KS5U2014北京市高考压轴卷 数学(理科)
2014年北京市高考理科数学试卷及答案解析(word版)
2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上.C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(2D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.18.(本小题13分)已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤; (2)若sin xa b x<<在(0,)2π上恒成立,求a 的最大值与b 的最小值.19.(本小题14分) 已知椭圆22:24C xy +=,(1)求椭圆C 的离心率. (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014北京高考(理科)数学题解析1.集合{}{}2|2002A x x x =-==,.故{}02AB =,,选C .2. A .1y x =+[)1-+∞,上为增函数,符合题意. B .2(1)y x =-在(01),上为减函数,不合题意. C .2x y -=为()-∞+∞,上的减函数,不合题意. D .0.5log (1)y x =+为(1)-+∞,上的减函数,不合题意. 故选A .3. 参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,即选项B .4. 当m 输入的7m =,3n =时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅,则有765210S =⋅⋅=,故选C . 5.D对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列. 故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D . 6.D若0k ≥,z y x =-没有最小值,不合题意. 若0k <,则不等式组所表示的平面区域如图所示.由图可知,z y x =-在点20k ⎛⎫- ⎪⎝⎭,处取最小值.故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,即选项D 正确.7.D (23S S =且13S S ≠)D ABC -在xOy 平面上的投影为ABC △,故12S =,设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D ABC -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △.∵(2012D ,,,(3102D ,,.D 1O D 3D 2DCB A zyx +y -2=0-2kkx -y +2=022O y x故232S S == 综上,选项D 正确. 8.B用ABC 分别表示优秀、及格和不及格。
2014年高考理科数学北京试卷真题(带WORD答案)
数学(理科)(北京卷)参考答案一、 选择题(共8小题,每小题5分,共40分)1.C 2.A 3.B 4.C5.D6.D7.D 8.B二、填空题(共6小题,每小题5分,共30分)9.1-1011.221312x y -=;2y x =±12.8 13.3614.π三、解答题(共6小题,共80分)15.(共13分) 【解析】 (1)sin 7ADC ∠==sin sin()sin cos cos sin 11727214BAD ADC B ADC B ADC B∴∠=∠-∠=∠⋅∠-∠⋅∠=-⨯=(2)在ABD ∆中,sin sin sin AB AD BD ADB B BAD ==∠∠∠==解得:3,7BD AD == 在ACD ∆中,222222cos 172272497AC AD DC AD DC ADC=+-⋅⋅∠=+-⨯⨯⨯=7AC ∴=16.(共13分)解:(1)设李明在该场比赛中投篮命中率超过0.6的概率为事件A , 由题可知,李明在该场比赛中命中率超过0.6的场次有: 主场2、主场3、主场5、客场2、客场4,共计5场 所以李明在该场比赛中投篮命中率超过0.6的概率()51102P A ==. (2)设李明一场投篮命中率超过0.6,一场命中率不超过0.6的概率为事件B ,同理可知,李明主场命中率超过0.6的概率135P =,客场命中率超过0.6的概率225P =故()()()122133221311=+=555525P B P P P P =⨯-+⨯-⨯⨯. (3)()E X x =.17.(共14分) 【解析】 (1) 证明://,,ED AM ED AM PED PED ⊄⊂面面//AM PED ∴面,AM ABF AB ABF ⊂⊂面即面ABF PED FG =面面Ç//AB FG ∴(2) 如图建立空间坐标系A xyz -,各点坐标如下:(0,0,0),E (0,2,0),B (,1),P (0,0,2)A 设ABF 面的法向量为000(,,z )n x y =,(1,0,0)AB =,(0,1,1),AF =n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z =⎧⎨+=⎩,令1y =得:(0,1,1)n =- 又(1,1,0)BC =,1sin ,2BC n ∴<>==直线BC 与平面ABF 所成角为6π 设111(,,z )H x y ,由,PH tPC =则111(,,z 2)t(2,1,2)x y -=-(21,,22)H t t t ∴--又,(21,,22)H ABF BH t t t ∈=--面0n BH ∴⋅=,2220,3t t t ∴+-=∴=,422(,,)333H ∴,424,,333PH ⎛⎫= ⎪⎝⎭|PH|=2∴18.(共13分)解:(1)证明:()()'cos sin cos sin ,f x x x x x x x =+--=-∵π0,2x ⎡⎤∈⎢⎥⎣⎦,∴()'0f x …,即()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,∴()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值为()00f =,所以()0f x …. (2)一方面令()sin x g x x =,π0,2x ⎛⎫∈ ⎪⎝⎭,则()2cos sin 'x x xg x x ⋅-=,由(1)可知,()'0g x <,故()g x 在π0,2⎛⎫ ⎪⎝⎭上单调递减,从而()π22πg x g ⎛⎫>= ⎪⎝⎭,故2πa …,所以m a x 2πa =. 令()sin h x x bx =-,π0,2x ⎛⎫∈ ⎪⎝⎭,则()'cos h x x b =-,当1b …时,()'0h x <,故()h x 在π0,2x ⎛⎫∈ ⎪⎝⎭上单调递减,从而()()00h x h <=, 所以()s i n 0h x x bx =-<恒成立.当1b <时,()'cos 0h x x b =-=在π0,2⎛⎫ ⎪⎝⎭有唯一解0x ,且()00,x x ∈,()'0h x >,故()h x 在()00,x 上单调递增,从而()()00h x h >=, 即sin sin 0sin xx bx x bx b x->⇒>⇒>与sin x b x <恒成立矛盾, 综上,1b …,故min 1b =.19.(共14分)(1)椭圆的标准方程为:22142x y +=,故2,a b =,则c =故离心率e c a ==;(2)由题可得,直线OA 的斜率存在,设为k ,则直线OA 的方程为y k x =,OA OB ⊥,○1当0k =时,()2,0A ±,已知()0,2B ,此时直线AB 方程为20x y +-=或+2=0x y -,原点到直线AB 的距离均为故满足直线AB 与圆222x y +=相切; ○2当0k ≠时,直线OB 方程为1y x k=-, 联立22142y kxx y =⎧⎪⎨+=⎪⎩得,()221+24k x =,故A ⎛⎫或,⎛⎫, 联立12y x k y ⎧=-⎪⎨⎪=⎩得,()2,2B k -,由A 的对称性,那么不妨去点,A ⎛⎫进行计算,于是直线AB 方程为))2222y x k x k k-=+++,((21+220k x y k -++=原点到直线AB 的距离d =,此时与圆222x y +=相切;综上所述,直线AB 与圆222x y +=相切.20.(共13分)解:(1)()1257T P =+=,()(){}{}211max ,241max 7,6178T P T P =++=+=+=;(2)当m a =时,()1T P a b =+,(){}{}2,+max +max ,a c T P d a b a d b c =++=+; ()1'+T P c d =,(){}{}2'max ,max ,T P b c d c a b c a d b c d =+++=++=++;因为a 是a b c d 、、、中最小的数,所以{}max ,a b c b c ++…,从而()()22'T P T P …;当m d =时,()1T P a b =+,(){}{}2,+max +max ,a c T P d a b a d b c =++=+; (){}{}2'max ,max ,T P b c d c a b c a d a b c =+++=++=++;因为d 是a b c d 、、、中最小的数,所以{}max ,d b c b c ++…,从而()()22'T P T P …; 综上,这两种情况下都有()()22'T P T P ….(3)52.分布为:(4,6)(16,11)(11,11)(11,8)(5,2)。
(北京市)2014年高考真题数学(理)试题(WORD高清精校版)
数学(理)(北京卷) 第 1 页(共 11 页)2014年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合2{20}A x x x =-=,{0,1,2}B =,则AB =(A ){0} (B ){0,1} (C ){0,2}(D ){0,1,2}(2)下列函数中,在区间(0,)+∞上为增函数的是(A)y (B )2(1)y x =- (C )2x y -=(D )0.5log (1)y x =+(3)曲线1cos ,2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心(A )在直线2y x =上 (B )在直线2y x =-上 (C )在直线1y x =-上 (D )在直线1y x =+上(4)当7,3m n ==时,执行如图所示的程序框图,输出的S 值为 (A )7 (B )42 (C )210 (D )840(5)设{}n a 是公比为q 的等比数列.则“1q >”是“{}n a数学(理)(北京卷) 第 2 页(共 11 页)为递增数列”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(6)若,x y 满足20,20,0,x y k x y y +-⎧⎪-+⎨⎪⎩≥≥≥ 且z y x =-的最小值为4-,则k 的值为(A )2 (B )2-(C )12(D )12-(7)在空间直角坐标系Oxyz 中,已知(2,0,0)A ,(2,2,0)B ,(0,2,0)C,(1,1,D .若1S ,2S ,3S 分别是三棱锥D ABC –在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则 (A )123S S S == (B )21S S =且23S S ≠ (C )31S S =且32S S ≠(D )32S S =且31S S ≠(8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有 (A )2人 (B )3人 (C )4人(D )5人数学(理)(北京卷) 第 3 页(共 11 页)第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2014年北京高考预测—理科数学试题及答案
为偶函数”
A.充分但不必要条件 B.必要但不充分条件 C.充要条件 D.既不充分也不必要条件
n≤ 3
否
是
4. 执行如图所示的程序框图,若输出 x 的值为 23,则输入 的 x 值为( ) A. 0 B.1 C. 2 D.11
2
输出x 结束
y
1 2
5 .如果存在正整数 和实数 使得函数 f ( x) cos (x ) ( , 为常数)的图象如图所示(图象经过点(1,0) ) ,那么 的 值为 ( ) A. 1 6. 已知椭圆 B. 2
k1 , k 2 ,试证明
1 1 为定值,并求出这个定值; kk1 kk2
(III)在第(Ⅱ)问的条件下,作 F2 Q F2 P ,设 F2 Q 交 l 于点 Q , 证明:当点 P 在椭圆上移动时,点 Q 在某定直线上.
第 8 页 共 16 页
20. (本小题满分 13 分) 已知数列 {cn } 满足(i) cn cn 2 ≤ cn 1 ,(ii)存在常数 M ( M 与 n 无关),使得 cn M 恒成立,则称 数列 {cn } 是和谐数列. (1) 已知各项均为正数的等比数列 {an } , S n 为其前 n 项和;且 a3 4 , S3 28 ,求证:数列
1 AD=1,CD= 3 . 2
P
M D Q
C B
A
第 6 页 共 16 页
18. (本小题满分 13 分) 已知 P x, y 为函数 y 1 ln x 图象上一点, O 为坐标原点,记直线 OP 的斜率 k f x . (Ⅰ)若函数 f x 在区间 a, a
2
A. 0,
B. ( , )
2014年北京高考理科数学试题及参考答案
第1页 2014年普通高等学校招生全国统一考试数 学(理)(北京卷)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1) 已知集合2{|20}A x x x =-=,{0,1,2}B =,若A B =(A) {0} (B) {0,1} (C) {0,2} (D) {0,1,2} (2) 下列函数中,在区间(0,}+∞上为增函数的是(A) y (B) 2=(1)y x - (C) 2x y -= (D) 0.5log (1)y x =+(3) 曲线1cos 2sin x y =-+⎧⎨=+⎩θθ ,(θ为参数)的对称中心(A) 在直线2y x =上 (B) 在直线2y x =-上(C) 在直线1y x =-上 (D) 在直线1y x =+上 (4) 当7m =,3n =时,执行如图所示的程序框图,输出的s 值为 (A) 7 (B) 42 (C) 210 (D) 840(5) 设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递 增数列的(A) 充分且不必要条件 (B) 必要且不充分条件 (C) 充分且必要条件 (D) 既非充分也非必要条件(6) 若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为4-,则k 的值是(A) 2 (B) 2- (C) 12 (D) 12-(7) 在空间坐标系O xyz -中,已知(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,(1,1D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 则坐标平面上的正投影图形的面积,则(A) 1S =2S =3S (B) 1S =2S 且31S S ≠ (C) 1S =3S 且32S S ≠ (D) 2S =3S 且13S S ≠(8) 有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一颗成绩比B 高,则称 “A 同学比B 同学成绩好,”现在若干同学,他们之中没有一个人比另一个人成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的。
2014年高考理科数学北京卷(含详细答案)
.
设平面ABF的法向量为 ,则 ,即 .
令 ,则 .所以 ,设直线BC与平面ABF所成角为 ,
则 .
设点H的坐标为
因为点H在棱PC上,所以可设 ,即 ,
所以 .
因为 是平面ABF的法向量,所以 ,即 .
解得 ,所以点H的坐标为ቤተ መጻሕፍቲ ባይዱ
所以 .
【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解.
圆心 到直线AB的距离 .此时直线AB与圆 相切.
当 时,直线AB的方程为 ,即 ,
圆心 到直线AB的距离 .
又 , ,故 ,
此时直线AB与圆 相切.
【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.
【考点】圆与圆锥曲线的综合,椭圆的简单性质
20.【答案】(1)
A.2人
B.3人
C.4人
D.5人
第Ⅱ卷(非选择题共110分)
二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.
9.复数 .
10.已知向量a,b满足 a ,b ,且 a b 0 ,则 .
11.设双曲线 经过点 ,且与 具有相同渐近线,则 的方程为;渐近线方程为.
12.若等差数列 满足 , ,则当 时, 的前 项和最大.
【提示】由循环语句、条件语句执行程序,直至结束.
【考点】循环结构
5.【答案】D
【解析】当 时,数列 递减;当 ,数列 递增时, ,故选D.
【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.
【考点】充分、必要条件,等比数列的性质
2014北京高考数学真题(理科)及答案
5. 设an 是公比为 q 的等比数列,则“ q 1” 是an 为递增数列的(
)
A.充分且不必要条件
B.必要且不充分条件
C.充分必要条件
D.既不充分也不必要条件
x y 2≥0
6. 若 x, y 满足 kx y 2≥0 且 z y x 的最小值为 4 ,则 k 的值为(
的长.
P
G F
H E
D
A
B
C M
18.(本小题共 13 分)
已知函数 f (x) x cos x sin x, x [0, ] 2
(I)求证: f (x)„ 0 ;
(II)若 a sin x b 在 (0, ) 上恒成立,求与 a 的最大值与 b 的最小值.
x
2
19.(本小题共 14 分) 已知椭圆 C : x2 2 y2 4
2014 北京高考数学真题(理科)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每个小题列出的四个选项中,选出符合题目要求的 一项.
