利用反比例函数关系式求值

合集下载

反比例函数意义和性质

反比例函数意义和性质
(1)写出 y 与 x 之间的函数解析式 (2)求当 x = 4 时 y 的值
分析:12因式..设 把为就可解已y求是出析知x常式条数的反件k比的y代例值函入数kx ,解所析以设式y。 kx ,再把 x=2 和 y=6 代入上 3.解方程,求待定系数k 4.还原解析式
同学们,求函数解 析式有一种特定的
y= 1_2_ =3.
4
练一练
1.已知y与x成反比例关系,当x=-2时,y=4,
则此函数解析式为
y=-
8_
x
,当x=4时,
y= -2
2.已知y与x 2 成反比例关系,且当x=3时,y=4. (1)求y与x之间的函数解析式; (2)当x=-2时y的值。
解:(1)设此解析式为y=
把x=34,=y_=K9_4代入得,
第二十六章 反比例函数
26.1 反比例函数的意义
创设情境,导入新知:
复习回忆:1、什么是函数? 2、我们学习了那些函 数? 它们的一般形式是怎 样的?
探究 思考
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h) 随此次列车的全程运行时间t(单位:h)的变化而变化。
函数关系式为: v 1463 t
已知函数 y 6x m3是关于x的反比例
函数,求m值。
解:∵m-3= -1 ∴ m=2
变式1 已知函数 y m 1
xm
是关于x
的反比例函数,求m值。
解: ∵ m 1 0
m 1

m 1 m 1
∴ m=-1
试一试
y是x的反比例函数,你能根据下表中的有关信息: 待
换成的每张面值为 x(元)
50
10
5

中考重点反比例函数方程的解法

中考重点反比例函数方程的解法

中考重点反比例函数方程的解法反比例函数是数学中的一个重要概念,它是指两个变量之间的关系满足某种比例关系,其中一个变量的值的增加导致另一个变量的值的减少,反之亦然。

在中考中,反比例函数方程的解法是一个重要的考点,本文将详细介绍中考重点反比例函数方程的解法。

一、基本概念反比例函数表示为y = k/x,其中k是一个常数。

该函数的图像是一个直角双曲线,曲线关于y轴和x轴对称。

当x的值是正无穷大或负无穷大时,y的值趋近于0;当x的值趋近于0时,y的值趋近于正无穷大或负无穷大。

二、解法步骤解决反比例函数方程的关键是确定常数k的值,常常使用已知的函数值或称为条件来求解。

以下是解决反比例函数方程的一般步骤:1. 根据题意确定函数关系式。

根据问题中给出的条件,建立反比例函数关系式y = k/x。

2. 代入已知条件求解常数k。

将已知条件中的函数值代入函数关系式中,求解常数k的值。

3. 根据已知条件求解未知量。

将已知的函数值代入函数关系式中,求解未知量的值。

4. 核对解答。

将求得的值代入原方程核对,确保解答的准确性。

三、实例分析接下来通过一个实例来说明解决反比例函数方程的具体步骤。

例题:已知y = 8/x是反比例函数,当x = 4时,求y的值。

解题步骤:1. 根据题意确定函数关系式。

根据已知条件建立反比例函数关系式y = k/x。

2. 代入已知条件求解常数k。

已知当x = 4时,y = 8,将已知条件代入函数关系式得到8 = k/4,解方程得到k = 32。

3. 根据已知条件求解未知量。

已知当x = 4时,代入函数关系式y = 32/4,计算得到y = 8。

4. 核对解答。

将求得的值代入原方程核对,即8 = 32/4,等式左边等于右边,解答正确。

四、解题技巧在解决反比例函数方程时,需要注意以下几点技巧:1. 注意符号。

当已知条件中的函数值处于负半轴时,解方程时要注意符号的运用。

2. 注意约束条件。

有些题目中,可能会给出函数定义的范围,解决方程时要注意符合约束条件。

【单元练】成都市七中育才学校(新校区)九年级数学下册第二十六章《反比例函数》知识点总结(答案解析)

【单元练】成都市七中育才学校(新校区)九年级数学下册第二十六章《反比例函数》知识点总结(答案解析)

一、选择题1.将函数 6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是( )A .61y x =+ B .61y x =- C .61y x=+ D .61y x=-B 解析:B 【分析】由于把双曲线平移,k 值不变,利用“左加右减,上加下减”的规律即可求解.【详解】 解:将函数6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是61y x =-, 故选:B . 【点睛】本题考查了反比例函数的图象,注意:平移后解析式有这样一个规律“左加右减,上加下减”.2.已知0k >,函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( ) A . B .C .D .D解析:D 【解析】根据题意,在函数y=kx+k 和函数ky x=中, 有k >0,则函数y=kx+k 过一二三象限.且函数ky x=在一、三象限, 则D 选项中的函数图象符合题意; 故选D . 3.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是()A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<C 解析:C 【解析】 试题根据图象可得当12y y <时, x 的取值范围是:x <−6或0<x <2. 故选C.4.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =kx的图象上,OA =1,OC =6,则正方形ADEF 的边长为( )A .1.5B .1.8C .2D .无法求C解析:C【分析】根据OA 、OC 的长度,可得反比例函数的比例系数k=6,设正方形ADEF 的边长为x ,则OD DE=(1x)x=6⋅+⋅,解得x 即为正方形的边长.【详解】解:根据OA=1,OC=6,可得反比例函数的比例系数k=OA OC=6⋅, 设正方形ADEF 的边长为x , 则OD=OA+AD=1+x ,DE=x ,则OD DE=(1x)x=6⋅+⋅,解得:x=2或-3(舍), 故选:C . 【点睛】本题主要考察了反比例函数与几何图形的综合、解一元二次函数,解题的关键在于根据图形求出反比例函数的比例系数k .5.如图,在平面直角坐标系中,直线y x =-与双曲线ky x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .12-B .32-C .2-D .14-A 解析:A【分析】连接BP ,证得OQ 是△ABP 的中位线,当P 、C 、B 三点共线时PB 长度最大,PB=2OQ=4,设 B 点的坐标为(x ,-x ),根据点(2,2)C ,可利用勾股定理求出B 点坐标,代入反比例函数关系式即可求出k 的值. 【详解】 解:连接BP ,∵直线y x =-与双曲线ky x=的图形均关于直线y=x 对称, ∴OA=OB ,∵点Q 是AP 的中点,点O 是AB 的中点 ∴OQ 是△ABP 的中位线,当OQ 的长度最大时,即PB 的长度最大,∵PB≤PC+BC ,当三点共线时PB 长度最大, ∴当P 、C 、B 三点共线时PB=2OQ=4, ∵PC=1, ∴BC=3,设B 点的坐标为(x ,-x ), 则()()22BC=2-23x x ++=,解得1222,22x x ==-(舍去) 故B 点坐标为22,22⎛⎫- ⎪ ⎪⎝⎭,代入k y x=中可得:12k =-,故答案为:A .【点睛】本题考查三角形中位线的应用和正比例函数、反比例函数的性质,结合题意作出辅助线是解题的关键.6.函数y kx k =-+与ky x=在同一坐标系中的图象可能是( ) A . B . C . D .D解析:D 【分析】根据题意,分类讨论k >0和k <0,两个函数图象所在的象限,即可解答本题. 【详解】 解:当k >0时,函数y=-kx+k 的图象经过第一、二、四象限,函数ky x=(k≠0)的图象在第一、三象限,故选项A 、选项C 错误, 当k <0时,函数y=-kx+k 的图象经过第一、三、四象限,函数ky x=(k≠0)的图象在第二、四象限,故选项B 错误,选项D 正确, 故选:D . 【点睛】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论,数形结合的思想解答. 7.若函数5y x=与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( )A .15- B .15C .5-D .5B解析:B 【分析】先把A (a ,b )分别代入两个解析式得到5b a =,b =a +1,则ab =5,b -a =1,再变形11a b-得到b aab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1, 得5b a=,b =a +1, 即ab =5,b -a =1,所以11a b -=b a ab -=15. 故选:B. 【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.8.在函数()0ky k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<B解析:B 【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可. 【详解】 解:(0)ky k x=<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-,而k 0<, 132y y y ∴<<.故选:B . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ky x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =. 9.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4B解析:B 【分析】作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|. 【详解】解:作AE ⊥BC 于E ,如图,∵四边形ABCD 为平行四边形, ∴AD ∥x 轴,∴四边形ADOE 为矩形, ∴S 平行四边形ABCD =S 矩形ADOE ,而S矩形ADOE=|k|,∴|k|=8,而k<0∴k=-8.故选:B.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.10.函数y=x+m与myx=(m≠0)在同一坐标系内的图象可以是()A.B.C.D.B解析:B【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【详解】A.由函数y=x+m的图象可知m<0,由函数ymx=的图象可知m>0,相矛盾,故错误;B.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m>0,正确;C.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m<0,相矛盾,故错误;D.由函数y=x+m的图象可知m=0,由函数ymx=的图象可知m<0,相矛盾,故错误.故选:B.【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于掌握它们的性质才能灵活解题.二、填空题11.如图,平面直角坐标系中,矩形ABCD的顶点B在x轴负半轴上,边CD与x轴交于点E ,连接AE ,//AE y 轴,反比例函数()0ky x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解 解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解. 【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒∴9045BAE DAE ∠=︒-∠=︒ ∴ABE △为等腰直角三角形 ∴45ABE ∠=︒ ∴45CBE ∠=︒ ∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+ ∴()132222x DH OE x x ++=++= ∴322,22x x D ++⎛⎫⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x ⎛⎫ ⎪⎝⎭∴2kAE x x==+ ∴()2k x x =+∴()7436255x x k x x ++=⋅=⋅+ ∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去) ∴()()233215k x x =+=⨯+=. 【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.12.已知点(,7)M a 在反比例函数21y x=的图象上,则a=______.3【分析】把点代入反比例函数解析式求解即可【详解】解:∵点在反比例函数的图象上∴解得故答案为:3【点睛】本题考查反比例函数上点的坐标特征掌握反比例函数上点的坐标特征是解题的关键解析:3 【分析】把点(,7)M a 代入反比例函数解析式,求解即可. 【详解】解:∵点(,7)M a 在反比例函数21y x=的图象上, ∴217a=,解得3a =, 故答案为:3. 【点睛】本题考查反比例函数上点的坐标特征,掌握反比例函数上点的坐标特征是解题的关键. 13.如图,在平面直角坐标系中,函数y kx =与2y x=-的图像交于A 、B 两点,过点A 作y 轴的垂线,交函数1y x=的图像于点C ,连接BC ,则ABC ∆的面积为 _________. 3【分析】连接OC 设AC 交y 轴于E 根据反比例函数k 的几何意义求出△AOC 的面积再利用反比例函数关于原点对称的性质推出OA=OB 即可解决问题【详解】解:如图连接OC 设AC 交y 轴于E ∵AC ⊥y 轴于E ∴S解析:3 【分析】连接OC ,设AC 交y 轴于E .根据反比例函数k 的几何意义求出△AOC 的面积,再利用反比例函数关于原点对称的性质,推出OA=OB 即可解决问题. 【详解】解:如图,连接OC 设AC 交y 轴于E .∵AC⊥y轴于E,∴S△AOE=12×2=1,S△OEC=12×1=12,∴S△AOC=32,∵A,B关于原点对称,∴OA=OB,∴S△ABC=2S△AOC=3,故答案为:3.【点睛】本题考查反比例函数与一次函数的性质,解题的关键是熟练掌握反比例函数系数k的几何意义.14.已知反比例函数3yx=-,当1x>时,y的取值范围是____-3<y<0【分析】根据反比例函数的增减性求解【详解】在反比例函数∴函数图象在第二四象限且在每个象限内y随x的增大而增大当x>1时函数图象在第四象限且当x=1时y=-3∴当x>1时-3<y<0;故答解析:-3<y<0【分析】根据反比例函数的增减性求解.【详解】在反比例函数3yx=-,30k=-<,∴函数图象在第二、四象限,且在每个象限内y随x的增大而增大,当x>1时,函数图象在第四象限且当x=1时,y=-3,∴当x>1时-3<y<0;故答案为:-3<y<0.【点睛】考查反比例函数的增减性,掌握反比例函数的增减性是解题的关键,即在y=kx(k≠0)中,当k >0时,在每个象限内y 随x 的增大而减小,当k <0时,在每个象限内y 随x 的增大而增大.15.已知,点P (a ,b )为直线3y x =-与双曲线2y x=-的交点,则11b a -的值等于__.-【分析】将点P 分别代入两函数解析式得到:b =a ﹣3b =﹣进而得到a ﹣b =3ab =﹣2将其代入求值即可【详解】∵点P (ab )为直线y =x ﹣3与双曲线y =﹣的交点∴b =a ﹣3b =﹣∴a ﹣b =3ab =﹣解析:-32【分析】 将点P 分别代入两函数解析式得到:b =a ﹣3,b =﹣2a ,进而得到a ﹣b =3,ab =﹣2.将其代入求值即可.【详解】∵点P (a ,b )为直线y =x ﹣3与双曲线y =﹣2x的交点, ∴b =a ﹣3,b =﹣2a, ∴a ﹣b =3,ab =﹣2. ∴1b ﹣1a =a b ab -=32-=﹣32. 故答案是:﹣32. 【点睛】考查了反比例函数与一次函数的交点,解题关键是是得到a ﹣b =3,ab =﹣2.16.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__.﹣1<k <1【分析】根据函数值的大小关系判别函数的图象位置根据位置判定比例系数的大小再解不等式【详解】因为A (x1y1)B (x2y2)为函数图象上的两点且x1<0<x2y1>y2所以函数图象分支在二 解析:﹣1<k <1【分析】根据函数值的大小关系,判别函数的图象位置,根据位置判定比例系数的大小,再解不等式.【详解】因为A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2, 所以函数图象分支在二、四象限所以k 2-1<0解得﹣1<k <1故答案为:﹣1<k <1【点睛】考核知识点:反比例函数的图象.数形结合,熟记反比例函数的性质是关键. 17.如图,点A 是反比例函数y =k x(k >0,x >0)图象上一点,B 、C 在x 轴上,且AC ⊥BC ,D 为AB 的中点,DC 的延长线交y 轴于E ,连接BE ,若△BCE 的面积为8,则k 的值为_____.16【分析】设A (nm )B (t0)即可得到C 点坐标为(n0)D 点坐标为()利用待定系数法求出CD 的解析式可得E 点坐标为(0)然后利用三角形的面积公式可得到mn=16即得到k 的值【详解】解:设A (nm 解析:16【分析】设A (n ,m ),B (t ,0),即可得到C 点坐标为(n ,0),D 点坐标为(2n t +,2m ),利用待定系数法求出CD 的解析式,可得E 点坐标为(0,mn t n --),然后利用三角形的面积公式可得到mn=16,即得到k 的值.【详解】解:设A (n ,m ),B (t ,0),∵AC ⊥BC ,D 为AB 的中点,∴C 点坐标为(n ,0),D 点坐标为(2n t +,2m ), 设直线CD 的解析式为y=ax+b , 把C (n ,0),D (2n t +,2m ),代入得:na+b=0,22n t m a b ++=, 解得a=m t n-,b=mn t n --, ∴直线CD 的解析式为y=m mn x t n t n ---, ∴E 点坐标为(0,mn t n--),由S △BCE =12•OE•BC=8, 可得,1()82mn t n t n-=-, ∴mn=16,∴k=mn=16;故答案为:16.【点睛】本题考查了反比例函数的综合题的解法,熟练掌握并灵活运用是解题的关键. 18.如图,直线y =ax 经过点A (4,2),点B 在双曲线y =k x(x >0)的图象上,连结OB 、AB ,若∠ABO =90°,BA =BO ,则k 的值为_____. 3【分析】作BC ⊥x 轴于CAD ⊥BC 于D 易证得△BOC ≌△ABD 得出OC=BDBC=AD 设B 的坐标为(mn )则OC=mBC=n 根据线段相等的关系得到解得求得B 的坐标然后代入y=(x >0)即可求得k 的 解析:3.【分析】作BC ⊥x 轴于C ,AD ⊥BC 于D ,易证得△BOC ≌△ABD ,得出OC=BD ,BC=AD ,设B 的坐标为(m ,n ),则OC=m ,BC=n ,根据线段相等的关系得到24m n n m -⎧⎨-⎩== ,解得13m n ⎧⎨⎩== ,求得B 的坐标,然后代入y=k x(x >0)即可求得k 的值. 【详解】解:作BC ⊥x 轴于C ,AD ⊥BC 于D ,则∠COB+∠OBC=90°,∵∠ABO=90°,∴∠OBC+∠ABD=90°,∴∠COB=∠ABD ,在△BOC 和△ABD 中 COB ABD OCB BDA OB AB ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△BOC ≌△ABD (AAS ),∴OC=BD,BC=AD,设B的坐标为(m,n),则OC=m,BC=n,∵点A(4,2),∴24m nn m-⎧⎨-⎩==,解得,∴B的坐标为(1,3),∵点B在双曲线y=kx(x>0)的图象上,∴k=1×3=3,故答案为3.【点睛】此题考查反比例函数图象上点的坐标特征,三角形全等的判定和性质,得出相等线段列出关于m、n的方程组是解题的关键.19.若A、B两点关于y轴对称,且点A在双曲线y=12x上,点B在直线y=x+6上,设点A的坐标为(a,b),则a bb a+=_____.70【分析】根据点关于y轴对称的特点写出B点坐标再把两点坐标分别代入所求关系式即可解答【详解】解:根据点A在双曲线y=上得到2ab=1即ab=根据AB两点关于y轴对称得到点B(﹣ab)根据点B在直线解析:70【分析】根据点关于y轴对称的特点写出B点坐标,再把两点坐标分别代入所求关系式即可解答.【详解】解:根据点A在双曲线y=12x上,得到2ab=1,即ab=12,根据A、B两点关于y轴对称,得到点B(﹣a,b).根据点B在直线y=x+6上,得到a+b=6,∴22a b a bb a ab+ +==2()2 a b abab+-=21 62212-⨯=361 1 2-=70.故答案为:70.【点睛】此题考查了反比例函数、一次函数图象上点的坐标特征,能够根据解析式求得点的坐标之间的关系式;熟悉两个点关于y轴对称的点的坐标关系:纵坐标不变,横坐标互为相反数;能够把要求的代数式变成和或积的形式.20.如图,菱形ABCD顶点A在函数y=4x(x>0)的图像上,函数y=kx(k>4,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=4,∠ADC=150°,则k=______。

