一次3 33 34 35 364 43 44 45 465 53 54 55 566 63 64 65 66表中共有16种等可能结果,小于45的两位数共有6种.(5分)∴P(甲获胜)=,P(乙获胜)=.(7分)∵,∴这个游戏不公平.(8分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(2015秋•江门校级期末)如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为C,且△AOC的面积为2,(1)求该反比例函数的解析式;(2)求△AOB的面积.【考点】反比例函数综合题.【专题】综合题.【分析】(1)由S△AOC=xy=2,设反比例函数的解析式y=,则k=xy=4;(2)连接AB,过点B作BE⊥x轴,交x轴于E点,通过分割面积法S△AOB=S△AOC+S梯形﹣S△BOE 求得.【解答】解:(1)∵S△AOC=2,∴k=2S△AOC=4;∴y=;(2)连接AB,过点B作BE⊥x轴,S△AOC=S△BOE=2,∴A(a,),B(2a,);S梯形ACEB=(+)×(2a﹣a)=3,∴S△AOB=S△AOC+S梯形ACEB﹣S△BOE=3.【点评】此题重点考查了函数性质的应用和图形的分割转化思想.同学们要熟练掌握这类题型.四、解答题23.(2015•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.【考点】作图-旋转变换;弧长的计算.【分析】(1)在平面直角坐标系中画出△ABC,然后根据网格结构找出点B、C的对应点B′,C′的位置,然后顺次连接即可;(2)根据图形即可得出点A的坐标;(3)利用AC的长,然后根据弧长公式进行计算即可求出点B转动到点B′所经过的路程.【解答】解:(1)△AB′C′如图所示;(2)点B′的坐标为(3,2),点C′的坐标为(3,5);(3)点C经过的路径为以点A为圆心,AC为半径的圆弧,路径长即为弧长,∵AC=4,∴弧长为:==2π,即点C经过的路径长为2π.【点评】本题考查了利用旋转变换作图,弧长的计算,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.24.(2015•滕州市校级模拟)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.【考点】二次函数综合题.【分析】(1)直接将(﹣1,0),代入解析式进而得出答案,再利用配方法求出函数顶点坐标;(2)分别得出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,进而利用勾股定理的逆定理得出即可;(3)利用轴对称最短路线求法得出M点位置,再求△ACM周长最小值.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1 )2+b×(﹣1)﹣2=0,解得:b=﹣,∴抛物线的解析式为y=x2﹣x﹣2.y=(x﹣)2﹣,∴顶点D的坐标为:(,﹣);(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2.当y=0时,x2﹣x﹣2=0,解得:x1=﹣1,x2=4,∴B (4,0),∴OA=1,OB=4,AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.(3)如图所示:连接AM,点A关于对称轴的对称点B,BC交对称轴于点M,根据轴对称性及两点之间线段最短可知,MC+MA的值最小,即△ACM周长最小,设直线BC解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣2,当x=时,y=﹣,∴M(,﹣),△ACM最小周长是:AC+AM+MC=AC+BC=+2=3.【点评】此题主要考查了二次函数综合以及利用轴对称求最短路线和勾股定理的逆定理等知识,得出M点位置是解题关键.25.(2015秋•滦县期末)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.【考点】圆的综合题.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=6,根据勾股定理可得DE=8,由题可得DC=DE=8,则有BC=10﹣8=2.易证∠DPC=∠A=∠B.根据AD•BC=AP•BP,就可求出t 的值.【解答】(1)证明:如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍成立;理由:证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP;(3)解:如下图,过点D作DE⊥AB于点E,∵AD=BD=10,AB=12,∴AE=BE=6∴DE==8,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=8,∴BC=10﹣8=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=12﹣t,∴t(12﹣t)=10×2,∴t=2或t=10,∴t的值为2秒或10秒.【点评】本题是对K型相似模型的探究和应用,考查了相似三角形的判定与性质、切线的性质、等腰三角形的性质、勾股定理、等角的余角相等、三角形外角的性质、解一元二次方程等知识,以及运用已有经验解决问题的能力,渗透了特殊到一般的思想.。
九年级(上)期末数学试卷(答案解析)
九年级(上)期末数学试卷一、选择题(每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填入该小题后的括号内,每小题3分,共24分)1.(3分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN 与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°2.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.3.(3分)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变4.(3分)在同一直线坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则()A.k1+k2<0 B.k1+k2>0 C.k1k2<0 D.k1k2>05.(3分)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A. B.C.D.6.(3分)在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=B.cosB=C.tanB=D.tanB=7.(3分)对于二次函数y=3(x﹣2)2+1的图象,下列说法正确的是()A.顶点坐标是(2,1)B.对称轴是直线x=﹣2C.开口向下D.与x轴有两个交点8.(3分)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2二、填空题(每小题3分,共18分)9.(3分)在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有个.10.(3分)如图,矩形ABCD中,AB=2,BC=3,E是AD的中点,CF⊥BE于点F,则CF=.11.(3分)如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为m.12.(3分)点(﹣2,y1),(3,y2)在函数y=的图象上,则y1y2(填“>”“<”或“=”)13.(3分)如图,已知正方形ABCD的边长为2.如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan∠BAD′等于.14.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三、简答题(共78分,解答要写出必要的文字说明、证明过程或演算步骤)15.(6分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)16.(12分)用适当的方法解下列方程.(1)x2﹣x﹣1=0;(2)x2﹣2x=2x+1;(3)x(x﹣2)﹣3x2=﹣1;(4)(x+3)2=(1﹣2x)2.17.(6分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.求证:DF=DC.18.(7分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.19.(7分)如图,在△ABC中,∠A=30°,∠B=45°,BC=,求AB的长.20.(7分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E 点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.21.(7分)如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.22.(7分)如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)若点P(m,m)在该函数图象上,求m的值.23.(9分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第=.二象限的交点,AB⊥x轴于点B,且S△ABO(1)求这两个函数的表达式;(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积.24.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.参考答案与试题解析一、选择题(每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填入该小题后的括号内,每小题3分,共24分)1.(3分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,M N 与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°【解答】解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.2.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选:B.3.(3分)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变【解答】解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选:D.4.(3分)在同一直线坐标系中,若正比例函数y=k1x的图象与反比例函数y=的图象没有公共点,则()A.k1+k2<0 B.k1+k2>0 C.k1k2<0 D.k1k2>0【解答】解:根据题意,方程k1x=没有实数解,而x2=,所以k1与k2异号,即k1k2<0.故选:C.5.(3分)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A. B.C.D.【解答】解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.6.(3分)在Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=B.cosB=C.tanB=D.tanB=【解答】解:∵在Rt△ABC中,∠C=90°,AC=2,BC=3,∴AB==,则sinB===,cosB===,tanB==,故选:C.7.(3分)对于二次函数y=3(x﹣2)2+1的图象,下列说法正确的是()A.顶点坐标是(2,1)B.对称轴是直线x=﹣2C.开口向下D.与x轴有两个交点【解答】解:A、顶点坐标是(2,1),说法正确;B、对称轴是直线x=2,故原题说法错误;C、开口向上,故原题说法错误;D、与x轴没有交点,故原题说法错误;故选:A.8.(3分)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠A OB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选:A.二、填空题(每小题3分,共18分)9.(3分)在一个不透明的布袋中,装有红、黑、白三种只有颜色不同的小球,其中红色小球4个,黑、白色小球的数目相同.小明从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后随机摸出一球,记下颜色;…如此大量摸球实验后,小明发现其中摸出的红球的频率稳定于20%,由此可以估计布袋中的黑色小球有8个.【解答】解:设黑色的数目为x,则黑、白色小球一共有2x个,∵多次试验发现摸到红球的频率是20%,则得出摸到红球的概率为20%,∴=20%,解得:x=8,∴黑色小球的数目是8个.故答案为:8.10.(3分)如图,矩形ABCD中,AB=2,BC=3,E是AD的中点,CF⊥BE于点F,则CF= 2.4.【解答】解:∵AD∥BC,∴∠AEB=∠CBF,∵∠A=90°,∠CFB=90°,∴△ABE∽△FCB,∴=,∵AB=2,BC=3,E是AD的中点,∴BE=2.5,∴=,解得:FC=2.4.故答案为:2.4.11.(3分)如图,一根直立于水平地面的木杆AB在灯光下形成影子AC(AC>AB),当木杆绕点A按逆时针方向旋转,直至到达地面时,影子的长度发生变化.已知AE=5m,在旋转过程中,影长的最大值为5m,最小值3m,且影长最大时,木杆与光线垂直,则路灯EF的高度为7.5m.【解答】解:当旋转到达地面时,为最短影长,等于AB,∵最小值3m,∴AB=3m,∵影长最大时,木杆与光线垂直,即AC=5m,∴BC=4,又可得△CAB∽△CFE,∴=,∵AE=5m,∴=,解得:EF=7.5m.故答案为:7.5.12.(3分)点(﹣2,y1),(3,y2)在函数y=的图象上,则y1<y2(填“>”“<”或“=”)【解答】解:∵点(﹣2,y1),(3,y2)在函数y=的图象上,∴﹣2×y1=3×y2=2,∴y1=﹣1,y2=,∴y1<y2,故答案为:<.13.(3分)如图,已知正方形ABCD的边长为2.如果将线段BD绕着点B旋转后,点D落在CB的延长线上的D′点处,那么tan∠BAD′等于.【解答】解:BD是边长为2的正方形的对角线,由勾股定理得,BD=BD′=2.∴tan∠BAD′===.故答案为:.14.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是①④(填写序号).【解答】解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三、简答题(共78分,解答要写出必要的文字说明、证明过程或演算步骤)15.(6分)如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积(结果保留根号)【解答】解:根据该密封纸盒的三视图知道它是一个六棱柱,∵其高为12cm,底面边长为5cm,∴其侧面积为6×5×12=360(cm2),密封纸盒的上、下底面的面积和为:12×5××5×=75(cm2),∴其表面积为(75+360)c m2.16.(12分)用适当的方法解下列方程.(1)x2﹣x﹣1=0;(2)x2﹣2x=2x+1;(3)x(x﹣2)﹣3x2=﹣1;(4)(x+3)2=(1﹣2x)2.【解答】解:(1)x2﹣x﹣1=0;这里a=1,b=﹣1,c=﹣1,△=b2﹣4ac=(﹣1)2﹣4×1×(﹣1)=5.x==,所以:x1=,x2=.(2)移项,得x2﹣4x=1,配方,得x2﹣4x+4=1+4,即(x﹣2)2=5.两边开平方,得x﹣2=±,即x=2±所以x1=2+,x2=2﹣.(3)x(x﹣2)﹣3x2=﹣1整理,得2x2+2x﹣1=0,这里a=2,b=2,c=﹣1,△=b2﹣4ac=22﹣4×2×(﹣1)=12.x===,即原方程的根为x1=,x2=.(4)移项,得(x+3)2﹣(1﹣2x)2=0,因式分解,得(x+3+1﹣2x)[x+3﹣(1﹣2x)]=0整理,得(3x+2)(﹣x+4)=0,解得x1=﹣,x2=4.17.(6分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.求证:DF=DC.【解答】证明:∵四边形ABCD为矩形,∴AD∥BC,AB=CD,且∠B=90°,∴∠DAF=∠BEA,∵DF⊥AE,∴∠DFA=∠B,在△ADF和△EBA中∴△ADF≌△EBA(AAS),∴AB=DF,∴DF=DC.18.(7分)分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.【解答】解:根据题意画图如下:(1)共有12种情况,积为奇数的情况有6种,所以欢欢胜的概率是=;(2)由(1)得乐乐胜的概率为1﹣=,两人获胜的概率相同,所以游戏公平.19.(7分)如图,在△ABC中,∠A=30°,∠B=45°,BC=,求AB的长.【解答】解;过点C作CD⊥AB,交AB于D.∵∠B=45°,∴CD=BD,∵BC=,∴BD=,∵∠A=30°,∴tan30°=,∴AD===3,∴AB=AD+BD=3+.20.(7分)如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E 点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.【解答】(1)证明:如图,在矩形ABCD中:∠DFC=∠EFB,∠EBF=∠FCD=90°,∴△BEF∽△CDF;(2)解:∵由(1)知,△BEF∽△CDF.∴=,即=,解得:CF=169.即:CF的长度是169cm.21.(7分)如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=﹣的函数交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.【解答】解:(1)把A(﹣2,b)代入y=﹣得b=﹣=4,所以A点坐标为(﹣2,4),把A(﹣2,4)代入y=kx+5得﹣2k+5=4,解得k=,所以一次函数解析式为y=x+5;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=x+5﹣m,根据题意方程组只有一组解,消去y得﹣=x+5﹣m,整理得x2﹣(m﹣5)x+8=0,△=(m﹣5)2﹣4××8=0,解得m=9或m=1,即m的值为1或9.22.(7分)如图,已知二次函数y=ax2﹣4x+c的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)若点P(m,m)在该函数图象上,求m的值.【解答】解:(1)将A(﹣1,﹣1),B(3,﹣9)代入,得,∴a=1,c=﹣6,∴y=x2﹣4x﹣6;(2)对称轴:直线x=2,顶点坐标:(2,﹣10);(3)∵点P(m,m)在函数图象上,∴m2﹣4m﹣6=m,∴m=6或﹣1.23.(9分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第=.二象限的交点,AB⊥x轴于点B,且S△ABO(1)求这两个函数的表达式;(2)求直线与双曲线的两个交点A,C的坐标和△AOC的面积.==,【解答】解:(1)由题意S△ABO∵k<0,∴k=﹣3,∴y=﹣y=﹣x+2(2)由,解得或,∴A(﹣1,3)C(3,﹣1),∵直线y=﹣x+2交y轴与D(0,2),S△AOC=S△AOD+S△OCD=×2×1+×2×3=4.24.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3,∵对称轴为x=﹣1,且抛物线经过A(1,0),∴B(﹣3,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2∴M(﹣1,2).即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2).。
辽宁省大连市九年级上学期数学期末考试卷(含答案)
辽宁省大连市九年级上学期数学期末考试卷(含答案)(满分:150分时间:120分钟)一、选择题(每小题4分,共40分)1.如图2,点A、B、C是⊙O上的点,∠AOB=50°,则∠ACB的度数是()A.25°B.30° C.35°D.70°2.如图,已知D,E分别是AB,AC上的点,且DE∥BC,AE=2k,EC=k,DE=4,那么BC等于()A.4 B.5 C.6 D.83.二次函数y=-2(x-1)2+3的图象的顶点坐标是()A.(1,3) B(-1,3) C.(1,-3) D.(-1,-3)4.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则边心距OM的长为()A.B.C. D.5.将抛物线y=(x+1)2-4的图象先向左平移2个单位,再向上平移3个单位,得到的抛物线的解析式是()A.y=(x﹣1)2﹣1 B.y=(x+3)2﹣1 C.y=(x﹣1)2﹣7 D.y=(x+3)2﹣7 6.在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O为位似中心,将EFO 放大为原来的2倍,则点E的对应点E1的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)7.在同一平面内,已知⊙O的半径为2cm,OP=5cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定8、若某人沿倾斜角为β的斜坡前进100m,则他上升的最大高度是( )A.msin100α B.100sinβm C.mcos100α D.100cosβm9.如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是()A. B. C. D.10.已知一个扇形的半径为60 cm,圆心角为180°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为( )图2A.15 cm B.20 cm C.25 cm D.30 cm二、填空题(每小题3分,共18分)11.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是 ______ 米12.如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD为____________cm.13.已知函数y=﹣(x﹣1)2+2图象上两点A(2,y1),B(3,y2),则y1与y2的大小关系是y1y2(填“<”、“>”或“=”)14.如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(4,0),则点E的坐标是________.15.如图,在⊙O中,弦BC=2,点A是圆上一点,且∠BAC=30°,则⊙O的半径是________16.如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为________s.三、解答题(17题12分,18题10分,共22分)17.(1)解方程:0842=--xx (2)计算01)2022(230tan32-+-︒+--OCA18.如图,∠CAB =∠CBD ,AB =4,AC =8,BD =12, BC =6.求CD 的长.三、解答题(每题10分,共50分)19.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC ∆的三个顶点的坐标分别为(3,4)A -,(5,2)B -,(2,1)C -.(1)画出将ABC ∆绕原点O 顺时针方向旋转90︒得到的111A B C ∆; (2)求(1)中线段OB 扫过的图形面积.20.如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于C 点,点A 的坐标为(3,0),点C 的坐标为()0,3. (1)求b 与c 的值; (2)求函数的最大值;(3)(),M m n 是抛物线上的任意一点,当n ≥74时,利用函数图象写出m 的取值范围.21.如图,建筑物BC上有一旗杆AB,从与BC相距20m的D处观测旗杆顶部A的仰角为52°,观测旗杆底部B的仰角为45°,求旗杆AB的高度(结果保留小数点后一位.参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28,≈1.41).22.如图,用一段长为30米的篱笆围成一个一边靠墙的矩形苗圃园,墙长为18米,设这个苗圃园垂直于墙的一边AB的长为x米,苗圃园的面积为y平方米.(1)求y关于x的函数表达式.(2)当x为何值时,苗圃的面积最大?最大值为多少平方米?23.如图,AB是⊙O的直径,AD与⊙O交于点A,点E是半径OA上一点(点E不与点O,A重合).连接DE交⊙O于点C,连接CA,CB.若CA=CD,∠ABC=∠D.(1)求证:AD是⊙O的切线;(2)若AB=13,CA=CD=5,求AD的长.五、解答题(每小题10分,共20分)24.如图,△ABC中,∠C=90°,AB=5,tan A=2,点P从点A出发,以每秒1个单位长度的速度沿AB向点B运动,过点P作PD⊥AB交△ABC的直角边于点D,以PD为边向PD右侧作正方形PDEF.设点P的运动时间为t秒,正方形PDEF与△ABC的重叠部分的面积为S.(1)用含t的代数式表示线段PD的长;(2)求S与t的函数关系式,并直接写出自变量t的取值范围.25.数学课上,老师出示了这样一道题:如图1,在△ABC 中,BA=BC,AB=kAC ,点F 在AC 上,点E 在BF 上,BE=2EF,点D 在BC 延长线上,连接AD 、AE ,∠ACD+∠DAE=180°,探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠CAD 与∠EAB 相等” 小亮:“通过观察和度量,发现∠FAE 与∠D 也相等”小伟:“通过边角关系构造辅助线,经过进一步推理,可以得到线段AD 与AE 的数量关系.”(1)求证:∠CAD=∠EAB;(2)求ADAE 的值(用含有K 的式子表示);BCAFED参考答案一、选择题1⁓5 ACADB 6⁓10 CABCD 二、填空题11. 12 ; 12. 20; 13. >; 14.(6,6); 15.2; 16. 4 三、解答题 17.(1)322,32221-=+=x x(2)解:原式271213332=+-⨯+=18.解:∵AB =4,AC =8,BD =12,BC =6, ∴32=∵∠CAB =∠CBD , ∴△ABC ∽△BCD , ∴32=∴CD 32=BC 32=96=⨯. 故CD 的长为9.19.(1)解:如图,111A B C ∆即为所求.(2)解:由(1)知:线段OA 扫过的图形是半径为OA ,圆心角为90︒的一个扇形,22345OA r =+=,圆心角90n =︒,∴线段OA 扫过的图形的面积 =22905360360n r ππ⨯= =254π. 故线段OA 扫过的图形的面积为254π.20、解:()1∵C 点坐标为()0,3,∵3c =,∵A 坐标为(3,0), ∵代入可求得b=2;()2由()1可知抛物线解析式为y =−x 2+2x +3=−(x −1)2+4,∵函数的最大值为4;()3在抛物线y =−x 2+2x +3中令y =74,可得,−x 2+2x +3=74解得x 1=−12或x 2=52,又二次函数开口向下, ∵当n ≥74时,−12≤m ≤52.21、解:在Rt △BCD 中,∵tan ∠BDC =,∴BC =CD •tan ∠BDC =20×tan45°=20(m ), 在Rt △ACD 中,∵tan ∠ADC =,∴AC =CD •tan ∠ADC =20×tan52°≈20×1.28=25.6(m ), ∴AB =AC ﹣BC =5.6(m ). 答:旗杆AB 的高度约为5.6m .22、解:(1)根据题意得:y =x (30﹣2x )=﹣2x2+30x , ∴y 关于x 的函数表达式为y =﹣2x2+30x ; (2)由题意得:0<30﹣2x ≤18, 解得6≤x <15,由(1)知,y =﹣2x2+30x =﹣2(x ﹣7.5)2+112.5, ∵﹣2<0,6≤x <15,∴当x =7.5时,y 有最大值,最大值为112.5,答:当x =7.5时,苗圃的面积最大,最大值为112.5平方米.23.解:(1)∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠BAC +∠ABC =90°. 又∵CA =CD , ∴∠D =∠CAD , 又∵∠ABC =∠D , ∴∠CAD +∠BAC =90°,即OA⊥AD,∴AD是⊙O的切线;(2)由(1)可得∠ABC+∠BAC=90°=∠D+∠DEA,∵∠ABC=∠D,∴∠BAC=∠DEA,∴CE=CA=CD=5,∴DE=10,在Rt△ABC中,由勾股定理得,BC===12,∵∠ACB=∠DAE=90°,∠ABC=∠D,∴△ABC∽△EDA,∴=,即=,解得,AD=.24.解:(1)如图1中,过点C作CH⊥AB于H.则∠AHC=∠CHB=90°,设AH=m.在Rt△ACH中,=tan A=2,∴CH=2AH=2m,∵∠A+∠ACH=90°,∠ACH+∠BCH=∠ACB=90°,∴∠BCH=∠A,在Rt△BCH中,=tan∠BCH=2,∴BH=2CH=4m,∴AH+HB=AB,∴5m=5,∴m=1,∵四边形PDEF是正方形,∠APD=∠DPF=90°,①当0<t≤1时,如图1中,=tan A=2,∴PD=2P A=2t.②当1<t<5时,如图2中,∵∠A+∠B=90°,∠B+∠PDB=90°,∴∠PDB=∠A,在Rt△DPB中,=tan∠BDP=2,∴PD=PB=(5﹣t)=﹣t+.(2)当点E落在BC上时,如图3中,由题意EF=PF=PD=2t,BF=2EF=4t,∵AP+PF+BF=AB,∴t+2t+4t=5,∴t=,①当0<t≤时,重叠部分是正方形PDEF,如图1中,S=(2t)2=4t2.②当<t≤1时,重叠部分是五边形PDMNF,如图4中,EF=PD=PF=2t,在Rt△BNF中,FN=BF=(5﹣3t),∴EN=EF﹣FN=2t﹣(5﹣3t)=t﹣,在Rt△EMN中,EM=2EN=7t﹣5t,∴S=S正方形PDEF﹣S△EMN=4t2﹣(7t﹣5)2=﹣t2+t﹣.③当1<t<5时,重叠部分是四边形PDNF,如图2中,S=S△BDP﹣S△BNF=×(5﹣t)×(5﹣t)﹣×(﹣)×(﹣)=t2﹣t+,综上所述,S=..25.(1)证明:BA=BC,∴∠BAC=∠BCA,∠ACD+∠DAE=180∠ACD+∠ACB=180∴∠DAE=∠ACB,∠DAE=∠BAC,∴∠DAC=∠BAE;(2)解: 过点C做∠ACM=∠ABE,交AD于点M:∵∠DAC=∠BAE,∴△AEB∽△AMC,∴AC AB =AMAE=CMBE∵AB=kAC.,∴AM=1kAECM=1kBE∵BE=2EF∴CM= 2kFE∠AEF=∠EAB+∠ABE∠DMC=∠MAC+∠ACM,∴∠DMC=∠AEF,∵∠ACB=∠D+∠DAC,∠DAE=DAC+∠FAE,∠DAE=∠ACB,∠D=∠FAE∴△DCM-△AFE,∴DM AE =CMEF∴DM= 2kAE∴AD=AM+DM= 3kAE k∴ADAE=3K。
