链带藻分离响应面优化
响应面法优化S2菌株的培养条件
响应面法优化S2菌株的培养条件作者:刘江红等来源:《湖南大学学报·自然科学版》2015年第06期摘要:利用快速筛选方法从大庆采油三厂油田采出水中筛选出高产生物表面活性剂菌株S2,经鉴定为芽孢杆菌属.对S2菌株产生的生物表面活性剂进行提取及纯化后,通过离子鉴别实验及红外光谱法对其进行定性检测,确定其种类为非离子型脂肽类.以菌种S2产生的发酵液的乳化指数(E24)为指标,通过响应面优化方法对S2菌株的培养条件进行优化,以接种量、pH值、温度、摇床转速为因素优化对象进行实验.在此模型的基础上,通过二次回归方程得出最佳值是pH为7.2、温度为43.5 ℃、接种量为5.2%(V/V)、摇床转速为162 r/min.在优化后的最佳培养条件下,测得菌株S2所产生发酵液的最优E24为81.20%.关键词:发酵液;红外光谱法;响应面实验;乳化;菌株中图分类号:TE357 文献标识码:AAbstract:S2 strain that highly produces biosurfactant was screened from the oilfield water of three plants in Daqing Oilfield in the rapid screening method, and the S2 strain was identified as Bacillus sp.. Through FTIR and ion identification test, S2 biosurfactant was identified as nonionic lipopeptide biosurfactant. This experiment treated emulsification index (E24) of S2 strain fermentation broth as the object. Through response surface optimization method, the culture conditions (inoculum, pH, temperature and rotation speed) of the S2 strain were optimized. On the basis of response surface model, the optimum pH value was 7.2 and the temperature was43.5 ℃, inoculation of 5.2% (V/V), rotation speed was 162 r/min through the quadratic regression equation. Under the optimal condition, the best E24 of S2 strain fermentation broth was 81.20%.Key words: fermentation broth; infrared spectral measurements; response surface experiments; emulsification; strain生物表面活性剂是微生物在一定条件下发酵产生且具有表面活性的次级代谢产物,其性质为同时具有亲油性和亲水性[1].生物表面活性剂对疏水性物质具有有效的乳化、润湿、分散、溶解作用,同时使体系的表/界面张力有所下降[2-3].自然界中存在许多微生物(细菌、真菌等),这些微生物能够在发酵培养过程中分泌产生不同种类的生物表面活性剂.现在化学合成的表面活性剂因其造成环境污染而使其使用面临着巨大的环境压力,生物表面活性剂具有功能的多样性和对环境的友好性,且在食品工业、原油采出、污染环境的修复等领域中起着越来越重要的作用.作为一种综合性优化方法,响应面优化法结合了数学方法和统计学方法,主要内容包括优化实验设计、响应曲面分析和拟合优化计算3部分,被广泛地应用在微生物培养条件优化和生化反应中[4].本实验通过BoxBehnken响应面设计的应用对生物表面活性剂高产量菌株S2的发酵培养条件进行优化,以乳化指数E24为响应值,pH值、温度、接种量及摇床转速为其主要影响因素,通过实验后得到的数据并分析各因素的最佳条件,从而提高乳化指数.通过对本实验模型的3D响应曲面图和等高线图的分析,可以直观地得出各因素与乳化指数E24的响应关系及各因素间交互作用的显著程度[5-6].采用DesignExpert 8.0.5软件进行实验设计、数据处理及模型建立.1 材料与方法1.1材料与设备1.1.1主要设备XZD3型界面张力仪,上海平轩科学仪器有限公司;超声细胞破碎仪,赛飞(中国)有限公司;薄层色谱层析缸(100×100),天津市思利达科技有限公司;红外光谱仪,大塚电子(苏州)有限公司.1.1.2菌株来源以快速法为筛选方法,从大庆采油三厂的油田采出水中筛选出高产生物表面活性剂纯菌种S2,经实验室一系列生理、生化实验鉴定后,确定S2菌种为芽孢杆菌属(Bacillussp.).1.1.3培养基发酵培养基(g/L):葡萄糖20 g,mNaNO3=0.5 g,mKH2PO4=1 g,mNa2HPO4=2 g,mMgSO4=0.02 g,mFeSO4=0.01 g,mNaCl=5 g,mCaCl2=0.08 g,pH值为7.2~7.4,121 ℃灭菌20 min.1.2实验方法1.2.1发酵液的乳化指数(E24)测定[7]将经过72 h震荡培养后的发酵液用离心机去除菌体细胞,取其5 mL和5 mL液体石蜡混合于比色管中,在100 W的超声波中进行细胞粉碎处理,待形成白色乳化液后,静置24 h,测量E24的公式如式(1)所示.E24=乳化层高度液体总高度×100%.(1)1.2.2发酵液的表面张力测定采用Wihelmy板法对菌株的发酵液进行表面张力测定.移取发酵液10 mL置于直径为4 cm 的培养皿中,发酵液的表面张力被表面张力测定仪测定,在每次测定前,需将铂片用蒸馏水冲洗干净,并用酒精灯对铂片进行灼烧.以蒸馏水做空白实验.1.2.3生物表面活性剂提取、纯化本实验采用酸沉淀法进行表面活性剂纯化.将S2菌株发酵液在10 000 r/min的转速下离心20 min后取其上清,上清液用浓盐酸(2 mol/L)调节至pH为2.0,在温度为4 ℃静置过夜.静置后的溶液在相同转速下继续离心20 min,弃其上清,用少量蒸馏水重悬沉淀,用浓NaOH调节至pH为7.0,样品于-20 ℃放置5 h后,在真空条件下冷冻干燥24 h.所得的样品即为该生物表面活性剂的粗品,将其称重后用无水甲醇进行超声溶解,在14 000 r/min的转速下离心10 min后,取其上清并在46 ℃下进行旋转蒸发.1.2.4生物表面活性剂的定性鉴别实验通过亚甲基蓝氯仿法、酸性溴酚蓝法及浊点法对提纯后的生物表面活性剂进行离子鉴别实验.用KBr压片法把经过甲醇萃取得到的生物表面活性剂纯品压片,利用红外吸收光谱对其进行测定.红外吸收光谱上出现吸收峰对应的波长范围可用来判断其相应的官能团,进而确定该样品的分子结构.1.2.5响应面实验设计根据BoxBehnken实验设计原理,进行4因素3水平(分别以-1,0,+1编码)的响应面分析实验,各因素的实验水平及编码如表1所示.29组实验对应的29个实验点可以分为析因点和零点,为了更好地估算实验中可能存在的误差,需要重复进行5次零点实验.BoxBehnken优化实验中具体的实验点设置如表2所示.通过实验数据的二次回归拟合分析得到各因素与响应值间的回归方程,分析各因素与响应值间的主效应、因素间的交互效应得到最佳响应值.2结果与讨论2.1生物表面活性剂的定性鉴别实验2.1.1生物表面活性剂的离子鉴别实验观察实验现象为阴离子鉴别实验中氯仿层显无色,阳离子鉴别实验中溶液不变色,非离子鉴别实验中溶液内有新相生成.通过上述实验结果可知S2菌株所产生物表面活性剂种类为非离子型.2.1.2红外光谱分析由图1分析可知,生物表面活性剂在3 300 cm-1~3 200 cm-1有一个较宽的吸收峰,其分子具有键C-H和N-H的伸缩振动,表示该物质是含有氨基的碳氢化合物并且存在分子内氢键.此外在2 927 cm-1,2 896 cm-1和2 358 cm-1处有3个较强吸收峰,表示该物质含有C-CH3键或是含有长烷基.在6 654 cm-1处拥有最强吸收峰,表示该生物表面活性剂分子含有肽键,分子内的C=O键伸缩振动引起与此处相邻的1 532 cm-1的另一强吸收.由红外谱图可知,S2菌株发酵产生的生物表面活性剂具有与脂肽类基本一致的特征吸收峰.2.3菌种培养条件的优化利用软件对表2的实验数据进行二次多元回归拟合后,得到本实验模型的3D响应曲面及等高线图,通过分析研究可以得到各因素之间的交互作用并且确定其最优值.两因素间交互作用的显著程度被等高线图直观地反映出,即交互作用显著呈椭圆形,不显著呈圆形.故由等高线图可知pH值和接种量、pH值和摇床转速、温度和摇床转速、温度和接种量、接种量和摇床转速两因素的交互作用显著.由图2中的3D响应曲面可知,A,B,C和D存在极值点,利用Design Expert软件,对乳化指数E24(Y)的二次多项式模型解逆矩阵可知,响应值Y越大越好.经软件分析或回归方程求导得到优化结果,可得A,B,C和D对应实验值A=7.2,B=43.5 ℃,C=5.2%,D=162r/min.在此培养条件下,分析后响应值Y达最大值,预测Ymax=78.86%.