1. 已知集合 A {x x2 2x 0} , B {0,1, 2} ,则 A B (
)
A. {0}
B. {0,1}
C.{0 ,2}
D.{0,1, 2}
(1) 从上述比赛随机选择一场,求李明在该场比赛中的投篮命中率超过 0.6 的概率;
(2) 从上述比赛中随机选择一个主场和客场,求李明的投篮命中率一场超过 0.6 ,一场不超过 0.6 的概率;
(3) 记 x 是表中 10 个命中次数的平均数,从上述比赛中随机选择一场,记 X 为李明在这场比 赛中命中次数,比较 E(X)与 x 的大小(只需要写出结论)
)
2014年北京市高考数学试卷(理科)(含解析版)
绝密★启用前2014年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2} 2.(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣x D.y=log0.5(x+1)3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.8405.(5分)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S 1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1 8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为.12.(5分)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=时,{a n}的前n项和最大.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k﹣1(P),a1+a2+…+a k}表示T k﹣1(P)和a1+a2+…+a k两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a 和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).2014年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】解出集合A,再由交的定义求出两集合的交集.【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣x D.y=log0.5(x+1)【考点】4O:对数函数的单调性与特殊点.【专题】51:函数的性质及应用.【分析】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论.【解答】解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.【点评】本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.3.(5分)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上【考点】QK:圆的参数方程.【专题】17:选作题;5S:坐标系和参数方程.【分析】曲线(θ为参数)表示圆,对称中心为圆心,可得结论.【解答】解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x上,故选:B.【点评】本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42C.210D.840【考点】E7:循环结构.【专题】11:计算题;5K:算法和程序框图.【分析】算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件;87:等比数列的性质.【专题】54:等差数列与等比数列;5L:简易逻辑.【分析】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.【解答】解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但{a n}不是递增数列,充分性不成立.若a n=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{a n}为递增数列”的既不充分也不必要条件,故选:D.【点评】本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)若x,y满足,且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2C.D.﹣【考点】7C:简单线性规划.【专题】31:数形结合;59:不等式的解法及应用.【分析】对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,当y=0,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),若S 1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1【考点】JG:空间直角坐标系.【专题】5H:空间向量及应用.【分析】分别求出三棱锥在各个面上的投影坐标即可得到结论.【解答】解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(0,1,),S3=,则S3=S2且S3≠S1,故选:D.【点评】本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.【解答】解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.【点评】本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)复数()2=﹣1.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案.【解答】解:()2=.故答案为:﹣1.【点评】本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.【解答】解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.【点评】本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为y=±2x.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.【解答】解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m ≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.【点评】本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大.【考点】83:等差数列的性质.【专题】54:等差数列与等比数列.【分析】可得等差数列{a n}的前8项为正数,从第9项开始为负数,进而可得结论.【解答】解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴等差数列{a n}的前8项和最大,故答案为:8.【点评】本题考查等差数列的性质和单调性,属中档题.13.(5分)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36种.【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】分3步进行分析:①用捆绑法分析A、B,②计算其中A、B相邻又满足B、C相邻的情况,即将ABC看成一个元素,与其他产品全排列,③在全部数目中将A、B相邻又满足A、C相邻的情况排除即可得答案.【解答】解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.【点评】本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π.【考点】H1:三角函数的周期性;HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】57:三角函数的图像与性质.【分析】由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.【解答】解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.【点评】本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【考点】HR:余弦定理.【专题】58:解三角形.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.【解答】解:(1)设李明在该场比赛中投篮命中率超过0.6为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=【点评】本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.【考点】MI:直线与平面所成的角.【专题】11:计算题;14:证明题;5F:空间位置关系与距离;5G:空间角.【分析】(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF 的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.【解答】(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为=(x,y,z),则即,令z=1,则y=﹣1,∴=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos<,>|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵是平面ABF 的法向量,∴=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.【点评】本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.【考点】6E:利用导数研究函数的最值.【专题】53:导数的综合应用.【分析】(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx <0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.【解答】解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx <0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x(0,x0)x0(x0,)g′(x)+﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1【点评】本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.19.(14分)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.【考点】K4:椭圆的性质;KJ:圆与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB与圆x2+y2=2相切.【解答】解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.【点评】本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.20.(13分)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k﹣1(P),a1+a2+…+a k}表示T k﹣1(P)和a1+a2+…+a k两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a 和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).【考点】F9:分析法和综合法.【专题】23:新定义;48:分析法.【分析】(Ⅰ)利用T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.【解答】解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)根据数对序列(4,6),(11,11),(16,11),(11,8),(5,2),可得T1(P)=4+6=10;T2(P)=11+15=26;T3(P)=31+11=42;T4(P)=8+42=50;T5(P)=2+50=52;逐一检验可得,此数对序列使T5(P)最小.【点评】本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键,属于难题.。
2014北京高考真题数学理(含解析)
一、选择题共 8 小题,每小题 5 分,共 40 分.在每个小题列出的四个选项中,选出符合题目要求的 一项. 1. 已知集合 A {x x 2 2 x 0} , B {0,1, 2} ,则 A A. {0} C. {0, 2} 2. B. {0,1} D. {0,1, 2} )
AM / /面PED
AM 面ABF ,即AB 面ABF
面ABF
面PED FG
AB / / FG
(II) 如图建立空间坐标系 A xyz , 各点坐标如下:A(0,0,0), E(0, 2,0), B(1,0,0),C(2,1,0), F(0,1,1), P(0,0, 2) 设 面ABF 的 法 向 量 为 n ( x0 , y0 , z0 ) ,
3 3 2 2 13 故 P B P + = . 1 1 P 2 P 2 1 P 1= 5 5 5 5 25
( III ) E X x . 17 . ( 共 14 分 ) 解:
8 / 14
(I)证明:
AM / / ED, AM 面PED, ED 面PED
k<m n+1 是 输出S 结束
否
S=S•k
5.
1 ”是 an 为递增数 设 an 是公比为 q 的等比数列,则“ q>
列的(
) B.必要且不充分条件 D.既不充分也不必要条件
A.充分且不必要条件 C.充分必要条件
6.
x y 2 0 若 x, y 满足 kx y 2 0 且 z y x 的最小值为 4 ,则 k 的值为( y 0
北京市高考数学压轴卷 理(含解析)1
2014北京市高考压轴卷理科数学一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知11xyi i=-+,其中,x y 是实数,i 是虚数单位,则x yi +的共轭复数为( ) A .12i + B .12i - C .2i + D .2i -2.已知函数3()f x x x =--,123,,x x x R ∈,且120x x +>,230x x +>,310x x +>,则123()()()f x f x f x ++的值为()A.正B.负C.零D.可正可负3.已知某几何体的三视图如下,则该几何体体积为( )A .4+52π B .4+32π C .4+2π D .4+π 4.如图所示为函数π()2sin()(0,0)2f x x ωϕωϕ=+>≤≤的部分图像,其中A ,B 两点之间的距离为5,那么(1)f -=( )A .-1B .CD .15.(5分)已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:①若m⊥n,m⊥α,则n∥α;②若m⊥α,n⊥β,m∥n,则α∥β;③若m、n是两条异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.6.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为A. B.C. D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,B D8.已知定义在R上的偶函数f(x)满足f(1+x)=f(1﹣x),且x∈[0,1]时,,则方程在区间[﹣3,3]上的根的个数为()9.已知集合{}{}22,1,3,3,21,1A a aB a a a=+-=--+,若{}3A B=-,则实数a的值为________________.10.已知如图所示的流程图(未完成),设当箭头a指向①时输出的结果S=m,当箭头a指向②时,输出的结果S=n,求m+n的值.11.若n S 是等差数列}{n a 的前n 项和,且8320S S -=,则11S 的值为 . 12.展开式中有理项共有 项.13.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是_______14.设a ∈R ,若x >0时均有[(a ﹣1)x ﹣1](x 2﹣ax ﹣1)≥0,则a= .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15.已知向量)4cos ,4(cos ),1,4sin 3(2x x n x m ==.记x f ⋅=)( (I)求)(x f 的周期;(Ⅱ)在∆ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2a —c)cos B=b cosC , 若12f (A )=,试判断∆ABC 的形状. 16.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)(Ⅰ)据此判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关?(Ⅱ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从两个兴趣小组中随机抽取7名同学进行座谈.已知甲、乙、丙三人都参加“排球小组”. ①求在甲被抽中的条件下,乙丙也都被抽中的概率;②设乙、丙两人中被抽中的人数为X ,求X 的分布列及数学期望E(X).下面临界值表供参考:参考公式:2()()()()K a b c d a c b d =++++命题意图:考查分类变量的独立性检验,条件概率,随机变量的分布列、数学期望等,中等题. 17.已知正四棱柱1111-ABCD A B C D 中,12,4==AB AA . (Ⅰ)求证:1BD AC ⊥;(Ⅱ)求二面角11--A AC D 的余弦值;(Ⅲ)在线段1CC 上是否存在点P ,使得平面11ACD ⊥平面PBD ,若存在,求出1CPPC 的值;若不存在,请说明理由.18.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,点B 为短轴的一个端点,260OF B ∠=︒. (Ⅰ)求椭圆C 的方程;(Ⅱ)如图,过右焦点2F ,且斜率为(0)≠k k 的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线,AE AF 分别交直线3=x 于点,M N ,线段MN 的中点为P ,记直线2PF 的斜率为'k .求证: '⋅k k 为定值.19.已知数列{}n a 的各项均为正数,记12()n A n a a a =+++L ,231()n B n a a a +=+++L ,342(),1,2,n C n a a a n +=+++=L L .(Ⅰ)若121,5a a ==,且对任意n ∈*N ,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈*N ,三个数(),(),()A n B n C n 组成公比为q 的等比数列.20.