2019_2020学年高中数学课时达标训练(九)等差数列的前n项和(含解析)新人教A版必修5

合集下载

2019-2020学年高中数学课时跟踪检测九等差数列的前n项和苏教版必修

2019-2020学年高中数学课时跟踪检测九等差数列的前n项和苏教版必修
由于S12=6(a6+a7)>0,S13=13a7<0,可得a6>0,a7<0,故在S1,S2,…,S12中S6的值最大.
层级二 应试能力达标
1.已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=( )
A.12B.14
C.16D.18
解析:选B 因为Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn= =210,得n=14.
2.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n等于( )
A.12B.16
C.9D.16或9
解析:选C 设凸多边形的内角组成的等差数列为{an},则an=120+5(n-1)=5n+115,由an<180,得n<13且n∈N*.由n边形内角和定理得,(n-2)×180=n×120+ ×5.解得n=16或n=9.∵n<13,∴n=9.
8.在数列{an}中,a1=8,a4=2,且满足an+2+an=2an+1.
(1)求数列{an}的通项公式;
(2)设Sn是数列{|an|}的前n项和,求Sn.
解:(1)由2an+1=an+2+an可得{an}是等差数列,
且公差d= = =-2.
∴an=a1+(n-1)d=-2n+10.
(2)令an≥0,得n≤5.
=n2-9n+40,
∴Sn=
即当n≤5时,an≥0,n≥6时,an<0.
∴当n≤5时,Sn=|a1|+|a2|+…+|an|
=a1+a2+…+an=-n2+9n;
当n≥6时,Sn=|a1|+|a2|+…+|an|

(完整版)等差数列的前n项和练习含答案

(完整版)等差数列的前n项和练习含答案

课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。

高中数学等差数列的前n项和训练题(有答案)

高中数学等差数列的前n项和训练题(有答案)

高中数学等差数列的前 n 项和训练题(有答案)1.若一个等差数列首项为0,公差为2,则这个等差数列的前 20 项之和为 ()A .360 B.370C.380 D .390答案: C2.已知 a1= 1, a8=6,则 S8 等于 ()A .25 B.26C.27 D .28答案: D3.设等差数列 {an} 的前 n 项和为 Sn,若 a6= S3= 12,则{an}的通项 an=________.分析:由已知a1+ 5d= 123a1+ 3d= 12a1= 2,d= 2.故 an=2n.答案: 2n4.在等差数列 {an} 中,已知 a5= 14,a7= 20,求 S5.解: d=a7- a57- 5= 20- 142= 3,a1= a5- 4d= 14- 12= 2,因此 S5= 5a1+ a52=52+ 142= 40.一、选择题1. (2019 年杭州质检 )等差数列 {an} 的前 n 项和为 Sn,若 a2=1,a3= 3, S4=()A .12 B.10C.8 D.6分析: C.d= a3-a2= 2,a1=- 1,S4= 4a1+ 4322=8.2.在等差数列 {an} 中, a2+ a5=19, S5=40, a10=()A .24 B.27C.29 D .48分析: C.由已知 2a1+5d= 19, 5a1+ 10d= 40.解得 a1= 2, d= 3.a10=2+ 93= 29. X k b 1 . c o m3.在等差数列 {an} 中, S10= 120, a2+ a9=()A .12 B.24C.36 D .48分析: B.S10= 10a1+ a102= 5(a2+ a9)= 120.a2+a9= 24. 4.已知等差数列 {an} 的公差 1,且 a1+a2+⋯+ a98+ a99=99, a3+ a6+ a9+⋯+a96+ a99= ()A .99 B.66C.33 D .0分析: B.由 a1+ a2+⋯+ a98+ a99=99,得 99a1+ 99982= 99.a1=- 48, a3=a1+ 2d=- 46.又∵ {a3n} 是以 a3 首,以 3 公差的等差数列.a3+ a6+ a9+⋯+a99= 33a3+333223=33(48- 46)= 66.5.若一个等差数列的前 3 的和 34,最后 3 的和 146,且全部的和 390,个数列有 ()A .13B. 12C.11D. 10分析: A. ∵ a1+ a2+ a3=34,①an+ an- 1+ an- 2= 146,②又∵ a1+ an= a2+an-1= a3+an- 2,①+②得3(a1+ an)= 180, a1+an= 60.③Sn= a1+ann2=390.④将③代入④中得n= 13.6.在数 2n+ 1 的等差数列中,全部奇数的和165,全部偶数的和150, n 等于 ()A.9 B.10C.11 D.12分析: B.由等差数列前n 和的性知S 偶 S 奇= nn+ 1,即 150165= nn+ 1, n= 10.二、填空7.数列 {an} 的首 a1=- 7,且足 an+ 1=an+ 2(nN*) ,a1+ a2+⋯+ a17= ________.分析:由意得an+1- an=2,{an} 是一个首a1=- 7,公差 d= 2 的等差数列.a1+ a2+⋯+ a17= S17=17(-7)+ 171622= 153.答案: 1538.已知 {an} 是等差数列, a4+ a6=6,其前 5 和 S5=10,其公差 d= __________.分析: a4+ a6=a1+ 3d+a1+ 5d= 6.①S5= 5a1+ 125(5-1)d=10.② w由①②得a1= 1, d=12.答案: 129. Sn 是等差数列 {an} 的前 n 和, a12=- 8, S9=- 9,S16= ________.分析:由等差数列的性知S9=9a5=- 9,a5=- 1.又∵ a5+ a12=a1+ a16=- 9,S16= 16a1+ a162= 8(a1+ a16)=- 72.答案:- 72三、解答10.已知数列 {an} 的前 n 和公式Sn= n2-23n- 2(nN*) .(1)写出数列的第 3 ;(2)判断 74 能否在数列中.解: (1)a3= S3- S2=- 18.(2)n= 1 , a1= S1=- 24,n2 , an=Sn- Sn- 1= 2n- 24,即 an=- 24, n= 1,2n- 24,n2,由题设得 2n-24= 74(n2),解得 n= 49.74在该数列中.11.(2019 年高考课标全国卷)设等差数列 {an} 知足 a3=5,a10=- 9.(1)求 {an} 的通项公式;(2)求 {an} 的前 n 项和 Sn 及使得 Sn 最大的序号n 的值.解: (1)由 an=a1+ (n- 1)d 及 a3= 5, a10=- 9 得a1+ 2d= 5, a1+ 9d=- 9,可解得a1=9,d=- 2,因此数列 {an} 的通项公式为an= 11-2n.(2)由 (1)知, Sn= na1+ nn- 12d=10n- n2.由于 Sn=- (n- 5)2+ 25,因此当 n= 5 时, Sn 获得最大值.12.已知数列 {an} 是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数;(2)Sn= 20,S2n= 38,求 S3n.解: (1)由题意知 a1+ a2+ a3+a4= 21,an- 3+ an- 2+an-1+ an=67,因此 a1+ a2+ a3+a4+ an- 3+ an-2+ an- 1+ an=88.因此 a1+ an= 884=22.由于 Sn= na1+ an2=286,因此 n=26.(2)由于 Sn, S2n-Sn,S3n-S2n 成等差数列,其实 ,任何一门学科都离不开照本宣科,重点是记忆有技巧, “死记”以后会“活用”。