2016-2017年九年级上数学期末试题及答案
2016-2017年九年级上数学期末试题及答案2016-2017学年度第一学期期末考试初三年级数学试卷一、选择题(10×3分=30分)1、下列图形中,既是中心对称图形又是轴对称图形的是(。
)2、将函数y=-3x^2+1的图象向右平移2个单位得到的新图象的函数解析式为(。
)A。
y=-3(x-2)^2+1B。
y=-3(x+2)^2+1C。
y=-3x^2+2D。
y=-3x^2-23、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为(。
)A.40°B.30°C.45°D.50°4、方程x^2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12B.12或15C.15D.无法确定5、如图,有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上,从中任意抽取一张是数字3的概率是(。
)A、1/4B、1/6C、2/3D、1/36、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是(。
)A.4B.5C.6D.37、如果矩形的面积为6,那么它的长y与宽x间的函数关系用图像表示(。
)8、如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△ABC1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于(。
)A.55°B.70°C.125°D.145°9、一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是(。
)A.B.C.D.10、如图,已知正方形ABCD的边长为2,P为BC的中点,连接AP并延长交BD于点E,则PE的长度为(。
)A。
2B。
1C。
√2D。
1/√2二、填空题(8×4分=32分)11、方程x^2=x的解是(。
)12、正六边形的边长为10cm,那么它的边心距等于(。
九年级(上)期末数学试卷(附答案解析)
九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=54.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦x y=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.56.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣18.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣29.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离km.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示).(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、平安夜下雪是随机事件,故A错误;B、地球在自转的同时还不停的公转,是必然事件,故B正确;C、所有人15岁时身高必达到1.70米是随机事件,故C错误;D、下雪时一定打雷是不可能事件,故D错误;故选:B.2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可作出判断.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=5【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.4.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦xy=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个【分析】分别根据反比例函数、二次函数及一次函数的定义对各小题进行逐一分析即可.【解答】解:①y=2x是正比例函数;可化为y=5x,是正比例函数;③y=﹣符合反比例函数的定义,是反比例函数;④y=5x+1是一次函数;⑤y=x2﹣1是二次函数;⑥y=不是函数;⑦xy=11可化为y=,符合反比例函数的定义,是反比例函数.故选C.5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.5【分析】根据垂径定理和相交弦定理求解.【解答】解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×(2R﹣1),由此得2R=3,所以AB=3故选B.6.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣1【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.故选B.8.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣2【分析】已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看做是扇形ACB的面积与△ADC的面积之差.【解答】解:在Rt△ACB中,AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故选A.9.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)【分析】先根据点平移的规律得到A点平移后的对应点的坐标为(4,6),然后根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k求解.【解答】解:∵线段AB向左平移一个单位,∴A点平移后的对应点的坐标为(4,6),∴点C的坐标为(4×,6×),即(2,3).故选A.10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.【分析】由S△BDE:S△CDE=1:3,得到=,于是得到=,根据DE∥AC,推出△BDE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵S△BDE:S△CDE=1:3,∴=,∴=,∵DE∥AC,∴△BDE∽△ABC,∴==,故选D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离150 km.【分析】设两地的实际距离为xcm,根据比例尺的定义得到15:x=1:1000 000,然后根据比例的性质计算出x,再把单位由cm化为km即可.【解答】解:设两地的实际距离为xcm,根据题意得15:x=1:1000 000,所以x=15000000cm=150km.故答案为150.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【解答】解:∵两个相似三角形的相似比为2:3,∴这两个相似三角形的面积比为4:9.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有18个.【分析】让球的总数×黄色玻璃球的概率即为所求的黄色玻璃球的球数.【解答】解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为2.【分析】由正六边形的性质得出∠AOM=60°,OA=4,求出∠OAM=30°,由含30°角的直角三角形的性质得出OM=OA=2即可.【解答】解:∵六边形ABCDEF是正六边形,OM⊥AC,∴∠AOM=60°,∠OMA=90°,OA=4,∴∠OAM=30°,∴OM=OA=2,即这个正三角形的边心距OM为2;故答案为:2.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3﹣1=2.故答案为:2.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为30°(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)90°﹣α.(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD >∠PAD>∠MAD,代入可得出α的范围.【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.【分析】(1)根据一元二次方程x2+2x+k﹣1=0有实数根,可推△≥0,求出k的取值范围,得出k 的数值即可;(2)分别把k的值代入方程2x2+4x+k﹣1=0,解得结果根据方程有两个非零的整数根进行分析,确定k的值,进一步利用二次函数的性质确定对称轴和顶点坐标.【解答】解:(1)∵关于x的一元二次方程x2+2x+k﹣1=0有实数根,∴△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1,当k=1时,方程x2+2x+k﹣1=0有一个根为零;当k=2时,方程x2+2x+k﹣1=0有两个相同的非零实数根﹣1.k=2符合题意.二次函数y=x2+2x+1=(x+1)2,对称轴是x=﹣1,顶点坐标是(﹣1,0).20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中能构成完全平方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,其中能构成完全平方的有2种情况,∴其中能构成完全平方的概率为:=.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.【分析】(1)先由点C的坐标求出反比例函数的关系式,再由DE=3,求出点D的坐标,把点C,点D的坐标代入一次函数关系式求出k,b即可求一次函数的关系式.(2)由图象可知:一次函数的值小于反比例函数的值.【解答】解:(1)点C(﹣6,﹣1)在反比例函数y=的图象上,∴m=﹣6×(﹣1)=6,∴反比例函数的关系式为y=,∵点D在反比例函数y=上,且DE=3,∴y=3,代入求得:x=2,∴点D的坐标为(2,3).∵C、D两点在直线y=kx+b上,∴,解得:,∴一次函数的关系式为y=x+2.(2)由图象可知:当x<﹣6或0<x<2时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.【分析】(1)由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据平角是180°求得∠BPD=115°;最后在△BPD中依据三角形内角和定理求∠B即可;(2)过点O作OE⊥BD于点E,则OE=3.根据直径所对的圆周角是直角,以及平行线的判定知OE∥AD;又由O是直径AB的半径可以判定O是AB的中点,由此可以判定OE是△ABD的中位线;最后根据三角形的中位线定理计算AD的长度.【解答】解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,∴∠CDB=40°;又∵∠APD=65°,∴∠BPD=115°;∴在△BPD中,∴∠B=180°﹣∠CDB﹣∠BPD=25°;(2)过点O作OE⊥BD于点E,则OE=3.∵AB是直径,∴AD⊥BD(直径所对的圆周角是直角);∴OE∥AD;又∵O是AB的中点,∴OE是△ABD的中位线,∴AD=2OE=6.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.【分析】(1)由△ABC是等腰直角三角形和ADEF是正方形得到判断△ABD≌△ACF的条件;(2)由全等得到∠BGC=90°,利用勾股定理计算即可.【解答】解:(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,∴AB=AC,∵ADEF是正方形,∴AD=AF,∠BAC=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,在△ABD和△ACF中∴△ABD≌△ACF,∴BD=CF.(2)①由(1)全等得:∠ABD=∠ACE,∴∠GBC+∠GCB=∠GBC+∠ACF+∠ACB=(∠ABG+∠GBC)+∠ACB=45°+45°=90°,∴∠BGC=90°,∴BG⊥CF.②过D作DH⊥AB于H,AH=DH=AD÷=1,∴BH=3,∴BD==,延长AD交BC于P,则BP=CP,(AD平分∠BAC,AB=AC,等腰三角形三线合一)由∠BCG=90°知:DP∥CG,∴=1,∴BG=2BD=2.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.【分析】(1)根据对称轴公式求出x=﹣,求出即可;(2)假设出平移后的解析式即可得出图象与x轴的交点坐标,再利用勾股定理求出即可;(3)由抛物线的解析式可得,A,B,C,M各点的坐标,再利用勾股定理逆定理求出CD⊥CM,即可证明.【解答】解:(1)由,得x=﹣=﹣=3,∴D(3,0);(2)方法一:如图1,设平移后的抛物线的解析式为,则C(0,k)OC=k,令y=0即,得,x2=3﹣,∴A,B,∴,=2k2+8k+36,∵AC2+BC2=AB2即:2k2+8k+36=16k+36,得k1=4,k2=0(舍去),∴抛物线的解析式为,方法二:∵,∴顶点坐标,设抛物线向上平移h个单位,则得到C(0,h),顶点坐标,∴平移后的抛物线:,当y=0时,,得,x2=3+,∴A,B,∵∠ACB=90°,∴△AOC∽△COB,则OC2=OA•OB,即,解得h1=4,h2=0(不合题意舍去),∴平移后的抛物线:;(3)方法一:如图2,由抛物线的解析式可得,A(﹣2,0),B(8,0),C(0,4),M,过C、M作直线,连接CD,过M作MH垂直y轴于H,则MH=3,∴,,在Rt△COD中,CD==AD,∴点C在⊙D上,∵,∴DM2=CM2+CD2∴△CDM是直角三角形,∴CD⊥CM,∴直线CM与⊙D相切.方法二:如图3,由抛物线的解析式可得A(﹣2,0),B(8,0),C(0,4),M,作直线CM,过D作DE⊥CM于E,过M作MH垂直y轴于H,则MH=3,,由勾股定理得,∵DM∥OC,∴∠MCH=∠EMD,∴Rt△CMH∽Rt△DME,∴得DE=5,由(2)知AB=10,∴⊙D的半径为5.∴直线CM与⊙D相切.。
大连市重点中学九年级上学期期末考试数学试卷及答案解析(共四套)
大连市重点中学九年级上学期期末考试数学试卷(一)一、单选题1、剪纸是我国传统民间艺术,下列“花朵”剪纸作品中,是中心对称图形的是()A、 B、 C、 D、2、一元二次方程x2+x=0的根的是()A、x1=0,x2=1B、x1=0,x2=﹣1C、x1=1,x2=﹣1D、x1=x2=﹣13、用配方法将x2﹣8x﹣1=0变形为(x﹣4)2=m,下列选项中,m的值是正确的是()A、17B、15C、9D、74、如图,⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径长为()A、3cmB、4cmC、5cmD、6cm5、将抛物线y=(x﹣1)2向右平移1个单位后所得到抛物线的解析式是()A、y=(x﹣2)2B、y=x2C、y=x2+1D、y=x2﹣16、在下列事件中,随机事件是()A、通常温度降到0℃以下,纯净的水会结冰B、随意翻到一本书的某页,这页的页码是奇数C、明天的太阳从东方升起D、在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球7、若抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣1,0)和(3,0),则抛物线的对称轴是()A、x=﹣1B、x=﹣C、x=D、x=18、圆心角为120°,弧长为12π的扇形半径为()A、6B、9C、18D、36二、填空题9、方程x2=9的解为________10、如果关于x的方程x2﹣5x+k=0没有实数根,那么k的值为________11、点A、B、C是⊙O上三点,∠ACB=30°,则∠AOB=________12、在一个不透明的布袋中,红色,黑色玻璃球共有10个,它们除颜色外,形状、大小、质地等完全相同,小刚每次都摸一个球,观察球的颜色后放回,通过大数次摸球试验后她发现摸到红色球的概率稳定在40%,估计口袋中黑色球的个数是________13、⊙O的半径是10cm,点O到直线l的距离为6cm,直线l和⊙O的位置关系是________14、如图,利用标杆BE测量建筑物的高度,如果标杆的高度为1.5m,测得AB=2m,BC=14cm,则楼高CD为________ m.15、在平面直角坐标系中,点A绕原点顺时针旋转45°后得到点B,如果点A 的坐标为(2,2),那么点B的坐标为________16、在平面直角坐标系中,点A,B的坐标分别为(2,m),(2,3m﹣1),若线段AB与抛物线y=x2﹣2x+2相交,则m的取值范围为________三、计算题17、解方程:1+6x+x2=2x+3.四、解答题18、如图,四边形ABCD是正方形,E是CD上的一点,△ABF是△ADE的旋转图形.(1)写成由△ADE顺时针旋转到△ABF的旋转中心、旋转角的度数.(2)连接EF,判断并说明△AEF的形状.19、已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?20、在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.21、如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球飞行的高度,x(m)是球飞行的水平距离.(1)飞行的水平距离是多少时,球最高?(2)球从飞出到落地的水平距离是多少?22、如图,锐角△ABC中,边BC长为3,高AH长为2,矩形EFMN的边MN在BC 边上,其余两个顶点E,F分别在AB,AC边上,EF交AH于点G.(1)求的值;(2)当EN为何值时,矩形EFMN的面积为△ABC面积的四分之一.23、如图,在⊙O中,直径AB交弦CD于点G,CG=DG,⊙O的切线BE交DO的延长线于点E,F是DE与⊙O的交点,连接BD,BF.(1)求证:∠CDE=∠E;(2)若OD=4,EF=1,求CD的长.24、Rt△ABC中,∠ACB=90°,BC=4,如图1,点P从C出发向点B运动,点R 是射线PB上一点,PR=3CP,过点R作QR⊥BC,且QR=aCP,连接PQ,当P点到达B点时停止运动.设CP=x,△ABC与△PQR重合部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m,m<x≤n时,函数的解析式不同).(1)a的值为;(2)求出S关于x的函数关系式,并写出x的取值范围.25、在△ABC中,点D是AB边上一点(不与AB重合),AD=kBD,过点D作∠EDF+∠C=180°,与CA、CB分别交于E、F.(1)如图1,当DE=DF时,求的值.(2)如图2,若∠ACB=90°,∠B=30°,DE=m,求DF的长(用含k,m的式子表示)26、如图,在平面直角坐标系中,△CDE的顶点C点坐标为C(1,﹣2),点D 的横坐标为,将△CDE绕点C旋转到△CBO,点D的对应点B在x轴的另一个交点为点A.(1)图中,∠OCE等于多少;(2)求抛物线的解析式;(3)抛物线上是否存在点P,使S△PAE =S△CDE?若存在,直接写出点P的坐标;若不存在,请说明理由.答案解析部分一、单选题1、【答案】B【考点】中心对称及中心对称图形【解析】【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.2、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】解:∵一元二次方程x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,故选:B.【分析】把一元二次方程化成x(x+1)=0,然后解得方程的根即可选出答案.3、【答案】A【考点】解一元二次方程-配方法【解析】【解答】解:x2﹣8x﹣1=0,移项得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17.所以m=17.故选:A.【分析】将方程的常数项移到右边,两边都加上16,左边化为完全平方式,右边合并即可得到结果.4、【答案】C【考点】勾股定理,垂径定理【解析】【解答】解:过点O作OC⊥AB于C,连接OA,∴OC=3cm,AC=AB=×8=4(cm),∴在Rt△AOC中,OA==5cm.故选C.【分析】首先过点O作OC⊥AB于C,连接OA,由垂径定理,即可求得AC的长,然后在Rt△AOC中,利用勾股定理即可求得⊙O的半径长.5、【答案】A【考点】二次函数图象与几何变换【解析】【解答】解:抛物线y=(x﹣1)2向右平移1个单位,得:y=(x﹣1﹣1)2即y=(x﹣2)2故选:A.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.6、【答案】B【考点】随机事件【解析】【解答】解:通常温度降到0℃以下,纯净的水会结冰是必然事件,A 不合题意;随意翻到一本书的某页,这页的页码是奇数是随机事件,B符合题意;明天的太阳从东方升起是必然事件,C不合题意;在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球是不可能事件,D不合题意;故选:B.【分析】根据必然事件、不可能事件、随机事件的概念解答即可.7、【答案】D【考点】抛物线与x轴的交点【解析】【解答】解:∵y=ax2+bx+c与x轴的两个交点坐标是(﹣1,0)和(3,0),∴抛物线的对称轴为直线x=1.故选D.【分析】由抛物线与x轴的两个交点,利用对称性确定出对称轴即可.8、【答案】C【考点】弧长的计算【解析】【解答】解:设该扇形的半径是r.根据弧长的公式l=,得到:12π=,解得 r=18,故选:C.【分析】根据弧长的公式l=进行计算.二、填空题9、【答案】±3【考点】解一元二次方程-直接开平方法【解析】【解答】解:∵x2=9,∴x=±3.【分析】此题直接用开平方法求解即可.10、【答案】k>【考点】根的判别式【解析】【解答】解:∵关于x的方程x2﹣5x+k=0没有实数根,∴△<0,即△=25﹣4k<0,∴k>,故答案为:k>.【分析】根据题意可知方程没有实数根,则有△=b2﹣4ac<0,然后解得这个不等式求得k的取值范围即可.11、【答案】60°【考点】圆周角定理【解析】【解答】解:∵点A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB=2∠ACB=60°.故答案为:60°.【分析】由点A、B、C是⊙O上三点,∠ACB=30°,直接利用圆周角定理,即可求得答案.12、【答案】6【考点】利用频率估计概率【解析】【解答】解:∵红色球频率稳定在40%左右,∴摸到黑色球的频率为1﹣40%=60%,故口袋中黑色球个数可能是10×60%=6个.故答案为:6.【分析】由题意:“通过多次摸球试验后发现”知所得频率可以近似地认为是概率,再由概率之和为1计算出红色与黑色球的频率,最后由数据总数×频率=频数计算个数即可.13、【答案】相离【考点】直线与圆的位置关系【解析】【解答】解:∵⊙O的直径为10cm,∴r=5cm,∵d=6cm,∴d>r,∴直线l与⊙O的位置关系是相离;故答案为:相离.【分析】由⊙O的直径为10cm,得出圆的半径是5cm,圆心O到直线l的距离为6cm,即d=6cm,得出d>r,即可得出直线l与⊙O的位置关系是相离.14、【答案】12【考点】相似三角形的应用【解析】【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴∵BE=1.5,AB=2,BC=14,∴AC=16,∴∴CD=12.故答案为:12.【分析】先根据题意得出△ABE∽△ACD,再根据相似三角形的对应边成比例即可求出CD的值.15、【答案】(2, 0)【考点】坐标与图形变化-旋转【解析】【解答】解:作AC⊥x轴于C,如图,∵点A的坐标为(2,2),∴OC=AC=2,∴△OAC为等腰直角三角形,∴∠AOC=45°,OA=OC=2,∵点A绕原点顺时针旋转45°后得到点B,∴∠AOB=45°,即点B在x轴的正半轴上,且OB=OA=2,∴B点坐标为(2, 0).故答案为(2, 0).【分析】作AC⊥x轴于C,如图,易得△OAC为等腰直角三角形,则∠AOC=45°,OA=OC=2,再根据旋转的性质得点B在x轴的正半轴上,OB=OA=2,然后根据x轴上点的坐标特征写出B点坐标.16、【答案】1≤m≤2【考点】二次函数的性质【解析】【解答】解:令x=2,则有y=22﹣2×2+2=2,若要线段AB与抛物线相交,只需(2,2)点在线段AB上.当3m﹣1≥m时,有,解得1≤m≤2;当3m﹣1<m时,有,无解.综上可知,若线段AB与抛物线y=x2﹣2x+2相交,则1≤m≤2.故答案为:1≤m≤2.【分析】求出当x=2时,抛物线上的点的坐标,由抛物线的性质可知,若相交,则该点的纵坐标必在A、B点的纵坐标之间,列出不等式组,即可得出结论.三、计算题17、【答案】解:由原方程,得x2+4x=2,配方,得x2+4x+22=2+22,即(x+2)2=6,开方,得x+2=±,解得x1=﹣2+,x2=﹣2﹣.【考点】解一元二次方程-配方法【解析】【分析】先把原方程转化为x2+4x=2的形式,然后利用完全平方公式对等式的左边进行转换.四、解答题18、【答案】解:(1)∵△ABF是△ADE的旋转图形,∴旋转中心是点A;∵顺时针旋转了90,∴旋转角的度数90;(2)△AEF的形状是等腰直角三角形,理由如下:∵△ABF是△ADE的旋转图形,旋转角为90°,∴AE=AF,∠FAE=90°,∴△AEF是等腰直角三角形.【考点】旋转的性质【解析】【分析】(1)利用旋转的性质得出旋转中心即可;利用旋转的位置得出旋转角即可;(2)利用旋转的性质以及等腰三角形的判定得出即可.19、【答案】解:(1)∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1,∴有,解得.∴二次函数的解析式为y=x2+2x﹣2.(2)∵a=1>0,∴抛物线的开口向上,当x≤﹣1时,函数递减;当x>﹣1时,函数递增.故当x≤﹣1时,y随x的增大而减小.【考点】二次函数的性质【解析】【分析】(1)根据二次函数过点P和二次函数的对称轴为x=﹣1,可得出关于m、n的二元一次方程组,解方程组即可得出m、n的值;(2)由二次函数的a的值大于0,结合函数的单调性,即可得出结论.20、【答案】解:画树状图得:由树形图可知所有等可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.【考点】列表法与树状图法【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.21、【答案】解:(1)∵y=﹣x2+x=﹣(x﹣4)2+,∴当x=4时,y有最大值为.所以当球水平飞行距离为4米时,球的高度达到最大,最大高度为米;(2)令y=0,则﹣x2+x=0,解得x1=0,x2=8.所以这次击球,球飞行的最大水平距离是8米.【考点】二次函数的应用【解析】【分析】(1)把函数关系式配方成二次函数的顶点式,根据顶点式可知最值情况;(2)球落到地面时高度为0,可令y=0,求出x的值即可.22、【答案】解:(1)∵EF∥BC,∴△AEF∽△ABC,∴,∴=;(2)设EN=x,∵EF∥BC,∴△AEF∽△ABC,∴,∴,∴EF=3﹣x,∵矩形EFMN的面积为△ABC面积的四分之一,∴x(3﹣x)=××3×2,∴x=1﹣,x=1+,∴EN为1﹣或1+时,矩形EFMN的面积为△ABC面积的四分之一.【考点】矩形的性质,相似三角形的判定与性质【解析】【分析】(1)由EF∥BC,得到△AEF∽△ABC,根据相似三角形的性质得到,根据比例的性质即可得到结论;(2)设EN=x,根据相似三角形的性质得到,代入数据得到,求得EF=3﹣x,根据题意列方程即可得到结论.23、【答案】证明:(1)∵在⊙O中,直径AB交弦CD于点G,CG=DG,∴AB⊥CD,∵BE是⊙O的切线,∴AB⊥BE,∴CD∥BE,∴∠CDE=∠E;(2)解:∵∠CDE=∠E,∠DOG=∠BOE,∴△ODG∽△OEB,∴,∵OD=4,EF=1,∴OB=OF=OD=4,∴OE=OF+EF=5,∴,∴OG=,∴DG==,∴CD=2DG=.【考点】切线的性质【解析】【分析】(1)由在⊙O中,直径AB交弦CD于点G,CG=DG,根据垂径定理即可得AB⊥CD,又由BE是⊙O的切线,易证得CD∥BE,即可证得结论;(2)易证得△ODG∽△OEB,然后由相似三角形的对应边成比例,求得OG的长,由勾股定理即可求得DG的长,继而求得答案.24、【答案】解:(1)由图2可知,当x=时,点Q在线段AB上,且此时的S=,PR=3CP=,QR=aCP=a,∵QR⊥BC,∴S=PR•QR=××a=,即27a=108,解得a=4.