已知函数2()2ln f x x x ax =-+(a ∈R ).(Ⅰ)当2a =时,求()f x 的图象在1x =处的切线方程;(Ⅱ)若函数()()g x f x ax m =-+在1[e]e ,上有两个零点,求实数m 的取值范围;(Ⅲ)若函数()f x 的图象与x 轴有两个不同的交点12(0)(0)A x B x ,,,,且120x x <<, 求证:12()02x x f +'<(其中()f x '是()f x 的导函数).2014北京市高考压轴卷数学理word 版参考答案 1. 【答案】D 【解析】1()1,2,1,12x x xi yi x y i =-=-∴==+故选D . 2. 【答案】B【解析】∵3()f x x x =--,∴函数()f x 在R 上是减函数且是奇函数,∵120x x +>,∴12x x >-,∴12()()f x f x <-,∴12()()f x f x <-,∴12()()0f x f x +<, 同理:23()()0f x f x +<,31()()0f x f x +<,∴123()()()0f x f x f x ++<.3. 【答案】A【解析】该几何体是一个圆柱与一个长方体的组成,其中重叠了一部分2π,所以该几何体的体积为52213422πππ⨯⨯+-=+.故选A . 4. 【答案】A. 【解析】5. 【答案】C【解析】①若m⊥n,m⊥α,则n 可能在平面α内,故①错误 ②∵m⊥α,m∥n,∴n⊥α,又∵n⊥β,∴α∥β,故②正确 ③过直线m 作平面γ交平面β与直线c , ∵m、n 是两条异面直线,∴设n∩c=O, ∵m∥β,m ⊂γ,γ∩β=c∴m∥c, ∵m ⊂α,c ⊄α,∴c∥α,∵n ⊂β,c ⊂β,n∩c=O,c∥α,n∥α ∴α∥β;故③正确④由面面垂直的性质定理:∵α⊥β,α∩β=m ,n ⊂β,n⊥m,∴n⊥α.故④正确 故正确命题有三个, 故选C6. 【答案】C. 【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选7. 【答案】C.【解析】设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得 b2m2+a2n2=a2b2②,把①代入②得 m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又 m2≤a2,∴≤a2,∴≤0,a2﹣2c2≥0,∴≤.综上,≤≤,故选 C.8. 【答案】A.【解析】由f(1+x)=f(1﹣x)可得函数f(x)的图象关于x=1对称,方程在区间[﹣3,3]根的个数等价于f(x)与y=图象的交点的个数,而函数y=图象可看作y=的图象向下平移1个单位得到,作出它们的图象如图:可得两函数的图象有5个交点,故选A9. 【答案】a=-1.【解析】若a-3=-3,则a=0,此时:}1,1,3{},3,1,0{--=-=B A ,}3,1{-=⋂∴B A ,与题意不符,舍 若2a-1=-3,则a=-1,此时:}2,4,3{},3,1,0{--=-=B A ,}3{-=⋂∴B A ,∴a=-1 若a2+1=-3,则a 不存在 综上可知:a=-1 10. 【答案】20.【解析】当箭头指向①时,计算S 和i 如下. i =1,S =0,S =1; i =2,S =0,S =2; i =3,S =0,S =3; i =4,S =0,S =4; i =5,S =0,S =5; i =6结束. ∴S=m =5.当箭头指向②时,计算S 和i 如下. i =1,S =0, S =1; i =2,S =3; i =3,S =6; i =4,S =10; i =5,S =15; i =6结束. ∴S=n =15. ∴m+n =20. 11. 【答案】44【解析】由83456786520S S a a a a a a -=++++==,解得64a =,又由611111611211()114422a a aS a ⨯+==== 12. 【答案】3. 【解析】展开式通项公式为T r+1==若为有理项时,则为整数,∴r=0、6、12,故展开式中有理项共有3项, 故答案为:3 13.【答案】4.【解析】设过坐标原点的一条直线方程为y kx =,因为与函数xx f 2)(=的图象交于P 、Q 两点,所以0k >,且联列解得,P Q ⎛ ⎝,所以4PQ ==≥14. 【答案】【解析】(1)a=1时,代入题中不等式明显不成立.(2)a≠1,构造函数y 1=(a ﹣1)x ﹣1,y 2=x 2﹣ax ﹣1,它们都过定点P (0,﹣1). 考查函数y 1=(a ﹣1)x ﹣1:令y=0,得M (,0),∴a>1;考查函数y 2=x 2﹣ax ﹣1,显然过点M (,0),代入得:,解之得:a=,或a=0(舍去). 故答案为:15.【解析】211()cos cos cos 4442222x x x x x f x +++1sin 262x π⎛⎫=++⎪⎝⎭(I )π4=T(Ⅱ 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-= 12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒=∵()f A =∴1sin 262263A A πππ⎛⎫+++= ⎪⎝⎭或23π3A π⇒=或 π 而203A π<<,所以3A π=,因此∆ABC 为等边三角形.……………12分16. 【解析】(Ⅰ)由表中数据得K 2的观测值k =42×(16×12-8×6)224×18×20×22=25255≈4.582>3.841. ……2分所以,据此统计有95%的把握认为参加“篮球小组”或“排球小组”与性别有关.……4分 (Ⅱ)①由题可知在“排球小组”的18位同学中,要选取3位同学. 方法一:令事件A 为“甲被抽到”;事件B 为“乙丙被抽到”,则P(A∩B)=33318C C ,P(A)=217318C C .所以P(B|A)=P(A∩B )P(A)=33217C C =217×16 =1136. ……7分 方法二:令事件C 为“在甲被抽到的条件下,乙丙也被抽到”,则P(C)=22217C C =217×16=1136. ②由题知X 的可能值为0,1,2.依题意P(X =0)=316318C C =3551;P(X =1)=21162318C C C =517;P(X =2)=12162318C C C =151. 从而X 的分布列为……10分于是E(X)=0×3551+1×517+2×151=1751=13. ……12分 17. 【解析】证明:(Ⅰ)因为1111ABCD A B C D -为正四棱柱,所以1AA ⊥平面ABCD ,且ABCD 为正方形. ………1分因为BD ⊂平面ABCD ,所以1,BD AA BD AC ⊥⊥. ………2分 因为1AA AC A =,所以BD ⊥平面1A AC . ………3分 因为1AC ⊂平面1A AC , 所以1BD AC ⊥. ………4分(Ⅱ) 如图,以D 为原点建立空间直角坐标系-D xyz .则11(0,0,0),(2,0,0),(2,2,0),(0,2,0),(2,0,4),(2,2,4),D A B C A B 11(0,2,4),(0,0,4)C D ………5分所以111(2,0,0),(0,2,4)D A DC ==-u u u u r u u u r . 设平面11A D C 的法向量111(,,)x y z =n .所以 1110,0D A D C ⎧⋅=⎪⎨⋅=⎪⎩uuuu r uuu r n n .即1110,240x y z =⎧⎨-=⎩……6分 令11z =,则12y =.所以(0,2,1)=n .由(Ⅰ)可知平面1AAC 的法向量为 (2,2,0)DB =u u u r . ……7分所以cos ,5DB <>==uu u r n . ……8分 因为二面角11--A AC D 为钝二面角,所以二面角11--A AC D的余弦值为. ………9分 (Ⅲ)设222(,,)P x y z 为线段1CC 上一点,且1(01)CP PC λλ=≤≤uu r uuu r .因为2221222(,2,),(,2,4)CP x y z PC x y z =-=---uu r uuu r .所以222222(,2,)(,2,4)x y z x y z λ-=---. ………10分 即22240,2,1x y z λλ===+. 所以4(0,2,)1P λλ+. ………11分 设平面PBD 的法向量333(,,)x y z =m . 因为4(0,2,),(2,2,0)1DP DB λλ==+uu u r uu u r ,所以 0,0DP DB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu u r m m .即3333420,1220y z x y λλ⎧+=⎪+⎨⎪+=⎩. ………12分 令31y =,则3311,2x z λλ+=-=-. 所以1(1,1,)2λλ+=--m . ………13分 若平面11ACD ⊥平面PBD ,则0⋅=m n .即1202λλ+-=,解得13λ=. 所以当113CP PC =时,平面11ACD ⊥平面PBD . ………14分 18.【解析】(Ⅰ)由条件2,a b ==…………2分 故所求椭圆方程为13422=+y x . …………4分 (Ⅱ)设过点2(1,0)F 的直线l 方程为:)1(-=x k y . …………5分 由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩可得:01248)34(2222=-+-+k x k x k …………6分 因为点2(1,0)F 在椭圆内,所以直线l 和椭圆都相交,即0>∆恒成立.设点1122(,),(,)E x y F x y ,则34124,34822212221+-=+=+k k x x k k x x . …………8分 因为直线AE 的方程为:)2(211--=x x y y , 直线AF 的方程为:)2(222--=x x y y , ………9分 令3x =,可得)2,3(11-x y M ,)2,3(22-x y N , 所以点P 的坐标12121(3,())222y y x x +--. ………10分 直线2PF 的斜率为12121()0222'31y y x x k +---=- 12121()422y y x x =+-- 122112121212()42()4x y x y y y x x x x +-+=⋅-++1212121223()4142()4kx x k x x k x x x x -++=⋅-++ …………12分 2222222241282341434341284244343k k k k k k k k k k k -⋅-⋅+++=⋅--⋅+++ 34k=- 所以k k '⋅为定值43-. …………13分 19. 【解析】 (Ⅰ) 因为对任意n *∈N ,三个数(),(),()A n B n C n 是等差数列, 所以()()()()B n A n C n B n -=-. ………1分所以1122n n a a a a ++-=-, ………2分 即21214n n a a a a ++-=-=. ………3分 所以数列{}n a 是首项为1,公差为4的等差数列. ………4分 所以1(1)443n a n n =+-⨯=-. ………5分(Ⅱ)(1)充分性:若对于任意n *∈N ,三个数(),(),()A n B n C n 组成公比为q 的等比数列,则()(),()()B n qA n C n qB n ==. ………6分 所以[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即2121n n a qa a qa ++-=-. ………7分因为当1n =时,由(1)(1),B qA =可得21a qa =, ………8分 所以210n n a qa ++-=.因为0n a >, 所以2211n n a a q a a ++==. 即数列{}n a 是首项为1a ,公比为q 的等比数列, ………9分(2)必要性:若数列{}n a 是公比为q 的等比数列,则对任意n *∈N ,有1n n a a q +=. ………10分 因为0n a >,所以(),(),()A n B n C n 均大于0.于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ ………11分 231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ ………12分 即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. ………13分综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列. ………14分20. 【解析】(Ⅰ)当2a =时,2()2ln 2f x x x x =-+,2()22f x x x'=-+,切点坐标为(11),, 切线的斜率(1)2k f '==,则切线方程为12(1)y x -=-,即21y x =-. 2分 (Ⅱ)2()2ln g x x x m =-+,则22(1)(1)()2x x g x x x x-+-'=-=, ∵1[e]e x ∈,,故()0g x '=时,1x =.当11ex <<时,()0g x '>;当1e x <<时,()0g x '<. 故()g x 在1x =处取得极大值(1)1g m =-. 4分 又211()2e e g m =--,2(e)2e g m =+-,2211(e)()4e 0e eg g -=-+<,则1(e)()e g g <, ∴()g x 在1[e]e,上的最小值是(e)g . 6分 ()g x 在1[e]e ,上有两个零点的条件是2(1)10,11()20,e eg m g m =->⎧⎪⎨=--≤⎪⎩解得2112e m <≤+, ∴实数m 的取值范围是21(12]e +,. 8分 (Ⅲ)∵()f x 的图象与x 轴交于两个不同的点12(0)(0)A x B x ,,,,∴方程22l n 0x x a x -+=的两个根为12x x ,,则211122222l n 0,2l n 0,x x a x x x a x ⎧-+=⎪⎨-+=⎪⎩两式相减得1212122(ln ln )()x x a x x x x -=+--.又2()2ln f x x x ax =-+,2()2f x x a x '=-+,则1212124()()2x x f x x a x x +'=-+++1212122(ln ln )4x x x x x x -=-+-. 下证1212122(ln ln )40x x x x x x --<+-(*),即证明2111222()ln 0x x x x x x -+<+,12x t x =, ∵120x x <<,∴01t <<,即证明2(1)()ln 01t u t t t -=+<+在01t <<上恒成立. 10分 ∵22222(1)2(1)114(1)()(1)(1)(1)t t t u t t t t t t t -+---'=+=-=+++,又01t <<,∴()0u t '>, ∴()u t 在(0,1)上是增函数,则()(1)0u t u <=,从而知2111222()ln 0x x x x x x -+<+, 故(*)式<0,即12()02x x f +'<成立………….12分。
2014年高考理科数学北京卷(含答案解析)
绝密★启用前2014年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B = ( )A .{0}B .{0,1}C .{0,2}D .{0,1,2}2.下列函数中,在区间(0,)+∞上为增函数的是( )A.y B .2(1)y x =- C .2x y -=D .0.5log (1)y x =+3.曲线1cos ,2sin ,x y θθ=-+⎧⎨=+⎩(..为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上4.当7m =,3n =时,执行如图所示的程序框图,输出的S 值为( )A .7B .42C .210D .840 5.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.若x ,y 满足20,20,0,x y kx y y +-⎧⎪-+⎨⎪⎩≥≥≥且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12D .12-7.在空间直角坐标系O xyz -中,已知()2,0,0A ,()2,2,0B ,(0),2,0C,(D .若1S ,2S ,3S 分别是三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ) A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠8.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2 人B .3 人C .4 人D .5 人第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.9.复数21i ()1i+=- . 10.已知向量a ,b 满足|a |1=,b (2,1)=,且λa +b =0()λ∈R ,则||λ= .11.设双曲线C 经过点(2,2),且与2214y x =-具有相同渐近线,则C 的方程为 ;渐近线方程为 .12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n = 时,{}n a 的前n 项和最大.13.把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.14.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0A >,0)ω>.若()f x 在区间ππ,62⎡⎤⎢⎥⎣⎦上具有单调性,且π2ππ()()()236f f f ==-,则()f x 的最小正周期为 . 三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,在ABC △中,π3B ∠=,8AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(Ⅰ)求sin BAD ∠; (Ⅱ)求BD ,AC 的长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________16.(本小题满分13分)(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(Ⅲ)记x为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数.比较EX与x的大小.(只需写出结论)17.(本小题满分14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P ABCDE-中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(Ⅰ)求证:AB FG;(Ⅱ)若PA⊥底面ABCDE,且PA AE=,求直线BC与平面ABF所成角的大小,并求线段PH的长. 18.(本小题满分13分)已知函数()cos sinf x x x x=-,π0,2x⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求证:()0f x≤;(Ⅱ)若sin xa bx<<对π(0,)2x∈恒成立,求a的最大值与b的最小值.19.(本小题满分13分)已知椭圆C:2224x y+=.