高二数学北师大必修课时作业: 等差数列的前n项和 含解析

高二数学北师大必修课时作业: 等差数列的前n项和 含解析

2.2等差数列的前n项和第一课时等差数列的前n项和一、非标准1.设S n是等差数列{a n}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D.63解析:S7==49.答案:C2.设S n是等差数列{a n}的前n项和,S5=10,则a3的值为()A. B.1 C.2 D.3解析:∵S5==5a3,∴a3=S5=×10=2.答案:C3.已知数列{a n}的通项公式为a n=2n-37,则S n取最小值时n的值为()A.17B.18C.19D.20解析:由≤n≤.∵n∈N+,∴n=18.∴S18最小,此时n=18.答案:B4.等差数列{a n}的前n项和为S n,已知a m-1+a m+1-=0,S2m-1=38,则m=()A.38B.20C.10D.9解析:由a m-1+a m+1-=0,得2a m-=0,解得a m=2(a m=0舍去).又因为S2m-1=(2m-1)a m,所以38=(2m-1)×2,解得m=10.答案:C5.若两个等差数列{a n},{b n}的前n项和分别为A n与B n,且满足(n∈N+),则的值是()A. B. C. D.解析:由于,所以.答案:C6.已知{a n}是等差数列,S n为其前n项和,n∈N+.若a3=16,S20=20,则S10的值为.解析:设等差数列{a n}的首项为a1,公差为d.∵a3=a1+2d=16,S20=20a1+d=20,∴解得d=-2,a1=20,∴S10=10a1+d=200-90=110.答案:1107.在等差数列{a n}中,前n项和为S n,若a9=3a5,则=.解析:S17=17a9,S9=9a5,于是×3=.答案:8.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差等于. 解析:设公差为d,则有5d=S偶-S奇=30-15=15,于是d=3.答案:39.若数列{a n}为等差数列,S n为其前n项和,已知S7=7,S15=75,T n为数列的前n项和,求T n.解:设等差数列{a n}的公差为d,则S n=na1+n(n-1)d.由S7=7,S15=75,得即解得∴=a1+(n-1)d=-2+(n-1)=(n-5),∴(n+1-5)-(n-5)=,∴数列是首项为-2,公差为的等差数列,∴T n=-2n+n(n-1)×n2-n.10.在等差数列{a n}中,a1=-60,a17=-12,求数列{|a n|}的前n项和.解:数列{a n}的公差d==3,∴a n=a1+(n-1)d=-60+(n-1)×3=3n-63.由a n<0得3n-63<0,解得n<21.∴数列{a n}的前20项是负数,第20项以后的项都为非负数.设S n,S n'分别表示数列{a n}和{|a n|}的前n项和,当n≤20时,S n'=-S n=-=-n2+n;当n>20时,S n'=-S20+(S n-S20)=S n-2S20=-60n+×3-2×n2-n+1260.∴数列{|a n|}的前n项和S n'=。

等差数列的前n项和(精练)(解析版)

等差数列的前n项和(精练)(解析版)