(a) 3D响应曲面图(b)等高线图2.4追加实验在响应面分析得到的S2菌株最佳培养条件下进行追加实验,通过追加实验测得:由S2菌产生的生物表面活性剂的最佳E24为81.20%,较Abouseoud[8]得到的65%与Ansari[9]得到的70%有了很大的提高;S2菌株产生的生物表面活性剂的最佳产量为1.26 g/L(不在最佳条件下测得生物表面活性剂产量为0.72 g/L);S2菌株的发酵液的表面张力从72.0 mN/m减少至25.8 mN/m.3结论通过离子鉴别实验及傅里叶红外光谱分析法对高产生物表面活性剂菌株S2产生的生物表面活性剂进行定性检测,确定其为非离子型脂肽类.采用响应面法进行了S2菌株发酵培养条件的优化实验,通过BoxBehnken实验设计和Design Expert 8.0.5软件分析确定出主要影响因素的最优值,即pH为7.2、温度为43.5 ℃、接种量为5.2%(V/V)、摇床转速为162 r/min.由因素实验水平和显著性分析可知,pH值、温度、接种量对S2菌株产生发酵液的乳化指数E24有显著影响,其中pH值对其影响最大.在最佳培养条件下,S2菌株所产生物表面活性剂的最佳E24为81.20%、生物表面活性剂的产量从0.72 g/L增加至1.26 g/L、发酵液的表面张力从72.0 mN/m 减少至25.8 mN/m.模型的实验值接近回归方程计算得到的预测值,说明该回归方程能够反映实际情况中各因素对响应值的影响,故采用响应面法优化S2菌株的培养条件具有高效性和可行性.参考文献[1]JUWARKAR A A, NAIR A, DUBEY K V, et al. Biosurfactant technology for remediation of cadmium and lead contaminated soils[J]. Chemosphere, 2007, 68(10): 1996-2002.[2]SOUSA M, MELO V M M, RODRIGUES S, et al. Screening of biosurfactantproducing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source[J]. Bioprocess and Biosystems Engineering, 2012, 35(6): 897-906.[3]刘江红,贾云鹏,徐瑞丹,等. 微生物清防蜡技术研究及应用[J]. 湖南大学学报:自然科学版, 2013, 40(5): 82-85.LIU Jianghong, JIA Yunpeng, XU Ruidan, et al. Research and application of microbial paraffinremoval technology[J]. Journal of Hunan University: Naturnal Science, 2013, 40(5): 82-85.( In Chinese)[4]CESCUT J, SEVERAC E, MOLINAJOUVE C, et al. Optimizing pressurized liquid extraction of microbial lipids using the response surface method[J]. Journal of Chromatography A,2011, 1218(3): 373-379.[5]PAREKH V J, PANDIT A B. Optimization of fermentative production of sophorolipid biosurfactant by Starmerella bombicola NRRL Y17069 using response surfacemethodology[J].International Journal of Pharmaceutical Sciences, 2011, 1(3): 103-116.[6]BEZERRA M A, SANTELLI R E, OLIVEIRA E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76(5): 965-977.[7]LIU J H, CHEN Y T, XU R D, et al. Screening and evaluation of biosurfactantproducing strains isolated from oilfield wastewater[J]. Indian Journal of Microbiology, 2013, 53(2):168-174.[8]ABOUSEOUD M, MAACHI R, AMRANE A, et al. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens [J]. Desalination,2008, 223(1): 143-151.[9]ANSARI F A, HUSSAIN S, AHMED B, et al. Use of potato peel as cheap carbon source for the bacterial production of biosurfactants[J]. Biology Research, 2014, 2(1): 27-31.。
响应面优化产油沙漠链带藻(Desmodesmus sp.XJ842)的培养基组成
响应面优化产油沙漠链带藻(Desmodesmus sp.XJ842)的培养基组成王程惠;何梅琳;邹山梅;王长海;邓祥元【摘要】以一株从新疆荒漠地区筛选出来的沙漠产油微藻为实验对象,经过形态学和分子生物学手段(18s rRNA及ITS测序)鉴定为链带藻属(Desmodesmus sp.),并命名为XJ842.为提高其油脂产率,采用响应面对其培养基组成(碳源、氮源和磷源)进行优化.单因素实验分析结果显示,其最适产油的碳源为Na2CO3,最适氮源为NaNO3.运用Box-Behnken中心组合实验以及Design-Expert分析软件建立了以总脂含量和油脂产率为响应值的响应面方程,得到最适合产油的Na2CO3浓度为1.98 mmol/L,NaNO3浓度为48.00 mmol/L,K2 HPO4浓度为0.46 mmoL/L.在最优培养基条件下,Desmodesmus sp.XJ842总脂含量达到67.73%,油脂产率达到29.27 mg/(L·d).优化后的总脂含量、油脂产率比优化前的分别提高了2.08倍和2.61倍.优化后Desmodesmus sp.XJ842油中饱和脂肪酸和单不饱和脂肪酸占总脂肪酸的88.41%,且亚麻酸的含量小于12%,符合欧洲生物柴油标准EN14214,具有生产生物柴油的潜力.【期刊名称】《中国油脂》【年(卷),期】2016(041)001【总页数】6页(P45-50)【关键词】沙漠微藻;链带藻;响应面优化;培养基组成;生物柴油【作者】王程惠;何梅琳;邹山梅;王长海;邓祥元【作者单位】南京农业大学资源与环境科学学院,南京210095;南京农业大学资源与环境科学学院,南京210095;南京农业大学资源与环境科学学院,南京210095;南京农业大学资源与环境科学学院,南京210095;南京农业大学资源与环境科学学院,南京210095【正文语种】中文【中图分类】TS222;TQ920.6微生物油脂微藻由于具有生长速率快,光合效率高,不受气候、季节限制,容易实现大规模培养等特点,成为当今开发新生物能源的研究热点,通过提取微藻油脂转化为生物柴油,具有非常广阔的开发利用前景[1]。
响应面法优化重组大肠杆菌发酵生产藻蓝蛋白培养基的关键介质组分
响应面法优化重组大肠杆菌发酵生产藻蓝蛋白培养基的关键介质组分响应面法是一种常用的参数优化方法,它可以在多个变量之间建立数学模型,通过优化模型的参数,得到最优结果。
在生物制药领域,响应面法被广泛应用于发酵过程的优化。
藻蓝蛋白是一种重要的生物色素,它被广泛用于生物技术、医药和食品工业等领域。
大肠杆菌是产生藻蓝蛋白的重要菌种之一。
在大肠杆菌发酵生产藻蓝蛋白的过程中,培养基是一个关键的因素。
培养基中的关键组分可以影响藻蓝蛋白的合成和产量。
因此,优化培养基中的关键介质组分是提高藻蓝蛋白发酵生产的重要策略。
在优化培养基中的关键介质组分时,响应面法可以帮助我们确定最佳组合条件。
响应面法通常包括以下几个步骤:1. 确定变量和水平:在大肠杆菌发酵生产藻蓝蛋白的过程中,培养基中的关键介质组分可能涉及多个变量,如碳源、氮源、微量元素等。
通过实验确定变量和每个变量的水平。
2. 设计试验矩阵:使用正交试验设计或中心组合试验设计等方法,生成一组试验矩阵,包含各种组合条件下藻蓝蛋白的产量和其他指标。
3. 进行实验:使用试验矩阵中的组合条件进行实验,并记录藻蓝蛋白的产量和其他指标。
4. 分析结果:根据实验数据建立数学模型,并通过响应面分析确定最佳组合条件。
在确定大肠杆菌发酵生产藻蓝蛋白培养基的关键介质组分时,可以选择以下几个关键介质组分:1. 碳源:碳源是大肠杆菌产生藻蓝蛋白的关键组分之一。
常用的碳源包括葡萄糖、甘露糖、乳糖等。
通过响应面法优化碳源的组分和浓度,可以提高藻蓝蛋白的产量。
2. 氮源:氮源对大肠杆菌的生长和藻蓝蛋白的合成也具有重要的影响。
常用的氮源包括酵母提取物、氨基酸、尿素等。
优化氮源的组分和浓度可以提高藻蓝蛋白的合成和产量。
3. 微量元素:微量元素对大肠杆菌发酵生产藻蓝蛋白也具有重要的影响。
铁、镁、锌、铜等微量元素都可以影响藻蓝蛋白的产量和合成。