反比例函数知识归纳

反比例函数知识归纳

第十七章、反比例函数第一节、知识梳理反比例函数一、学习目标:1. 掌握用描点法画反比例函数图象的方法和步骤,并结合函数图象正确理解和掌握反比例函数的概念和性质.2. 能根据已知条件确定反比例函数的解析式,重点掌握待定系数法求反比例函数的解析式.3. 能用反比例函数解决生活实际问题,在解决物理问题,日常生产、生活问题的时候构建反比例函数模型.二、知识概要:三、要点点拨:1. 反比例函数自变量x的取值范围为x≠0.2. 反比例函数的图象为两支,这两支不连续,且以原点为对称中心成中心对称.与坐标轴无限接近但不能相交.3. 反比例函数值的变化规律要在同一支曲线上去研究.四、中考视点:有关反比例函数的试题主要出现在客观题中,但在解答中也时有出现,考查的主要内容有:1. 反比例函数的图象及性质是中考命题的重点.2. 求反比例函数的解析式(重点考查待定系数法),并与现实生活中的问题相联系,有增加的趋势.3. 借助于交点坐标,构建与正比例函数、一次函数的综合题,是中考命题的热点.实际问题与反比例函数一、学习目标:1.能够分析实际问题中变量之间的关系,建立反比例函数模型,进而解决实际问题.2. 能够画出描述实际问题的函数图象,并根据图象反应出的量的变化规律去解决实际问题.二、知识概要:1.根据实际情景构建反比例函数关系式(1)数学中常用的反比例函数关系式.(2)物理学中常用的反比例函数关系式.(3)利用实际问题情境中给出的数量关系,建立反比例函数关系式.2.利用反比例函数关系解决实际问题.3.有关实际问题中的反比例函数图象.(1)作出实际问题的函数图象.(2)利用实际问题的函数图象解决问题.三、知识链接:“反比例关系”和“反比例函数”的联系与区别:反比例关系是小学的概念:如果xy=k(k是常数,k≠0),那么x与y这两个量成反比例关系.这里x,y既可以代表单独的一个字母,也可以代表多项式或单项式.例如y+1与x +3成反比例,即反比例的关系式为,但x和y不一定是反比例函数.但反比例函数中的两个变量必成反比例关系.四、中考视点:由实际问题中给出的数量关系写出反比例函数,再由反比例函数的性质去解决实际问题是本节考查的重点.第二节、教材解读一、【例1】已知y关于x的反比例函数的图象过点P(3,6).(1)求y与x的函数解析式;(2)求当x =2时y的值.【思考与分析】由反比例函数的形式y=(k是常数,k≠0),可知求解析式的关键是确定系数k的值,所以我们可以根据条件用待定系数法求之.解:(1)设y=,将P(3,6)代入可得:6=,解得k=18,所以函数解析式为:y=.(2)把x=2代入y=,得y==9.【小结】待定系数法求函数解析式的一般步骤:(1)设出含有待定系数的解析式y=(k≠0,k为待定系数);(2)将已知条件代入(只需知道一个点的坐标);(3)解出待定系数;(4)将求得的值代回所设解析式.二、要点收藏夹反比例函数(k为常数,k≠0)的图象是双曲线.(1)当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y值随x值的增大而减小;(2)当k<0 时,双曲线的两支分别位于第二、四象限,在每个象限内y 值随x值的增大而增大;(3)双曲线的两支无限接近x轴和y轴,但永远达不到x轴和y轴(即双曲线的两支与x轴和y轴没有交点);(4)双曲线的两支关于直线y=±x对称.三、典型例题剖析【例2】①如果反比例函数的图象经过点(1,-2),那么k的值是()②写出一个图象位于第二、四象限的反比例函数的表达式.③当a ____时,反比例函数的图象在每一个象限内,y值随x值的增大而减小.【思考与分析】我们知道在反比例函数解析式中,如果常数k确定了,则这个反比例函数关系式就确定了.①由的图象经过点(1,-2),故将x=1,y=-2同时代入解析式便可求出k值;②由反比例函数的图象位于第二、四象限,可知k<0,因此所写的函数关系式只要满足k<0就行;③由反比例函数的图象在每一个象限内,y值随x值的增大而减小可知k>0,即1-a>0,从而求出a应满足的条件.解:①C;②如(答案不惟一,只要满足k<0 即可);③a<1.【小结】求反比例函数解析式的关键是借助已有的条件,如过已知某点,或两个分支所在的象限或图象在每一个象限内y值随x值的变化情况等信息求出k的值或k满足的条件.四、在构建反比例函数模型解决实际问题的时候需注意分析实际问题中变量之间的关系,建立反比例函数模型.(在反比例函数关系中,两个变量的积是定值)【例3】已知某盐厂晒出了3000吨盐,厂方决定把盐全部运走.(1)运走所需的时间t(天)与运走速度v(吨/天)有什么样的函数关系?(2)若该盐厂有工人80名,每天最多共可运走500吨盐,则预计盐最快可在几日内运完?(3)若该盐厂的工人工作了3天后,天气预报预测在未来的几天内可能有暴雨,于是盐厂决定在2天内把剩下的盐全部运走,则需要从其它盐厂调过多少人?【思考与分析】我们知道这是一道工程问题,关键是要熟悉本类问题中各量之间的关系.(1)盐的总量=运走所有的盐所需的时间×运盐的速度,可得t与v的函数关系式;(2)每天运盐500吨,即v=500,把v=500代入(1)中函数关系式可求得对应的t;(3)设从其它盐厂调过n人,依据剩下的盐=80个工人运走的盐+n 个工人运走的盐,列方程求出n即可.解:(1)由题意,得t =(2)当v=500时,t ==6,即盐最快可在6日内运完.(3)设需从其它盐厂调过n个人,则根据题意,得:解得n=40,即需从其它盐厂调过40人.【小结】本题的关系式是:盐的总量=运走所有的盐所需的时间×运盐的速度,当然,这三者之间的关系还可以相互转化,通常只要知道其中的两个量就可求出或表示出第三个量;第(2)题实际上是求值问题,只要代入(1)即可;第(3)题借助了方程进行解答.第三节、错题剖析一.反比例函数中,切记k≠0【例1】若函数为反比例函数,则m= .错解:因为为反比例函数,所以|m|=1,所以m=±1.错解剖析:反比例函数的定义是:一般地,形如(k≠0,k为常数)的函数叫做反比例函数.定义中强调了系数k≠0,k为常数这一条件.错解忽视了k≠0这个条件.在本题中m-1相当于定义中的k,这里应有m-1≠0,所以m≠1.正解:由|m|=1,得m=±1.又因为m-1≠0,所以m≠1.所以m=-1.反思:解决反比例函数中的字母取值问题,一定要注意k≠0这一限制条件,否则容易出现错误. 二.注意自变量的取值范围【例2】一矩形的面积是10,则这个矩形的一组邻边长y与x的函数关系的图象大致是()错解:选C.错解剖析:本题是一道实际问题,已知矩形的面积是10,两邻边长分别是x,y,所以xy=10,所以(x>0),此函数是反比例函数,由于自变量x的取值范围是x>0,所以函数的图象只有一个分支,且在第一象限.而错解忽视了实际问题中自变量的范围.正解:选D.反思:在具体问题中确定反比例函数的图象,一定要注意自变量的取值具有实际意义.三、对反比例函数概念理解不透【例3】在下列函数关系式:,,,2xy=1中,y是x 的反比例函数的个数是()A.2B.3C.4D.5错解:选D.错解剖析:选D是因为对反比例函数概念理解不透.反比例函数的概念是:一般地,形如(k为常数,k≠0)的函数称为反比例函数.反比例函数通常有3种表达形式:1:(上述三个式子中k都为常数,且k≠0).正解:选B四、对反比例函数图象及其性质理解不透【例4】若点(-1,y1),(-2,y2),(2,y3),在反比例函数的图象上,则()A.y1>y2>y3B.y2>y1>y3C. y3 >y1>y2D.y3>y2>y1错解:选C.错解剖析:对反比例函数图象及其性质理解不透,误认为y随x的增大而增大.反比例函数图象的增减性为:当k>0时,在同一象限内,y随x的增大而减小;当k<0时,在同一象限内,y随x的增大而增大.这里要特别注意“在同一象限内”这一点,本题中三个点并不在同一象限内.可以用函数的增减性来解决问题,也可以直接代入,求出这三个点的纵坐标的值,来比较函数值的大小.正解:选A.【小结】反比例函数的概念和图象及性质是我们学习这一章内容应该牢牢把握的,很多题目会考查到这些知识,我们要能正确应用.五、将反比例函数与正比例函数混为一谈【例5】近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为.错解:因为度数y(度)与镜片焦距x(m)成反比例,所以设反比例函数解析式为:y=kx.又因为200度近视眼镜镜片的焦距为0.5m,所以200=0.5k,解得k=400.所以y与x的函数关系式为y=400x.错解剖析:本题是以物理中的物理现象与定律为背景,考查反比例函数的解析式的确定,其中反比例与正比例是两个不同的概念,错解正是混淆了这两个概念而导致的错误.正解:设反比例函数解析式为,根据题意,得200=,解得k=100.所以y与x 的函数关系式为六、错误地理解题意,得到不切实际的答案【例6】某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少个售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能使全部学生就餐完毕.(1)共有多少学生就餐?(2)设开放x个窗口时,需要y小时才能使当天就餐的同学全部吃上饭,试求出y与x之间的函数关系式.(3)已知该学校最多可以同时开放20个窗口,那么最少多长时间可以使当天就餐的学生全部就餐?错解:(1)可先计算出每分钟10个窗口可售给的学生数再乘以就餐所需的时间就能求得全部学生数,即3×10×60=1800(名).(2)当天就餐的人数由(1)已经确定,每分钟可以售给的学生个数也是固定的,所以由题意,得y=3×60x+1800,即y与x之间的函数关系式为:y=180x+1800.(3)由(2)知,当x=20时,y=5400.即当同时开放20个窗口时,最少需5400小时可以使当天就餐的学生全部就餐.错解剖析:本题中的第(1)问是没有错的,问题是在(2)问上,由于当天就餐的人数由(1)已经确定,每分钟可以售给的学生个数也是固定的,则由题意列出的等式应该是3×60xy=1800,化简后应是反比例函数,若能正确地求出(2),问题(3)也就不会再出现错误了.正解:(1)可先计算出每分钟10个窗口可售给的学生数再乘以就餐所需的时间就能求得全部学生数,即3×10×60=1800(名).(2)当天就餐的人数由(1)已经确定,每分钟可以售给的学生个数也是固定的,所以由题意,得3×60xy=1800,即y与x 之间的函数关系式为(3)由(2)知,当x=20时,y=0.5.即当同时开放20个窗口时,最少需0.5小时可以使当天就餐的学生全部就餐.第四节、思维点拨【例1】如图,如果函数y=kx+k 和函数(其中k为不等于0的常数)的图象在同一坐标系中,其图象为().【思考与分析】本例是一次函数与反比例函数的图象综合题,我们把函数解析式与函数图象有机结合起来解决这类问题.一般解法:1.我们可以分k>0和k<0两种情况,由k的符号确定图象的位置;2.可以由一个图象在坐标系中的位置,确定k的取值范围,再判断另一图象画得是否正确;3.由两图象的位置分别确定k 的取值范围,最后看它们是否一致.解法1: 当k>0时,一次函数y=kx+k 的图象经过一、二、三象限,反比例函数的图象在第一、三象限,故选B.当k<0时,一次函数的图象经过二、三、四象限,反比例函数的图象在第二、四象限,故选C.解法2: 图A中由的图象在第二、四象限可知k<0,所以一次函数y=kx+k的图象经过二、三、四象限,所以A不符合,得到答案C.同样的分析方法排除D,得到答案B.解法3:图A中由一次函数y=kx+k的图象经过一、二、四象限,得前面的k<0而后面截距k>0,自身出现矛盾,故排除A,同样的分析方法排除D,得到答案B,C.【例2】已知反比例函数和一次函数y=mx+n的图象的一个交点是A(-3,4),且一次函数的图象与x轴的交点到原点的距离为5,分别确定反比例函数和一次函数的解析式.【思考与分析】已知双曲线和直线都经过点A(-3,4),可将A点分别代入解析式用待定系数法确定k,而一次函数与x轴的交点到原点的距离为5,可知交点为(5,0)或(-5,0),然后联立组成方程组,求出m,n的值.解:因为反比例函数的图象过点A(-3,4),所以所以这个反比例函数的解析式为又由题意知,一次函数y=mx+n的图象与x轴的交点为(5,0)或(-5,0).当直线y=mx+n的图象过点(-3,4)和(5,0)时,有当y=mx+n的图象过点(-3,4)和(-5,0)时,有所以y=2x+10.所以这个一次函数的解析式为y=-x+或y=2x+10.【小结】方程思想是重要的数学思想之一,它是在所给定的数学问题中挖掘并找出已知量与未知量之间的等量关系,再通过对未知量设元,构成方程或方程组,解出未知量,从而达到解决问题的目的.在函数这一部分,许多需要我们确定函数解析式的考题都需要我们根据题中条件构建方程来解决.【例3】某地上年度电价为0.8元/度,年用电量为1亿度,本年度计划将电价调至0.55至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y亿度与(x-0.4)成反比例,又当x=0.65元时,y=0.8.(1)求y与x的函数关系式;(2)若每度电的成本价为0.3元,则电价调至0.6元时,本年度电力部门的收益是多少?[收益=用电量×(实际电价-成本价)]【思考与分析】本题y与x虽不是反比例函数,但根据题意y与(x-0.4)成反比例,根据反比例的特点列出关系式,用待定系数法就可确定函数关系式.用电量为,实际电价减去成本价为x-0.3,二者乘积即为收益.根据题意列出方程解之即可得到结果.解:(1)因为y与(x-0.4)成反比例,0.8代入可以求出k=0.2.(2)根据题意,收益将x=0.6代入,收益为0.6亿元.所以当电价调至0.6元时,本年度电力部门的收益是0.6亿元.【小结】反比例函数是描述变量之间相互关系的重要数学模型之一.很多实际问题都可以归结为反比例函数的问题来解决.用反比例函数解决实际问题的具体步骤是:(1)认真分析实际问题中变量之间的关系;(2)若变量之间是反比例关系,则建立反比例函数模型(即确定反比例函数解析式);(3)利用反比例函数的性质去解决实际问题.反比例函数的应用中经常用到数形结合思想.数形结合思想就是在研究问题时把数与形结合起来考虑,不是把问题的数量关系转化为图形的性质,就是把图形的性质转化为数量关系来考虑,从而使复杂的问题简单化,抽象的问题具体化.【例4】某汽车的功率P为一定值,汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时?(3)如果限定汽车的速度不超过30米/秒,则F在什么范围内?【思考与分析】(1)首先观察图象得到F是v的反比例函数,同时该函数图象通过点(3000,20),然后把F=3000,v=20代入函数关系式P=Fv中得到功率P的值;(2)把F=1200牛代入(1)中求得的函数关系式就能求出速度v的值;(3)由于车速v不超过30米/秒,所以v≤30,即≤30,然后根据函数图象及性质知:F随着v的增大而减小即可得到F的范围.解:(1)由P= Fv=20 ×3000=60000,v=;(2)当F=1200时,v==50(米/秒)=180(千米/时),所以当它所受牵引力为1200牛时,汽车的速度为180千米/时;(3)当v=30米/秒时,代入v=则F=2000(牛)所以当v≤30米/秒时,即≤30,则F≥2000(牛).所以如果限定汽车的速度不超过30米/秒,则F应大于等于2000牛.【小结】解决这道题的关键是读懂题意,看懂图象,充分挖掘图象中隐含的已知条件,然后根据函数图象,确定函数解析式,并利用图象及性质解题.第五节、竞赛数学一、【例1】一次函数y=ax+b 的图象与反比例函数的图象交与M,N两点.如图所示:(1)求反比例函数和一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【思考与分析】将(-1,-4)代入反比例函数解析式求出k值,再将x=2代入其中求出m的值,然后把M,N两点坐标代入y=ax+b解二元一次方程组,求出a、b的值.解:(1)将N(-1,-4)代入,得k=4.从而反比例函数的解析式为:.将M(2,m )代入到中,解得:m=2.将M(2,2)、N(-1,-4)代入y=ax+b中,解得:a=2,b=-2.所以一次函数的解析式:y=2x-2.(2)由图象可知,当x<-1或0<x<2时,反比例函数的值大于一次函数的值.【小结】数形结合思想是重要的数学思想,函数图象和几何图形一样具有直观形象的特征,如果能发现函数解析式及式子中的相关系数的几何意义,将数量关系借助图象使之形象化、直观化,就可以简化求解过程.二、反比例函数图象的对称性反比例函数(k≠0)的图象是双曲线,它的图象既是轴对称图形又是中心对称图形,它有两条对称轴,分别是一、三象限和二、四象限的角平分线,都过原点且互相垂直;坐标原点是它的对称中心.三、反比例函数(k≠0)中的比例系数k的几何意义1.如图1,过双曲线上的任意一点P分别作x轴和y轴的垂线PM、PN,所得的矩形PMON的面积S=PM·PN,而PM=∣y∣,PN=∣x∣,所以矩形PMON的面积S=PM·PN=∣x∣·∣y∣=∣xy∣.因为,所以xy = k,S=PM·PN=k.即过双曲线上的任意一点作x轴和y轴的垂线,所得的矩形面积为∣k.∣2.如图1过双曲线上的任意一点E作其中一个坐标轴的垂线EF,连接OE,则△OEF的面积为【例2】如图2,直线y=kx(k>0)与双曲线交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1=。