4.2.2 等差数列的前n 项和1.(2020·宜宾市叙州区第一中学校高三三模(文))已知等差数列{}n a 的前n 项和为n S ,9445,31n S a -==,若198n S =,则n =( ) A .10 B .11C .12D .13【答案】B【解析】945S =1955945()952a a a a ⇒=+=⇒= ,所以154()()198(531)11222n n n n n nS a a a a n -=+=+∴=+∴= ,选B.2.(2020·东北育才学校高二月考(文))已知等差数列{}n a 的前n 项和为n S ,若74328a a =+,则25S =( ) A .50 B .100C .150D .200【答案】D【解析】设等差数列{a n }首项为1a ,公差为d,∵74328a a =+,∴3(()116)238a d a d +=++,∴1a +12d=8,即138a = 故S 25=()125252a a +=132522a ⨯=25a 13=200故选:D . 3.(2020·四川省泸县第二中学开学考试(文))等差数列{}n a 的前n 项和为n S ,23a =,且936S S =,则{}n a 的公差d =( )A .1B .2C .3D .4【答案】A【解析】由等差数列性质知()()1319329353939,?654922a a a a S a S S a ++=======,则56a =.所以5213a a d -==.故选A. 4.(2020·云南高一期末)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺题组一 等差数列的基本量【答案】C【解析】从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩,解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺).故选C .5.(2020·陕西省洛南中学高二月考)在等差数列{}n a 中,已知12232,10a a a a +=+=,求通项公式n a 及前n 项和n S .【答案】45n a n =-,223n S n n =- *(1,)n n N ≥∈【解析】令等差数列{}n a 的公差为d ,则由12232,10a a a a +=+=,知:11222310a d a d +=⎧⎨+=⎩,解之得11{4a d =-=; ∴根据等差数列的通项公式及前n 项和公式,有:()()1114145n a a n d n n =+-=-+-=-,21232nn a a S n n n +=⋅=- *(1,)n n N ≥∈;1.(2020·湖北黄州·黄冈中学其他(理))已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42 B .21C .7D .3【答案】B【解析】由等差数列的性质可得6354553a a a a a a +-=+-=,()1747772732122a a a S +⨯∴===⨯=.故选:B.2.(2019·贵州六盘水·高二期末(理))在等差数列{}n a 中,358a a +=,则7S =( )题组二 前n 项和S n 与等差中项A .12B .28C .24D .35【答案】B【解析】等差数列{}n a 中,358a a +=,故17358a a a a +=+=,所以()7717782822S a a +⨯===.故选:B. 3.(2020·湖北荆州·高二期末)已知等差数列{}n a 的前n 项和为n S ,若57942a a a ++=,则13S =( ) A .36 B .72C .91D .182【答案】D【解析】数列{}n a 为等差数列,则5797342a a a a ++==,解得714a = 则()113137131313141822a a S a+=⨯==⨯=故选:D4.(2019·黄梅国际育才高级中学月考)若两个等差数列{}{},n n a b 的前n 项和分别为A n 、B n ,且满足4255n n A n B n +=-,则513513a a b b ++的值为( )A .78B .79C .87D .1920【答案】A【解析】等差数列{}n a 、{}n b 前n 项和分别为n A ,n B ,由4255n n A n B n +=-, 得1131171131751717511177)2)217(4172717(51758a a a a a a Ab b b b b b B +++⨯+=====+++⨯-.故选:A . 5.(2020·赣州市赣县第三中学期中)设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若20121n n S n T n -=-.则33a b =( ) A .595B .11C .12D .13【答案】B【解析】因为等差数列{}n a 前n 项和为n S ,所以1()2n n n a a S +=, 当n 是奇数时,112()2n n n n a a S na ++==,所以33533555a a Sb b T ==,故选:B6.(2020·广西田阳高中高二月考(理))已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( ) A .67B .1211C .1825D .1621【答案】A【解析】因为等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-, 所以可设(5)n S kn n =+,(21)n T kn n =-, 所以77618a S S k =-=,66521b T T k =-=,所以7667a b =.故选:A 7.(2020·商丘市第一高级中学高一期末)等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且7453n n S n T n +=-,则使得nna b 为整数的正整数n 的个数是( ) A .3 B .4C .5D .6【答案】C【解析】∵等差数列{a n }、{b n },∴121121,22n n n n a a b ba b --++== , ∴()()121211212122n n n n n n n n n a a a na S n b b b nb T ----+===+ ,又7453n n S n T n +=- , ∴()()7214566721324n n n a b n n -+==+--- , 经验证,当n=1,3,5,13,35时,n n a b 为整数,则使得nna b 为整数的正整数的n 的个数是5.本题选择C 选项.1.(2020·榆林市第二中学高二月考)设等差数列{}n a 的前n 项和为n S ,若488,20S S ==,则题组三 前n 项和S n 的性质13141516a a a a +++= ( )A .12B .8C .20D .16【答案】C【解析】∵等差数列{}n a 的前n 项和为n S ,488,20S S ==, 由等差数列的性质得:4841281612,,,S S S S S S S ---成等比数列 又4848,20812,S S S =-=-=∴128122012416,S S S -=-=+=16121314151616420S S a a a a -=+++=+=.故选:C .2.(2020·重庆其他(文))等差数列{}n a 的前n 项和为n S ,已知312S =,651S =,则9S 的值等于( ) A .66 B .90C .117D .127【答案】C【解析】等差数列{}n a 的前n 项和为n S ,由题意可得63963,,S S S S S --成等差数列,故()()363962S S S S S -=+-,代入数据可得()()9251121125S -=+-,解得9117S =故选C3.