人教B版必修4_三角函数的定义

合集下载

人教B版高中数学必修四§3.3 三角函数的积化和差与和差化积

人教B版高中数学必修四§3.3 三角函数的积化和差与和差化积

§3.3 三角函数的积化和差与和差化积课时目标1.能从两角和与差的正、余弦公式推导积化和差与和差化积公式.2.了解积化和差与和差化积的简单运用.一、选择题1.cos 215°+cos 275°+cos15°cos75°的值是( ) A .32B .62C .34D .542.函数y =sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝⎛⎭⎪⎫x -π3的最大值是( )A .2B .1C .12D . 33.cos20°+cos60°+cos100°+cos140°的值为( )A .-12B .12C .32D .224.化简1+sin 4α-cos 4α1+sin 4α+cos 4α的结果是( )A .cot2αB .tan2αC .cot αD .tan α5.函数f (x )=sin ⎝⎛⎭⎪⎫x +5π12cos ⎝ ⎛⎭⎪⎫x -π12是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的非奇非偶函数D .最小正周期为π的非奇非偶函数6.cos 2α-cos αcos(60°+α)+sin 2(30°-α)的值为( ) A .12B .32C .34D .14二、填空题7.sin 35°-sin 25°cos 35°-cos 25°的值是________. 8.给出下列关系式:①sin5θ+sin3θ=2sin8θcos2θ; ②cos3θ-cos5θ=-2sin4θsin θ;③sin3θ-sin5θ=-12cos4θcos θ;④sin5θ+cos3θ=2sin4θcos θ;⑤sin x sin y =12[cos(x -y )-cos(x +y )].其中正确的序号是________.9.sin20°cos70+sin10°sin50°的值是________.10.已知cos 2α-cos 2β=m ,那么sin(α+β)·sin(α-β)=________.三、解答题11.求证:1+cos x +cos x 2=4cos x 2cos ⎝ ⎛⎭⎪⎫x 4+π6cos ⎝ ⎛⎭⎪⎫x 4-π6.12.求值:cos40°cos80°+cos80°cos160°+cos160°cos40°.能力提升13.求证:sin A +sin B -sin C =4sin A 2sin B 2cos C2.14.已知sin α-sin β=-13,cos α-cos β=12,求sin(α+β)的值.1.学习三角恒等变换,千万不要只顾死记公式而忽视对思想方法的体会.只要对上述思想方法有所感悟,公式不必记很多,记住cos(α-β)即可.2.和差化积、积化和差公式不要求记忆,但要注意公式推导中应用的数学思想方法,同时注意这些公式与两角和与差公式的联系.3.除了课本上所列的积化和差公式、和差化积公式外,公式1-cos α=2sin2α2,1+cos α=2cos2α2,a sin α+b cos α=a 2+b 2sin(α+φ)也应视作和差化积公式;同样sin 2α=1-cos 2α2,cos 2α=1+cos 2α2也应视作积化和差公式.§3.3 三角函数的积化和差与和差化积答案知识梳理 12[sin(α+β)+sin(α-β)] 12[sin(α+β)-sin(α-β)] 12[cos(α+β)+cos(α-β)] -12[cos(α+β)-cos(α-β)] 2sin θ+φ2cos θ-φ2 2cos θ+φ2sin θ-φ2 2cos θ+φ2cos θ-φ2-2sin θ+φ2sin θ-φ2作业设计1.D [原式=1+cos 30°2+1+cos 150°2+cos 90°+cos 60°2=54.]2.B [y =2sin x cos π3=sin x .]3.B [原式=(cos20°+cos140°)+cos100°+cos60°=2cos80°cos60°+cos100°+cos60°=cos80°-cos80°+cos60°=12.]4.B [原式=2sin 22α+2sin 2αcos 2α2cos 22α+2sin 2αcos 2α=2sin 2α(sin 2α+cos 2α)2cos 2α(cos 2α+sin 2α)=tan2α.] 5.D [f (x )=12⎣⎢⎡⎦⎥⎤sin ⎝⎛⎭⎪⎫2x +π3+sin π2=12⎣⎢⎡⎦⎥⎤sin ⎝⎛⎭⎪⎫2x +π3+1=12sin ⎝ ⎛⎭⎪⎫2x +π3+12∴T =2π2=π,f (x )为非奇非偶函数.]6.C [原式=1+cos 2α2-12[cos(60°+2α)+cos60°]+1-cos (60°-2α)2=1+12cos2α-12cos(60°+2α)-14-12cos(60°-2α)=34-12[cos(60°+2α)+cos(60°-2α)]+12cos2α =34-12×2cos60°cos2α+12cos2α=34.] 7.- 3解析 原式=2sin 5°cos 30°-2sin 30°sin 5°=-cos 30°sin 30°=-2cos30°=-2×32=-3. 8.⑤解析 ①②③④都错,只有⑤是正确的. 9.14解析 原式=12(sin90°-sin50°)+12(cos40°-cos60°)=12-12sin50°+12cos40°-14=14. 10.-m解析 cos 2α-cos 2β=(cos α+cos β)(cos α-cos β)=2cos α+β2cos α-β2⎝⎛⎭⎪⎫-2sin α+β2sin α-β2=-2sin α+β2cos α+β2·2sin α-β2cos α-β2=-sin(α+β)sin(α-β)=m ∴sin(α+β)·sin(α-β)=-m . 11.证明 左边=2cos 2x 2+cos x2=2cos x 2⎝⎛⎭⎪⎫cos x 2+12=2cos x 2⎝ ⎛⎭⎪⎫cos x 2+cos π3=2cos x 2·2cos ⎝ ⎛⎭⎪⎫x 4+π6cos ⎝ ⎛⎭⎪⎫x 4-π6=4cos x 2cos ⎝ ⎛⎭⎪⎫x 4+π6cos ⎝ ⎛⎭⎪⎫x 4-π6=右边.12.解 原式=12(cos120°+cos40°)+12(cos240°+cos80°)+12(cos200°+cos120°)=12(cos40°+cos80°+cos200°)-34 =12(2cos60°cos20°-cos20°)-34 =12(cos20°-cos20°)-34=-34. 13.证明 左边=sin(B +C )+2sin B -C 2cos B +C2=2sin B +C 2cos B +C 2+2sin B -C 2cos B +C 2=2cos B +C 2⎝ ⎛⎭⎪⎫sin B +C 2+sin B -C 2=4sin A 2sin B 2cos C2=右边.14.解 sin α-sin β=2sinα-β2cosα+β2=-13,①cos α-cos β=-2sin α-β2sin α+β2=12.②∴由②①得:tan α+β2=32∴sin(α+β)=2sin α+β2cos α+β2=2sin α+β2cosα+β2sin 2α+β2+cos2α+β2=2tan α+β21+tan 2α+β2=2×321+94=1213.。

高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

高中数学必修四 第一章三角函数 1.2.2 同角三角函数的基本关系

故 tan ������
1 sin2������
-1
=
tan
������
1-sin2������ sin2������
=
tan
������
cos������ sin������
=
sin������ cos������
·-scions������������
=
−1.
(2)证法一:sin2α+cos2α=1⇒1-cos2α=sin2α
sin������ 1 + cos������ ∴ 1-cos������ = sin������ .
题型一 题型二 题型三 题型四 题型五
题型四 已知 tan α 的值求其他代数式的值
【例4】 已知tan α=7,求下列各式的值.
(1)
sin������+cos������ 2sin������-cos������
则 sin α=−
1-cos2 ������
=

15 17
,
tan
������
=
sin������ cos������
=
185.
反思已知cos α(或sin α)求tan α时,先利用平方关系求出sin α(或 cos α),再利用商关系求出tan α.注意在求sin α(或cos α)时,往往需分 类讨论α所在的象限.
证明三角恒等式就是通过转化和消去等式两边的差异来促成统 一的过程,证明的方法在形式上显得较为灵活.常用的有以下几种:
(1)直接法——从等式的一边开始直接化为等式的另一边,常从比 较复杂的一边开始化简到另一边,其依据是相等关系的传递性.
(2)综合法——由一个已知成立的等式(如公式等)恒等变形得到 所要证明的等式,其依据是等价转化的思想.