课时7 反比例函数图形和性质专题

课时7 反比例函数图形和性质专题

M
O
x
k 设P(m, n)是双曲线y (k 0)上任意一点 , x 过P分别作x轴, y轴的垂线, 垂足分别为A, B, 求矩形OAPB 的面积。
面积性质(一)
解: OA | m | ,AP | n | (如图所示); S矩形OAPB OA AP | m | | n || k | .
y 2 (2)
2 5 2
类型三
利用k的几何意义解题
4
分析:由k的几何意义可知S1+S阴影=3, S2+S阴影=3 ,而S阴影 =1,故 S1+S2=4
A
对称性可知 S△AOM=S△BOM=1
y
P1
1.5
O
Байду номын сангаас
1
S2 S3 1
P2
P3 3
2
2
3
4
P4 x
4
知识拓展 分类讨论 k 1.如图能表示 y k (1 x)和 y (k 0) x D 在同一坐标系中的大致 图象的是 ____ .
.
2.已知y与x+2成反比例,且当x=2时,y=3,当x=-1时y= 12

3. 已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时, y=4;
当x=2时,y=5.
(1)求y与x的函数关系式; (2)当x=-2时,求函数y的值.
思路点拨:本题中,y1与x和y2与x的函 数关系中的待定系数不一定相同,故不 能都设为k,为了区分,要用不同的字母 表示.
y P(m,n) P(m,n) o A x o A x y
知识点6
实际问题
反比例函数的应用
数学问题

2024届陕西省西安电子科技中学中考数学仿真试卷含解析

2024届陕西省西安电子科技中学中考数学仿真试卷含解析

2024届陕西省西安电子科技中学中考数学仿真试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,DE 是线段AB 的中垂线,AE //BC ,AEB 120∠=,AB 8=,则点A 到BC 的距离是( )A .4B .43C .5D .6 2.如图是一个几何体的三视图,则这个几何体是( )A .B .C .D .3.计算22783-⨯的结果是( ) A .3 B .433 C .533 D .234.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( )A .3B .23C .332D .2335.如图,二次函数y=ax 2+bx+c (a≠0)的图象经过点(1,2)且与x 轴交点的横坐标分别为x 1,x 2,其中﹣1<x 1<0,1<x 2<2,下列结论:4a+2b+c <0,2a+b <0,b 2+8a >4ac ,a <﹣1,其中结论正确的有( )A .1个B .2个C .3个D .4个6.已知a ,b ,c 在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A .4b+2cB .0C .2cD .2a+2c7.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( ) A .9 B .10 C .9或10 D .8或108.a 的倒数是3,则a 的值是( )A .13B .﹣13C .3D .﹣39.将一次函数2y x =-的图象向下平移2个单位后,当0y >时,a 的取值范围是( )A .1x >-B .1x >C .1x <-D .1x <10.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A .平均数是3B .中位数是3C .众数是3D .方差是2.511.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=50°,∠3=120°,则∠2的度数为( )A .80°B .70°C .60°D .50°12.已知点P (a ,m ),Q (b ,n )都在反比例函数y=2x -的图象上,且a <0<b ,则下列结论一定正确的是( )二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 .14.分解因式:a 2b−8ab +16b =_____.15.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃. 16.化简21224a a a ---的结果等于__. 17.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D ,C ,若∠ACB=30°,AB=3,则阴影部分的面积是___.18.如图,将△AOB 以O 为位似中心,扩大得到△COD ,其中B (3,0),D (4,0),则△AOB 与△COD 的相似比为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,如图,在坡顶A 处的同一水平面上有一座古塔BC ,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP 攀行了26米,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.求:坡顶A 到地面PO 的距离;古塔BC 的高度(结果精确到1米).20.(6分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形△AOD的周长.21.(6分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元)7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?22.(8分)如图,已知一次函数y=32x﹣3与反比例函数kyx=的图象相交于点A(4,n),与x轴相交于点B.填空:n的值为,k的值为;以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;考察反比函数kyx=的图象,当2y≥-时,请直接写出自变量x的取值范围.23.(8分)先化简,再求值:x23x1x1x1-⎛⎫÷+-⎪--⎝⎭,其中x=3-1.24.(10分)如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.25.(10分)已知关于x的方程x2﹣6mx+9m2﹣9=1.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.26.(12分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.27.(12分)计算:(12)﹣2327+(﹣2)0+|28参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、A【解题分析】作AH BC ⊥于H.利用直角三角形30度角的性质即可解决问题.【题目详解】解:作AH BC ⊥于H .DE 垂直平分线段AB ,EA EB ∴=,EAB EBA ∠∠∴=,AEB 120∠=,EAB ABE 30∠∠∴==,AE //BC ,EAB ABH 30∠∠∴==,AHB 90∠=,AB 8=,1AH AB 42∴==, 故选A .【题目点拨】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2、B【解题分析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B .3、C【解题分析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可. 【题目详解】原式=33﹣22·63=33﹣433=533.故选C.【题目点拨】本题主要考查二次根式的化简以及二次根式的混合运算.4、C【解题分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【题目详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°=332.故选C.【题目点拨】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.5、D【解题分析】由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,对称轴为x=2b a- <1,∵a<0,∴2a+b<0, 而抛物线与x 轴有两个交点,∴2b −4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2. ∵244ac b a- >2,∴4ac−2b <8a ,∴2b +8a>4ac , ∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a−b+c<0.由①,③得到2a+2c<2,由①,②得到2a−c<−4,4a−2c<−8,上面两个相加得到6a<−6,∴a<−1.故选D.点睛:本题考查了二次函数图象与系数的关系,二次函数2(0)y ax bx c a =++≠ 中,a 的符号由抛物线的开口方向决定;c 的符号由抛物线与y 轴交点的位置决定;b 的符号由对称轴位置与a 的符号决定;抛物线与x 轴的交点个数决定根的判别式的符号,注意二次函数图象上特殊点的特点.6、A【解题分析】由数轴上点的位置得:b<a<0<c ,且|b|>|c|>|a|,∴a+c>0,a−2b>0,c+2b<0,则原式=a+c−a+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.7、B【解题分析】由题意可知,等腰三角形有两种情况:当a ,b 为腰时,a=b ,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n 只能为1.故选B8、A【解题分析】根据倒数的定义进行解答即可.【题目详解】∵a 的倒数是3,∴3a =1,解得:a =1.故选A .【题目点拨】本题考查的是倒数的定义,即乘积为1的两个数叫互为倒数.9、C【解题分析】直接利用一次函数平移规律,即k 不变,进而利用一次函数图象的性质得出答案.【题目详解】将一次函数2y x =-向下平移2个单位后,得:22y x =--,当0y >时,则:220x -->,解得:1x <-,∴当0y >时,1x <-,故选C .【题目点拨】本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键. 10、D【解题分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【题目详解】解:A 、平均数为=3,正确;B 、重新排列为1、2、3、3、6,则中位数为3,正确;C 、众数为3,正确;D 、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D .【题目点拨】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.【解题分析】直接利用平行线的性质得出∠4的度数,再利用对顶角的性质得出答案.【题目详解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故选B.【题目点拨】此题主要考查了平行线的性质,正确得出∠4的度数是解题关键.12、D【解题分析】根据反比例函数的性质,可得答案.【题目详解】∵y=−2x的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;【题目点拨】本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、:k<1.【解题分析】∵一元二次方程220x x k-+=有两个不相等的实数根,∴△=24b ac-=4﹣4k>0,解得:k<1,则k的取值范围是:k<1.故答案为k<1.14、b(a﹣4)1【解题分析】先提公因式,再用完全平方公式进行因式分解.【题目详解】解:a1b-8ab+16b=b(a1-8a+16)=b(a-4)1.【题目点拨】本题考查了提公因式与公式法的综合运用,熟练运用公式法分解因式是本题的关键.15、11.【解题分析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.16、12a-+.【解题分析】先通分变为同分母分式,然后根据分式的减法法则计算即可.【题目详解】解:原式22(2)(2)(2)(2)a aa a a a+=-+-+-2(2)(2)a a a -=+- (2)(2)(2)a a a --=+- 12a =-+. 故答案为:12a -+. 【题目点拨】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.17、32﹣6π 【解题分析】连接OB .∵AB 是⊙O 切线,∴OB ⊥AB ,∵OC=OB ,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt △ABO 中,∵∠ABO=90°,AB=3,∠A=30°,∴OB=1,∴S 阴=S △ABO ﹣S 扇形OBD =12×1×3﹣2601360π⨯ =32﹣6π .18、3:1.【解题分析】∵△AOB 与△COD 关于点O 成位似图形,∴△AOB ∽△COD ,则△AOB 与△COD 的相似比为OB :OD=3:1,故答案为3:1 (或34 ).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)坡顶A到地面PQ的距离为10米;()2移动信号发射塔BC的高度约为19米.【解题分析】延长BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由题意BH=PH.设BC=x.则x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根据tan76°=BCAC,构建方程求出x即可.【题目详解】延长BC交OP于H.∵斜坡AP的坡度为1:2.4,∴512 ADPD=,设AD=5k,则PD=12k,由勾股定理,得AP=13k, ∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四边形ADHC是矩形,CH=AD=10,AC=DH, ∵∠BPD=45°,∴PH=BH,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=BCAC,即14xx-≈4.1.解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC的高度约为18.7米.【题目点拨】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.20、 (1)8;(2)1.【解题分析】(1)由平行四边形的性质和已知条件易证△AOE ≌△COF ,所以可得AE=CF=3,进而可求出BC 的长;(2)由平行四边形的性质:对角线互相平分可求出AO+OD 的长,进而可求出三角形△AOD 的周长.【题目详解】(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AO=CO ,∴∠EAO=∠FCO ,在△AOE 和△COF 中EAO FCO AO COAOE COF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AOE ≌△COF ,∴AE=CF=3,∴BC=BF+CF=5+3=8;(2)∵四边形ABCD 是平行四边形,∴AO=CO ,BO=DO ,AD=BC=8,∵AC+BD=20,∴AO+BO=10,∴△AOD 的周长=AO+BO+AD=1.【题目点拨】本题考查了平行四边形的性质和全等三角形的判定以及全等三角形的性质,能够根据平行四边形的性质证明三角形全等,再根据全等三角形的性质将所求的线段转化为已知的线段是解题的关键.21、(1)W=216260(11020520(1015x x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解题分析】(1)根据题意和表格中的数据可以求得p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【题目详解】(1)设p 与x 之间的函数关系式为p=kx+b ,则有7.538.5k b k b +=⎧⎨+=⎩,解得,0.57k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),当1≤x <10时,W=[20﹣(0.5x+7)](2x+20)=﹣x 2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x 16260(11020520(1015x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数); (2)当1≤x <10时,W=﹣x 2+16x+260=﹣(x ﹣8)2+324,∴当x=8时,W 取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W 取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x <10时,令﹣x 2+16x+260=299,得x 1=3,x 2=13,当W >299时,3<x <13,∵1≤x <10,∴3<x <10,当10≤x≤15时,令W=﹣20x+520>299,得x <11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元), 即李师傅共可获得160元奖金.【题目点拨】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.22、 (1)3,1;(2) (4+13,3);(3) x 6≤-或x 0>【解题分析】(1)把点A (4,n )代入一次函数y=32x-3,得到n 的值为3;再把点A (4,3)代入反比例函数k y x =,得到k 的值为1;(2)根据坐标轴上点的坐标特征可得点B 的坐标为(2,3),过点A 作AE ⊥x 轴,垂足为E ,过点D 作DF ⊥x 轴,垂足为F ,根据勾股定理得到AB=13,根据AAS 可得△ABE ≌△DCF ,根据菱形的性质和全等三角形的性质可得点D 的坐标;(3)根据反比函数的性质即可得到当y≥-2时,自变量x 的取值范围.【题目详解】解:(1)把点A (4,n )代入一次函数y=32x-3,可得n=32×4-3=3; 把点A (4,3)代入反比例函数k y x =,可得3=4k , 解得k=1.(2)∵一次函数y=32x-3与x 轴相交于点B , ∴32x-3=3, 解得x=2,∴点B 的坐标为(2,3),如图,过点A 作AE ⊥x 轴,垂足为E ,过点D 作DF ⊥x 轴,垂足为F ,∵A (4,3),B (2,3),∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2,在Rt △ABE 中,==∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠ABE=∠DCF ,∵AE ⊥x 轴,DF ⊥x 轴,∴∠AEB=∠DFC=93°,在△ABE 与△DCF 中,AEB DFC ABE DCF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCF (ASA ),∴CF=BE=2,DF=AE=3,∴∴点D 的坐标为(3).(3)当y=-2时,-2=12x,解得x=-2. 故当y≥-2时,自变量x 的取值范围是x≤-2或x >3.23、解:原式=1x 2+,3. 【解题分析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x 的值,进行二次根式化简. 解:原式=()()2x 2x 4x 2x 11x 1x 1x 1x 2x 2x 2----÷=⋅=---+-+. 当x1时,原式===. 24、(1)详见解析;(2)【解题分析】(1)连接CD ,证明90ODC ADC ∠+∠=︒即可得到结论;(2)设圆O 的半径为r ,在Rt △BDO 中,运用勾股定理即可求出结论.【题目详解】(1)证明:连接CD,∵OD OC =∴ODC OCD ∠=∠∵AD AC =∴ADC ACD ∠=∠90,90,OCD ACD ODC ADC DE AB ∠+∠=︒∴∠+∠=∴⊥.(2)设圆O 的半径为r ,()2224+8,3r r r ∴=-∴=, 设()22222,84,6,6+662AD AC x x x x AE ==∴+=+∴=∴=【题目点拨】本题综合考查了切线的性质和判定及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.25、 (1)见解析;(2)m=2【解题分析】(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【题目详解】(1)∵在方程x 2﹣6mx+9m 2﹣9=1中,△=(﹣6m )2﹣4(9m 2﹣9)=26m 2﹣26m 2+26=26>1.∴方程有两个不相等的实数根;(2)关于x 的方程:x 2﹣6mx+9m 2﹣9=1可化为:[x ﹣(2m+2)][x ﹣(2m ﹣2)]=1,解得:x=2m+2和x=2m-2,∵2m+2>2m ﹣2,x 1>x 2,∴x 1=2m+2,x 2=2m ﹣2,又∵x 1=2x 2,∴2m+2=2(2m ﹣2)解得:m=2.【题目点拨】 (1)熟知“一元二次方程根的判别式:在一元二次方程20?(0)ax bx c a ++=≠中,当240b ac ->时,原方程有两个不相等的实数根,当240b ac -=时,原方程有两个相等的实数根,当240b ac -<时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x 的方程x 2﹣6mx+9m 2﹣9=1的两个根是解答第2小题的关键.26、证明见解析【解题分析】试题分析:证明三角形△ABC ≅△DEF ,可得AB =DE .试题解析:证明:∵BF =CE ,∴BC=EF ,∵AB ⊥BE ,DE ⊥BE ,∴∠B =∠E =90°,AC=DF ,∴△ABC ≅△DEF ,∴AB=DE.27、【解题分析】直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.【题目详解】解:原式=4﹣﹣2=.【题目点拨】本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.。