(2)当x=时,Q点在线段AB上,如图3,∵AC⊥BC,QR⊥BC,∴AC∥QR,∴△ABC∽△QBR,∴QR=4CP=,PR=3CP=,BR=BC﹣CP﹣PR=,AC=•QR=•=3 ..①当点Q在△ACB内时,即0<x≤时,如图1,PR=3x,QR=4x,S=PR•QR=6x2.②当点Q在△ACB外且R点在线段CB上时,如图4,此时x>,且CR≤BC,∵CR=CP+PR=4x,∴<x≤1.∵∴△PQR∽△ABC,∴∠Q=∠B,∵∠DEQ=∠REB(对顶角),∴△DEQ∽△REB.在Rt△ACB中,由勾股定理可知AB==5,∵AC∥QR,∴△EBR∽△ABC,∴RB=BC﹣CP﹣PR=4﹣4x,AC=3,BC=4,∴RE=3﹣3x.QE=QR﹣RE=4x﹣(3﹣3x)=7x﹣3.∵△DEQ∽△REB,△EBR∽△ABC,且AC=3,BC=4,AB=5,∴DE=QE,QD=QE,QD⊥DE.S=PR•QR﹣QD•DE=﹣x2+x﹣.③当点R在线段CB的延长线上时,如图5,此时CR=4x>BC=4,得x>1;CP=x≤BC=4.即1<x≤4.∵△ABC∽△PQR,∴∠QPR=∠A,∵∠PBM=∠ABC,∴△PBM∽△ABC,∴PM=PB,MB=PB.∵PB=BC﹣CP=4﹣x,∴S=PM•MB=(4﹣x)2=x2﹣x+.综合①②③可得:S=【考点】一次函数图象与几何变换【解析】【分析】(1)由图2可知当x=时S=,且此时Q点在线段AB上,利用三角形面积公式即可求出a的值;(2)由Q点和R点的位置,可将整个移动过程分成三部分,借用三角形相似,找个各边的关系,分割图形,既能找出S和x之间的关系式.25、【答案】解:(1)如图1,连接CD,∵∠EDF+∠C=180°,∴D,E,C,F四点共圆,∵DE=DF,∴∠DCE=∠DCF,根据正弦定理得①,,∴,②,∵∠ADC=180°﹣∠BDC,∴sin∠ADC=sin∠BDC,①÷②d得,,∵AD=kBD,∴=k;(2)∵∠ACB=90°,∠B=30°,∴∠A=60°,根据正弦定理得:③,,④,由(1)知D,E,C,F四点共圆,∴∠DEA+∠DFB=180°,∴sin∠DEA=sin∠DFB,④÷③得:,∴DF=,∵AD=kBD,DE=m,∴DF=.【考点】相似三角形的判定与性质【解析】【分析】(1)连接CD,由∠EDF+∠C=180°,推出D,E,C,F四点共圆,根据正弦定理得①,,②,①÷②得,,根据AD=kBD,根据得到结论;(2)根据三角形的内角和得到∠A=60°,根据正弦定理得:③,,④,④÷③得:,求得DF=,即可得到结论.26、【答案】解:(1)∵△CDE绕点C旋转到△CBO,∴∠OCE=∠BCD;故答案为BCD;(2)作CH⊥OE于H,如图,∵△CDE绕点C旋转到△CBO,∴CO=CE,CB=CD,OB=DE,∴OH=HE=1,∴OE=2,∴E点坐标为(2,0),设B(m,0),D(,n),∵CD2=(1﹣)2+(﹣2﹣n)2, CB2=(1﹣m)2+22, DE2=(2﹣)2+n2,∴(1﹣)2+(﹣2﹣n)2=(1﹣m)2+22,(2﹣)2+n2=m2,∴m=3,n=﹣,∴B(3,0),设抛物线解析式为y=a(x﹣1)2﹣2,把B(3,0)代入得4a﹣2=0,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2,即y=x2﹣x﹣;(3)存在.A与点B关于直线x=1对称,∴A(﹣1,0),∵△CDE绕点C旋转到△CBO,∴△CDE≌△CBO,∴S△CDE =S△CBO=•2•3=3,设P(t,t2﹣t﹣),∵S△PAE =S△CDE,∴•3•|t2﹣t﹣|=•3,∴t2﹣t﹣=1或t2﹣t﹣=﹣1,解方程t2﹣t﹣=1得t1=1+,t2=1﹣,此时P点坐标为(1+,1)或(1﹣,1);解方程t2﹣t﹣=﹣1得t1=1+,t2=1﹣,此时P点坐标为(1+,﹣1)或(1﹣,1);综上所述,满足条件的P点坐标为(1+,1)或(1﹣,1)或(1+,﹣1)或(1﹣,1).【考点】二次函数的应用【解析】【分析】(1)根据旋转的性质易得∠OCE=∠BCD;(2)作CH⊥OE于H,如图,根据旋转的性质得CO=CE,CB=CD,OB=DE,则利用等腰三角形的性质得OH=HE=1,则E点坐标为(2,0),设B(m,0),D(,n),利用两点间的距离公式得CD2=(1﹣)2+(﹣2﹣n)2, CB2=(1﹣m)2+22, DE2=(2﹣)2+n2,所以(1﹣)2+(﹣2﹣n)2=(1﹣m)2+22,(2﹣)2+n2=m2,解关于m、n的方程组得到m=3,n=﹣,则B(3,0),然后设顶点式y=a(x﹣1)2﹣2,再把B点坐标代入求出a即可得到抛物线解析式;(3)先利用抛物线的对称性得到A(﹣1,0),再根据旋转的性质得△CDE≌△CBO,则S△CDE =S△CBO=3,设P(t,t2﹣t﹣),利用三角形面积公式得到•3•|t2﹣t﹣|=•3,则t2﹣t﹣=1或t2﹣t﹣=﹣1,然后分别解关于t的一元二次方程求出t,从而可得到满足条件的P点坐标.大连市重点中学九年级上学期期末考试数学试卷(二)一、选择题1、以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A、 B、 C、 D、2、用配方法解方程:x2﹣4x+2=0,下列配方正确的是()B、(x+2)2=2C、(x﹣2)2=﹣2D、(x﹣2)2=63、小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是()A、B、C、D、4、如图,⊙O是△ABC的内切圆,切点分别是D、E、F.已知∠A=100°,∠C=40°,则∠DFE的度数是()A、55°B、60°C、65°D、70°5、二次函数y=ax2+bx+c图象上部分点的坐标满足表格:)A、(﹣4,﹣6)C、(﹣1,﹣3)D、(0,﹣6)6、一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A、100(1+x)=121B、100(1﹣x)=121C、100(1+x)2=121D、100(1﹣x)2=1217、如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A、B、C、1D、28、如图,△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,则△ABC 与△DEF的面积比是()A、1:6B、1:5C、1:4D、1:29、在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A、 B、C、 D、10、如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于()A、B、C、D、二、填空题11、方程(2x﹣1)(3x+1)=x2+2化为一般形式为 ________.12、在反比例函数的图象的每一条曲线上,y随着x的增大而增大,则k的取值范围是________.13、在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是________.14、如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为________.15、如图,在平面直角坐标系中,点A(,1)关于x轴的对称点为点A1,将OA绕原点O逆时针方向旋转90°到OA2,用扇形OA1A2围成一个圆锥,则该圆锥的底面圆的半径为________.16、体育测试时,初三一名学生推铅球,已知铅球所经过的路线为抛物线y=﹣x2+x+12的一部分,该同学的成绩是________.17、观察下列一组数:,它们是按一定规律排列的,那么这一组数的第n个数是________.18、如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为________.三、解答题19、解方程:(1)x2﹣6x﹣6=0(2)2x2﹣7x+6=0.20、如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C 分别在坐标轴上,顶点B的坐标(4,2),过点D(0,3)和E(6,0)的直线分别于AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数y= (x>0)的图象经过点M,求该反比函数的解析式,并通过计算判断点N是否在该函数的图象上.21、某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?22、如图,已知直线AB与x轴、y轴分别交于点A和点B,OA=4,且OA,OB长是关于x的方程x2﹣mx+12=0的两实根,以OB为直径的⊙M与AB交于C,连接CM,交x轴于点N,点D为OA的中点.(1)求证:CD是⊙M的切线;(2)求线段ON的长.23、一批单价为20元的商品,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?24、如图,抛物线与直线交于A、B两点,点A在x 轴上,点B的横坐标是2.点P在直线AB上方的抛物线上,过点P分别作PC∥y 轴、PD∥x轴,与直线AB交于点C、D,以PC、PD为边作矩形PCQD,设点Q的坐标为(m,n).(1)点A的坐标是________,点B的坐标是________;(2)求这条抛物线所对应的函数关系式;(3)求m与n之间的函数关系式(不要求写出自变量n的取值范围);(4)请直接写出矩形PCQD的周长最大时n的值.答案解析部分一、<b >选择题</b>1、【答案】B【考点】中心对称及中心对称图形【解析】【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.2、【答案】A【考点】解一元二次方程-配方法【解析】【解答】解:把方程x2﹣4x+2=0的常数项移到等号的右边,得到x2﹣4x=﹣2,方程两边同时加上一次项系数一半的平方,得到x2﹣4x+4=﹣2+4,配方得(x﹣2)2=2.故选:A.【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.3、【答案】C【考点】概率的意义【解析】【解答】解:∵六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,∴抽到的座位号是偶数的概率是:= .故选C.【分析】由六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,直接利用概率公式求解即可求得答案.4、【答案】D【考点】三角形的内切圆与内心【解析】【解答】解:∵∠A=100°,∠C=40°,∴∠B=180°﹣∠A﹣∠C=40°,∵⊙O是△ABC的内切圆,切点分别是D、E、F,∴∠BDO=∠BEO=90°,∴∠DOE=180°﹣∠B=140°,∴∠DFE= ∠DOE=70°.故选:D.【分析】根据三角形的内角和定理求得∠B=40°,再根据切线的性质以及四边形的内角和定理得出∠DOE=140°,再根据圆周角定理即可得出∠DFE=70°.5、【答案】B【考点】二次函数的性质【解析】【解答】解:∵x=﹣3、x=﹣1时的函数值都是﹣3,相等,∴函数图象的对称轴为直线x=﹣2,顶点坐标为(﹣2,﹣2).故选:B.【分析】根据二次函数的对称性解答即可.6、【答案】C【考点】一元二次方程的应用【解析】【解答】解:设平均每次提价的百分率为x,根据题意得:100(1+x)2=121,故选C.【分析】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为121元,列出关于x的方程.7、【答案】C【考点】垂径定理【解析】【解答】解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选C.【分析】根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.8、【答案】C【考点】位似变换【解析】【解答】解:∵△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,∴AC∥DF,∴△OAC∽△ODF,∴AC:DF=OA:OD=1:2,∴△ABC与△DEF的面积比是1:4.故选C.【分析】由△ABC经过位似变换得到△DEF,点O是位似中心且OA=AD,根据位似图形的性质,即可得AC∥DF,即可求得AC:DF=OA:OD=1:2,然后根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.9、【答案】D【考点】二次函数的图象【解析】【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x= = = <0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x= = = <0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x= <0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.【分析】本题主要考查一次函数和二次函数的图象所经过的象限的问题,关键是m的正负的确定,对于二次函数y=ax2+bx+c,当a>0时,开口向上;当a<0时,开口向下.对称轴为x= ,与y轴的交点坐标为(0,c).10、【答案】C【考点】菱形的性质【解析】【解答】解:连接AC,可得AB=BC=AC=1,则∠BAC=60°,根据弧长公式,可得弧BC的长度等于= ,故选C.【分析】连接AC,根据题意可得△ABC为等边三角形,从而可得到∠A的度数,再根据弧长公式求得弧BC的长度.二、<b >填空题</b>11、【答案】5x2﹣x﹣3=0【考点】因式分解的意义【解析】【解答】解;(2x﹣1)(3x+1)=x2+2,6x2+2x﹣3x﹣1=x2+2,6x2+2x﹣3x﹣1﹣x2﹣2=0,5x2﹣x﹣3=0,故答案为:5x2﹣x﹣3=0,【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.12、【答案】k<1【考点】反比例函数的定义,反比例函数的图象【解析】【解答】解:∵反比例函数的图象的每一条曲线上,y随着x 的增大而增大,∴k﹣1<0,∴k<1.故答案为k<1.【分析】根据反比例函数的性质得到k﹣1<0,然后解不等式即可.13、【答案】(3,﹣4)【考点】关于原点对称的点的坐标【解析】【解答】解:点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).故答案为:(3,﹣4).【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答.14、【答案】【考点】概率的意义【解析】【解答】解:∵S正方形= (3×2)2=18,S阴影=4× ×3×1=6,∴这个点取在阴影部分的概率为:= ,故答案为:.【分析】先求出正方形的面积,阴影部分的面积,再根据几何概率的求法即可得出答案.15、【答案】【考点】坐标与图形性质,圆锥的计算【解析】【解答】解:过点A作AC⊥x轴于点C,∵点A的坐标为(,1),∴AO= =2,∴tan∠AOC= = = ,∴∠AOC=30°,∵点A(,1)关于x轴的对称点为点A1,∴∠COA1=30°,∵将OA绕原点O逆时针方向旋转90°到OA2,∴∠A2OA1=∠AOC+∠COA1+∠A2OA=30°+90°+30°=150°,∴圆锥底面圆的周长为:= = π,∴该圆锥的底面圆的半径为:2πR= π,∴R= .故答案为:.【分析】根据点A的坐标为(,1),得出∠AOC的度数,以及∠COA1的度数,进而由将OA绕原点O逆时针方向旋转90°到OA2,得出∠A2OA1的度数即可得出,圆锥底面圆的周长,求出半径即可.16、【答案】6+6【考点】二次函数的图象【解析】【解答】解:在抛物线y=﹣x2+x+12中,∵当y=0时,x=6+6 ,x=6﹣6 (舍去)∴该同学的成绩是6+6 ,故答案为:6+6 .【分析】成绩是当y=0时x的值,据此求解.17、【答案】【考点】探索数与式的规律【解析】【解答】解:这一组数的第n个数是.故答案为:.【分析】分子是从1开始连续的奇数,分母是从2开始连续自然数的平方减去2,由此规律得出这一组数的第n个数是即可.18、【答案】2π【考点】扇形面积的计算【解析】【解答】解:∵半圆绕点B顺时针旋转45°,点A旋转到A′的位置,∴S半圆AB =S半圆A′B,∠ABA′=45°,∴S阴影部分+S半圆AB=S半圆A′B, +S扇形ABA′,∴S阴影部分=S扇形ABA′= =2π.故答案为2π.【分析】根据旋转的性质得S半圆AB =S半圆A′B,∠ABA′=45°,由于S阴影部分+S半圆AB =S半圆A′B, +S扇形ABA′,则S阴影部分=S扇形ABA′,然后根据扇形面积公式求解.三、<b >解答题</b>19、【答案】(1)解:x2﹣6x﹣6=0,b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x= ,x 1=3+ ,x2=3﹣;(2)解:2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,2x﹣3=0,x﹣2=0,x 1= ,x2=2.【考点】解一元二次方程-公式法【解析】【分析】(1)求出b2﹣4ac的值,代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.20、【答案】(1)解:设直线DE的解析式为y=kx+b,∵D(0,3),E(6,0),∴ ,解得,∴直线DE的解析式为y=﹣x+3;当y=2时,﹣x+3=2,解得x=2,。
九年级(上)期末数学试卷解析版
九年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.下列方程中关于x的一元二次方程的是()A.x2+=0 B.x3+x﹣1=0 C.x2﹣2xy+y2=0 D.x2+2x﹣3=02.下列是电视台的台标,属于中心对称图形的是()A.B. C.D.3.抛物线y=2(x﹣3)2+1的顶点坐标是()A.(﹣3,1)B.(3,1) C.(3,﹣1)D.(﹣3,﹣1)4.反比例函数y=经过()象限.A.第一和第三B.第二和第四C.第一和第二D.第三和第四5.用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A.(x+2)2=11 B.(x﹣2)2=11 C.(x+4)2=23 D.(x﹣4)2=236.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,英语题9个,她从中随机抽取1个,抽中数学题的概率是()A.B.C.D.7.成语“水中捞月”所描述的事件是()事件.A.必然B.随机C.不可能D.无法确定8.如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°,得到△OA1B1,求∠A1OB的度数()A.100°B.70°C.40°D.30°9.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A (3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2 B.x<0或x>3 C.2<x<3 D.0<x<310.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点C为圆心,OA的长为直径作半圆交CE于点D.若OA=4,则图中阴影部分的面积为()A. B.C.D.二、填空题(本大题6小题,每小题4分,共24分)11.二次函数y=x2﹣2x﹣3的开口方向是向.12.方程x2﹣9=0的解是.13.平面直角坐标系中,点P(1,﹣3)关于原点对称的点的坐标是.14.已知反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是.15.如图,已知△ABC是圆内接三角形,若∠OCB=15°,则∠A=度.16.如图,2016年里约奥运会上,某运动员在10米跳台跳水比赛时估测身体(看成一点)在空中的运动路线是抛物线y=﹣x2+x(图中标出的数据为已知条件),运动员在空中运动的最大高度离水面为米.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程:2(x﹣3)=3x(x﹣3).18.江门市统计局与国家统计局江门调查队联合发布2015年江门市国民经济和社会发展统计公报.公报显示,经初步核算,2015年江门全市实现地区生产总值(GDP)2420亿元,而2013年生产总值(GDP)为2000亿元,如果2014、2015年江门市GDP逐年增加,求这两年我市GDP的年平均增长率.19.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC 绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,求AA′的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.21.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.22.已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形;(2)求出此时菱形的边长.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限=.的交点,AB⊥x轴于点B且S△ABO(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A,C的坐标;(3)求△AOC的面积.24.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长.25.如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c 过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D 的坐标.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.下列方程中关于x的一元二次方程的是()A.x2+=0 B.x3+x﹣1=0 C.x2﹣2xy+y2=0 D.x2+2x﹣3=0【考点】A1:一元二次方程的定义.【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:A、x2+=0,不是一元二次方程,故此选项错误;B、x3+x﹣1=0,不是一元二次方程,故此选项错误;C、x2﹣2xy+y2=0,不是一元二次方程,故此选项错误;D、x2+2x﹣3=0,是一元二次方程,故此选项正确;故选:D.2.下列是电视台的台标,属于中心对称图形的是()A.B. C.D.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念即可求解.【解答】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:A.3.抛物线y=2(x﹣3)2+1的顶点坐标是()A.(﹣3,1)B.(3,1) C.(3,﹣1)D.(﹣3,﹣1)【考点】H3:二次函数的性质.【分析】利用抛物线顶点式y=a(x﹣h)2+k直接求出顶点坐标即可.【解答】解:∵抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),∴y=2(x﹣3)2+1的顶点坐标是(3,1).故选B.4.反比例函数y=经过()象限.A.第一和第三B.第二和第四C.第一和第二D.第三和第四【考点】G4:反比例函数的性质.【分析】根据反比例函数的比例系数判断即可.【解答】解:∵反比例函数y=中k=1>0,∴图象在一三象限,故选A.5.用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A.(x+2)2=11 B.(x﹣2)2=11 C.(x+4)2=23 D.(x﹣4)2=23【考点】A6:解一元二次方程﹣配方法.【分析】先把方程变形为x2﹣4x=7,然后把方程两边加上4后利用完全平方公式写为(x﹣2)2=11即可.【解答】解:x2﹣4x=7,x2﹣4x+4=11,所以(x﹣2)2=11.故选B.6.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,英语题9个,她从中随机抽取1个,抽中数学题的概率是()A.B.C.D.【考点】X4:概率公式.【分析】由小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,直接利用概率公式求解即可求得答案.【解答】解:∵小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,∴她从中随机抽取1道,抽中数学题的概率是:==,故选:C.7.成语“水中捞月”所描述的事件是()事件.A.必然B.随机C.不可能D.无法确定【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:水中捞月是不可能事件,故选C.8.如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°,得到△OA1B1,求∠A1OB的度数()A.100°B.70°C.40°D.30°【考点】R2:旋转的性质.【分析】根据∠A1OB=∠BOB1﹣∠AOB即可求解.【解答】解:∠BOB1=100°,∠AOB=30°,则∠A1OB=∠BOB1﹣∠AOB=100°﹣30°=70°.故选B.9.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A (3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2 B.x<0或x>3 C.2<x<3 D.0<x<3【考点】HC:二次函数与不等式(组);HA:抛物线与x轴的交点.【分析】直接利用已知函数图象得出y1在y2下方时,x的取值范围即可.【解答】解:如图所示:若y1<y2,则二次函数图象在一次函数图象的下面,此时x的取值范围是:0<x<3.故选:D.10.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点C为圆心,OA的长为直径作半圆交CE于点D.若OA=4,则图中阴影部分的面积为()A. B.C.D.【考点】MO:扇形面积的计算;KG:线段垂直平分线的性质.【分析】连接OE,根据CE⊥OA且OA=4可知OC=2,求出cos∠EOC=,由此可得出∠COE的度数,进而得出∠BOE的度数,根据S阴影=S扇形AOB﹣S扇形ACD﹣S扇形BOE﹣S△COE即可得出结论.【解答】解:连接OE,如图所示:∵C为OA的中点,CE⊥OA且OA=4,∴OC=2,∴cos∠EOC==,CE==2,∴∠COE=60°.∵∠AOB=90°,∴∠BOE=30°,∴S阴影=S扇形AOB﹣S扇形ACD﹣S扇形BOE﹣S△COE=﹣﹣﹣×2×2=﹣2.故选:D.二、填空题(本大题6小题,每小题4分,共24分)11.二次函数y=x2﹣2x﹣3的开口方向是向上.【考点】H3:二次函数的性质.【分析】根据二次函数y=ax2+bx+c(a≠0)的性质由a=1>0即可得到抛物线的开口向上.【解答】解:∵a=1>0,∴抛物线的开口向上.故答案为上.12.方程x2﹣9=0的解是x=±3.【考点】A8:解一元二次方程﹣因式分解法.【分析】这个式子左边是一个平方差公式,直接分解因式即可,然后求出x.【解答】解:x2﹣9=0即(x+3)(x﹣3)=0,所以x=3或x=﹣3.故答案为:x=±3.13.平面直角坐标系中,点P(1,﹣3)关于原点对称的点的坐标是(﹣1,3).【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可直接得到答案.【解答】解:点P(1,﹣3)关于原点对称的点的坐标是(﹣1,3),故答案为:(﹣1,3).14.已知反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是k<1.【考点】G4:反比例函数的性质.【分析】由反比例函数的性质,可得1﹣k>0,解得即可.【解答】解:∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴1﹣k>0,解得:k<1.故答案为:k<1.15.如图,已知△ABC是圆内接三角形,若∠OCB=15°,则∠A=75度.【考点】MA:三角形的外接圆与外心.【分析】根据等腰三角形的性质得到∠OBC=∠OCB=15°,求出∠AOB,根据圆周角定理计算即可.【解答】解:∵OC=OB,∴∠OBC=∠OCB=15°,∴∠AOB=150°,由圆周角定理得,∠A=∠AOB=75°,故答案为:75.16.如图,2016年里约奥运会上,某运动员在10米跳台跳水比赛时估测身体(看成一点)在空中的运动路线是抛物线y=﹣x2+x(图中标出的数据为已知条件),运动员在空中运动的最大高度离水面为米.【考点】HE:二次函数的应用.【分析】直接利用配方法得出二次函数的最值,进而得出运动员在空中运动的最大高度离水面的距离.【解答】解:∵y=﹣x2+x=﹣(x2﹣x)=﹣(x﹣)2+,∴y的最大值为:,∴运动员在空中运动的最大高度离水面为:10+=10(m).故答案为:10.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程:2(x﹣3)=3x(x﹣3).【考点】A8:解一元二次方程﹣因式分解法.【分析】移项后提取公因式x﹣3后利用因式分解法求得一元二次方程的解即可.【解答】解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.18.江门市统计局与国家统计局江门调查队联合发布2015年江门市国民经济和社会发展统计公报.公报显示,经初步核算,2015年江门全市实现地区生产总值(GDP)2420亿元,而2013年生产总值(GDP)为2000亿元,如果2014、2015年江门市GDP逐年增加,求这两年我市GDP的年平均增长率.