人教A版必修4 任意角三角函数同步练习及答案
新人教A版高中数学必修四三角函数两角和同步练习习题(含答案解析)
三角函数练习10 两角和与差的正弦、余弦、正切11.已知sin αcos60°-cos αsin60°=21,α∈(0,2π),则α=( ) A.2πB. 67πC. 6π或23πD. 2π或67π2.tan11.5°+tan33.5°+tan11.5°·tan33.5°=( ) A.1B.-1C.2D.-23.若y =3sin θ-4cos θ=-5cos(θ+φ),tan φ=( ) A.34B.43 C.-34 D.-43 4.△ABC 中,已知sinAsinB+sinAcosB+cosAsinB+cosAcosB =2,则△ABC 是( ) A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形5.若tan α,tan β是方程x 2-px+q =0的两根,cot α,cot β是方程x 2-rx+s =0的两根,则下列成立的式子有几个( )(1)ps =r (2)qs =1 (3)qr =p (4)r(1-q)=p(s-1) A.1B.2C.3D.46.xx xx cos sin cos sin -+=( )A.tan(x-4π)B.tan(x+4π)C.cot(x-4π)D.cot(x+4π)7.设α,β∈(-2π,2π),tan α,tan β是一元二次方程x 2+33x+4=0的两个根,则α+β为( )A. 3πB. 34πC.- 32π或3π D.-32π8.︒︒-︒20cos 20sin 10cos 2=( )A. 3B.1C.23D.-23 9.tanAtanB =tanA+tanB+1,则cos(A+B)的值是( ) A.-22 B.22 C.±22D.±21 10.已知tanx+tany =25,cotx+coty =30,则tan(x+y)=( )A.120B.150C.180D.200二、填空题11.已知α、β均为锐角,tan α=43,cos(α+β)=-1411,则cos β= . 12.已知sin αsin β=1则cos(α+β)的值为 . 13.求值:︒︒-︒︒︒+︒8sin 30sin 22cos 8sin 30cos 22sin = .14.已知sin(α+β)=21,sin(α-β)=31,则)tan(tan tan tan )tan(2βαββαβα+--+= . 15.若α+β=3π,给如下四个式子: (1) 3 (tan αtan β+α)+tan α+tan β=3 (1+α)(2) 3 (tan αtan β+α)+tan α+tan β=33(1+α) (3) 3(tan αtan β+α)+tan α+tan β=33(1-α) (4) EMBED Equation.3 (tan αtan β+α)+tan α+tan β)= EMBED Equation.3(3+π-3β)其中正确的是 .16.命题甲:3sin ααcos β(α+β)=sin(2α+β)是命题乙:tan(α+β)=2tan α成立的是 条件.三、解答题17.已知 EMBED Equation.3= EMBED Equation.3,求cosx 的值.18.矩形ABCD 中AB =a,BC =2a ,在BC 上取一点P ,使AB+BP =PD ,求tan ∠APD 的值.19.设cos(α- EMBED Equation.3 )=- EMBED Equation.3,sin( EMBED Equation.3-β)= EMBED Equation.3 ,且 EMBED Equation.3 <α<π,0<β< EMBED Equation.3,求cos(α+ β)的值.参考答案一、1.D 2.A 3.B 4.C 5.D 6.C 7.D 8.A 9.C 10.B 一、11. EMBED Equation.3 12.-1 13. EMBED Equation.314.5 15.(1)(4) 16.必要不充分三、17.解:原式变形为 EMBED Equation.3+ EMBED Equation.3= EMBED Equation.3EMBED Equation.3 EMBED Equation.3 EMBED Equation.3 EMBED Equation.3EMBED Equation.33cosx =3cos2x-sin2xEMBED Equation.3 3cosx =4cos2x-1 EMBED Equation.34cos2x-3cosx-1=0EMBED Equation.3cosx =1或- EMBED Equation.318.解:设BP =x 则PD =a+x PC =2a-x在Rt △PCD 中,(a+x)2=(2a-x)2+a2 EMBED Equation.3 x = EMBED Equation.3a EMBEDEquation.3BP = EMBED Equation.3a PC = EMBED Equation.3a设∠APB =α ∠DPC =β,则tan α= EMBED Equation.3 ,tan β= EMBED Equation.3∴tan ∠APD =-tan(α+β)=- EMBED Equation.3 =18又∵cos(α- EMBED Equation.3 )=- EMBED Equation.3 sin( EMBED Equation.3-β)= EMBED Equation.3∴sin(α-2β)=954 cos(2α-β)=35∴cos(2α+2β)=cos [(α-2β)-( 2α-β)]=-91·35 + 32·954=-2757∴cos(α+β)=2cos 22βα+-1=2×(-2757)2-1=-729239。
新人教A版高中数学必修四第一章 三角函数测试题(含答案)
暑假数学课外辅导(必修4)第一章 三角函数一、基本内容串讲本章主干知识:三角函数的定义、图象、性质及应用,函数()ϕω+=x A y sin 的图象,三角函数模型在解决具有周期变化规律问题中的应用。
1.任意角和弧度制从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。
在直角坐标系中,当角的终边确定时,其大小不一定(通常使角的顶点与原点重合,角的始边与x 轴非负半轴重合)。
为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成α+k ·3600 (k ∈Z )的形式,特例,终边在x 轴上的角的集合为{α|α=k ·1800,k ∈Z},终边在y 轴上的角的集合为{α|α=900+k ·18000,k ∈Z},终边在坐标轴上的角的集合为{α|α=k ·900,k ∈Z}。
另外,角的终边落在第几象限,就说这个角是第几象限的角。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。
在弧度制下,扇形弧长公式=|α|R ,扇形面积公式||R 21R 21S 2α== ,其中α为弧所对圆心角的弧度数。
2.任意角的三角函数利用直角坐标系,可以把直角三角形中的三角函数推广到任意角的三角函数。
设P(x ,y)是角α终边上任一点(与原点不重合),记22y x |OP |r +==,则r y s i n =α,r x cos =α,xy tan =α。
3.同角三角函数的基本关系式(1)平方关系:22sincos 1αα+= (2)商数关系:sin tan cos ααα= 4.三角函数的诱导公式利用三角函数定义,可以得到诱导公式:即πα2k+与α之间函数值的关系(k ∈Z ),其规律是“奇变偶不变,符号看象限”。
5.三角函数的图象与性质6.函数()ϕω+=x A y sin 的图象作函数y A x =+sin()ωϕ的图象主要有以下两种方法: (1)用“五点法”作图用“五点法”作y A x =+sin()ωϕ的简图,主要是通过变量代换,设ϕω+=x z ,由z 取0,2π,π,23π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象。
_新课标人教A版必修四同步练习及答案(48页)
1.1任意角和弧度制班级________姓名________学号________得分________一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( ) A.,398 -38 B.,398 -142 C.,398 - 1042 D.,14210422.集合α{=A ︱90⋅=k α,36 -}Z k ∈,β{=B ︱180- 180<<β},则B A 等于 A.,36{ - 54} B.,126{ -144} ( ) C.,126{ -,36 -,54144} D.,126{ -54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角}, θ{=D ︱θ为小于90的正角},则 ( ) A.B A = B.C B = C.C A = D.D A =4.若角α与β终边相同,则一定有 ( ) A. 180=+βα B. 0=+βαC. 360⋅=-k βα,Z k ∈D. 360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3π B.3π- C.2π D.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2π D.32π8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( ) A.B A = B.B A ⊇ C.B A ⊆ D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于 180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.(1)终边在x 轴的非负半轴上的角的集合__________; (2)终边在坐标轴上的角的集合__________;(3)终边在第一、二象限及y 轴上的角的集合__________; (4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________.14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又720-<a < 0,求角a .16.已知角45=a ,(1)在区间 720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同?18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数班级________姓名________学号________得分________一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( ) A.αsin B.αcos C.αtan D.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52 B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( )A.34B.43C.34±D.43±5.函数x x y cos sin -+=的定义域是 ( ) A.()Z k k k ∈+,)12(,2ππ B.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________. 三、解答题(第15题20分,其余每题10分,共40分) 13.求43π的角的正弦,余弦和正切值.14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式班级________姓名________学号________得分________一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23±D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23-C.m 32D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21 B.21- C.23 D.23- 4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa +C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A.33B.33-C.3D.-37.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0 B.1C.1-D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A .等腰三角形 B .直角三角形 C .等腰或直角三角形 D .等腰直角三角形二、填空题(每题5分,共20分)9.求值:︒2010tan 的值为 .10.若1312)125sin(=-α,则=+)55sin( α . 11.=+++++76cos 75cos 74cos 73cos 72cos7cos ππππππ . 12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 . 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质班级________姓名________学号________得分________一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( ) A.[]1,0 B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ2.函数)652cos(3π-=x y 的最小正周期是 ( ) A52π B 25π C π2 D π5 3.x x y sin sin -=的值域是 ( ) A ]0,1[- B ]1,0[ C ]1,1[- D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 1 B22 C.0 D.22-7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( ) A.8 B.6 C.8± D.48.函数)32sin(π+=x y 的图象 ( )A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫⎝⎛-0,6π对称 C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间;(2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用班级________姓名________学号________得分________一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω的一个可能值为 ( ) A.3 B.2 C.31 D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )A.向左平移3π个单位 B.向右平移3π个单位 C.向左平移6π个单位 D.向右平移6π个单位4.函数1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x f D.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为 ( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: (1)有0)()(31==x f x f 可得21x x -是π的整数倍; (2)表达式可改写为)62cos(4)(π-=x x f ;(3)函数的图像关于点)0,6(π-对称;(4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y , (1)用“五点法”画函数的图像;(2)说出此图像是由x y sin =的图像经过怎样的变换得到的; (3)求此函数的周期、振幅、初相;(4)求此函数的对称轴、对称中心、单调递增区间.12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,(1)求它的定义域; (2)求它的单调区间; (3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷班级________姓名________学号________得分________一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( ) A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.23 3.函数x y sin 1-=的最大值为 ( ) A.1 B.0 C.2 D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,0 8.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________.10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值.14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫ ⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷班级________姓名________学号________得分________一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin(-;②)2200cos( -;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34- C.43 D.345.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( ) A.1sin2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=- 7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-=x C 4π=x D 8π=x9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为 π的函数的个数是 ( ) A.1个 B 2个 C 3个 D 4个10.方程1sin 4x x π=的解的个数是 ( ) A 5 B 6 C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( )A.)45,()2,4(ππππ B.),4(ππC.)45,4(ππD.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是 ( )A.2π B 4π- C 4π D 34π 二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15 若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数 其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π- (2))945cos( -18.比较大小:(1) 150sin ,110sin ; (2) 200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算班级________姓名________学号________得分________一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.两个孤立点 D.一个圆2.下列说法中,正确的是 ( ) A.若b a >,则b a > B.若b a =,则b a = C.若b a =,则a ∥b D.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( ) A.相等向量 B.平行向量 C.模相等的向量 D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, 则c b a ++=( ) A.0 B.3 C.22+ D.225.已知5,8==AC AB ,则BC 的取值范围是 ( ) A.