反比例函数整章知识点复习

反比例函数整章知识点复习
在经济学中,反比例函数可用于描述商品的需求量 与价格之间的关系,即需求法则。
在生物学中,反比例函数可用于描述种群数量与资 源之间的关系,如食物与捕食者数量等。
03
反比例函数的图像与性质
反比例函数的图像绘制
通过选择适当的x值,计算对应的y值 ,在坐标系上标出对应的点,连接各 点绘制出反比例函数的图像。
100%
经济问题
在经济学中,反比例函数可以用 来描述成本与产量的关系、供需 关系等。
80%
生态问题
在生态学中,反比例函数可以用 来描述种群数量与环境容量的关 系等。
05
反比例函数习题解析
基础题目解析
01
02
03
题目
已知点$P(x, y)$在反比例 函数$y = frac{k}{x}$的图 象上,若$x$与$y$的乘积 为$2k$,则$k$的值为 ____.
竞赛题目解析
01
k、a、b 的值;
02
k、a、b 的值;
03
k、a、b 的值;
04
k、a、b 的值;
THANK YOU
感谢聆听
反比例函数的计算方法
01
对于反比例函数
$f(x)
=
frac{k}{x}$,求值时只需将 $x$ 值
代入函数中即可。
02
若需要求 $f(x)$ 的导数或积分, 则需使用相应的微积分法则进行 计算。
反比例函数在实际问题中的应用
在物理学中,反比例函数可用于描述两个物理量之 间的反比关系,如电荷与电场强度、电流与电阻等 。
反比例函数的图像
图像特点
双曲线,分布在两个象限内,随着k的正负变化而分别分布在第一 、三象限或第二、四象限。

反比例函数教案优秀3篇

反比例函数教案优秀3篇

反比例函数教案优秀3篇反比例函数教案篇一教学目标1、经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2、理解反比例函数的概念,会列出实际问题的反比例函数关系式。

3、使学生会画出反比例函数的图象。

4、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1、什么是正比例函数?我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。

假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。

因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1、路程一定时,时间t就是速度v的反比例函数。

即速度增大了,时间变小;速度减小了,时间增大。

2、自变量v的取值是v>0.问题2:学校课外→←生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。

设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。

分析根据矩形面积可知xy=24,即从这个关系中发现:1、当矩形的面积一定时,矩形的一边是另一边的反比例函数。

即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2、自变量的取值是x>0.反比例函数教案篇二一、教学设计思路1、本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。

《反比例函数》考点例析

《反比例函数》考点例析

B 函数 图象在 一象 限内 , Y随 X的增大 . 且
而增 大
C 函数 图象在 二象限 内 , Y随 的增大 . 且
而减 小 D. 函数 图象 在二象 限 内, Y随 的增大 且
而 增 大
考点 三 :确 定实 际 问题 中反 比例 函数 的
图 象
分析 : 断反 比例 函数 的图象所在象 限及 判 甲地 匀 速 行 驶 到 乙地 ,则汽 车行 驶 的时 间 t 增减 性 , 关键 是准 确判 断 出比例系数 k 的正负 () h 与行驶 速度 v k h 的 函数关系 图象 大致 情况 . ( m/)
比例 函数 八年 级 =一 ,篇 , 以设p数K k )因为 当容积 为 所 学 ≠0.


5 密度是 1k/。 有 1 = 解得 m 时, .g , 4 m 所以 . 睾, 4


分析 : 单纯地根据实 际 问题列 出反比例 函 数关系 式 的题 目难度一般 不 大. 只要读懂 实际

反 比例函
A 2 <
=_ 图象 上 , 么( 1的 = _ 那
< 0 B. < y y 2< 0
) .

v k h O /(m/ )
A B
C.2> > 0 y
D. > > 0 yl
分析 : 利用 函数及 其 图象 比较数 的大 小, 主要有 三种 方法 : 1 直接把 两个 点的坐标 代 () 入 函数关系 式 , 出相 应 的Y 求 值来 比较数 的大 小 ;2 在 函数 图象上 描 出各点 , () 再根据 各点 的
是( ) .