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点.若点A在椭圆C上,点B在直线2y=上,且OA OB⊥,试判断直线AB与圆222x y+=的位置关系,并证明你的结论.20.(本小题满分13分)对于数对序列P:11(,)a b,22(,)a b,⋅⋅⋅,(),n na b,记111()T P a b=+,()k kT P b=+ 112max{(),}k kT P a a a-+⋅⋅⋅++(2)k n≤≤,其中112(ma}x{),k kT P a a a-++⋅⋅⋅+表示1()kT P-和12ka a a++⋅⋅⋅+两个数中最大的数.(Ⅰ)对于数对序列P:(2,5),(4,1),求1()T P,2()T P的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(,)a b,(,)c d组成的数对序列P:(,)a b,(,)c d和P':(,)c d,(,)a b,试分别对m a=和m d=两种情况比较2()T P和2()T P'的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使5()T P最小,并写出5()T P的值.(只需写出结论)2014年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】{}0,2A =,{0,2}{0,1,2}{0,2}AB ∴==,故选C.【提示】用描述法、列举法写出集合,求其交集. 【考点】交集及其运算 2.【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,)+∞上为减函数,所以排除B ,C ,D ,故选A.【提示】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【考点】对数函数的单调性与特殊点 3.【答案】B【解析】曲线方程消去参数化为22(1)(2)=1x y ++-,其对称中心点为(1,2)-,验证知其在直线2y x =-上,故选B.【提示】曲线方程消去参数化为普通方程,求经过对称中心的一条直线. 【考点】曲线的参数方程 4.【答案】C【解析】=1765=210S ⨯⨯⨯,故选C.【提示】由循环语句、条件语句执行程序,直至结束. 【考点】循环结构 5.【答案】D【解析】当101a q <>,时,数列{}n a 递减;当10a <,数列{}n a 递增时,01q <<,故选D.【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【考点】充分、必要条件,等比数列的性质 6.【答案】D【解析】可行域如图所示,当0k >时,知z y x =-无最小值,当0k <时,目标函数线过可行域内A 点时z 有最小值.联立020y kx y =⎧⎨-+=⎩解得2,0A k ⎛⎫⎪⎝⎭,故min 2=0+=4z k 即1=2k -,故选D.【提示】给出约束条件和目标函数在此区域的最小值,求未知参数. 【考点】简单线性规划 7.【答案】D【解析】设顶点D 在三个坐标平面xOy 、yOz 、zOx 上的正投影分别为1D 、2D 、3D ,则11AD BD ==2AB =, ∴11S 22=22=⨯⨯,22122OCD S S ==⨯=△,33122OAD S S ==⨯△,故选D.【提示】分别求出三棱锥在各个面上的投影坐标即可得到结论. 【考点】空间直角坐标系 8.【答案】B【解析】假设A 、B 两位学生的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的学生比另一个学生“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两位学生数学成绩是相同的.因为数学成绩只有3种,因而学生数量最大为3,即3位学生的成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件,故选B. 【提示】分别用ABC 分别表示优秀、及格和不及格,根据题干中的内容推出成绩得A ,B ,C 的学生各最多只有1个,继而推得学生的人数. 【考点】排列组合数的应用第Ⅱ卷二、填空题 9.【答案】1-【解析】22221i (1i)2i 11i (1i)(1i)2⎡⎤+-⎛⎫⎛⎫==-⎢⎥ ⎪ ⎪--+⎝⎭⎝⎭=⎣⎦. 【提示】复数的乘、除运算,直接计算出结果. 【考点】复数代数形式的四则运算 10.【解析】0a b λ+=,a b λ∴=-,||5||||b a λ∴===. 【提示】已知向量和向量的模,及两向量之间的关系,求||λ的值. 【考点】向量的线性运算11.【答案】22=1312x y -2y x ±=【解析】设双曲线C 的方程为224y x λ-=,将(2,2)代入得2222=3=4λ--, ∴双曲线C 的方程为22=1312x y -.令22=04y x -得渐近线方程为2y x =±.【提示】利用双曲线简单的几何性质,求经过一点,与已知曲线有相同渐近线的双曲线. 【考点】双曲线的简单几何性质 12.【答案】8 【解析】7898=30a a a a ++>,710890a a a a +=+<,8900a a ∴><,,∴8n =时,数列{}n a 的前n 项和最大.【提示】可得等差数列{}n a 的前8项为正数,从第9项开始为负数,进而可得结论. 【考点】等差数列性质 13.【答案】36【解析】32132362336A A A =⨯⨯=.【提示】根据题目的要求,利用分步乘法计数原理与排列与组合,求出其中的不同摆法. 【考点】乘法原理,排列数的应用 14.【答案】π【解析】结合图像得π2πππ2326+=422T +-,即πT =.【提示】结合二次函数的图象与单调性,求最小正周期T. 【考点】二次函数的图象与周期性 三、解答题 15.【答案】(1)14(2)37BD AC ==,【解析】(1)在ADC △中,因为1cos 7ADC ∠=,所以sin ADC ∠=. 所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠1127=-=(2)在ABD △中,由正弦定理得sin 3sin AB BAD BD ADB ∠===∠,在ABC △中,由余弦定理得2222cos AC AB BC AB BC B =+-22185285492=+-⨯⨯⨯=,所以7AC =.【提示】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【考点】三角函数的基本关系式,正弦定理,余弦定理 16.【答案】(1)0.5 (2)1325(3)EX x =【解析】(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C ABAB =,A B ,独立根据投篮统计数据,32()()55P A P B ==,.()()()P C P AB P AB =+33225555=⨯+⨯1325=所以在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325. (3)EX x =.【提示】由互斥事件与独立事件的概率,设出基本事件,并求出概率. 【考点】离散型随机变量的期望与方差,相互独立事件的概率乘法公式 17.【答案】(1)在正方形中,因为B 是AM 的中点,所以AB DE ∥.又因为AB ⊄平面PDE ,所以AB PDE ∥平面,因为AB ⊂平面ABF ,且平面ABF平面PDE FG =,所以AB FG ∥.(2)因为PA ⊥底面ABCDE ,所以PA AB ⊥,PA AE ⊥.如图建立空间直角坐标系Axyz ,则(0,0,0)A ,(1,0,0)B ,(2,1,0)C ,(0,0,2)P ,(0,1,1)F ,(1,1,0)BC =.设平面ABF 的法向量为(,,)n x y z =,则0n AB n AF ⎧=⎪⎨=⎪⎩,即00x y z =⎧⎨+=⎩. 令1,z =,则1y =-.所以(0,1,1)n =-,设直线BC 与平面ABF 所成角为α, 则1sin |cos ,|2|||n BC n BC n BC α===|.设点H 的坐标为(,,).u v w因为点H 在棱PC 上,所以可设(01)PH PC λλ=<<,即(,,2)(2,1,2)u v w λ-=-, 所以2,,22u v w λλλ===-.因为n 是平面ABF 的法向量,所以0n AH =,即(0,1,1)(2,,22)0λλλ--=.解得23λ=,所以点H 的坐标为422,,333⎛⎫⎪⎝⎭所以2PH =.【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解. 【考点】直线与平面所成的角18.【答案】(1)由()cos sin f x x x x =-得()cos sin cos sin f x x x x x x x '=--=-.因为在区间π0,2⎛⎫ ⎪⎝⎭上()sin 0f x x x '=-<,所以()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减,从而()(0)0f x f ≤=.(2)当0x >时,“sin xa x>”等价于“sin 0x ax ->”,“sin x b x <”等价于“sin 0x bx -<”. 令()g x sin x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意π0,2x ⎛⎫∈ ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.从而()(0)0g x g <=对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π0,2x ⎛⎫∈ ⎪⎝⎭,使得00()cos 0g x x c '=-=.()g x 与()g x '在区间π0,⎛⎫⎪上的情况如下:因为()g x 在区间[]00,x 上是增函数,所以0()(0)0g x g >=.进一步,“()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立”当且仅当ππ1022g ⎛⎫=-≥ ⎪⎝⎭,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立;当且仅当1c≥时,()<0g x 对任意π0,2x ⎛⎫∈⎪⎝⎭恒成立.所以,若sin x a b x <<对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1 【提示】直接利用导数的几何意义,证明函数.第(2)问是求解未知参量的最值,函数求导,由函数值变化判断单调区间,进而求解最值. 【考点】导数的几何意义,利用导数判断参数的范围19.【答案】(1)由题意,椭圆C 的标准方程为22142x y +=.所以224,2a b ==,从而2222c a b =-=.因此2,a c ==故椭圆C 的离心率2c e a ==(2)直线AB 与圆222x y +=相切.证明如下:设点A ,B 的坐标分别为00(,)x y ,(,2)t ,其中00x ≠. 因为OA OB ⊥,所以0OA OB =,即0020tx y +=,解得02y t x =-. 当0x t =时,202t y =,代入椭圆C 的方程,得t =AB 的方程为x =.圆心O 到直线AB 的距离d .此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为0022()y y x t x t--=--,即0000(2)()20y x x ty x t y ---+-=,圆心O 到直线AB的距离d =.又220024x y +=,02y t x =-,故d ===此时直线AB 与圆222x y +=相切.【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.【考点】圆与圆锥曲线的综合,椭圆的简单性质 20.【答案】(1)12()7()8T P T P ==, (2)22()()T P T P '≤(3)1()10T P =,2()26T P =,3()42T P =,4()50T P =,5()52T P =【解析】(1)1()257T P =+=,21()1max{(),24}T P T P =++1max{7,6}=+=8. (2)2()T P {}max ,a b d a c d =++++,2()T P '={}max ,c d b c a b ++++. 当m =a 时,2()T P '={}max ,c d b c a b ++++=c d b ++,因为c d b c b d ++≤++,且a c d c b d ++≤++,所以2()T P ≤2()T P '. 当m =d 时,2()T P '{}max ,c d b c a b =++++c a b =++,因为a b d ++≤c a b ++,且a c d c a b ++≤++所以2()T P ≤2()T P '. 所以无论m a =还是m d =,22()()T P T P '≤都成立.(3)数对序列P :(4,6),(11,11),(16,11),(11,8),(5,2)的5()T P 值最小, 1()10T P =,2()26T P =,3()42T P =,4()50T P =,5()52T P =【提示】给出数学概念的新定义,根据新定义,求值比较大小. 【考点】分析法和综合法。
2014年普通高等学校招生全国统一考试(北京卷)数学试题(理科)解析版
2014年普通高等学校招生全国统一考试(北京卷)数学(理科)一.选择题:本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B = ( )A.{0} B .{0,1} C .{0,2} D .{0,1,2} 【答案】C【解析】∵{}2,0=A ,∴{}{}{}2,02,1,02,0== B A .2. 下列函数中,在区间(0,)+∞为增函数的是( )A .y =.2(1)y x =- C .2x y -= D .0.5log (1)y x =+【答案】A【解析】由初等函数的性质得选项B 在()1,0上递减,选项C 、D 在()+∞,0为减函数,所以排除B 、C 、D.3.曲线1cos 2sin x y θθ=-+⎧⎨==⎩,(θ为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上【答案】B 【解析】试题分析:参数方程⎩⎨⎧+=+-=θθsin 2cos 1y x 所表示的曲线为圆心在)2,1(-,半径为1的圆,其对称中心为)2,1(-,逐个代入选项可知,点)2,1(-满足x y 2-=,故选B. 4. 当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( )A .7B .42C .210D .8405.设{}n a 是公比为q 的等比数列,则“1>q ”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】D 【解析】试题分析:对等比数列}{n a ,若1>q ,则当0,1a 时数列}{n a 是递减数列;若数列}{n a 是递增数列,则}{n a 满足01<a 且10<<q ,故当“1>q ”是”数列}{n a 为递增数列的既不充分也不必要条件.故选C.6. 若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12 D .12- 【答案】D【解析】可行域如图所示,当0>k 时,知x y z -=无最小值,当0<k 时,目标函数线过可行域内A 点时z 有最小值,联立⎩⎨⎧=+-=020y kx y ,解之得⎪⎭⎫⎝⎛-0,2k A ,420min -=+=k z ,即21-=k .7.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( ) A .123S S S == B .21S S =且23S S ≠ C .31S S =且32S S ≠ D .32S S =且31S S ≠ 【答案】D【解析】设顶点D 在三个坐标面xoy 、yoz 、zox 的正投影分为'1D 、'2D 、'3D ,则211='='BD AD ,2=AB ,∴2222211=⨯⨯⨯=S ,2222122=⨯⨯=='OCD S S ,2222133=⨯⨯=='OAD S S .2=-+y x 02=+-y kx A=-x y8.学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2人B .3人C .4人D .5人 【答案】B【解析1】试题分析:用A 、B 、C 分别表示优秀、及格和不及格,依题意,事件A 、B 、C 中都最多只有一个元素,所以只有AC ,BB ,CA 满足条件,故选B.【解析2】假设AB 两个同学的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两个同学数学成绩是相同的.因为数学成绩只有3种,因而同学数量最大为3.即 3位同学成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件.二.填空题:本大题共6小题,每小题5分,共30分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.二、填空题9. 复数211i i +⎛⎫= ⎪-⎝⎭________.【答案】1-【解析】()()()122111112222-=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛-+i i i i i i . 10.已知向量a 、b 满足1a =,()2,1b = ,且()0a b R λλ+=∈ ,则λ=________.【答案】5【解析】∵0=+b a λ,∴b a -=λ,∴515||||===a b λ. 11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.【答案】112322=-y x ;x y 2±=【解析】设双曲线C 的方程为λ=-224x y ,将()2,2代入λ=-=-324222,∴双曲线方程为112322=-y x .令0422=-x y 得渐近线方程为x y 2±=.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大. 【答案】8【解析】∵038987>=++a a a a ,098107<+=+a a a a ,∴0,098<>a a ,∴8=n 时数列{}n a 前n 和最大.13. 把5件不同产品摆成一排,若产品A 与产品B 相邻,产品A 与产品C 不相邻,则不同的摆法有_____种. 【答案】36【解析】36326132233=⨯⨯=A A A.14.设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 【答案】π【解析】结合图象得26223224ππππ+-+≥T ,即π≥T .三、解答题共6小题,共80分。
2014年北京高考数学理科试题及答案