优化微量元素的组分和浓度可以提高藻蓝蛋白的发酵生产。
综上所述,响应面法可以帮助我们确定最佳的培养基中的关键介质组分,进而提高大肠杆菌发酵生产藻蓝蛋白的产量和合成效率,具有重要的应用价值。
用响应面法优化小球藻絮凝沉降工艺的研究
文章编号 : 2 0 9 5 — 1 3 8 8 ( 2 0 1 4) 0 1 — 0 0 6 1 — 0 5
用 响应 面 法优 化小 球 藻 絮凝 沉 降工 艺 的研 究
曲孟 ,李秀 辰 ,白晓磊 , 杨福利 , 孙 彩 玲
( 大连海洋大学 辽宁省渔业装备2 1 2 程技术研究 中心 ,辽宁 大连 1 1 6 0 2 3 )
摘要 : 以氢氧化钙为絮凝剂,对海水小球藻 C h l o r e U a v u l g a r i s 絮凝工艺效果进行了试验研究。单因素试验
结果表 明,当絮凝时间为 6 0~8 O m i n 、氢氧化 钙添加量为 0 . 6~ 0 . 8 L和藻 液 p H为 8~1 0时 ,最有利 于 小球藻的采收。在单因素试验的基础 上 ,利用 响应 面法对小 球藻 的絮凝条 件进行 了优 化 ,建 立 了二次 回归
收 稿 日期 : 2 0 1 3 — 0 7 — 0 1
小球 藻 C h l o r e l l a v u l g a r i s购 自大 连 汇 新 钛 设 备 开 发有 限公 司 ,氢 氧 化 钙 ( 分 析 纯 ) 购 自天 津 博
迪化 工股 份有 限公 司 。
游离 C a 2 及 各种带 正 电荷 的水 解产 物 ,小球藻 表面 的多 羟基有 机酸或糖 类 发生离 解 ,从而使 藻细胞 表 面带有 一定量 的负 电荷 ,两者 通过 吸附或 者 电中和 聚团沉 降 j ,而加 入 的氢 氧 化 钙 可 以在 培 养 微
藻 过程 中用 C O 去 除 ,因此 ,氢氧 化钙 絮凝 微 藻具
第2 9卷 第 1期 2 0 1 4年 2 月
大
连 海
洋 大
学 学 报
响应面法优化亚临界流体萃取海带中叶绿素工艺
提取物与应用
本上都还是以陆生植物为原料。同时,多年来叶 绿素的生产一直采用的是传统生产工艺,存在产 品质量差、纯度低、有异味和溶剂残留等问题[3]。 1,1,1,2-四氟乙烷(R134a)是一种广泛使用的 低温环保制冷剂,不含氯原子,对臭氧层不起 破坏作用,具有良好的安全性能(不易燃、不易 爆、无毒、无刺激性、无腐蚀性)且化学性质稳 定 [4] 。R134a的临界温度为101.1 ℃,临界压力 为4.067 MPa,远远低于超临界CO 2 的临界压力 (7.14MPa) [5] 。在天然物质萃取 [6-8] 方面,超临界 CO2往往需要在30~50 MPa才能达到理想的萃取效 果,而Mustapa[9-10]等人利用亚临界R134a萃取棕榈 油和类胡萝卜素时发现,萃取压力在10 MPa时就 已经获得相当高的萃取率。这将大大降低对设备 的要求,并且对于一些不耐高压活性成分的提取 具有较大的优势。 本实验采用亚临界R134a萃取技术对海带叶 绿素萃取工艺和条件进行了研究,并利用响应曲 面法对萃取工艺进行优化。 1 材料与方法 1.1 材料与试剂 新鲜海带:市售;R134a储罐:99.9%,青岛 新捷制冷有限公司;无水乙醇:分析纯;0.45 μm 微孔滤膜:天津市津腾实验设备有限公司。 1.2 仪器与设备
叶绿素是一种天然色素,在食品、化妆 品 和 医 药 行 业 中 被 广 泛 应 用 于 产 品 的 着 色 [1]。 自然界中陆生植物叶子中所含叶绿素的含量为 0.3%~0.5%,而海水可被利用的光能要比陆地上
少得多,海洋植物为了获得足够的能量,必须增 加参与光合作用的叶绿素含量。所以,一般情况 下,海洋植物中叶绿素和其他辅助色素的含量高 于陆生植物[2]。然而,目前国内外叶绿素的生产基
(College of Food Science and Engineering, Ocean University of China, Qingdao 266003)
响应面优化实验
实验步骤1.输入三因素及其水平,设计响应面实验。
2. 应变量3.输入实验数据4.试验方案形成5.实验数据分析利用系统软件SAS8.0对表5实验数据进行二次多项回归拟合,通过RESEG(响应面回归)过程进行数据分析,建立二次响应面回归模型,并寻求最优相应因子水平,得到回归方程:Y=2.136667+0.44625X1+0.045X2-0.01375X3-0.44583X12-0.13833X22-0.09083X3 2-0.1175X1X2+0.015X1X3-0.0725X2X3模型的F检验值在α=0.05时远大于F(9,5)=4.77,说明方程有很高的显著性。
R2=0.9973,表明方程模型与实验数据有99.73%的符合度,调整后的R2adj=0.9925,表明方程模型有很高的可信度。
6.正态分布图7.Residuals vs Predicted 图8.Predicted vs Actual 图9.实验实际值和方程预测值10.等高线图11.三维相应曲面图 ABACBC在获得非线性回归模型和响应面之后,为了求得培养基最佳浓度,对所得的回归拟和方程分别对各自的变量求一阶偏导数,并令其为得到三元一次方程组,求解此方程组可以得到最大多糖量时的最佳条件:X1=0.5066(2.2533%) ,X2=-0.0488(0.9756%) , X3=0.0144(0.0993%) ,Y=2.2487g/L。
所以产多糖最高时的培养基组成为:葡萄糖2.2533%,鱼粉0.9756%,VB1 0.003%,NaCl0.8%,MgSO4·7H2O 0.1%,FeSO4·7H2O 0.04%,KH2PO4 0.0993%,初始pH值5.5。
12.用RSM预测最优值根据最优培养基配方对模型进行验证,香菇菌丝体产粗多糖为2.33g/L,实际值与预测值的误差为+3.61%。
初始培养基条件下总多糖产量为0.80g/L,优化后提高了1.91倍。
响应面分析法优化海带提取液制备工艺的研究
含 量 为 48 %, 复 性 良好 。 .3 重
关 键 词 : 带 提 取 液 ; 应 面 ; 化 海 响 优
食 品 与 发 酵 , 技 I 4
Fo dFem e a in T c n o y odan r ntto e h olg
第 4 7卷 ( 1期 ) V 1 7 N . 第 o4 ,o . J
响应 面分 析 法优 化 海 带提 取 液 制备 工
r s o s u a e meho oo y.A a ai l n m ilmo e se tbls e o e uc d s g rc n e tasaf ci n o h e p n e s r c t d lg f qu drtc poy o a d lwa sa ih d frr d e u a o t n un to fte a o e v ra e t sg p r ot r .The opi b v a ibls wih De i n Ex et s f wa e tmum o diins f p e a a in fkep xr cs c n to or r p r to o l e ta t we e b ane s r o t i d a
中 图分 类 号 : S 5 . 8 T 2 45 文献 标 识 码 :A 文章 编 号 :6 4 5 6 2 1 ) 1 0 5 — 0 4 1 7 — 0 X( 0 1 0 - 0 3 0 0
St y o he Pr p a i n o l Ex r cs b s n e S f c ud n t e ar to fKep t a t y Re po s ur a eAna y i l ss
响应面法优化蛋白核小球藻的生长条件
在自然界的 水 域 生 态 系 统 中,藻 类 是 水 域 食 物 链 的 初 级 生 产 者 ,它 们 的 生 命 活 动 ,能 影 响 和 改 变水的理化性质[1].藻类的生长状况往往能 指 示 水 体 富 营 养 化 程 度 ,在 富 营 养 化 的 水 体 中 ,藻 类 及 浮游 生 物 大 量 繁 殖,水 体 溶 解 氧 量 降 低,水 质 恶 化 . [2] 富营养化已经成为我国湖泊所面临的 主 要 生态环境问题之一.小球藻是一种淡水湖泊中常 见 的 藻 类 ,并 且 作 为 渔 业 生 产 常 用 藻 ,因 其 强 大 的 光 合 作 用 和 易 于 消 化 的 特 性 ,在 鱼 、虾 、蟹 、贝 的 养 殖过程中起着很好的肥水和调水的作用 . [3] 小 球 藻 富 含 蛋 白 质 、维 生 素 、生 物 多 糖 、不 饱 和 脂 肪 酸 、 叶 绿 素 、类 胡 萝 卜 素 等 ,已 被 利 用 作 为 鱼 、虾 、蟹 良 好的开口饵料,研 究 表 明 小 球 藻 对 营 养 物 质 具 有 较 强 的 吸 收 能 力 ,并 且 能 够 降 解 水 中 氨 氮 、硫 化 氢 亚硝酸盐等有毒 害 物 质,对 改 善 水 质 起 着 重 要 作 用 . [4-5] 但同时 也 要 注 意 小 球 藻 的 添 加 量,如 果 添加过多会导致 水 体 富 营 养 化,导 致 鱼 类 大 量 死 亡 ,对 渔 业 造 成 损 失 . 研 究 并 控 制 其 生 长 条 件 ,既 可 以 为 通 过 小 球 藻 生 长 状 况 监 测 湖 泊 、池 塘 、鱼 缸 的富营养化程度 提 供 依 据,也 可 以 为 开 发 利 用 小 球藻资源,给养殖 鱼 类 提 供 更 多 高 营 养 价 值 的 饵 料 提 供 可 依 靠 的 参 考 [6].