人教版必修4三角函数

人教版必修4三角函数

课程标准
1.借助单位圆理解任意角三角函数 .借助单位圆理解任意角三角函数 单位圆理解 (正弦、余弦、正切)的定义. 正弦、余弦、正切)的定义 单位圆中的三角函数线 2.借助单位圆中的三角函数线推导出 .借助单位圆中的三角函数线推导出 ±α, 的正弦、 诱导公式 (π/2±α π±α的正弦、余弦、 π ±α π±α的正弦 余弦、 正切), 画出y=sin x, y=cos x, y=tan 正切 ,能画出 x的图象,了解三角函数的周期性 的图象, 三角函数的周期性. 的图象 了解三角函数的周期性 3. 借助图象理解正弦函数、余弦函数在 借助图象理解正弦函数、 理解正弦函数 [0,2π],正切函数在 π/2, π/2 )上的 , ,正切函数在(, 上的 性质(如单调性、最大和最小值、 性质(如单调性、最大和最小值、图象 轴交点等) 与x轴交点等). 轴交点等 4. 理解同角三角函数的基本关系式: 理解同角三角函数的基本关系式 同角三角函数的基本关系式: sin2x+cos2x=1, tanx=sinx/cosx . , 5. 结合具体实例 了解 结合具体实例,了解 了解y=Asin(ωx+ϕ)的 ω ϕ的 实际意义;能借助计算器或计算机 计算器或计算机画出 实际意义;能借助计算器或计算机画出 y=Asin(ωx + ϕ)的图象,观察 ,ω,ϕ 的图象, ω 的图象 观察A, 对函数图象变化的影响. 对函数图象变化的影响
区别
利用单位圆, 利用单位圆 重视数形结合. 重视数形结合 重视让学生 参与三角函数概 公式、 念、公式、图象 和性质等知识的 产生和推导的全 过程. 过程 只定义三个三 角函数 同角关系三个 减为两个. 减为两个. 删去已知三角 函数值求角、 函数值求角、反 三角函数. 三角函数 降低“ 降低“给角 求值” 求值”,“化简 与证明三角恒等 的难度要求. 式”的难度要求 现代教学技 术支持教学 和差倍半设章

高一数学(人教版)必修4三角函数知识点

高一数学(人教版)必修4三角函数知识点

三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 6、弧度制与角度制的换算公式:2360π=,1180π= ,180157.3π⎛⎫=≈ ⎪⎝⎭. 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r >,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .11、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.14、函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()m a x m i n 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.15 周期问题◆()()()()()()ωπωϕωωπωϕωπωϕωωπωϕωωπωϕωπωϕω2T , 0b , 0 , 0A , b 2T , 0 b , 0 , 0A , b T , 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , =≠>>++==≠>>++==>>+==>>+==>>+==>>+=x ACos y x ASin y x ACos y x ASin y x ACos y x ASin y()()()()ωπωϕωωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+==>>+=T , 0 , 0A , cot T , 0 , 0A , tan T, 0 , 0A , cot T , 0 , 0A , tan x A y x A y x A y x A yR ,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭三角恒等变换1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-.3、⇒(后两个不用判断符号,更加好用)4、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。

人教版高中数学必修四第一章三角函数1.2任意角的三角函数(教师版)【个性化辅导含答案】

人教版高中数学必修四第一章三角函数1.2任意角的三角函数(教师版)【个性化辅导含答案】

任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________ 1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法||。

3.牢固掌握同角三角函数的两个关系式||,并能灵活运用于解题. (一)任意角的三角函数: 任意点到原点的距离公式:22y x r +=1.三角函数定义:在直角坐标系中||,设α是一个任意角||,α终边上任意一点P (除了原点)的坐标为(,)x y ||,它与原点的距离为(0)r r ==>||,那么(1)比值y r 叫做α的正弦||,记作sin α||,即sin y r α=; (2)比值x r 叫做α的余弦||,记作cos α||,即cos xr α=;(3)比值y x 叫做α的正切||,记作tan α||,即tan yxα=;(4)比值x y 叫做α的余切||,记作cot α||,即cot x yα=; 2.说明:(1)α的始边与x 轴的非负半轴重合||,α的终边没有表明α一定是正角或负角||,以及α的大小||,只表明与α的终边相同的角所在的位置;(2)根据相似三角形的知识||,对于确定的角α||,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; (3)当()2k k Z παπ=+∈时||,α的终边在y 轴上||,终边上任意一点的横坐标x 都等于0||,所以tan yxα=无意义;同理当()k k Z απ=∈时||,y x =αcot 无意义;(4)除以上两种情况外||,对于确定的值α||,比值y r 、x r 、y x、xy 分别是一个确定的实数||。

必修四任意角的三角函数(附规范标准答案)

必修四任意角的三角函数(附规范标准答案)