绝密★启封并使用完毕前2014年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时长120分钟,考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并收回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1) 已知集合2{|20}A x x x =-=,{0,1,2}B =,若AB =(A ) {0} (B) {0,1} (C ) {0,2} (D) {0,1,2}(2) 下列函数中,在区间(0,}+∞上为增函数的是(A) y = (B) 2=(1)y x - (C) 2x y -= (D) 0.5log (1)y x =+(3) 曲线1cos 2sin x y =-+⎧⎨=+⎩θθ ,(θ为参数)的对称中心(A) 在直线2y x =上 (B ) 在直线2y x =-上 (C ) 在直线1y x =-上 (D) 在直线1y x =+上(4) 当7m =,3n =时,执行如图所示的程序框图,输出的s 值为 (A) 7 (B) 42 (C ) 210 (D ) 840(5) 设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a ”为递增数列的 (A) 充分且不必要条件 (B) 必要且不充分条件 (C ) 充分且必要条件 (D ) 既非充分也非必要条件(6) 若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为4-,则k 的值是(A) 2 (B ) 2- (C )12 (D ) 12- S k(7) 在空间坐标系O xyz -中,已知(2,0,0)A ,(2,2,0)B ,(0,2,0)C ,D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 则坐标平面上的正投影图形的面积,则(A ) 1S =2S =3S (B) 1S =2S 且31S S ≠ (C) 1S =3S 且32S S ≠ (D) 2S =3S 且13S S ≠(8) 有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一颗成绩比B 高,则称 “A 同学比B 同学成绩好,”现在若干同学,他们之中没有一个人比另一个人成绩好,且没有任意两个人语文成绩一样,数学成绩也一样的。
2014年北京高考理科数学试题含答案(Word版)
2014 年北京高考数学(理科)试题一 .选择题(共 8小题,每题 5 分,共 40分 .在每题列出的四个选项中,选出切合题目要求的一项)1.已知会合A{ x | x22x0}, B{0,1, 2} ,则A B ()A.{0}B.{ 0, 1}C.{ 0, 2}D.{ 0,1, 2}2.以下函数中,在区间(0,) 上为增函数的是()A.y x1B. y( x12)C.y 2 x D . y l o 0g. 5x( 1 )3.曲线x1cos(为参数)的对称中心()y2sinA. 在直线y2x 上B.在直线y2x 上C. 在直线y x1上D.在直线y x 1上4.当m7, n 3 时,履行以下图的程序框图,输出的S 值为()A.7B.42C.210D.8405.设{ a n}是公比为q的等比数列,则" q1" 是 "{ a n }" 为递加数列的()A. 充足且不用要条件B. 必需且不充足条件C. 充足必需条件D. 既不充足也不用要条件x y206.若x, y知足kx y20 且z y x 的最小值为-4,则 k 的值为()y0A.2B.21D .1 C .2 27.在空间直角坐标系Oxyz 中,已知 A 2,0,0 , B 2,2,0 , C 0,2,0,D 1,1, 2,若S1, S2, S3分别表示三棱锥D ABC 在xOy,yOz, zOx坐标平面上的正投影图形的面积,则()(A)S1S2S3(B)S1S2且 S3S1(C)S1S3且 S3S2(D)S2S3且 S1S38.有语文、数学两,成绩评定为“优异”“合格”“不合格”三种 .若A同学每科成绩不低于 B 同学,且起码有一科成绩比B高,则称“ A 同学比 B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有随意两个人语文成绩同样,数学成绩也同样的 .问知足条件的最多有多少学生()(A)2(B)3(C)4(D)5二、填空题(共 6 小题,每题 5 分,共30 分)12i________.9.复数i110.已知向量a、b知足a 1 ,b2,1,且 a b 0R ,则________.11.设双曲线C经过点2,2,且与 y2x21拥有同样渐近线,则 C 的方程为________;4渐近线方程为 ________.12.若等差数列a n知足a7a8 a90 , a7a10 0 ,则当 n________时a n的前n项和最大 .13.把 5 件不一样产品摆成一排,若产品 A 与产品 C 不相邻,则不一样的摆法有_______种.14.设函数 f ( x) sin( x) , A0,0 ,若 f (x) 在区间 [6,] 上拥有单一性,且2f f 2,则 f (x) 的最小正周期为________.f236试题剖析:平等比数列{ a n} ,若 q 1 ,则当 a1 ,0 时数列 { a n} 是递减数列;若数列{ a n } 是递加数列,则二.填空题:本大题共 6 小题,每题 5 分,共 30 分. 请将答案天灾答题卡对应题的位置上,答错地点,书写不清,含糊其词均不得分.9.【答案】 1【分析】试题剖析:1i(1 i )22i i ,因此 (1i )2i 21. 1i(1 i )(1 i )21i10.【答案】 5【分析】三.解答题(共 6 题,满分80 分)15. (本小题 13 分)如图,在ABC 中,B, AB 8,点D在BC边上,且 CD1 2,cos ADC37( 1)求sin BAD(2)求BD, AC的长16.(本小题 13 分) .李明在 10 场篮球竞赛中的投篮状况以下(假定各场竞赛相互独立):(1)从上述竞赛中随机选择一场,求李明在该场竞赛中投篮命中率超出0.6 的概率.(2)从上述竞赛中选择一个主场和一个客场,求李明的投篮命中率一场超出0.6 ,一场不超出0.6 的概率.(3)记x 是表中10 个命中次数的均匀数,从上述竞赛中随机选择一场,记X为李明在这竞赛中的命中次数,比较E(X)与x 的大小(只要写出结论)17.(本小题14 分)如图,正方形AMDE的边长为2,B,C分别为AM ,MD的中点,在五棱锥P ABCDE 中,F为棱PE 的中点,平面ABF与棱PD , PC 分别交于点G, H.( 1)求证:AB // FG;( 2)若PA底面ABCDE,且AF PE ,求直线BC 与平面ABF所成角的大小,并求线段PH的长 .18.(本小题13 分)f (x)xcosxsin,[0, ],已知函数x x2( 1)求证:f ( x)0 ;( 2)若a sin x b在 (0,) 上恒建立,求a的最大值与 b 的最小值.x219.(本小题14 分)已知椭圆 C : x2 2 y2( 1)求椭圆C的离心率( 2)设O为原点,若点.4 ,A 在椭圆C上,点B 在直线y 2 上,且OA OB ,求直线AB与圆x2y2 2 的地点关系,并证明你的结论.20.(本小题13 分)关于数对序列P(a1,b1),( a2,b2 ),,( a n, b n ) ,记T1(P)a1b1,T k ( P)b k max{T k 1(P), a1a2a k }(2k n) ,此中max{T k 1( P), a1a2a k }表示 T k 1(P)和 a1a2a k两个数中最大的数,( 1)关于数对序列P(2,5), P(4,1) ,求 T1 (P),T2 (P) 的值.( 2)记m为a,b,c, d四个数中最小值,对于由两个数对(a, b),( c, d )组成的数对序列P(a,b),( c,d ) 和 P '(a,b),( c, d) ,试分别对m a 和m d 的两种状况比较T2 ( P) 和 T2 (P ') 的大小 .( 3)在由 5 个数对(11,8),(5,2),(16,11),(11,11),(4,6)构成的全部数对序列中,写出一个数对序列P 使 T5( P) 最小,并写出 T5 (P) 的值.(只要写出结论).。
2014年高考北京卷数学理含答案
2014北京高考理科数学试题第一部分 (选择题 共40分)一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( ) A.第一象限 B. 第二象限 C.第三象限 D. 第四象限3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的” A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为 A.1 B.23 C.1321D.6109875.函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --6.若双曲线22221x y a b-=的离心率为3,则其渐近线方程为A.y =±2xB.y =2x ±C.12y x =±D.22y x =±7.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于A.43 B.2 C.83 D.16238.设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,求得m 的取值范围是A.4,3⎛⎫-∞-⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C.2,3⎛⎫-∞- ⎪⎝⎭ D.5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分. 9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = .11.如图,AB 为圆O 的直径,P A 为圆O 的切线,PB 与圆O 相交于D ,PA=3,916PD DB =,则PD= ,AB= .12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ) ,则λμ=14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .三、解答题共6小题,共80分。
2014年高考理科数学北京卷-答案
2014年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】{}0,2A =,{0,2}{0,1,2}{0,2}A B ∴==,故选C. 【提示】用描述法、列举法写出集合,求其交集. 【考点】交集及其运算 2.【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,)+∞上为减函数,所以排除B ,C ,D ,故选A.【提示】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【考点】对数函数的单调性与特殊点 3.【答案】B【解析】曲线方程消去参数化为22(1)(2)=1x y ++-,其对称中心点为(1,2)-,验证知其在直线2y x =-上,故选B.【提示】曲线方程消去参数化为普通方程,求经过对称中心的一条直线. 【考点】曲线的参数方程 4.【答案】C【解析】=1765=210S ⨯⨯⨯,故选C.【提示】由循环语句、条件语句执行程序,直至结束. 【考点】循环结构 5.【答案】D【解析】当101a q <>,时,数列{}n a 递减;当10a <,数列{}n a 递增时,01q <<,故选D. 【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【考点】充分、必要条件,等比数列的性质 6.【答案】D【解析】可行域如图所示,当0k >时,知z y x =-无最小值,当0k <时,目标函数线过可行域内A 点时z【解析】0a b λ+=,a b λ∴=-,||5||1||b a λ∴===【提示】已知向量和向量的模,及两向量之间的关系,求【考点】向量的线性运算【解析】78a a ++【提示】可得等差数列422sin sin AB BAD ADB ∠∠cos AB BC BABAB ,A ,2()5P B =,)(AB P AB +ABF 平面PDE 如图建立空间直角坐标系(0,1,1),(1,1,0)BC =的法向量为(,,)n x y z =00n AB n AF ⎧=⎪⎨=⎪⎩,即所以(0,1,1)n =-,设直线BC 与平面1,|2|||n BC n BC n BC ==|.上,所以可设(0PH PC λλ=<所以2,u v λλ==因为n 是平面ABF 的法向量,所以0n AH =,即,1)(2,,2λλ-33⎭,所以0OA OB=,即,代入椭圆C(2)2()T P {}max ,a b d a c d =++++,2()T P '={}max ,c d b c a b ++++. 当m =a 时,2()T P '={}max ,c d b c a b ++++=c d b ++,因为c d b c b d ++≤++,且a c d c b d ++≤++,所以2()T P ≤2()T P '. 当m =d 时,2()T P '{}max ,c d b c a b =++++c a b =++, 因为a b d ++≤c a b ++,且a c d c a b ++≤++所以2()T P ≤2()T P '. 所以无论m a =还是m d =,22()()T P T P '≤都成立.(3)数对序列P :(4,6),(11,11),(16,11),(11,8),(5,2)的5()T P 值最小, 1()10T P =,2()26T P =,3()42T P =,4()50T P =,5()52T P =【提示】给出数学概念的新定义,根据新定义,求值比较大小. 【考点】分析法和综合法。
2014年高考理科数学北京卷及答案
绝密★启用前2014年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B = ( )A .{0}B .{0,1}C .{0,2}D .{0,1,2}2.下列函数中,在区间(0,)+∞上为增函数的是( )A.y = B .2(1)y x =- C .2x y -=D .0.5log (1)y x =+3.曲线1cos ,2sin ,x y θθ=-+⎧⎨=+⎩(..为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上4.当7m =,3n =时,执行如图所示的程序框图,输出的S 值为( )A .7B .42C .210D .8405.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.若x ,y 满足20,20,0,x y kx y y +-⎧⎪-+⎨⎪⎩≥≥≥且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12 D .12-7.在空间直角坐标系O xyz -中,已知()2,0,0A ,()2,2,0B ,(0),2,0C,(D .若1S ,2S ,3S 分别是三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ) A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠8.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2 人B .3 人C .4 人D .5 人第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上. 9.复数21i ()1i+=- . 10.已知向量a ,b 满足|a |1=,b (2,1)=,且λa +b =0()λ∈R ,则||λ= .11.设双曲线C 经过点(2,2),且与2214y x =-具有相同渐近线,则C 的方程为 ;渐近线方程为 .12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n = 时,{}n a 的前n 项和最大.13.把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.14.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0A >,0)ω>.若()f x 在区间ππ,62⎡⎤⎢⎥⎣⎦上具有单调性,且π2ππ()()()236f f f ==-,则()f x 的最小正周期为 . 三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)如图,在ABC △中,π3B ∠=,8AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(Ⅰ)求sin BAD ∠; (Ⅱ)求BD ,AC 的长.16.(本小题满分13分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(Ⅲ)记x为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数.比较EX与x的大小.(只需写出结论)17.(本小题满分14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P ABCDE-中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(Ⅰ)求证:AB FG;(Ⅱ)若PA⊥底面ABCDE,且PA AE=,求直线BC与平面ABF所成角的大小,并求线段PH的长.18.(本小题满分13分)已知函数()cos sinf x x x x=-,π0,2x⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求证:()0f x≤;(Ⅱ)若sin xa bx<<对π(0,)2x∈恒成立,求a的最大值与b的最小值.19.(本小题满分13分)已知椭圆C:2224x y+=.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点.若点A在椭圆C上,点B在直线2y=上,且OA OB⊥,试判断直线AB与圆222x y+=的位置关系,并证明你的结论.20.(本小题满分13分)对于数对序列P:11(,)a b,22(,)a b,⋅⋅⋅,(),n na b,记111()T P a b=+,()k kT P b=+ 112max{(),}k kT P a a a-+⋅⋅⋅++(2)k n≤≤,其中112(ma}x{),k kT P a a a-++⋅⋅⋅+表示1()kT P-和12ka a a++⋅⋅⋅+两个数中最大的数.(Ⅰ)对于数对序列P:(2,5),(4,1),求1()T P,2()T P的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(,)a b,(,)c d组成的数对序列P:(,)a b,(,)c d和P':(,)c d,(,)a b,试分别对m a=和m d=两种情况比较2()T P和2()T P'的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使5()T P最小,并写出5()T P的值.(只需写出结论)2014年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】{}0,2A =,{0,2}{0,1,2}{0,2}A B ∴==,故选C.【提示】用描述法、列举法写出集合,求其交集. 【考点】交集及其运算 2.【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,)+∞上为减函数,所以排除B ,C ,D ,故选A.【提示】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【考点】对数函数的单调性与特殊点 3.【答案】B【解析】曲线方程消去参数化为22(1)(2)=1x y ++-,其对称中心点为(1,2)-,验证知其在直线2y x =-上,故选B.【提示】曲线方程消去参数化为普通方程,求经过对称中心的一条直线. 【考点】曲线的参数方程 4.【答案】C【解析】=1765=210S ⨯⨯⨯,故选C.【提示】由循环语句、条件语句执行程序,直至结束. 【考点】循环结构 5.【答案】D【解析】当101a q <>,时,数列{}n a 递减;当10a <,数列{}n a 递增时,01q <<,故选D.故选D.【解析】0a b λ+=,a b λ∴=-,||5||1||b a λ∴===【提示】已知向量和向量的模,及两向量之间的关系,求【解析】78a a ++的前n 项和最大【提示】可得等差数列。