(2020·江苏徐州·高二期中)已知n S 为等差数列{}n a 的前n 项之和,且315S =,648S =,则9S 的值为( ). A .63 B .81C .99D .108【答案】C【解析】由n S 为等差数列{}n a 的前n 项之和,则3S ,639633(1),,......m m S S S S S S ---- 也成等差数列, 则3S ,6396,S S S S --成等差数列,所以633962()()S S S S S -=+-,由315S =,648S =, 得999S =,故选:C.4.(2020·昆明市官渡区第一中学高二期末(理))等差数列{}n a 的前n 项和为n S ,且1020S =,2015S =,则30S =( ) A .10 B .20C .30-D .15-【答案】D【解析】由等差数列{}n a 的前n 项和的性质可得:10S ,1200S S -,3020S S -也成等差数列,20101030202()()S S S S S ∴-=+-,302(1520)2015S ∴⨯-=+-,解得3015S =-.故选D .5.(2020·朔州市朔城区第一中学校期末(文))设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27【答案】B【解析】由等差数列性质知S 3、S 6﹣S 3、S 9﹣S 6成等差数列,即9,27,S 9﹣S 6成等差,∴S 9﹣S 6=45 ∴a 7+a 8+a 9=45故选B .6.(2020·新疆二模(文))在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若101221210S S -=,则2020S =( ) A .-4040 B .-2020 C .2020 D .4040【答案】C【解析】设等差数列{}n a 的前n 项和为2+n S An Bn =,则+nS An B n=, 所以n S n ⎧⎫⎨⎬⎩⎭是等差数列.因为101221210S S -=,所以n S n ⎧⎫⎨⎬⎩⎭的公差为1,又11201811S a ==-,所以n S n ⎧⎫⎨⎬⎩⎭是以2018-为首项,1为公差的等差数列, 所以202020182019112020S =-+⨯=,所以20202020S =故选:C 8.(2020·河北路南·唐山一中)已知n S 是等差数列{}n a 的前n 项和,若12017a =-, 20142008620142008S S -=,则2017S =__________. 【答案】2017- 【解析】n S 是等差数列{}n a 的前n 项和, n S n ⎧⎫∴⎨⎬⎩⎭是等差数列,设其公差为d ,201420086,66,120142008S S d d -=∴==, 112017,20171S a =-∴=-,()()20172017112018,2018201720172017nS n n S n∴=-+-⨯=-+∴=-+⨯=-, 故答案为2017-.9.(2020·湖南怀化·高二期末)已知n S 是等差数列{}n a 的前n 项和,若12a =-,20202018220202018S S -=,则20192019S =________. 【答案】2016 【解析】n S 是等差数列{}n a 的前n 项和,n S n ⎧⎫∴⎨⎬⎩⎭是等差数列,设其公差为d .20202018 220202018S S -=,22d ∴=,1d =.12a =-,1S21∴=-. 2(1)13n S n n n ∴=-+-⨯=-.2019S20162019∴=.故答案为:2016.1.(2020·安徽铜陵·)设n S 是公差不为零的等差数列{}n a 的前n 项和,且10a >,若59S S =,则当n S 最大时,n=( ) A .6 B .7C .10D .9【答案】B【解析】由等差数列中,59S S =,可得,故,其中,可知当时,最大.2.(2020·河北运河·沧州市一中月考)等差数列{}n a 中,10a >,201520160a a +>,201520160a a <,则使前n 项和0n S >成立的最大自然数n 是( ) A .2015 B .2016C .4030D .4031【答案】C【解析】由题意知201520160,0a a ><,所以14030201520160a a a a +=+>,而14031201620a a a +=<,则有()140304*********a a S ⨯+=>,而()140314031403102a a S ⨯+=<,所以使前n 项和0n S >成立的最大自然数n 是4030,故选C .3.(2020·河北路南·唐山一中期末)已知等差数列{}n a 的前n 项和为n S ,且856a a -=-,9475S S -=,题组四 前n 项和S n 的最值则n S 取得最大值时n =( ) A .14 B .15C .16D .17【答案】A【解析】设等差数列{}n a 的公差为d ,则11369364675d a d a d =-⎧⎨+--=⎩,解得1227d a =-⎧⎨=⎩,故292n a n =-,故当114n ≤≤时,0n a >;当15n ≥时,0n a <, 所以当14n =时,n S 取最大值.故选:A.4.(2020·广西南宁三中开学考试)已知等差数列{}n a 的通项公式为29n a n =-,则使得前n 项和n S 最小的n 的值为( ) A .3 B .4C .5D .6【答案】B【解析】由290n a n =-≤,解得92n ≤,14n ∴≤≤时,0n a <;5n ≥时,0n a > 则使得前n 项和n S 最小的n 的值为4故选:B5.(2020·四川青羊·石室中学高一期末)在等差数列{}n a 中,其前n 项和是n S ,若90S >,100S <,则在912129,,,S S S a a a ⋯中最大的是( ) A .11S aB .88S aC .55S aD .99S a【答案】C 【解析】由于191109510569()10()9050222a a a a S a S a a ++====+>,()< ,所以可得5600a a >,<. 这样569121256900...0,0,...0S S S S S a a a a a ,,,>>><<,而125125S S S a a a ⋯⋯<<<,>>>>0, , 所以在912129...S S S a a a ,,,中最大的是55S a .故选C .6.(2020·福建宁德·期末)公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d < B .70a >C .{}n S 中5S 最大D .49a a <【答案】AD【解析】根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202a a S +=<所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+,所以60a >,760a a <-<,所以0d <,{}n S 中6S 最大,由于11267490a a a a a a +=+=+<,所以49a a <-,即:49a a <.故AD 正确,BC 错误.故选:AD.7.(2020·黑龙江让胡路·大庆一中高一期末)已知等差数列{}n a 的前n 项和为n S ,若780a a +>,790a a +<则n S 取最大值时n 的值是( ) A .4 B .5C .6D .7【答案】D【解析】等差数列{}n a 的前n 项和为n S ,且780a a +>,790a a +<,12130a d ∴+>且12140a d +<,10,0,a d ∴><且780,0a a ><,所以当S n 取最大值时7n =.故选:D8.(2020·浙江其他)已知等差数列{}n a 的前n 项和n S ,且34S =,714S =,则23n n S a +-最小时,n 的值为( ). A .2 B .1或2C .2或3D .3或4【答案】C【解析】设等差数列{}n a 的公差为d ,因为34S =,714S =,所以1132342767142a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,解得11a =,13d =,所以2223(1)11550[1(2)]23318n n n n n n S an n +----=+⨯-++=, 因为n ∈+N ,所以当2n =或3n =时,其有最小值.