任意角的三角函数(一)[学习目标] 1.借助单位圆理解任意角的三角函数定义.2.掌握正弦、余弦、正切函数在各象限内的符号.3.通过对任意角的三角函数的定义理解终边相同角的同一三角函数值相等.知识点一 三角函数的概念1.利用单位圆定义任意角的三角函数如图,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:(1)y 叫做α的正弦,记作sin α, 即sin α=y ;(2)x 叫做α的余弦,记作cos α,即cos α=x ; (3)y x叫做α的正切,记作tan α,即tan α=y x(x ≠0).对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.2.一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=y r,cosα=x r ,tan α=yx.思考 角α三角函数值的大小与角α终边上的点P 离原点距离的远近有关吗?答案 角α的三角函数值是比值,是一个实数,这个实数的大小与点P (x ,y )在终边上的位置无关,只由角α的终边位置决定,即三角函数值的大小只与角有关. 知识点二 正弦、余弦、正切函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图).思考三角函数在各象限的符号由什么决定?答案三角函数值的符号是根据三角函数定义和各象限内坐标符号推导出的.从原点到角的终边上任意一点的距离r总是正值.因此,三角函数在各象限的符号由角α的终边所在象限决定.知识点三诱导公式一终边相同的角的同一三角函数的值相等,即:sin(α+k·2π)=sin α,cos(α+k·2π)=cos α,tan(α+k·2π)=tan α,其中k∈Z.题型一三角函数定义的应用例1 已知θ终边上一点P(x,3)(x≠0),且cos θ=1010x,求sin θ,tan θ.解由题意知r=|OP|=x2+9,由三角函数定义得cos θ=xr=xx2+9.又∵cos θ=1010x,∴xx2+9=1010x.∵x≠0,∴x=±1.当x=1时,P(1,3),此时sin θ=312+32=31010,tan θ=31=3.当x=-1时,P(-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3.跟踪训练1 (1)已知角α的终边经过点P (-4a,3a )(a ≠0),求sin α,cos α,tan α的值; (2)已知角α的终边在直线y =3x 上,求sin α,cos α,tan α的值.解 (1)r =-4a2+3a2=5|a |.若a >0,则r =5a ,α是第二象限角,则 sin α=y r =3a 5a =35,cos α=x r =-4a5a =-45,tan α=y x =3a-4a =-34,若a <0,则r =-5a ,α是第四象限角,则 sin α=-35,cos α=45,tan α=-34.(2)因为角α的终边在直线y =3x 上,所以可设P (a ,3a )(a ≠0)为角α终边上任意一点. 则r =a 2+3a2=2|a |(a ≠0).若a >0,则α为第一象限角,r =2a , 所以sin α=3a 2a =32,cos α=a2a =12,tan α=3a a=3.若a <0,则α为第三象限,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3a a=3.题型二 三角函数值符号的判断 例2 判断下列三角函数值的符号: (1)sin 3,cos 4,tan 5; (2)sin(cos θ)(θ为第二象限角). 解 (1)∵π2<3<π<4<3π2<5<2π,∴3,4,5分别在第二、三、四象限, ∴sin 3>0,cos 4<0,tan 5<0. (2)∵θ是第二象限角, ∴-π2<-1<cos θ<0,∴sin(cos θ)<0.跟踪训练2 若sin θ<0且tan θ<0,则θ是第 象限的角. 答案 四解析 ∵sin θ<0,∴θ是第三或第四象限或终边在y 轴的非正半轴上的角,又tan θ<0,∴θ是第四象限的角.题型三 诱导公式一的应用 例3 求下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. 解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30°=22×32+12×12=64+14=1+64.(2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.跟踪训练3 求下列各式的值:(1)cos 25π3+tan ⎝ ⎛⎭⎪⎫-15π4; (2)sin 810°+tan 765°-cos 360°.解 (1)原式=cos ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝⎛⎭⎪⎫-4π+π4=cos π3+tan π4=12+1=32;(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos 360°=sin 90°+tan 45°-1=1+1-1=1.利用任意角的三角函数的定义求值,忽略对参数的讨论而致错例4 已知角α的终边上有一点P (24k,7k ),k ≠0,求sin α,cos α,tan α的值. 错解 令x =24k ,y =7k ,则有r =24k 2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724.错因分析 点P (24k,7k )中参数k 只告诉了k ≠0,而没有告诉k 的符号,需分k >0与k <0讨论,而上述解法错在默认为k >0. 正解 当k >0时,令x =24k ,y =7k , 则有r =24k2+7k 2=25k ,∴sin α=y r =725,cos α=x r =2425,tan α=y x =724. 当k <0时,令x =24k ,y =7k ,则有r =-25k , ∴sin α=y r =-725,cos α=xr =-2425,tan α=y x =724.1.cos(-11π6)等于( )A.12 B .-12 C.32 D .-32 2.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-2 3.如果角α的终边过点P (2sin 30°,-2cos 30°),则cos α的值等于( ) A.12 B .-12 C .-32 D.324.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α= .5.已知角α的终边经过点P (2,-3),求α的三个函数值.一、选择题1.若sin θcos θ>0,则θ在( ) A .第一、二象限 B .第一、三象限 C .第一、四象限D .第二、四象限2.sin(-1 380°)的值为( )A .-12 B.12 C .-32 D.323.设角α终边上一点P (-4a,3a )(a <0),则2sin α+cos α的值为( ) A.25 B.25或-25 C .-25D .与a 有关 4.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限5.已知角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( ) A.5π6 B.2π3 C.5π6 D.11π6 6.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3D .5 二、填空题7.使得lg(cos αtan α)有意义的角α是第 象限角.8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为 . 9.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n = .10.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域是 .三、解答题11.已知角α的终边落在直线y =2x 上,求sin α,cos α,tan α的值.12.求下列各式的值.(1)a 2sin(-1 350°)+b 2tan 405°-2ab cos(-1 080°); (2)tan 405°-sin 450°+cos 750°.当堂检测答案1.答案 C解析 cos(-116π)=cos(-2π+π6)=cos π6=32.2.答案 C解析 ∵α为第二象限角,∴sin α>0,cos α<0, ∴|sin α|sin α-cos α|cos α|=sin αsin α-cos α-cos α=2. 3.答案 A解析 ∵2sin 30°=1,-2cos 30°=-3,∴r =2,∴cos α=12.4.答案 -43解析 ∵cos α=332+y 2=35,∴32+y 2=5,∴y 2=16,∵y <0,∴y =-4,∴tan α=-43. 5.解 因为x =2,y =-3, 所以r =22+-32=13.于是sin α=y r=-313=-31313,cos α=x r=213=21313,tan α=y x =-32.课时精练答案一、选择题 1.答案 B 2.答案 D解析 sin(-1 380°)=sin(-360°×4+60°)=sin 60°=32.3.答案 C 解析 ∵a <0,∴r =-4a2+3a 2=5|a |=-5a ,∴cos α=x r =45,sin α=yr =-35,∴2sin α+cos α=-25.4.答案 D解析 ∵tan x <0,∴角x 的终边在第二、四象限, 又sin x -cos x <0,∴角x 的终边在第四象限.故选D. 5.答案 D解析 ∵sin 2π3=32,cos 2π3=-12.∴角α的终边在第四象限,且tan α=cos 2π3sin 2π3=-33, ∴角α的最小正角为2π-π6=11π6. 6.答案 A解析 ∵r =b 2+16,cos α=-b r =-b b 2+16=-35. ∴b =3.二、填空题7.答案 一或二解析 要使原式有意义,必须cos αtan α>0,即需cos α,tan α同号,所以α是第一或第二象限角.8.答案 -2<a ≤3解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0,∴-2<a ≤3.9.答案 2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,n =3m .∵|OP |=m 2+n 2=10|m |=-10m =10.∴m =-1,n =-3,∴m -n =2.10.答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知x 的终边不能落在坐标轴上,当x 为第一象限角时,sin x >0,cos x >0,sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0,sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0, sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0,sin x cos x <0,y =2,故函数y =|sin x |cos x +|cos x |cos x -2|sin x cos x |sin x cos x的值域为{-4,0,2}. 三、解答题11.解 当角α的终边在第一象限时,在角α的终边上取点P (1,2),由r =|OP |=12+22=5, 得sin α=25=255,cos α=15=55,tan α=2; 当角α的终边在第三象限时,在角α的终边上取点Q (-1,-2),由r =|OQ |=-12+-22=5, 得sin α=-25=-255, cos α=-15=-55, tan α=2.12.解 (1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-2ab cos(-3×360°)=a 2sin 90°+b 2tan 45°-2ab cos 0°=a 2+b 2-2ab =(a -b )2.(2)tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32.。