[]8,3 B.()8,3 C.[]13,3 D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是 ( ) A.CA BC AB =+ B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =,则b a += ( ) A.7 B.5 C.3 D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( ) A.向量a 与b 反向,且b a >,则向量b a +与a 的方向相同 B.向量a 与b 反向,且b a <,则向量b a +与a 的方向相同 C.向量a 与b 同向,则向量b a +与a 的方向相同 D.向量a 与b 同向,则向量b a +与b 的方向相同 二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=60,向量1=AB ,则=+CD BC __________. 12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分) 13.化简:(1)FA BC CD DF AB ++++.(2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算班级________姓名________学号________得分________一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( ) A.-=AC AB BC B.-=AD BD AB C.-=BD AC BC D.-=BD CD BC2.下列各式中结果为O 的有 ( ) ①++AB BC CA ②+++OA OC BO CO③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( ) ①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( ) A.1 B.1- C.1± D.06.在△ABC 中,向量BC 可表示为 ( ) ①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =A.a b +B.b a -C.-c bD.-b c ( )8.当C 是线段AB 的中点,则AC BC += ( ) A.AB B.BA C.AC D.O 二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________. 11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分)13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值? 14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 表示DE 、BF 、CG15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?AGE F CBD2.3平面向量的基本定理及坐标表示班级________姓名________学号________得分________一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a则向量b a 2321-等于 ( )A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(-2.若),3,1(),4,2(==AC AB 则BC 等于 ( ) A.)1,1( B.)1,1(-- C.)7,3( D.)7,3(--3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 A.21e e +和21e e - B.2123e e -和1264e e - ( ) C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且b a //,则实数m 的值等于 ( ) A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为 A.13- B.9 C.9- D.13 ( ) 6.已知平面向量),,2(),2,1(m b a -==且b a //,则b a 32+等于 ( ) A.)10,5(-- B.)8,4(-- C.)6,3(-- D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( ) A.若实数21,λλ使02211=+e e λλ,则021==λλ B.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量a ,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( ) A.1,2- B.2,1- C.1,2- D.2,1-9.已知),3,2(),2,1(-==b a 若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm等于 A.21-B.2C.21D.2- ( ) 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,b BD a AC == 则AF 等于 ( ) A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且b a //,则=x __________12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π,且4=a ,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴, y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求 y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A , D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足 c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例班级________姓名________学号________得分________一、选择题(每题5分,共50分)⒈若b a ,是两个单位向量,那么下列四个结论中正确的是 ( ) A.b a = B.1=⋅b a C.22b a≠ D.b a =⒉下面给出的关系始终正确的个数是 ( ) ①00=⋅a ②a b b a ⋅=⋅ ③22a a = ④()()c b a c b a ⋅⋅=⋅⋅ ⑤b a b a ⋅≤⋅ A.0 B.1 C.2 D.3⒊对于非零向量b a ,,下列命题中正确的是 ( ) A.000==⇒=⋅b a b a 或 B. b a //a ⇒在b 上的投影为a C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅⒋下列四个命题,真命题的是 ( ) A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形; B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形; C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ; D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB . ⒌设e a ,8=为单位向量,a 与e 的夹角为,60o则a 在e 方向上的投影为 ( )A.34B.4C.24D.238+⒍若向量b a ,满足a b a ,1==与b 的夹角为120,则=⋅+⋅b a a a ( )A.21 B.21- C.23 D.23- ⒎已知a b a ,6,31==与b 的夹角为,3π则b a ⋅的值为 ( )A.2B.2±C.1D.1±⒏已知()(),5,5,0,3-==b a 则a 与b 的夹角为 ( )A.4π B.3π C.43π D.32π ⒐若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆ 的形状为 ( ) A.正三角形 B.直角三角形 C.等腰三角形 D.A ,B ,C 均不是 10.设向量()(),1,,2,1x b a ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( ) A.25 B.2 C.1 D.27二、填空题(每题5分,共20分)11.已知向量(),2,1,3==b a 且,b a ⊥则a 的坐标是_____________. 12.若(),8,6-=a 则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________. 14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====+-c b a __________. 三、解答题(每题10分,共30分)15.已知()()61232,3,4=+⋅-==b a b a b a ,求a 与b的夹角θ.16.已知,4,3==b a 且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷班级________姓名________学号________得分________一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA ==,,d OD c OC ==则下列运算正确的是( )A.0=+++d c b a B.0=-+-d c b a C.0 =--+d c b a D.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( ) A.1- B.9 C.9- D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( ) A.34-B. 32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D的坐标为 ( ) A.)2,2( B.)0,6(- C.)6,4( D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e b --=共线的等价条件是 A.23=λ B.32=λ C.32-=λ D.23-=λ ( )8.下面给出的关系式中正确的个数是 ( )① 00 =⋅a ②a b b a ⋅=⋅ ③22a a = ④)()(c b a c b a⋅=⋅ ⑤||||b a b a ⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( ) ①一个平面内只有一对不共线的向量可作为基底; ②两个非零向量平行,则他们所在直线平行;BACOD③零向量不能作为基底中的向量; ④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P 延长线上,使212PP P P =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(-11.若b a k b a b a b a 432,1||||-+⊥==与且也互相垂直,则k 的值为 ( ) A.6- B.6 C.3 D.3- 二、填空题(每题5分,共15分)12.已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是__________. 13.若()0,2,122=⋅-==a b a b a,则b a 与的夹角为__________.14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________. 三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a,求(1)b a b a +⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷班级________姓名________学号________得分________一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+ ②AC BE BC EA +=- ③ED AB EA AD +=+ ④0AB BC CD DE EA ++++= ⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,则=++c b a ( ) A.0 B.3 C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35-B.-59C.53-D.95- 4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为 A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( ) A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a ,a =10,b =8,则向量a 与b 的夹角为 ( ) A.60B. 60-C.120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( )A.4π B.43π C.3π D.32π9.若b a b a⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为 ( )A.13B.513 C.565 D.65NA BDM C11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( ) A.平行四边形 B.菱形 C.等腰梯形 D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( ) A.)11,2(-B.)3,34(C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b的夹角为__________.14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________. 三、解答题(第17题10分,其余每题12分,共70分)17.如图,ABCD 中,点M 是AB 的中点, 点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线.18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC ,(1)求点E 、F 及向量EF 的坐标; (2)求证:EF ∥AB .19.已知向量2,4==b a ,a 与b 夹角为120,求:(1)b a ⋅;(2))()2(b a b a +⋅-; (3)b a 23+.20.已知)2,3(),2,1(-==b a,当k 为何值时:(1)b a k +与b a 3-垂直; (2)b a k +与b a3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期;(2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(2)若13=+OC OA ,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式班级________姓名________学号________得分________一、选择题(每题5分,共45分)1.345cos 的值等于 ( )A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4c os(πθ-的值为 ( ) A.2627-B.2627C.26217-D.26217 4.已知53)4sin(=-x π,则x 2s i n 的值为 ( )A.2519B.2516C.2514D.2575.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( )A.45πB.4πC.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4- 9.函数56sin2sin 5cos2cos )(ππx x x f -=的单调递增区间是 ( )A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分) 14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ.(2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=, (1)求)(x f 的最大值及最小正周期; (2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换班级________姓名________学号________得分________一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A .23 B .23- C .21 D .21-2.下列各式中,最小的是 ( ) A .40cos 22B .6cos 6sin 2 C .37sin 50cos 37cos 50sin - D .41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( )A .2πB .πC .π2 D .π44.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A .21B .23 C .21- D .3-5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫⎝⎛+απ232cos ( )A .97-B .31- C .31 D .976.若函数x x y tan 2sin =,则该函数有 ( ) A .最小值0,无最大值 B .最大值2,无最小值C .最小值0,最大值2D .最小值2-,最大值2 7.若παπ223<<,则=++α2c o s 21212121 ( ) A .2cosαB .2sinαC .2cosα- D .2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A .1 B .1- C .21D .21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.510sin ,sin ,510αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________. 三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22.15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值.16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期; (2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷班级________姓名________学号________得分________一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( )A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( ) A.2 B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系 A.b a = B.b a > C.b a < D.b a ≠ ( ) 4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( )A.1B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为 ( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+= ( )A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是 A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( ) A.2 B.4 C.8 D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( ) A.2 B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( )A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π 11.