【考点】AD:一元二次方程的应用.【分析】设这两年我市GDP的年平均增长率为x,根据2013年生产总值(GDP)为2000亿元,2015年江门全市实现地区生产总值(GDP)2420亿元,列出方程,求解即可.【解答】解:设这两年我市GDP的年平均增长率为x,依题意得:2000(1+x)2=2420,解得x1=0.1x2=﹣2.1(不合题意,舍去),答:这两年我市GDP的年平均增长率为10%.19.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC 绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,求AA′的长.【考点】R2:旋转的性质;KO:含30度角的直角三角形.【分析】利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2∴∠CAB=30°,AB=4,∵由已知可得:AB=A′B′=4,AC=A′C,∴∠A′AC=∠A′=30°,又∵∠A′B′C=∠B=60°∴∠A′AC=∠B′CA=30°,∴AB′=B′C=2,∴AA′=2+4=6.四、解答题(二)(本大题3小题,每小题7分,共21分)20.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.【考点】X6:列表法与树状图法;61:分式的定义.【分析】(1)列举出不放回的2次实验的所有情况即可;(2)看抽取的两张卡片结果能组成分式的情况占总情况的多少即可.【解答】解:(1)树状图:列表法:(2)共有6种情况,能组成的分式的有,,,4种情况,所以P 分式=.21.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.【考点】R8:作图﹣旋转变换;MO:扇形面积的计算.【分析】(1)根据旋转的性质得出对应点旋转后位置进而得出答案;(2)利用勾股定理得出AB=5,再利用扇形面积公式求出即可.【解答】解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.22.已知平行四边形ABCD的两邻边AB、AD的长是关于x的一元二次方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形;(2)求出此时菱形的边长.【考点】LA:菱形的判定与性质;AA:根的判别式.【分析】(1)根据题意△=0,构建方程,解方程即可.(2)把m=1代入方程,解方程即可解决问题.【解答】解:(1)四边形ABCD为菱形,则方程有两个相等的实数根,∴△=b2﹣4ac=(﹣m)2﹣4(﹣)=0,即m2﹣2m+1=0,解得m=1,所以当m=1时,四边形ABCD为菱形.(2)把m=1代入原方程得x2﹣x+=0,解得所以菱形的边长为.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限=.的交点,AB⊥x轴于点B且S△ABO(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A,C的坐标;(3)求△AOC的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)设出A坐标(x,y),表示出OB与AB,进而表示出三角形ABO面积,由已知面积确定出反比例函数k的值,进而确定出一次函数;(2)联立反比例函数与一次函数解析式,求出A与C坐标即可;(3)由一次函数解析式求出D坐标,确定出OD的长,三角形AOC面积=三角形AOD面积+三角形COD面积,求出即可.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,=•|OB|•|AB|=•(﹣x)•y=,则S△ABO∴xy=﹣3,又∵y=,∴k=﹣3,∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)A、C两点坐标满足,解得:,,∴交点A为(﹣1,3),C为(3,﹣1);(3)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),=×2×1+×2×3=4.则S△AOC24.如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长.【考点】MD:切线的判定.【分析】(1)由垂直定义得∠A+∠APO=90°,根据等腰三角形的性质由CP=CB得∠CBP=∠CPB,根据对顶角相等得∠CPB=∠APO,所以∠APO=∠CBP,而∠A=∠OBA,所以∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,然后根据切线的判定定理得到BC是⊙O的切线;(2)设BC=x,则PC=x,在Rt△OBC中,根据勾股定理得到()2+x2=(x+1)2,然后解方程即可.【解答】(1)证明:连接OB,如图,∵OP⊥OA,∴∠AOP=90°,∴∠A+∠APO=90°,∵CP=CB,∴∠CBP=∠CPB,而∠CPB=∠APO,∴∠APO=∠CBP,∵OA=OB,∴∠A=∠OBA,∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,∴OB⊥BC,∴BC是⊙O的切线;(2)解:设BC=x,则PC=x,在Rt△OBC中,OB=,OC=CP+OP=x+1,∵OB2+BC2=OC2,∴()2+x2=(x+1)2,解得x=2,即BC的长为2.25.如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c 过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D 的坐标.【考点】HF:二次函数综合题.【分析】(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值;(3)本问要点是明确D点的可能位置有三种情形,如答图2所示,不要遗漏.其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限,是直线D1N和D2M的交点,利用直线解析式求得交点坐标.【解答】解:(1)∵分别交y轴、x轴于A、B两点,∴A、B点的坐标为:A(0,2),B(4,0),将x=0,y=2代入y=﹣x2+bx+c得c=2,将x=4,y=0代入y=﹣x2+bx+c得0=﹣16+4b+2,解得b=,∴抛物线解析式为:y=﹣x2+x+2;(2)如答图1,设MN交x轴于点E,则E(t,0),BE=4﹣t.∵tan∠ABO===,∴ME=BE•tan∠ABO=(4﹣t)×=2﹣t.又N点在抛物线上,且x N=t,∴y N=﹣t2+t+2,∴MN=y N﹣ME=﹣t2+t+2﹣(2﹣t)=﹣t2+4t,∴当t=2时,MN有最大值4;(3)由(2)可知,A(0,2),M(2,1),N(2,5).以A、M、N、D为顶点作平行四边形,D点的可能位置有三种情形,如答图2所示.(i)当D在y轴上时,设D的坐标为(0,a)由AD=MN,得|a﹣2|=4,解得a1=6,a2=﹣2,从而D为(0,6)或D(0,﹣2),(ii)当D不在y轴上时,由图可知D3为D1N与D2M的交点,易得D1N的方程为y=x+6,D2M的方程为y=x﹣2,由两方程联立解得D为(4,4)故所求的D点坐标为(0,6),(0,﹣2)或(4,4).。
九年级(上)期末数学试卷(含答案解析)
九年级(上)期末数学试卷一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意.1.cos60°•sin60°的值等于()A.B.C.D.2.一元二次方程x2﹣81=0的解是()A.x=﹣9 B.x=9 C.x1=9,x2=﹣9 D.x=813.下列函数中,当x>0时,y的值随x的值增大而增大的是()A.y=﹣x2B.y=﹣C.y=﹣x+1 D.y=4.三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:45.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC 的度数是()A.45°B.60°C.75°D.90°6.将函数y=2x2向左平移2个单位,再向下平移3个单位得到的新函数是()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x+2)2﹣3 D.y=2(x﹣2)2﹣37.一元二次方程x2﹣5x+7=0的根的情况是()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根D.没有实数根8.在Rt△ABC中,∠C=90°,AB=10,tanA=,则AC的长是()A.3 B.4 C.6 D.89.下列命题中,正确的是()A.平分弦的直线必垂直于这条弦B.垂直平分弦的直线必平分这条弦所对的弧C.平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧D.垂直于弦的直线必过圆心10.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.11.小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm212.如图,在等边△ABC中,BC=6,点D,E分别在AB,AC上,DE∥BC,将△ADE沿DE翻折后,点A落在点A′处.连结A A′并延长,交DE于点M,交BC于点N.如果点A′为MN的中点,那么△ADE的面积为()A.B.3C.6D.9二、填空题:本题共5小题,每小题3分,共15分,只要求填写最后结果.13.若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.14.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=度.15.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=cm2.16.如图,⊙O的直径AB=10cm,C是⊙O上一点,点D平分,DE=2cm,则弦AC=.17.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.三、解答题:本大题共8小题,共69分,解答题应写出文字说明、证明过程或演算步骤.18.按下列的要求解一元二次方程:(1)(因式分解法)x2+7x+12=0(2)(配方法)x2+4x+1=0.19.如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≥y2时x的取值范围.20.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.22.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?23.如图,抛物线经过点A、B、C.(1)求此抛物线的解析式;(2)若抛物线和x轴的另一个交点为D,求△ODC的面积.24.如图,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若,AD=2,求线段BC的长.25.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.参考答案与试题解析一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意.1.cos60°•sin60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:cos60°•sin60°=×=,故选:D.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.2.一元二次方程x2﹣81=0的解是()A.x=﹣9 B.x=9 C.x1=9,x2=﹣9 D.x=81【考点】解一元二次方程-直接开平方法.【分析】首先移项,把﹣81移到等号右边,再两边直接开平方即可.【解答】解:x2﹣81=0,移项得:x2=81,两边直接开平方得:x=±9,到x1=9,x2=﹣9,故选:C.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.3.下列函数中,当x>0时,y的值随x的值增大而增大的是()A.y=﹣x2B.y=﹣C.y=﹣x+1 D.y=【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】分别根据反比例函数与一次函数的性质进行解答即可.【解答】解:A、∵y=﹣x2,∴对称轴x=0,当x>0时,y随着x的增大而减小,故本选项错误;B、∵反比例函数y=﹣中,k=﹣1<0,∴当x>0时y随x的增大而增大,故本选项正确;C、∵k<0,∴y随x的增大而减小,故本选项错误;D、∵k>0,∴y随着x的增大而增大,故本选项错误.故选B.【点评】本题考查了一次函数、反比例函数以及二次函数的性质,主要掌握二次函数、反比例函数、正比例函数的增减性(单调性),是解题的关键,是一道难度中等的题目.4.三角尺在灯泡O的照射下在墙上形成的影子如图所示.若OA=20cm,OA′=50cm,则这个三角尺的周长与它在墙上形成的影子的周长的比是()A.5:2 B.2:5 C.4:25 D.25:4【考点】相似三角形的应用.【分析】先根据相似三角形对应边成比例求出三角尺与影子的相似比,再根据相似三角形周长的比等于相似比解答即可.【解答】解:如图,∵OA=20cm,OA′=50cm,∴===,∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比==2:5.故选:B.【点评】本题考查了相似三角形的应用,注意利用了相似三角形对应边成比例的性质,周长的比等于相似比的性质.5.已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC 的度数是()A.45°B.60°C.75°D.90°【考点】圆周角定理;正多边形和圆.【分析】连接OB、OC,首先根据正方形的性质,得∠BOC=90°,再根据圆周角定理,得∠BPC=45°.【解答】解:如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选A.【点评】本题主要考查了正方形的性质和圆周角定理的应用.这里注意:根据90°的圆周角所对的弦是直径,知正方形对角线的交点即为其外接圆的圆心.6.将函数y=2x2向左平移2个单位,再向下平移3个单位得到的新函数是()A.y=2(x+2)2+3 B.y=2(x﹣2)2+3 C.y=2(x+2)2﹣3 D.y=2(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】由于所给的函数解析式为顶点坐标式,可直接利用“上加下减、左加右减”的平移规律进行解答.【解答】解:将函数y=2x2向左平移2个单位,得:y=2(x+2)2;再向下平移3个单位,得:y=2(x+2)2﹣3;故选C.【点评】此题主要考查的是二次函数图象的平移规律,即:左加右减,上加下减.7.一元二次方程x2﹣5x+7=0的根的情况是()A.有两个不相等的实数根 B.只有一个实数根C.有两个相等的实数根D.没有实数根【考点】根的判别式.【分析】求出根的判别式△的值再进行判断即可.【解答】解:一元二次方程x2﹣5x+7=0中,△=(﹣5)2﹣4×1×7=﹣3<0,所以原方程无实数根.故选:D.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.在Rt△ABC中,∠C=90°,AB=10,tanA=,则AC的长是()A.3 B.4 C.6 D.8【考点】锐角三角函数的定义;勾股定理.【分析】根据锐角三角函数正切等于对边比邻边,可得BC与AC的关系,根据勾股定理,可得AC 的长.【解答】解:由tanA==,得BC=3x,CA=4x,由勾股定理,得BC2+AC2=AB2,即(3x)2+(4x)2=100,解得x=2,AC=4x=4×2=8.故选:D.【点评】本题考查了锐角三角函数,利用了锐角三角函数正切等于对边比邻边,还利用了勾股定理.9.下列命题中,正确的是()A.平分弦的直线必垂直于这条弦B.垂直平分弦的直线必平分这条弦所对的弧C.平分弦的直径必垂直于这条弦,并且平分这条弦所对的两条弧D.垂直于弦的直线必过圆心【考点】命题与定理.【分析】根据垂径定理及其推论对各选项分别进行判断.【解答】解:A、平分弦(非直径)的直径必垂直于这条弦,所以A选项错误;B、垂直平分弦的直线必平分这条弦所对的弧,所以B选项正确;C、平分弦(非直径)的直径必垂直于这条弦,并且平分这条弦所对的两条弧,所以C选项错误;D、垂直平分弦的直线必过圆心,所以D选项错误.故选B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.面积为2的直角三角形一直角边长为x,另一直角边长为y,则y与x的变化规律用图象大致表示为()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意有:xy=4;故y与x之间的函数图象为反比例函数,且根据x y实际意义x、y应大于0,其图象在第一象限.【解答】解:∵xy=4,∴xy=4,∴y=(x>0,y>0),当x=1时,y=4,当x=4时,y=1,故选:C.【点评】考查了反比例函数的图象及应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.11.小洋用一张半径为24cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸板的面积是()A.120πcm2B.240πcm2C.260πcm2D.480πcm2【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:圆锥的侧面积=•2π•10•24=240π(cm2),所以这张扇形纸板的面积为240πcm2.故选B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.如图,在等边△ABC中,BC=6,点D,E分别在AB,AC上,DE∥BC,将△ADE沿DE翻折后,点A落在点A′处.连结A A′并延长,交DE于点M,交BC于点N.如果点A′为MN的中点,那么△ADE的面积为()A.B.3C.6D.9【考点】翻折变换(折叠问题).【分析】利用△ADE沿DE翻折的特性求出AM=A′M,再由DE∥BC,得到=,求得AE,再求出AM,利用△ADE的面积=DE•AM求解.【解答】解:△ADE沿DE翻折后,点A落在点A′处∴AM=A′M,又∵A′为MN的中点,∴AM=A′M=A′N,∵DE∥AC,∴=,∵△ABC是等边三角形,BC=6,∴BC=AC,∴=∴AE=2,∵AN是△ABC的BC边上的高,中线及角平分线,∴∠MAE=30°,∴AM=,ME=1,∴DE=2,∴△ADE的面积=DE•AM=××2=,故选:A.【点评】本题主要考查了三角形的折叠问题上,解题的关键是运用比例求出AE,再求面积.二、填空题:本题共5小题,每小题3分,共15分,只要求填写最后结果.13.若关于x的方程ax2﹣4x+3=0有两个相等的实数根,则常数a的值是.【考点】根的判别式.【分析】根据判别式的意义得到△=(﹣4)2﹣4a×3=0,然后求解即可.【解答】解:根据题意得△=(﹣4)2﹣4a×3=0,解得a=.故答案为.【点评】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=90度.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D的度数.【解答】解:∵圆内接四边形的对角互补∴∠A:∠B:∠C:∠D=2:3:4:3设∠A=2x,则∠B=3x,∠C=4x,∠D=3x∴2x+3x+4x+3x=360°∴x=30°∴∠D=90°.【点评】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.15.已知△ABC∽△DEF,且相似比为3:4,S△ABC=2cm2,则S△DEF=cm2.【考点】相似三角形的性质.【分析】根据相似三角形的性质,相似三角形面积的比等于相似比的平方,可求S△DEF的值.【解答】解:∵△ABC∽△DEF,且相似比为3:4∴S△ABC:S△DEF=9:16∴S△DEF=.【点评】本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.16.如图,⊙O的直径AB=10cm,C是⊙O上一点,点D平分,DE=2cm,则弦AC=6cm.【考点】圆周角定理;垂径定理.【分析】由题意可知OD平分BC,OE为△ABC的中位线,根据直径求出半径,进而求出OE的长度,再根据中位线原理即可解答.【解答】解:∵点D平分,∴OD平分BC,∴OE为△ABC的中位线,又∵⊙O的直径AB=10cm,∴OD=5cm,DE=2cm,∴0E=3cm则弦AC=6cm.故答案为6cm.【点评】本题主要考查圆周角定理与垂径定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.17.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.【考点】抛物线与x轴的交点.【专题】数形结合.【分析】依据抛物线的对称性求得与x轴的另一个交点,代入解析式即可.【解答】解:设抛物线与x轴的另一个交点是Q,∵抛物线的对称轴是过点(1,0),与x轴的一个交点是P(4,0),∴与x轴的另一个交点Q(﹣2,0),把(﹣2,0)代入解析式得:0=4a﹣2b+c,∴4a﹣2b+c=0,故答案为:0.【点评】本题考查了抛物线的对称性,知道与x轴的一个交点和对称轴,能够表示出与x轴的另一个交点,求得另一个交点坐标是本题的关键.三、解答题:本大题共8小题,共69分,解答题应写出文字说明、证明过程或演算步骤.18.按下列的要求解一元二次方程:(1)(因式分解法)x2+7x+12=0(2)(配方法)x2+4x+1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【专题】计算题.【分析】(1)利用因式分解法把原方程化为x+4=0或x+3=0,然后解两个一次方程即可;(2)利用配方法得到(x+2)2=3,然后利用直接开平方法解方程.【解答】解:(1)(x+4)(x+3)=0,x+4=0或x+3=0,所以x1=﹣4,x2=﹣3;(2)x2+4x=﹣1,x2+4x+4=3,(x+2)2=3,x+2=±所以x1=﹣2+,x2=﹣2﹣.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.19.如图,一次函数y1=kx+b的图象与反比例函数的图象交于A(1,6),B(a,2)两点.(1)求一次函数与反比例函数的解析式;(2)直接写出y1≥y2时x的取值范围.【考点】反比例函数与一次函数的交点问题.【专题】探究型.【分析】(1)先把A(1,6)代入反比例函数的解析式求出m的值,进而可得出反比例函数的解析式,再把B(a,2)代入反比例函数的解析式即可求出a的值,把点A(1,6),B(3,2)代入函数y1=kx+b即可求出k、b的值,进而得出一次函数的解析式;(2)根据函数图象可知,当x在A、B点的横坐标之间时,一次函数的图象在反比例函数图象的上方,再由A、B两点的横坐标即可求出x的取值范围.【解答】解:(1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=﹣2x+8,反比例函数的解析式为y2=;(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.【点评】本题考查的是反比例函数与一次函数的交点问题,能利用数形结合求不等式的解集是解答此题的关键.20.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.【考点】相似三角形的判定与性质.【分析】(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.【解答】(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.【点评】本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.22.某商场经营某种品牌的玩具,购进时的单价是20元,根据市场调查,在一段时间内,销售单价是30元时,销量是300件,而销售单价每涨1元,就会少售出10件玩具,若商场想获得利润3750元,并规定每件玩具的利润不得超过进价时单价的100%,问该玩具的销售单价应定为多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】利用每件利润×销量=3750,进而求出答案即可.【解答】解:设该玩具的销售单价为x元,则依题意有:[300﹣10(x﹣30)](x﹣20)=3750化简得x2﹣80x+1575=0解这个方程得:x1=35,x2=45因为利润不得超过原价的100%,所以x2=45应舍去.答:该玩具应定价为35元.【点评】考查了一元二次方程的应用,解题的关键是了解总利润等于单件利润乘以销量,难度不大.23.如图,抛物线经过点A、B、C.(1)求此抛物线的解析式;(2)若抛物线和x轴的另一个交点为D,求△ODC的面积.【考点】待定系数法求二次函数解析式;抛物线与x轴的交点.【专题】计算题.【分析】(1)由于已知抛物线的顶点坐标,则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可;(2)利用抛物线的对称性易得D点坐标,然后根据三角形面积公式求解.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得a•(﹣1﹣1)2﹣4=0,解得a=1,所以抛物线的解析式为y=(x﹣1)2﹣4;(2)因为抛物线的对称轴为直线x=1,则点A(﹣1,0)关于直线x=1的对称点D的坐标为(3,0),所以△ODC的面积=×3×4=6.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.24.如图,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若,AD=2,求线段BC的长.【考点】切线的判定与性质;勾股定理.【专题】计算题.【分析】(1)因为BC经过圆的半径的外端,只要证明AB⊥BC即可.连接OE、OC,利用△OBC≌△OEC,得到∠OBC=90°即可证明BC为⊙O的切线.(2)作DF⊥BC于点F,构造Rt△DFC,利用勾股定理解答即可.【解答】(1)证明:连接OE、OC.∵CB=CE,OB=OE,OC=OC,∴△OBC≌△OEC.∴∠OBC=∠OEC.又∵DE与⊙O相切于点E,∴∠OEC=90°.∴∠OBC=90°.∴BC为⊙O的切线.(2)解:过点D作DF⊥BC于点F,则四边形ABFD是矩形,BF=AD=2,DF=AB=2.∵AD、DC、BC分别切⊙O于点A、E、B,∴DA=DE,CE=CB.设BC为x,则CF=x﹣2,DC=x+2.在Rt△DFC中,(x+2)2﹣(x﹣2)2=(2)2,解得x=.∴BC=.【点评】此题考查了切线的判定和勾股定理的应用,作出辅助线构造直角三角形和全等三角形是解题的关键.25.如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由抛物线y=ax2+bx+c的对称轴为直线x=﹣1,交x轴于A、B两点,其中A点的坐标为(﹣3,0),根据二次函数的对称性,即可求得B点的坐标;(2)①a=1时,先由对称轴为直线x=﹣1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x﹣3,得到C点坐标,然后设P点坐标为(x,x2+2x﹣3),根据S△POC=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;②先运用待定系数法求出直线AC的解析式为y=﹣x﹣3,再设Q点坐标为(x,﹣x﹣3),则D点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)∵对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=﹣1对称,∵点A的坐标为(﹣3,0),∴点B的坐标为(1,0);(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=﹣1,∴=﹣1,解得b=2.将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=﹣3.则二次函数的解析式为y=x2+2x﹣3,∴抛物线与y轴的交点C的坐标为(0,﹣3),OC=3.设P点坐标为(x,x2+2x﹣3),∵S△POC=4S△BOC,∴×3×|x|=4××3×1,∴|x|=4,x=±4.当x=4时,x2+2x﹣3=16+8﹣3=21;当x=﹣4时,x2+2x﹣3=16﹣8﹣3=5.∴点P的坐标为(4,21)或(﹣4,5);②设直线AC的解析式为y=kx+t (k≠0)将A(﹣3,0),C(0,﹣3)代入,得,解得,即直线AC的解析式为y=﹣x﹣3.设Q点坐标为(x,﹣x﹣3)(﹣3≤x≤0),则D点坐标为(x,x2+2x﹣3),QD=(﹣x﹣3)﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.【点评】此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.。
辽宁省大连市高新区2016届九年级上期末数学试卷含答案解析
23.如图,四边形 ABCD 是平行四边形,点 A,B,C 在⊙O 上,AD 与⊙O 相切于点 A, 射线 AO 交 BC 于点 E,交⊙O 于点 F,点 G 在射线 AF 上,且∠GCB=2∠BAF. (1)求证:直线 GC 是⊙O 的切线; (2)若 AB=2 ,AD=4,求线段 GC 的长.