新人教版(B)高中数学必修4三角函数的定义教案

新人教版(B)高中数学必修4三角函数的定义教案

三角函数的定义[考点透视]一、考纲指要1.理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.2.掌握任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.二、命题落点1.考查象限角的概念.如例1.2.考查三角函数化简,求值等知识.如例2.3.考查三角函数在各个象限的符号.如例3.[典例精析]例1:α为第三象限角,那么2α所在的象限是〔〕 A .第一或第二象限 B .第二或第三象限C .第一或第三象限D .第二或第四象限解析:α第三象限,即3222k k k Z πππαπ+<<+∈, ∴3224k k k Z παπππ+<<+∈, 可知2α在第二象限或第四象限.答案:D .例2: tan600°的值是〔 〕A .33-B .33C .3-D .3解析:360tan 240tan 600tan 000===.答案:D .例3:假设sinθcosθ>0,那么θ在〔 〕A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限解析:∵sinθcosθ>0,∴sinθ、cosθ同号.当sinθ>0,cosθ>0时,θ在第一象限,当sinθ<0,cosθ<0时,θ在第三象限,因此,选B .答案:B .[常见误区]1.在角的表示中注意角度值和弧度值不能在同一角的表示中使用.2.三角函数值的符号是学生解题中的易错点、易漏点.[基础演练]1.R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,那么a =〔 〕A .0B .1C .-1D . ±12.设M 和m 分别表示函数y=31cosx -1的最大值和最小值,那么M+m 等于〔〕 A .32B .-32C .-34D .-23.假设A 、B 、C 是△ABC 的三个内角,且A<B<C 〔C≠2π〕,那么以下结论中正确的是〔 〕A .sinA<sinCB .cotA<cotCC .tanA<tanCD .cosA<cosC4.在〔0,2π〕内,使sinx >cosx 成立的x 取值X 围为〔 〕A .〔4π,2π〕∪〔π,45π〕B .〔4π,π〕C .〔4π,45π〕D .〔4π,π〕∪〔45π,23π〕5.点P 〔tanα,cosα〕在第三象限,那么角α的终边在第 象限.6.在△ABC 中,假设最大角的正弦值是22,那么△ABC 必是 三角形.7.比较sin 52π,cos 56π,tan 57π的大小.8.sinθ+cosθ=51,θ∈〔0,π〕,求cotθ的值.9.:sin3α+cos3α=1,求sinα+cosα; sin4α+cos4α;sin6α+cos6α的值.。

人教版数学必修四三角函数复习讲义

人教版数学必修四三角函数复习讲义

第一讲 任意角与三角函数诱导公式1. 知识要点角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。

射线的起始位置称为始边,终止位置称为终边。

象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

终边相同的角的表示:α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z 。

注意:相等的角的终边一定相同,终边相同的角不一定相等.α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.α与2α的终边关系:任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y xr rαα==, ()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0r y y α=≠。

三角函数值只与角的大小有关,而与终边上点P 的位置无关。

三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )”同角三角函数的基本关系式:1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 3. 商数关系:sin cos tan ,cot cos sin αααααα==注意:1.角α的任意性。

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

解:(2)当x 2k , k Z时,函数取得最大值,ymax 1
2
当x 2k , k Z时,函数取得最小值,
2
ymin 1
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymax
1,
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymin
1.
二、 正、余弦函数的奇偶性
-4 -3
例1.下列函数有最大(小)值?如果有,请写出取最大(小) 值时的自变量x的集合,并说出最大(小)值是什么?
(1)y cos x 1, x R; (2)y sin x, x R.
解:(1)当x 2k , k Z时,ymax 11 2,
当x 2k , k Z时,ymin 11 0.
1.4.2 正弦、余弦函数的性质
(1)周期性
定义域、值域
-4 -3
y
1
-2
- o
-1
y=sinx (xR)
2
3
4
定义域 xR
-4 -3
y=cosx (xR)
y
1
-2
- o
-1
值 域 y[ - 1, 1 ]
2
3
4
5 6x 5 6x
举例:
生活中“周而复始”的变化规律。
24小时1天、7天1星期、365天1年……. 相同的间隔重复出现的现象称为周期现象. 数学中又有哪些周期现象呢?
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
7 2
5
3
2

高一数学必修4三角函数的定义讲义

高一数学必修4三角函数的定义讲义

三角函数的定义知识梳理1、任意角三角函数的定义(1)单位圆:在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为单位圆. (2)单位圆中任意角的三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cos α,即cos α=x ;y x 叫做α的正切,记作tan α,即tan α=yx (x ≠0).2、三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,它们统称为三角函数.3、三角函数的定义域三角函数 定义域 sin α R cos α Rtan α⎩⎨⎧⎭⎬⎫α⎪⎪α≠π2+k π,k ∈Z 4、三角函数值的符号5、终边相同的角的同一三角函数的值(1)终边相同的角的同一三角函数的值相等.(2)公式:sin(α+k ·2π)=sin_α,cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z .例题精讲题型一、三角函数的定义及应用例1、(1)若角α的终边经过点P (5,-12),则sin α=________,cos α=________,tan α=________. (2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值.利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. 法二:注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sinα=b a 2+b 2,余弦值cos α=a a 2+b 2,正切值tan α=ba .(2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.变式训练已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.题型二、三角函数值符号的运用例2、(1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角(2)判断下列各式的符号:①sin 105°·cos 230°; ②cos 3·tan ⎝⎛⎭⎫-2π3.三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立; (2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立; (3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立; (4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立.变式训练若sin 2α>0,且cos α<0,试确定α终边所在的象限.题型三、诱导公式一的应用例3、计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.变式训练求下列各式的值:(1)sin 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°.课堂小测1、若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能2、若角α的终边过点(2sin 30°,-2cos 30°),则sin α的值等于( )A.12 B .-12 C .-32 D .-33 3、sin ⎝⎛⎭⎫-196π=________. 4、已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.5、化简下列各式:(1)a cos 180°+b sin 90°+c tan 0°; (2)p 2cos 360°+q 2sin 450°-2pq cos 0°; (3)a 2sin π2-b 2cos π+ab sin 2π-ab cos 3π2.同步练习1、25πsin6等于( )A .12 B .2 C .12- D .2-2、若角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin tan αα⋅=( )A .1615 B .1615- C .1516D .1516- 3、利用余弦线比较cos1,πcos 3,cos 1.5的大小关系是( ) A .πcos1cos cos1.53<< B .πcos1cos1.5cos 3<< C .πcos1coscos1.53>> D .πcos1.5cos1cos 3>> 4、如图,在单位圆中角α的正弦线、正切线完全正确的是( ) A .正弦线PM ,正切线A T '' B .正弦线MP ,正切线A T '' C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT5、角α的终边经过点(),4P b -且3cos 5α=-,则b 的值为( ) A .3 B .3- C .3± D .5 6、已知x 为终边不在坐标轴上的角,则函数()|sin |cos |tan |sin |cos |tan x x x x f x x x=++的值域是( ) A .{}3,1,1,3-- B .{}3,1-- C .{}1,3 D .{}1,3- 7、在[]0,2π上,满足3sin 2x ≥的x 的取值范围为( ) A .π0,3⎡⎤⎢⎥⎣⎦B .π2π,33⎡⎤⎢⎥⎣⎦ C .π2π,63⎡⎤⎢⎥⎣⎦ D .5π,π6⎡⎤⎢⎥⎣⎦8、若θ为第一象限角,则能确定为正值的是 ( ) A .sin2θB .cos2θC .tan2θD .cos 2θ9、已知α的终边经过点()36,2a a -+,且sin 0,cos 0,αα>≤则α的取值范围为________.10、若角α的终边与直线3y x =重合且sin 0α<,又(),P m n 是α终边上一点,且10OP =,则m n -=_____. 11、已知点()sin cos ,tan P ααα-在第一象限,则在[]0,2π内α的取值范围为__________. 12、(1)23π17πcos tan 34⎛⎫-+ ⎪⎝⎭; (2)sin 630tan 1 125tan 765cos 540︒+︒+︒+︒.13、当π0,2α⎛⎫∈ ⎪⎝⎭时,求证:sin tan ααα<<.14、已知角α的终边落在直线2y x =上,求sin α,cos α,tan α的值.。