已知A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是 A.97 B.23 C.1832+ D.183724+ ( ) 12.若22)4sin(2cos -=-παα,则ααs i n c o s +的值为 ( )A.27-B.21-C.21D.27二、填空题(每题5分,共20分) 13.已知32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________.14.函数)2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________.15.已知xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.16.若2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.(1)已知54cos =α,且παπ223<<,求2tan α.(2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值.18.已知135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-,求 )cos(βα-的值.19.已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22,求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合; (2)函数)(x f 的单调增区间.20.已知α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根, 求:(1)βα+的值;(2))cos(βα-的值.21.已知函数a x x x x f ++-++=2cos )62sin()62sin()(ππ(a 为实常数), (1)求函数)(x f 的最小正周期;(2)如果当⎥⎦⎤⎢⎣⎡∈2,0πx 时,)(x f 的最小值为2-,求a 的值.18.已知函数R x xx x x f ∈--++=,2cos 2)6sin()6sin()(2ωπωπω(其中0>ω), (1)求函数)(x f 的值域;(2)若函数)(x f y =的图像与直线1-=y 的两个相邻交点间的距离为2π,求函数 )(x f y =的单调增区间.参考答案 1.1任意角和弧度制一、选择题1-5CCDCC 6-10CADBA 二、填空题11. 120{- 60,- 0, 60, 120,}12.(1)α{︱360⋅=k α},Z k ∈ (2)α{︱90⋅=k α},Z k ∈(3)α{︱360⋅k <<α180360⋅+k },Z k ∈ α{︱360⋅=k α270+},Z k ∈(4)α{︱ 180⋅=k α45+},Z k ∈ 13.2 14.一或第二 三、解答题15.解:∵120=α360⋅+k Z k ∈, 720,-0<<α ∴ 240-=α 600,16.解:(1) 45=β360⋅+k Z k ∈,720-≤ 45 360⋅+k0<,则2-=k 或1-=k675-=β或315-=β(2)},45)1({},,45)12({Z k k x x N Z k k x x M ∈+==∈+==所以N M ⊂17.因为,,23Z k k ∈+=ππθ所以Z k k ∈+=,3293ππθ所以在]2,0[π内与3θ终边相同的角有:913,97,9πππ18.因为302=+R l ,所以4225)215(15)230(212122+--=+-=-==R R R R R lR S当215=R 时,扇形有最大面积4225,此时2,15230===-=R lR l α 1.2任意角的三角函数一、选择题1-4ABAB 5-8BBAB 二、填空题。
人教A版高中数学必修4课后习题 第一章 1.1.1 任意角
第一章三角函数1.1 任意角和弧度制1.1.1 任意角课后篇巩固探究1.200°角是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角180°<200°<270°,第三象限角α的取值范围为k·360°+180°<α<k·360°+270°,k∈Z,所以200°角是第三象限角.2.在-360°≤α<0°范围内与60°角终边相同的角为( )A.-300°B.-300°,60°C.60°D.420°60°角终边相同的角α可表示为α=60°+k·360°,当k=-1时,α=-300°,故在-360°≤α<0°范围内与60°角终边相同的角为-300°.3.若角θ是第四象限角,则90°+θ是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角,将θ的终边按逆时针方向旋转90°得90°+θ的终边,则90°+θ是第一象限角.4.角α=45°+k×180°(k∈Z)的终边落在( )A.第一或第三象限B.第一或第二象限C.第二或第四象限D.第三或第四象限k是偶数时,角α是第一象限角,当k是奇数时,角α是第三象限角.5.如图,终边在阴影部分(含边界)的角的集合是( )A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}D.{α|120°+k·360°≤α≤315°+k·360°,k∈Z},终边落在阴影部分(含边界)的角的集合是{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}.故选C.±45°,k∈Z},P=,P之间的关系为( ) 6.已知集合M={x|x=k·180°2A.M=PB.M⊆PC.M⊇PD.M∩P=⌀±45°=k·90°±45°=(2k±1)·45°,k∈Z, M,x=k·180°2对于集合P,x=k·180°±90°=k·45°±90°=(k±2)·45°,k∈Z.∴4M⊆P.7.已知角α,β的终边关于直线x+y=0对称,且α=-60°,则β=.-90°到0°的范围内,-60°角的终边关于直线y=-x对称的射线的对应角为-45°+15°=-30°,所以β=-30°+k·360°,k∈Z.30°+k·360°,k∈Z8.若角α与角288°终边相同,则在0°~360°内终边与角α4终边相同的角是.,得α=288°+k·360°(k∈Z),α4=72°+k·90°(k∈Z).又α4在0°~360°内,所以k=0,1,2,3,相应地有α4=72°,162°,252°,342°.9.终边落在图中阴影部分所示的区域内(包括边界)的角的集合为.由图易知在0°~360°范围内,终边落在阴影区域内(包括边界)的角为45°≤α≤90°与225°≤α≤270°,故终边落在阴影部分所示的区域内(包括边界)的角的集合为{α|k·360°+45°≤α≤k·360°+90°,k ∈Z}∪{α|k·360°+225°≤α≤k·360°+270°,k∈Z}={α|k·180°+45°≤α≤k·180°+90°,k∈Z}.Z}10.已知α=-1 910°.(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.设α=β+k·360°(k∈Z),则β=-1910°-k·360°(k∈Z).令-1910°-k·360°≥0,解得k≤-1910360=-51136.k的最大整数解为k=-6,求出相应的β=250°,于是α=250°-6×360°,它是第三象限角.(2)令θ=250°+n·360°(n∈Z),取n=-1,-2就得到符合-720°≤θ<0°的角. 250°-360°=-110°,250°-720°=-470°.故θ=-110°或θ=-470°.11.已知角α的终边在图中阴影部分所表示的范围内(不包括边界),写出角α的集合.0°~360°范围内,终边落在阴影部分内的角为30°<α<150°与210°<α<330°,故所有满足题意的角α的集合为{α|k·360°+30°<α<k·360°+150°,k∈Z}∪{α|k·360°+210°<α<k·360°+330°,k∈Z}={α|n·180°+30°<α<n·180°+150°,n∈Z}.12.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.-280°+k·360°,k∈Z.∵α,β都是锐角,∴0°<α+β<180°.取k=1,得α+β=80°.①α-β=670°+k·360°,k∈Z.∵α,β都是锐角,∴-90°<α-β<90°.取k=-2,得α-β=-50°.②由①②,得α=15°,β=65°.。
【同步练习】人教A版 2019年 高中数学必修4 任意角三角函数 同步练习(含答案)
人教A 版 2019年 高中数学必修4 任意角三角函数同步练习一、选择题1. 600sin 的值为( ) A.21 B.21- C.23 D.23- 2.已知角α的正弦线的长度为单位长度,那么角α的终边( )A .在x 轴上B .在y 轴上C .在直线y =x 上D .在直线y =-x 上3.有下列命题:①终边相同的角的三角函数值相同;②同名三角函数的值相同的角也相同;③终边不相同,它们的同名三角函数值一定不相同;④不相等的角,同名三角函数值也不相同.其中正确的个数是( )A .0B .1C .2D .34.若sin α=-135,且α为第四象限角,则tan α的值等于( ) A.512 B .-512 C.125 D .-125 5.⎪⎭⎫ ⎝⎛-π619sin 的值等于( ) A.21 B.21- C.23 D.23- 6.角α的终边上有一点P (a ,a ),a ∈R ,a ≠0,则sin α的值是( )A .22B .-22C . 22或-22 D .1 7.若sin αtan α>0,则α的终边在( )A .第一象限B .第四象限C .第二或第三象限D .第一或第四象限 8.sin 34π·cos 625π·tan 45π的值是( ) A.-43 B.43 C.-43 D.439.若x x sin |sin |+|cos |cos x x +xx tan |tan |=-1,则角x 一定不是( ) A .第四象限角 B .第三象限角 C .第二象限角 D .第一象限角10.计算:000190sin 160sin 2350cos --=( )11.sin2·cos3·tan4的值( )A .小于0B .大于0C .等于0D .不存在12.如果4π<θ<2π,那么下列各式中正确的是( ) A .cos θ<tan θ<sin θ B .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ二、填空题13.tan2010°的值为 .14.若角α的终边经过P (-3,b ),且cos α=-53,则b =_________,sin α=_________. 15.已知点P (tan α,cos α)在第三象限,则角α的终边在第_________象限.16.已知()()()()29cos sin 4cos sin 3=+---++απαααπ,则αtan = . 三、解答题17.求cos(-2640°)+sin1665°的值.18.求值:sin(-1200°)·cos 1290°+cos(-1020°)·sin(-1050°)+tan 945°.19.比较下列各组数的大小:(1)sin 1和sin3π;(2)cos 7π4和cos 7π5;(3)tan 8π9和tan 7π9;(4)sin 5π和tan 5π.20.根据下列三角函数值,求作角α的终边,然后求角α的取值集合.(1)sin α=21;(2)cos α=21;(3)tan α=-1;(4)sin α>21.21.已知3sin αcos αsin αcos α-+= -1 ,求下列各式的值. (1)tan α;(2) sin 2α+sin αcos α+122.已知()413sin =+θπ,求)cos()cos()2cos()2cos(]1)[cos(cos )cos(θθππθπθθπθθπ-+++-+-++的值.23.已知sin(3π+α)=2sin(απ+23),求下列各式的值: (1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.答案1.D2.B3.B4.D ;5.A6.C7.D8.A9.D10.D.11.A12.D13.答案为:33. 14.答案为:±4 ±54 15.答案为:二16.答案为:0.2;17.答案为:221+-.18.19.解:(1)sin1<sin 3π;(2)cos 7π4>cos 7π5;(3)tan 8π9<tan 7π9;(4)sin 5π<tan 5π. 20.解:(1)已知角α的正弦值,可知MP =21,则P 点的纵坐标为21.所以在y 轴上取点(0,21),过这点作x 轴的平行线,交单位圆于P 1、P 2两点,则OP 1、OP 2是角α的终边,因而角α的取值集合为{α|α=2k π+6π,或α=2k π+6π5,k ∈Z }.如下图.21,0),过该点作x 轴的垂线,交单位圆于P 1、P 2两点,OP 1、OP 2是所求角α的终边,α的取值集合为{α|α=2k π±3π,k ∈Z }.如下图.的切线上取AT =-1,连结OT ,OT 所在直线与单位圆交于P 1、P 2两点,OP 1、α|α=2k π+4π3,或α=2k π+4π7,k ∈Z }={α|α=k π±43π,k ∈Z }.如下图.21的角的终边与单位圆的交点在劣弧P 1P 2上,所以所求角的范围如下图中的阴影部分,α的取值集合是{α|2k π+6π<α<2k π+6π5,k ∈Z}.21.21αtan 1tan αα2tan αcos αsin αcos cos αsin αα2sin αcos αsin αcos αsin cos αsin ααsin 11cos αsin ααsin 1cos αsin αα(2)sin 1tan α解得:1,1tan α3tan α有αo 2222222222222=+++=++⋅+=+++⋅+=+⋅+=+⋅+=-=+-22.答案为:32;23.。
【人教A版】高中数学必修4教学同步讲练第一章《任意角的三角函数》练习题(含答案)
第一章 三角函数1.2 任意角的三角函数1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.已知角α终边经过P ⎝ ⎛⎭⎪⎫32,12,则cos α等于( )A.12B.32C.33 D .±122.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM3.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A.⎝ ⎛⎭⎪⎫12,32B.⎝ ⎛⎭⎪⎫-12,32C.⎝⎛⎭⎪⎫-32,12D.⎝ ⎛⎭⎪⎫12,-324.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能5.函数y =11+sin x的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈ZC.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z二、填空题6.(2016·四川卷)sin 750°=________. 7.sin 1 485°的值为________.8.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4.10.已知P (-2,y )是角α终边上一点,且sin α=-55,求cosα与tan α的值.B 级 能力提升1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( )A .0B .1C .2D .-22.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________.3.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合.参考答案第一章 三角函数1.2 任意角的三角函数1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.已知角α终边经过P ⎝ ⎛⎭⎪⎫32,12,则cos α等于( )A.12B.32C.33 D .±12解析:由三角函数定义可知,角α的终边与单位圆交点的横坐标为角α的余弦值,故cos α=32. 答案:B2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM解析:因为78π是第二象限角,所以sin 78π>0,cos 78π<0,所以MP >0,OM <0, 所以MP >0>OM . 答案:D3.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A.⎝ ⎛⎭⎪⎫12,32B.⎝ ⎛⎭⎪⎫-12,32C.⎝⎛⎭⎪⎫-32,12D.⎝ ⎛⎭⎪⎫12,-32解析:设P (x ,y ),因为角α=2π3在第二象限,所以x =-12,y =1-⎝ ⎛⎭⎪⎫-122=32,所以P ⎝ ⎛⎭⎪⎫-12,32.答案:B4.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能解析:因为sin αcos β<0,α,β∈(0,π),所以sin α>0,cos β<0,所以β为钝角.答案:B 5.函数y =11+sin x的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈ZC.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z解析:因为1+sin x ≠0,所以sin x ≠-1. 又sin 3π2=-1,所以x ≠3π2+2k π,k ∈Z. 答案:A 二、填空题6.(2016·四川卷)sin 750°=________. 解析:sin 750°=sin(30°+2×360°)=sin 30°=12.答案:127.sin 1 485°的值为________.解析:sin 1 485°=sin(4×360°+45°)=sin 45°=22.答案:228.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.解析:作图如下,因为θ∈⎝ ⎛⎭⎪⎫π3,π2,所以θ >π4,根据三角函数线的定义可知AT >MP >OM .答案:AT >MP >OM 三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4.解:(1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 120°cos 30°+cos 60°sin 30°=32×32+12×12=1. (2)原式=cos ⎣⎢⎡⎦⎥⎤π3+(-4)×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π=cosπ3+tan π4=12+1=32. 10.已知P (-2,y )是角α终边上一点,且sin α=-55,求cos α与tan α的值.解:因为点P 到原点的距离为r =4+y 2,所以sin α=y4+y 2=-55,所以y 2+4=5y 2,所以y 2=1.又易知y <0,所以y =-1,所以r =5,所以cos α=-25=-255,tan α=-1-2=12.B 级 能力提升1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( )A .0B .1C .2D .-2解析:因为α是第三象限角,所以sin α<0,cos α<0, 所以|sin α|sin α-cos α|cos α|=-1-(-1)=0.答案:A2.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________.解析:因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0,所以点(-3cos θ,4cos θ)到原点的距离r =5|cos θ|=-5cos θ, 所以cos α=-3cos θ-5cos θ=35.答案:353.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合. 解:如图,作出单位圆.所以角α满足的集合为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪k π-π4<α<k π+π4,k ∈Z .。