五、解答题(本大题共有 3 小题,共 35 分) 24.如图 1,在△ABC 中,∠ACB=90°,AC=3cm,BC=4cm,点 D 为 AB 中点,连结 CD, 动点 P、Q 从点 C 同时出发,点 P 沿 BC 边 C→B→C 以 2a cm/s 的速度运动;点 Q 沿 CA 边 C→A 以 a cm/s 的速度运动,当点 Q 到达点 A 时,两点停止运动,以 CQ,CP 为边作 矩形 CQMP,当矩形 CQMP 与△CDB 重叠部分的图形是四边形使,设重叠部分图形的面积 为 y(cm2).P、Q 两点运动时间为 t(s),在点 P 由 C→B 过程中,y 与 t 的图象如图 2 所 示.
A.6 B.7 C.8 D.9
6.小明在一次班会中参与知识抢答活动,现有语文题 2 道,数学题 3 道,综合题 4 道,他
初三上册数学期末考试题及答案
初三上册数学期末考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的平方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为3和4,那么它的周长是A. 7B. 10C. 11D. 14答案:C4. 已知一个数列的前三项为1, 2, 4,那么第四项是A. 8C. 6D. 5答案:A5. 函数y=2x+3的图像经过点A. (0, 3)B. (1, 5)C. (2, 4)D. (3, 9)答案:B6. 一个圆的直径是10厘米,那么它的半径是A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是A. 24立方厘米B. 12立方厘米C. 26立方厘米D. 36立方厘米答案:A8. 一个数的绝对值是5,这个数可能是B. -5C. 5或-5D. 0答案:C9. 一个角的补角是90°,那么这个角是A. 90°B. 45°C. 30°D. 60°答案:B10. 一个数的立方根是它本身,这个数是A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是____。
答案:±52. 一个数的倒数是2,这个数是____。
答案:1/23. 一个数的相反数是-3,这个数是____。
答案:34. 一个数的绝对值是10,这个数是____。
答案:±105. 一个数的平方根是4,这个数是____。
答案:16三、解答题(共50分)1. 解方程:x² - 5x + 6 = 0(10分)答案:x₁ = 2,x₂ = 32. 已知等腰三角形的两边长分别为5cm和10cm,求第三边的长度。
(10分)答案:第三边的长度为10cm。
2015-2016学年辽宁省大连市甘井子区九年级(上)期末数学试卷(2016) (1)
2015-2016学年辽宁省大连市甘井子区九年级(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项是正确的1.下列选项中的图形,不属于中心对称图形的是()A.正六边形 B.平行四边形C.等边三角形D.圆【考点】中心对称图形.【分析】根据中心对称图形的定义对各个选项进行判断即可.【解答】解:正六边形、平行四边形、圆是中心对称图形,等边三角形不是中心对称图形,故选:C.【点评】本题考查的是中心对称图形的定义,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.方程x2﹣2x+3=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【考点】根的判别式.【分析】把a=1,b=﹣2,c=3代入△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣2,c=3,∴△=b2﹣4ac=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.3.如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>4【考点】抛物线与x轴的交点.【分析】利用当函数值y>0时,即对应图象在x轴上方部分,得出x的取值范围即可.【解答】解:如图所示:当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选:B.【点评】此题主要考查了抛物线与x轴的交点,利用数形结合得出是解题关键.4.如图,在△ABC中,∠C=90°,AB=5,AC=3,则tanB的值为()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理,可得BC的长,根据正切函数是对边比邻边,可得答案.【解答】解:由勾股定理,得BC==4.tanB==,故选:B.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=()A.1:4 B.2:3 C.1:3 D.1:2【考点】相似三角形的判定与性质;三角形中位线定理.【专题】计算题.【分析】根据三角形的中位线得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.【解答】解:∵BE和CD是△ABC的中线,∴DE=BC,DE∥BC,∴=,△DOE∽△COB,∴=()2=()2=,故选:A.【点评】本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.6.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【考点】圆内接四边形的性质;圆周角定理.【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为2,若A(4,0),B(2,2),则点D的坐标为()A.(1,2) B.(1,1) C.(,)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵△OAB与△OCD是以点O为位似中心的位似图形,相似比为2,B(2,2),∴点D的坐标为:(1,1).故选:B.【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.如图,一条抛物线与x轴相交于A、B两点,其顶点E在线段CD上移动,若点C、D的坐标分别为(﹣1,4)、(4,4),点B的横坐标的最大值为6,则点A的横坐标的最小值为()A.2 B.0 C.﹣2 D.﹣3【考点】二次函数的性质.【分析】根据顶点P在线段CD上移动,又知点C、D的坐标分别为(﹣1,4)、(4,4),分别求出对称轴过点C和D时的情况,即可判断出A点坐标的最小值.【解答】解:根据题意知,点B的横坐标的最大值为6,即可知当对称轴过D点时,点B的横坐标最大,此时的A点坐标为(2,0),当可知当对称轴过C点时,点A的横坐标最小,此时的B点坐标为(1,0),此时A点的坐标最小为(﹣3,0),故点A的横坐标的最小值为﹣3,故选:D.【点评】本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握二次函数的图象对称轴的特点,此题难度一般.二、填空题:本题共8小题,每小题3分,共24分9.cos30°=.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值即可求解.【解答】解:cos30°=.故答案为:.【点评】考查了特殊角的三角函数值,是基础题目,比较简单.10.一元二次方程x2﹣2x=0的解为x1=0,x2=2.【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣2)=0,可得x=0或x﹣2=0,解得:x1=0,x2=2.故答案为:x1=0,x2=2【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.11.如图,矩形ABCD的对角线AC、BD相交于点O,AB=3,∠COD=60°,则AD的长为3.【考点】矩形的性质.【分析】根据矩形的性质求出AB=CD=3,∠ADC=90°,AC=BD,OA=OC,OB=OD,求出OD=OC,得出等边三角形COD,求出AC,根据勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴AB=CD=3,∠ADC=90°,AC=BD,OA=OC,OB=OD,∴OD=OC,∵∠COD=60°,∴△COD是等边三角形,∴DO=OC=CD=3,∴AC=2OC=6,在Rt△ADC中,由勾股定理得:AD===3,故答案为:3.【点评】本题考查了矩形的性质,等边三角形的性质和判定,勾股定理的应用,能得出等边三角形COD是解此题的关键,注意:矩形的对角线相等且互相平分.12.如图,△EDC是由△EAB绕点E顺时针旋转40°后得到的图形,则∠BFD的度数是40°.【考点】旋转的性质.【分析】连接BD,可将∠BFD放到△BDF中根据内角和定理来求,由旋转性质知∠BED=40°、ED=EB 可得∠EBD=∠EDB=∠EDC+∠FDB=70°,而∠EDC=∠EBA,得∠EBA+∠FDB+∠EBD即可.【解答】解:如图,连接BD,由旋转性质可得,∠BED=40°,ED=EB,∠EDC=∠EBA,∴∠EBD=∠EDB=∠EDC+∠FDB==70°,∵∠EDC=∠EBA,∴∠EBA+∠FDB=∠EBD=70°,∴在△BDF中,∠BFD=180°﹣(∠EBA+∠FDB+∠EBD)=40°,故答案为:40.【点评】本题主要考查旋转的性质,熟练掌握并灵活旋转的性质是解决此题的基本要求,将∠BFD 放到△BDF中根据内角和定理去求是关键.13.如图,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B点的坐标为(﹣1,1),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为(5,﹣1).【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】利用网格特点和旋转的性质画出点A、B的对应点A′、B′,然后根据第四象限点的坐标特征写出A′点的坐标即可.【解答】解:如图,△ABC绕着点C顺时针旋转90°得到△A′B′C,点A的对应点A′的坐标为(5,﹣1).故答案为(5,﹣1).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.14.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A 出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=12米,那么该古城墙的高度是8米(平面镜的厚度忽略不计)【考点】相似三角形的应用.【分析】由已知得△ABP∽△CDP,根据相似三角形的性质可得=,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴=,∵AB=1米,BP=1.5米,PD=12米,∴CD==8(米).故答案为:8.【点评】本题综合考查了平面镜反射和相似形的知识,关键是根据相似三角形在测量中的应用分析.15.抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=﹣1,其部分图象如图所示.已知ax 2+bx+c=0的两个根分别为x 1、x 2,且x 1<x 2,则x 2的取值范围是 0<x 2<1 .【考点】抛物线与x 轴的交点.【分析】根据抛物线的对称性由x 1的取值以及对称轴x=﹣1,即可确定x 2的取值.【解答】解:∵抛物线对称轴为x=﹣1,﹣3<x 1<﹣2,∴根据对称性可知:0<x 2<1.故答案为0<x 2<1.【点评】本题考查二次函数的有关知识,考查学生的看图能力,利用抛物线是轴对称图形是解决问题的关键.16.如图,点A 、B 在⊙O 上,且AO=2,∠AOB=120°,则阴影部分面积为 ﹣ .【考点】扇形面积的计算.【分析】过O 作OC ⊥AB 于C ,根据垂径定理得到AC=BC ;而∠AOB=120°,OA=OB ,根据等腰三角形的性质得∠A=30°;在Rt △OAC 中,OA=2,∠A=30°,根据含30度的直角三角形三边的关系得到OC 和AC ,则可求出AB ,最后根据扇形的面积公式和三角形的面积公式利用S 阴影部分=S 扇形OAB ﹣S △OAB 进行计算即可.【解答】解:过O 作OC ⊥AB 于C ,如图,∴AC=BC ,而∠AOB=120°,OA=OB ,∴∠A=(180°﹣120°)=30°,在Rt △OAC 中,OA=2,∠A=30°,∴OC=1,AC=,∴AB=2, ∴S 阴影部分=S 扇形OAB ﹣S △OAB=﹣•1•2=﹣.故答案为﹣.【点评】本题考查了扇形的面积公式:S=;也考查了垂径定理和等腰三角形的性质以及含30度的直角三角形三边的关系.三、解答题:本题共4小题,其中17、18、19题各10分,20题9分,共39分 17.如图,△ABO 、△CDO 均为等边三角形.(1)图中满足旋转变换的两个三角形分别是 △BOD 和△AOC ,旋转角度为 60 °; (2)求证:BD=AC .【考点】旋转的性质;等边三角形的性质.【分析】(1)直接利用等边三角形的性质结合旋转的性质得出答案;(2)利用等边三角形的性质,结合全等三角形的判定方法得出答案.【解答】(1)解:旋转变换的两个三角形分别是△BOD 和△AOC ,旋转角度为60°. 故答案为:△BOD 和△AOC ,60;(2)证明:∵△ABO 、△CDO 均为等边三角形,∴BO=AO,DO=CO,∠BOA+∠DOA=∠AOD+∠DOC,则∠BOD=∠AOC,在△BOD和△AOC中,∴△BOD≌△AOC(SAS),∴BD=AC.【点评】此题主要考查了旋转的性质以及等边三角形的性质和全等三角形的判定与性质,正确掌握等边三角形的性质是解题关键.18.如图,一艘海轮位于灯塔P的北偏东60°方向,距灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,此时B处距离灯塔P有多远(结果取整数).参考数值:≈1.4,≈1.7,≈2.4.【考点】解直角三角形的应用-方向角问题.【分析】作PC⊥AB于C,根据余弦的定义求出PC,再根据余弦的定义求出PB即可.【解答】解:作PC⊥AB于C,由题意得,∠APC=30°,∠BPC=45°,AP=80海里,在Rt△APC中,PC=AC•cos∠APC=40海里,在Rt△BPC值,PB==40≈96海里,答:B处距离灯塔P96海里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.19.如图,在⊙O中,点C为的中点,AD=BE,求证:CD=CE.【考点】圆心角、弧、弦的关系.【专题】证明题.【分析】连接OC,先根据点C为的中点,得出∠AOC=∠BOC,再由AD=BE,OA=OB可得OD=OB,根据SAS定理得出△COD≌△COE,由此可得出结论.【解答】证明:连接OC,∵点C为的中点,∴∠AOC=∠BOC.∵AD=BE,OA=OB,∴OD=OE.在△COD与△COE中,,∴△COD≌△COE(SAS),∴CD=CE.【点评】本题考查的是圆心角、弧、弦的关系,全等三角形的判定和性质,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.20.如图,二次函数y=x2+bx+c的图象分别与x轴、y轴相交于A、B、C三点,其对称轴与x轴、线段BC分别交于点E、点F,连接CE,已知点A(﹣1,0),C(0,﹣3).(1)求出该二次函数解析式及其顶点D的坐标;(2)求出点B的坐标;(3)当y随x增大而减小时,x的取值范围是x<1;(4)直接写出△CEF的面积是1.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)根据待定系数法以及配方法即可解决.(2)令y=0解方程即可.(3)根据二次函数增减性回答即可.(4)先求出直线BC,再求出的F坐标即可求出△CEF的面积.【解答】解:(1)由二次函数y=x2+bx+c经过A(﹣1,0),C(0,﹣3),得,解得,所以抛物线为:y=x2﹣2x﹣3,∵y=x2﹣2X﹣3=(x﹣1)2﹣4,∴顶点D(1,﹣4).(2)令y=0则x2﹣2x﹣3=0,解得x=3或﹣1,所以点B(3,0).(3)x<1时,当y随x增大而减小,故答案为x<1.(4)设直线BC为y=kx+b,∵直线BC经过B(3,0),C(0,﹣3),∴,解得.∴直线BC为y=x﹣3,∴F(1,﹣2),E(1,0),∴S△EFC=×2×1=1.故答案为1.【点评】本题考查待定系数法求二次函数解析式,用配方法求顶点坐标,利用图象确定函数值的增减性等知识,灵活运用这些知识是解决问题的关键.四、解答题:本题共3小题,其中21、22题各9分,23题10分,共28分21.如图,一幅长为20cm,宽为16cm的照片配一个镜框,要求镜框的四条边宽度相同,且镜框所占面积为照片面积的二分之一,求镜框的宽度.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设镜框边宽度为x,则镜框长为(20+2x)cm,宽为(16+2x)cm,完整图形面积为照片面积的(1+),依题意列方程求解.【解答】解:设镜框边宽度为xcm.由题意得:(20+2x)(16+2x)=×16×20,化简得:x2+18x﹣40=0解得x1=2,x2=﹣20(舍去)答:镜框边宽度为2cm.【点评】本题考查了一元二次方程的应用,要通过设未知数来表示整个图形的长、宽,再分析整个图形面积与相片面积的关系列方程.22.如图,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD与BE相交于点F,连接DE.(1)求证:△AEF∽△BDF;(2)若∠ABE=m°,求∠ADE的度数(用含m的式子表示)【考点】相似三角形的判定与性质.【分析】(1)由AD⊥BC,BE⊥AC,得到∠AEF=∠ADB=90°,根据对顶角相等得到∠AFE=∠DFB,于是得到结论.(2)由∠AEF=∠ADB=90°,推出A,B,D,E四点共圆,根据圆周角定理即可得到结论.【解答】解:(1)∵AD⊥BC,BE⊥AC,∴∠AEF=∠ADB=90°,∵∠AFE=∠DFB,∴△AEF∽△BDF;(2)∵∠AEF=∠ADB=90°,∴A,B,D,E四点共圆,∴∠ADE=∠ABE=m°.【点评】本题考查了相似三角形的判定,四点共圆,垂直的定义,熟练掌握相似三角形的判定定理是解题的关键.23.如图,直线AD切⊙O于点D,直线AB经过圆心O,交⊙O于点B、C,CE⊥AD,垂足为E,CE交⊙O于点F,连接CD.(1)猜想和的数量关系,并证明;(2)若sin∠DCE=,CE=8,求⊙O的半径.【考点】切线的性质.【分析】(1)=,连接OD,由切线的性质和已知条件证明圆周角∠OCD=∠DCE即可;(2)连接BD,易求CD的长,再由相等的角则其三角函数值也相等可求出sin∠DCB的值,进而可得到直径BC的长,圆的半径也就求出.【解答】解:(1)=,理由如下:连接OD,∵直线AD切⊙O于点D,∴OD⊥AE,∵CE⊥AD,垂足为E,∴OD∥CE,∴∠ODC=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∴∠OCD=∠DCE,∴=;(2)连接BD,∵sin∠DCE=,∴,∵CE=8,∠E=90°,∴CD=10,∵∠OCD=∠DCE,∴sin∠DCB=,∴,∴BC=,∴⊙O的半径=.【点评】本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.五、解答题:本题共3小题,其中24题11分,25、26题各12分,共35分24.如图1,矩形ABCD,动点E从B点出发匀速沿着边BA向A点运动,到达A点停止运动,另一动点F同时从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动.设E点运动时间为x(s),△BEF的面积为y(cm2).y关于x的函数图象如图2所示.(1)BC=3cm,AB=3cm,点E的运动速度是1cm/s;(2)求y关于x的函数关系及其自变量取值范围;(3)当∠DFE=90°时,请直接写出x的取值.【考点】动点问题的函数图象.【专题】探究型.【分析】(1)根据图2可知,点F由B到C运动时间为1s,由C到D运动时间为1s,从而可以得到BC、CD的长即点E运动的速度;(2)根据图2各段函数图象,可以分别设出各段的函数解析式,从而可以求得y关于x的函数关系及其自变量取值范围;(3)根据题意可知符合要求的有两种情况,分别画出相应的图形,求出对应的x的值即可解答本题.【解答】解:(1)由图2可知,点F由B到C运动时间为1s,由C到D运动时间为1s,∵点F从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,∴BC=3×1=3cm,CD=3×(2﹣1)=3×1=3cm,∴AB=CD=3cm,设点E在1s时运动的距离为a,得a=1即点E的速度为1cm/s,故答案为:3,3,1cm/s;(2)由图2可得,在0≤x≤1时,函数图象为抛物线;在1≤x≤2时,函数图象为一次函数;当2≤x≤3时,函数图象为抛物线,∴当0≤x≤1时,设y关于x的函数解析式为:y=ax2,∵点(1,)在此函数图象上,∴,得a=,即0≤x≤1时,y关于x的函数解析式为:y=;当1≤x≤2时,设y关于x的函数解析式为:y=kx+b,∵点E的速度为1cm/s,∴,得n=3,∵点(1,),(2,3)在此函数图象上,∴,解得.即当1≤x≤2时,y关于x的函数解析式为:y=;当2≤x≤3时,设y关于x的函数解析式为:y=b(x﹣2)2+3,m=,∵点(3,0)在此抛物线上,∴0=b(3﹣2)2+3,得b=﹣3,即当2≤x≤3时,y关于x的函数解析式为:y=﹣3(x﹣2)2+3;由上可得,;(3)当∠DFE=90°时,x的值是或1.5.理由:当∠DFE=90°时,存在两种情况,第一种情况,如下图一所示,∵∠DFE=90°,∠B=∠C=90°,∠EFB+∠BEF=90°,∴∠EFB+∠DFC=90°,∴∠BEF=∠CFD,∴△EFB∽△FDC,∴,即解得,x=;第二种情况,如下图二所示,由题意可得,3x﹣x=3,得x=1.5;由上可得,当∠DFE=90°时,x的值是或1.5.【点评】本题考查动点问题的函数图象、求函数的解析式,解题的关键是明确题意,求出相应的函数解析式,画出相应的图形,利用数形结合的思想进行解答.25.在△ABC中,AB=BC,平面内取点D,连接AD,作AE⊥AD,且使得∠ADE=∠ABC=α.连接CD,取其中点M.(1)如图1,当α=45°时,绕点A旋转△ADE使得点E落在AB上,探索BM、CE之间的关系,并证明你的结论;(2)如图2,探索BM、CE的关系,并证明你的结论(数量关系用含α的式子表示).【考点】相似三角形的判定与性质;全等三角形的判定与性质.【分析】(1)延长BM交DA延长线于点G,根据已知条件得到ADE=∠ABC=45°,求得∠ABC=90°,推出DA∥BC,根据平行线的性质得到∠ADM=∠BCM,推出△DAM≌△CBM,于是得到DG=BC=AB,BM=GM,求出AG=BE,证得△ABG≌△BCE,根据全等三角形的性质得到BG=CE,等量代换即可得到结论;(2)过点B作BG⊥AC于点G,连接MG,根据已知条件得到MG=AD,MG∥AD,由平行线的性质得到∠MGC=∠DAC,求得tanα==,求得,推出∠EAC=∠BGM,证得△ACE∽△BMG,根据相似三角形的性质即可得到结论.【解答】解:(1)BM=CE;延长BM交DA延长线于点G,∵AE⊥AD,∴∠DAE=90°,∵∠ADE=∠ABC=45°,∴∠ABC=90°,∴DA∥BC,∴∠ADM=∠BCM,在△DAM与△CBM中,,∴△DAM≌△CBM,∴DG=BC=AB,BM=GM,∵AD=AE,∴AG=BE,在△ABG与△BCE中,,∴△ABG≌△BCE,∴BG=CE,∴BM=CE;(2)过点B作BG⊥AC于点G,连接MG,∵AB=BC,∴,AG=CG,∵DM=CM,∴MG=AD,MG∥AD,∴∠MGC=∠DAC,∵tanα==,∴,∴,∵∠DAC+∠CAE=∠BGM+∠MGC=90°,∴∠EAC=∠BGM,∴△ACE∽△BMG,∴===2tanα.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质,三角形的中位线的性质,正确的作出辅助线是解题的关键.26.如图,抛物线y=ax2﹣3ax+c与x轴交于A、B两点,与y轴正半轴交于点C,抛物线的对称轴交x轴于点G,已知B(4,0),tan∠OAC=2.(1)求抛物线的解析式;(2)将∠CAB绕点A顺时针旋转,边AB旋转后与对称轴相交于点D,边AC旋转后与抛物线相交于点E,与对称轴相交于点F.①当点F恰好为BC与对称轴的交点时,求点D坐标;②当AG=DG时,求点E坐标.【考点】二次函数综合题.【分析】(1)求出对称轴后求出点A坐标,根据tan∠CAO=2求出点C坐标,然后把B、C代入抛物线解析式即可解决问题.(2)①在RT△ACF中利用勾股定理求出线段AF,CF,再利用△CAF∽△GAD列出比例式即可解决问题.②求出直线AM,解方程组求交点E的坐标.【解答】(1)解:∵对称轴x=﹣=,点B坐标(4,0),∴点A坐标(1,0),∵tan∠CAO=2,∴CO=2AO=2,∴点C坐标(0,2),把B、C坐标代入y=ax2﹣3ax+c得到解得,∴抛物线解析式为y=﹣x2+x+2(2)①如图1中,设AF=FB=x,在RT△ACF中,∵AC2+CF2=AF2,∵AC=,BC=2,∴5+(2﹣x)2=x2,∴x=,∴AF=BF=,CF=,∵AC2+BC2=5+20=25,AB2=25,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠ACF=∠AGD,∵∠CAF=∠GAD,∴△CAF∽△GAD,∴,∴,∴DG=,∴点D坐标(,﹣).②如图2中,∵AG=GD,∠AGD=90°,∴∠GAD=∠GDA=45°,∴∠CAM=∠GAD=45°,∵∠ACM=90°,∴∠CAM=∠CMA=45°,∴AC=CM=,∵,∴CM=BM,∴点M坐标为(2,1),∴直线AM为y=x+,由解得或,∴点E坐标(,).【点评】本题考查待定系数法确定二次函数解析式、相似三角形的判定和性质、三角函数的定义、勾股定理等知识,利用相似三角形是解决问题的关键,记住求交点坐标的方法是解方程组,属于中考压轴题.。
辽宁省大连市沙河口区2016届九年级数学上学期期末考试试题(含解析)新人教版