(完整版)人教高中数学必修四第一章三角函数知识点归纳

(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。

新人教版必修4第1章第1节任意角的三角函数(第二课时)

新人教版必修4第1章第1节任意角的三角函数(第二课时)

sin y cos x y tan x 0
x
问题 2:角的概念推广以后,我们应该如何推广到 任意角呢? 新知:任意角三角函数的定义
设α 是一个任意角,它的终边与单位圆交于点P(x,y), 那么:
(1)y叫做的正弦,记作sinα
(2)x叫做的余弦,记作cosα y (3) 叫做的正切,记作tanα x
思考:对于确定的角α ,上述三个比值是否随 点P在角α 的终边上的位置的改变而改变呢?为 什么?
二、新课导学 探究任务一:任意角的三角函数的定义.
问题1 能否通过取适当点而将表达式简化?
新知:在直角坐标系中,我们称以原点O 为圆心,以单位长度 为半径的圆叫做单位圆.
y r
O

P (x,y)

M 1x
变式练习
(其中r x y )
2 2
已知角的终边过点 P(12,5), 求角的三角函数值。
如果角的终边落在坐标轴呢?请完成下表。
角Байду номын сангаас 角的弧度数
sin cos tan
0。
90。
π 2
180。 270。

3π 2
360。
2
0 0 1 0
1
0
1
0
不存在
1 0
不存在
0
1 0
0
三、总结提升
§1.2.1任意角的三角函数(第一课时)
y
o
x
一、复习引入 锐角的三角函数如何定义? A
P (x,y)
y r
O
y 对边 MP sin r 斜边 OP

M
B
x
邻边 OM x cos 斜边 OP r 对边 MP y x 0 tan 邻边 OM x

(完整版)高中必修四三角函数知识点总结

(完整版)高中必修四三角函数知识点总结

§04。

三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0。

01745 1=57。

30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57。

30°=57°18ˊ. 1°=180π≈0。

01745(rad )3、弧长公式:rl ⋅=||α。

扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y)P与原点的距离为r,则 ry =αsin ; rx =αcos ; =αtan yx=αcot ; xr =αsec ;。

yr=αcsc 。

5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP ; 余弦线:OM; 正切线: AT.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限"公式组二 公式组三(完整版)高中必修四三角函数知识点总结x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== 。