【人教A版】必修4高中数学同步辅导与检测题:第一章1.2-1.2.1任意角的三角函数(含答案)
第一章 三角函数1.2 任意角的三角函数1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.已知角α终边经过P ⎝ ⎛⎭⎪⎫32,12,则cos α等于( ) A.12 B.32 C.33 D .±12解析:由三角函数定义可知,角α的终边与单位圆交点的横坐标为角α的余弦值,故cos α=32. 答案:B2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM 解析:因为78π是第二象限角, 所以sin 78π>0,cos 78π<0, 所以MP >0,OM <0,所以MP >0>OM .答案:D3.若α=2π3,则α的终边与单位圆的交点P 的坐标是( ) A.⎝ ⎛⎭⎪⎫12,32 B.⎝ ⎛⎭⎪⎫-12,32 C.⎝ ⎛⎭⎪⎫-32,12 D.⎝ ⎛⎭⎪⎫12,-32 解析:设P (x ,y ),因为角α=2π3在第二象限, 所以x =-12,y = 1-⎝ ⎛⎭⎪⎫-122=32, 所以P ⎝ ⎛⎭⎪⎫-12,32. 答案:B4.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能解析:因为sin αcos β<0,α,β∈(0,π),所以sin α>0,cos β<0,所以β为钝角.答案:B5.函数y =11+sin x的定义域为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈ZC.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z 解析:因为1+sin x ≠0,所以sin x ≠-1.又sin 3π2=-1, 所以x ≠3π2+2k π,k ∈Z. 答案:A二、填空题6.(2016·四川卷)sin 750°=________.解析:sin 750°=sin(30°+2×360°)=sin 30°=12. 答案:127.sin 1 485°的值为________.解析:sin 1 485°=sin(4×360°+45°)=sin 45°=22. 答案:228.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.解析:作图如下,因为θ∈⎝ ⎛⎭⎪⎫π3,π2,所以θ >π4,根据三角函数线的定义可知AT >MP >OM .答案:AT >MP >OM三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°;(2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4. 解:(1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 120°cos 30°+cos 60°sin 30°=32×32+12×12=1. (2)原式=cos ⎣⎢⎡⎦⎥⎤π3+(-4)×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π= cos π3+tan π4=12+1=32. 10.已知P (-2,y )是角α终边上一点,且sin α=-55,求cos α与tan α的值.解:因为点P 到原点的距离为r =4+y 2, 所以sin α=y 4+y 2=-55,所以y 2+4=5y 2, 所以y 2=1.又易知y <0,所以y =-1,所以r =5,所以cos α=-25=-255,tan α=-1-2=12. B 级 能力提升1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( ) A .0 B .1 C .2 D .-2解析:因为α是第三象限角,所以sin α<0,cos α<0,所以|sin α|sin α-cos α|cos α|=-1-(-1)=0. 答案:A2.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________.解析:因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0, 所以点(-3cos θ,4cos θ)到原点的距离r =5|cos θ|=-5cos θ,所以cos α=-3cos θ-5cos θ=35. 答案:353.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合. 解:如图,作出单位圆.所以角α满足的集合为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪k π-π4<α<k π+π4,k ∈Z .。
2020年高中数学 人教A版 必修4 同步作业本 《任意角的三角函数》(含答案解析)
2020年高中数学必修4 同步作业本 任意角的三角函数一、选择题1.cos(-17π3)的值为( ) A .-32 B.32 C.12 D .-122.已知P(-3,y)为角β的终边上的一点,且sin β=1313,则y 的值为( ) A .±12 B.12 C .-12D .±23.若α为第三象限角,则cos α|cos α|+2sin α|sin α|的值为( ) A .3 B .-3 C .1 D .-14.若tan α·cos α<0,则α在第几象限( )A .二、四B .二、三C .三、四D .一、四5.函数y=11+sin x的定义域为( ) A .{x|x≠3π2+2kπ,k ∈Z} B .{x|x≠π2+2kπ,k ∈Z} C .{x|x≠2kπ,k ∈Z}D .{x|x≠-3π2+2kπ,k ∈Z}6.如果角α的终边经过点P(sin 780°,cos(-330°)),则sin α=( ) A.32 B.12 C.22D .17.若-3π4<α<-π2,则sin α,cos α,tan α的大小关系是( ) A .sin α<tan α<cos αB .tan α<sin α<cos αC .cos α<sin α<tan αD .sin α<cos α<tan α二、填空题8.已知角α的终边经过点P(3a-9,a +2),且cos α≤0,sin α>0,则a 的取值范围是________.9.化简:5sin 90°+2cos 0°-3sin 270°+10cos 180°=__________.10.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为________.11.若角θ的终边过点P(-4a,3a)(a≠0),则sin θ+cos θ等于________.12.设α是第二象限角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则角α2是第________象限角.三、解答题13.已知角α的终边经过点P(3m-9,m +2),若m=2,求5sin α+3tan α的值.14.求下列各式的值:(1)tan 405°-sin 450°+cos 750°;(2)mtan 0-ncos 52π-psin 3π-qcos 112π+rsin(-5π).15.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合.16.已知1|sin α|=-1sin α,且lg (cos α)有意义. (1)试判断角α的终边所在的象限;(2)若角α的终边与单位圆相交于点M(35,m),求m 的值及sin α的值.答案解析1.答案为:C.解析:cos(-17π3)=cos(-6π+π3)=cos π3=12. 2.答案为:B.解析:r=3+y 2,sin β=y r =y 3+y 2=1313>0,解得y=12.3.答案为:B.解析:因为α为第三象限角,所以sin α<0,cos α<0,所以cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-3.4.答案为:C.解析:由tan α·cos α<0,知tan α>0且cos α<0或tan α<0且cos α>0. 若tan α>0且cos α<0,则α在第三象限,若tan α<0且cos α>0,则α在第四象限.5.答案为:A.解析:∵1+sin x≠0,∴sin x≠-1.又sin 3π2=-1,∴x≠3π2+2kπ,k ∈Z.6.答案为:C.解析:因为sin 780°=sin(2×360°+60°)=sin 60°=32, cos(-330°)=cos(-360°+30°)=cos 30°=32,所以P(32,32),sin α=22.7.答案为:D.解析:如图,在单位圆中,作出-3π4<α<-π2内的一个角及其正弦线、余弦线、正切线. 由图知,|OM|<|MP|<|AT|,考虑方向可得MP <OM <AT ,即sin α<cos α<tan α.8.答案为:(-2,3];解析:由⎩⎪⎨⎪⎧ cos α≤0,sin α>0,得⎩⎪⎨⎪⎧ 3a -9≤0,a +2>0,∴-2<a≤3.即a 的取值范围是(-2,3].9.答案为:0;解析:sin 90°=1,cos 0°=1,sin 270°=-1,cos 180°=-1.∴原式=5×1+2×1-3×(-1)+10×(-1)=0.10.答案为:π4,54π; 解析:由题意知,角θ的终边应在第一、三象限的角平分线上.11.答案为:±15; 解析:若a >0,因为r=|OP|=-4a 2+3a 2=5a ,所以sin θ=y r =3a 5a =35,cos θ=x r =-4a 5a =-45,所以sin θ+cos θ=35-45=-15. 若a <0,因为r=|OP|=-5a ,所以sin θ=y r =-35,cos θ=x r =45, 所以sin θ+cos θ=15.综上,sin θ+cos θ=±15.12.答案为:三;解析:因为角α是第二象限角,所以2kπ+π2<α<2kπ+π(k∈Z), 所以kπ+π4<α2<kπ+π2(k ∈Z), 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角, 又因为⎪⎪⎪⎪⎪⎪cos α2=-cos α2,即cos α2<0,所以α2是第三象限角. 13.解:因为m=2,所以P(-3,4),所以x=-3,y=4,r=5.所以sin α=y r =45,tan α=y x =-43. 所以5sin α+3tan α=5×45+3×(-43)=0.14.解:(1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°) =tan 45°-sin 90°+cos 30° =1-1+32=32. (2)原式=m×0-n·cos ⎝ ⎛⎭⎪⎫2π+π2-p·sin(2π+π)-q·cos(4π+32π)+r·sin(-6π+π) =-n·cos π2-p·sin π-q·cos 32π+r·sin π =-n×0-p×0-q×0+r×0=0.15.解:如图,作出单位圆.所以角α满足的集合为⎩⎨⎧⎭⎬⎫αkπ-π4<α<kπ+π4,k ∈Z .16.解:(1)由1|sin α|=-1sin α,可知sin α<0, 所以α是第三或第四象限角或y 轴的非正半轴上的角.由lg(cos α)有意义可知cos α>0,所以α是第一或第四象限角或x 轴的非负半轴上的角.综上可知角α的终边在第四象限.(2)因为点M(35,m)在单位圆上, 所以(35)2+m 2=1,解得m=±45. 又由(1)知α是第四象限角,所以m <0,所以m=-45. 由正弦函数的定义可知sin α=-45.。
人教A版必修四高一数学同步练习—1.2任意角的三角函数(含解析).docx
高一数学同步练习—1.2任意角的三角函数(含解析)一、选择题:共10题每题5分共50分1.已知扇形的周长是3 cm,面积是cm2,则扇形的圆心角的弧度数是A.1B.1或4C.4D.2或42.已知角的终边上一点A(2,2),则的大小为A. B.C. D.3.下列转化结果错误的是A.67°30'化成弧度是B.-化成度是-600°C.-150°化成弧度是D.化成度是15°4.下列说法正确的是A.第二象限的角比第一象限的角大B.若sinα=,则α=C.三角形的内角是第一象限角或第二象限角D.不论用角度制还是弧度制度量一个角,它们与扇形所对应的半径的大小无关5.在直径为10cm的定滑轮上有一条弦,其长为6cm,P是该弦的中点,该滑轮以每秒5弧度的角速度旋转,则点P在5秒内所经过的路程是A.10 cmB.20 cmC.50 cmD.100 cm6.已知角α是锐角,则2α是A.第一象限角B.第二象限角C.小于180°的正角D.第一或第二象限角7.-2 014°角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角8.如图所示,终边落在阴影部分的角的集合是A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|k·360°-45°≤α≤k·360°+120°,k∈Z}D.{α|k·360°+120°≤α≤k·360°+315°,k∈Z}9.若,,,则下列关系中正确的是A. B.C. D. ⫋ ⫋10.在0到2π范围内,与角终边相同的角是A. B. C. D.二、填空题:共6题每题4分共24分11.30°角的始边与x轴的非负半轴重合,把终边按顺时针方向旋转2周,所得角是 . 12.已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为_______13.已知扇形的圆心角为120°,半径为cm,则此角形的面积为 .14.已知,且与120°角终边相同,则______.15.有一扇形其弧长为6,半径为3,则该弧所对弦长为 ,扇形面积为 .16.弧长为的扇形的圆心角为,则此扇形的面积为;三、解答题:共5题共76分17.(本题14分)已知扇形的圆心角为120°,半径长为6.(1)求的弧长;(2)求扇形的面积.18.(本题14分)已知集合,,,试确定M、N、P之间满足的关系.19.(本题14分)已知180°<+<240°,−180°<<60°,求2的取值范围. 20.(本题17分)如图,圆周上的点A依逆时针方向做匀速圆周运动.已知A点1分钟转过的弧度数为θ(0<θ<π),2分钟到达第三象限,14分钟后回到原来的位置,求θ.21.(本题17分)已知α是第三象限角,则2α,各是第几象限角?参考答案1.B【解析】无【备注】无2.C【解析】满足题中条件的角有无数多个,其中一个角为45°,故C正确.【备注】无3.C【解析】67°30'=67.5× rad= rad,A结果正确;-=-×180°=-600°,B结果正确;-150°=-150× rad=- rad,C结果错误;=×180°=15°,D结果正确.【备注】无4.D【解析】本题主要考查三角函数中角的定义,对角的概念的理解,A第二象限的角不一定大于第一象限的角,例如第一象限的角,第二象限的角为,;B选项sinα=时,或;C选项,三角形的内角可以为,不属于任何象限; D选项是正确的.【备注】无5.D【解析】本题考查弧长公式的应用.点P在5秒内所经过的弧度为25弧度,又点P到圆心的距离为4,所以点P经过的弧长为100 cm .【备注】根据弧度的定义,弧长6.C【解析】因为α是锐角,所以,所以,故选C.【备注】无7.B【解析】-2 014°=-6×360°+146°,所以-2 014°角与146°角的终边相同,而146°角为第二象限角,所以-2 014°角是第二象限角.【备注】无8.C【解析】由图可知,终边落在阴影部分的角的取值范围为k·360°-45°≤α≤k·360°+120°,k∈Z,故选C.【备注】该题易出现的问题是忽略角的方向,不能准确表示两个边界角.9.D【解析】集合A为终边在x轴非负半轴上角的集合;集合B为终边在x轴上角的集合;集合C 为终边在坐标轴上角的集合.因此⫋⫋.【备注】无10.D【解析】52,33πππ-=-+∴在0到2π范围内,与角3π-终边相同的角时53π.故选D.【备注】无11.-690°【解析】无【备注】无12.4 cm 2【解析】本题主要考查扇形的面积的计算,设扇形的半径为,可知【备注】无13.【解析】(1)设扇形弧长为l,因为,所以所以【备注】无14.【解析】题主要考查角的概念.由与120°角终边相同,故,,∵,∴.又,∴,此时.【备注】无15.,9【解析】本题主要考查弧长公式的应用以及圆的性质的应用.由弧长公式可得扇形的圆心角为=2,由圆的性质可得弦长等于,由扇形的面积公式可得S=【备注】无16.无【解析】本题主要考查的知识点是扇形的面积.根据题意,结合扇形的弧长公式弧长为的扇形的圆心角为,那么可知半径为12,那么可知此扇形的面积为,故可知答案为【备注】无17.解:(1)∵,,∴..(2)扇形【解析】本题主要考查扇形面积公式和弧长公式. (1)利用弧长公式,可得结论;(2)利,可得扇形OAB的面积.用)扇形【备注】无18.解法1:集合,或或,或,.解法2:,,,.【解析】无【备注】无19.解:设2α−β=A(α+β)+B(α−β),则2α−β=(A+B)α+(A−B)β,,解得∵180°<α+β<240°,∴−180°<α−β<−60°,.∴−180°<2α−β<30°即2α−β的取值范围为(−180°,30°).【解析】无【备注】无20.由题意,A点2分钟转过的弧度数为2θ,且π<2θ<,由于14分钟后回到原位,∴14θ=2kπ(k∈Z),得θ=(k∈Z),又<θ<,∴θ=或.【解析】无【备注】无21.由题意知k·360°+180°<α<k·360°+270°(k∈Z),因此2k·360°+360°<2α<2k·360°+540°(k∈Z),即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z),故2α是第一象限角或第二象限角或终边在y轴非负半轴上的角.又k·180°+90°<<k·180°+135°(k∈Z),当k为偶数时,令k=2n(n∈Z),则n·360°+90°<<n·360°+135°(n∈Z),此时,是第二象限角.当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<<n·360°+315°(n∈Z),此时,是第四象限角. 因此是第二象限角或第四象限角.【解析】无【备注】无。
新课标人教A版必修四同步练习及答案(48页)