例 5 已知 甲、 乙两 地相 距 Sk , (m) 汽车 从

2024年中考数学《反比例函数及其应用》真题含解析

2024年中考数学《反比例函数及其应用》真题含解析

专题反比例函数及其应用(41题)一、单选题1.(2024·安徽·中考真题)已知反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,则k的值为()A.-3B.-1C.1D.3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出y=2-3=-1,代入反比例函数求解即可【详解】解:∵反比例函数y=kxk≠0与一次函数y=2-x的图象的一个交点的横坐标为3,∴y=2-3=-1,∴-1=k3,∴k=-3,故选:A2.(2024·重庆·中考真题)反比例函数y=-10x的图象一定经过的点是()A.1,10B.-2,5C.2,5D.2,8【答案】B【分析】本题考查了求反比例函数值.熟练掌握求反比例函数值是解题的关键.分别将各选项的点坐标的横坐标代入,求纵坐标,然后判断作答即可.【详解】解:解:当x=1时,y=-101=-10,图象不经过1,10,故A不符合要求;当x=-2时,y=-10-2=5,图象一定经过-2,5,故B符合要求;当x=2时,y=-102=-5,图象不经过2,5,故C不符合要求;当x=2时,y=-102=-5,图象不经过2,8,故D不符合要求;故选:B.3.(2024·天津·中考真题)若点A x1,-1,B x2,1,C x3,5都在反比例函数y=5x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x3【答案】B【分析】本题主要考查了比较反比例函数值的大小,根据反比例函数性质即可判断.【详解】解:∵k=5>0,∴反比例函数y =5x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小,∵点B x 2,1 ,C x 3,5 ,都在反比例函数y =5x的图象上,1<5,∴x 2>x 3>0.∵-1<0,A x 1,-1 在反比例函数y =5x的图象上,∴x 1<0,∴x 1<x 3<x 2.故选:B .4.(2024·广西·中考真题)已知点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,若x 1<0<x 2,则有()A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.0<y 1<y 2【答案】A【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点M x 1,y 1 ,N x 2,y 2 在反比例函数图象上,则满足关系式y =2x,横纵坐标的积等于2,结合x 1<0<x 2即可得出答案.【详解】解:∵点M x 1,y 1 ,N x 2,y 2 在反比例函数y =2x的图象上,∴x 1y 1=2,x 2y 2=2,∵x 1<0<x 2,∴y 1<0,y 2>0,∴y 1<0<y 2.故选:A .5.(2024·浙江·中考真题)反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点.下列正确的选项是()A.当t <-4时,y 2<y 1<0B.当-4<t <0时,y 2<y 1<0C.当-4<t <0时,0<y 1<y 2D.当t >0时,0<y 1<y 2【答案】A【分析】本题考查了反比例函数图象上的点的坐标特征,由于反比例函数y =4x,可知函数位于一、三象限,分情况讨论,根据反比例函数的增减性判断出y 1与y 2的大小.【详解】解:根据反比例函数y =4x,可知函数图象位于一、三象限,且在每个象限中,y 都是随着x 的增大而减小,反比例函数y =4x的图象上有P t ,y 1 ,Q t +4,y 2 两点,当t<t+4<0,即t<-4时,0>y1>y2;当t<0<t+4,即-4<t<0时,y1<0<y2;当0<t<t+4,即t>0时,y1>y2>0;故选:A.6.(2024·河北·中考真题)节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍【答案】C【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.∴xy=500,∴y=500x,当x=5时,y=100,故A不符合题意;当y=125时,x=500125=4,故B不符合题意;∵x>0,y>0,∴当x减小,则y增大,故C符合题意;若x减小一半,则y增大一倍,表述正确,故D不符合题意;故选:C.7.(2024·四川泸州·中考真题)已知关于x的一元二次方程x2+2x+1-k=0无实数根,则函数y=kx与函数y=2x的图象交点个数为()A.0B.1C.2D.3【答案】A【分析】本题考查了根的判别式及一次函数和反比例函数的图象.首先根据一元二次方程无实数根确定k 的取值范围,然后根据一次函数和反比例函数的性质确定其图象的位置.【详解】解:∵方程x2+2x+1-k=0无实数根,∴Δ=4-41-k<0,解得:k<0,则函数y=kx的图象过二,四象限,而函数y=2x的图象过一,三象限,∴函数y=kx与函数y=2x的图象不会相交,则交点个数为0,故选:A.8.(2024·重庆·中考真题)已知点-3,2 在反比例函数y =kxk ≠0 的图象上,则k 的值为()A.-3B.3C.-6D.6【答案】C【分析】本题考查了待定系数法求反比例解析式,把-3,2 代入y =kxk ≠0 求解即可.【详解】解:把-3,2 代入y =kxk ≠0 ,得k =-3×2=-6.故选C .9.(2024·黑龙江牡丹江·中考真题)矩形OBAC 在平面直角坐标系中的位置如图所示,反比例函数y =kx的图象与AB 边交于点D ,与AC 边交于点F ,与OA 交于点E ,OE =2AE ,若四边形ODAF 的面积为2,则k 的值是()A.25B.35C.45D.85【答案】D【分析】本题考查了矩形的性质、三角形面积的计算、反比例函数的图象和性质、相似三角形的判定和性质;熟练掌握矩形的性质和反比例函数的性质是解决问题的关键.过点E 作EM ⊥OC ,则EM ∥AC ,设E a ,k a ,由△OME ∽△OCA ,可得OC =32a ,AC =32⋅ka,再由S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF ,列方程,即可得出k 的值.【详解】过点E 作EM ⊥OC ,则EM ∥AC ,∴△OME ∽△OCA ,∴OM OC =EM AC =OEOA设E a ,k a ,∵OE =2AE ∴OM OC =EM AC=23,∴OC =32a ,AC =32⋅ka∴S 矩形OBAC =S △OBD +S △OCF +S 四边形ODAF =32a ⋅32⋅ka即k 2+k 2+2=32a ⋅32⋅k a ,解得:k =85故选D10.(2024·黑龙江大兴安岭地·中考真题)如图,双曲线y =12xx >0 经过A 、B 两点,连接OA 、AB ,过点B 作BD ⊥y 轴,垂足为D ,BD 交OA 于点E ,且E 为AO 的中点,则△AEB 的面积是()A.4.5B.3.5C.3D.2.5【答案】A【分析】本题考查了反比例函数,相似三角形的判定与性质等知识,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a ,证明△AFE ∽△ODE ,有AF OD =AE OE=EF DE ,根据E 为AO 的中点,可得AF =OD ,EF =DE ,进而有EF =DE =12DF =12a ,AF =OD =12y A =6a ,可得y B =OD =6a ,x B=2a ,则有BE =BD -DE=32a ,问题随之得解.【详解】如图,过点A 作AF ⊥BD ,垂足为F ,设A a ,12a,a >0,∵BD ⊥y 轴,AF ⊥BD ,∴AF ∥y 轴,DF =a ,∴△AFE ∽△ODE ,∴AF OD =AE OE=EFDE ,∵E 为AO 的中点,∴AE =OE ,∴AF OD =AE OE=EFDE =1,∴AF =OD ,EF =DE ∴EF =DE =12DF =12a ,AF =OD =12y A =6a,∵OD =y B ,∴y B =OD =6a,∴xB =2a ,∴BD=x B=2a,∴BE=BD-DE=32a,∴S△ABE=12×AF×BE=12×6a×32a=92=4.5,故选:A.11.(2024·江苏扬州·中考真题)在平面直角坐标系中,函数y=4x+2的图像与坐标轴的交点个数是()A.0B.1C.2D.4【答案】B【分析】根据函数表达式计算当x=0时y的值,可得图像与y轴的交点坐标;由于4x+2的值不可能为0,即y≠0,因此图像与x轴没有交点,由此即可得解.本题主要考查了函数图像与坐标轴交点个数,掌握求函数图像与坐标轴交点的计算方法是解题的关键.【详解】当x=0时,y=42=2,∴y=4x+2与y轴的交点为0,2;由于4x+2是分式,且当x≠-2时,4x+2≠0,即y≠0,∴y=4x+2与x轴没有交点.∴函数y=4x+2的图像与坐标轴的交点个数是1个,故选:B.12.(2024·吉林长春·中考真题)如图,在平面直角坐标系中,点O是坐标原点,点A4,2在函数y=k xk>0,x>0的图象上.将直线OA沿y轴向上平移,平移后的直线与y轴交于点B,与函数y=k xk>0,x>0的图象交于点C.若BC=5,则点B的坐标是()A.0,5B.0,3C.0,4D.0,25【答案】B【分析】本题主要考查反比例函数、解直角三角形、平移的性质等知识点,掌握数形结合思想成为解题的关键.如图:过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,先根据点A坐标计算出sin∠OAE、k值,再根据平移、平行线的性质证明∠DBC=∠OAE,进而根据sin∠DBC=CDBC=sin∠OAE求出CD,最后代入反比例函数解析式取得点C的坐标,进而确定CD=2,OD=4,再运用勾股定理求得BD,进而求得OB即可解答.【详解】解:如图,过点A作x轴的垂线交x轴于点E,过点C作y轴的垂线交y轴于点D,则AE∥y轴,∵A4,2,∴OE=4,OA=22+42=25,∴sin∠OAE=OEOA =425=255.∵A4,2在反比例函数的图象上,∴k=4×2=8.∴将直线OA向上平移若干个单位长度后得到直线BC,∴OA∥BC,∴∠OAE=∠BOA,∵AE∥y轴,∴∠DBC=∠BOA,∴∠DBC=∠OAE,∴sin∠DBC=CDBC =sin∠OAE=255,∴CD5=255,解得:CD=2,即点C的横坐标为2,将x=2代入y=8x,得y=4,∴C点的坐标为2,4,∴CD=2,OD=4,∴BD=BC2-CD2=1,∴OB=OD-BD=4-1=3,∴B0,3故选:B.13.(2024·四川宜宾·中考真题)如图,等腰三角形ABC中,AB=AC,反比例函数y=kxk≠0的图象经过点A、B及AC的中点M,BC∥x轴,AB与y轴交于点N.则ANAB的值为()A.13B.14C.15D.25【答案】B【分析】本题考查反比例函数的性质,平行线分线段成比例定理,等腰三角形的性质等知识,找到坐标之间的关系是解题的关键.作辅助线如图,利用函数表达式设出A 、B 两点的坐标,利用D ,M 是中点,找到坐标之间的关系,利用平行线分线段成比例定理即可求得结果.【详解】解:作过A 作BC 的垂线垂足为D ,BC 与y 轴交于E 点,如图,在等腰三角形ABC 中,AD ⊥BC ,D 是BC 中点,设A a ,k a,B b ,kb ,由BC 中点为D ,AB =AC ,故等腰三角形ABC 中,∴BD =DC =a -b ,∴C 2a -b ,kb,∵AC 的中点为M ,∴M 3a -b 2,ka +kb 2 ,即3a -b 2,k a +b 2ab,由M 在反比例函数上得M 3a -b 2,k 3a -b2,∴k a +b 2ab=k3a -b 2,解得:b =-3a ,由题可知,AD ∥NE ,∴AN AB=DE BD =a a -b =a a +3a =14.故选:B .二、填空题14.(2024·北京·中考真题)在平面直角坐标系xOy 中,若函数y =kxk ≠0 的图象经过点3,y 1 和-3,y 2 ,则y1+y2的值是.【答案】0【分析】本题考查了反比例函数图象上点的坐标特征,已知自变量求函数值,熟练掌握反比例函数的性质是解题的关键.将点3,y1和-3,y2代入y=kxk≠0,求得y1和y2,再相加即可.【详解】解:∵函数y=kxk≠0的图象经过点3,y1和-3,y2,∴有y1=k3,y2=-k3,∴y1+y2=k3-k3=0,故答案为:0.15.(2024·云南·中考真题)已知点P2,n在反比例函数y=10x的图象上,则n=.【答案】5【分析】本题考查反比例函数图象上点的坐标特征,将点P2,n代入y=10x求值,即可解题.【详解】解:∵点P2,n在反比例函数y=10x的图象上,∴n=102=5,故答案为:5.16.(2024·山东威海·中考真题)如图,在平面直角坐标系中,直线y1=ax+b a≠0与双曲线y2=kxk≠0交于点A-1,m,B2,-1.则满足y1≤y2的x的取值范围.【答案】-1≤x<0或x≥2【分析】本题考查了一次函数与反比例函数的交点问题,根据图象解答即可求解,利用数形结合思想解答是解题的关键.【详解】解:由图象可得,当-1≤x<0或x≥2时,y1≤y2,∴满足y1≤y2的x的取值范围为-1≤x<0或x≥2,故答案为:-1≤x<0或x≥2.17.(2024·湖南·中考真题)在一定条件下,乐器中弦振动的频率f与弦长l成反比例关系,即f=kl(k为常数.k≠0),若某乐器的弦长l为0.9米,振动频率f为200赫兹,则k的值为.【答案】180【分析】本题考查了待定系数法求反比例函数解析式,把l=0.9,f=200代入f=kl求解即可.【详解】解:把l=0.9,f=200代入f=kl,得200=k0.9,解得k=180,故答案为:180.18.(2024·陕西·中考真题)已知点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,若0<m<1,则y1+y20.【答案】</小于【分析】本题主要考查了反比例函数的性质,先求出y1=52,y2=-5m,再根据0<m<1,得出y2<-5,最后求出y1+y2<0即可.【详解】解:∵点A-2,y1和点B m,y2均在反比例函数y=-5x的图象上,∴y1=52,y2=-5m,∵0<m<1,∴y2<-5,∴y1+y2<0.故答案为:<.19.(2024·湖北武汉·中考真题)某反比例函数y=kx具有下列性质:当x>0时,y随x的增大而减小,写出一个满足条件的k的值是.【答案】1(答案不唯一)【分析】本题考查的是反比例函数的性质,反比例函数的图象是双曲线,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.直接根据反比例函数的性质写出符合条件的的值即可.【详解】解:∵当x>0时,y随x的增大而减小,∴k>0故答案为:1(答案不唯一).20.(2024·黑龙江齐齐哈尔·中考真题)如图,反比例函数y=kx(x<0)的图象经过平行四边形ABCO的顶点A,OC在x轴上,若点B-1,3,S▱ABCO=3,则实数k的值为.【答案】-6【分析】本题考查了反比例函数,根据A ,B 的纵坐标相同以及点A 在反比例函数上得到A 的坐标,进而用代数式表达AB 的长度,然后根据S ▱ABCO =3列出一元一次方程求解即可.【详解】∵ABCO 是平行四边形∴A ,B 纵坐标相同∵B -1,3∴A 的纵坐标是3∵A 在反比例函数图象上∴将y =3代入函数中,得到x =k 3∴A k 3,3∴AB =-1-k 3∵S ▱ABCO =3,B 的纵坐标为3∴AB ×3=3即:-1-k 3×3=3解得:k =-6故答案为:-6.21.(2024·内蒙古包头·中考真题)若反比例函数y 1=2x ,y 2=-3x,当1≤x ≤3时,函数y 1的最大值是a ,函数y 2的最大值是b ,则a b =.【答案】12/0.5【分析】此题主要考查了反比例函数的性质,负整数指数幂,正确得出a 与b 的关系是解题关键.直接利用反比例函数的性质分别得出a 与b ,再代入a b 进而得出答案.【详解】解:∵函数y 1=2x,当1≤x ≤3时,函数y 1随x 的增大而减小,最大值为a ,∴x =1时,y 1=2=a ,∵y 2=-3x ,当1≤x ≤3时,函数y 2随x 的增大而减大,函数y 2的最大值为y 2=-1=b ,∴a b =2-1=12.故答案为:12.22.(2024·四川遂宁·中考真题)反比例函数y =k -1x 的图象在第一、三象限,则点k ,-3 在第象限.【答案】四/4【分析】本题考查了反比例函数的性质,点所在的象限,根据反比例函数的性质得出k >1,进而即可求解.【详解】解:∵反比例函数y =k -1x的图象在第一、三象限,∴k -1>0∴k >1∴点k ,-3 在第四象限,故答案为:四.23.(2024·江苏扬州·中考真题)如图,在平面直角坐标系中,点A 的坐标为(1,0),点B 在反比例函数y =k x (x >0)的图像上,BC ⊥x 轴于点C ,∠BAC =30°,将△ABC 沿AB 翻折,若点C 的对应点D 落在该反比例函数的图像上,则k 的值为.【答案】23【分析】本题考查了反比例函数k 的几何意义,掌握求解的方法是解题的关键.如图,过点D 作DE ⊥x 轴于点E .根据∠BAC =30°,BC ⊥x ,设BC =a ,则AD =AC =3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,即可得AE =32a ,DE =32a ,解得B (1+3a ,a ),D 1+32a ,32a ,根据点B 的对应点D 落在该反比例函数的图像上,即可列方程求解;【详解】解:如图,过点D 作DE ⊥x 轴于点E .∵点A 的坐标为(1,0),∴OA =1,∵∠BAC =30°,BC ⊥x 轴,设BC =a ,则AD =AC =BC tan30°=3a ,由对称可知AC =AD ,∠DAB =∠BAC =30°,∴∠DAC =60°,∠ADE =30°,∴AE =32a ,DE =AD ·sin60°=32a ,∴B (1+3a ,a ),D 1+32a ,32a ,∵点B 的对应点D 落在该反比例函数的图像上,∴k =a 1+3a =32a ⋅1+32a,解得:a =233,∵反比例函数图象在第一象限,∴k =2331+233×3 =23,故答案为:23.24.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,点A ,B 的坐标分别为5,0 ,2,6 ,过点B 作BC ∥x 轴交y 轴于点C ,点D 为线段AB 上的一点,且BD =2AD .反比例函数y =k x(x >0)的图象经过点D 交线段BC 于点E ,则四边形ODBE 的面积是.【答案】12【分析】本题主要考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数k 的几何意义,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,由点A ,B 的坐标分别为5,0 ,2,6 得BC =OM =2,BM =OC =6,AM =3,然后证明△ADN ∽△ABM 得DN BM =AN AM =AD AB ,求出DN =2,则ON =OA -AN =4,故有D 点坐标为4,2 ,求出反比例函数解析式y =8x ,再求出E 43,6 ,最后根据S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD 即可求解,熟练掌握知识点的应用是解题的关键.【详解】如图,作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,则DN ∥BM ,∵点A ,B 的坐标分别为5,0 ,2,6 ,∴BC =OM =2,BM =OC =6,AM =3,∵DN ∥BM ,∴△ADN ∽△ABM ,∴DN BM =AN AM =AD AB,∵BD =2AD ,∴DN 6=AN 3=13,∴DN =2,AN =1,∴ON =OA -AN =4,∴D 点坐标为4,2 ,代入y =k x 得,k =2×4=8,∴反比例函数解析式为y =8x,∵BC ∥x 轴,∴点E 与点B 纵坐标相等,且E 在反比例函数图象上,∴E 43,6,∴CE =43,∴S 四边形ODBE =S 梯形OABC -S △OCE -S △OAD =12×2+5 ×6-12×6×43-12×5×2=12,故答案为:12.25.(2024·四川广元·中考真题)已知y =3x 与y =k x x >0 的图象交于点A 2,m ,点B 为y 轴上一点,将△OAB 沿OA 翻折,使点B 恰好落在y =k x x >0 上点C 处,则B 点坐标为.【答案】0,4【分析】本题考查了反比例函数的几何综合,折叠性质,解直角三角形的性质,勾股定理,正确掌握相关性质内容是解题的关键.先得出A 2,23 以及y =43xx >0 ,根据解直角三角形得∠1=30°,根据折叠性质,∠3=30°,然后根据勾股定理进行列式,即OB =OC =23 2+22=4.【详解】解:如图所示:过点A 作AH ⊥y 轴,过点C 作CD ⊥x 轴,∵y =3x 与y =k xx >0 的图象交于点A 2,m ,∴把A 2,m 代入y =3x ,得出m =3×2=23,∴A 2,23 ,把A 2,23 代入y =k xx >0 ,解得k =2×23=43,∴y =43xx >0 ,设C m ,43m,在Rt △AHO ,tan ∠1=AH OH =223=33,∴∠1=30°,∵点B 为y 轴上一点,将△OAB 沿OA 翻折,∴∠2=∠1=30°,OC =OB ,∴∠3=90°-∠1-∠2=30°,则CD OD=tan ∠3=33=43m m ,解得m =23(负值已舍去),∴C 23,2 ,∴OB =OC =23 2+22=4,∴点B 的坐标为0,4 ,故答案为:0,4 .26.(2024·广东深圳·中考真题)如图,在平面直角坐标系中,四边形AOCB 为菱形,tan ∠AOC =43,且点A 落在反比例函数y =3x 上,点B 落在反比例函数y =k x k ≠0 上,则k =.【答案】8【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A 、B 作x 轴的垂线,垂足分别为D 、E ,然后根据特殊三角函数值结合勾股定理求得A 32,2 ,OA =52,再求得点B 4,2 ,利用待定系数法求解即可.【详解】解:过点A 、B 作x 轴的垂线,垂足分别为D 、E ,如图,∵tan ∠AOC =43,∴AD OD =43,∴设AD =4a ,则OD =3a ,∴点A 3a ,4a,∵点A 在反比例函数y =3x 上,∴3a ⋅4a =3,∴a =12(负值已舍),则点A 32,2,∴AD =2,OD =32,∴OA =OD 2+AD 2=52,∵四边形AOCB 为菱形,∴AB =OA =52,AB ∥CO ,∴点B 4,2 ,∵点B 落在反比例函数y =k x k ≠0 上,∴k =4×2=8,故答案为:8.27.(2024·广东广州·中考真题)如图,平面直角坐标系xOy 中,矩形OABC 的顶点B 在函数y =k x(x >0)的图象上,A (1,0),C (0,2).将线段AB 沿x 轴正方向平移得线段A B (点A 平移后的对应点为A ),A B 交函数y =k x (x >0)的图象于点D ,过点D 作DE ⊥y 轴于点E ,则下列结论:①k =2;②△OBD 的面积等于四边形ABDA 的面积;③A E 的最小值是2;④∠B BD =∠BB O .其中正确的结论有.(填写所有正确结论的序号)【答案】①②④【分析】由B 1,2 ,可得k =1×2=2,故①符合题意;如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,利用k 的几何意义可得△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,证明四边形A DEO 为矩形,可得当OD 最小,则A E 最小,设D x ,2xx >0 ,可得A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,可得B n +1,2 ,证明△B BD ∽△A OB ,可得∠B BD =∠B OA ,再进一步可得答案.【详解】解:∵A (1,0),C (0,2),四边形OABC 是矩形;∴B 1,2 ,∴k =1×2=2,故①符合题意;2如图,连接OB ,OD ,BD ,OD 与AB 的交点为K ,05∵S △AOB =S △A OD =12×2=1,∴S △BOK =S 四边形AKDA,∴S △BOK +S △BKD =S 四边形AKDA+S △BKD ,∴△OBD 的面积等于四边形ABDA 的面积;故②符合题意;如图,连接A E ,∵DE ⊥y 轴,∠DA O =∠EOA =90°,∴四边形A DEO 为矩形,∴A E =OD ,∴当OD 最小,则A E 最小,设D x ,2x x >0 ,∴OD 2=x 2+4x 2≥2⋅x ⋅2x =4,∴OD ≥2,∴A E 的最小值为2,故③不符合题意;如图,设平移距离为n ,∴B n +1,2 ,∵反比例函数为y =2x,四边形A B CO 为矩形,∴∠BB D =∠OA B =90°,D n +1,2n +1 ,∴BB =n ,OA =n +1,B D =2-2n +1=2n n +1,A B =2,∴BB OA =n n +1=2n n +12=B D A B,∴△B BD ∽△A OB ,∴∠B BD =∠B OA ,∵B C ∥A O ,∴∠CB O =∠A OB ,∴∠B BD =∠BB O ,故④符合题意;故答案为:①②④【点睛】本题考查的是反比例函数的图象与性质,平移的性质,矩形的判定与性质,相似三角形的判定与性质,勾股定理的应用,作出合适的辅助线是解本题的关键.28.(2024·四川乐山·中考真题)定义:函数图象上到两坐标轴的距离都小于或等于1的点叫做这个函数图象的“近轴点”.例如,点0,1 是函数y =x +1图象的“近轴点”.(1)下列三个函数的图象上存在“近轴点”的是(填序号);①y =-x +3;②y =2x;③y =-x 2+2x -1.(2)若一次函数y =mx -3m 图象上存在“近轴点”,则m 的取值范围为.【答案】③-12≤m <0或0<m ≤12【分析】本题主要考查了新定义--“近轴点”.正确理解新定义,熟练掌握一次函数,反比例函数,二次函数图象上点的坐标特点,是解决问题的关键.(1)①y =-x +3中,取x =y =1.5,不存在“近轴点”;②y =2x,由对称性,取x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,取x =1时,y =0,得到1,0 是y =-x 2+2x -1的“近轴点”;(2)y =mx -3m =m x -3 图象恒过点3,0 ,当直线过1,-1 时,m =12,得到0<m ≤12;当直线过1,1 时,m =-12,得到-12≤m <0.【详解】(1)①y =-x +3中,x =1.5时,y =1.5,不存在“近轴点”;②y =2x,由对称性,当x =y 时,x =y =±2,不存在“近轴点”;③y =-x 2+2x -1=-x -1 2,x =1时,y =0,∴1,0 是y =-x 2+2x -1的“近轴点”;∴上面三个函数的图象上存在“近轴点”的是③故答案为:③;(2)y =mx -3m =m x -3 中,x =3时,y =0,∴图象恒过点3,0 ,当直线过1,-1 时,-1=m 1-3 ,∴m =12,∴0<m ≤12;当直线过1,1 时,1=m 1-3 ,∴m =-12,∴-12≤m <0;∴m 的取值范围为-12≤m <0或0<m ≤12.故答案为:-12≤m <0或0<m ≤12.三、解答题29.(2024·甘肃·中考真题)如图,在平面直角坐标系中,将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,与反比例函数y =k x x >0 的图象交于点A 2,4 .过点B 0,2 作x 轴的平行线分别交y =ax +b 与y =k xx >0 的图象于C ,D 两点.(1)求一次函数y =ax +b 和反比例函数y =k x的表达式;(2)连接AD ,求△ACD 的面积.【答案】(1)一次函数y =ax +b 的解析式为y =12x +3;反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)6【分析】本题主要考查了一次函数与反比例函数综合:(1)先根据一次函数图象的平移规律y =ax +b =ax +3,再把点A 的坐标分别代入对应的一次函数解析式和反比例函数解析式中,利用待定系数法求解即可;(2)先分别求出C 、D 的坐标,进而求出CD 的长,再根据三角形面积计算公式求解即可.【详解】(1)解:∵将函数y =ax 的图象向上平移3个单位长度,得到一次函数y =ax +b 的图象,∴y =ax +b =ax +3,把A 2,4 代入y =ax +3中得:2a +3=4,解得a =12,∴一次函数y =ax +b 的解析式为y =12x +3;把A 2,4 代入y =k x x >0 中得:4=k 2x >0 ,解得k =8,∴反比例函数y =k x x >0 的解析式为y =8xx >0 ;(2)解:∵BC ∥x 轴,B 0,2 ,∴点C 和点D 的纵坐标都为2,在y =12x +3中,当y =12x +3=2时,x =-2,即C -2,2 ;在y =8x x >0 中,当y =8x =2时,x =4,即D 4,2 ;∴CD =4--2 =6,∵A 2,4 ,∴S △ACD =12CD ⋅y A -y C =12×6×4-2 =6.30.(2024·青海·中考真题)如图,在同一直角坐标系中,一次函数y =-x +b 和反比例函数y =9x 的图象相交于点A 1,m ,B n ,1 .(1)求点A ,点B 的坐标及一次函数的解析式;(2)根据图象,直接写出不等式-x +b >9x的解集.【答案】(1)A 1,9 ,B 9,1 ,y =-x +10(2)x <0或1<x <9【分析】本题主要考查了一次函数与反比函数的交点问题:(1)分别把点A 1,m ,点B n ,1 代入y =9x,可求出点A ,B 的坐标,即可求解;(2)直接观察图象,即可求解.【详解】(1)解:把点A 1,m 代入y =9x 中,得:m =91=9,∴点A 的坐标为1,9 ,把点B n ,1 代入y =9x 中,得:n =91=9,∴点B 的坐标为9,1 ,把x =1,y =9代入y =-x +b 中得:-1+b =9,∴b =10,∴一次函数的解析式为y =-x +10,(2)解:根据一次函数和反比例函数图象,得:当x <0或1<x <9时,一次函数y =-x +b 的图象位于反比例函数y =9x的图象的上方,∴-x +b >9x的解集为x <0或1<x <9.31.(2024·吉林·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R 的取值范围).(2)当电阻R 为3Ω时,求此时的电流I .【答案】(1)I =36R(2)12A【分析】本题主要考查了反比例函数的实际应用:(1)直接利用待定系数法求解即可;(2)根据(1)所求求出当R =3Ω时I 的值即可得到答案.【详解】(1)解:设这个反比例函数的解析式为I =URU ≠0 ,把9,4 代入I =U RU ≠0 中得:4=U9U ≠0 ,解得U =36,∴这个反比例函数的解析式为I =36R;(2)解:在I =36R中,当R =3Ω时,I =363=12A ,∴此时的电流I 为12A .32.(2024·山东·中考真题)列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数y =2x +b 与y =kx部分自变量与函数值的对应关系:x -72a12x +ba1________kx________________7(1)求a、b的值,并补全表格;(2)结合表格,当y=2x+b的图像在y=kx的图像上方时,直接写出x的取值范围.【答案】(1)a=-2b=5,补全表格见解析(2)x的取值范围为-72<x<0或x>1;【分析】本题考查的是一次函数与反比例函数的综合,利用图像法写自变量的取值范围;(1)根据表格信息建立方程组求解a,b的值,再求解k的值,再补全表格即可;(2)由表格信息可得两个函数的交点坐标,再结合函数图像可得答案.【详解】(1)解:当x=-72时,2x+b=a,即-7+b=a,当x=a时,2x+b=1,即2a+b=1,∴a-b=-72a+b=1,解得:a=-2b=5,∴一次函数为y=2x+5,当x=1时,y=7,∵当x=1时,y=kx=7,即k=7,∴反比例函数为:y=7x,当x=-72时,y=7÷-72=-2,当y=1时,x=a=-2,当x=-2时,y=-7 2,补全表格如下:x-72-212x+b-217kx-2-7 27(2)由表格信息可得:两个函数的交点坐标分别为-72,-2,1,7 ,∴当y=2x+b的图像在y=kx的图像上方时,x的取值范围为-72<x<0或x>1;33.(2024·湖北·中考真题)一次函数y=x+m经过点A-3,0,交反比例函数y=kx于点B n,4.(1)求m,n,k;(2)点C在反比例函数y=kx第一象限的图象上,若S△AOC<S△AOB,直接写出C的横坐标a的取值范围.【答案】(1)m=3,n=1,k=4;(2)a>1.【分析】本题主要考查了一次函数和反比例函数的综合,求反比例函数解析式,解题的关键是熟练掌握数形结合的思想.(1)利用一次函数y=x+m经过点A-3,0,点B n,4,列式计算求得m=3,n=1,得到点B1,4,再利用待定系数法求解即可;(2)利用三角形面积公式求得S△AOB=6,得到32y C<6,据此求解即可.【详解】(1)解:∵一次函数y=x+m经过点A-3,0,点B n,4,∴-3+m=0 n+m=4 ,解得m=3 n=1 ,∴点B1,4,∵反比例函数y=kx经过点B1,4,∴k=1×4=4;(2)解:∵点A-3,0,点B1,4,∴AO =3,∴S △AOB =12AO ×y B =12×3×4=6,S △AOC =12AO ×y C =32y C ,由题意得32y C<6,∴y C <4,∴x C >1,∴C 的横坐标a 的取值范围为a >1.34.(2024·四川凉山·中考真题)如图,正比例函数y 1=12x 与反比例函数y 2=kxx >0 的图象交于点A m ,2 .(1)求反比例函数的解析式;(2)把直线y 1=12x 向上平移3个单位长度与y 2=kxx >0 的图象交于点B ,连接AB ,OB ,求△AOB 的面积.【答案】(1)y 2=8x(2)6【分析】本题考查了一次函数与反比例函数的交点问题,待定系数法求函数解析式,一次函数的平移等知识,熟练掌握函数的平移法则是关键.(1)待定系数法求出反比例函数解析式即可;(2)先得到平移后直线解析式,联立方程组求出点B 坐标,根据平行线间的距离可得S △AOB =S △ADO ,代入数据计算即可.【详解】(1)解:∵点A (m ,2)在正比例函数图象上,∴2=12m ,解得m =4,∴A (4,2),∵A (4,2)在反比例函数图象上,∴k =8,∴反比例函数解析式为y 2=8x.(2)解:把直线y 1=12x 向上平移3个单位得到解析式为y =12x +3,令x =0,则y =3,∴记直线与y 轴交点坐标为D (0,3),连接AD ,联立方程组y =8xy =12x +3,解得x =2y =4,x =-8y =-1 (舍去),∴B (2,4),由题意得:BD ∥AO ,∴△AOB ,△AOD 同底等高,∴S △AOB =S △ADO =12OD ⋅x A =12×3×4=6.35.(2024·贵州·中考真题)已知点1,3 在反比例函数y =kx的图象上.(1)求反比例函数的表达式;(2)点-3,a ,1,b ,3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)y =3x(2)a <c <b ,理由见解析【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点1,3 代入y =kx可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【详解】(1)解:把1,3 代入y =k x ,得3=k 1,∴k =3,∴反比例函数的表达式为y =3x;(2)解:∵k =3>0,∴函数图象位于第一、三象限,∵点-3,a ,1,b ,3,c 都在反比例函数的图象上,-3<0<1<3,∴a <0<c <b ,∴a <c <b .36.(2024·河南·中考真题)如图,矩形ABCD 的四个顶点都在格点(网格线的交点)上,对角线AC ,BD 相交于点E ,反比例函数y =kxx >0 的图象经过点A .(1)求这个反比例函数的表达式.(2)请先描出这个反比例函数图象上不同于点A 的三个格点,再画出反比例函数的图象.(3)将矩形ABCD 向左平移,当点E 落在这个反比例函数的图象上时,平移的距离为.【答案】(1)y =6x(2)见解析(3)92【分析】本题考查了待定系数法求反比例函数解析,画反比例函数图象,平移的性质等知识,解题的关键是:(1)利用待定系数法求解即可;(2)分别求出x =1,x =2,x =6对应的函数值,然后描点、连线画出函数图象即可;(3)求出平移后点E 对应点的坐标,利用平移前后对应点的横坐标相减即可求解.【详解】(1)解:反比例函数y =kx的图象经过点A 3,2 ,∴2=k3,∴k =6,∴这个反比例函数的表达式为y =6x;(2)解:当x =1时,y =6,当x =2时,y =3,当x =6时,y =1,∴反比例函数y =6x的图象经过1,6 ,2,3 ,6,1 ,画图如下:(3)解:∵E 6,4 向左平移后,E 在反比例函数的图象上,∴平移后点E 对应点的纵坐标为4,当y =4时,4=6x,解得x =32,∴平移距离为6-32=92.故答案为:92.37.(2024·四川乐山·中考真题)如图,已知点A 1,m 、B n ,1 在反比例函数y =3xx >0 的图象上,过点A 的一次函数y =kx +b 的图象与y 轴交于点C 0,1 .(1)求m 、n 的值和一次函数的表达式;(2)连接AB ,求点C 到线段AB 的距离.【答案】(1)m =3,n =3,y =2x +1(2)点C 到线段AB 的距离为322【分析】(1)根据点A 1,m 、B n ,1 在反比例函数y =3x图象上,代入即可求得m 、n 的值;根据一次函数y =kx +b 过点A 1,3 ,C 0,1 ,代入求得k ,b ,即可得到表达式;(2)连接BC ,过点A 作AD ⊥BC ,垂足为点D ,过点C 作CE ⊥AB ,垂足为点E ,可推出BC ∥x 轴,BC 、AD 、DB 的长度,然后利用勾股定理计算出AB 的长度,最后根据S △ABC =12BC ⋅AD =12AB ⋅CE ,计算得CE 的长度,即为点C 到线段AB 的距离.【详解】(1)∵点A 1,m 、B n ,1 在反比例函数y =3x图象上。