人教版数学高一B版必修4知识必备1.2任意角的三角函数

人教版数学高一B版必修4知识必备1.2任意角的三角函数

1.2任意角的三角函数知识梳理1.任意角的三角函数(1)定义:如图1-2-1所示,α是一个任意大小的角,以α的顶点O 为坐标原点,以α的始边为x 轴的正半轴建立平面直角坐标系.设P(x,y)是α的终边上任意一点,它到原点的距离|OP|=r ,则有r=22y x +,规定:图1-2-1sinα=r y ,cosα=r x ;tanα=xy ;cotα=y x ;secα=xr;cscα=y r . 对于每一个确定的α,都分别有唯一确定的正弦值、余弦值、正切值、余切值、正割值、余割值与之对应,所以这六个对应法则都是以角α为自变量的函数,分别叫做正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,这六个函数统称为三角函数. (2)定义域正弦函数sinα的定义域是R ;余弦函数cosα的定义域是R ; 正切函数tanα的定义域是{α|α≠kπ+2π,k ∈Z }. 2.三角函数值的符号(1)用图形表示:如图1-2-2所示,图1-2-2(2)用表格表示 x 的终边 x 轴正半轴 第一象限 y 轴正半轴 第二象限 x 轴负半轴 第三象限 y 轴负半轴 第四象限 sinα 0 + + + - - - - cosα + + 0 - - - 0 + tanα+不存在-+不存在-(3)三角函数值在各象限的符号的记忆方法:三角函数值在各象限的符号可用以下口诀记忆:“一全正,二正弦,三两切,四余弦”. 其含义是在第一象限各三角函数值全为正,在第二象限只有正弦值为正,在第三象限只有正、余切值为正,在第四象限只有余弦值为正(这里说的三角函数值不指正割和余割函数). 3.单位圆与三角函数线(1)单位圆:圆心在原点O ,半径等于1的圆称为单位圆. (2)三角函数线如图1-2-3,设单位圆与x 轴正方向交于A 点,与角α的终边交于P 点(角α的顶点与原点重合,角α的始边与x 轴的正半轴重合).图1-2-3过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点,这样就有sinα=MP ,cosα=OM ,tanα=AT.单位圆中的有向线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线.当角α的终边落在x 轴上时,M 与P 重合,A 与T 重合,此时正弦线、正切线分别变成一个点;当角α的终边在y 轴上时,O 与M 重合,余弦线变成一个点,过A 的切线平行于y 轴,不能与角α的终边相交,所以此时正切线不存在.(3)三角函数线的方向表示三角函数值的符号:(如图123)正弦线、正切线的方向同y 轴一致,向上为正,向下为负;余弦线的方向同x 轴一致,向右为正,向左为负.三角函数线的长度等于所表示的三角函数值的绝对值. 4.同角三角函数的基本关系(1)基本关系式:sin 2α+cos 2α=1;tanα=ααcos sin . 还可以了解下面关系式(不要求掌握): 1+tan 2α=sec 2α;1+cot 2α=csc 2α;cotα=ααsin cos ; tanα·cotα=1;sinα·cscα=1;cosα·secα=1. (2)基本关系式成立的条件:当α∈R 时,sin 2α+cos 2α=1成立; 当α≠kπ+2π(k ∈Z )时,ααcos sin =tanα成立.(3)基本关系式的变形sin 2α+cos 2α=1的变形:1=sin 2α+cos 2α;sin 2α=1-cos 2α;cos 2α=1-sin 2α;sinα=±α2sin 1-;cosα=±α2sin 1-. tanα=ααcos sin 的变形:sinα=cosαtanα;cosα=ααtan sin . 5.诱导公式(1)α与2kπ+α(k ∈Z )的三角函数间的关系: cos(2kπ+α)=cosα,sin (2kπ+α)=sinα,tan (2kπ+α)=tanα. (2)α与-α的三角函数间的关系:cos(-α)=cosα,sin (-α)=-sinα,tan (-α)=-tanα.(3)α与(2k+1)π+α(k ∈Z )的三角函数间的关系:cos [(2k+1)π+α]=-cosα,sin [(2k+1)π+α]=-sinα,tan [(2k+1)π+α]=tanα. 特别地:cos(π+α)=-cosα,sin (π+α)=-sinα,tan (π+α)=tanα.(4)α与2π+α的三角函数间的关系: cos(2π+α)=-sinα,sin (2π+α)=cosα,tan (2π+α)=-cotα.(5)α与2π-α的三角函数间的关系:cos(2π-α)=sinα,sin (2π-α)=cosα,tan (2π-α)=cotα.知识导学1.学好本节要复习初中学过的锐角三角函数,本节是锐角三角函数的补充和延伸.2.善于利用三角函数的定义及三角函数值的符号规律解决三角问题.3.在运用诱导公式时,要仔细体会其中的转化与化归的数学思想,并在解题过程中自觉应用.4.诱导公式的记忆方法(1)(2)(3)组可用口诀“函数名不变,符号看象限”记忆,其中“函数名改变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.(4)(5)组可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指把函数名变为原函数的余名三角函数,即正弦变余弦,余弦变正弦,正切变余切.“符号看象限”同上. 因为任意一个角都可以表示为k·2π+α(其中|α|<4π)的形式,所以以上五组诱导公式就可以把任意角的三角函数求值问题转化为0—4π之间角的三角函数求值问题.2kπ+α、-α、(2k+1)π+α、2π+α、2π-α(k ∈Z )都可以化为k·2π+α的形式,则这五组诱导公式也可以统一用口诀“奇变偶不变,符号看象限”来记忆,即k·2π+α(k ∈Z )的三角函数值,当k 为偶数时,得α的同名三角函数值;当k 为奇数时,得α的余名三角函数值,然后前面加上一个把α看成锐角时原函数值的符号,口诀中的奇偶指k 的奇偶. 5.诱导公式的选择方法:先用-α化为正角,再用2kπ+α(k ∈Z )化为[0,2π)内的角,然后用π+α,2π+α化为锐角的三角函数,还可继续用2π-α化为[0,4π)内的角的三角函数.由此看,利用诱导公式能将任意角的三角函数化为锐角(或更小角)的三角函数,也就是说:诱导公式真是好,负化正后大化小. 疑难突破1.在三角函数定义中,为什么三角函数值与点P 在角α终边上的位置无关,只依赖于角α的大小?剖析:很多同学对此产生质疑,突破这个疑点的途径是联系相似三角形的知识来分析.设P 0(x 0、y 0)是角α终边上的另一点,|OP 0|=r 0,由相似三角形的知识可知,只要点P 0在α终边上,总有r y =00r y ,r x =00r x ,y x =00y x ,x y =00x y ,y r =0y r ,x r =00x r .因此所得的比值都对应相等,所以三角函数值只依赖于角α的终边的位置即α的大小,而与点P 在角α终边上的位置无关.2.三角函数线有何作用?剖析:难点是学习了三角函数线后,感到三角函数线没有什么用处,其实不然.其突破的路径是从形的角度看待三角函数线,三角函数线是当点P 为终边与单位圆交点时,三角函数值的直观表达形式.三角函数线的方向和长短直观反映了三角函数值的符号和绝对值的大小,从三角函数线的方向可看出三角函数值的符号,从三角函数线的长度可看出三角函数值的绝对值大小.由此可知,三角函数线的形成反映了由一般到特殊的应用过程;用三角函数线表示三角函数反映了变换与转化、数形的结合与分离的思想方法.三角函数在各象限的符号,除从各象限点的坐标的符号及结合三角函数的定义来记忆之外,也可以根据画出的三角函数线的方向记忆.三角函数线的主要作用是解三角不等式、证明三角不等式、求函数定义域及比较大小,同时它也是学习三角函数的图象与性质的基础. 例如:求函数y=log 2(sinx)的定义域. 思路解析:转化为解不等式sinx >0.答案:要使函数有意义,x 的取值需满足sinx >0. 如图1-2-4所示,MP 是角x 的正弦线,图1-2-4则有sinx=MP >0.∴的方向向上.∴角x 的终边在x 轴的上方. ∴2kπ<x <2kπ+π(k ∈Z ).即函数y=log 2(sinx)的定义域是(2kπ,2kπ+π),k ∈Z .由以上可看出,利用三角函数线数形结合,能使问题得以简化.三角函数线是利用数形结合思想解决有关三角函数问题的重要工具,要注意通过平时经验的积累,掌握其应用.。

高一数学人教B版必修4课件1-2-3同角三角函数的基本关系

高一数学人教B版必修4课件1-2-3同角三角函数的基本关系
• 就是说:(1)对角线上的都成倒数关系,即 sinα·cscα = 1 , cosα·secα = 1 , tanα·cotα =1;
• (2)成平方关系的都在顶点向下的三个阴影 倒三角形中,下边顶点处的是其余两个的 平 方 和 , 即 sin2α + cos2α = 1 , tan2α + 1 =
=ccoossα2α(1--csoisn2αα)=0, ∴1-cossiαnα=1+cossiαnα. [点评] 关于三角恒等式的证明,一般方法有以下几 种: (1)从一边开始,证得它等于另一边,一般由繁到简. (2)左右归一法,即证明左右两边都等于同一个式子.
左边 (3) 比 较 法 , 即 证 明 “ 左 边 - 右 边 = 0” 或 “ 右边 = 1”.
(1)求 tanθ 的值; (2)求1-sincθotθ+1-cotsaθnθ的值.
[解析] (1)由题设条件
sinθ+cosθ=
பைடு நூலகம்3+1 2
sinθ·cosθ=m2
① ②
①式平方并将②代入得 m= 23,
由 Δ=( 3+1)2-8m≥0 得 m≤2+4 3,∴m= 23适合.
∴方程 2x2-( 3+1)x+ 23=0 两根,x1= 23,x2=12,
(cos10°-sin10°)2 sin10°- cos210°
=|csions1100°°--csoins1100°°|=csions1100°°--csoins1100°°=-1.
• [点评] 利用同角三角函数之间的关系公 式去掉根号是解决此题的关键,对于去掉 根号后的含绝对值的式子,需根据绝对值 内的式子的符合,做好分类讨论,去掉绝 对值.
[例 2] 已知 sinθ+cosθ=1-2 3 (0<θ<π).求 sinθ,

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)