1.1任意角和弧度制班级________姓名________学号________得分________一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( ) A.,398 -38 B.,398 -142 C.,398 - 1042 D.,14210422.集合α{=A ︱90⋅=k α,36 -}Z k ∈,β{=B ︱180- 180<<β},则B A 等于 A.,36{ - 54} B.,126{ -144} ( ) C.,126{ -,36 -,54144} D.,126{ -54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角}, θ{=D ︱θ为小于90的正角},则 ( ) A.B A = B.C B = C.C A = D.D A =4.若角α与β终边相同,则一定有 ( ) A. 180=+βα B. 0=+βαC. 360⋅=-k βα,Z k ∈D. 360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3π B.3π- C.2π D.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( ) A.B A = B.B A ⊇ C.B A ⊆ D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于 180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.(1)终边在x 轴的非负半轴上的角的集合__________; (2)终边在坐标轴上的角的集合__________;(3)终边在第一、二象限及y 轴上的角的集合__________; (4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________.14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又720-<a < 0,求角a .16.已知角45=a ,(1)在区间 720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同?18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数班级________姓名________学号________得分________一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( ) A.αsin B.αcos C.αtan D.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52 B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( )A.34B.43C.34±D.43±5.函数x x y cos sin -+=的定义域是 ( ) A.()Z k k k ∈+,)12(,2ππ B.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________. 三、解答题(第15题20分,其余每题10分,共40分) 13.求43π的角的正弦,余弦和正切值.14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式班级________姓名________学号________得分________一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23±D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23-C.m 32D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21 B.21- C.23 D.23- 4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa +C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A.33B.33-C.3D.-37.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0 B.1C.1-D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A .等腰三角形 B .直角三角形 C .等腰或直角三角形 D .等腰直角三角形二、填空题(每题5分,共20分)9.求值:︒2010tan 的值为 .10.若1312)125sin(=-α,则=+)55sin( α . 11.=+++++76cos 75cos 74cos 73cos 72cos7cos ππππππ . 12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 . 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质班级________姓名________学号________得分________一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( ) A.[]1,0 B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ2.函数)652cos(3π-=x y 的最小正周期是 ( ) A52π B 25π C π2 D π5 3.x x y sin sin -=的值域是 ( ) A ]0,1[- B ]1,0[ C ]1,1[- D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 1 B22 C.0 D.22-7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( ) A.8 B.6 C.8± D.48.函数)32sin(π+=x y 的图象 ( )A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫⎝⎛-0,6π对称 C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间;(2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用班级________姓名________学号________得分________一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω的一个可能值为 ( ) A.3 B.2 C.31 D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )A.向左平移3π个单位 B.向右平移3π个单位 C.向左平移6π个单位 D.向右平移6π个单位4.函数1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x f D.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为 ( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: (1)有0)()(31==x f x f 可得21x x -是π的整数倍; (2)表达式可改写为)62cos(4)(π-=x x f ;(3)函数的图像关于点)0,6(π-对称;(4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y , (1)用“五点法”画函数的图像;(2)说出此图像是由x y sin =的图像经过怎样的变换得到的; (3)求此函数的周期、振幅、初相;(4)求此函数的对称轴、对称中心、单调递增区间.12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,(1)求它的定义域; (2)求它的单调区间; (3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷班级________姓名________学号________得分________一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( ) A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.23 3.函数x y sin 1-=的最大值为 ( ) A.1 B.0 C.2 D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,0 8.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________.10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值.14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫ ⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷班级________姓名________学号________得分________一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin(-;②)2200cos( -;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34- C.43 D.345.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( ) A.1sin2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=- 7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-=x C 4π=x D 8π=x9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为 π的函数的个数是 ( ) A.1个 B 2个 C 3个 D 4个10.方程1sin 4x x π=的解的个数是 ( ) A 5 B 6 C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( )A.)45,()2,4(ππππ B.),4(ππC.)45,4(ππD.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是 ( )A.2π B 4π- C 4π D 34π二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15 若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数 其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π- (2))945cos( -18.比较大小:(1) 150sin ,110sin ; (2) 200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算班级________姓名________学号________得分________一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.两个孤立点 D.一个圆2.下列说法中,正确的是 ( ) A.若b a >,则b a > B.若b a =,则b a = C.若b a =,则a ∥b D.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( ) A.相等向量 B.平行向量 C.模相等的向量 D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, 则c b a ++=( ) A.0 B.3 C.22+ D.225.已知5,8==AC AB ,则BC 的取值范围是 ( ) A.[]8,3 B.()8,3 C.[]13,3 D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是 ( ) A.CA BC AB =+ B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =,则b a += ( ) A.7 B.5 C.3 D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( ) A.向量a 与b 反向,且b a >,则向量b a +与a 的方向相同 B.向量a 与b 反向,且b a <,则向量b a +与a 的方向相同 C.向量a 与b 同向,则向量b a +与a 的方向相同 D.向量a 与b 同向,则向量b a +与b 的方向相同 二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=60,向量1=AB ,则=+CD BC __________. 12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分) 13.化简:(1)FA BC CD DF AB ++++.(2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算班级________姓名________学号________得分________一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( ) A.-=AC AB BC B.-=AD BD AB C.-=BD AC BC D.-=BD CD BC2.下列各式中结果为O 的有 ( ) ①++AB BC CA ②+++OA OC BO CO③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( ) ①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( ) A.1 B.1- C.1± D.06.在△ABC 中,向量BC 可表示为 ( ) ①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =A.a b +B.b a -C.-c bD.-b c ( )8.当C 是线段AB 的中点,则AC BC += ( ) A.AB B.BA C.AC D.O 二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________. 11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分)13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值? 14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 表示DE 、BF 、CG15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?AGE F CBD2.3平面向量的基本定理及坐标表示班级________姓名________学号________得分________一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a则向量b a 2321-等于 ( )A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(-2.若),3,1(),4,2(==AC AB 则BC 等于 ( ) A.)1,1( B.)1,1(-- C.)7,3( D.)7,3(--3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 A.21e e +和21e e - B.2123e e -和1264e e - ( ) C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且b a //,则实数m 的值等于 ( ) A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为 A.13- B.9 C.9- D.13 ( ) 6.已知平面向量),,2(),2,1(m b a -==且b a //,则b a 32+等于 ( ) A.)10,5(-- B.)8,4(-- C.)6,3(-- D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( ) A.若实数21,λλ使02211=+e e λλ,则021==λλ B.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量a ,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( ) A.1,2- B.2,1- C.1,2- D.2,1-9.已知),3,2(),2,1(-==b a 若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm等于 A.21-B.2C.21D.2- ( ) 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,b BD a AC == 则AF 等于 ( ) A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且b a //,则=x __________12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π,且4=a ,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴, y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求 y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A , D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足 c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例班级________姓名________学号________得分________一、选择题(每题5分,共50分)⒈若b a ,是两个单位向量,那么下列四个结论中正确的是 ( ) A.b a = B.1=⋅b a C.22b a≠ D.b a =⒉下面给出的关系始终正确的个数是 ( ) ①00=⋅a ②a b b a ⋅=⋅ ③22a a = ④()()c b a c b a ⋅⋅=⋅⋅ ⑤b a b a ⋅≤⋅ A.0 B.1 C.2 D.3⒊对于非零向量b a ,,下列命题中正确的是 ( ) A.000==⇒=⋅b a b a 或 B. b a //a ⇒在b 上的投影为a C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅⒋下列四个命题,真命题的是 ( ) A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形; B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形; C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ; D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB . ⒌设e a ,8=为单位向量,a 与e 的夹角为,60o则a 在e 方向上的投影为 ( )A.34B.4C.24D.238+⒍若向量b a ,满足a b a ,1==与b 的夹角为120,则=⋅+⋅b a a a ( )A.21 B.21- C.23 D.23- ⒎已知a b a ,6,31==与b 的夹角为,3π则b a ⋅的值为 ( )A.2B.2±C.1D.1±⒏已知()(),5,5,0,3-==b a 则a 与b 的夹角为 ( )A.4π B.3π C.43π D.32π ⒐若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆ 的形状为 ( ) A.正三角形 B.直角三角形 C.等腰三角形 D.A ,B ,C 均不是 10.设向量()(),1,,2,1x b a ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( ) A.25 B.2 C.1 D.27二、填空题(每题5分,共20分)11.已知向量(),2,1,3==b a 且,b a ⊥则a 的坐标是_____________. 12.若(),8,6-=a 则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________. 14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====+-c b a __________. 三、解答题(每题10分,共30分)15.已知()()61232,3,4=+⋅-==b a b a b a ,求a 与b的夹角θ.16.已知,4,3==b a 且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷班级________姓名________学号________得分________一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA ==,,d OD c OC ==则下列运算正确的是( )A.0=+++d c b a B.0=-+-d c b a C.0 =--+d c b a D.