6.1九年级数学上册第六章第一节反比例函数-新北师大版

6.1九年级数学上册第六章第一节反比例函数-新北师大版
• 反比例函数 一般地,如果两个变量x,y之间的关系可以表示成:
y k k为 常 数, k 0 的形式,那么称y是x的反比例函数.
x
第19页,共27页。
2014.11
常见题型:根据反比例函数的定义求值
第20页,共27页。
2014.11
中考真题
例 2:(2013 安顺)若 y (a 1) xa2 2 是反比例函数,
• 一次函数与正比例函数之间的关系:
• 正比例函数是特殊的一次函数.
第5页,共27页。
2014.11
回顾与思考
一次函数的图象与性质
• 一次函数y=kx+b(k≠0)的图象是一条直线,称直线y=kx+b.
当k>0时,
当k<0时,
y
y
b>0
b>0
b=0
o
x
b=0 o
x
b<0
b<0
• y随x的增大而增大;
那么我们称y是x的函数(function),其中x叫自变量,y叫因变量.
• 一次函数 若两个变量x,y的关系可以表示成y=kx+b(k,b是常数,k≠0)的形式,则称y 是做x的一次函数(linear function)(x为自变量,y为因变量).
• 正比例函数 特别地,当常数b=0时,一次函数y=kx+b(k≠0)就成为:y=kx(k是常数 ,k≠0), 称y是x的正比例函数.
y随x的增大而减小.
第6页,共27页。
2014.11
物理与数学
欧姆定律
我们知道,电流I,电阻R,电压U之间满足关系式U=IR.当U=220V 时. (1)你能用含有R的代数式表示I吗?