选:C1.(2020·山西大同·高三其他(理))若等差数列{}n a 的前n 项和为n S ,已知129,a a Z =∈,且()5*n S S n N ≤∈,则12n a a a +++=________.【答案】2210,51050,5n n n n n n ⎧-≤⎨-+>⎩【解析】∵等差数列{}n a 的前n 项和为n S ,129,a a Z =∈,且5n S S ≤,56940,950a d a d ∴=+≥=+<, 2,2a Z d ∈∴=-,2(1)9(2)102n n n S n n n -∴=+⨯-=-, ∴当5n ≤时,212..10n a a a n n ++⋯+=-;当5n >时,()()21212345210n a a a a a a a a n n++⋯⋯+=++++--()222105510n n =⨯-+-21050n n =-+,212210,5..1050,5n n n n a a a n n n ⎧-≤∴++⋯+=⎨-+>⎩.故答案为:2210,51050,5n n n n n n ⎧-≤⎨-+>⎩. 2.(2020·黑龙江香坊·哈尔滨市第六中学校高三三模(理))已知等差数列{}n a 前三项的和为3-,前三项的积为15,(1)求等差数列{}n a 的通项公式;(2)若公差0d >,求数列{}n a 的前n 项和n T .题组五 含有绝对值的求和【答案】(1)49n a n =-或74n a n =-(2)25,1{2712,2n n T n n n ==-+≥【解析】(1)设等差数列的{}n a 的公差为d 由1233a a a ++=-,得233a =-所以21a =- 又12315a a a =得1315a a =-,即1111(2)15a d a a d +=-⎧⎨+=-⎩所以154a d =-⎧⎨=⎩,或134a d =⎧⎨=-⎩即49n a n =-或74n a n =- (2)当公差0d >时,49n a n =-1)当2n ≤时,490n a n =-<,112125,6T a T a a =-==--= 设数列{}n a 的前项和为n S ,则2(549)272n n S n n n -+-=⨯=-2)当3n ≥时,490n a n =->123123n n n T a a a a a a a a =++++=--+++()()123122n a a a a a a =++++-+2222712n S S n n =-=-+当1n =时,15T =也满足212171127T ≠⨯-⨯+=, 当2n =时,26T =也满足222272126T =⨯-⨯+=,所以数列{}n a 的前n 项和25127122n n T n n n =⎧=⎨-+≥⎩ 3.(2020·全国高三(文))在等差数列{}n a 中,28a =,64a =-. (1)求n a 的通项公式; (2)求12||||||n n T a a a =+++的表达式.【答案】(1)314n a n =-+;(2)2232542232552522n n n n T n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩. 【解析】(1)设公差为d ,则11854a d a d +=⎧⎨+=-⎩,解得111a =,3d =-,所以314n a n =-+.(2)由314n a n =-+0≥可得4n ≤, 所以当4n ≤时,112()(11314)22n n n n a a n n T a a a +-+=+++===232522n n -+, 当5n ≥时,12345()n n T a a a a a a =+++-++1234122()()n a a a a a a a =+++-+++114()4()222n n a a a a ++=⨯-(253)522n n -=-23255222n n =-+. 所以2232542232552522n n n n T n n n ⎧-+≤⎪⎪=⎨⎪-+≥⎪⎩. 4.(2020·石嘴山市第三中学高三其他(理))已知数列{}n a 满足:313a =-,()141,n n a a n n N -=+>∈. (1)求1a 及通项n a ;(2)设n S 是数列{}n a 的前n 项和,则数列1S ,2S ,3S ,…n S …中哪一项最小?并求出这个最小值. (3)求数列{}n a 的前10项和.【答案】(1)121a =-,425n a n =-;(2)6S 最小,666S =-;(3)前10项和为:102. 【解析】(1)()142n n a a n -=+≥,∴当3n =时,324a a =+,217a =-,214a a =+,121a =-,由14n n a a --=知数列为首项是21-,公差为4的等差数列, 故425n a n =-;(2)425n a n =-,故610a =-<,730a =>,故6S 最小,()6656214662S ⨯=⨯-+⨯=-; (3)当16n ≤≤时,0n a <;当7n ≥时,0n a >,()()10121012678910……T a a a a a a a a a a ∴=+++=-+++++++()()()61061061092102142661022S S S S S ⨯=-+-=-=⨯-+⨯-⨯-=. 5.(2020·湖北武汉)已知数列{}n a 是等差数列,公差为d ,n S 为数列{}n a 的前n 项和,172a a +=-,315S =. (1)求数列{}n a 的通项公式n a ; (2)求数列{}n a 的前n 项和T n .【答案】(1)()*311n a n n N =-+∈;(2)2(193),3231960,42n n n n T n n n -⎧≤⎪⎪=⎨-+⎪≥⎪⎩. 【解析】(1)∵{}n a 是等差数列,公差为d ,且172a a +=-,315S =,∴11262323152a d a d +=-⎧⎪⎨⨯+=⎪⎩,解得18a =,3d =-, ∴()()()11813311n a a n d n n =+-=+--=-+, ∴数列{}n a 的通项公式为:()*311n a n n N=-+∈.(2)令0n a ≥,则3110n -+≥,∴311n ≤,∴233n ≤,*n N ∈. ∴3n ≤时,0n a >;4n ≥时,0n a <, ∵18a =,311n a n =-+,∴3n ≤时,12(8311)2n n n n T a a a -+=++⋅⋅⋅+=()1932n n -=, 当4n ≥时,()121234n n n T a a a a a a a a =++⋅⋅⋅+=+++--⋅⋅⋅-()()12312322n n a a a a a a S S =++-++⋅⋅⋅+=-23(199)(193)319602222n n n n ⨯---+=⨯-=.∴2(193),3231960,42n n n n T n n n -⎧≤⎪⎪=⎨-+⎪≥⎪⎩. 6.(2020·任丘市第一中学)在公差是整数的等差数列{}n a 中,17a =-,且前n 项和4n S S ≥. (1)求数列{}n a 的通项公式n a ;(2)令n n b a =,求数列{}n b 的前n 项和n T .【答案】(1)29n a n =-;(2)()228,4832,5n n n n T n N n n n *⎧-+≤=∈⎨-+≥⎩. 【解析】(1)设等差数列{}n a 的公差为d ,则d Z ∈,由题意知,{}n S 的最小值为4S ,则4500a a ≤⎧⎨≥⎩,17a =-,所以370470d d -≤⎧⎨-≥⎩,解得7743d ≤≤,d Z ∈,2d ∴=,因此,()()1172129n a a n d n n =+-=-+-=-; (2)29n n b a n ==-.当4n ≤时,0n a <,则n n n b a a ==-,()272982n n n n T S n n -+-∴=-=-=-+;当5n ≥时,0n a >,则n n n b a a ==,()22428216832n n T S S n n n n ∴=-=--⨯-=-+.综上所述:()228,4832,5n n n n T n N n n n *⎧-+≤=∈⎨-+≥⎩.。