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( ) A.1- B.9 C.9- D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( )A.34-B. 32-C.21-D.23- 5.下列命题中真命题是 ( )A.000==⇒=⋅b a b a 或 B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D的坐标为 ( ) A.)2,2( B.)0,6(- C.)6,4( D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e b --=共线的等价条件是 A.23=λ B.32=λ C.32-=λ D.23-=λ ( )8.下面给出的关系式中正确的个数是 ( )① 00 =⋅a ②a b b a ⋅=⋅ ③22a a = ④)()(c b a c b a⋅=⋅ ⑤||||b a b a ⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( ) ①一个平面内只有一对不共线的向量可作为基底; ②两个非零向量平行,则他们所在直线平行;BACOD③零向量不能作为基底中的向量; ④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P 延长线上,使212PP P P =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(-11.若b a k b a b a b a 432,1||||-+⊥==与且也互相垂直,则k 的值为 ( ) A.6- B.6 C.3 D.3- 二、填空题(每题5分,共15分)12.已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a,则b a 与的夹角为__________.14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________. 三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a,求(1)b a b a +⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷班级________姓名________学号________得分________一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+ ②AC BE BC EA +=- ③ED AB EA AD +=+ ④0AB BC CD DE EA ++++= ⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,则=++c b a ( ) A.0 B.3 C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35-B.-59C.53-D.95-4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为 A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( ) A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a ,a =10,b =8,则向量a 与b 的夹角为 ( ) A.60B. 60-C.120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( )A.4π B.43π C.3πD.32π9.若b a b a⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为 ( )A.13B.513 C.565 D.65NA BDM C11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( ) A.平行四边形 B.菱形 C.等腰梯形 D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( ) A.)11,2(-B.)3,34(C.(3,32) D.)7,2(-二、填空题(每题5分,共 20分)13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b的夹角为__________.14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________. 三、解答题(第17题10分,其余每题12分,共70分)17.如图,ABCD 中,点M 是AB 的中点, 点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线.18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC ,(1)求点E 、F 及向量EF 的坐标; (2)求证:EF ∥AB .19.已知向量2,4==b a ,a 与b 夹角为120,求:(1)b a ⋅;(2))()2(b a b a +⋅-; (3)b a 23+.20.已知)2,3(),2,1(-==b a,当k 为何值时:(1)b a k +与b a 3-垂直; (2)b a k +与b a3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期;(2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(2)若13=+OC OA ,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式班级________姓名________学号________得分________一、选择题(每题5分,共45分)1.345cos 的值等于 ( )A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4c os(πθ-的值为 ( ) A.2627-B.2627C.26217-D.26217 4.已知53)4sin(=-x π,则x 2s i n 的值为 ( )A.2519B.2516C.2514D.2575.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( )A.45πB.4πC.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4- 9.函数56sin2sin 5cos2cos )(ππx x x f -=的单调递增区间是 ( )A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分) 14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ.(2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=, (1)求)(x f 的最大值及最小正周期; (2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换班级________姓名________学号________得分________一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A .23 B .23- C .21 D .21-2.下列各式中,最小的是 ( ) A .40cos 22B .6cos 6sin 2 C .37sin 50cos 37cos 50sin - D .41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( )A .2πB .πC .π2 D .π44.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A .21B .23 C .21- D .3-5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫⎝⎛+απ232cos ( )A .97-B .31-C .31D .976.若函数x x y tan 2sin =,则该函数有 ( ) A .最小值0,无最大值 B .最大值2,无最小值C .最小值0,最大值2D .最小值2-,最大值2 7.若παπ223<<,则=++α2c o s 21212121 ( ) A .2cosαB .2sinαC .2cosα- D .2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A .1 B .1- C .21D .21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.510sin ,sin ,510αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________. 三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22.15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值.16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期; (2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷班级________姓名________学号________得分________一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( )A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( ) A.2 B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系 A.b a = B.b a > C.b a < D.b a ≠ ( ) 4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( )A.1B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为 ( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+= ( )A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是 A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( ) A.2 B.4 C.8 D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( ) A.2 B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( )A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π 11.已知A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是 A.97 B.23 C.1832+ D.183724+ ( ) 12.若22)4sin(2cos -=-παα,则ααs i n c o s +的值为 ( )A.27-B.21-C.21D.27二、填空题(每题5分,共20分) 13.已知32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________.14.函数)2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________.15.已知xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.16.若2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.(1)已知54cos =α,且παπ223<<,求2tan α.(2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值.18.已知135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-,求 )cos(βα-的值.19.已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22,求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合; (2)函数)(x f 的单调增区间.20.已知α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根, 求:(1)βα+的值;(2))cos(βα-的值.21.已知函数a x x x x f ++-++=2cos )62sin()62sin()(ππ(a 为实常数), (1)求函数)(x f 的最小正周期;(2)如果当⎥⎦⎤⎢⎣⎡∈2,0πx 时,)(x f 的最小值为2-,求a 的值.18.已知函数R x xx x x f ∈--++=,2cos 2)6sin()6sin()(2ωπωπω(其中0>ω), (1)求函数)(x f 的值域;(2)若函数)(x f y =的图像与直线1-=y 的两个相邻交点间的距离为2π,求函数 )(x f y =的单调增区间.参考答案 1.1任意角和弧度制一、选择题1-5CCDCC 6-10CADBA 二、填空题11. 120{- 60,- 0, 60, 120,}12.(1)α{︱360⋅=k α},Z k ∈ (2)α{︱90⋅=k α},Z k ∈(3)α{︱360⋅k <<α180360⋅+k },Z k ∈ α{︱360⋅=k α270+},Z k ∈(4)α{︱ 180⋅=k α45+},Z k ∈ 13.2 14.一或第二 三、解答题15.解:∵120=α360⋅+k Z k ∈, 720,-0<<α ∴ 240-=α 600,16.解:(1) 45=β360⋅+k Z k ∈,720-≤ 45 360⋅+k0<,则2-=k 或1-=k675-=β或315-=β(2)},45)1({},,45)12({Z k k x x N Z k k x x M ∈+==∈+==所以N M ⊂17.因为,,23Z k k ∈+=ππθ所以Z k k ∈+=,3293ππθ所以在]2,0[π内与3θ终边相同的角有:913,97,9πππ 18.因为302=+R l ,所以4225)215(15)230(212122+--=+-=-==R R R R R lR S当215=R 时,扇形有最大面积4225,此时2,15230===-=R lR l α 1.2任意角的三角函数一、选择题1-4ABAB 5-8BBAB 二、填空题。
高中数学人教A版 必修4 各章节同步练习+章节测试汇编300页含答案
高中数学人教A版必修4 各章节同步练习(AB卷)+章节测试汇编目录【同步练习】人教A版必修4数学《角和弧度制》同步练习(A)含答案【同步练习】人教A版必修4数学《角和弧度制》同步练习(B)含答案【同步练习】人教A版必修4数学《任意角的三角函数》同步练习(A)含答案【同步练习】人教A版必修4数学《任意角的三角函数》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数的诱导公式》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数的诱导公式》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数的图象与性质》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数的图象与性质》同步练习(B)含答案【同步练习】人教A版必修4数学《函数y=Asin(ωx+φ)的图象》同步练习(A)含答案【同步练习】人教A版必修4数学《函数y=Asin(ωx+φ)的图象》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数模型的简单应用》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数模型的简单应用》同步练习(B)含答案人教A版必修4高中数学第一章三角函数综合测试卷(A)含答案人教A版必修4高中数学第一章三角函数综合测试卷(B)含答案【同步练习】人教A版必修4数学《平面向量的实际背景及基本概念》同步练习(A)含答案【同步练习】人教A版必修4数学《平面向量的实际背景及基本概念》同步练习(B)含答案【同步练习】人教A版必修4《平面向量的基本定理》同步练习(A)含答案【同步练习】人教A版必修4《平面向量的基本定理》同步练习(B)含答案【同步练习】人教A版必修4《平面向量的数量积》同步练习(A)含答案【同步练习】人教A版必修4《平面向量的数量积》同步练习(B)含答案【同步练习】人教A版必修4《平面向量应用举例》同步练习(A)含答案【同步练习】人教A版必修4《平面向量应用举例》同步练习(B)含答案人教A版必修4高中数学第二章平面向量综合测试卷(A)含答案人教A版必修4高中数学第二章平面向量综合测试卷(B)含答案【同步练习】人教A版必修4《简单的三角恒等式》同步练习(A)含答案【同步练习】人教A版必修4《简单的三角恒等式》同步练习(B)含答案【同步练习】人教A版必修4《两角和与差的正弦、余弦和正切公式》同步练习(A)含答案【同步练习】人教A版必修4《两角和与差的正弦、余弦和正切公式》同步练习(B)含答案人教A版必修4《第三章三角恒等变换》综合测试卷(A)含答案人教A版必修4《第三章三角恒等变换》综合测试卷(B)含答案专题一任意角和弧度制测试卷(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.与60-°的终边相相同的角是 ( ) A.3πB. 23πC. 43πD. 53π【答案】D【解析】因为π603o -=-, π5π2π33-=-,所以与60-°的终边相相同的角是5π3;故选D. 2.460是( )A. 第一象限B. 第二象限C. 第三象限D. 第五象限【答案】B【解析】由题意得, 460360100︒=︒+︒,因此460与100︒在同一象限第二象限,故选B. 3.下列角终边位于第二象限的是( )A. 420B. 860C. 1060D. 1260【答案】B【解析】00042036060=+终边位于第一象限, 0008602360140=⨯+终边位于第二象限,选B. 4.已知圆的半径为π,则060圆心角所对的弧长为( )A. 3πB. 23πC. 23πD. 223π【答案】C【解析】60化为弧度制为3π,由弧长公式有233l r ππαπ==⨯=,选C.5.终边在第二象限的角的集合可以表示为( ) A. 00{|90180}αα<<B. 0{|270360180360,}k k k Z αα-+⋅<<-+⋅∈ C. 0{|90180180180,}k k k Z αα+⋅<<+⋅∈ D. 0{|270180180180,}k k k Z αα-+⋅<<-+⋅∈ 【答案】B6.下列说法中, ①与角5π的终边相同的角有有限个; ②圆的半径为6,则15 的圆心角与圆弧围成的扇形面积为23π;正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个 【答案】B【解析】①错;②22113156221802S r ππα==⨯⨯⨯=,对;因而正确的个数为0.选B.7.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )【答案】B【解析】由扇形面积公式12S lr =,则4l =,又422l r α===.故本题答案选B . 8.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A. B.C.D. A=B=C【答案】B【解析】 锐角必小于,故选B.9.已知α是锐角,则2α是( )A. 第一象限角B. 第二象限角C. 小于180的正角D. 第一或第二象限角 【答案】C【解析】α是锐角,∴()20απ∈,,∴2α是小于180的正角.10.扇形的圆心角为 )A.54πB. πC. 3D.29 【答案】A【解析】扇形的面积2211552264S R ππθ==⨯⨯=11.终边在直线y x =上的角的集合是( ) A. {|,}4k k Z πααπ=+∈ B. {|2,}4k k Z πααπ=+∈C. 3{|,}4k k Z πααπ=+∈D. 5{|2,}4k k Z πααπ=+∈【答案】A【解析】与α终边在一条直线上的角的集合为{|,}k k Z ββαπ=+∈,∴与4π终边在同一直线上的角的集合是{|,}4a k k Z παπ=+∈.故选A.12.已知α为第三象限角,则2α所在的象限是( )A. 第一或第三象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限 【答案】D第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.的角属于第_________象限.【答案】二 【解析】在第二象限,所以的角属于第二象限14.53π-的角化为角度制的结果为__________, 135-的角化为弧度制的结果为__________.【答案】 300- 34π- 【解析】由题意得, 5518030033π-=-⨯︒=-︒, 135- 31351804ππ=-︒⨯=-︒ .15.已知扇形的半径为4cm ,弧长为12cm ,则扇形的圆周角为 ;【答案】3 【解析】3412===r l α 16.已知扇形的周长为10cm ,面积为42cm ,则扇形的中心角等于__________(弧度). 【答案】12【解析】由题意2108{{ 81r l l lr r +==⇒==或2{ 4l r ==,则圆心角是12l r α==,应填答案12.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.写出(0)y x x =±≥所夹区域内的角的集合。