(北师大版数学九上)第六章 反比例函数讲义

(北师大版数学九上)第六章  反比例函数讲义

第六章 反比例函数第5讲 反比例函数图象、性质及应用一.知识梳理知识点1 反比例函数的定义与表达式: (1)一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数 (2)反比例函数有三种表达式: ①xk y =(0k ≠) ②1kx y -=(0k ≠) ③k y x =⋅(定值)(0k ≠) 知识点2 用待定系数法求反比例函数的解析式 由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式. 知识点3 反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量x ≠0,函数值y ≠0,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线. 在作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交.知识点4 反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表: 反比例函数xky =(0k ≠) k 的符号0k >0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小.②当0k <时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y 随x 的增大而增大.注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小,就会与事实不符的矛盾. ☆反比例函数x k y =(0k ≠)中,k 越大,双曲线xky =越远离坐标原点;k 越小,双曲线xky =越靠近坐标原点. ☆双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x 和直线y=-x. ☆反比例函数(y=xk)的图像与正比例函数(y=ax )的图像交于A(11y x ,),B(22y x ,)两点,那么这两点关于原点对称,即21-x x =,21-y y =.【补充】 中点坐标公式: 三点共线,且中间的点是中点,则:⎪⎪⎩⎪⎪⎨⎧==22两个端点的纵坐标相加中间点的纵坐标两个端点的横坐标相加中间点的横坐标即若A(1x ,1y ),B(2x ,2y ),M(x ,y)在一条直线上,且M 为线段AB 的中点,则有:⎪⎪⎩⎪⎪⎨⎧+=+=2y y y 2x x x 2121知识点5 反比例函数的应用(略)二.实战演练考点一反比例函数的概念及函数关系式的确定下列是反比例函数的有_____(填序号)①2xy-=;②xy21-=;③11-=xy;④21xy=⑤ xy=-3;⑥1--=xy考点二反比例函数的图像和性质1.反比例函数y=xa-1-2(a是常数)的图像分布在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限2.(1)若A(x1,y1),b(x2,y2)是双曲线y=x3上的两点,且x1>x2>0,则y1____y2.3.反比例函数y=xk的图像如右图所示,则k的值可能是()A.-1B.1C.2D.34.正方形的A1B1P1P2顶点P1、P2在反比例函数y=x2(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=x2(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为.典例分析考点三 反比例函数的应用 1.已知点P(a ,b)在反比例函数xy 2=的图像上,若点P 关于y 轴对称的点在反比例函数xky =的图像上,则k 的值为_____. 2.李先生参加了清华同方电脑公司推出的分期付款购买电脑活动,他购买的电脑价格为1.2万元,交了首付之后每月付款y 元,x 月结清余款.y 与x 的函数关系如图所示,试根据图象提供的信息回答下列问题.(1)确定y 与x 的函数关系式,并求出首付款的数目;(2)如打算每月付款不超过500元,李先生至少几个月才能结清余款?考点四 一次函数与反比例函数综合问题 1.函数y=k(x-1)与xky -=在同一直角坐标系内的图象大致是( )2.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=-2x+6的图象无公共点,则这个反比例函数的表达式是_____(只写出符合条件的一个即可).3.已知y=y 1+y 2,y 1与x 成正比例,y 2与x ﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y 与x 的函数关系式.4.如图所示,直线xy 34=与双曲线x k y =(x >0)交于点A ,将直线x y 34=向右平移29个单位后,与双曲线x k y =(x >0)交于点B ,与x 轴交于点C ,若BCAO=2,则k=____.1.已知函数|m |1xm y -=是y 关于x 的反比例函数,则m 的值是____. 2.在反比例函数xmy 21-=的图像上有A(11y x ,),B(22y x ,)两点,当021<<x x 时,21y y <,则m 的取值范围是( )A.m <0 B.m >21 C.m <21D.m >03.反比例函数的自变量x 满足-2≤x ≤-21时,函数值-1≤y ≤-41,则它的解析式是( )A.x y 21=B.xy 21-= C.x y 8= D.x y 81-=4.如图所示,等边三角形OAB 的边OA 在x 轴上,双曲线y=x3在第一象限内的图像经过边OB 的中点C,则点B 的坐标是( , ).5.双曲线y=xk经过点(-3,4),则下列点在双曲线上的是____. A.(-2,3) B.(4,3) C.(-2,-6) D.(6,-2) 6.已知一次函数b kx y +=1与反比例函数xky =2在同一直角坐标系中的图象如图所示,则当21y y <时,x 的取值范围是( )课堂训练A.x <-1或0<x <3B.-1<x <0或x >3C.-1<x <0D.x >37.如图,直线y=33-x+b 与y 轴交于点A ,与双曲线xky =在第一象限交于B 、C 两点,且AB.AC=8,则k=_____.8.某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万立方米)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?9.已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6) (1)求m 的值;(2)如图,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.1.已知一个反比例函数的图像位于第二、四象限内,点P(yx,)在这个反比例函数图像上,且yx>-4,请你写出这个反比例函数的表达式______.(只写出符合题意的一个即可)2.若点(-2,)1y,(-1,2y),(1,3y)在反比例函数)0(<kxky=图象上,则下列结论中,正确的是()A.3y>1y>2y B.2y>1y>3y C.1y>2y>3y D.3y>2y>1y3.如图所示,点P(2,1)是反比例函数xky=的图像上的一点,则当y<1时,自变量x的取值范围是()A.x<2 B.x>2 C.x<2且x≠0 D.x>2或x<04.已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且211112+=yy,则这个反比例函数的表达式为______.5.如图所示,矩形ABCD的对角线经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=xkk122++的图象上,若点A的坐标为(-2,-2),则k的值为_____.6.已知A(2,m-2)和B(m,4)均在反比例函数图像上,则m=___.7.如果一个正比例函数的图象与反比例函数y=x6的图象交于A(x1,y1),B(x2,y2)两点,那么(x2-x1)(y2-y1)的值为_____.8.如图,直线y=2x与双曲线y=x2在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO 绕点O旋转90°,得到△A′B′O,则点A′的坐标为( )A.(1,0)B.(1,0)或(﹣1,0)C.(2,0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)课后作业※9.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( ) A .7:20 B .7:30 C .7:45 D .7:5010.某汽车油箱的容积为80升,小陈把油箱注满油后从县城载客到400千米外的省城,把客人送到目的地后马上按原路返回,请回答下列问题:(1)油箱注满后,汽车能够行驶的总路程a (单位:千米)与每千米平均耗油量b (单位:升)之间有怎样的函数关系?(2)小陈以平均每千米耗油0.1升的速度驾驶汽车到达省城,在返回走了一半路程时下起了雨,小陈降低了速度,此时每行驶1千米的耗油量增加了一倍,如果小陈一直以此速度行驶,油箱里的油是否能回到县城?如果不够用,至少还需加多少油?11.如图,已知反比例函数y=x2k和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+1,b+k )两点,反比例函数和一次函数的图象交于A 、B 两点. (1)求反比例函数的解析式,和△AOB 的面积; (2)结合函数图象,直接写出不等式2x >76x 2k+-的解为_______;(3)在反比例函数图象上存在_____个点P ,使得OAB PAB S S △△2=.12.已知反比例函数x2ky =和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k )两点.(1)求反比例函数的解析式;(2)若点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,直接写出符合条件的点P 的坐标;若不存在,请说明理由.第6讲 |k|的几何意义一.知识归纳☆反比例函数xky =(0k ≠)中k 的几何意义: 如图所示,过双曲线上任一点P (x ,y )分别作x 轴、y 轴的垂线,E 、F 分别为垂足,连接OP , 则:OEPF S PE PF y x 矩形=⋅=⋅=k【补充】|k|的几何意义常见模型: 模型一:一点一垂线模型分析:如过反比例函数图象上一点作坐标轴的垂线,该点、垂足与坐标轴上一点(含原点)构成的三角形面积等于21|k|.特别补充:反比例函数图象上的两点与原点构成的三角形面积等于由这两点向x 轴作垂线构成的梯形面积.模型二:一点两垂线模型分析:如过反比例函数图象上一点作两条坐标轴的垂线,垂线与坐标轴围成的矩形面积等于|k|.模型三:原点一垂线模型分析:过正比例函数与反比例函数的一个交点作坐标轴的垂线,两交点与垂足构成的三角形的面积等于|k|.模型四:两点两垂线模型分析:反比例函数与正比例函数的两个交点的连线及由交点向不同坐标轴所作两条垂线围成的图形(或两交点及由交点向同一坐标轴所作两条垂线的垂足构成的图形)的面积等于2|k|.模型五:两点和一点模型分析:反比例函数与一次函数的交点和原点(或坐标轴上一点)所构成的三角形的面积,若两交点在同一支上,用减法;若两交点分别在两支上,用加法.模型六:两曲一平行模型分析:两条双曲线上的两点的连线与一条坐标轴平行,求该两点与原点构成或坐标轴围成的图形面积,结合k的几何意义求解.模型七:与四边形组合模型分析:反比例函数图象与四边形结合,已知面积求值,或已知值求面积.通常会用到反比例函数图象上点的横纵坐标乘积相等.二.实战演练例1:下列图形中,阴影部分面积最大的是()例2:如图所示,反比例函数y=xk(x>0)的图像经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4例3:如图,A、B两点分别在反比例函数xy1-=和xky=的图像上,连接OA、OB,若OA ⊥OB,OB=2OA,则k的值为() A.-2 B.2 C.-4 D.4例4:如图,反比例函数y=xk(x>0)的图象经过平行四边形ABCO的顶点A和对角线的交点E,点A的横坐标为3,对角线AC所在的直线交y轴于(0,6)点,则函数y=xk的表达式为_____.典例分析例5:如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=xk1(x>0)的图象经过点C,反比例函数y=xk2(x<0)的图象分别与AD,CD交于点E,F,若BEFS∆=7,21k3k+=0,则1k等于_______.例6:已知:在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数xky=(k>0)的图象与AC边交于点E.(1)用含k的代数式表示△AOE的面积是____,△BOF的面积是_____.(2)请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,请直接写出点F的坐标,若不存在,请说明理由.1.如图所示是反比例函数xky1=和xky2=(k1<k2)在第一象限的图像,直线AB∥x轴,并分别交两条曲线于A,B两点,若2=AOBS△,则k2-k1的值是()A.1B.2C.4D.8课堂训练2.如图,P(x ,y)是反比例函数xy 3的图象在第一象限分支上的一个动点,PA ⊥x 轴于点A , PB ⊥y 轴于点B , 随着自变量x 的增大,矩形OAPB 的面积( ) A .不变 B.增大 C.减小 D.无法确定3.如图,已知四边形ABCD 是平行四边形,BC=2AB ,A 、B 两点的坐标分别是(-1,0),(0,2),C 、D 两点在反比例函数y=xk(k <0)的图象上,则k=_____.4.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,反比例函数y =xk(x >0)在第一象限内的图象经过点D ,且与AB 、BC 分别交于E 、F 两点,若四边形BEDF 的面积为1,则k 的值为_____.5.如图,在△OAB 中,C 是AB 的中点,反比例函数y=xk(k >0)在第一象限的图象经过A ,C 两点,若△OAB 面积为6,则k 的值为_____.6.如图,在△ABC中,∠ABC=90°,BC边在x轴正半轴上,中线BD的反向延长线交于y轴负半轴于点E.双曲线xk y=一条分支经过点A,若S△BEC=4,则k=_______.1.如图所示,直线l和双曲线y=xk(k>0)交于A,B两点,P是线段AB上的点(不与A、B 重合).过点A,B,P分别向x轴作垂线,垂足分别为C,D,E,连接OA,OB,OP,设△AOC的面积为S1,△BOD的面积为S2,△POE的面积为S3,则有()A.S1<S2<S3B.S1>S2>S3C.S1=S2<S3D.S1=S2>S32.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数xy4=的图象交于A、B两点,则四边形MAOB的面积为______.3.某反比例函数xky=的图像上有三点A(1,4),B(2,m),C(4,n),则△ABC的面积为_____.课后作业4.(1)如左下图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数y=xk(k ≠0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OAD 的面积为1,则k 的值为_______.(2)如右上图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B .若反比例函数y =xk的图象恰好经过斜边A ′B 的中点C ,S △ABO=4,tan ∠BAO=2,则k 的值为______.5.如图,A 、B 两点分别在反比例函数x y 1-=和xky =的图像上,连接OA 、OB ,若OA ⊥OB ,OB=2OA ,则k 的值为( ) A.-2 B.2 C.-4 D.46.如图,A ,B 两点在反比例函数y=x k 1的图象上,C ,D 两点在反比例函数y=xk2的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC=2,BD=1,EF=3,则k 1﹣k 2的值是________.7.如图,在□OADB 中,对角线AB 、OD 相交于点C ,反比例函数y=kx (k >0)在第一象限的图象经过A 、C 两点,若平行四边形OADB 面积为12,则k 的值为______.8.如图所示,双曲线y=x2(x <0)经过四边形OABC 的顶点A ,C ,∠ABC=90°,OC 平分OA 与x 负半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 .9.如图矩形AOCB 的两边OC ,OA 分别位于x 轴,y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是_____.10.在平面直角坐标系中,点A (﹣3,4)关于y 轴的对称点为点B ,连接AB ,反比例函数y=(x >0)的图象经过点B ,过点B 作BC ⊥x 轴于点C ,点P 是该反比例函数图象上任意一点,过点P 作PD ⊥x 轴于点D ,点Q 是线段AB 上任意一点,连接OQ 、CQ . (1)求k 的值;(2)判断△QOC 与△POD 的面积是否相等,并说明理由.。

反比例函数的应用 与 求代数式的值或解方程 的主要区别是什么

反比例函数的应用 与 求代数式的值或解方程 的主要区别是什么

反比例函数的应用与求代数式的值或解方程的主要区别是什么?反比例函数的应用”是在学生学习了“反比例函数的图像和性质”以后,学生利用知识去分析和解决一些实际问题,其中渗透了转化、建模、数形结合等思想.通过观察图像,从图像中获取有用信息,解决相应的实际问题;或者把实际问题通过与反比例函数想结合,不用计算而解决问题。

它有利于综合应用知识、理解知识来解决问题。

求代数式的值则是给出代数式中字母的具体的值,将其代人代数式中,从而求值,或者将代数式化简以后在求值。

解方程是将方程通过变形最后得出方程的解的过程,步骤可以灵活运用。

总之,“反比例函数的应用”是通过数形结合来解决实际问题,“求代数式的值或解方程”则是需要计算能力。

2 为没有教过这部分内容,仅对两者之间有些浅见的认识。

“反比例函数的应用”与“求代数式的值或解方程”的区别可以形容为点和线得关系或者一般到特殊的关系,反比例函数应用是线,求代数式的值或解方程则是应用于所有函数问题中的点。

反比例函数是学生在“经历变量之间的关系和一次函数”内容后,对函数已经有了初步的认识,学生需要在学习的过程中理解反比例函数与研究其性质,并结合着以前所积累的函数知识经验来对比着建立反比例函数模型从而解决问题,其中学生掌握困难的地方是用“函数的思想”解决问题与函数模型的建立,在初中理解函数有两个重要的途径:一是解析式,二是函数图像,这也说明了解决反比例函数的应用问题应利用反比例函数性质,从数与形的两方面在实际问题中下手分析问题(抽象模型)、解决问题(建立模型),即反比例函数的应用仍然是实际问题与函数模型之间的相互转化;而解方程或求值计算是数学内部的知识,也是学生解决函数问题的代数手段。

所以两者仍有明显的区别。

举个例子:某气球内充满了一定质量的气体,当温度不变时,气球内的气压p(kPa)是气体V (m3)的反比例函数,其图像如图所示1. 写出函数表达式2.当气体体积为1 m3 时,气压是多少?(1) 解由题意可知气压与气体体积成反比例函数,设P=K/V,把A(0.8,120)代入上式得0.8=k/120,(解方程)得k=96,P=96/V(2)当V=1时,P=96/1=96kpa(代数式求值)。