2014年普通高等学校招生全国统一考试数学(北京卷)理
2014年普通高等学校招生全国统一考试(北京卷)数学(理科)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.(2014北京,理1)已知集合A={x|x 2-2x=0},B={0,1,2},则A ∩B=( ). A .{0} B .{0,1} C .{0,2} D .{0,1,2}答案:C解析:解x 2-2x=0,得x=0,x=2,故A={0,2},所以A ∩B={0,2},故选C . 2.(2014北京,理2)下列函数中,在区间(0,+∞)上为增函数的是( ). A .y=√x +1 B .y=(x-1)2C .y=2-xD .y=log 0.5(x+1)答案:A解析:A 项,y=√x +1为(-1,+∞)上的增函数,故在(0,+∞)上递增;B 项,y=(x-1)2在(-∞,1)上递减,在(1,+∞)上递增;C 项,y=2-x =(12)x 为R 上的减函数; D 项,y=log 0.5(x+1)为(-1,+∞)上的减函数. 故选A .3.(2014北京,理3)曲线{x =-1+cosθ,y =2+sinθ(θ为参数)的对称中心( ).A .在直线y=2x 上B .在直线y=-2x 上C .在直线y=x-1上D .在直线y=x+1上答案:B 解析:由已知得{cosθ=x +1,sinθ=y -2,消参得(x+1)2+(y-2)2=1.所以其对称中心为(-1,2).显然该点在直线y=-2x 上.故选B .4.(2014北京,理4)当m=7,n=3时,执行如图所示的程序框图,输出的S 值为( ). A .7 B .42 C .210 D .840 答案:C解析:开始:m=7,n=3.计算:k=7,S=1.第一次循环,此时m-n+1=7-3+1=5,显然k<5不成立,所以S=1×7=7,k=7-1=6. 第二次循环,6<5不成立,所以S=7×6=42,k=6-1=5. 第三次循环,5<5不成立,所以S=42×5=210,k=5-1=4. 显然4<5成立,输出S 的值,即输出210,故选C .5.(2014北京,理5)设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ).A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:D解析:等比数列{a n}为递增数列的充要条件为{a1>0,q>1或{a1<0,0<q<1.故“q>1”是“{a n}为递增数列”的既不充分也不必要条件.故选D.6.(2014北京,理6)若x,y满足{x+y-2≥0,kx-y+2≥0,y≥0,且z=y-x的最小值为-4,则k的值为().A.2B.-2C.12D.-12答案:D 解析:如图,作出{x+y-2≥0,y≥0所表示的平面区域,作出目标函数取得最小值-4时对应的直线y-x=-4,即x-y-4=0.显然z的几何意义为目标函数对应直线x-y+z=0在x轴上的截距的相反数,故该直线与x轴的交点(4,0)必为可行域的顶点,又kx-y+2=0恒过点(0,2),故k=2-00-4=-12.故选D.7.(2014北京,理7)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,√2).若S1,S2,S3分别是三棱锥D-ABC 在xOy,yOz,zOx坐标平面上的正投影图形的面积,则().A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1答案:D解析:三棱锥的各顶点在xOy坐标平面上的正投影分别为A1(2,0,0),B1(2,2,0),C1(0,2,0),D1(1,1,0).显然D1点为A1C1的中点,如图(1),正投影为Rt△A1B1C1,其面积S1=12×2×2=2.三棱锥的各顶点在yOz坐标平面上的正投影分别为A2(0,0,0),B2(0,2,0),C2(0,2,0),D2(0,1,√2).显然B2,C2重合,如图(2),正投影为△A2B2D2,其面积S2=12×2×√2=√2.三棱锥的各顶点在zOx坐标平面上的正投影分别为A3(2,0,0),B3(2,0,0),C3(0,0,0),D3(1,0,√2),由图(3)可知,正投影为△A3D3C3,其面积S3=12×2×√2=√2.综上,S2=S3,S3≠S1.故选D.图(1)图(2)图(3)8.(2014北京,理8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ). A .2人 B .3人 C .4人 D .5人 答案:B解析:用A,B,C 分别表示优秀、及格和不及格.显然,语文成绩得A 的学生最多只有一人,语文成绩得B 的也最多只有1人,得C 的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分. 9.(2014北京,理9)复数(1+i 1-i)2= .答案:-1 解析:1+i1-i=(1+i )2(1-i )(1+i )=2i 2=i,所以(1+i 1-i)2=i 2=-1. 10.(2014北京,理10)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|= . 答案:√5解析:|b |=√22+12=√5,由λa +b =0,得b =-λa ,故|b |=|-λa |=|λ||a |,所以|λ|=|b ||a |=√51=√5.11.(2014北京,理11)设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为 ;渐近线方程为 .答案:x 23−y 212=1 y=±2x 解析:双曲线y 24-x 2=1的渐近线方程为y=±2x.设与双曲线y 24-x 2=1有共同渐近线的方程为y 24-x 2=λ,又(2,2)在双曲线上,故224-22=λ,解得λ=-3.故所求双曲线方程为y 24-x 2=-3,即x 23−y 212=1.所求双曲线的渐近线方程为y=±2x.12.(2014北京,理12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n= 时,{a n }的前n 项和最大. 答案:8解析:由等差数列的性质可得a 7+a 8+a 9=3a 8>0,即a 8>0;而a 7+a 10=a 8+a 9<0,故a 9<0.所以数列{a n }的前8项和最大.13.(2014北京,理13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种. 答案:36解析:产品A,B 相邻时,不同的摆法有A 22A 44=48种.而A,B 相邻,A,C 也相邻时的摆法为A 在中间,C,B 在A 的两侧,不同的摆法共有A 22A 33=12(种).故产品A 与产品B 相邻,且产品A 与产品C 不相邻的不同摆法有48-12=36(种).14.(2014北京,理14)设函数f (x )=A sin(ωx+φ)(A ,ω,φ是常数,A>0,ω>0).若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f (2π3)=-f (π6),则f (x )的最小正周期为 . 答案:π解析:由f (x )在区间[π6,π2]上具有单调性,且f (π2)=-f (π6)知,f (x )有对称中心(π3,0),由f (π2)=f (23π)知f (x )有对称轴x=12(π2+23π)=712π.记f (x )的最小正周期为T ,则12T ≥π2−π6,即T ≥23π.故712π-π3=π4=T 4,解得T=π.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分)(2014北京,理15)如图,在△ABC 中,∠B=π3,AB=8,点D 在BC 边上,且CD=2,cos ∠ADC=17.(1)求sin ∠BAD ;(2)求BD,AC的长.分析:(1)先利用三角形中角之间的关系可得∠BAD=∠ADC-∠B,然后即可利用两角差的正弦公式求解;(2)在△ABD中,根据正弦定理,结合(1)即可求得BD,然后在△ABC中,直接利用余弦定理求AC即可.解:(1)在△ADC中,因为cos∠ADC=17,所以sin∠ADC=4√37.所以sin∠BAD=sin(∠ADC-∠B)=sin∠ADC cos B-cos∠ADC sin B=4√37×12−17×√32=3√314.(2)在△ABD中,由正弦定理得BD=AB·sin∠BADsin∠ADB =8×3√3144√37=3.在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BC·cos B=82+52-2×8×5×12=49.所以AC=7.16.(本小题13分)(2014):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数.比较EX与x 的大小.(只需写出结论)分析:(1)先根据统计表格求出投篮命中率,确定投篮命中率超过0.6的场数,然后除以总场数10即可得所求;(2)先根据统计表格分别求出主场、客场的投篮命中率超过0.6的概率,然后根据主场、客场将所求事件分为两个互斥事件,即可利用相互独立事件同时成立的概率求解;(3)根据数学期望的计算公式即可得到EX与x的大小关系.解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”,则C=A B∪A B,A,B独立.根据投篮统计数据,P(A)=35,P(B)=25.P(C)=P(A B)+P(A B)=35×35+25×25=1325.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX=x.17.(本小题14分)(2014北京,理17)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P-ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.分析:(1)首先利用AM∥ED得到AB∥平面PDE,然后利用直线和平面平行的性质定理证明结论;(2)首先根据几何体的结构特征建立空间直角坐标系,求出相关点的坐标,然后求出直线BC的方向向量和平面ABF的法向量,利用这两个向量的夹角表示所求,再根据H 在PC 上,设出H 的坐标,然后利用平面ABF 的法向量与AH ⃗⃗⃗⃗⃗⃗ 垂直确定参数取值,进而求出H 点的坐标,最后利用坐标公式求得线段长度.(1)证明:在正方形AMDE 中,因为B 是AM 的中点,所以AB ∥DE.又因为AB ⊄平面PDE ,所以AB ∥平面PDE. 因为AB ⊂平面ABF ,且平面ABF ∩平面PDE=FG , 所以AB ∥FG.(2)解:因为PA ⊥底面ABCDE ,所以PA ⊥AB ,PA ⊥AE.如图建立空间直角坐标系A-xyz ,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC⃗⃗⃗⃗⃗ =(1,1,0). 设平面ABF 的法向量为n =(x ,y ,z ),则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AF ⃗⃗⃗⃗⃗ =0,即{x =0,y +z =0.令z=1,则y=-1.所以n =(0,-1,1). 设直线BC 与平面ABF 所成角为α,则 sin α=|cos <n ,BC⃗⃗⃗⃗⃗ >|=|n ·BC⃗⃗⃗⃗⃗⃗ |n ||BC⃗⃗⃗⃗⃗⃗ ||=12.因此直线BC 与平面ABF 所成角的大小为π6. 设点H 的坐标为(u ,v ,w ).因为点H 在棱PC 上,所以可设PH⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ (0<λ<1), 即(u ,v ,w-2)=λ(2,1,-2), 所以u=2λ,v=λ,w=2-2λ.因为n 是平面ABF 的法向量,所以n ·AH ⃗⃗⃗⃗⃗⃗ =0,即(0,-1,1)·(2λ,λ,2-2λ)=0,解得λ=23, 所以点H 的坐标为(43,23,23).所以PH=√(43)2+(23)2+(-43)2=2.18.(本小题13分)(2014北京,理18)已知函数f (x )=x cos x-sin x ,x ∈[0,π2]. (1)求证:f (x )≤0; (2)若a<sinxx<b 对x ∈(0,π2)恒成立,求a 的最大值与b 的最小值.分析:(1)先求出导函数f'(x ),利用导函数在(0,π2)上的符号判断f (x )在[0,π2]上的单调性,并求出其最大值,即可证得结论;(2)根据x>0,将不等式转化为整式不等式,进而转化为g (x )=sin x-cx (x ∈(0,π2))与0的大小关系,注意对参数c 的取值要分c ≤0,c ≥1和0<c<1三种情况进行分类讨论,然后利用边界值求出a 的最大值与b 的最小值. (1)证明:由f (x )=x cos x-sin x 得f'(x )=cos x-x sin x-cos x=-x sin x. 因为在区间(0,π2)上f'(x )=-x sin x<0, 所以f (x )在区间[0,π2]上单调递减. 从而f (x )≤f (0)=0. (2)解:当x>0时,“sinx x >a”等价于“sin x-ax>0”;“sinxx<b”等价于“sin x-bx<0”. 令g (x )=sin x-cx ,则g'(x )=cos x-c.当c ≤0时,g (x )>0对任意x ∈(0,π2)恒成立. 当c ≥1时,因为对任意x ∈(0,π2),g'(x )=cos x-c<0, 所以g (x )在区间[0,π2]上单调递减. 从而g (x )<g (0)=0对任意x ∈(0,π2)恒成立.当0<c<1时,存在唯一的x 0∈(0,π2)使得g'(x 0)=cos x 0-c=0. g (x )与g'(x )在区间(0,π2)上的情况如下:因为g (x )在区间[0,x 0]上是增函数, 所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈(0,π2)恒成立”当且仅当g (π2)=1-π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈(0,π2)恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈(0,π2)恒成立. 所以,若a<sinxx<b 对任意x ∈(0,π2)恒成立,则a 的最大值为2π,b 的最小值为1.19.(本小题14分)(2014北京,理19)已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y=2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.分析:(1)先把方程化为标准方程,分别求出a ,c ,即可求得离心率e ;(2)分别设出A ,B 两点的坐标,先利用OA ⊥OB 求出两点坐标之间的关系,然后根据A ,B 两点横坐标是否相等分类,分别求出原点O 到直线AB 的距离,将其与圆的半径√2进行比较,即可判断直线与圆的位置关系. 解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1. 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2.因此a=2,c=√2. 故椭圆C 的离心率e=c a=√22.(2)直线AB 与圆x 2+y 2=2相切.证明如下:设点A ,B 的坐标分别为(x 0,y 0),(t ,2),其中x 0≠0.因为OA ⊥OB ,所以OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,即tx 0+2y 0=0,解得t=-2y0x 0. 当x 0=t 时,y 0=-t 22,代入椭圆C 的方程,得t=±√2,故直线AB 的方程为x=±√2,圆心O 到直线AB 的距离d=√2,此时直线AB 与圆x 2+y 2=2相切. 当x 0≠t 时,直线AB 的方程为y-2=y 0-2x 0-t(x-t ), 即(y 0-2)x-(x 0-t )y+2x 0-ty 0=0. 圆心O 到直线AB 的距离d=00√(y 0-2)+(x 0-t ).又x 02+2y 02=4,t=-2y 0x 0, 故d=|2x 0+2y 02x |√x 02+y 02+02x 02+4=|4+x 02x |√04022x 02=√2.此时直线AB 与圆x 2+y 2=2相切.20.(本小题13分)(2014北京,理20)对于数对序列P :(a 1,b 1),(a 2,b 2),…,(a n ,b n ),记T 1(P )=a 1+b 1,T k (P )=b k +max{T k-1(P ),a 1+a 2+…+a k }(2≤k ≤n ),其中max{T k-1(P ),a 1+a 2+…+a k }表示T k-1(P )和a 1+a 2+…+a k 两个数中最大的数.(1)对于数对序列P :(2,5),(4,1),求T 1(P ),T 2(P )的值;(2)记m 为a ,b ,c ,d 四个数中最小的数,对于由两个数对(a ,b ),(c ,d )组成的数对序列P :(a ,b ),(c ,d )和P':(c ,d ),(a ,b ),试分别对m=a 和m=d 两种情况比较T 2(P )和T 2(P')的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使T 5(P )最小,并写出T 5(P )的值.(只需写出结论)分析:(1)直接根据定义式即可求出T 1(P )和T 2(P )的值;(2)先根据定义式分别写出T 2(P )和T 2(P'),然后根据a ,b ,c ,d 中最小数的不同比较对应两个代数式的大小,即可求得T 2(P )和T 2(P')的大小关系;(3)先比较已知数据大小,然后根据定义式写出使T 5(P )最小的数对序列,依次求出T 1(P ),T 2(P ),T 3(P ),T 4(P ),T 5(P )即可. 解:(1)T 1(P )=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P')=max{c+d+b,c+a+b}.当m=a时,T2(P')=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P').当m=d时,T2(P')=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P').所以无论m=a还是m=d,T2(P)≤T2(P')都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小, T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.。
2014年普通高等学校招生全国统一考试北京卷理科数学(2014年北京市高考理科数学)