新人教A版高中数学必修四任间角三角函数同步练习习题(含答案解析)
若x x sin |sin |+|cos |cos x x +x x tan |tan |=-1,则角x 一定不是( )A .第四象限角B .第三象限角C .第二象限角D .第一象限角解:D 由于第一象限中sin ,cos ,tan θθθ都为正,故x x sin |sin |+|cos |cos x x +x x tan |tan |=3 所以角x 一定不是每一象限的角sin2·cos3·tan4的值( )A .小于0B .大于0C .等于0D .不存在 解:B 15718,211436,317154,422912''''=∴===所以sin 20,cos30,tan 40><>,故sin 2cos3tan 40⋅⋅>若θ是第二象限角,则( )A .sin2θ>0 B .cos 2θ<0 C .tan 2θ>0 D .cot 2θ<0 解:C22,2422k k k k ππθππθππππ+<<+∴+<<+即得2θ是第一象限或第三象限的角 故选C已知角α的终边在直线y =-3x 上,则10sin α+3sec α=_________.解: 0 在角α的终边上任取一点(,3)(0)x x x -≠,则|r x == 所以310sin 10y r α===,sec rx α=== 故 10sin 3sec 10(010sin 3sec 10010αααα+=+=+=⋅-=或 若tan 0,cos 0αα><,则α是A .第一象限角B .第二象限角C .第三象限角D .第四象限角解: A ,tan 0cos 0ααααα><由得角在第一、三象限由得角在第一、四象限,故角在第一象限。
最新新人教A版高中数学必修四 任意角和弧度制同步练习(含答案解析)
任意角和弧度制班级姓名学号得分一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角地是 ( )(A) 90°-α(B) 90°+α(C)360°-α(D)180°+α2.终边与坐标轴重合地角α地集合是( )(A){α|α=k·360°,k∈Z}(B){α|α=k·180°+90°,k∈Z}(C){α|α=k·180°,k∈Z}(D){α|α=k·90°,k∈Z}3.若角α、β地终边关于y轴对称,则α、β地关系一定是(其中k∈Z) ( )(A) α+β=π(B) α-β=(C)2α-β=(2k +1)π (D) α+β=(2k +1)π4.若一圆弧长等于其所在圆地内接正三角形地边长,则其圆心角地弧度数为 ( ) (A)3π (B)32π (C)3(D)25.将分针拨快10分钟,则分针转过地弧度数是 ( )(A)3π (B)-3π (C)6π (D)-6π*6.已知集合A ={第一象限角},B ={锐角},C ={小于90°地角},下列四个命题:①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确地命题个数为 ( )(A)0个 (B)2个 (C)3个 (D)4个 二.填空题7.终边落在x 轴负半轴地角α地集合为 ,终边在一、三象限地角平分线上地角β地集合是 .8. -23πrad化为角度应为 .129.圆地半径变为原来地3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角地倍.*10.若角α是第三象限角,则α角地终边2在,2α角地终边在 .三.解答题11.试写出所有终边在直线x=上地角地集合,并指-y3出上述集合中介于-1800和1800之间地角.12.已知0°<θ<360°,且θ角地7倍角地终边和θ角终边重合,求θ.13.已知扇形地周长为20 cm,当它地半径和圆心角各取什么值时,才能使扇形地面积最大?最大面积是多少?*14.如下图,圆周上点A依逆时针方向做匀速圆周运动.已知A 点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来地位置,求θ.§1.1任意角和弧度制一、CDDCBA二、7.{x |x =k ·3600+1800, k ∈Z }, {x |x =k ·1800+450,k ∈Z } ; 8.-345°; 9. 31;10.第二或第四象限, 第一或第二象限或终边在y 轴地正半轴上三、11.{ α|α=k ·3600+1200或α=k ·3600+3000, k ∈Z } -60° 120°12.由7θ=θ+k ·360°,得θ=k ·60°(k ∈Z )∴θ=60°,120°,180°,240°,300°13.∵l =20-2r ,∴S =21lr =21(20-2r )·r =-r 2+10r =-(r -5)2+25∴当半径r =5 cm 时,扇形地面积最大为25 cm 2,此时,α=r l =55220⨯-=2(rad)14.A 点2分钟转过2θ,且π<2θ<23π,14分钟后回到原位,∴14θ=2k π,θ=72πk ,且2π<θ<43π,∴ θ=74π或75π。
人教A版数学必修四习题:第一章三角函数1.1任意角和弧度制分层训练进阶冲关含答案
分层训练·进阶冲关A组基础练(建议用时 20 分钟)1.射线 OA绕端点 O逆时针旋转 120°抵达 OB地点 , 由 OB地点顺时针旋转 270°抵达 OC地点 , 则∠ AOC= ( B )A.150°B.- 150°C.390°D.- 390°2.经过一小时 , 时针转过了 ( B )A. radB.-radC.radD.-rad3.以下说法正确的个数是( A )①小于 90°的角是锐角②钝角必定大于第一象限的角③第二象限的角必定大于第一象限的角④始边与终边重合的角为0°A.0B.1C.2D.34.以下各角中 , 与 60°角终边同样的角是 ( A )A.- 300°B.- 60°C.600°D.1 380°5.已知扇形的周长是 6 cm, 面积是 2 cm2, 则扇形的圆心角的弧度数是( C )A.1B.4C.1或4D.2或46. 已知 2 弧度的圆心角所对的弦长为2, 那么这个圆心角所对的弧长是( C )A.2B.sin 2C.D.2sin 17.已知两角的和是 1 弧度 , 两角的差是 1°, 则这两个角为8.把- π表示成θ+2kπ(k ∈ Z) 的形式 , 使| θ| 最小的θ值是9. 已知α是第二象限角 , 且| α+2| ≤ 4, 则α的会合是 (- 1.5 π,- π)∪(0.5 π,2] .10. 已知会合 A={x|2k π≤ x≤2kπ+π,k ∈ Z}, 会合 B={x|-4 ≤x≤4}, 则A∩B=[-4,-π]∪[0,π].11.已知α=1, β=60°, γ= , δ=- , 试比较这四个角的大小 .【分析】由于β=60°=>1>-,因此β= γ> α> δ.12.在座标系中画出以下各角 :(1)- 180°.(2)1 070°.【分析】在座标系中画出各角如下图 .B组提高练(建议用时 20 分钟)13.若角α和角β的终边对于 x 轴对称 , 则角α能够用角β表示为( B )A.k ·360°+β(k ∈ Z)B.k ·360°- β(k ∈ Z)C.k ·180°+β(k ∈ Z)D.k ·180°- β(k ∈ Z)14.假如角α与 x+45°拥有同一条终边 , 角β与 x- 45°拥有同一条终边, 则α与β的关系是( D )A.α+β=0B.α- β=0C.α+β=k· 360°(k ∈Z)D.α- β=k·360°+90°(k ∈ Z)15.假如一扇形的弧长变成本来的倍, 半径变成本来的一半 , 则该扇形的面积为原扇形面积的.16.若α, β两角的终边互为反向延伸线 , 且α=- 120°, 则β= k·360°+60°,k ∈ Z .17.在与角 10 030°终边同样的角中 , 求知足以下条件的角 .(1) 最大的负角 .(2) 最小的正角 .(3) 在 360°~ 720°中的角 .【分析】 (1) 与 10 030 °终边同样的角的一般形式为β=k ·360 °+10 030 °(k ∈Z), 由-360 °<k ·360 °+10 030 °<0 °,得-10390 °<k ·360 ° <-10 030 °,解得 k=-28, 故所求的最大负角为β =-50 °.(2) 由 0 °<k ·360 °+10 030 °<360 °,得-10 030 °<k ·360 °<-9 670 °, 解得 k=-27, 故所求的最小正角为β =310 °.(3) 由 360 °≤k·360 °+10 030 °<720 °,得-9 670 °≤k·360 °<-9 310 °, 解得 k=-26, 故所求的角为β =670 °.18.在角的会合 { α| α=k·90°+45°,k ∈ Z} 中.(1) 有几种终边不同样的角 ?(2) 有几个落在 - 360°~ 360°之间的角 ?(3) 写出此中是第二象限角的一般表示方法 .【分析】 (1) 当 k=4n(n∈Z)时,α=n·360°+45°与45°角终边同样.当 k=4n+1(n ∈Z) 时,α=n ·360 °+135 °与135 °的终边同样.当 k=4n+2(n ∈Z) 时,α=n ·360 °+225 °与225 °的终边同样.当 k=4n+3(n ∈Z) 时,α=n ·360 °+315 °与315 °的终边同样.因此 ,在给定的角的会合中共有 4 种终边不同样的角 .(2) 由-360 °≤k·90 °+45 °<360 °,得-≤k<.又 k ∈Z. 故 k=-4,-3,-2,-1,0,1,2,3.因此 ,在给定的角的会合中落在-360 °~360 °之间的角共有 8 个.(3)此中 ,第二象限的角可表示为α =k ·360 °+135 °,k∈Z. C组培优练 ( 建议用时 15 分钟)- 4 -19. 会合 A={α| α=k·90° - 36°,k ∈Z},B={ β|- 180°<β<180°}, 则A∩B等于 ( C )A.{- 36°,54 °}B.{- 126°,144 °}C.{- 126°,- 36°,54 °,144 °}D.{- 126°,54 °}20. 如下图 , 半径为 1 的圆的圆心位于坐标原点, 点 P从点 A(1,0) 出发 ,按逆时针方向等速沿单位圆周旋转(0<θ<π), 经过 2 s 达到第三象限求θ.,已知 P 点在 1 s 内转过的角度为θ,经过 14 s 后又回到了出发点 A 处,【分析】由于 0< θ< π,且 2k π+ π<2 θ<2k π+(k ∈Z),则必有 k=0, 于是< θ<.又 14 θ=2n π(n ∈Z), 因此θ=.进而<<,即 <n<.因此 n=4 或 5, 故θ=或.封闭 Word 文档返回原板块。
人教A版必修4数学《任意角的三角函数》同步练习(B)含答案试卷分析详解
专题二任意角的三角函数测试卷(B 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若sinα=−513,且α是第四象限角,则tanα=( ) A. 125B. −125C. 512D. −512【答案】D2. ( )A. B. C. D.【答案】B【解析】由三角函数的符号可知的终边位于第三象限,则: . 本题选择B选项.3.已知α是第三象限的角,若tanα=12,则cosα=( ) A. −√55 B. −2√55 C. √55 D. 2√55【答案】B【解析】tanα=12,sinαcosα=12,cosα=2sinα ,sin 2α+cos 2α=1,解方程组得:cosα=−2√55,选B.4sin ,tan 0,cos 5θθθ=->=若则4535-3434-θ3cos 5θ==-4.若角终边经过点,则()A. B. C. D.【答案】D选D.5.【2017届四川省资阳市高三上学期期末】已知,则的值为()【答案】A【解析】由题意得,,故选A.6)A. -2B. 2C. -D.【答案】C【解析】上下同时除以,得到:故答案选7.已知,则()A. 3B. -3C.D.【答案】B【解析】,选B.α()()3,40P a a a≠sinα=354535±45±tan2α=2sin sin cosααα+23162316cosαCtan2θ=cos sincos sinθθθθ+=-1323cos sin1tan123cos sin1tan12θθθθθθ+++===----8.已知为三角形的一个内角,且,则的值为( )【答案】B【解析】因为B.9.若sinθcosθ=12,则tanθ+cosθsinθ的值是( )A. −2B. 2C. ±2D.12【答案】B 【解析】依题意有:tanθ+cosθsinθ=1sinθcosθ=2.10.已知sinα=45,且α为第二象限角,那么tanα的值等于( ) A. 43B. −34C. −43D. 34【答案】C 【解析】∵sinα=45且α是第二象限的角,∴cosα=−35,∴tanα=−43,故选C.11.已知sinα+cosα=15,且0≤α<π,那么tanα等于( ) A. −43 B. −34 C. 34 D. 43 【答案】A 【解析】(sinα+cosα)2sin 2α+cos 2α=125,左边分子分母同时除以cos 2α得tan 2α+2tanα+1tan 2α+1=125,解得tanα=−43.12,则( ) A.αtan ααtan α=2-C.【答案】D第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若点在函数.【解析】由题意知,解得,所以14.【2017届四川省乐山市高三第三次调查】若a 的终边过点P(−2cos30°,2sin30°),则sinα的值为______. 【答案】12【解析】点P(−2cos300,2sin300)=(−√3,1),则sinα=12.15.【2018届甘肃省天水市第一中学高三上第一次月考】若点在直线上,则_______________. 【答案】3【解析】因为点在直线上,则.16.已知是第一象限角,若,则______________2(),27a 3xy =327a=3a =()2tan θ,21y x =-2sin cos 1sin θθθ=-()2tan θ,21y x =-tan 2213θ=⨯-=θ2sin 2cos 5θθ-=-sin cos θθ+=,又∵三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2018届黑龙江省齐齐哈尔八中高三8月月考】已知角的终边上有一点的坐标是,其中,求, , .【解析】试题分析:由条件利用任意角的三角函数的定义求得α的三角函数的值,从而得出结论18求 (I; (II )的值. 【答案】(I (II θα()3,4P a a 0a ≠sin αcos αtan αtan α【解析】试题分析:本题涉及, , 的关系问题,利用易得;再利用 求出 ,解出和,最后求出 .试题解析:(I(II所以. 所以.由可得.所以. 19.已知tanα=2,求下列代数式的值. (Ⅰ)4sinα−2cosα5cosα+3sinα;(Ⅱ)14sin 2α+13sinαcosα+12cos 2α.【答案】(1)611(2)1330【解析】(Ⅰ)4sinα−2cosα5cosα+3sinα=4tanα−25+3tanα=4×2−25+3×2=611. (Ⅱ)14sin 2α+13sinαcosα+12cos 2α =14sin 2α+13sinαcosα+12cos 2αsin 2α+cos 2α=14tan 2α+13tanα+12tan 2α+1=1330.sin cos αα+sin cos αα-sin cos αα()2sin cos 12sin cos αααα+=+sin cos αα()2sin cos 12sin cos αααα-=-sin cos αα-sin αcos αtan αsin 0,cos 0αα><sin cos 0αα->15{ 75sin cos sin cos αααα+=-=45{ 35sin cos αα==-4sin 45tan 3cos 35ααα===--20.已知角的终边上一点,且(1)求的值;(2)求出和.【答案】(12)见解析【解析】试题分析:(1)利用余弦函数的定义可求出参数;(2)再由正弦函数和正切函数的定义可求得.21.已知关于x的方程169x2−bx+60=0的两根为sinθ,cosθ,θ∈(π4,3π4).(1)求实数b的值;(2)求sinθ1−cosθ+1+cosθsinθ的值.【答案】(1)b=221,(2)3【解析】试题分析:(1)由韦达定理得sinθ+cosθ=b169,sinθ•cosθ=60169,再根据同角三角函数关系得(b 169)2=1+2×60169,结合θ∈(π4,3π4)得b>0,解得实数b的值;(2)解方程可得sinθ=1213,cosθ=513,代入式子化简可得sinθ1−cosθ+1+cosθsinθ的值.试题解析:解:(1)∵关于x的方程169x2−bx+60=0的两根为sinθ,cosθ,θ∈(π4,3π4)∴Δ=b2−4×169×60≥0sinθ+cosθ=b169,sinθ•cosθ=60169>0,∴θ∈(π4,π2)α()(),30P m m-≠2cos4mα= msinαtanαmsin,tanαα∴b >0(sinθ+cosθ)2=(b169)2,则b =221,b =−221(舍负) (2)由(1)得方程的两根为1213,513,又因为θ∈(π4,π2)∴sinθ=1213,cosθ=513sinθ1−cosθ+1+cosθsinθ=2sinθ1−cosθ=3.22.已知角的终边上一点,且. (I )求的值; (II )若.【答案】(12)0 试题解析:(I )由三角函数的定义,得,解得(IIα(),3x tan 2α=-x tan 2θ=3tan 2x α==-32x =-。
2017-2018年人教A版必修4《任意角的三角函数》同步练习(B)含答案
cos
2
sin 2
2sincos
cos2
1
2
12 25
49 25
,
所以 sin cos 7 . 5
sin cos 1
由{
5
sin cos 7
5
sin 4
可得{
5
cos 3
5
4 .所以 tan sin 5 4 .
B.
4.若角 终边 经过点 P 3a, 4aa 0 ,则 sin ( )
3
A.
5
4
B.
5
【 答案】D
C. 3 5
D. 4 5
【解析】 r 9a2 16a2 5 a , sin 4a 4 ,选 D. 5a 5
5.【2017 届四川省资阳市高三上学期期末】已知 tan 2 ,则 sin2 sincos 的值为 ( )
12 .所以 1
25
sin
1 cos
cos sin sin cos
5 12
5. 12
25
(II)因为 sincos 12 0, 0 ,所以 sin 0, cos 0 . 25
所以 sin cos 0 .
又因为 sin
A. 2 C. 2
【答案】D
1
B.
2
D. 1 2
第Ⅱ卷(共 90 分) 二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
13.若点 a, 27 在函数 y 3x 的图象上,则 tan 的值为 .
a 【答案】 3 .