一株淡水优势藻的分离鉴定及其培养条件优化
一株淡水优势藻的分离鉴定及其培育条件优化专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,期望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请依据实际需要进行调整和使用,感谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、进修资料、教室资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想进修、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestyle materials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!一株淡水优势藻的分离鉴定及其培育条件优化一株淡水优势藻的分离鉴定及其培育条件优化摘要:藻类是一类重要的环境指示生物,也是水体生态系统中的关键组成部分。
基于响应面优化条件下改性海藻吸附剂对Cu2+的吸附
环境科学导刊 http://hjkxdk. . cn 2018,37 (3)CN53 - 1205/X ISSN1673 -9655基于响应面优化条件下改性海藻吸附剂对Cu2+的吸附齐丹,舒杰,王玉杰(海南热带海洋学院,海南三亚5702)摘要:为近岸带大型海藻废弃物得到有效利用,减少资源浪费和环境污染,运用改性海藻制备生物 吸附剂去除废水中Cu2+。
采用Design-Expert软件对影响Cu2+吸附率的吸附剂投加量、Cu2+初始浓度、pH值3个条件进行设计优化,经响应面优化分析得到吸附率的二阶模型,确定C U+吸附实验的最优操作 条件:吸附剂投加量8.09 g/L,溶液初始浓度为40.92 mg/L,pH值6.34,预测最优值为94. 5816%,实测吸附率达到94. 36%。
研究结果表明,大型海藻是一种很具潜力的环保型廉价吸附剂。
关键词:改性海藻生物吸附剂;铜离子;吸附率;响应面优化中图分类号:X703 文献标志码:A文章编号:1673 -9655 (2018) 03 -0030 -04随着工业发展,重金属离子因其高毒、高富集、非生物降解及对生物和人体致毒致病性,而成为水 污染处理研究中的热点[1]。
水体重金属离子的传统 处理技术主要有:化学沉淀法、电化学法、离子交 换法、吸附法、膜分离法、气浮法、高分子捕集剂 法和生物处理法等[2],此类方法对高浓度重金属离 子废水的处理效果良好。
但对重金属离子浓度含量 较低的废水,此类传统方法的处理成本高、效率低、且有二次污染[3],处理效果不理想。
因此针对低浓 度重金属离子废水的易操作、低成本、高效率、无 二次污染的生物吸附法成为近些年研究的焦点。
生物吸附法是利用某些生物体本身的化学结构及 成分特性来吸附溶于水中的金属离子,再通过固液两 相分离来去除水溶液中金属离子的方法[4]。
目前,生物吸附法采用的生物质吸附材料主要有微生物、藻 类、工业生物源废料、农林废弃物、活性污泥等。
螺旋藻培养条件响应面法优化的研究
螺旋藻培养条件响应面法优化的研究谯顺彬;张奕婷;迟海洋;张义明【期刊名称】《食品科学》【年(卷),期】2007(028)008【摘要】本研究设计了用于螺旋藻培养的新型气升式光生物反应器,并用响应曲面法对其培养条件进行优化.试验选取影响螺旋藻生长的四个关键因素即光照强度、通气量、培养时间和接种量,并对其最佳水平范围进行研究,建立了以藻体干重为响应值的二次多项式方程.试验结果表明,四个因素对藻体生长的影响大小依次为光照强度、培养时间、装液量、通气量;对方程解逆矩阵可知,当光照强度、通气量、培养时间和接种量分别达最佳水平44001x、212.2L/h、8.8d和7.2L时,DW最大值为1.277g/L.【总页数】6页(P147-152)【作者】谯顺彬;张奕婷;迟海洋;张义明【作者单位】贵州省发酵工程与生物制药重点实验室,贵州,贵阳,550003;贵州大学化学工程学院,贵州,贵阳,550003;贵州科技工程职业学院,贵州,贵阳,550008;贵州省发酵工程与生物制药重点实验室,贵州,贵阳,550003;贵州大学化学工程学院,贵州,贵阳,550003;贵州省发酵工程与生物制药重点实验室,贵州,贵阳,550003;贵州大学化学工程学院,贵州,贵阳,550003;贵州省发酵工程与生物制药重点实验室,贵州,贵阳,550003;贵州科技工程职业学院,贵州,贵阳,550008【正文语种】中文【中图分类】Q949【相关文献】1.响应面法优化柠檬酸胁迫藜麦富集γ-氨基丁酸的培养条件及体外降血压活性研究 [J], 郭晓蒙;赵富士;冶晓惠;马挺军2.螺旋藻混合营养培养基响应面法的优化研究 [J], 谯顺彬;迟海洋;张奕婷;董汝晶;张义明3.响应面法优化星珠霉产多酚发酵培养条件的研究 [J], 崔艳莉;祁付云;苗静;安婷;李学文;刘娅4.螺旋藻培养条件响应面法优化的研究 [J], 谯顺彬;张奕婷;迟海洋;张义明5.响应面法优化异养培养条件提高链带藻Z8油脂产量的研究 [J], 李敏;白耘榧;黎秋玲;李志;周智友;李汉广因版权原因,仅展示原文概要,查看原文内容请购买。
一株高生物量链带藻分离筛选与培养条件优化
一株高生物量链带藻分离筛选与培养条件优化季方;郝睿;刘颖;李道义;周宇光;董仁杰【期刊名称】《农业机械学报》【年(卷),期】2013(044)0z2【摘要】为了得到具有高生物量累积特性的微藻及其最优培养条件,从自然水样中分离筛选出一株生物量较高的微藻属,经18s rRNA及ITS1鉴定为链带藻属(Desmodesmus sp.),命名为EJ12-3.通过单因素试验及响应面分析对其培养条件进行优化,得到最大生物量累积的条件为:温度28℃,光照强度131μmol/(m2 ·s),光周期15:9(光暗时间比),pH值为6,在此条件下,其培养14 d后的生物量累积可达(0.648 ±0.015) g/L.并得到这些环境因素对链带藻EJI2-3生长的交互影响,得到二次方程模型,该模型的拟合较好(R2为0.950),有一定的应用价值.【总页数】6页(P149-154)【作者】季方;郝睿;刘颖;李道义;周宇光;董仁杰【作者单位】中国农业大学工学院,北京100083;农业部可再生能源清洁化利用技术重点实验室,北京100083;中国农业大学工学院,北京100083;农业部可再生能源清洁化利用技术重点实验室,北京100083;中国农业机械化科学研究院,北京100083;中国农业大学工学院,北京100083;农业部可再生能源清洁化利用技术重点实验室,北京100083;中国农业大学工学院,北京100083;农业部可再生能源清洁化利用技术重点实验室,北京100083【正文语种】中文【中图分类】TK6【相关文献】1.一株高效抑藻放线菌的分离筛选及鉴定 [J], 郑小伟;黄丽萍;张帮周;张金龙;杨小茹;郑天凌2.一株高产淀粉绿藻——标志链带藻在废水中的培养及对氮磷的去除 [J], 周芷薇;沈丹丹;高保燕;黄罗冬;李爱芬;张成武;3.一株高产淀粉绿藻——标志链带藻在废水中的培养及对氮磷的去除 [J], 周芷薇;沈丹丹;高保燕;黄罗冬;李爱芬;张成武4.室内混合藻种荒漠藻结皮培养条件优化研究 [J], 景丽百合;刘左军;徐文;杨利云;蓝雯琳5.解磷细菌的分离筛选及培养条件优化 [J], 郑喜清; 邸娜; 张志超; 纪晓贝因版权原因,仅展示原文概要,查看原文内容请购买。
微拟球藻高pH沉降采收的响应面法优化及其培养基的循环利用
微拟球藻高pH沉降采收的响应面法优化及其培养基的循环利用胡群菊;向文洲;杨芳芳;贾其坤;吴华莲;李涛;何慧;范杰伟【摘要】针对微藻采收成本高的难题,以一株微拟球藻( Nannochloropsis sp.)为研究材料,采用响应面法优化该藻株的高pH沉降采收技术,并初步评估其培养基的循环利用。
结果显示,藻株培养液的细胞密度、沉降pH及处理时间3种因素对其生物量采收率( BRR)具有显著影响。
预测最优采收参数为:藻细胞光密度OD750=2.08;沉降pH=12.20;处理时间12 h,预测BRR为98.97%,验证实验实测BRR为98.31%。
采收藻细胞后的上清液经过滤、pH调整及营养盐补充后,探究高pH采收后的培养基上清液的循环利用。
与新鲜培养基相比,高pH采收回收培养基中的藻细胞生长和油脂含量有小幅度的降低,但总脂分级特性及脂肪酸组成无显著差异。
该藻株的高pH采收及其培养基的回收利用方法具有可行性。
%High-cost harvesting technology is a limitation for industrial cultivation of microglgae. This report deals with the optimization of the high-pH-induced flocculation of a strain of Nannochloropsis sp. using the response surface methodology ( RSM ) , with which a three-variable, three-level experiment Box-Behnken design ( BBD) was developed to examine the effect of initial microalgal cell density ( OD750 ) , pH value and treating time on harvesting efficiency ( biomass recovery rate, BRR) of the strain. The results showed that all the three factors significantly influenced the BRR, and the optimum flocculation parameters were as follows:OD750:2. 08, flocculating pH:12. 20, and treatment time:12 h. Under the optimal condition, the value of BRR attained 98. 31%, agreed well with thepredicted value (98. 97%). The feasibility of reusing the culture medium after high PH harvesting was further studied after the harvested supernatant treated with pH neutralization and nutrients supplementation. The results indicated that compared with the fresh medium, the medium made with high-pH harvesting supernatant resulted in a slight decrease in growth yield and lipid content, and no obvious changes in lipid distribution and fatty acid profiles, illustrating that reuse of culture medium after high pH-harvesting was acceptable for Nannochloropsis sp. production.【期刊名称】《渔业现代化》【年(卷),期】2015(000)002【总页数】7页(P16-22)【关键词】微拟球藻;高pH采收;响应面法;培养基回收;生物柴油;EPA【作者】胡群菊;向文洲;杨芳芳;贾其坤;吴华莲;李涛;何慧;范杰伟【作者单位】中国科学院南海海洋研究所热带海洋生物资源可利用重点实验室,广东省海洋药物重点实验室,广州510301; 中国科学院大学,北京100049;中国科学院南海海洋研究所热带海洋生物资源可利用重点实验室,广东省海洋药物重点实验室,广州510301;中国科学院南海海洋研究所热带海洋生物资源可利用重点实验室,广东省海洋药物重点实验室,广州510301; 中国科学院大学,北京100049;中国科学院南海海洋研究所热带海洋生物资源可利用重点实验室,广东省海洋药物重点实验室,广州510301; 中国科学院大学,北京100049;中国科学院南海海洋研究所热带海洋生物资源可利用重点实验室,广东省海洋药物重点实验室,广州510301;中国科学院南海海洋研究所热带海洋生物资源可利用重点实验室,广东省海洋药物重点实验室,广州510301;中国科学院南海海洋研究所热带海洋生物资源可利用重点实验室,广东省海洋药物重点实验室,广州510301;中国科学院南海海洋研究所热带海洋生物资源可利用重点实验室,广东省海洋药物重点实验室,广州510301【正文语种】中文【中图分类】S917.1微拟球藻(Nannochloropsis sp.)作为优质的水产养殖饵料已经得到广泛的应用。
响应面优化海带岩藻聚糖硫酸酯的提取工艺研究
响应面优化海带岩藻聚糖硫酸酯的提取工艺研究聂小伟;何粉霞;陈志兵;尹晓斌;孙冬梅;高森森;孙齐卓【摘要】以海带加工下脚料为试验材料,运用响应面分析,优化超声波辅助酸液提取岩藻聚糖硫酸酯工艺条件.单因素试验显示,在超声波功率为150 W,浸提2次时能达到较好稳定效果.在上述基础上,选取的自变量为浸提液pH值、液料比(mL/g)、浸提温度(℃)和超声波时间(min),响应值为岩藻聚糖硫酸酯提取率(%),结合Box-Behnken试验设计,探讨岩藻聚糖硫酸酯提取率受各因素及其交互作用的影响.结果表明,最佳工艺参数:浸提液为pH1.60、液料比为37:1(mL/g)、浸提温度为78℃和超声波处理时间为71 min.经试验验证得到,33.86%的岩藻聚糖硫酸酯提取率与34.30%的理论预测值相比,其相对误差为1.28%.由此可见,经优化的工艺参数可靠,回归模型预测效果较好.研究结果可为从海带加工下脚料中岩藻聚糖硫酸酯的提取提供技术参考.%The kelp off-cuts was used as raw materials. The ultrasonic-assisted extraction of fucoidan from kelp off-cuts with acidizing fluid. Fucoidan was optimized using the response surface methodology.The results of one-factor-at-a-time experiments showed that provided the best stability for the proanthocyanidins under power ul-trasonics 150 W and extraction two times. pH, liquid to solid ratio(mL/g), extraction temperature(℃), and ul-trasonic time(min) were selected as independent variables, while the extraction yield of fucoidan(%) was taken as response variable. The optimization was carried out based on Box-Behnken experimental design by investigat-ing the individual and combined effects of the four factors on the response variable. The optimum extraction conditions were determined as follows:pH was 1.60 water extract withsolid-liquid ratio of 37:1 (mL/g) at 78℃for 71 min. Under these conditions, the fucoidan yield obtained was 33.86%with a relative error of 1.28%as compared with the model prediction of 34.30 %indicating that these parameters are reliable. The experiment result was consistent with the prediction result. This research can provide a technical reference for fucoidan ex-traction from kelp off-cuts.【期刊名称】《食品研究与开发》【年(卷),期】2017(038)023【总页数】7页(P44-49,99)【关键词】岩藻聚糖硫酸酯;超声波;海带下脚料;响应面分析;提取工艺【作者】聂小伟;何粉霞;陈志兵;尹晓斌;孙冬梅;高森森;孙齐卓【作者单位】威海海洋职业学院食品工程系,山东威海264300;威海海洋职业学院食品工程系,山东威海264300;威海海洋职业学院食品工程系,山东威海264300;威海海洋职业学院食品工程系,山东威海264300;威海海洋职业学院食品工程系,山东威海264300;威海海洋职业学院食品工程系,山东威海264300;威海海洋职业学院食品工程系,山东威海264300【正文语种】中文我国是海带的主要产地,目前海带主要被应用于提取甘露醇、碘、褐藻酸钠和加工成食品等,其利用的技术水平不高,同时产生大量的废弃物。