等差数列的前n项和习题(含答案)

等差数列的前n项和习题(含答案)

[A 基础达标]1.记等差数列{a n }的前n 项和为S n ,若S 4=20,S 2=4,则公差d 为( )A .2B .3C .6D .7解析:选B.由⎩⎪⎨⎪⎧S 2=4,S 4=20得⎩⎪⎨⎪⎧2a 1+d =4,4a 1+6d =20,解得⎩⎪⎨⎪⎧a 1=12,d =3.2.已知数列{a n }为等差数列,a 10=10,数列前10项和S 10=70,则公差d =( )A .-23B .-13 C.13 D .23解析:选D.由S 10=10(a 1+a 10)2,得70=5(a 1+10),解得a 1=4,所以d =a 10-a 110-1=10-49=23,故选D. 3.在等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( )A .160B .180C .200D .220解析:选B.(a 1+a 2+a 3)+(a 18+a 19+a 20)=(-24)+78=54,又a 1+a 20=a 2+a 19=a 3+a 18,则3(a 1+a 20)=54,所以a 1+a 20=18.则S 20=20(a 1+a 20)2=10×18=180. 4.已知数列{a n }的前n 项和公式是S n =2n 2+3n ,则⎩⎨⎧⎭⎬⎫S n n ( ) A .是公差为2的等差数列B .是公差为3的等差数列C .是公差为4的等差数列D .不是等差数列解析:选A.因为S n =2n 2+3n ,所以S n n=2n +3, 当n ≥2时,S n n -S n -1n -1=2n +3-2(n -1)-3=2, 故⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列. 5.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若a n b n =2n 3n +1,则S 21T 21的值为( ) A.1315B .2335 C.1117 D .49解析:选C.S 21T 21=21(a 1+a 21)221(b 1+b 21)2=a 1+a 21b 1+b 21=a 11b 11=2×113×11+1=1117. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________.解析:设等差数列的首项为a 1,公差为d ,则由6S 5-5S 3=5知,6×(5a 1+10d )-5(3a 1+3d )=5,得3(a 1+3d )=1,所以a 4=13. 答案:138.若等差数列{a n }满足3a 8=5a 13,且a 1>0,S n 为其前n 项和,则S n 最大时n =________.解析:因为3a 8=5a 13,所以3(a 1+7d )=5(a 1+12d ),所以d =-2a 139,故a n =a 1+(n -1)d =a 1-2a 139(n -1)=a 139(41-2n ).由a 1>0可得当n ≤20时,a n >0,当n >20时,a n <0,所以S n 最大时n =20.答案:209.已知在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.所以a n =1+(n -1)×(-2)=3-2n .(2)由a 1=1,d =-2,得S n =2n -n 2.又S k =-35,则2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N +,故k =7.10.某仓库有同一型号的圆钢600根,堆放成如图所示的形状,从第二层开始,每一层比下面一层少放一根,而第一层至少要比第二层少一根,要使堆垛的占地面积最小(即最下面一层根数最少),则最下面一层放几根?共堆了多少层?解:设最下面一层放n 根,则最多可堆n 层,则1+2+3+…+n =n (n +1)2≥600, 所以n 2+n -1 200≥0,记f (n )=n 2+n -1 200,因为当n ∈N +时,f (n )单调递增,而f (35)=60>0,f (34)=-10<0,所以n ≥35,因此最下面一层最少放35根.因为1+2+3+…+35=630,所以最多可堆放630根,必须去掉上面30根,去掉顶上7层,共1+2+3+…+7=28根,再去掉顶上第8层的2根,剩下的600根共堆了28层.[B 能力提升]11.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( )A .5B .6C .7D .8解析:选B.由题意知a 1+a 2+a 3+a 4=124,a n +a n -1+a n -2+a n -3=156,所以4(a 1+a n )=280,所以a 1+a n =70.又S n =n (a 1+a n )2=n 2×70=210,所以n =6. 12.若两个等差数列的前n 项和之比是(7n +1)∶(4n +27),则它们的第11项之比为____________.解析:设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a 11=a 1+a 212,b 11=b 1+b 212, 所以a 11b 11=12(a 1+a 21)12(b 1+b 21)=12(a 1+a 21)·2112(b 1+b 21)·21=S 21T 21=7×21+14×21+27=43. 答案:4∶313.已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)证明:数列⎩⎨⎧⎭⎬⎫1S n 为等差数列,并求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n . 解:(1)由题意S 2n =a n ⎝⎛⎭⎫S n -12,结合a n =S n -S n -1(n ≥2)得S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12(n ≥2),化简整理得1S n -1S n -1=2(n ≥2),知数列⎩⎨⎧⎭⎬⎫1S n 为公差为2的等差数列,所以1S n =1S 1+(n -1)×2=1+(n -1)×2=2n -1,所以S n =12n -1. (2)b n =S n 2n +1=12×⎝⎛⎭⎫12n -1-12n +1, 所以T n =b 1+b 2+…+b n=12⎝⎛1-13+13-15+…+12n -1- ⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1.14.(选做题)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c 的值. 解:(1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,从而可得a 1=1,d =4,所以a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2·d =2n 2-n =2⎝⎛⎭⎫n -142-18,所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c , 所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,得2c 2+c =0,所以c =-12或c =0(舍去),所以c =-12.。