人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。

人教B版必修4高一数学1.2.1三角函数的定义教学课件

人教B版必修4高一数学1.2.1三角函数的定义教学课件

B.
α
|
α
=

+
π 6
,
k
Ζ
β
|
β
=

+
π 6
,
k
Ζ.
C.若a是第二象限的角,则 sin 2 0 .
D.第四象限的角可表示为:
α
|
2kπ
+
3π 2
<
α
<
2kπ,
y
y 叫α的正弦
P(x, y)
sin α y
x叫α的余弦
O
x
cos x
y 叫α的正切 x tan y
x
思考:
对应关系sin y,cos x ,tan y (x 0)
都是以角为自变量,以单位圆上的点的坐标x或坐标
的比值为函数值的函数,分别称为正弦函数、余弦 函数和正切函数,并统称为三角函数,在弧度制中, 这三个三角函数的定义域分别是什么?
tan(α + k 2π) = tanα
(k z).
利用公式一,作用在于可将求任意角的 三角函数值,转化为求0~2π (或0°~ 360°)范围内的三角函数值.
例6:求下列三角函数的值.
(1)cos 17π ; 4
(2)sin 9π tan 7π .
4
3
解:(1)cos 17π = cos π = 1
P(4,-3) a的终边
事实上: 三角函数也可定义为
设α是一个任意角,它的终边经过点P(x,y),则
sin α y r
的终边 P(x,y) y
cos x
r
tan y
x
r
o
x

数学人教B版必修4预习导航1.3.3已知三角函数值求角

数学人教B版必修4预习导航1.3.3已知三角函数值求角

预习导航对于正弦函数y =sin x ,如果已知函数值y (y ∈[-1,1]),那么在,22ππ⎡⎤-⎢⎥⎣⎦上有唯一的x 值和它对应,记作x =arcsin_y 11,22y x ππ⎛⎫-≤≤-≤≤⎪⎝⎭. 注意:(1)arcsin y 的含义:表示,22ππ⎡⎤-⎢⎥⎣⎦上正弦等于y 的那个角,即sin(arcsin y )=y (-1≤y ≤1).(2)当0<y ≤1时,arcsin y ∈0,2π⎛⎤⎥⎝⎦; 当y =0时,arcsin y =0; 当-1≤y <0时,arcsin y ∈,02π⎡⎫-⎪⎢⎣⎭. (3)arcsin(-y )=-arcsin y . 2.已知余弦值,求角对于余弦函数y =cos x ,如果已知函数值y (y ∈[-1,1]),那么在[0,π]上有唯一的x 值和它对应,记作x =arccos_y (-1≤y ≤1,0≤x ≤π).注意:(1)符号arccos y 的含义:①arccos y 表示一个角;②-1≤y ≤1,且0≤arccos y ≤π.③cos(arccos y )=y .(2)当0<y ≤1时,arccos y ∈0,2π⎡⎫⎪⎢⎣⎭;当y =0时,arccos y =2π;当-1≤y <0时,arccosy ∈,2ππ⎛⎤⎥⎝⎦. (3)arccos(-y )=π-arccos y .如cos x =23,则x =arccos 23,若cos x =-23,则x =arccos 23⎛⎫-⎪⎝⎭=π-arccos 23,则x =arccos y 表示[0,π]内的一个角. 3.已知正切值,求角如果正切函数y =tan x (y ∈R ),且x ∈,22ππ⎛⎫-⎪⎝⎭,那么对每一个正切值y ,在开区间,22ππ⎛⎫- ⎪⎝⎭内有且只有一个角x ,使tan x =y ,记作x =arctan_y ,22y R x ππ⎛⎫∈-<< ⎪⎝⎭. 注意:(1)arctan y 的含义:①arctan y 表示一个角;②y ∈R ,且-2π<arctan y <2π;③tan(arctan y )=y .(2)当y <0时,arctan y ∈,02π⎛⎫- ⎪⎝⎭; 当y =0时,arctan y =0; 当y >0时,arctan y ∈0,2π⎛⎫ ⎪⎝⎭. (3)arctan(-y )=-arctan y . 4.已知三角函数值求角的基本类型 剖析:提示:已知角x的一个三角函数值求角x,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定.如果在这个范围内已知三角函数值对应的角不止一个,可分为以下几步求解:第一步,确定角x可能是第几象限角.第二步,如果函数值为正数,则先求出对应的锐角x1;如果函数值为负数,则先求出与其绝对值对应的锐角x1.第三步,如果函数值为负数,则根据角x可能是第几象限角得出(0,2π)内对应的角——如果它是第二象限角,那么可表示为-x1+π;如果它是第三或第四象限角,那么可表示为x1+π或-x1+2π.第四步,如果要求出(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数这一规律写出结果.。

人教版高中必修4(B版)3.1和角公式课程设计

人教版高中必修4(B版)3.1和角公式课程设计

人教版高中必修4(B版)3.1和角公式课程设计一、课程设计目的本次课程设计旨在帮助学生理解和掌握三角函数中的和角、差角、倍角和半角公式,并能熟练运用到具体问题中。

二、教学内容1.复习三角函数的基本概念和常用公式2.学习和角、差角、倍角和半角公式的概念和推导过程3.进行例题讲解和练习4.提供实际问题解题案例,让学生将所学知识应用到实际问题中三、教学方法1.讲解与演示法:老师通过简单而直观的图形和例题讲解和角、差角、倍角和半角公式的概念和推导过程,同时给学生练习时间。

2.讨论和合作学习法:老师通过给出问题,让学生分组进行讨论和合作,提高学生的思考和解决问题的能力,同时检查学生的掌握情况。

3.实际问题案例讲解法:老师通过提供实际问题,让学生将所学知识应用到实际问题中,提高学生理解和掌握能力。

四、课程设计流程第一步:引入1.师生互动:老师和学生互相问候,拉近师生关系,营造积极上进的学习氛围。

2.自我介绍:老师简单介绍自己和课程内容。

3.目标说明:老师简单说明本次课程设计的目标和重点。

第二步:知识点讲解1.和角的概念和推导过程2.差角的概念和推导过程3.倍角的概念和推导过程4.半角的概念和推导过程5.典型例题第三步:练习与合作1.给出题目,学生分组进行讨论和合作。