响应面法优化海带中总多酚提取工艺及抗氧化活性
响应面法优化海带中总多酚提取工艺及抗氧化活性林晓;罗京彪;何秀森;欧思琳;谢丽芳;谢银秋;朱婷婷;成峰【摘要】To optimize ultrasonic extraction technology process conditions of polyphenol from Laminaria ja-ponica by the response surface method.Phlorotannins from Laminaria japonica clear effect on stilbene pic-ric acid radical scavenging to evaluate its antioxidant activity.The result showed that the optimum condi-tion were as follows:the extraction temperature of 72 ℃,the ethanol concentration of 52%,ultrasonic wave extracting time of 40 min and the ratio o f solvent volume of 60∶1mL/g(Extract 1 times).Under these condition,the extraction yield of polyphenols was 0.945 mg/g,with the theoretical 0.954 mg/g for the relative error of -0.94%.Total polyphenol extract Laminaria japonica on DPPH free radical scaven-ging effect significantly,its antioxidant effects increases with the increasing concentration of extracts.And under the same conditions,total polyphenols from seaweed on DPPH free radical scavenging effect than Gallic acid.Total polyphenols have a good application prospect as a natural antioxidant.%采用响应面法优化海带总多酚提取工艺,以海带总多酚对二苯代苦味酸(DPPH)自由基的清除作用来评价其抗氧化活性。
响应面法优化盐藻油的超声波辅助提取工艺
响应面法优化盐藻油的超声波辅助提取工艺李秀霞;孙协军;王珍;李娇【摘要】Response surface methodology was used to optimize operating parameters of ultrasound assisted extraction of oil from Dunaliella salina. Ethyl acetate was the extracting solvent, and the yield of oil was the response value. The order of the effectors was: extracting time 〉extracting temperature 〉 ratio of liquid to solid. The optimal conditions were: ratio of liquid to solid 29 mL/g, extracting time 35 min, extracting temperature 69℃. Under the optimal conditions; the oil yield was 15.92% and was consistent with the predicted value by RSM. Palmitic acid, oleic acid, linoleic acid and linolenic acid were the main fatty acids in D. Salina oil extraction, and the content of each was (13.80±0.26)%,(5.20±0.15)%, (8.55±0.16)%, and (23.15±0.24)%, respectively.%以乙酸乙酯为提取溶剂,盐藻油得率为响应值,采用响应面法对超声波辅助提取盐藻油的工艺参数进行了优化。
响应面法优化海带多糖的酶法提取工艺及其抗氧化研究_张换
司;其他试剂均为国产分析纯。 1.2 仪器与设备 高速万能粉碎机:天津市泰斯特仪器有限 公司;80目筛:浙江上虞市五星冲压筛具厂; HZS-H水浴振荡器:哈尔滨市东联电子技术开 发有限公司;UV-1800紫外分光光度计:日本岛 津公司;AL204电子天平、FE20实验室pH计: 梅特勒-托利多仪器(上海)有限公司;D-37520离 心机:Thermo公司;IKA RV10旋转蒸发仪、IKA HB10数显/控制加热锅:广州仪科实验室技术有限 公司;SHZ-D(Ⅱ)循环水式真空泵:河南省予华仪 器有限公司;FD-1-50真空冷冻干燥机:北京博 医康实验仪器有限公司。 1.3 方法 1.3.1 酶解提取海带多糖的流程 海带→清洗表面 泥沙→干燥(自然晾干)→粉碎(80目)→按比例加水 →调pH→加纤维素酶→恒温酶解一定时间→灭酶 (95 ℃,15 min)→离心(3000 r/min,15 min)→取上 清液→测试。 1.3.2 海带多糖的测定 采用苯酚-硫酸法 [16] 与 DNS法 [17]分别测定提取液中总糖与还原糖量。多 糖量=总糖量-还原糖量。海带多糖的得率计算 公式为:
食品科技
年 第 卷 第 期 FOOD SCIENCE AND TECHNOLOGY
提取物与应用
离心,收集沉淀为褐藻淀粉。分别将这3种沉淀复 溶于蒸馏水,冷冻干燥得到海带粗多糖。 1.3.6 海带多糖抗氧化性研究 1.3.6.1 ABTS自由基清除能力的测定 ABTS自由 基清除能力的测定采用张晓溪等人的方法 [18]。将 ABTS(7 mmol/L,5 mL)和过硫酸钾溶液(140 mmol/ L,88 μL)混合,室温避光反应12~16 h,制备 ABTS自由基储备液。使用磷酸盐缓冲液(10 mmol/ L,pH7.4)将储备液稀释至其在734 nm处吸光值为 0.70±0.02备用。将样品稀释至不同浓度梯度,取 100 μL的稀释样品溶液,加3 mL ABTS自由基溶 液,于暗处反应6 min,记录其在734 nm处的吸光 度Asample。以100 μL纯水代替样品,相同操作,记 为Ablank。 ABTS自由基相对清除率(%)=((A blank-A sample)/ Ablank)×100 1.3.6.2 铁氰化钾还原能力的测定 铁氰化钾还原 测定采用黄海兰等人的方法 [19]。将样品配制成不 同浓度梯度,移取1 mL待测样品于15 mL离心管 中,加入1 mL磷酸盐缓冲液(0.2 mmol/L,pH6.6), 再加入1 mL质量分数1%的铁氰化钾溶液,将离心 管置于50 ℃水浴20 min后,取出,加入1 mL质量 分数10%的三氯乙酸溶液,750 r/min离心10 min, 取1 mL离心上清液,加入1 mL纯水与200 μL质量 分数为0.1%的三氯化铁溶液,振荡均匀。以纯水 为参比,记录其在700 nm处吸光度A700 nm。 2 结果与分析 2.1 单因素实验结果与分析 2.1.1 纤维素酶添加量对多糖提取的影响 称取海 带粉2.5 g,加100 mL蒸馏水(料液比1:40),调pH为 4.0,于50 ℃、160 r/min酶解4 h,纤维素酶添加量 分别为0.5%、1.0%、1.5%、2.0%、2.5%、3.0%, 测定离心后上清液的多糖含量。
响应面法优化小球藻抗氧化肽的制备工艺研究
响应面法优化小球藻抗氧化肽的制备工艺研究
宋林;张炜;乜世成;高红;沈艳洁;隋成博;荆永康
【期刊名称】《化学研究与应用》
【年(卷),期】2023(35)1
【摘要】以小球藻藻种为原料,通过实验室培育得到藻粉,再通过碱性蛋白酶制备小球藻抗氧化肽,以DPPH自由基清除率为指标,通过单因素和响应面设计探究加酶量、pH、酶解时间和反应温度对抗氧化肽的抗氧化性的影响,通过超滤离心对多肽进行分离,测定了各组分的DPPH自由基清除率,再通过氨基酸分析仪和凝胶渗透色谱仪测定了DPPH自由基清除率最好的多肽组分的氨基酸组成和分子量,又测定了它的
热稳定性和贮藏稳定性。
结果表明:小球藻蛋白制备抗氧化肽的最佳条件为:pH为7,反应温度为40℃,反应时间为30 min,加酶量为4000 U·g^(-1),此时DPPH自由基的清除率是58.03%。
超滤分离得到五个组分,其中分子质量为5 KD-10 KD的DPPH自由基清除率最佳,多肽中的抗氧化氨基酸含量为49.9%,它的相对分子量为474,抗氧化肽有着良好的热稳定性以及贮藏稳定性。
【总页数】10页(P135-144)
【作者】宋林;张炜;乜世成;高红;沈艳洁;隋成博;荆永康
【作者单位】青海师范大学化学化工学院
【正文语种】中文
【中图分类】O629.72
【相关文献】
1.响应面法优化珍珠龙胆石斑鱼肉肽的酶法制备工艺及酶解产物的抗氧化活性
2.响应面法优化复合酶酶解制备可口革囊星虫胶原蛋白抗氧化肽工艺研究
3.响应面法优化秋刀鱼酶解制备抗氧化活性肽的工艺
4.响应面法优化酶解草菇蛋白制备抗氧化肽工艺
5.响应面法优化草菇抗氧化肽的酶法制备工艺
因版权原因,仅展示原文概要,查看原文内容请购买。
响应面法优化螺旋藻中叶绿素的超声提取工艺
第60卷 第11期 化 工 学 报 Vol 160 No 111 2009年11月 CIESC Journal November 2009研究简报响应面法优化螺旋藻中叶绿素的超声提取工艺童 洋,肖国民,潘晓梅(东南大学化学化工学院,江苏南京211189)关键词:螺旋藻;叶绿素;超声提取;响应面法中图分类号:TQ 95 文献标识码:A文章编号:0438-1157(2009)11-2813-07Optimization of ultrasonic extraction of chlorophylls fromSpirulina platensis by re sponse surface methodologyTONG Y ang ,XI AO G uomin ,PAN X iaomei(S chool of Chemist ry and Chemical Engineering ,S outheast Universit y ,N anj ing 211189,J iangsu ,China )Abstract :Chlorop hylls were ext racted by using ult rasonic f rom S pi ruli na pl atensis 1Single factor examination and response surface analysis experiment s were adopted to investigate t he effect s of ext raction time ,ext raction solvent ,solvent concent ratio n ,ratio of liquid to solid and ext raction grade 1The result s showed t hat t he optimal process parameters for t his met hod were :ext raction time of 5615min ,et hanol concent ration of 4813%(vol )of et hanol/acetone solvent ,and ratio of liquid to solid of 719ml ・g -1.The optimized chlorop hylls ext raction yield was 1128%1The comparison experimental result s indicated that the yield of chlorophylls by ultrasonic extraction was higher than that obtained from conventional solvent extraction.Key words :S pi ruli na pl atensis ;chlorop hylls ;ult rasonic ext raction ;response surface met hodology 2009-07-13收到初稿,2009-08-20收到修改稿。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Isolation of a novel microalgae strain Desmodesmus sp.and optimization of environmental factors for its biomassproductionFang Ji a ,e ,Rui Hao b ,Ying Liu c ,e ,Gang Li d ,e ,Yuguang Zhou a ,e ,⇑,Renjie Dong a ,eaCollege of Engineering/Biomass Engineering Center,China Agricultural University,PR China bCollege of Food Science ca r t i c l e i n f o Article history:Received 11June 2013Received in revised form 17August 2013Accepted 19August 2013Available online 26August 2013Keywords:Desmodesmus sp.Biomass production Environmental factorsResponse surface methodologya b s t r a c tA novel strain of unicellular green algae was isolated from fresh water samples collected from Yesanpo National Geopark,Laishui County of Hebei Province,China.The morphological and genomic identification of this strain was carried out using 18s rRNA analysis.This novel strain was identified as Desmodesmus d as EJ15-2.Environmental factors for biomass production of Desmodesmus sp.EJ15-2grown under autotrophic condition (BG11medium)was optimized using response surface methodology (RSM).A high correlation coefficient (R 2=0.923,p 60.01)indicated the adaptability of the second-order equation matched well with the growth condition of this strain.The optimalconditions for a relatively high biomass production (up to 0.758g/L)were at 30°C,98l mol/m 2/s and 14:10(L:D),respectively.