等差数列前n项和公式基础训练题(含详解)

等差数列前n项和公式基础训练题(含详解)
;③ ;
④ ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
11.
【解析】
【分析】
根据 得到 , ,计算得到答案.
【详解】
; ,解得
故答案为:
【点睛】
本题考查了等差数列的通项公式和前 项和,意在考查学生对于等差数列公式的灵活运用.
12.
【解析】
【分析】
利用 来求 的通项.
A.18B.36C.45D.60
7.设 为等差数列, , 为其前n项和,若 ,则公差 ()
A. B. C.1D.2
8.等差数列 的前 项和为 ,已知 , ,则当 取最大值时 的值是()
A.5B.6C.7D.8
9.已知 是数列 的前 项和,且 ,则 ().
A.72B.88C.92D.98
10.设 为等差数列 的前 项的和 , ,则数列 的前2017项和为( )
所以 ,所以 .
故答案为: .
【点睛】
本题考查等差数列公差的计算,难度较易.已知等差数列中的两个等量关系,可通过构造方程组求解等差数列的公差,还可以通过等差数列的下标和性质求解公差.
20.已知数列{an}的前n项和为Sn=n2+3n+5,则an=______.
参考答案
1.A
【解析】
设 ,根据 是一个首项为a,公差为a的等差数列,各项分别为a,2a,3a,4a. .
2.B
【解析】
【分析】
根据等差数列的性质,求出 ,再由前n项和公式,即可求解.
【详解】
∵ ,
∴ ,∴
∴由 得 ,∴ .
故选:B.
【点睛】
本题考查等差数列性质的灵活应用,以及等差数列的前n项和公式,属于中档题.

等差数列的前n项和练习含答案

等差数列的前n项和练习含答案

课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列.∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n 2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180.方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。

等差数列及其前n项和(解析版)

等差数列及其前n项和(解析版)

等差数列及其前n 项和一、学习目标1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系. 二、知识讲解知识点一 等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 知识点二 等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n = 通项公式的推广:a n = (2)等差数列的前n 项和公式 S n =知识点三 等差数列及前n 项和的性质(1)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. 知识点四 等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 知识点五 等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 三、例题辨析考点一 等差数列基本量的运算【典例1】记nS 为等差数列{}n a 的前n 项和.已知4505S a ==,,则( )A .25n a n =-B .310n a n =-C .228n S n n=- D .2122n S n n =-【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A 。

高中数学《等差数列及其前n项和》(训练)(含答案)

高中数学《等差数列及其前n项和》(训练)(含答案)