2.学生交流答案,并进行批改。

第四步:知识拓展1.实际问题解题:提供现实生活中的问题,让学生运用所学知识解决问题。

2.讨论:学生进行讨论,个人分享自己的解题思路和方法。

第五步:总结归纳1.梳理课上所学内容,回顾当天课程。

2.强调重难点,梳理易错点。

3.提醒学生需要再课后加强复习。

五、总结通过这次课程设计,学生能够在巩固已掌握知识的基础上,学习和运用和角、差角、倍角和半角公式,提高自己解决问题的能力。

同时,通过讨论和合作,培养学生自主学习和合作学习的能力,为后续学习打下基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的定义
高一备课组 2014-4-15
复习引入
1.角的概念 2.初中时,我们学习了锐角的三角函数, 思考:那时是如何定义三角函数的?
提示:在直角三角形中考虑锐角的三 角函数
A
在Rt△ABC中,∠C=90° ∠A、∠B、∠C的对边分别 为a、b、c, a 则有 sinA= c c
b
b cosA= c
则b的值是( A ) (A)3 (B)-3 (C)±3 (D)5 解:r= b 2 16 解得b=3.
x b 3 cosα= 2 r 5 b 16
练2. 已知角α的终边上一点P(-
y≠0),且sinα= 解:sinα=
2 y 4
3,y)(其中
,求cosα和tanα.
y y 2y r 4 3 y2
练习
4.函数y=
| sin x | sin x
cos x + | cos x |
+
| tan x | 的值域是 tan x
(C )
(A) {-1,1} (C) {-1,3}
(B) {-1,1,3} (D) {1,3}
5.已知:cos 0, tan 0.
1求角的集合;
2求角 的终边所在的象限; 2 3试判断 sin , cos , tan 的符号 2 2 2
3 csc 2
=-1,sec
3 2
3 不存在,cot 2
=0.
例3 求5 的正弦、余弦和正切值.
3
y
5 3
x
1 P( ,2 3 ) 2
O
例4已知角的终边在y=-2x上,求角的六个三角函数值?
4 例5已知角的终边经过点P -8m, -3 且cos =- , 求m的值? 5
3 练习1. 角α的终边过点P(-b,4), 且cosα= 5
11 (3)tan(-672º );(4) tan( ) 3
解: (1)250º 在第三象限,所以cos250º <0.
(2) - 4 在第四象限,所以sin(- 4 )<0.
11 (6) tan( ) + 6
(3) -672º 在第一象限,所以tan(-672º )>0. (4)
11 3
)
(C)等于0
(D)不确定
练2、若三角形的两内角,满足sincos<0, 则此三角形必为( A. 锐角 以上三种情况都可能
练3.若α是第三象限角,则下列各式中不成 立的是(
B)
B. tansin<0 D. cotcsc<0
A. sin+cos<0 C. coscot<0
+ 二正 弦
sin
_
_
csc sec cot
tan
+ + 一正
O
x 0, y 0
sin
+
x
x 0, y 0
csc sec
cos
_ _ 三切
cot
tan
csc sec cot
cos
tan
+
_
y ( -) (+ ) o x ( +) ( - ) tan
探究点一
本 课 时 栏 目 开 关
三角函数的定义域
任意角的三角函数是在坐标系中定义的,角的范围是使函数有 意义的实数集.根据任意角三角函数的定义可知正弦函数 y= sin x 的定义域是 R;余弦函数 y=cos x 的定义域是 R;正切函 π 数 y=tan x 的定义域是{x|x∈R,且 x≠kπ+ ,k∈Z}.在此基 2
y 3 13 r 13
cosα=
tanα=
secα=
y 3 x 2 r 13 x 2
cotα=
cscα=
x 2 13 r 13 x 2 y 3
r 13 y 3
例2. 求下列各角六个三角函数值: 3 (1)0;(2)π;(3)
2
解:(1)因为当α=0时,x=r,y=0 .所以 sin0=0,cos0=1,tan0=0, csc0不存在,sec0=1,cot0不存在.
11 在第四象限,所以tan( 3 )<0.
例1.函数
解析:
y tan(2 x ) 6

的定义域

2 k , k Z}
y tan x的定义域为{x x
依题,则有
2x

6


2
k (k Z )
k 可得x , (k Z ) 3 2
该函数的定义域为{x x
OMP

OM P
一、任意角的三角函数定义
P (x,y)
r α
x y
M
定义: y
P(x,y)
y
1)比值 r 叫做α 的正弦, y 记作sinα ,即sinα = r ;
α x
1 cos 1 sin
x 2)比值 r 叫做α 的余弦, x 4)角α的正割: secα= 记作cosα ,即cosα = ; r 5)角α的余割:cscα=


k , k Z} 3 2
例3.设sinθ<0且tanθ>0,确定θ是第几象限的 角。 解:因为sinθ<0,所以θ可能是第三、四象限 的角,又tanθ>0,θ可能是第一、三象限的角, 综上所述,θ是第三象限的角。
练习1. sin2· cos3· tan4的值 ( B (A)大于0 (B)小于0
π {x|x∈R 且 x≠kπ+ , (1)函数 y=sin x+tan x 的定义域为________________________ 2 k∈Z} . ________
础上,可以求一些简单的三角函数的定义域.例如:
{x|2kπ≤x≤2kπ+π,k∈Z} . (2)函数 y= sin x的定义域为_______________________
本 课 时 栏 目 开 关
π π {x|2kπ-2<x<2kπ+2,k∈Z} . (3)函数 y=lg cos x 的定义域为__________________________
9 例2. 确定下列三角函数值的符号: (5) cos ; + 4 (1)cos250º ; (2) sin( 4 )
3)比值 叫做α 的正切, y 记作tanα ,即tanα= x ;
y x
1 6)角α的余切:cotα= tan
终边相同的角,三角函数值分别相等。
它们只依赖于α的大小,与点P在α终边上的位置无关。
例1.已知角α的终边过点P(2,-3),求α的 六个三角函数值。 解:因为x=2,y=-3,所以 r 13 sinα=
6 4
15 3
15 3
解得y2=5,y= 5 当y= 5 时,cosα= ,tanα=
6 4 ,tanα=
当y=- 5 时,cosα=
二、三角函数的定义域
三角函数 定义域
r>0 r>0 x≠0

sinα x cosα r y tanα x
y r
x y
R R
{α∣α≠kπ+

2
,k Z}
+ 四余 弦
_


1.根据三角函数的定义,确定它们的定义域 (弧度制)
三角函数 定义域
cos tan
sin
R
k ( k Z ) 2
R
2.确定三角函数值在各象限的符号
y (+) + o x ( - )( - )
sin
y ( - )( + ) o x ( - )( + ) cos
(2) π; 解:(2)因为当α=π时,x=-r,y=0 .所以 sinπ=0,cosπ=-1,tanπ=0, Cscπ不存在,secπ=-1,cotπ不存在.
(3)
3 2
3 解:(3)因为当α= 2 时,x=0,y=-r .所以 3 3 3 sin 2 =-1,cos =0,tan 2 不存在, 2
a tanA= b
C
a
B
cotA= b a
新知探索:
将锐角α置于直角坐标系内 y
N
P(x,y)
r α
O X M
y
x
α为锐角
记∠MOP=α,P(x,y)是角α终边上不 同于原点的任意一点,MP⊥Ox于点M,则 OM=x,MP=y, r=OP=
x 2 y 2 >0
根据锐角三角函数的定义可知, sinα=
小结
1.任意角的三角函数的定义(六个) 2.各个三角函数的定义域
3.三角函数在各象限中的符号
作业
1.教材P17-18课后习题 2.名师一号对应习题 3.预习 *1.2.2 单位圆与三角函数线
P r y O x M
思考:
y r
cosα= x r 在终边上移动点 P y tanα= 的位置,这三个比值 x
会改变吗?
诱思探究 如果改变点P在终边上的位置,这三个比值会改变吗?
y
P
P(a,b)

M

O
M
x
M P MP sin OP OP OM OM cos OP OP MP M P tan OM OM
GO
cotα y 0 r secα x x 0 r cscα y y 0
≠ ≠
} {α∣α≠kπ,k Z
{α∣α≠kπ+

,k 2
Z}
} {α∣α≠kπ,k Z
相关文档
最新文档