2014年普通高等学校招生全国统一考试(北京卷)数学(理科)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合A ={x|x 2﹣2x =0},B ={0,1,2},则A ∩B =( ). A .{0} B .{0,1} C .{0,2} D .{0,1,2} 答案:C解析:解x 2﹣2x =0,得x =0,x =2,故A ={0,2},所以A ∩B ={0,2},故选C . 2.下列函数中,在区间(0,+∞)上为增函数的是( ). A .y =√x +1 B .y =(x ﹣1)2 C .y =2﹣x D .y =log 0.5(x +1)答案:A解析:A 项,y =√x +1为(﹣1,+∞)上的增函数,故在(0,+∞)上递增;B 项,y =(x ﹣1)2在(﹣∞,1)上递减,在(1,+∞)上递增;C 项,y =2﹣x =(12)x为R 上的减函数;D 项,y =log 0.5(x +1)为(﹣1,+∞)上的减函数. 故选A .3.曲线{x =﹣1+cosθ,y =2+sinθ(θ为参数)的对称中心( ).A .在直线y =2x 上B .在直线y =﹣2x 上C .在直线y =x ﹣1上D .在直线y =x +1上 答案:B解析:由已知得{cosθ=x +1,sinθ=y ﹣2,消参得(x +1)2+(y ﹣2)2=1. 所以其对称中心为(﹣1,2).显然该点在直线y =﹣2x 上.故选B .4.当m =7,n =3时,执行如图所示的程序框图,输出的S 值为( ).A .7B .42C .210D .840 答案:C解析:开始:m =7,n =3.计算:k =7,S =1.第一次循环,此时m ﹣n +1=7﹣3+1=5,显然k<5不成立,所以S =1×7=7,k =7﹣1=6. 第二次循环,6<5不成立,所以S =7×6=42,k =6﹣1=5. 第三次循环,5<5不成立,所以S =42×5=210,k =5﹣1=4. 显然4<5成立,输出S 的值,即输出210,故选C .5.设{a n }是公比为q 的等比数列,则“q>1”是“{a n }为递增数列”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 答案:D解析:等比数列{a n }为递增数列的充要条件为{a 1>0,q >1或{a 1<0,0<q <1.故“q>1”是“{a n }为递增数列”的既不充分也不必要条件.故选D .6.若x ,y 满足{x +y ﹣2≥0,kx ﹣y +2≥0,y ≥0,且z =y ﹣x 的最小值为﹣4,则k 的值为( ).A .2B .﹣2C .12D .﹣12答案:D 解析:如图,作出{x +y ﹣2≥0,y ≥0所表示的平面区域,作出目标函数取得最小值﹣4时对应的直线y ﹣x =﹣4,即x ﹣y ﹣4=0.显然z 的几何意义为目标函数对应直线x ﹣y +z =0在x 轴上的截距的相反数,故该直线与x 轴的交点(4,0)必为可行域的顶点,又kx ﹣y +2=0恒过点(0,2),故k =2﹣00﹣4=﹣12.故选D .7.在空间直角坐标系Oxyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,√2).若S 1,S 2,S 3分别是三棱锥D ﹣ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ). A .S 1=S 2=S 3 B .S 2=S 1且S 2≠S 3 C .S 3=S 1且S 3≠S 2 D .S 3=S 2且S 3≠S 1 答案:D解析:三棱锥的各顶点在xOy 坐标平面上的正投影分别为A 1(2,0,0),B 1(2,2,0),C 1(0,2,0),D 1(1,1,0).显然D 1点为A 1C 1的中点,如图(1),正投影为Rt △A 1B 1C 1,其面积S 1=12×2×2=2.三棱锥的各顶点在yOz 坐标平面上的正投影分别为A 2(0,0,0),B 2(0,2,0),C 2(0,2,0),D 2(0,1,√2).显然B 2,C 2重合,如图(2),正投影为△A 2B 2D 2,其面积S 2=12×2×√2=√2.三棱锥的各顶点在zOx 坐标平面上的正投影分别为A 3(2,0,0),B 3(2,0,0),C 3(0,0,0),D 3(1,0,√2),由图(3)可知,正投影为△A 3D 3C 3,其面积S 3=12×2×√2=√2.综上,S 2=S 3,S 3≠S 1.故选D .图(1) 图(2) 图(3)8.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ). A .2人 B .3人 C .4人 D .5人 答案:B解析:用A ,B ,C 分别表示优秀、及格和不及格.显然,语文成绩得A 的学生最多只有一人,语文成绩得B 的也最多只有1人,得C 的也最多只有1人,所以这组学生的成绩为(AC),(BB),(CA)满足条件,故学生最多为3人.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.复数(1+i 1﹣i)2=__________.答案:﹣1 解析:1+i 1﹣i=(1+i )2(1﹣i )(1+i )=2i 2=i ,所以(1+i 1﹣i)2=i 2=﹣1.10.已知向量a ,b 满足|a|=1,b =(2,1),且λa +b =0(λ∈R),则|λ|=__________. 答案:√5解析:|b|=√22+12=√5,由λa +b =0,得b =﹣λa ,故|b|=|﹣λa|=|λ||a|,所以|λ|=|b ||a |=√51=√5. 11.设双曲线C 经过点(2,2),且与y 24﹣x 2=1具有相同渐近线,则C 的方程为__________;渐近线方程为__________. 答案:x 23−y 212=1 y =±2x解析:双曲线y 24﹣x 2=1的渐近线方程为y =±2x.设与双曲线y 24﹣x 2=1有共同渐近线的方程为y 24﹣x 2=λ,又(2,2)在双曲线上,故224﹣22=λ,解得λ=﹣3. 故所求双曲线方程为y 24﹣x 2=﹣3,即x 23−y 212=1. 所求双曲线的渐近线方程为y =±2x.12.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =__________时,{a n }的前n 项和最大. 答案:8解析:由等差数列的性质可得a 7+a 8+a 9=3a 8>0,即a 8>0;而a 7+a 10=a 8+a 9<0,故a 9<0.所以数列{a n }的前8项和最大.13.把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有__________种. 答案:36解析:产品A ,B 相邻时,不同的摆法有A 22A 44=48种.而A ,B 相邻,A ,C 也相邻时的摆法为A 在中间,C ,B 在A 的两侧,不同的摆法共有A 22A 33=12(种).故产品A 与产品B 相邻,且产品A 与产品C 不相邻的不同摆法有48﹣12=36(种). 14.设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A>0,ω>0).若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f (2π3)=﹣f (π6),则f (x )的最小正周期为__________. 答案:π解析:由f (x )在区间[π6,π2]上具有单调性,且f (π2)=﹣f (π6)知,f (x )有对称中心(π3,0),由f (π2)=f (23π)知f (x )有对称轴x =12(π2+23π)=712π.记f (x )的最小正周期为T ,则12T ≥π2−π6,即T ≥23π.故712π﹣π3=π4=T4,解得T =π.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题13分)如图,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17. (1)求sin ∠BAD ; (2)求BD ,AC 的长.分析:(1)先利用三角形中角之间的关系可得∠BAD =∠ADC ﹣∠B ,然后即可利用两角差的正弦公式求解;(2)在△ABD 中,根据正弦定理,结合(1)即可求得BD ,然后在△ABC 中,直接利用余弦定理求AC 即可. 解:(1)在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =4√37. 所以sin ∠BAD =sin(∠ADC ﹣∠B ) =sin ∠ADC cos B ﹣cos ∠ADC sin B=4√37×12−17×√32=3√314. (2)在△ABD 中,由正弦定理得 BD =AB ·sin∠BAD sin∠ADB8×3√3144√37=3.在△ABC 中,由余弦定理得AC 2=AB 2+BC 2﹣2AB ·BC ·cos B =82+52﹣2×8×5×12=49. 所以AC =7.16.(本小题13分)):(1)(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x 为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数.比较EX 与x 的大小.(只需写出结论)分析:(1)先根据统计表格求出投篮命中率,确定投篮命中率超过0.6的场数,然后除以总场数10即可得所求;(2)先根据统计表格分别求出主场、客场的投篮命中率超过0.6的概率,然后根据主场、客场将所求事件分为两个互斥事件,即可利用相互独立事件同时成立的概率求解;(3)根据数学期望的计算公式即可得到EX 与x 的大小关系.解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”,则C =A ∪,A ,B 独立.根据投篮统计数据,P (A )=35,P (B )=25.P (C )=P (A B )+P (A B )=35×35+25×25=1325.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)EX =x .17.(本小题14分)如图,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点.在五棱锥P ﹣ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H. (1)求证:AB ∥FG ;(2)若P A ⊥底面ABCDE ,且P A =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.分析:(1)首先利用AM ∥ED 得到AB ∥平面PDE ,然后利用直线和平面平行的性质定理证明结论;(2)首先根据几何体的结构特征建立空间直角坐标系,求出相关点的坐标,然后求出直线BC 的方向向量和平面ABF 的法向量,利用这两个向量的夹角表示所求,再根据H 在PC 上,设出H 的坐标,然后利用平面ABF 的法向量与AH⃗⃗⃗⃗⃗⃗ 垂直确定参数取值,进而求出H 点的坐标,最后利用坐标公式求得线段长度. (1)证明:在正方形AMDE 中,因为B 是AM 的中点,所以AB ∥DE.又因为AB ⊄平面PDE ,所以AB ∥平面PDE.因为AB ⊂平面ABF ,且平面ABF ∩平面PDE =FG , 所以AB ∥FG.(2)解:因为P A ⊥底面ABCDE ,所以P A ⊥AB ,P A ⊥AE.如图建立空间直角坐标系A ﹣xyz ,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC⃗⃗⃗⃗⃗ =(1,1,0). 设平面ABF 的法向量为n =(x ,y ,z ),则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AF ⃗⃗⃗⃗⃗ =0,即{x =0,y +z =0.令z =1,则y =﹣1.所以n =(0,﹣1,1).设直线BC 与平面ABF 所成角为α,则 sinα=|cos <n ,BC ⃗⃗⃗⃗⃗ >|=|n ·BC ⃗⃗⃗⃗⃗|n ||BC ⃗⃗⃗⃗⃗ ||=12. 因此直线BC 与平面ABF 所成角的大小为π6.设点H 的坐标为(u ,v ,w ).因为点H 在棱PC 上,所以可设PH⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ (0<λ<1), 即(u ,v ,w ﹣2)=λ(2,1,﹣2), 所以u =2λ,v =λ,w =2﹣2λ. 因为n 是平面ABF 的法向量,所以n ·AH⃗⃗⃗⃗⃗⃗ =0,即(0,﹣1,1)·(2λ,λ,2﹣2λ)=0,解得λ=23, 所以点H 的坐标为(43,23,23).所以PH =√(43)2+(23)2+(﹣43)2=2.18.(本小题13分)已知函数f (x )=x cos x ﹣sin x ,x ∈[0,π2].(1)求证:f (x )≤0; (2)若a<sinx x<b 对x ∈(0,π2)恒成立,求a 的最大值与b 的最小值.分析:(1)先求出导函数f'(x ),利用导函数在(0,π2)上的符号判断f (x )在[0,π2]上的单调性,并求出其最大值,即可证得结论;(2)根据x>0,将不等式转化为整式不等式,进而转化为g (x )=sin x ﹣cx (x ∈(0,π2))与0的大小关系,注意对参数c 的取值要分c ≤0,c ≥1和0<c<1三种情况进行分类讨论,然后利用边界值求出a 的最大值与b 的最小值.(1)证明:由f (x )=x cos x ﹣sin x 得f'(x )=cos x ﹣x sin x ﹣cos x =﹣x sin x.因为在区间(0,π2)上f'(x )=﹣x sin x<0, 所以f (x )在区间[0,π2]上单调递减. 从而f (x )≤f (0)=0. (2)解:当x>0时,“sinx x>a”等价于“sin x ﹣ax>0”;“sinx x<b”等价于“sin x ﹣bx<0”.令g (x )=sin x ﹣cx ,则g'(x )=cos x ﹣C . 当c ≤0时,g (x )>0对任意x ∈(0,π2)恒成立.当c ≥1时,因为对任意x ∈(0,π2),g'(x )=cos x ﹣c<0,所以g (x )在区间[0,π2]上单调递减.从而g (x )<g (0)=0对任意x ∈(0,π2)恒成立.当0<c<1时,存在唯一的x 0∈(0,π2)使得g'(x 0)=cos x 0﹣c =0. g (x )与g'(x )在区间(0,π2)上的情况如下:因为g (x )在区间[0,x 0]所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈(0,π2)恒成立”当且仅当g (π2)=1﹣π2c ≥0,即0<c ≤2π.综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈(0,π2)恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈(0,π2)恒成立.所以,若a<sinx x<b 对任意x ∈(0,π2)恒成立,则a 的最大值为2π,b 的最小值为1.19.(本小题14分)已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在椭圆C 上,点B 在直线y =2上,且OA ⊥OB ,试判断直线AB 与圆x 2+y 2=2的位置关系,并证明你的结论.分析:(1)先把方程化为标准方程,分别求出a ,c ,即可求得离心率e ;(2)分别设出A ,B 两点的坐标,先利用OA ⊥OB 求出两点坐标之间的关系,然后根据A ,B 两点横坐标是否相等分类,分别求出原点O 到直线AB 的距离,将其与圆的半径√2进行比较,即可判断直线与圆的位置关系. 解:(1)由题意,椭圆C 的标准方程为x 24+y 22=1.所以a 2=4,b 2=2,从而c 2=a 2﹣b 2=2. 因此a =2,c =√2. 故椭圆C 的离心率e =ca =√22. (2)直线AB 与圆x 2+y 2=2相切.证明如下:设点A ,B 的坐标分别为(x 0,y 0),(t ,2),其中x 0≠0.因为OA ⊥OB ,所以OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,即tx 0+2y 0=0,解得t =﹣2y0x 0.当x 0=t 时,y 0=﹣t 22,代入椭圆C 的方程,得t =±√2,故直线AB 的方程为x =±√2,圆心O 到直线AB 的距离d =√2,此时直线AB 与圆x 2+y 2=2相切. 当x 0≠t 时,直线AB 的方程为y ﹣2=y 0﹣2x 0﹣t(x ﹣t ),即(y 0﹣2)x ﹣(x 0﹣t )y +2x 0﹣ty 0=0. 圆心O 到直线AB 的距离d =00√(y 0﹣2)+(x 0﹣t ).又x 02+2y 02=4,t =﹣2y0x 0,故d =|2x 0+2y02x 0|√x 02+y 02+4y 0x 02+4|4+x 02x 0|√x 0+8x 0+162x 02√2.此时直线AB 与圆x 2+y 2=2相切.20.(本小题13分)对于数对序列P :(a 1,b 1),(a 2,b 2),…,(a n ,b n ),记T 1(P )=a 1+b 1,T k (P )=b k +max{T k﹣1(P ),a 1+a 2+…+a k }(2≤k ≤n ),其中max{T k ﹣1(P ),a 1+a 2+…+a k }表示T k ﹣1(P )和a 1+a 2+…+a k 两个数中最大的数.(1)对于数对序列P :(2,5),(4,1),求T 1(P ),T 2(P )的值;(2)记m 为a ,b ,c ,d 四个数中最小的数,对于由两个数对(a ,b ),(c ,d )组成的数对序列P :(a ,b ),(c ,d )和P':(c ,d ),(a ,b ),试分别对m =a 和m =d 两种情况比较T 2(P )和T 2(P')的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使T 5(P )最小,并写出T 5(P )的值.(只需写出结论)分析:(1)直接根据定义式即可求出T 1(P )和T 2(P )的值;(2)先根据定义式分别写出T 2(P )和T 2(P'),然后根据a ,b ,c ,d 中最小数的不同比较对应两个代数式的大小,即可求得T 2(P )和T 2(P')的大小关系;(3)先比较已知数据大小,然后根据定义式写出使T 5(P )最小的数对序列,依次求出T 1(P ),T 2(P ),T 3(P ),T 4(P ),T 5(P )即可.解:(1)T 1(P )=2+5=7,T 2(P )=1+max{T 1(P ),2+4}=1+max{7,6}=8. (2)T 2(P )=max{a +b +d ,a +c +d }, T 2(P')=max{c +d +b ,c +a +b }.当m =a 时,T 2(P')=max{c +d +b ,c +a +b }=c +d +B .因为a +b +d ≤c +b +d ,且a +c +d ≤c +b +d ,所以T 2(P )≤T 2(P'). 当m =d 时,T 2(P')=max{c +d +b ,c +a +b }=c +a +B .因为a +b +d ≤c +a +b ,且a +c +d ≤c +a +b ,所以T 2(P )≤T 2(P'). 所以无论m =a 还是m =d ,T 2(P )≤T 2(P')都成立.(3)数对序列P :(4,6),(11,11),(16,11),(11,8),(5,2)的T 5(P )值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014北京市高考压轴卷理科数学一、选择题:本大题共8小题,每小题5分,共40分. 1.已知11xyi i=-+,其中,x y 是实数,i 是虚数单位,则x yi +的共轭复数为( ) A .12i + B .12i - C .2i + D .2i -2.已知函数3()f x x x =--,123,,x x x R ∈,且120x x +>,230x x +>,310x x +>,则123()()()f x f x f x ++的值为()A.正B.负C.零D.可正可负 3.