辽宁省大连市沙河口区2016届九年级数学上学期期末考试试题一、选择题(共8小题,每小题3分,满分24分)1.剪纸是我国传统民间艺术,下列“花朵”剪纸作品中,是中心对称图形的是()A.B.C.D.2.一元二次方程x2+x=0的根的是()A.x1=0,x2=1 B.x1=0,x2=﹣1 C.x1=1,x2=﹣1 D.x1=x2=﹣13.用配方法将x2﹣8x﹣1=0变形为(x﹣4)2=m,下列选项中,m的值是正确的是()A.17 B.15 C.9 D.74.如图,⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径长为()A.3cm B.4cm C.5cm D.6cm5.将抛物线y=(x﹣1)2向右平移1个单位后所得到抛物线的解析式是()A.y=(x﹣2)2B.y=x2C.y=x2+1 D.y=x2﹣16.在下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水会结冰B.随意翻到一本书的某页,这页的页码是奇数C.明天的太阳从东方升起D.在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球7.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣1,0)和(3,0),则抛物线的对称轴是()A.x=﹣1 B.x=﹣C.x=D.x=18.圆心角为120°,弧长为12π的扇形半径为()A.6 B.9 C.18 D.36二、填空题(本题共8小题,每小题3分,满分24分)9.方程x2=9的解为.10.如果关于x的方程x2﹣5x+k=0没有实数根,那么k的值为.11.点A、B、C是⊙O上三点,∠ACB=30°,则∠AOB= .12.在一个不透明的布袋中,红色,黑色玻璃球共有10个,它们除颜色外,形状、大小、质地等完全相同,小刚每次都摸一个球,观察球的颜色后放回,通过大数次摸球试验后她发现摸到红色球的概率稳定在40%,估计口袋中黑色球的个数是.13.⊙O的半径是10cm,点O到直线l的距离为6cm,直线l和⊙O的位置关系是.14.如图,利用标杆BE测量建筑物的高度,如果标杆的高度为1.5m,测得AB=2m,BC=14cm,则楼高CD为m.15.在平面直角坐标系中,点A绕原点顺时针旋转45°后得到点B,如果点A的坐标为(2,2),那么点B的坐标为.16.在平面直角坐标系中,点A,B的坐标分别为(2,m),(2,3m﹣1),若线段AB与抛物线y=x2﹣2x+2相交,则m的取值范围为.三、解答题(本题共4小题,第17,、18,、19题个9分,第20题12分,满分39分)17.解方程:1﹣2x+x2=2x+3.18.如图,四边形ABCD是正方形,E是CD上的一点,△ABF是△ADE的旋转图形.(1)写成由△ADE顺时针旋转到△ABF的旋转中心、旋转角的度数.(2)连接EF,判断并说明△AEF的形状.19.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?20.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.四、解答题(本题共3小题,第21、22题个9分,第23题10分,满分28分)21.如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球飞行的高度,x(m)是球飞行的水平距离.(1)飞行的水平距离是多少时,球最高?(2)球从飞出到落地的水平距离是多少?22.如图,锐角△ABC中,边BC长为3,高AH长为2,矩形EFMN的边MN在BC边上,其余两个顶点E,F分别在AB,AC边上,EF交AH于点G.(1)求的值;(2)当EN为何值时,矩形EFMN的面积为△ABC面积的四分之一.23.如图,在⊙O中,直径AB交弦CD于点G,CG=DG,⊙O的切线BE交DO的延长线于点E,F是DE与⊙O的交点,连接BD,BF.(1)求证:∠CDE=∠E;(2)若OD=4,EF=1,求CD的长.五、解答题(本题共3小题,第24题11分,第25、26题个12分,满分35分)24.Rt△ABC中,∠ACB=90°,BC=4,如图1,点P从C出发向点B运动,点R是射线PB 上一点,PR=3CP,过点R作QR⊥BC,且QR=aCP,连接PQ,当P点到达B点时停止运动.设CP=x,△ABC与△PQR重合部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m,m<x≤n时,函数的解析式不同).(1)a的值为;(2)求出S关于x的函数关系式,并写出x的取值范围.25.在△ABC中,点D是AB边上一点(不与AB重合),AD=kBD,过点D作∠EDF+∠C=180°,与CA、CB分别交于E、F.(1)如图1,当DE=DF时,求的值.(2)如图2,若∠ACB=90°,∠B=30°,DE=m,求DF的长(用含k,m的式子表示)26.如图,在平面直角坐标系中,△CDE的顶点C点坐标为C(1,﹣2),点D的横坐标为,将△CDE绕点C旋转到△CBO,点D的对应点B在x轴的另一个交点为点A.(1)图中,∠OCE=∠;(2)求抛物线的解析式;(3)抛物线上是否存在点P,使S△PAE=S△CDE?若存在,直接写出点P的坐标;若不存在,请说明理由.2015-2016学年辽宁省大连市沙河口区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.剪纸是我国传统民间艺术,下列“花朵”剪纸作品中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.2.一元二次方程x2+x=0的根的是()A.x1=0,x2=1 B.x1=0,x2=﹣1 C.x1=1,x2=﹣1 D.x1=x2=﹣1【考点】解一元二次方程-因式分解法.【分析】把一元二次方程化成x(x+1)=0,然后解得方程的根即可选出答案.【解答】解:∵一元二次方程x2+x=0,∴x(x+1)=0,∴x1=0,x2=﹣1,故选:B.3.用配方法将x2﹣8x﹣1=0变形为(x﹣4)2=m,下列选项中,m的值是正确的是()A.17 B.15 C.9 D.7【考点】解一元二次方程-配方法.【分析】将方程的常数项移到右边,两边都加上16,左边化为完全平方式,右边合并即可得到结果.【解答】解:x2﹣8x﹣1=0,移项得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17.所以m=17.故选:A.4.如图,⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径长为()A.3cm B.4cm C.5cm D.6cm【考点】垂径定理;勾股定理.【分析】首先过点O作OC⊥AB于C,连接OA,由垂径定理,即可求得AC的长,然后在Rt△AOC 中,利用勾股定理即可求得⊙O的半径长.【解答】解:过点O作OC⊥AB于C,连接OA,∴OC=3cm,AC=AB=×8=4(cm),∴在Rt△AOC中,OA==5cm.故选C.5.将抛物线y=(x﹣1)2向右平移1个单位后所得到抛物线的解析式是()A.y=(x﹣2)2B.y=x2C.y=x2+1 D.y=x2﹣1【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线y=(x﹣1)2向右平移1个单位,得:y=(x﹣1﹣1)2即y=(x﹣2)2故选:A.6.在下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水会结冰B.随意翻到一本书的某页,这页的页码是奇数C.明天的太阳从东方升起D.在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念解答即可.【解答】解:通常温度降到0℃以下,纯净的水会结冰是必然事件,A不合题意;随意翻到一本书的某页,这页的页码是奇数是随机事件,B符合题意;明天的太阳从东方升起是必然事件,C不合题意;在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球是不可能事件,D 不合题意;故选:B.7.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣1,0)和(3,0),则抛物线的对称轴是()A .x=﹣1B .x=﹣C .x=D .x=1【考点】抛物线与x 轴的交点.【分析】由抛物线与x 轴的两个交点,利用对称性确定出对称轴即可.【解答】解:∵y=ax 2+bx+c 与x 轴的两个交点坐标是(﹣1,0)和(3,0),∴抛物线的对称轴为直线x=1.故选D .8.圆心角为120°,弧长为12π的扇形半径为( )A .6B .9C .18D .36【考点】弧长的计算.【分析】根据弧长的公式l=进行计算.【解答】解:设该扇形的半径是r .根据弧长的公式l=,得到:12π=,解得 r=18,故选:C .二、填空题(本题共8小题,每小题3分,满分24分)9.方程x 2=9的解为 ±3 .【考点】解一元二次方程-直接开平方法.【分析】此题直接用开平方法求解即可.【解答】解:∵x 2=9,∴x=±3.10.如果关于x 的方程x 2﹣5x+k=0没有实数根,那么k 的值为 k > .【考点】根的判别式.【分析】根据题意可知方程没有实数根,则有△=b 2﹣4ac <0,然后解得这个不等式求得k的取值范围即可.【解答】解:∵关于x 的方程x 2﹣5x+k=0没有实数根,∴△<0,即△=25﹣4k <0,∴k>,故答案为:k >.11.点A 、B 、C 是⊙O 上三点,∠ACB=30°,则∠AOB= 60° .【考点】圆周角定理.【分析】由点A、B、C是⊙O上三点,∠ACB=30°,直接利用圆周角定理,即可求得答案.【解答】解:∵点A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB=2∠ACB=60°.故答案为:60°.12.在一个不透明的布袋中,红色,黑色玻璃球共有10个,它们除颜色外,形状、大小、质地等完全相同,小刚每次都摸一个球,观察球的颜色后放回,通过大数次摸球试验后她发现摸到红色球的概率稳定在40%,估计口袋中黑色球的个数是 6 .【考点】利用频率估计概率.【分析】由题意:“通过多次摸球试验后发现”知所得频率可以近似地认为是概率,再由概率之和为1计算出红色与黑色球的频率,最后由数据总数×频率=频数计算个数即可.【解答】解:∵红色球频率稳定在40%左右,∴摸到黑色球的频率为1﹣40%=60%,故口袋中黑色球个数可能是10×60%=6个.故答案为:6.13.⊙O的半径是10cm,点O到直线l的距离为6cm,直线l和⊙O的位置关系是相离.【考点】直线与圆的位置关系.【分析】由⊙O的直径为10cm,得出圆的半径是5cm,圆心O到直线l的距离为6cm,即d=6cm,得出d>r,即可得出直线l与⊙O的位置关系是相离.【解答】解:∵⊙O的直径为10cm,∴r=5cm,∵d=6cm,∴d>r,∴直线l与⊙O的位置关系是相离;故答案为:相离.14.如图,利用标杆BE测量建筑物的高度,如果标杆的高度为1.5m,测得AB=2m,BC=14cm,则楼高CD为12 m.【考点】相似三角形的应用.【分析】先根据题意得出△ABE∽△ACD,再根据相似三角形的对应边成比例即可求出CD的值.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=2,BC=14,∴AC=16,∴=,∴CD=12.故答案为:12.15.在平面直角坐标系中,点A 绕原点顺时针旋转45°后得到点B ,如果点A 的坐标为(2,2),那么点B 的坐标为 (2,0) .【考点】坐标与图形变化-旋转.【分析】作AC⊥x 轴于C ,如图,易得△OAC 为等腰直角三角形,则∠AOC=45°,OA=OC=2,再根据旋转的性质得点B 在x 轴的正半轴上,OB=OA=2,然后根据x 轴上点的坐标特征写出B 点坐标.【解答】解:作AC⊥x 轴于C ,如图,∵点A 的坐标为(2,2),∴OC=AC=2,∴△OAC 为等腰直角三角形,∴∠AOC=45°,OA=OC=2, ∵点A 绕原点顺时针旋转45°后得到点B ,∴∠AOB=45°,即点B 在x 轴的正半轴上,且OB=OA=2, ∴B 点坐标为(2,0).故答案为(2,0).16.在平面直角坐标系中,点A ,B 的坐标分别为(2,m ),(2,3m ﹣1),若线段AB 与抛物线y=x2﹣2x+2相交,则m的取值范围为1≤m≤2.【考点】二次函数的性质.【分析】求出当x=2时,抛物线上的点的坐标,由抛物线的性质可知,若相交,则该点的纵坐标必在A、B点的纵坐标之间,列出不等式组,即可得出结论.【解答】解:令x=2,则有y=22﹣2×2+2=2,若要线段AB与抛物线相交,只需(2,2)点在线段AB上.当3m﹣1≥m时,有,解得1≤m≤2;当3m﹣1<m时,有,无解.综上可知,若线段AB与抛物线y=x2﹣2x+2相交,则1≤m≤2.故答案为:1≤m≤2.三、解答题(本题共4小题,第17,、18,、19题个9分,第20题12分,满分39分)17.解方程:1﹣2x+x2=2x+3.【考点】解一元二次方程-配方法.【分析】先把原方程转化为x2+4x=2的形式,然后利用完全平方公式对等式的左边进行转换.【解答】解:由原方程,得x2+4x=2,配方,得x2+4x+22=2+22,即(x+2)2=6,开方,得x+2=±,解得x1=﹣2+,x2=﹣2﹣.18.如图,四边形ABCD是正方形,E是CD上的一点,△ABF是△ADE的旋转图形.(1)写成由△ADE顺时针旋转到△ABF的旋转中心、旋转角的度数.(2)连接EF,判断并说明△AEF的形状.【考点】旋转的性质.【分析】(1)利用旋转的性质得出旋转中心即可;利用旋转的位置得出旋转角即可;(2)利用旋转的性质以及等腰三角形的判定得出即可.【解答】解:(1)∵△ABF是△ADE的旋转图形,∴旋转中心是点A;∵顺时针旋转了90,∴旋转角的度数90;(2)△AEF的形状是等腰直角三角形,理由如下:∵△ABF是△ADE的旋转图形,旋转角为90°,∴AE=AF,∠FAE=90°,∴△AEF是等腰直角三角形.19.已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1.(1)求m,n的值;(2)x取什么值时,y随x的增大而减小?【考点】二次函数的性质.【分析】(1)根据二次函数过点P和二次函数的对称轴为x=﹣1,可得出关于m、n的二元一次方程组,解方程组即可得出m、n的值;(2)由二次函数的a的值大于0,结合函数的单调性,即可得出结论.【解答】解:(1)∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是直线x=﹣1,∴有,解得.∴二次函数的解析式为y=x2+2x﹣2.(2)∵a=1>0,∴抛物线的开口向上,当x≤﹣1时,函数递减;当x>﹣1时,函数递增.故当x≤﹣1时,y随x的增大而减小.20.在一个不透明的箱子里,装有黄、白、黑各一个球,它们除了颜色之外没有其他区别,随机从箱子里取出1个球,放回搅匀再取一次,请你用画树状图或列表的方法表示所有可能出现的结果,求两次取出的都是白球的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出白颜色球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:由树形图可知所有等可能的情况有9种,其中两次取出的都是白色球有1种,所以两次取出的都是白色球的概率=.四、解答题(本题共3小题,第21、22题个9分,第23题10分,满分28分)21.如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球飞行的高度,x(m)是球飞行的水平距离.(1)飞行的水平距离是多少时,球最高?(2)球从飞出到落地的水平距离是多少?【考点】二次函数的应用.【分析】(1)把函数关系式配方成二次函数的顶点式,根据顶点式可知最值情况;(2)球落到地面时高度为0,可令y=0,求出x的值即可.【解答】解:(1)∵y=﹣x2+x=﹣(x﹣4)2+,∴当x=4时,y有最大值为.所以当球水平飞行距离为4米时,球的高度达到最大,最大高度为米;(2)令y=0,则﹣x2+x=0,解得x1=0,x2=8.所以这次击球,球飞行的最大水平距离是8米.22.如图,锐角△ABC中,边BC长为3,高AH长为2,矩形EFMN的边MN在BC边上,其余两个顶点E,F分别在AB,AC边上,EF交AH于点G.(1)求的值;(2)当EN为何值时,矩形EFMN的面积为△ABC面积的四分之一.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)由EF∥BC,得到△AEF∽△ABC,根据相似三角形的性质得到,根据比例的性质即可得到结论;(2)设EN=x,根据相似三角形的性质得到,代入数据得到,求得EF=3﹣x,根据题意列方程即可得到结论.【解答】解:(1)∵EF∥BC,∴△AEF∽△ABC,∴,∴=;(2)设EN=x,∵EF∥BC,∴△AEF∽△ABC,∴,∴,∴EF=3﹣x,∵矩形EFMN的面积为△ABC面积的四分之一,∴x(3﹣x)=××3×2,∴x=1﹣,x=1+,∴EN为1﹣或1+时,矩形EFMN的面积为△ABC面积的四分之一.23.如图,在⊙O中,直径AB交弦CD于点G,CG=DG,⊙O的切线BE交DO的延长线于点E,F是DE与⊙O的交点,连接BD,BF.(1)求证:∠CDE=∠E;(2)若OD=4,EF=1,求CD的长.【考点】切线的性质.【分析】(1)由在⊙O中,直径AB交弦CD于点G,CG=DG,根据垂径定理即可得AB⊥CD,又由BE是⊙O的切线,易证得CD∥BE,即可证得结论;(2)易证得△ODG∽△OEB,然后由相似三角形的对应边成比例,求得OG的长,由勾股定理即可求得DG的长,继而求得答案.【解答】(1)证明:∵在⊙O中,直径AB交弦CD于点G,CG=DG,∴AB⊥CD,∵BE是⊙O的切线,∴AB⊥BE,∴CD∥BE,∴∠CDE=∠E;(2)解:∵∠CDE=∠E,∠DOG=∠BOE,∴△ODG∽△OEB,∴,∵OD=4,EF=1,∴OB=OF=OD=4,∴OE=OF+EF=5,∴,∴OG=,∴DG==,∴CD=2DG=.五、解答题(本题共3小题,第24题11分,第25、26题个12分,满分35分)24.Rt△ABC中,∠ACB=90°,BC=4,如图1,点P从C出发向点B运动,点R是射线PB 上一点,PR=3CP,过点R作QR⊥BC,且QR=aCP,连接PQ,当P点到达B点时停止运动.设CP=x,△ABC与△PQR重合部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤,<x≤m,m<x≤n时,函数的解析式不同).(1)a的值为 4 ;(2)求出S关于x的函数关系式,并写出x的取值范围.【考点】动点问题的函数图象.【分析】(1)由图2可知当x=时S=,且此时Q点在线段AB上,利用三角形面积公式即可求出a的值;(2)由Q点和R点的位置,可将整个移动过程分成三部分,借用三角形相似,找个各边的关系,分割图形,既能找出S和x之间的关系式.【解答】解:(1)由图2可知,当x=时,点Q在线段AB上,且此时的S=,PR=3CP=,QR=aCP=a,∵QR⊥BC,∴S=PR•QR=××a=,即27a=108,解得a=4.故答案为4.(2)当x=时,Q点在线段AB上,如图3,∵AC⊥BC,QR⊥BC,∴AC∥QR,∴△ABC∽△QBR,∴=.QR=4CP=,PR=3CP=,BR=BC﹣CP﹣PR=,AC=•QR=•=3.①当点Q在△ACB内时,即0<x≤时,如图1,PR=3x,QR=4x,S=PR•QR=6x2.②当点Q在△ACB外且R点在线段CB上时,如图4,此时x>,且CR≤BC,∵CR=CP+PR=4x,∴<x≤1.∵==,∴△PQR∽△ABC,∴∠Q=∠B,∵∠DEQ=∠REB(对顶角),∴△DEQ∽△REB.在Rt△ACB中,由勾股定理可知AB==5,∵AC∥QR,∴△EBR∽△ABC,∴=,RB=BC﹣CP﹣PR=4﹣4x,AC=3,BC=4,∴RE=3﹣3x.QE=QR﹣RE=4x﹣(3﹣3x)=7x﹣3.∵△DEQ∽△REB,△EBR∽△ABC,且AC=3,BC=4,AB=5,∴DE=QE,QD=QE,QD⊥DE.S=PR•QR﹣QD•DE=﹣x2+x﹣.③当点R在线段CB的延长线上时,如图5,此时CR=4x>BC=4,得x>1;CP=x≤BC=4.即1<x≤4.∵△ABC∽△PQR,∴∠QPR=∠A,∵∠PBM=∠ABC,∴△PBM∽△ABC,∴PM=PB,MB=PB.∵PB=BC﹣CP=4﹣x,∴S=PM•MB=(4﹣x)2=x2﹣x+.综合①②③可得:S=.25.在△ABC中,点D是AB边上一点(不与AB重合),AD=kBD,过点D作∠EDF+∠C=180°,与CA、CB分别交于E、F.(1)如图1,当DE=DF时,求的值.(2)如图2,若∠ACB=90°,∠B=30°,DE=m,求DF的长(用含k,m的式子表示)【考点】相似三角形的判定与性质.【分析】(1)连接CD,由∠EDF+∠C=180°,推出D,E,C,F四点共圆,根据正弦定理得①,,②,①÷②得,,根据AD=kBD,根据得到结论;(2)根据三角形的内角和得到∠A=60°,根据正弦定理得: =③,,④,④÷③得:,求得DF=,即可得到结论.【解答】解:如图1,连接CD,∵∠EDF+∠C=180°,∴D,E,C,F四点共圆,∵DE=DF,∴∠DCE=∠DCF,根据正弦定理得①,,∴,②,∵∠ADC=180°﹣∠BDC,∴sin∠ADC=sin∠BDC,①÷②d得,,∵AD=kBD,∴=k;(2)∵∠ACB=90°,∠B=30°,∴∠A=60°,根据正弦定理得: =③,,④,由(1)知D,E,C,F四点共圆,∴∠DEA+∠DFB=180°,∴sin∠DEA=sin∠DFB,④÷③得:,∴DF=,∵AD=kBD,DE=m,∴DF=.26.如图,在平面直角坐标系中,△CDE的顶点C点坐标为C(1,﹣2),点D的横坐标为,将△CDE绕点C旋转到△CBO,点D的对应点B在x轴的另一个交点为点A.(1)图中,∠OCE=∠BCD ;(2)求抛物线的解析式;(3)抛物线上是否存在点P,使S△PAE=S△CDE?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据旋转的性质易得∠OCE=∠BCD;(2)作CH⊥OE于H,如图,根据旋转的性质得CO=CE,CB=CD,OB=DE,则利用等腰三角形的性质得OH=HE=1,则E点坐标为(2,0),设B(m,0),D(,n),利用两点间的距离公式得CD2=(1﹣)2+(﹣2﹣n)2,CB2=(1﹣m)2+22,DE2=(2﹣)2+n2,所以(1﹣)2+(﹣2﹣n)2=(1﹣m)2+22,(2﹣)2+n2=m2,解关于m、n的方程组得到m=3,n=﹣,则B(3,0),然后设顶点式y=a(x﹣1)2﹣2,再把B点坐标代入求出a即可得到抛物线解析式;(3)先利用抛物线的对称性得到A(﹣1,0),再根据旋转的性质得△CDE≌△CBO,则S△CD E=S△CBO=3,设P(t, t2﹣t﹣),利用三角形面积公式得到•3•|t2﹣t﹣|=•3,则t2﹣t﹣=1或t2﹣t﹣=﹣1,然后分别解关于t的一元二次方程求出t,从而可得到满足条件的P点坐标.【解答】解:(1)∵△CDE绕点C旋转到△CBO,∴∠OCE=∠BCD;故答案为BCD;(2)作CH⊥OE于H,如图,∵△CDE绕点C旋转到△CBO,∴CO=CE,CB=CD,OB=DE,∴OH=HE=1,∴OE=2,∴E点坐标为(2,0),设B(m,0),D(,n),∵CD2=(1﹣)2+(﹣2﹣n)2,CB2=(1﹣m)2+22,DE2=(2﹣)2+n2,∴(1﹣)2+(﹣2﹣n)2=(1﹣m)2+22,(2﹣)2+n2=m2,∴m=3,n=﹣,∴B(3,0),设抛物线解析式为y=a(x﹣1)2﹣2,把B(3,0)代入得4a﹣2=0,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2,即y=x2﹣x﹣;(3)存在.A与点B关于直线x=1对称,∴A(﹣1,0),∵△CDE绕点C旋转到△CBO,∴△CDE≌△CBO,∴S△CDE=S△CBO=•2•3=3,设P(t, t2﹣t﹣),∵S△PAE=S△CDE,∴•3•|t2﹣t﹣|=•3,∴t2﹣t﹣=1或t2﹣t﹣=﹣1,解方程t2﹣t﹣=1得t1=1+,t2=1﹣,此时P点坐标为(1+,1)或(1﹣,1);解方程t2﹣t﹣=﹣1得t1=1+,t2=1﹣,此时P点坐标为(1+,﹣1)或(1﹣,1);综上所述,满足条件的P点坐标为(1+,1)或(1﹣,1)或(1+,﹣1)或(1﹣,1).21。
【初三数学】大连市九年级数学上期末考试单元小结(含答案解析)