人教A版高中数学高一必修4练习 任意角的三角函数
A 级 基础巩固一、选择题1.若α是第二象限角,则点P (sin α,cos α)在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:因为α是第二象限角,所以cos α<0,sin α>0,所以点P 在第四象限. 答案:D2.已知α的终边经过点(-4,3),则cos α=( ) A.45 B.35C .-35D .-45解析:r = (-4)2+32=5,由任意角的三角函数的定义可得cos α=-45.答案:D3.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .0B .1C .2D .-2解析:当α为第二象限角时,sin α>0,cos α<0. 所以|sin α|sin α-cos α|cos α|=sin αsin α+cos αcos α=2.答案:C4.若角α的终边过点P (2sin 30°,-2cos 30°),则sin α的值等于( ) A.12B .-12C .-32D .-33解析:因为2sin 30°=2×12=1,-2cos 30°=-2×32=-3,所以P (1,-3),所以点P 到原点的距离为12+(-3)2=2,所以sin α=-32. 答案:C5.若点P (sin α,tan α)在第三象限,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:因为P (sin α,tan α)在第三象限, 所以sin α<0,tan α<0,故α为第四象限角.答案:D 二、填空题6.(2016·四川卷)sin 750°=________. 解析:sin 750°=sin(30°+2×360°)=sin 30°=12.答案:127.已知角α的终边经过点(-3cos θ,4cos θ),其中θ∈⎝⎛⎭⎫π2,π,则cos α=________. 解析:因为θ∈⎝⎛⎭⎫π2,π,所以cos θ<0, 所以点(-3cos θ,4cos θ)到原点的距离r =5|cos θ|=-5cos θ. 所以cos α=-3cos θ-5cos θ=35.答案:358.已知θ∈⎝⎛⎭⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.解析:作图如下,因为θ∈⎝⎛⎭⎫π3,π2,所以θ >π4,根据三角函数线的定义可知AT >MP >OM .答案:AT >MP >OM 三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos ⎝⎛⎭⎫-233π+tan 17π4. 解:(1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 120°cos 30°+cos 60°sin 30°=32×32+12×12=1. (2)原式=cos ⎣⎡⎦⎤π3+(-4)×2π+tan ⎝⎛⎭⎫π4+2×2π=cos π3+tan π4=12+1=32.10.设角x 的终边不在坐标轴上,求函数y =sin x |sin x |+cos x |cos x |+tan x|tan x |的值域. 解:当x 为第一象限角时,sin x ,cos x ,tan x 均为正值,所以sin x |sin x |+cos x |cos x |+tan x|tan x |=3.当x 为第二象限角时,sin x 为正值,cos x ,tan x 为负值,所以sin x |sin x |+cos x |cos x |+tan x|tan x |=-1.当x 为第三象限角时,sin x ,cos x 为负值,tan x 为正值,所以sin x |sin x |+cos x |cos x |+tan x|tan x |=-1.当x 为第四象限角时,sin x ,tan x 为负值,cos x 为正值,所以sin x |sin x |+cos x |cos x |+tan x|tan x |=-1.综上,y 的值域为{-1,3}B 级 能力提升1.已知θ为锐角,则下列选项提供的各值中,可能为sin θ+cos θ的值的是( ) A.43B.35C.45D.12解析:由于θ为锐角,所以由三角函数及三角形中两边之和大于第三边可知,sin θ+cos θ>1,故选A.答案:A2.若角θ的终边经过点P (-3,m )(m ≠0),且sin θ=24m ,则cos θ的值为________. 解析:因为角θ的终边经过点P (-3,m )(m ≠0), 且sin θ=24m ,所以x =-3,y =m ,r =3+m 2, sin θ=m3+m 2=24m ,所以1r =13+m 2=24, 所以cos θ=-3r =-64.答案:-643.设a =sin 33°,b =cos 55°,c =tan 35°,试比较a ,b ,c 三数的大小.解:因为a=sin33°,b=cos 55°,c=tan 35°,作出三角函数线(如图),结合图象可得c>b>a.。
最新人教版高中数学必修四第一章三角函数(任意角的三角函数2)同步练习(含解析)
最新人教版高中数学必修四第一章三角函数(任意角的三角函数2)同步练习(含解析)一、选择题1. 如图在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT2.角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异,那么α的值为() A.π4 B.3π4 C.7π4 D.3π4或7π43.若α是第一象限角,则sin α+cos α的值与1的大小关系是( )A .sin α+cos α>1B .sin α+cos α=1C .sin α+cos α<1D .不能确定4.利用正弦线比较sin 1,sin 1.2,sin 1.5的大小关系是( )A .sin 1>sin 1.2>sin 1.5B .sin 1>sin 1.5>sin 1.2C .sin 1.5>sin 1.2>sin 1D .sin 1.2>sin 1>sin 1.55.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( )A.⎝ ⎛⎭⎪⎫-π3,π3 B.⎝ ⎛⎭⎪⎫0,π3C.⎝ ⎛⎭⎪⎫5π3,2π D.⎝ ⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫5π3,2π6.如果π4<α<π2,那么下列不等式成立的是( )A .cos α<sin α<tan αB .tan α<sin α<cos αC .sin α<cos α<tan αD .cos α<tan α<sin α二、填空题7.在[0,2π]上满足sin x ≥12的x 的取值范围为________.8.集合A =[0,2π],B ={α|sin α<cos α},则A ∩B =________________.9.不等式tan α+33>0的解集是______________.10.求函数f (x )=lg(3-4sin 2x )的定义域为________.三、解答题11.在单位圆中画出适合下列条件的角α终边的范围,并由此写出角α的集合.(1)sin α≥32; (2)cos α≤-12.12.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小.能力提升13.求函数f (x )=1-2cos x +ln ⎝⎛⎭⎪⎫sin x -22的定义域.14.如何利用三角函数线证明下面的不等式? 当α∈⎝ ⎛⎭⎪⎫0,π2时,求证:sin α<α<tan α.参考答案与解析1.C2.D [角α终边落在第二、四象限角平分线上.]3.A [设α终边与单位圆交于点P ,sin α=MP ,cos α=OM ,则|OM |+|MP |>|OP |=1,即sin α+cos α>1.]4.C [∵1,1.2,1.5均在⎝ ⎛⎭⎪⎫0,π2内,正弦线在⎝ ⎛⎭⎪⎫0,π2内随α的增大而逐渐增大, ∴sin 1.5>sin 1.2>sin 1.]5.D [在同一单位圆中,利用三角函数线可得D 正确.]6.A [如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT ,很容易地观察出OM <MP <AT ,即cos α<sin α<tan α.]7.⎣⎢⎡⎦⎥⎤π6,5π6 8.⎣⎢⎡⎭⎪⎫0,π4∪⎝ ⎛⎦⎥⎤54π,2π 9.⎩⎨⎧⎭⎬⎫α|k π-π6<α<k π+π2,k ∈Z 解析 不等式的解集如图所示(阴影部分),∴⎩⎨⎧⎭⎬⎫α|k π-π6<α<k π+π2,k ∈Z . 10.⎝ ⎛⎭⎪⎫k π-π3,k π+π3,k ∈Z 解析 如图所示.∵3-4sin 2x >0,∴sin 2x <34,∴-32<sin x <32.∴x ∈⎝ ⎛⎭⎪⎫2k π-π3,2k π+π3∪⎝ ⎛⎭⎪⎫2k π+2π3,2k π+4π3 (k ∈Z ).即x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3 (k ∈Z ). 11.解 (1)图1 作直线y =32交单位圆于A 、B ,连结OA 、OB ,则OA 与OB 围成的区域(图1阴影部分),即为角α的终边的范围.故满足条件的角α的集合为{α|2k π+π3≤α≤2k π+2π3,k ∈Z }.(2)图2 作直线x =-12交单位圆于C 、D ,连结OC 、OD ,则OC 与OD 围成的区域(图2阴影部分),即为角α的终边的范围.故满足条件的角α的集合为{α|2k π+2π3≤α≤2k π+4π3,k ∈Z }.12.解 ∵θ是第二象限角,∴2k π+π2<θ<2k π+π (k ∈Z ),故k π+π4<θ2<k π+π2 (k ∈Z ).作出θ2所在范围如图所示.当2k π+π4<θ2<2k π+π2 (k ∈Z )时,cos θ2<sin θ2<tan θ2.当2k π+5π4<θ2<2k π+32π (k ∈Z )时,sin θ2<cos θ2<tan θ2.13.解 由题意,自变量x 应满足不等式组⎩⎨⎧ 1-2cos x ≥0,sin x -22>0. 即⎩⎪⎨⎪⎧ sin x >22,cos x ≤12.则不等式组的解的集合如图(阴影部分)所示,∴⎩⎨⎧⎭⎬⎫x |2k π+π3≤x <2k π+34π,k ∈Z . 14.证明如图所示,在直角坐标系中作出单位圆,α的终边与单位圆交于P ,α的正弦线、正切线为有向线段MP ,AT ,则MP =sin α,AT =tan α.因为S △AOP =12OA ·MP =12sin α, S 扇形AOP =12αOA 2=12α,S △AOT =12OA ·AT =12tan α,又S △AOP <S 扇形AOP <S △AOT ,所以12sin α<12α<12tan α,即sin α<α<tan α.。
2017-2018年人教A版必修4《任意角的三角函数》同步练习(B)含答案
专题二任意角的三角函数测试卷(B卷)(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若,且是第四象限角,则( )A. B. C. D.【答案】D2.4sin,tan0,cos5θθθ=->=若则()A. 45B.35- C.34D.34-【答案】B【解析】由三角函数的符号可知θ的终边位于第三象限,则:3 cos5θ==-.本题选择B选项.3.已知是第三象限的角,若,则()A. B. C. D.【答案】B【解析】 ,,解方程组得:,选B.4.若角α终边经过点()()3,40P a a a ≠,则sin α=( )【答案】D选D. 5.【2017届四川省资阳市高三上学期期末】已知tan 2α=,则2sin sin cos ααα+的值为 ( )【答案】A【解析】由题意得,,故选A.)2 B. 2 C. 【答案】C【解析】上下同时除以cos α,得到:故答案选C7.已知tan 2θ=,则cos sin cos sin θθθθ+=-( )A. 3B. -3C. 13D. 23【答案】B【解析】cos sin 1tan 123cos sin 1tan θθθθθθ+++===--- ,选B.8.已知α为三角形的一个内角,且,则tan α的值为( )【答案】B【解析】因为α为三角形的一个内角,且 B. 9.若,则的值是()A. B. C. D.【答案】B【解析】依题意有:10.已知,且为第二象限角,那么的值等于()A. B. C. D.【答案】C【解析】∵且是第二象限的角,∴,∴,故选C.11.已知,且,那么等于()A. B. C. D.【答案】A【解析】,左边分子分母同时除以得,解得. 12,则tanα=()- B.A.2C.2D.【答案】D第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若点(),27a 在函数3xy =的图象上,则.【解析】由题意知327a =,解得3a =,所以14.【2017届四川省乐山市高三第三次调查】若的终边过点,则的值为______.【答案】【解析】点,则.15.【2018届甘肃省天水市第一中学高三上第一次月考】若点()2tan θ,在直线21y x =-上,则_______________.【答案】3【解析】因为点()2tan θ,在直线21y x =-上,则tan 2213θ=⨯-=. 是第一象限角,若______________又∵θ为第一象限的角,三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2018届黑龙江省齐齐哈尔八中高三8月月考】已知角α的终边上有一点的坐标是()3,4P a a ,其中0a ≠,求sin α, cos α, tan α.【解析】试题分析:由条件利用任意角的三角函数的定义求得α的三角函数的值,从而得出结论18求 (I (II )tan α的值.【答案】(I (II 【解析】试题分析:本题涉及sin cos αα+, sin cos αα- , sin cos αα 的关系问题,利用()2sin cos 12sin cos αααα+=+ 易得sin cos αα ;再利用()2sin cos 12sin cos αααα-=- 求出sin cos αα- ,解出sin α和cos α,最后求出tan α .试题解析:(I(所以sin cos 0αα->.19.已知,求下列代数式的值.(Ⅰ);(Ⅱ).【答案】(1)(2)【解析】(Ⅰ).(Ⅱ).20.已知角α的终边上一点(1)求m 的值; (2)求出sin α和tan α.【答案】(12)见解析【解析】试题分析:(1)利用余弦函数的定义可求出参数m;αα.(2)再由正弦函数和正切函数的定义可求得sin,tan21.已知关于的方程的两根为,.(1)求实数的值;(2)求的值.【答案】(1)(2)3【解析】试题分析:(1)由韦达定理得,再根据同角三角函数关系得,结合得,解得实数的值;(2)解方程可得,代入式子化简可得的值.试题解析:解:(1)关于的方程的两根为,∴,∴∴,则(舍负)(2)由(1)得方程的两根为,又因为∴=.22.已知角α的终边上一点(),3x,且tan2α=-. (I)求x的值;(II)若tan2θ=,求.【答案】(12)(II。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一三角函数同步练习3(任意角三角函数)
一.选择题
1、已知角α的终边过点P (-1,2),cos α的值为 ( ) A .-
55 B .- 5 C .552 D .2
5 2、α是第四象限角,则下列数值中一定是正值的是 ( ) A .sin α B .cos α C .tan α D .cot α
3、已知角α的终边过点P (4a ,-3a )(a <0),则2sin α+cos α的值是 ( ) A .25 B .-2
5
C .0
D .与a 的取值有关
4、⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-
341
cos 647tan ππ的值为 ( ) A .21 B .21- C .23 D .6
3
5、若θ是第三象限角,且02cos <θ,则2
θ
是 (
)
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
6、已知点P (ααcos ,tan )在第三象限,则角α在
( ) A .第一象限 B .第二象限 C .第三象限
D .第四象限
二.填空题
1、已知sin αtan α≥0,则α的取值集合为 .
2、角α的终边上有一点P (m ,5),且)0(,13
cos ≠=m m
α,则sin α+cos α=______. 3、已知角θ的终边在直线y =
3
3
x 上,则sin θ= ;θtan = . 三.解答题
利用三角函数线,写出满足下列条件的角x 的集合. ⑴ sin x ≥2
2;⑵ cos x ≤ 1
2 ;⑶ tan x ≥-1 ;(4)21sin ->x 且21cos >x
参考答案
一. 选择题
ABAA BBAB 二.填空题
1、⎭
⎬⎫
⎩⎨⎧∈+<<+-Z k k k ,2222|ππαππα;
2、12=m 时,1317cos sin =+αα;12-=m 时,13
7
cos sin -=+αα.
3、21sin ±=θ;3
3
tan =θ.
4、4
745πθπ<<.
三.解答题
1、2243sin
=π;2
2
43cos -
=π;143tan -=π. 2、(1)取)15,8(1P ,则17=r ,28
15
817log tan sec log 2
2-=-=-αα; (2)取)15,8(2--P ,则17=r ,2815
817log tan sec log 22=--=-αα.
3、(1)∵3,4-==y x ,∴5=r ,于是:5
254532cos sin 2-=+-⋅
=+αα. (2)∵a y a x 3,4-==,∴a r 5=,于是:
当0>a 时,52
54532cos sin 2-=+-⋅
=+αα 当0<a 时,5
2
54532cos sin 2=-+
⋅=+αα (3)若角α终边过点()3,4P ,则25
4
532cos sin 2=+⋅
=+αα; 若角α终边过点()3,4-P ,则52
54532cos sin 2=-+
⋅=+αα; 若角α终边过点()3,4--P ,则254532cos sin 2-=-+-⋅=+αα; 若角α终边过点()3,4-P ,则5
254532cos sin 2-=+-⋅
=+αα.。