Ó2013Elsevier Ltd.All rights reserved.1.IntroductionMicroalgae,asan important source of the third generation bio-fuel,can be reproduced rapidly,and can minimize or avoid the occupation of arable land and nutrients used for conventional agriculture (Scott et al.,2010;Bhatnagar et al.,2011).Energy from0960-8524/$-see front matter Ó2013Elsevier Ltd.All rights reserved./10.1016/j.biortech.2013.08.110⇑Corresponding author.Address:P.O.Box 50,No.17Qinghua Donglu,HaidianDistrict,Beijing 100083,PR China.Tel.:+861062737858;fax:+861062737885.E-mail addresses:zhouyg@ ,zhouyuguang@ (Y.Zhou).microalgae could be a viable substitute for fossil fuels in the future (Wijffels and Barbosa,2010).Unicellular eukaryotic microalgae are the products of over3billion years of evolution,and are highly di-verse(Falkowski et al.,2004).In recent years,a large number of useful microalgae have been isolated(Mishra and Jha,2009; Schwenzfeier et al.,2011;Yoshida et al.,2006).Microalgae produc-tion for fuel purposes varies on its strain and cultivation conditions (Chen et al.,2010).However,it is not economically feasible since it has much high-er production costs(Behzadi and Farid,2007).This requires high biomass production and utilization ratio to reduce its unit produc-tion cost(U.S.DOE,2010).A large quantity of water consumption, which is considered to be one of the most important issues,occu-pies10–20%of the total costs of algae production(Subhadra,2011; Chinnasamy et al.,2010).Harvesting costs contribute20–30%to the total costs with the majority on cultivation expenses(Demirbas and Demirbas,2011).It is necessary to isolate new microalgae spe-cies which have much higher biomass productivity and stronger adaption to the environment than common species so that the unit production cost could be reduced.Environmental factors have significant effect on microalgae bio-mass production and the changing conditions cause various influ-ences on the biomass production of different species of microalgae (Li et al.,2011).Light radiation,temperature and pH value will most directly affect productivity(Soletto et al.,2008;Mata et al., 2010;Xenopoulos et al.,2002).The light intensity and photoperiod are the critical components in determining the biomass production of algae cultivation(Parmar et al.,2011).Maximal photosynthetic efficiency is required to attain high biomass production.The light obviously avails the microalgae growth although long high-light periods cause the photodamage which will decrease the photosyn-thetic efficiency(Grima et al.,1996).In addition,the light/dark cy-cle strongly depends on the light intensity in the photoperiod. (Barbosa,2003).The major objective of this work is to isolate a new species of microalgae andfigure out its optimal growth conditions,concern-ing on temperature,pH value,light intensity and photoperiod.The mutual effect of different environmental factors on biomass pro-duction by current species of microalgae grown under autotrophic condition was also investigated.2.Methods2.1.Isolation,identification and cultivationDesmodesmus sp.EJ15-2was isolated in September2011from freshwater samples,which was collected from Yesanpo National Geopark(39°2303500N,115°4202700E),Laishui County of Hebei Province,China.Desmodesmus sp.EJ15-2was purified by serial dilutions and plate streaking in1.5%agar Blue-Green(BG-11)med-ium(Rippka et al.,1979),which was consisted of1500mg/L NaNO3,40mg/L K2HPO4,75mg/L MgSO4Á7H2O,36mg/L CaCl2Á2H2-O,6mg/L citric acid,6mg/L ferric ammonium citrate,1mg/L EDTANa2,20mg/L Na2CO3,and1mL/L A5trace metal solution. The recipe of A5trace metal solution was:2.86g/L H3BO3,1.86g/ L MnCl2Á4H2O,0.22g/L ZnSO4Á7H2O,0.39g/L Na2MoO4Á2H2O, 0.08g/L CuSO4Á5H2O,and0.05g/L Co(NO3)2Á6H2O.The pH value of the medium was titrated to7.0with1mol/L HCl.Individual col-onies were inoculated into liquid BG-11media within a forced ven-tilation clean bench(Suzhou Antai Airtech SW-CJ-2FD).All media was autoclaved for sterilization at121°C and lasted for20min.The seed cultures were grown in100mLflasks containing 50mL of BG-11medium and incubated at25±1°C with illumina-tion,which was provided byfluorescent lights at an irradiance of 80±2l mol/m2/s(the light/dark periods was14:10)for14d.Peri-odic agitations were performed each day at9:00,15:00,and20:00, respectively.2.2.DNA analysisThe genomic DNA of Desmodesmus sp.EJ15-2was extracted using the NuClean PlantGen DNA kit(Beijing ComWin Biotech Co.,Ltd.,China)according to the manufacturer’s instructions.18S rDNA genes were Polymeric Chain Reaction(PCR)ampli-fied using the forward(50TACTGTGAAACTGCGAATGGCTC30)and reverse(50TGATCCTTCCGCAGGTTCACCTA30)primers(primers synthesized by the Sangon Biotech(Shanghai)Co.,Ltd.,China). ITS1genes were amplified using the forward(50AGTCGTAAC AAGGTTTCCGTAGG30)and reverse(50TATGCTTAAGTTCAGCGG GTAAT30)primers.All of those primers were designed by DNAMAN (USA)and Primer5.0(Canada).PCR products were sequenced by the Life Technologies Corpora-tion(China).Comparisons for similar sequences were carried out using the BLAST Program(NCBI BLAST,USA).2.3.Biomass productionApproximately50mL of the culture medium with Desmodesmus sp.EJ15-2wasfiltered through a0.45l m glassfiberfilter(What-man,USA).The harvested cells were air dried at80°C for24h. Dried samples were allowed to cool down in a dessicator and weighed(Chae et al.,2006).Generally,dry cell weight(DCW)of microalgae is correlated to the optical density(OD)at the certain wavelength from450nm to 680nm,which means to monitor the abundance of cells containing pigment conveniently(Shen et al.,2008;MacIntyre and Cullen, 2005).In this study,the OD of Desmodesmus sp.EJ15-2was deter-mined by measuring optical density of680nm(OD680)via an ultra-violet photospectrometer.The results were converted to DCW by calculation and the coefficient of OD680to algae optical density was introduced(Moon,1983).2.4.Biomass production in different temperature,light intensity,light/ dark cycle and pH valueIn order tofigure out the environmental limits to the biomass productivity of Desmodesmus sp.EJ15-2under autotrophic condi-tion,the temperatures used in this study were15,20,25and 30°C;the light intensities were40,80,120and200l mol/m2/s, which were controlled by varying the number offluorescent lamps as well as the distance between the lamps and