初中数学培优:反比例函数

初中数学培优:反比例函数

初中数学培优:反比例函数一、的几何意义1.如图所示,过双曲线上任意一点分别向两坐标轴作垂线,所得矩形PAOB的面积,;2.如图所示,过双曲线任意一点Q,过点Q作x轴的垂线,垂足为M,连接QO,则.只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的.【典例】如图,反比例函数=(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC 交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1B.2C.3D.4【解答】解:由题意得:E、M、D位于反比例函数图象上,则S△OCE=|U2,S△OAD=|U2,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO =4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则2+2+9=4k,解得:k=3.故选:C.【巩固】如图,在平面直角坐标系中,矩形OABC顶点AC分别在x轴、y轴的正半轴上,顶点B在函数y=6(x>0)的图象上,点P是矩形OABC内的一点,连接PO、PA、PB、PC,则图中阴影部分的面积是()A.3B.4C.5D.6【解答】解:作PE⊥OC于E,EP的延长线交AB于F,∵四边形OABC是矩形,∴AB∥OC,∴PF⊥AB,∵顶点B在函数y=6(x>0)的图象上,∴xy=6,∴S阴=12•OC•PE+12•AB•PF=12•OC•EF=12S矩形ABCO=12×6=3.故选:A.二、反比例函数与几何综合1.设点的坐标,利用几何图形的性质得出相关线段的关系,再表示出相关点的坐标,最后带回到解析式中或直接求解;2.变化是永恒的,不变是相对的,在复杂的变化中寻找不变量,以不变应万变,在反比例函数中,【典例】如图,平行四边形OABC的顶点A在反比例函数y=3(x>0)的图象上,顶点B,C在反比例函数y=−5(x<0)的图象上,则平行四边形OABC的面积为.【解答】解:如图,分别过A、B、C作x轴垂线于D、E、F,连接OB,∵点A在反比例函数y=3(x>0)的图象上,点B在反比例函数y=−5(x<0)的图象上,∴设A的坐标为(a,3),B的坐标为(b,−5),∵四边形OABC是平行四边形,∴C的坐标为(b﹣a,−5−3),∵C在反比例函数y=−5(x<0)的图象上,∴(b﹣a)(−5−3)=﹣5,化简得:5a2﹣3b2+3ab=0,等式两边同除以b2得:5()2+3−3=0,解得:=∵a,b异号,∴=∵三角形OBC的面积=四边形OBCF的面积﹣三角形OFC的面积=梯形CBEF的面积+三角形OEB的面积﹣三角形OFC的面积=梯形CBEF的面积,∴三角形OBC的面积=12(−5−3−5)a=−12(10+3)a=−5−32=∴平行四边形OABC的面积=三角形OBC的面积×2=69.故答案为:69.【巩固】如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支交AB于点P,交BC于点E,直线PE交y轴于点D,交x轴于点F,连接AC.则下列结论:=k;①S四边形ACFP②四边形ADEC为平行四边形;③若A A=13,则B D=14;=1,S△PBE=4,则k=6.④若S△CEF其中正确的是()A.①②④B.①②C.②④D.①③【解答】解:设点B的坐标为(b,a),∵四边形ABCD为矩形,∴A(0,a),C(b,0),∵点P,E在反比例函数图形上,∴P(,a),E(b,),∴直线PE的解析式为y=−x++a,令y=0,则−x++a=0,∴x=+b,∴F(+b,0),∴CF=+b﹣b=,∵P(,a),∴AP=,∴AP=CF,∵四边形OABC是矩形,∴OA∥BC,AB∥OC,∴四边形ACFP是平行四边形,=CF•OA=•a=k,故①正确;∴S四边形ACFP∵四边形ACFP是平行四边形,∴AC∥DF,∵OA∥∥BC,∴四边形ADEC是平行四边形,故②正确;∵A A=13,∴A B=14,∵B(b,a),∴AB=b,∵P(,a),∴AP=,∴=14,∴ab=4k,∵直线PE的解析式为y=−x++a,∴D(0,+a),∵A(0,a),∴AD=+a﹣a=,∴B D=+=rB=r4=15,故③错误;=1,∵S△CEF∴12××=1,∴2B=2,=4,∵S△PBE∴12(b−)•(a−)=4,∴ab﹣k﹣k+2B=8,∴12k2﹣2k﹣6=0,∴k=﹣2(舍)或k=6,故④正确,∴正确的有①②④,故选:A.三、反比例函数中的规律探索【典例】如图,边长为n 的正方形OABC 的边OA ,OC 在坐标轴上,点A 1,A 2,…,A n ﹣1为OA 的n 等分点,点B 1,B 2,…,B n ﹣1为CB 的n 等分点,连接A 1B 1,A 2B 2,…,A n ﹣1B n ﹣1,分别交曲线y =1(x >0)于点C 1,C 2,…,C n ﹣1.BC 与双曲线y =1交于点E ,若K1K1K1=1415,则n 的值为.(n 为正整数)【解答】解:∵正方形OABC 的边长为n ,点A 1,A 2,…,A n ﹣1为OA 的n 等分点,点B 1,B 2,…,B n ﹣1为CB 的n 等分点,∴OA n ﹣1=n ﹣1,A n ﹣1B n ﹣1=n ,把x =n ﹣1代入y =1,得y =1K1,∴C n ﹣1(n ﹣1,1K1)=n −1K1∴B n ﹣1C n ﹣1=n −1K1=2−K1K1,把y =n 代入y =1,得x =1,∴E (1,n ),∴B n ﹣1E =n ﹣1−1=2−K1,∵K1K1K1=1415,∴2−K12−K1K1=1415,∴K1=1415,解得n =15;故答案为:15【巩固】如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点做x 轴的垂线与反比例函数y =1的图象相交于点P 1,P 2,P 3,P 4,…P n ,再分别过P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组R t △P 1B 1P 2,R t △P 2B 2P 3,R t△P3B3P4,…,R t△P n﹣1B n﹣1P n,则R t△P n﹣1B n﹣1P n的面积为.【解答】解:设OA1=A1A2=A2A3=…=A n﹣2A n﹣1=a,∵x=a时,y=1,∴P1的坐标为(a,1),∵x=2a时,y=12,∴P2的坐标为(2a,12),∴R t△P1B1P2的面积=12×a×(1−12),R t△P2B2P3的面积=12×a×(12−13),R t△P3B3P4的面积=12×a×(13−14),…,∴R t△P n﹣1B n﹣1P n的面积=12×a×[1(K1)−1B]=12×1×(1K1−1)=12oK1).故答案为:12oK1).巩固练习1.方程2x﹣x2=2的正根的个数是()A.0个B.1个C.2个D.3个【解答】解:在同一坐标系中分别画出函数y=2x﹣x2,y=2的图象,如下图所示:由图可知,两个函数的图象只有一个交点,且横坐标为负即方程2x﹣x2=2无正根,故选:A.2.如图,在平面直角坐标系中,函数y=(k>0,x>0)的图象与等边三角形OAB的边OA,AB分别交于点M,N,且OM=2MA,若AB=3,那么点N的横坐标为()A.32B C.4D.6【解答】解:过点N、M分别作NC⊥OB,MD⊥OB,垂足为C、D,∵△AOB是等边三角形,∴AB=OA=OB=3,∠AOB=60°∵又OM=2MA,∴OM=2,MA=1,在R t△MOD中,OD=12OM=1,MD=22−12=3,∴M(1,3);∴反比例函数的关系式为:y=设OC=a,则BC=3﹣a,NC=在R t△BCN中,NC=3BC,=3(a)解得:x=x=,∴点N故选:B.3.如图,R t△ABC位于第一象限,AB=4,AC=2,直角顶点A在直线y=x上,其中点A的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若函数=(≠0)的图象与△ABC有交点,则k的最大值是()A.5B.498C.12124D.4【解答】解:由题意可知A的坐标是(1,1),C的坐标是(1,3),B的坐标是(5,1),设直线BC的解析式是y=kx+b,则+=35+=1,解得:=−12=72,则函数的解析式是:y=−12x+72,根据题意,得:=−12x+72,即x2﹣7x+2k=0,Δ=49﹣8k≥0,解得:k≤498.故k的最大值为498,故选:B.4.如图,点A在反比例函数y1=20(x>0)的图象上,过点A作AB⊥x轴,垂足为B,交反比例函数y2=8(x>0)的图象于点C,P为y轴上一点,连接PA,PC,则△APC的面积为()A.6B.8C.12D.20【解答】解:连接OA和OC,∵点P 在y 轴上,AB ∥y 轴,则△AOC 和△APC 面积相等,∵点A 在反比例函数y 1=20(x >0)的图象上,点C 在反比例函数y 2=8(x >0)的图象上,AB ⊥x 轴,∴S △OAB =12×20=10,S △OBC =12×8=4,∴S △AOC =S △OAB ﹣S △OBC =6,∴△APC 的面积为6,故选:A .5.某品牌的饮水机接通电源后就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温y (℃)与开机后用时x (min )成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示,水温从100℃降到35℃所用的时间是min .【解答】解:∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,设一次函数关系式为:y =k 1x +b ,将(0,30),(7,100)代入y =k 1x +b 得k 1=10,b =30∴y =10x +30(0≤x ≤7),令y =50,解得x =2;设反比例函数关系式为:y =,将(7,100)代入y =得k =700,∴y =700,将y =35代入y =700,解得x =20;∴水温从100℃降到35℃所用的时间是20﹣7=13(分钟).故答案为:13.6.如图,平行于y 轴的直线与函数y 1=(x >0)和y 2=2(x >0)的图象分别交于A 、B 两点,OA 交双曲线y 2=2于点C ,连接CD ,若△OCD 的面积为2,则k =.【解答】解一:设A (m ,),则B (m ,2),D (m ,0),设C (n ,2),∵S △OCD =12OD •y c =12•m •2=2,∴=2,∴=12.又S △OCD =S △OAD ﹣S △ACD =12k −12••(m ﹣n )=12k (1−K )=12k •=14k ,∴14k =2,∴k =8.解二:如图,过点C 作CE ⊥x 轴于E ,∵点C 在双曲线y 2=2上,∴S △OCE =1,∵S △OCD =2,∴S △ECD =S △OCE =1,∴点E 为OD 的中点,∵CE ∥AD ,∴点C 是OA 的中点,∴S △OAD =2S △OCD =4,∵函数y1=(x>0)的图象过点A,AD⊥x轴,∴k=8.故答案为:8.7.如图,点A、B为直线y=x上的两点,过A、B两点分别作y轴的平行线交双曲线y=1(x>0)于C,D两点,若BD=32AC,则9CO2﹣4DO2的值为.【解答】解:点A的坐标为(m,m),点B的坐标为(n,n),则点C的坐标为(m,1),点D的坐标为(n,1),∴BD=n−1,AC=m−1,∵BD=32AC,∴n−1=32(m−1),∴9CO2﹣4DO2=9(m2+12)﹣4(n2+12),=9[(m−1)2+2]﹣4[(n−1)2+2],=9(m−1)2+18﹣9(m−1)2﹣8,=10.故答案为10.8.如图,在平面直角坐标系x O y中,一次函数y=kx+b的图象与x轴,y轴分别交于点A 和点B,与反比例函数y=(m>0)的图象交于点C(2,4),B为线段AC的中点.若点D为线段AC上的一个动点.过点D作DE∥x轴,交反比例函数图象于点E,连接OD,OE,则△ODE面积的最大值为.【解答】解:∵一次函数y=kx+b的图象与x轴,y轴分别交于点A和点B,∴当x=0时,y=b,当y=0时,kx+b=0,解得:x=−,∴A(−,0),B(0,b),∵点C(2,4),B为线段AC的中点−+22=00+42=,解得:=1=2,∴A(﹣2,0),B(0,2),一次函数解析式为y=x+2,∵反比例函数y=(m>0)的图象过点C(2,4),∴将点C(2,4)代入,得:m=8,∴反比例函数y=8,延长ED交y轴于点F,如图所示:设点E纵坐标为a,把y=a代入y=8,得x=8,则E(8,a),F(0,a)把y=a代入y=x+2,得x+2=a,∴D(a﹣2,a),=S△OFE﹣S△OFD=12×OF×EF−12×OF×DF=12×a×8−12×a×(a﹣2)=−12a2+a+4=−∴S△ODE12(a﹣1)2+92,∵−12<0,有最大值,最大值为92,∴当a=1时,S△ODE故答案为:92.9.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.如图,煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系.已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400℃时,须停止操作.那么锻造的操作时间最多有多长?(3)如果加工每个零件需要锻造12分钟,并且当材料温度低于400℃时,需要重新煅烧.通过计算说明加工第一个零件,一共需要多少分钟.【解答】解:(1)材料锻造时,设y=(k≠0),由题意得600=8,解得k=4800,当y=800时,4800=800,解得x=6,∴点B的坐标为(6,800),材料煅烧时,设y=ax+32(a≠0),由题意得800=6a+32,∴材料煅烧时,y与x的函数关系式为y=128x+32(0≤x≤6).∴锻造操作时y与x的函数关系式为y=4800(x>6);(2)把y=400代入y=4800中,得x=12,12﹣6=6(min),答:锻造的操作时间6min;(3)当y=400时,由128x+32=400,∴x=238,从400℃升到800℃需要6−238=258(min),∵加工每个零件需要12min,每次锻造6min,∴加工第一个零件需要锻造、煅烧两次,一共需要12+258+6=1698min.10.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.【解答】解:(1)设完成一间办公室和一间教室的药物喷洒各要xmin和ymin,则3+2=192+=11,解得=3=5,故校医完成一间办公室和一间教室的药物喷洒各要3min和5min;(2)一间教室的药物喷洒时间为5min,则11个房间需要55min,当x=5时,y=2x=10,故点A(5,10),设反比例函数表达式为:y=,将点A的坐标代入上式并解得:k=50,故反比例函数表达式为y=50,当x=55时,y=5055<1,故一班学生能安全进入教室.。

反比例函数中的二级结论

反比例函数中的二级结论

反比例函数中的二级结论
从函数的定义不难看出,反比例函数是将x轴上的值和y轴上的值分别进行求值,当x满足某一条件时,y的取值也同时受到限制,而二级结论就是从反比例函数中提取出来的关于x和y的比例和变化关系。

二、反比例函数中的二级结论
1、一级结论:反比例函数中,当x变化时,y的变化情况是成反比的,也就是说,当x增加时,y的值会减少;当x减少时,y的值会增加。

2、二级结论:除了前述一级结论外,反比例函数中还有一个重要的二级结论,即变化比率。

除了x和y的变化是成反比外,其中还包含一个重要结论,即x的变化量等于y的变化量的比率。

当x增加或减少一定的量时,y也随之减少或增加一定的量,这也就构成了反比例函数中的二级结论。

三、示例说明
下面是一个关于反比例函数中的二级结论的例子:
假设有一个反比例函数,其中x的变化量等于y的变化量的比率为1:2,这意味着当x增加或减少有一定的量时,y也会减少或增加两倍这个量,而当y变化时,x也会随之增加或减少一倍这个量。

四、结论
反比例函数中的二级结论指的是,x与y之间存在一定的比例变化关系,当x变动时,y也会随着变动,具体的变动幅度取决于x和
y之间的比率。

反比例函数的二级结论是一个重要的数学结论,具有重要的科学研究价值,而它的应用也被广泛地利用在各个学科的科学研究和实践活动中。

【素材3】反比例函数牵手生活中的衣食住行

【素材3】反比例函数牵手生活中的衣食住行

反比例函数牵手生活中的衣食住行反比例函数在我们的日常生活中有着广泛的应用.在应用中,如何应用反比例函数知识解题呢?关键是建立反比例函数模型.即列出符合题意的函数关系式,然后再根据反比例函数的性质等知识来解决,并且还要注意结合实际.确定出符合题意的自变量的取值范围,为了能帮助同学们正确地利用反比例函数来解决实际问题,下面先从我们身边的衣食住行说起.一.衣例:(2007辽宁12市课改,10分)某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式;(2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?分析:此题从公式工:作总量=工作时间×工作效率入手,易导出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式为1600w t =;然后话题一转,又把该内容融于了分式的运算之中,使整道题目出现了一个小综合. 解:(1) 1600w t =(2) 160016004t t -- 16001600(4)(4)t t t t --=- 264006400()(4)4t t t t --=.或答:每天多做)4(6400-t t (或t t 464002-)件夏凉小衫才能完成任务. 二.食例:(2007甘肃陇南非课改)你吃过兰州拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度у(cm )是面条粗细(横截面积)x (cm 2)的反比例函数,假设其图像如图所示,(1)求у与x 的函数关系式.(2)求当面条粗 1.6mm 2时,面条的总长度是多少米?分析:此题把生活中的拉面放入考题之中,拉近了生活与数学的关系.依据题意,结合图像,易知面条的总长度у(cm )是面条粗细(横截面积)x (cm 2)的反比例函数,于是可设反比例函数的关系式为y =k x(k ≠0,x >0 ),借助图像上的点,便可得出函数的关系式,然后采用代入求值即求出可面条的总长度. 解:设反比例函数的关系式为y =k x (k ≠0,x >0),由于图像经过点(0.04,3200),则有3200=0.04k ,所以k =128,即y 与s 的函数关系式为y =128x(x >0),(2)当面条粗x =1.6mm 2时,面条的总长度是y =80(mm)=0.8(m).三.住例:超超家利用国家贷款100万元,购买了银河山庄的一套住房,在交了首期付款后,每年需向银行付款y 万元,预计x 年后结清余款,y 与x 的函数关系如下图所示,试根据图像所提供的信息,回答下列问题:(1)确定y 与x 之间的函数表达式,并说明超超家交了多少万元首付款; (2)超超家若计划用10年时间结清余款,那么每年应向银行交付多万元?(3)若打算每年付款不超过2万元,超超家至少要多少年才能结清余款?分析:此题融求反比例函数关系式,求函数值,不等式于一体.把一个小小的知识点装扮的多姿多彩.解: (1)设反比例函数的关系式为y =k x ,由于图像经过点(5,12),则有12=5k ,所以k =60,即y 与x 的函数关系式为y =60x .由函数关系式知超超家有60万贷款要还,所以明超超家交了40万元首付款.(2)当x=10时,6010y=6,所以超超家每年应向银行交付6万元. (3)由题意得60x≤2,解得x ≥2,所以超超家至少要2年才能结清余款. 四.行例:小华的爸爸早晨骑自行车带小华到15千米的镇外去赶集,回来时让小华乘公共汽车,用的时间少了.假设两人经过的路程一样,而且自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系.分析:此题就是生活中的出行乘车问题,它巧妙和所学反比例函数相结合,它既考查了求函数表达式,又考查了反比例函数的性质.解:设小华乘坐交通工具的速度是v 千米/时,从家里到镇上的时间是t 小时.因为在匀速运动中,时间=路程÷速度,所以t =15v,从这个关系式中发现:路程一定时,时间t 就是速度v 的反比例函数.即速度增大了,时间变小;速度减小了,时间增大.自变量v 的取值是v >0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用反比例函数关系式求值
对于某些与反比例函数有关的求值问题,灵活巧用反比例函数关系式,可找到很好的解题途径.
例1已知A (1x ,1y ),B (2x ,2y )两点都在6
y x
=图像上.若12x x =-3,则12y y 的值为______.
分析:用1x 的代数式表示1y 、用2x 的代数式表示2y ,将求12y y 的值转化为求与12x x 有关的代数式的值.
解:由A (1x ,1y ),B (2x ,2y )两点都在6
y x
=图像上, 那么1y =
16x ,2y =2
6
x . 因为12x x =-3, 所以12y y =
12
36
x x =-12. 例2 两个反比例函数3y x =
和6
y x
=在第一象限内的图像如图所示,点1P 、2P 、3P 、…,2010
P 在反比例函数6y x
=的图像上,它们的横坐标分别是1x ,2x ,3x ,…,2010x ,纵坐标分别是1,3,5,…,共2010个连续奇数,过点1P 、2P 、3P 、…,2010P 分别作y 轴的平行线,与3
y x
=
的图像的交点依次是()111,Q x y 、()222,Q x y ,()333,Q x y 、…、()201020102010,Q x y ,则2010y =______.
分析:注意到点()201020102010,Q x y 是反比例函数3
y x
=
上的一点,要求2010y 的
值,应先确定2010x 的值.又2010x 是反比例函数6
y x
=上的点2010P 的横坐标,那么应先确定点2010P 的纵坐标.
解:依题意,点1P 、2P 、3P 、…,2010P 的纵坐标为从1开始的连续2010个奇数.
所以点2010P 的纵坐标为2×2010-1=4019. 因为点2010P (2010x ,4019)在反比例函数6
y x
=的图像上, 所以2010
64019x =
,20106
4019
x =
. 因为点()201020102010,Q x y 在反比例函数3
y x
=的图像上, 所以20102010
34019
2009.52
y x =
=
=. 例3 已知n 是正整数,(),n n n P x y 是反比例函数
k
y x
=图像上的一列点,其中1x =1,2x =2,…,n x =n ,记112=T x y ,223=T x y ,…,9910=T x y ,
且1=1T ,则129T T T ⋅⋅⋅L 的值是_______.
分析:从消元入手,用k 的代数式分别表示1y ,2y ,3y ,…,10y ,这样,1T ,
2T ,3T ,…9T 也可用k 的代数式表示,接下来,只要求k 的值.
解:由(),n n n P x y 是反比例函数
k y x =图像上的一点,得n n
k
y x =. 因为1x =1,2x =2,…,10x =10,
所以1y k =,22k y =
,33k y =,…,1010
k
y =. 所以12k T =,223k T =,334k T =, (9910)
k
T =.
所以9
1292392341010
k k k k k T T T ⋅⋅⋅=⋅⋅⋅⋅
=L L 因为12
k
T =
,1=1T ,
所以
12
k
=,k =2,9512k =. 所以12951.2T T T ⋅⋅⋅=L .。

相关文档
最新文档