最新九年级上学期期末考试数学试题(含答案)一、选择题1.下面数学符号,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为( )A.4 B.5 C.6 D.8第2题图第3题图第5题3.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A.55 B.255 C.12 D.24.将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+1 D.y=(x ﹣2)2﹣15.反比例函数y=kx(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是( )A.a=b B.a=-b C.a<b D.a>b6.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A 处,则小明的影长为( )米.A .4B .5C .6D .77.已知扇形的弧长为3πcm ,半径为6cm ,则此扇形的圆心角为( )A .30°B .45°C .60°D .90°8.若抛物线y=x 2﹣3x+c 与y 轴的交点为(0,2),则下列说法正确的是( ) A .抛物线开口向下 B .抛物线与x 轴的交点为(﹣1,0),(3,0)C .当x=1时,y 有最大值为0D .抛物线的对称轴是直线x= 9.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于 点E ,分别交PA 、PB 于点C 、D ,若PA=6,则△PCD 的周长为( )A .8B .6C .12D .1010.如图,矩形ABCD 中,AB=2AD=4cm ,动点P 从点A 出发,以lcm/s 的速度沿线段AB 向点B 运动,动点Q 同时从点A 出发,以2cm/s 的速度沿折线AD →DC →CB 向点B 运动,当一个点停止时另一个点也随之停止.设点P 的运动时间是x (s )时,△APQ 的面积是y (cm 2),则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D . 二、填空题11.平面直角坐标系中,点P (1,﹣3)关于原点对称的点的坐标是 .12.在△ABC 中,∠B =45°,cosA =12,则∠C 的度数是________.13.如图,已知△ABC 是⊙O 的内接三角形,若∠COB=150°,则∠A= °. 14.如图,A 、B 两点在双曲线y=上,分别经过A 、B 两点向轴作垂线段,已知S阴影=1,则S 1+S 2= .第13题 第14题 第15题 第16题15.如图,将△AOB 绕点O 逆时针旋转60︒至△COD ,若OA=3,则点A 旋转到点C 的路径长为 .16.在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a ).如图,若曲线与此正方形的边有交点,则a 的取值范围是 . 三、解答题17.(1)解方程:x 2+x-2=0 (2)计算:(sin30°)﹣1﹣(sin45°﹣π)0+tan60°cos30°18.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,求线段AC 的长.19.如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援对利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象.已知A,B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(精确到0.1米,参考数据:≈1.41,≈1.73).20.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C、D两点,与x,y轴交于B,A两点,且tan∠OAB=,OB=6,CE⊥x轴于点E且OE=3.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出反比例函数的值大于一次函数的值时,自变量x的取值范围.21.如图,在□ABCD中,点E在边BC上,连接AE并延长,交对角线BD于点F、DC的延长线于点G,如果.求的值.22.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-35x2+3x+1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.图5 C BA第22题图九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12个小题,1-8题,每小题3分,9-12题,每小题3分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项,请把答案填在下表相应的位置上)1.(3分)方程x2=2x的解是()A.x=2 B.x=0 C.x1=2,x2=0 D.x1=,x2=0【解答】解:移项得,x2﹣2x=0,提公因式得x(x﹣2)=0,x=0或x﹣2=0,x 1=0,x2=2,故选:C.2.(3分)下面数学符号,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选:B.3.(3分)在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个【解答】解:设袋子中黄球有x个,根据题意,得: =0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.4.(3分)圆锥的底面半径为1,母线长为2,则这个圆锥的侧面积是()A.πB.2π C.3π D.4π【解答】解:依题意知母线长为:2,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π×1×2=2π.故选:B.5.(3分)若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=【解答】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.6.(3分)如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m【解答】解:河堤横断面迎水坡AB的坡比是1:,即tan∠BAC===,∴∠BAC=30°,∴AB=2BC=2×5=10m,故选:A.7.(3分)如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.10【解答】解:∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.8.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.7【解答】解:由题意可得:OC∥AB,则△MBA∽△MCO,故=,即=,解得:AM=5.故选:B.9.(4分)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣15【解答】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.10.(4分)如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为()A.5 B.C.10 D.15【解答】解:如图连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO =S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=10,故选:C.11.(4分)如图,正方形ABCD的边AB=2,和都是以2为半径的圆弧,则无阴影两部分的面积之差是()A.π﹣2 B.2π﹣4 C.﹣2 D.﹣4【解答】解:如图:正方形的面积=S1+S2+S3+S4;①两个扇形的面积=2S3+S1+S2;②②﹣①,得:S3﹣S4=2S扇形﹣S正方形=2×﹣22=2π﹣4,故选:B.12.(4分)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤a﹣b≥m (am﹣b);其中所有错误的结论有()个.A.1 B.2 C.3 D.4【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2+b×(﹣)+c=0,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴b+b+c<0,即3b+2c<0,故④错误;∵x=﹣1时,函数值最大,∴a﹣b+c>m2a﹣mb+c(m≠﹣1),∴a﹣b>m(am﹣b),所以⑤正确;故选:B.二、填空题(共4个小题,每小题4分,共16分)13.(4分)已知:是反比例函数,则m= ﹣2 .【解答】解:因为是反比例函数,所以x的指数m2﹣5=﹣1,即m2=4,解得:m=2或﹣2;又m﹣2≠0,所以m≠2,即m=﹣2.故答案为:﹣2.14.(4分)如图,在⊙O中,半径OC与弦AN垂直于点D,且AB=16,OC=10,则CD的长是 4 .【解答】解:连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x=4,∴CD=4,故答案为:415.(4分)(sin30°)﹣1﹣(sin45°﹣π)0+tan60°cos30°= .【解答】解:原式=()﹣1﹣1+×=2﹣1+=.故答案为:.16.(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②==;③PD2=PH•CD;④=,其中正确的是①②③(写出所有正确结论的序号).【解答】解:∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正确;∵∠DCF=90°﹣60°=30°,∴tan∠DCF==,∵△DFP∽△BPH,∴==,∵BP=CP=CD,∴==,故②正确;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH•CP,又∵CP=CD,∴PD2=PH•CD,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,∵S△BPD =S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4 =4+4﹣8=4﹣4,∴=,故④错误;故答案为:①②③.三、解答题(本题共6小题,共64分)17.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若2018年保持前两年利润的年平均增长率不变,该企业2018年的利润能否超过3.5亿元?【解答】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得 x1 =0.2=20%,x2=﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,3.456<3.5答:该企业2018年的利润不能超过3.5亿元.18.(10分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小华参加“单人组”,他从中随机抽取一个比赛项目,恰好抽中“论语”的概率是多少?(2)小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?小明和小红都没有抽到“三字经”的概率是多少?请用画树状图或列表的方法进行说明.【解答】解:(1)他从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=.(2)画树状图为:共有12种等可能的结果数;其中恰好小明抽中“唐诗”且小红抽中“宋词”的结果数为1,小明和小红都没有抽到“三字经”的结果数为6;所以恰好小明抽中“唐诗”且小红抽中“宋词”的概率=小明和小红都没有抽到“三字经”的概率==19.(10分)如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援对利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象.已知A,B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(精确到0.1米,参考数据:≈1.41,≈1.73).【解答】解:作CD⊥AB交AB的延长线于点D,∵AB=4米,∠CBD=45°,∠CAD=30°,∴AD=,BD=,∴AB=AD﹣BD=﹣,即4=﹣CD,解得,CD=2+2≈5.5米,答:生命所在点C的深度约是5.5米.20.(10分)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C、D 两点,与x,y轴交于B,A两点,且tan∠OAB=,OB=6,CE⊥x轴于点E且OE=3.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出反比例函数的值大于一次函数的值时,自变量x的取值范围.【解答】解:(1)∵OB=6,OE=3,∴BE=6+3=9.∵CE⊥x轴于点E,tan∠OAB=tan∠ECB===,∴OA=4,CE=6.∴点A的坐标为(0,4)、点B的坐标为(6,0)、点C的坐标为(﹣3,6).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.故直线AB的解析式为:y=﹣x+4.∵反比例函数y=的图象过C,∴6=,∴解得:k=﹣18.∴该反比例函数的解析式为:y=﹣;(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(9,﹣2),则△BOD的面积=×6×2=6,△BOC的面积=×6×6=18,∴△OCD的面积为6+18=24;(3)由图象得,反比例函数的值大于一次函数的值时x的取值范围:x>9或﹣3<x<0.21.(12分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC;(1)求证:直线DM是⊙O的切线;(2)若DF=2,AF=5,求BD长.【解答】(1)证明:如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,又∵OD为⊙O半径,∴直线DM是⊙O的切线;(2)∵=,∴∠DBF=∠DAB,又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴,即DB2=DF•DA,∵DF=2,AF=5∴DA=DF+AF=7∴DB2=DF•DA=14∴DB=.22.(14分)如图,抛物线y=ax2+bx+2与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C,动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A 向终点B运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE 折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物细的解析式及顶点坐标;(2)N为抛物线上的点(点N不与点C重合)且满足S△NAB =S△ABC,直接写出N点的坐标;(3)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求处t的值;若不存在,请说明理由.【解答】解:(1)把A(﹣4,0),B(1,0)代入y=ax2+bx+2中,得,解得,∴抛物线的解析式为:y=﹣x2﹣x+2,∵y=﹣x2﹣x+2=﹣(x+)2+,∴顶点坐标为:(﹣,);(2)∵抛最新九年级上学期期末考试数学试题(含答案)一、选择题1.下面数学符号,既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为( )A.4 B.5 C.6 D.8第2题图第3题图第5题3.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A.55 B.255 C.12 D.24.将抛物线y=x2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式是()A.y=(x+2)2+1 B.y=(x+2)2﹣1 C.y=(x﹣2)2+1 D.y=(x ﹣2)2﹣15.反比例函数y=kx(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是( )A.a=b B.a=-b C.a<b D.a>b6.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.77.已知扇形的弧长为3πcm,半径为6cm,则此扇形的圆心角为()A.30° B.45° C.60° D.90°8.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下 B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0 D.抛物线的对称轴是直线x=9.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.1010.如图,矩形ABCD中,AB=2AD=4cm,动点P从点A出发,以lcm/s的速度沿线段AB向点B运动,动点Q同时从点A出发,以2cm/s的速度沿折线AD→DC→CB向点B运动,当一个点停止时另一个点也随之停止.设点P的运动时间是x (s)时,△APQ的面积是y(cm2),则能够反映y与x之间函数关系的图象大致是()A. B. C.D.二、填空题11.平面直角坐标系中,点P(1,﹣3)关于原点对称的点的坐标是.12.在△ABC中,∠B=45°,cosA=12,则∠C的度数是________.13.如图,已知△ABC是⊙O的内接三角形,若∠COB=150°,则∠A= °.14.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S 1+S2= .第13题第14题第15题第1615.如图,将△AOB绕点O逆时针旋转60︒至△COD,若OA=3,则点A旋转到点C的路径长为.16.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是.三、解答题17.(1)解方程:x2+x-2=0 (2)计算:(sin30°)﹣1﹣(sin45°﹣π)0+tan60°cos30°18.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,求线段AC的长.19.如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援对利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象.已知A,B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(精确到0.1米,参考数据:≈1.41,≈1.73).20.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C、D两点,与x,y轴交于B,A两点,且tan∠OAB=,OB=6,CE⊥x轴于点E且OE=3.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出反比例函数的值大于一次函数的值时,自变量x的取值范围.21.如图,在□ABCD中,点E在边BC上,连接AE并延长,交对角线BD于点F、DC的延长线于点G,如果.求的值.22.杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-35x2+3x+1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.图5 C BA第22题图九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12个小题,1-8题,每小题3分,9-12题,每小题3分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项,请把答案填在下表相应的位置上)1.(3分)方程x2=2x的解是()A.x=2 B.x=0 C.x1=2,x2=0 D.x1=,x2=0【解答】解:移项得,x2﹣2x=0,提公因式得x(x﹣2)=0,x=0或x﹣2=0,x 1=0,x2=2,故选:C.2.(3分)下面数学符号,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,是中心对称图形,故本选项错误.故选:B.3.(3分)在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个【解答】解:设袋子中黄球有x个,根据题意,得: =0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.4.(3分)圆锥的底面半径为1,母线长为2,则这个圆锥的侧面积是()A.πB.2π C.3π D.4π【解答】解:依题意知母线长为:2,底面半径r=1,则由圆锥的侧面积公式得S=πrl=π×1×2=2π.故选:B.5.(3分)若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=【解答】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.6.(3分)如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长是()A.10m B. m C.15m D. m【解答】解:河堤横断面迎水坡AB的坡比是1:,即tan∠BAC===,∴∠BAC=30°,∴AB=2BC=2×5=10m,故选:A.7.(3分)如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.10【解答】解:∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.8.(3分)如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.7【解答】解:由题意可得:OC∥AB,则△MBA∽△MCO,故=,即=,解得:AM=5.故选:B.9.(4分)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣15【解答】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.10.(4分)如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k>0,x>0)的图象上,若△OAB的面积为,则k的值为()A.5 B.C.10 D.15【解答】解:如图连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO =S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=10,故选:C.11.(4分)如图,正方形ABCD的边AB=2,和都是以2为半径的圆弧,则无阴影两部分的面积之差是()A.π﹣2 B.2π﹣4 C.﹣2 D.﹣4【解答】解:如图:正方形的面积=S1+S2+S3+S4;①两个扇形的面积=2S3+S1+S2;②②﹣①,得:S3﹣S4=2S扇形﹣S正方形=2×﹣22=2π﹣4,故选:B.12.(4分)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤a﹣b≥m (am﹣b);其中所有错误的结论有()个.A.1 B.2 C.3 D.4【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+4c=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(﹣,0),当x=﹣时,y=0,即a(﹣)2+b×(﹣)+c=0,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴b+b+c<0,即3b+2c<0,故④错误;∵x=﹣1时,函数值最大,∴a﹣b+c>m2a﹣mb+c(m≠﹣1),∴a﹣b>m(am﹣b),所以⑤正确;故选:B.二、填空题(共4个小题,每小题4分,共16分)13.(4分)已知:是反比例函数,则m= ﹣2 .【解答】解:因为是反比例函数,所以x的指数m2﹣5=﹣1,即m2=4,解得:m=2或﹣2;又m﹣2≠0,所以m≠2,即m=﹣2.故答案为:﹣2.14.(4分)如图,在⊙O中,半径OC与弦AN垂直于点D,且AB=16,OC=10,则CD的长是 4 .【解答】解:连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x=4,∴CD=4,故答案为:415.(4分)(sin30°)﹣1﹣(sin45°﹣π)0+tan60°cos30°= .【解答】解:原式=()﹣1﹣1+×=2﹣1+=.故答案为:.16.(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:①△DFP~△BPH;②==;③PD2=PH•CD;④=,其中正确的是①②③(写出所有正确结论的序号).【解答】解:∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故①正确;∵∠DCF=90°﹣60°=30°,∴tan∠DCF==,∵△DFP∽△BPH,∴==,∵BP=CP=CD,∴==,故②正确;∵PC=DC,∠DCP=30°,∴∠CDP=75°,又∵∠DHP=∠DCH+∠CDH=75°,∴∠DHP=∠CDP,而∠DPH=∠CPD,∴△DPH∽△CPD,∴,即PD2=PH•CP,又∵CP=CD,∴PD2=PH•CD,故③正确;如图,过P作PM⊥CD,PN⊥BC,设正方形ABCD的边长是4,△BPC为正三角形,则正方形ABCD的面积为16,∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,∴∠PCD=30°∴PN=PB•sin60°=4×=2,PM=PC•sin30°=2,∵S△BPD =S四边形PBCD﹣S△BCD=S△PBC+S△PDC﹣S△BCD=×4×2+×2×4﹣×4×4 =4+4﹣8=4﹣4,∴=,故④错误;故答案为:①②③.三、解答题(本题共6小题,共64分)17.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若2018年保持前两年利润的年平均增长率不变,该企业2018年的利润能否超过3.5亿元?【解答】解:(1)设这两年该企业年利润平均增长率为x.根据题意得2(1+x)2=2.88,解得 x1 =0.2=20%,x2=﹣2.2 (不合题意,舍去).答:这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,3.456<3.5答:该企业2018年的利润不能超过3.5亿元.18.(10分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.(1)小华参加“单人组”,他从中随机抽取一个比赛项目,恰好抽中“论语”的概率是多少?(2)小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?小明和小红都没有抽到“三字经”的概率是多少?请用画树状图或列表的方法进行说明.【解答】解:(1)他从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=.(2)画树状图为:共有12种等可能的结果数;其中恰好小明抽中“唐诗”且小红抽中“宋词”的结果数为1,小明和小红都没有抽到“三字经”的结果数为6;所以恰好小明抽中“唐诗”且小红抽中“宋词”的概率=小明和小红都没有抽到“三字经”的概率==19.(10分)如图,某煤矿因不按规定操作发生瓦斯爆炸,救援队立即赶赴现场进行救援,救援对利用生命探测仪在地面A,B两个探测点探测到地下C处有生命迹象.已知A,B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度(精确到0.1米,参考数据:≈1.41,≈1.73).【解答】解:作CD⊥AB交AB的延长线于点D,∵AB=4米,∠CBD=45°,∠CAD=30°,∴AD=,BD=,∴AB=AD﹣BD=﹣,即4=﹣CD,解得,CD=2+2≈5.5米,答:生命所在点C的深度约是5.5米.20.(10分)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C、D 两点,与x,y轴交于B,A两点,且tan∠OAB=,OB=6,CE⊥x轴于点E且OE=3.