algae culture;the photoperiodics investigated were24:0,18:6,14:10and6:18h (L:D);and the pH values were gradually adjusted to5.0,6.0,7.0, 8.0,9.0,and10.0with HCl or NaOH.The other conditions were the same as Part2.1.2.5.Experimental design and data analysisIn order to optimize the environmental factors for the growth of Desmodesmus sp.EJ15-2,central composite design(CCD)andTable1Levels of factors chosen for the experimental design.Level Temperature(°C)(X1)Light intensity(l mol/m2/s)(X2)Light/dark cycle(L:D)(X3)pH(X4) +23020024:010+12616019:5902212014:108À118809:157À214404:206250 F.Ji et al./Bioresource Technology148(2013)249–254response surface methodology(RSM)were employed for random experimental design(Deepak et al.,2008).The total number of experiments for four variables was30(2k+2k+n0),where k is the number of independent variables and n0is the number of rep-etitions of the experiments at the center point(Can et al.,2006). Totally24experiments were augmented with6replications at the center values to evaluate the pure error.For statistical calcula-tions,the relation between the coded values and actual values are described as Eq.(1):x i¼X iÀX0D X ið1ÞWhere x i is the dimensionless value of an independent variable;X i is the real value of an independent variable;X0is the value of X i at the center point;and D X i is the step change.The response was measured in terms of biomass productivity (Y).The behaviour of the system was determined by assuming a second order polynomial with linear,quadratic and interaction ef-fects as shown by Eq.(2)(Khattar and Shailza,,2009):Y¼b0þX ni¼1b i X iþX ni<jb ij X i X jþX nj¼1b jj X2j:ð2ÞWhere Y is response;X1,X2,X3and X4are input variables;b0is con-stant;b i is linear coefficient;b ij is interaction coefficient;and b jj is quadratic coefficient.Based on the obtained results(see Part2.4),the ranges of four factors,temperature(X1),light intensity(X2),light/dark cycle(X3) and pH(X4)were decided with different levels(Table1).Coded lev-els,and the experimental values and predicted values of biomass productivity(Y)were shown in Table2.Estimation of regression coefficients and statistical tests were implemented in the MINITAB Version15(Minitab Inc.,State Col-lege,PA,USA)statistical software based on the RSM.Analysis of variance(ANOVA)was conducted on the coded level of variables to identify the effects of individual variables.Stepwise deletion ap-proaches of individual non-significant(p<0.05)terms were con-ducted to simplify the regression equation by recalculation of the coefficients.At least three replicates were conducted.3.Results and discussion3.1.Isolation and identification of microalgaeThe microalgae EJ15-2was screened among21strains that iso-lated from different water samples.There were a lot of single,dou-ble or quadratic cells surrounded in green cells under thefield of optical microscope.The cells were ellipse with smooth surface, 4–6l m in length,and3–4l m in width.The18S rRNA gene se-quence that amplified from strain EJ15-2was1635bp while the ITS1was592bp.Both of them were with no heterogeneity.The phylogenetic analysis indicated that this strain have a close rela-tionship with Desmodesmus sp.(Fig.1).3.2.Biomass productionThere was a direct correlation between optical density and DCW,which can be described as Eq.(3):Y¼0:3446XÀ0:0048ð3ÞWhere Y is the DCW(g/L);X is the optical density at680nm.They have significant correlation coefficient(R2=0.993).3.3.Effect of different experimental factors on Desmodesmus sp.EJ15-2biomass productionAs shown in Fig.2a,the growth profiles of Desmodesmus sp. EJ15-2were very similar in20,25and30°C,with0.577,0.569 and0.531g/L at the end of14d cultivation,respectively.However,Table2Random experimental design and results based on RSM for biomass productivity.Experiment no.Coded level Biomass productivity(Y)X1X2X3X4Experimental value(g/L)Predicted value(g/L)111110.485±0.0150.5342111À10.602±0.0110.534311À110.583±0.0190.534411À1À10.522±0.0120.53451À1110.638±0.0130.61161À11À10.634±0.0080.61171À1À110.634±0.0140.61181À1À1À10.613±0.0140.6119À11110.376±0.0130.39610À111À10.384±0.0160.39611À11À110.477±0.0090.39612À11À1À10.397±0.0060.39613À1À1110.426±0.0160.47314À1À11À10.447±0.0100.47315À1À1À110.508±0.0080.47316À1À1À1À10.443±0.0100.4731720000.605±0.0160.74718À20000.403±0.0090.4711902000.339±0.0100.394200À2000.542±0.0100.5482100200.312±0.0270.3232200À200.272±0.0120.3232300020.483±0.0090.60924000À20.660±0.0120.6092500000.618±0.0260.6092600000.622±0.0180.6092700000.616±0.0030.6092800000.618±0.0120.6092900000.618±0.0180.6093000000.610±0.0200.609F.Ji et al./Bioresource Technology148(2013)249–254251the biomass production was significantly reduced at15°C.It was reported that the optimum growth temperature was20–25°C for most algae(Butterwick et al.,2005).The comparison of the cell growth indicated that Desmodesmus sp.EJ15-2was not sensitive to different pH values(5–10),with the DCW obtained in a small period were0.453–0.569g/L(Fig.2b).As shown in Fig.2c,the effect of light intensity on the growth of Desmodesmus sp.EJ15-2was significant.The biomass production reached the maximum value(0.569g/L)under80l mol/m2/s after 14d cultivation;and it was far greater than under40and 200l mol/m2/s.An study mentioned that at56.6l mol/m2/s,the photosynthetic rate of wild strains of Chlamydomonas reinhardtii increased with the enhance of light intensity until a certain limit (301.9l mol/m2/s)when the photosynthetic rate began to go down (Murphy and Berberoglu,2011).The results indicated that photo inhibition took place in Desmodesmus sp.EJ15-2under strong light.Fig.1.Dendrogram depiting the partial results of a neighbor-joining analysis of ITS1sequences(MEGA5.10).parison of Desmodesmus sp.EJ15-2dry cell weight under different environmental factors:(a)temperature,(b)pH,(c)light intensity and(d)light/darkFig.3.Response surfaces of the environmental factors effects on biomass accumu-lation by Desmodesmus sp.EJ15-2.The interaction between:(a)temperature and light intensity,(b)temperature and light/dark cycle and(c)light intensity and light/dark cycle.Y¼0:609À0:03440:025x2À3ðÞ2À0:07150:2x3À2:8ðÞ2þ0:0690:25x1À5:5ðÞÀ0:03850:025x2À3ðÞð4ÞWhere Y is DCW(g/L);X1is temperature(14<X1<30°C);X2is light intensity(40<X2<200l mol/m2/s);and X3is light/dark cycle (4<X3<24h).Thus,based on Eq.