已知某几何体的三视图如下,则该几何体体积为( )A .4+52π B .4+32π C .4+2π D .4+π 4.如图所示为函数π()2sin()(0,0)2f x x ωϕωϕ=+>≤≤的部分图像,其中A ,B 两点之间的距离为5,那么(1)f -=( ) A .-1B .CD .15.(5分)已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:①若m⊥n,m⊥α,则n∥α;②若m⊥α,n⊥β,m∥n,则α∥β;③若m、n是两条异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确命题的个数是()6.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为A. B.C. D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,B8.已知定义在R上的偶函数f(x)满足f(1+x)=f(1﹣x),且x∈[0,1]时,,则方程在区间[﹣3,3]上的根的个数为()9.已知集合{}{}22,1,3,3,21,1A a aB a a a=+-=--+,若{}3A B=-,则实数a的值为________________.10.已知如图所示的流程图(未完成),设当箭头a指向①时输出的结果S=m,当箭头a指向②时,输出的结果S=n,求m+n的值.11.若n S 是等差数列}{n a 的前n 项和,且8320S S -=,则11S 的值为 . 12.展开式中有理项共有 项.13.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是_______14.设a ∈R ,若x >0时均有[(a ﹣1)x ﹣1](x 2﹣ax ﹣1)≥0,则a= .三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15.已知向量)4cos ,4(cos ),1,4sin 3(2x x x ==.记x f ⋅=)( (I)求)(x f 的周期;(Ⅱ)在∆ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,且满足(2a —c)cos B=b cosC , 若f (A )=,试判断∆ABC 的形状.16.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)(Ⅱ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从两个兴趣小组中随机抽取7名同学进行座谈.已知甲、乙、丙三人都参加“排球小组”. ①求在甲被抽中的条件下,乙丙也都被抽中的概率;②设乙、丙两人中被抽中的人数为X ,求X 的分布列及数学期望E(X). 下面临界值表供参考:参考公式:2()()()()K a b c d a c b d =++++命题意图:考查分类变量的独立性检验,条件概率,随机变量的分布列、数学期望等,中等题. 17.已知正四棱柱1111-ABCD A B C D 中,12,4==AB AA . (Ⅰ)求证:1BD AC ⊥;(Ⅱ)求二面角11--A AC D 的余弦值;(Ⅲ)在线段1CC 上是否存在点P ,使得平面11ACD ⊥平面PBD ,若存在,求出1CPPC 的值;若不存在,请说明理由.18.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,点(0,3)B 为短轴的一个端点,260OF B ∠=︒.(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,过右焦点2F ,且斜率为(0)≠k k 的直线l 与椭圆C 相交于,E F 两点,A 为椭圆的右顶点,直线,AE AF 分别交直线3=x 于点,M N ,线段MN 的中点为P ,记直线2PF 的斜率为'k .求证: '⋅k k 为定值.19.已知数列{}n a 的各项均为正数,记12()n A n a a a =+++L ,231()n B n a a a +=+++L ,342(),1,2,n C n a a a n +=+++=L L .(Ⅰ)若121,5a a ==,且对任意n ∈*N ,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈*N ,三个数(),(),()A n B n C n 组成公比为q 的等比数列.20.已知函数2()2ln f x x x ax =-+(a ∈R ).(Ⅰ)当2a =时,求()f x 的图象在1x =处的切线方程;(Ⅱ)若函数()()g x f x ax m =-+在1[e]e ,上有两个零点,求实数m 的取值范围;(Ⅲ)若函数()f x 的图象与x 轴有两个不同的交点12(0)(0)A x B x ,,,,且120x x <<, 求证:12()02x x f +'<(其中()f x '是()f x 的导函数). 1. D1()1,2,1,12x x xi yi x y i =-=-∴==+故选D . 2.B ∵3()f x x x =--,∴函数()f x 在R 上是减函数且是奇函数,∵120x x +>,∴12x x >-,∴12()()f x f x <-,∴12()()f x f x <-,∴12()()0f x f x +<, 同理:23()()0f x f x +<,31()()0f x f x +<,∴123()()()0f x f x f x ++<.3.A 该几何体是一个圆柱与一个长方体的组成,其中重叠了一部分2π,所以该几何体的体积为52213422πππ⨯⨯+-=+.故选A .4. A.5. C ①若m⊥n,m⊥α,则n 可能在平面α内,故①错误 ②∵m⊥α,m∥n,∴n⊥α,又∵n⊥β,∴α∥β,故②正确 ③过直线m 作平面γ交平面β与直线c ,∵m、n 是两条异面直线,∴设n∩c=O,∵m∥β,m ⊂γ,γ∩β=c∴m∥c,∵m ⊂α,c ⊄α,∴c∥α,∵n ⊂β,c ⊂β,n∩c=O,c∥α,n∥α∴α∥β;故③正确 ④由面面垂直的性质定理:∵α⊥β,α∩β=m ,n ⊂β,n⊥m,∴n⊥α.故④正确 故正确命题有三个,6. C.由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选7. C. 设P (m ,n ),=(﹣c ﹣m ,﹣n )•(c ﹣m ,﹣n )=m 2﹣c 2+n 2,∴m 2+n 2=2c 2,n 2=2c 2﹣m 2 ①. 把P (m ,n )代入椭圆得 b 2m 2+a 2n 2=a 2b 2 ②, 把①代入②得 m 2=≥0,∴a 2b 2≤2a 2c 2, b 2≤2c 2,a 2﹣c 2≤2c 2,∴≥.又 m 2≤a 2,∴≤a 2,∴≤0,a 2﹣2c 2≥0,∴≤. 综上,≤≤,8. A. 由f (1+x )=f (1﹣x )可得函数f (x )的图象关于x=1对称,方程在区间[﹣3,3]根的个数等价于f (x )与y=图象的交点的个数,而函数y=图象可看作y=的图象向下平移1个单位得到,作出它们的图象如图:可得有5个交点,9. a=-1. ①若a-3=-3,则a=0,此时:}1,1,3{},3,1,0{--=-=B A ,}3,1{-=⋂∴B A ,与题意不符,舍②若2a-1=-3,则a=-1,此时: }2,4,3{},3,1,0{--=-=B A ,}3{-=⋂∴B A ,∴a=-1 ③若a2+1=-3,则a 不存在 综上可知:a=-1 10.20. 当箭头指向①时,计算S 和i 如下.i =1,S =0,S =1;i =2,S =0,S =2;i =3,S =0,S =3;i =4,S =0,S =4; i =5,S =0,S =5;i =6结束.∴S=m =5. 当箭头指向②时,计算S 和i 如下.i =1,S =0, S =1;i =2,S =3;i =3,S =6;i =4,S =10;i =5,S =15; i =6结束.∴S=n =15.∴m+n =20.11. 44 由83456786520S S a a a a a a -=++++==,解得64a =,又由611111611211()114422a a a S a ⨯+====12. 3.展开式通项公式为T r+1==若为有理项时,则为整数,∴r=0、6、12,故展开式中有理项共有3项,13.4. 设过坐标原点的一条直线方程为y kx =,因为与函数xx f 2)(=的图象交于P 、Q 两点所以0k >,且联列解得,P Q ⎛ ⎝,所以4PQ ==≥14.(1)a=1时,代入题中不等式明显不成立. (2)a ≠1,构造函数y 1=(a ﹣1)x ﹣1,y 2=x 2﹣ax ﹣1,它们都过定点P (0,﹣1). 考查函数y 1=(a ﹣1)x ﹣1:令y=0,得M (,0),∴a >1;考查函数y 2=x 2﹣ax ﹣1,显然过点M (,0),代入得:,解之得:a=,或a=0(舍去).故答案为:15.211()cos cos cos 4442222x x x x x f x +=++1sin 262x π⎛⎫=++ ⎪⎝⎭ (I )π4=T(Ⅱ 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-= 12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒=∵()f A =∴1sin 262263A A πππ⎛⎫++=⇒+= ⎪⎝⎭或23π3A π⇒=或 π 而203A π<<,所以3A π=,因此∆ABC 为等边三角形.……………12分16. (Ⅰ)由表中数据得K 2的观测值k =42×(16×12-8×6)224×18×20×22=25255≈4.582>3.841. ……2分所以,据此统计有95%的把握认为参加“篮球小组”或“排球小组”与性别有关.……4分 (Ⅱ)①由题可知在“排球小组”的18位同学中,要选取3位同学. 方法一:令事件A 为“甲被抽到”;事件B 为“乙丙被抽到”,则P(A∩B)=33318C C ,P(A)=217318C C .所以P(B|A)=P(A∩B )P(A)=33217C C =217×16 =1136. …7分 方法二:令事件C 为“在甲被抽到的条件下,乙丙也被抽到”,则P(C)=22217C C =217×16=1136.②由题知X 的可能值为0,1,2.依题意P(X =0)=316318C C =3551;P(X =1)=21162318C C C =517;P(X =2)=12162318C C C =151.从而X 的分布列为于是E(X)=0×3551+1×517+2×151=1751=13. ……12分17.证明:(Ⅰ)因为1111ABCD A B C D -为正四棱柱,所以1AA ⊥平面ABCD ,且ABCD 为正方形. …1分 因为BD ⊂平面ABCD ,所以1,BD AA BD AC ⊥⊥. …2分 因为1AA AC A =,所以BD ⊥平面1A AC . …3分 因为1AC ⊂平面1A AC , 所以1BD AC ⊥…4分(Ⅱ) 如图,以D 为原点建立空间直角坐标系-D xyz .则11(0,0,0),(2,0,0),(2,2,0),(0,2,0),(2,0,4),(2,2,4),D A B C A B11(0,2,4),(0,0,4)C D 所以111(2,0,0),(0,2,4)D A DC ==-u u u u r u u u r. 设平面11A D C 的法向量111(,,)x y z =n . 所以 1110,D A D C ⎧⋅=⎪⎨⋅=⎪⎩uuuu r uuu rn n .即1110,240x y z=⎧⎨-=⎩……6分 令11z =,则12y =.所以(0,2,1)=n .由(Ⅰ)可知平面1AAC 的法向量为 (2,2,0)DB =u u u r. …7分所以cos ,DB <>==uu u rn …8分 因为二面角11--A AC D 为钝二面角, 所以二面角11--A AC D 的余弦值为5-. …9分 (Ⅲ)设222(,,)P x y z 为线段1CC 上一点,且1(01)CP PC λλ=≤≤uu r uuu r. 因为2221222(,2,),(,2,4)CP x y z PC x y z =-=---uu r uuu r.所以222222(,2,)(,2,4)x y z x y z λ-=---.…10分 即22240,2,1x y z λλ===+. 所以4(0,2,)1P λλ+.…11分 设平面PBD 的法向量333(,,)x y z =m . 因为4(0,2,),(2,2,0)1DP DB λλ==+uu u r uu u r ,所以 0,0DP DB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uu u r m m .即3333420,1220y z x y λλ⎧+=⎪+⎨⎪+=⎩.…12分 令31y =,则3311,2x z λλ+=-=-. 所以1(1,1,)2λλ+=--m .…13分 若平面11ACD ⊥平面PBD ,则0⋅=m n .即1202λλ+-=,解得13λ=. 所以当113CP PC =时,平面11ACD ⊥平面PBD . ………14分 18.(Ⅰ)由条件2,a b =…2分 故所求椭圆方程为13422=+y x .…4分 (Ⅱ)设过点2(1,0)F 的直线l 方程为:)1(-=x k y . …5分由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩可得:01248)34(2222=-+-+k x k x k …6分因为点2(1,0)F 在椭圆内,所以直线l 和椭圆都相交,即0>∆恒成立.设点1122(,),(,)E x y F x y ,则34124,34822212221+-=+=+k k x x k k x x . …8分 因为直线AE 的方程为:)2(211--=x x y y ,直线AF 的方程为:)2(222--=x x y y , (9)分令3x =,可得)2,3(11-x y M ,)2,3(22-x y N ,所以点P 的坐标12121(3,())222yy x x +--.10分 直线2PF 的斜率为12121()0222'31y y x x k +---=-12121()422yy x x =+--122112121212()42()4x y x y y y x x x x +-+=⋅-++1212121223()4142()4kx x k x x kx x x x -++=⋅-++ …12分2222222241282341434341284244343k k k k k k k k k k k -⋅-⋅+++=⋅--⋅+++34k =- 所以k k '⋅为定值43-. …13分 19. (Ⅰ) 因为对任意n *∈N ,三个数(),(),()A n B n C n 是等差数列,所以()()()()B n A n C n B n -=-. …1分 所以1122n n a a a a ++-=-, …2分即21214n n a a a a ++-=-=.…3分所以数列{}n a 是首项为1,公差为4的等差数列.…4分所以1(1)443n a n n =+-⨯=-. …5分(Ⅱ)(1)充分性:若对于任意n *∈N ,三个数(),(),()A n B n C n 组成公比为q 的等比数列,则()(),()()B n qA n C n qB n ==.…6分所以[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即2121n n a qa a qa ++-=-. …7分 因为当1n =时,由(1)(1),B qA =可得21a qa =,……8分所以210n n a qa ++-=.因为0n a >,所以2211n n a a q a a ++==. 即数列{}n a 是首项为1a ,公比为q 的等比数列, ………9分(2)必要性:若数列{}n a 是公比为q 的等比数列,则对任意n *∈N ,有 1n n a a q +=. …10分 因为0n a >,所以(),(),()A n B n C n 均大于0.于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ …11分 231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ …12分 即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. 综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列. ………14分20. Ⅰ)当2a =时,2()2ln 2f x x x x =-+,2()22f x x x'=-+,切点坐标为(11),, 切线的斜率(1)2k f '==,则切线方程为12(1)y x -=-,即21y x =-. ····························· 2分 (Ⅱ)2()2ln g x x x m =-+,则22(1)(1)()2x x g x x x x-+-'=-=, ∵1[e]e x ∈,,故()0g x '=时,1x =.当11ex <<时,()0g x '>;当1e x <<时,()0g x '<. 故()g x 在1x =处取得极大值(1)1g m =-. ·············································································· 4分 又211()2e e g m =--,2(e)2e g m =+-,2211(e)()4e 0e eg g -=-+<,则1(e)()e g g <, ∴()g x 在1[e]e,上的最小值是(e)g . ······················································································· 6分 ()g x 在1[e]e ,上有两个零点的条件是2(1)10,11()20,e eg m g m =->⎧⎪⎨=--≤⎪⎩解得2112e m <≤+, ∴实数m 的取值范围是21(12]e +,. ··························································································· 8分 (Ⅲ)∵()f x 的图象与x 轴交于两个不同的点12(0)(0)A x B x ,,,,∴方程22ln 0x x ax -+=的两个根为12x x ,,则211122222ln 0,2ln 0,x x ax x x ax ⎧-+=⎪⎨-+=⎪⎩两式相减得1212122(ln ln )()x x a x x x x -=+--.又2()2ln f x x x ax =-+,2()2f x x a x '=-+,则1212124()()2x x f x x a x x +'=-+++1212122(ln ln )4x x x x x x -=-+-. 下证1212122(ln ln )40x x x x x x --<+-(*),即证明2111222()ln 0x x x x x x -+<+,12x t x =, ∵120x x <<,∴01t <<,即证明2(1)()ln 01t u t t t -=+<+在01t <<上恒成立. ·················· 10分 ∵22222(1)2(1)114(1)()(1)(1)(1)t t t u t t t t t t t -+---'=+=-=+++,又01t <<,∴()0u t '>, ∴()u t 在(0,1)上是增函数,则()(1)0u t u <=,从而知2111222()ln 0x x x x x x -+<+, 故(*)式<0,即12()02x x f +'<成立………….12分。