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出反比例函数的值大于一次函数的值时,自变量x的取值范围.【解答】解:(1)∵OB=6,OE=3,∴BE=6+3=9.∵CE⊥x轴于点E,tan∠OAB=tan∠ECB===,∴OA=4,CE=6.∴点A的坐标为(0,4)、点B的坐标为(6,0)、点C的坐标为(﹣3,6).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.故直线AB的解析式为:y=﹣x+4.∵反比例函数y=的图象过C,∴6=,∴解得:k=﹣18.∴该反比例函数的解析式为:y=﹣;(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(9,﹣2),则△BOD的面积=×6×2=6,△BOC的面积=×6×6=18,∴△OCD的面积为6+18=24;(3)由图象得,反比例函数的值大于一次函数的值时x的取值范围:x>9或﹣3<x<0.21.(12分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC;(1)求证:直线DM是⊙O的切线;(2)若DF=2,AF=5,求BD长.【解答】(1)证明:如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,又∵OD为⊙O半径,∴直线DM是⊙O的切线;(2)∵=,∴∠DBF=∠DAB,又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴,即DB2=DF•DA,∵DF=2,AF=5∴DA=DF+AF=7∴DB2=DF•DA=14∴DB=.22.(14分)如图,抛物线y=ax2+bx+2与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C,动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A 向终点B运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE 折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物细的解析式及顶点坐标;(2)N 为抛物线上的点(点N 不与点C 重合)且满足S △NAB =S △ABC ,直接写出N 点的坐标;(3)是否存在某一时刻t ,使得△EFC 为直角三角形?若存在,求处t 的值;若不存在,请说明理由.【解答】解:(1)把A (﹣4,0),B (1,0)代入y=ax 2+bx+2中,得,解得,∴抛物线的解析式为:y=﹣x 2﹣x+2, ∵y=﹣x 2﹣x+2=﹣(x+)2+,∴顶点坐标为:(﹣,);(2)∵抛人教版数学九年级上册期末考试试题(答案)一、选择题(本大题共小10题,每小题3分,共30分) 1.(3分)下列各数中与4相等的是( ) A .22-B .2(2)-C .|4|--D .(4)-+2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元. A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯3.(3分)下列计算正确的是( ) A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =D .23410x x -+=的两根之和为435.(3分)已知52x y =,则x yy-的值为( ) A .35B .32C .23 D .35-6.(3分)如图,线段AB 两个端点的坐标分别为(2,2)A 、(3,1)B ,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(3,1)B .(3,3)C .(4,4)D .(4,1)7.(3分)如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .88.(3分)如图,A 、B 、C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D 9.(3分)关于x 的一元二次方程220x x m ++=有实数根,则m 的取值范围是( ) A .1m <B .1m <且0m ≠C .1m …D .1m … 且0m ≠10.(3分)如图,菱形OBAC 的边OB 在x 轴上,点(8,4)A ,4tan 3COB ∠=,若反比例函数(0)ky k x=≠的图象经过点C ,则k 的值为( )A .6B .12C .24D .32二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知a 为锐角,且满足tan(10)a +︒=,则a 为 度.12.(4分)已知关于x 的一元二次方程20x x m -+=有一个根为2,则m 的值为 ,它的另一个根为 .13.(4分)反比例函数||2m y mx -=,当0x >时,y 随x 的增大而增大,则m = 14.(4分)如图,AB 和DE 是直立在地面上的两根立柱,5AB =米,某一时刻AB 在阳光下的投影3BC =米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为 .三、解答题(本大题共6小题,共54分) 15.(12分)计算(1)计算:03(3)(1)3tan 30π--+--⨯︒+(2)解方程:(3)2x x x -= 16.(6分)先化简再求值:213(1)22a a a a +++--,其中12a =17.(8分)如图,大楼AD 高50米,和大楼AD 相距90米的C 处有一塔BC ,某人在楼顶D 处测得塔顶B 的仰角30BDE ∠=︒,求塔高.(结果保留整数,参考数据:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(共8小题,每小题3分,满分24分).1.已知四条线段满足cd a b=,将它改写成为比例式,下面正确的是( ). A .a c b d = B .a b c d = C .a d c b = D .a b d c = 【答案】C .【解析】试题分析:根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.根据四条线段满足cd a b =,可得ab=cd ,A 、如果a c b d =,那么ad=cb ,故此选项错误;B 、如果a b c d=,那么ad=bc ,故此选项错误;C 、如果a d c b =,那么ab=cd ,故此选项正确;D 、如果a b d c =,那么ac=bd ,故此选项错误. 故选:C .考点:比例线段.2.二次函数y=()2213x --+的图象的顶点坐标是( ).A .(1,3)B .(﹣1,3)C .(1,﹣3)D .(﹣1,﹣3)【答案】A .【解析】试题分析:根据二次函数顶点式解析式写出顶点坐标即可.二次函数y=()2213x --+的图象的顶点坐标为(1,3).故选:A .考点:二次函数的性质.3.下列事件中,必然事件是( ).A .抛出一枚硬币,落地后正面向上B .打开电视,正在播放广告C .篮球队员在罚球线投篮一次,未投中D .实心铁球投入水中会沉入水底【答案】D .【解析】试题分析:根据必然事件、不可能事件、随机事件的概念进行判断即可.抛出一枚硬币,落地后正面向上是随机事件,A 不正确;打开电视,正在播放广告是随机事件,B 不正确;篮球队员在罚球线投篮一次,未投中是随机事件,C 不正确;实心铁球投入水中会沉入水底是必然事件,D 正确.故选:D .考点:随机事件.4.如图,点A ,B ,C ,D 都在⊙O 上,AC ,BD 相交于点E ,则∠ABD=( ).A .∠ACDB .∠ADBC .∠AED D .∠ACB【答案】A .考点:圆周角定理.5.用配方法解一元二次方程2x ﹣4x=5时,此方程可变形为( ).A .()22x +=1B .()22x -=1 C.()22x +=9 D .()22x -=9 【答案】D .【解析】试题分析:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.∵2x ﹣4x=5,∴2x ﹣4x+4=5+4,∴()22x -=9.故选:D .考点:解一元二次方程-配方法.6.若△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′的面积的比为( ).A .1:2B .2:1C .1:4D .4:1【答案】C .【解析】试题分析:根据相似三角形面积的比等于相似比的平方计算即可得解.∵△ABC ∽△A′B′C′,相似比为1:2,∴△ABC 与△A′B′C′的面积的比为1:4.故选:C .考点:相似三角形的性质.7.已知函数y=2x +2x ﹣3,当x=m 时,y <0,则m 的值可能是( ).A .﹣4B .0C .2D .3【答案】B .【解析】试题分析:根据函数图象得到﹣3<x <1时,y <0,即可作出判断.令y=0,得到2x +2x ﹣3=0,即(x ﹣1)(x+3)=0,解得:x=1或x=﹣3,由函数图象得:当﹣3<x <1时,y <0,则m 的值可能是0. 故选:B .考点:抛物线与x 轴的交点.8.一个圆锥的高为4cm ,底面圆的半径为3cm ,则这个圆锥的侧面积为( ).A .12π2cmB .15π2cmC .20π2cmD .30π2cm 【答案】B .【解析】试题分析:首先根据圆锥的高和底面半径求得圆锥的母线长,然后计算侧面积即可.∵圆锥的高是4cm ,底面半径是3cm ,则底面周长=6π,侧面面积=12×6π×5=15π2cm .故选:B . 考点:圆锥的计算.二、填空题(本大题共有10小题,每小题3分,共30分).9.方程2x ﹣4x+c=0有两个不相等的实数根,则c 的取值范围是 .【答案】c <4.【解析】试题分析:利用方程有两个不相等的实数根时△>0,建立关于c 的不等式,求出c 的取值范围即可.由题意得△=2b ﹣4ac=16﹣4c >0,解得c <4.故答案为:c <4.考点:根的判别式.10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m .【答案】15.【解析】试题分析:根据同时同地物高与影长成正比列式计算即可得解.设旗杆高度为x 米,由题意得,1.8325x ,解得x=15.故答案为:15.考点:相似三角形的应用.11.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到11OA B ,则∠1AOB = .【答案】70°.【解析】试题分析:直接根据图形旋转的性质进行解答即可.∵将△OAB 绕点O 逆时针旋转100°得到11OA B ,∠AOB=30°,∴△OAB ≌11OA B ,∴∠11AOB =∠AOB=30°.∴∠1AOB =∠1A OA ﹣∠AOB=70°. 故答案为:70.考点:旋转的性质.12.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是 . 【答案】13. 【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与它们恰好同色的情况,再利用概率公式即可求得答案.画树状图得:∵共有12种等可能的结果,它们恰好同色的有4种情况,∴它们恰好同色的概率是:412=13.故答案为:13.考点:列表法与树状图法.13.一元二次方程2x+px﹣2=0的一个根为2,则p的值.【答案】﹣1.【解析】试题分析:根据一元二次方程的解的定义把x=2代入方程2x+px﹣2=0,得到关于P的一元一次方程4+2p﹣2=0,解得p=﹣1.故答案为:﹣1.考点:一元二次方程的解.14.如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.【答案】3.【解析】试题分析:作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=12AB=4,然后在Rt△AOC中利用勾股定理计算OC即可.作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=12AB=12×8=4,在Rt△AOC中,OA=5,∴==3,即圆心O到AB的距离为3.故答案为:3.考点:垂径定理;勾股定理.15.如图,要使△ABC 与△DBA 相似,则只需添加一个适当的条件是 (填一个即可).【答案】∠C=∠BAD.考点:相似三角形的判定.16.二次函数y=2ax +bx+c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,1y ),(﹣3,2y ),(0,3y ),则1y 、2y 、3y 的大小关系是 (用“>”“<”或“=”连接).【答案】3y <2y <1y .【解析】试题分析:先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到1y 、2y 、3y 的大小关系.∵抛物线的对称轴与x 轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,1y )到直线x=﹣1的距离最大,点(0,3y )到直线x=﹣1的距离最小,∴3y <2y <1y .故答案为:3y <2y <1y .考点:二次函数图象上点的坐标特征.三、解答题(本大题共有4小题,共39分).17.解方程:(1)2x ﹣4x+1=0;(2)x (x ﹣2)+x ﹣2=0.【答案】(1)1x =2,2x =2-;(2)1x =﹣1,2x =2.【解析】试题分析:(1)方程常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;(2)分解因式后得出(x+1)(x ﹣2)=0,推出x+1=0,x ﹣2=0,求出方程的解即可.试题解析:(1)方程变形得:2x ﹣4x=﹣1,配方得:2x ﹣4x+4=3,即()22x -=3,开方得:x ﹣2=则1x =2,2x =2-;(2)(x+1)(x ﹣2)=0,x+1=0,x-2=0,解得1x =﹣1,2x =2.考点:解一元二次方程-因式分解法;解一元二次方程——配方法.18.如图,△ABC 的三个顶点都在格点上,每个小方格边长均为1个单位长度.(1)请你作出△ABC 关于点O 成中心对称的111A B C (其中A 的对称点是1A ,B 的对称点是1B ,C 的对称点是1C );(2)直接写出点1B 、1C 的坐标.【答案】(1)作图详见解析;(2)1B (2,2),1C (5,﹣1).【解析】试题分析:(1)作出点A 、B 、C 关于坐标原点O 成中心对称的点,顺次连接即可.(2)根据图形直接写出点1B 、1C 的坐标.试题解析:(1)如图所示:(2)根据上图可知,1B (2,2),1C (5,﹣1).考点:作图-旋转变换.19.如图,四边形ABCD 内接于⊙O ,E 为AB 延长线上一点,若∠AOC=140°.求∠EBC 的度数.【答案】70°.【解析】试题分析:根据圆周角定理得到∠D=12∠AOC=70°,根据圆内接四边形的性质得到答案.试题解析:由圆周角定理得,∠D=12∠AOC=70°,由圆内接四边形的性质得,∠EBC=∠D=70°.考点:圆内接四边形的性质.20.一只不透明的箱子里共有3个球,把它们的分别编号为1,2,3,这些球除编号不同外其余都相同,从箱子中随机摸出一个球,记录下编号后将它放回箱子,搅匀后再摸出一个球并记录下编号.(1)用树状图或列表法举出所有可能出现的结果;(2)求两次摸出的球都是编号为3的球的概率.【答案】(1)画树状图详见解析;(2)19.【解析】试题分析:(1)直接画树状图或列表法举出所有可能出现的结果即可;(2)由(1)中的树状图,找到两次摸出的球都是编号为3的球的情况数,然后利用概率公式求解即可.试题解析:(1)画树状图如下:由树状图可知所有可能出现的结果共9种;(2)由(1)中考共有9种等可能的结果,两次摸出的球都是编号为3的球的情况数是1种,所以其概率为19.考点:列表法与树状图法.四、解答题(本大题共有4小题,共39分).21.如图,Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一点,AE=5,ED⊥AB于D.(1)求证:△ACB∽△ADE;(2)求AD的长度.【答案】(1)证明详见解析;(2)4.【解析】试题分析:(1)求出∠EDA=∠C=90°,根据相似三角形的判定得出相似即可;(2)根据相似得出比例式,代入求出即可.试题解析:(1)证明:∵DE ⊥AB ,∠C=90°,∴∠EDA=∠C=90°,∵∠A=∠A ,∴△ACB ∽△ADE ;(2)解:∵△ACB ∽△ADE , ∴AE AD AB AC=, ∴5108AD =, ∴AD=4.考点:相似三角形的判定与性质.22.如图,进行绿地的长、宽各增加xm .(1)写出扩充后的绿地的面积y (2m )与x (m )之间的函数关系式;(2)若扩充后的绿地面积y 是原矩形面积的2倍,求x 的值.【答案】(1)222260050x m xm m ++;(2)110. 【解析】试题分析:(1)由图可以直接得到扩充后的绿地的面积y (2m )与x (m )之间的函数关系式,然后写出关系,化简即可;(2)根据扩充后的绿地面积y 是原矩形面积的2倍,可以得到相应的关系式,从而得到x 的值. 试题解析:(1)由图可得,扩充后的绿地的面积y (2m )与x (m )之间的函数关系式是:y=(30xm+m )(20xm+m )=222260050x m xm m ++,即扩充后的绿地的面积y (2m )与x (m )之间的函数关系式是:y=222260050x m xm m ++;(2)∵扩充后的绿地面积y 是原矩形面积的2倍,∴222260050x m xm m ++=2×30xm ×20xm , 解得1110x =,2160x =-(舍去), 即扩充后的绿地面积y 是原矩形面积的2倍,x 的值是110. 考点:二次函数的应用.23.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,且AC 平分∠BAD ,点E 为AB 的延长线上一点,且∠ECB=∠CAD .(1)①填空:∠ACB= ,理由是 ;②求证:CE 与⊙O 相切;(2)若AB=6,CE=4,求AD 的长.【答案】(1)①90°;直径所对的圆周角是直角;②证明详见解析;(2)2.【解析】试题分析:(1)①根据圆周角定理即可求得;②连接OC .欲证明CE 是⊙O 的切线,只需证明CE ⊥OC 即可;(2)根据弦切角定理求得BE ,进一步求得AC=4,得出△ACE 和△BCE 是等腰三角形,得出BC=BE=2,进一步证得∠DAB=∠ABC ,从而证得AD=BC=2.试题解析:①∵AB 为⊙O 的直径,∴∠ACB=90°,故答案为:90°;直径所对的圆周角是直角;②连接OC ,则∠CAO=∠ACO ,∵AC 平分∠BAB ,∴∠BAC=∠CAD ,∵∠ECB=∠CAD .∴∠BAC=∠ECB .∴∠ECB=∠ACO,∵∠ACO+∠OCB=90°,∴∠ECB+∠OCB=90°,即CE⊥OC.∴CE与⊙O相切;(2)∵CE与⊙O相切,∴2CE=BE•AE,∵AB=6,CE=4,∴24=BE(BE+6),∴BE=2,∴AE=6+2=8,∵△ACE∽△CBE,∴AC BEAE CE=,即284AC=,∴AC=4,∴AC=CE=4,∴∠CAB=∠E,∴∠ECB=∠E,∴∠ABC=2∠ECB=2∠BAC,BC=BE=2,∴∠DAB=∠ABC,∴AD=BC=2.考点:切线的判定.五、解答题(本大题共有3小题,共35分).24.如图1,在△ABC中,∠A=120°,AB=AC,点P、Q同时从点B出发,以相同的速度分别沿折线B→A→C、射线BC运动,连接PQ.当点P到达点C时,点P、Q同时停止运动.设BQ=x,△BPQ与△ABC重叠部分的面积为S.如图2是S关于x的函数图象(其中0≤x≤8,8<x≤m,m<x≤16时,函数的解析式不同).(1)填空:m的值为;(2)求S 关于x 的函数关系式,并写出x 的取值范围;(3)请直接写出△PCQ 为等腰三角形时x 的值.【答案】(1)(2)当0≤m ≤8时,s =214x ;当x ≤16时,s=214x -+4x ;当x ≤16时,s=-+(3)+4或8+【解析】试题分析:(1)根据题意求出BC 的长即可.(2)分三种情形①0≤m ≤8,②x ≤16,③x ≤16,分别求出△APQ 面积即可.(3)分三种情形讨论:①当点P 在AB 上,点Q 在BC 上,△PQC 不可能为等腰三角形.②当点P 在AC 上,点Q 在BC 上,根据PQ=QC 列出方程即可.③当点P 在AC 上,点Q 在BC 的延长线,根据CP=CQ 列出方程即可.试题解析:(1)如图1中,作AM ⊥BC ,PN ⊥BC ,垂足分别为M ,N .由题意AB=AC=8,∠A=120°,∴∠BAM=∠CAM=60°,∠B=∠C=30°,∴AM=12AB=4,BM=CM=∴BC=∴m=BC=故答案为:(2)①当0≤m ≤8时,如图1中,在RT △PBN 中,∵∠PNB=90°,∠B=30°,PB=x ,∴PN=12x .s=12•BQ•PN=12•x•12•x=214x .②当x ≤16时,如图2中,在RT △PBN 中,∵PC=16﹣x ,∠PNC=90°,∠C=30°,∴PN=12PC=8﹣12x , ∴s=12•BQ•PN=12•x•(8﹣12x )=214x -+4x .③当x ≤16时,s=12×8﹣12x )=-+,综上,当0≤m ≤8时,s =214x ;当x ≤16时,s=214x -+4x ;当x ≤16时,s=-+. (3)①当点P 在AB 上,点Q 在BC 上时,△PQC 不可能是等腰三角形.②当点P 在AC 上,点Q 在BC 上时,PQ=QC ,∵QC ,∴16﹣x ),∴x=.③当点P 在AC 上,点Q 在BC 的延长线时,PC=CQ ,即16﹣x=x ﹣∴x=8+.∴△PCQ 为等腰三角形时x 的值为+4或8+考点:动点问题的函数图象.25.如图(1),将线段AB 绕点A 逆时针旋转2α(0°<α<90°)至AC ,P 是过A ,B ,C 的三点圆上任意一点.(1)当α=30°时,如图(1),求证:PC=PA+PB ;(2)当α=45°时,如图(2),PA,PB,PC三条线段间是否还具有上述数量关系?若有,请说明理由;若不具有,请探索它们的数量关系.【答案】(1)证明详见解析;PA+PB,理由详见解析.【解析】试题分析:(1)首先在PC上截取PD=PA,易知△ABC是等边三角形,可得△PAD是等边三角形,继而可证明△ACD≌△BAP,则CD=PB,从而得出PC=PB+PA;(2),作AD⊥AP与PC交于一点D,易证△ACD≌△ABP,则CD=PB,AD=AP,根据勾股定理PA,所以PA+PB.试题解析:证明:(1)如图(1),在PA上截取PD=PA,∵AB=AC,∠CAB=60°,∴△ABC为等边三角形,∴∠APC=∠CPB=60°,∴△APD为等边三角形,∴AP=AD=PD,∴∠ADC=∠APB=120°,在△ACD和△ABP中,∠ADC=∠APB,∠ACD=∠ABP,AD=AP,∴△ACD≌△ABP(AAS),∴CD=PB,∵PC=PD+DC,∴PC=PA+PB;(2),;理由如下:如图(2),作AD ⊥AP 与PC 交于一点D ,∵∠BAC=90°,∴∠CAD=∠BAP ,在△ACD 和△ABP 中,∠CAD=∠BAP ,AC=AB ,∠ACD=∠ABP ,∴△ACD ≌△ABP ,∴CD=PB ,AD=AP ,根据勾股定理,∴PA+PB .考点:全等三角形的判定与性质;圆周角定理.26.如图,抛物线y=()2a x m -(其中m >1)与其对称轴l 相交于点P ,与y 轴相交于点A (0,m ).点A 关于直线l 的对称点为B ,作BC ⊥x 轴于点C ,连接PC 、PB ,与抛物线、x 轴分别相交于点D 、E ,连接DE .将△PBC 沿直线PB 翻折,得到△PBC′.(1)该抛物线的解析式为 ; (用含m 的式子表示);(2)探究线段DE 、BC 的关系,并证明你的结论;(3)直接写出C′点的坐标(用含m 的式子表示).【答案】(1)y=()21x m m -;(2)DE=12BC ,理由详见解析;(3),23m ). 【解析】试题分析:(1)将点A 的坐标代入抛物线解析式,即可求出a 的值;(2)根据抛物线的解析式,求出顶点P 的坐标,根据对称轴,求出点B ,C 的坐标,根据待定系数法求出直线BP 、CP 的解析式,求出点D 、E 的坐标,进而求出DE ,BC 的长度,即可解得;(3)连接CC′交直线BP 于点F ,则CC′⊥BP ,且CF=C′F,求出CC′的解析式,进而求得点F 的坐标,根据CF=C′F,即可解答.试题解析:(1)把点A (0,m )代入y=()2a x m --,得:22am ﹣m=m ,am ﹣1=0,∵am >1, ∴a=1m,∴y=()21x m m-,故答案为:y=()21x m m-; (2)DE=12BC .理由:又抛物线y=()21x m m --,可得抛物线的顶点坐标P ,﹣m ),由l :,可得:点B (,m ),∴点C (,0).设直线BP 的解析式为y=kx+b ,点P,﹣m )和点B(,m )在这条直线上,得:b m b m+=-+=⎪⎩,解得:3k b m ⎧=⎪⎨=-⎪⎩, ∴直线BP 的解析式为:﹣3m ,令y=0﹣3m=0,解得:, ∴点D,0); 设直线CP 的解析式为y=1k x+1b ,点P,﹣m )和点C(,0)在这条直线上,得:11110b b m ⎧+=⎪+=-,解得:112k b m ⎧=⎪⎨⎪=-⎩,∴直线CP 的解析式为:﹣2m ; 抛物线与直线CP 相交于点E ,可得:()2122y x m m m y x m ⎧=--⎪⎪⎨⎪=-⎪⎩,解得:112x m y ⎧=⎪⎪⎨⎪=-⎪⎩,22x y m⎧=⎪⎨=-⎪⎩(舍去),∴点E,2m -); ∵D E x x =,∴DE ⊥x 轴,∴DE=D E y y ﹣=2m ,BC=B C y y ﹣=m=2DE , 即DE=12BC ; (3,23m ). 连接CC′,交直线BP 于点F ,∵BC′=BC,∠C′BF=∠CBF ,∴CC′⊥BP ,CF=C′F,设直线BP 的解析式为y=kx+b ,点B(,m ),P,﹣m )在直线上,∴b m b m⎧+=⎪+=-,解得:3k b m ⎧=⎪⎨=-⎪⎩, ∴直线BP 的解析式为:﹣3m ,∵CC′⊥BP ,∴设直线CC′的解析式为:y=1b +,∴10b +=,解得:1b =2m ,联立①②,得:32y m y x m ⎧=-⎪⎨=+⎪⎩,解得:3x m y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点F,3m ), ∴m , 设点C′的坐标为(a,2m +),,解得:,∴2m +=23m ,,23m ).考点:二次函数综合题.。