(4),the optimal condition for biomass pro-duction was at30°C,98l mol/m2/s,and14:10(L:D);and the max-imum DCW was0.758g/L under this condition after14d cultivation.The accuracy of the model was validated with at least three replicates giving the biomass production of0.741±0.005g/L, which concurred with the model prediction.The response surfaces of environmental factors for maximum biomass production of Desmodesmus sp.EJ15-2have been estab-lished(Fig.3a and c)according to the model.As presented in Fig.3a and Fig.3b,an increase in biomass pro-duction was observed with the enhancement of the temperature within the experimental range.Fig.3a showed that the effects of temperature and light intensity on the DCW when the other vari-ables were held at constant level.It was observed that the biomass production significantly increased with increasing temperature at a given light intensity.Fig.3b revealed a uniform trend towards similarly increase in temperature,and its photoperiod was14:10 (L:D).It can explain that Desmodesmus sp.demonstrates excellent thermo-tolerant performance(Pan et al.,2011),more biomass pro-duction under higher temperature compared with other microal-gae species.Fig.3c showed the response contours of biomass production of Desmodesmus sp.EJ15-2against light intensity with light/dark cy-cle after14d cultivation.The values and signs on regression coef-ficients suggested that the response was positive for light intensity up to98l mol/m2/s and light/dark cycle remain stable at14:10h (L:D).The experimental and the predicted values were very close and did not reflect the accuracy and the applicability of RSM.4.ConclusionsA novel green microalgae strain,Desmodesmus sp.EJ15-2,was isolated and identified from fresh water.Results from this study have demonstrated a process that using RSM to optimize the environmental factors.The optimal conditions for a relatively high biomass production(up to0.758g/L)were at30°C,98l mol/m2/s and14:10(L:D),respectively.AcknowledgementsThis investigation wasfinancially funded by The Chinese Na-tional Advanced Technology Development Program(Grant No. 2013AA065802),The Chinese National‘‘Twelfth Five-Year’’Plan for Science&Technology Supporting Project(Grant No. 2012BAD47B03),The Chinese Universities Scientific Fund(Grant No.2013YJ007),The Second Class General Financial Grant from the China Postdoctoral Science Foundation(Grant No. 2011M500451),and Beijing Municipal Key Discipline of Biomass Engineering.ReferenceBarbosa,M.,2003.Microalgal Photobioreactors:Scale-Up and Optimization.Wageningen University,Netherlands.Behzadi,S.,Farid,M.M.,2007.Review:examining the use of different feedstock for the production of -Pac.J.Chem.Eng.2,480–486.Bhatnagar, A.,Chinnasamy,S.,Singh,M.,Das,K.C.,2011.Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters.Appl.Energ.88,3425–3431.Butterwick, C.,Heaney,S.I.,Talling,J.F.,2005.Diversity in the influence of temperature on the growth rates of freshwater algae,and its ecological relevance.Freshwater Biol.50(2),291–300.Can,M.Y.,Kaya,Y.,Algur,O.F.,2006.Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris.Bioresour.Technol.97(14),1761–1765.Chae,S.R.,Hwang,E.J.,Shin,H.S.,2006.Single cell protein production of Euglena gracilis and carbon dioxidefixation in an innovative photo-bioreactor.Bioresour.Technol.97,322–329.Chen,C.,Yeh,K.,Su,H.,Lo,Y.,Chen,W.,Chang,J.,2010.Strategies to enhance cell growth and achieve high level oil production of a Chlorella vulgaris isolate.Biotechnol.Progr.26,679–686.Chinnasamy,S.,Bhatnagar,A.,Hunt,R.W.,Das,K.C.,2010.Microalgae cultivation ina wastewater dominated by carpet mill effluents for biofuel applications.Bioresour.Technol.101,3097–3105.Deepak,V.,Kalishwaralal,K.,Ramkumarpandian,S.,Venkatesh Babu,S., Senthilkumar,S.R.,Sangiliyandi,G.,2008.Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology.Bioresour.Technol.99(17),8170–8174.Demirbas,A.,Demirbas,M.F.,2011.Importance of algae oil as a source of biodiesel.Energ.Conv.Manage.52,163–170.Falkowski,P.G.,Katz,M.E.,Knoll,A.H.,Quigg,A.,Raven,J.A.,Schofield,O.,Taylor,F.J.R.,2004.The evolution of modern eukaryotic phytoplankton.Science305,354–360.Grima, E.M.,Sevilla,J.M.F.,Perez,J.A.S.,Camacho, F.G.,1996.A study on simultaneous photolimitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances.J.Biotechnol.45,59–69.Khattar,J.I.S.,Shailza,2009.Optimization of Cd2+removal by the cyanobacterium Synechocystis pevalekii using the response surface methodology.Process Biochem.44(1),118–121.Li,Y.,Zhou,W.,Hu,B.,Min,M.,Chen,P.,Ruan,R.R.,2011.Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment:Strains screening and significance evaluation of environmental factors.Bioresour.Technol.102(23),10861–10867.MacIntyre,H.L.,Cullen,J.J.,ing Cultures To Investigate The Physiological Ecology Of Microalgae.In:Andersen,R.A.(Ed.),Algal Culturing Techniques.Elsevier Academic Press,Burlington,pp.287–326.Mata,M.T.,Martins,A.A.,Caetano,N.S.,2010.Microalgae for biodiesel production and other applications:a review.Renew.Sustain.Energy Rev.14(1),217–232.Mishra,A.,Jha,B.,2009.Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliellasalina under salt stress.Bioresour.Technol.100(13),3382–3386.Moon,N.J.,1983.Inhibition of the growth of acid tolerant yeasts by acetate,lactate and propionate and their synergistic mixtures.J.Appl.Bacteriol.55(3),453–460.Murphy,T.E.,Berberoglu,H.,2011.Effect of algae pigmentation on photobioreactor productivity and scale-up:A light transfer perspective.J.Quant.Spectrosc.Radiat.112(18),2826–2834.Pan,Y.Y.,Wang,S.T.,Chuang,L.T.,Chang,Y.W.,Chen,C.N.N.,2011.Isolation of thermo-tolerant and high lipid content green microalgae:Oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus.Bioresour.Technol.102(22),10510–10517.Parmar, A.,Singh,N.K.,Pandey, A.,2011.Gnansounou, E.,Madamwar, D., Cyanobacteria and microalgae:A positive prospect for biofuels.Bioresour.Technol.102(22),10163–10172.Rippka,R.,Deruelles,J.,Waterbury,J.B.,Herdman,M.,Stanier,R.Y.,1979.Generic assignments,strain histories and properties of pure cultures of Cyanobacteria.J.Gen.Microbiol.111,1–61.Schwenzfeier,A.,Wierenga,P.A.,Gruppen,H.,2011.Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp.Bioresour.Technol.102(19),9121–9127.Scott,S.A.,Davey,M.P.,Dennis,J.S.,Horst,I.,Howe,C.J.,Lea-Smith,D.J.,Smith,A.G., 2010.Biodiesel from algae:challenges and prospects.Curr.Opin.Biotechnol.21, 277–286.Shen,Y.,Yuan,W.,Pei,Z.,Mao,E.,2008.Culture of microalga Botryococcus in livestock wastewater.Trans.ASABE.51(4),1395–1400.Soletto,D.,Binaghi,L.,Ferrari,L.,Lodi,A.,Carvalho,J.C.M.,Zilli,M.,Converti,A., 2008.Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse feeding cultivation of Spirulina platensis in helical photobioreactor.Biochem.Eng.J.39(2),369–375.Subhadra,B.G.,2011.Water management policies for the algal biofuel sector in the Southwestern United States.Appl.Energ.88(10),3492–3498.U.S.DOE,2010.National algal biofuels technology roadmap.U.S.Department of Energy,Office of Energy Efficiency and Renewable Energy,Biomass Program. Wahidin,S.,Idris,A.,Shaleh,S.R.M.,2013.The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp.Bioresour.Technol.129,7–11.Wijffels,R.H.,Barbosa,M.J.,2010.An outlook on microalgal biofuels.Science329, 796–799.Xenopoulos,M.A.,Frost,P.C.,Elser,J.J.,2002.Joint effects of UV radiation and phosphours supply on algal growth rate and elemental composition.Ecology83(2),423–435.Yoshida,N.,Ikeda,R.,Okuno,T.,2006.Identification and characterization of heavy metal-resistant unicellular alga isolated from soil and its potential for phytoremediation.Bioresour.Technol.97(15),1843–1849.254 F.Ji et al./Bioresource Technology148(2013)249–254。