§6.2等差数列及其前n项和1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2 或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.知识拓展等差数列的四种判断方法(1)定义法:a n+1-a n=d(d是常数)⇔{a n}是等差数列.(2)等差中项法:2a n+1=a n+a n+2 (n∈N*)⇔{a n}是等差数列.(3)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(4)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.()(2)等差数列{a n}的单调性是由公差d决定的.()(3)等差数列的前n项和公式是常数项为0的二次函数.()(4)已知等差数列{a n}的通项公式a n=3-2n,则它的公差为-2.()(5)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.()(6)已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列.()题组二教材改编2.[P46A组T2]设数列{a n}是等差数列,其前n项和为S n,若a6=2且S5=30,则S8等于() A.31 B.32 C.33 D.343.[P39T5]在等差数列{a n}中,若a3+a4+a5+a6+a7=450,则a2+a8=________.题组三易错自纠4.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d的取值范围是()A.d>875B.d<325 C.875<d<325 D.875<d≤3255.若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=________时,{a n}的前n项和最大.6.一物体从1 960 m的高空降落,如果第1秒降落4.90 m,以后每秒比前一秒多降落9.80 m,那么经过________秒落到地面.题型一等差数列基本量的运算1.(2017·全国Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.82.(2016·全国Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100等于()A.100 B.99 C.98 D.97思维升华等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a1和公差d,然后由通项公式或前n项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n项和公式,共涉及五个量a1,a n,d,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.题型二等差数列的判定与证明典例已知数列{a n}中,a1=35,a n=2-1a n-1(n≥2,n∈N*),数列{b n}满足b n=1a n-1(n∈N*).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. 引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数. (2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2.(3)通项公式法:得出a n =pn +q 后,再根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,再使用定义法证明数列{a n }为等差数列. 跟踪训练 若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.题型三 等差数列性质的应用命题点1 等差数列项的性质典例 已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 命题点2 等差数列前n 项和的性质典例 (1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 018=________.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .跟踪训练 (1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143 D .176(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43等差数列的前n项和及其最值考点分析公差不为0的等差数列,求其前n项和与最值在高考中时常出现,题型有小题,也有大题,难度不大.典例1(1)在等差数列{a n}中,2(a1+a3+a5)+3(a7+a9)=54,则此数列前10项的和S10等于()A.45 B.60 C.75 D.90(2)在等差数列{a n}中,S10=100,S100=10,则S110=________.典例2在等差数列{a n}中,已知a1=20,前n项和为S n,且S10=S15,求当n取何值时,S n 取得最大值,并求出它的最大值.规范解答1.(2018·济南质检)在等差数列{a n}中,若a2=4,a4=2,则a6等于()A.-1 B.0 C.1 D.62.(2018·日照模拟)由公差为d的等差数列a1,a2,a3,…组成的新数列a1+a4,a2+a5,a3+a6,…是()A.公差为d的等差数列B.公差为2d的等差数列C.公差为3d的等差数列D.非等差数列3.(2018·宁德一模)若数列{a n}为等差数列,S n为其前n项和,且a2=3a4-6,则S9等于() A.54 B.50 C.27 D.254.(2019·河南百校联盟模拟)等差数列{a n }中,S n 是其前n 项和,a 1=-9,S 99-S 77=2,则S 10等于( )A .0B .-9C .10D .-105.(2019·唐山统考)等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8等于( ) A .18 B .12 C .9 D .66.(2017·湖南省湘中名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n >0成立的最大正整数n 是( ) A .2 016 B .2 017 C .4 032 D .4 0337.(2019·安徽省安师大附中、马鞍山二中阶段性测试)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是________.8.等差数列{a n }中的a 4,a 2 016是3x 2-12x +4=0的两根,则14log a 1 010=________.9.(2018·郑州模拟)《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布.若第一天织5尺布,现在一个月(按30天计)共织390尺布,则该女最后一天织________尺布.10.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 11.(2016·全国Ⅱ)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式; (2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.12.(2018·贵州质检)已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n+n -4(n ∈N *).(1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.13.(2017·郑州一模)设数列{a n }满足:a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是______.14.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________.15.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________. 16.(2017·保定一模)设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n 的最大值是________.§6.2等差数列及其前n项和(答案解析)题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)等差数列{a n}的单调性是由公差d决定的.(√)(3)等差数列的前n项和公式是常数项为0的二次函数.(×)(4)已知等差数列{a n}的通项公式a n=3-2n,则它的公差为-2.(√)(5)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.(√)(6)已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列.(√)题组二教材改编2.[P46A组T2]设数列{a n}是等差数列,其前n项和为S n,若a6=2且S5=30,则S8等于() A.31 B.32 C.33 D.34答案 B解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎨⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.3.[P39T5]在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 答案 180解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 题组三 易错自纠4.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤325答案 D解析 由题意可得⎩⎪⎨⎪⎧a 10>1,a 9≤1,即⎩⎨⎧125+9d >1,125+8d ≤1,所以875<d ≤325.故选D.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.6.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面. 答案 20解析 设物体经过t 秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列. 所以4.90t +12t (t -1)×9.80=1 960,即4.90t 2=1 960,解得t =20.题型一 等差数列基本量的运算1.(2017·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8 答案 C解析 设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,解得d =4.故选C.2.(2016·全国Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.题型二 等差数列的判定与证明典例 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1⎝⎛⎭⎫2-1a n -1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数. (2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2.(3)通项公式法:得出a n =pn +q 后,再根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,再使用定义法证明数列{a n }为等差数列. 跟踪训练 若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,∴1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.题型三 等差数列性质的应用命题点1 等差数列项的性质典例 已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 答案 21解析 因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质典例 (1)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B.(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 018=________.答案 6 054解析 由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0182 018=S 11+2 017d =-2 014+2 017=3, ∴S 2 018=3×2 018=6 054. 思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .跟踪训练 (1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143 D .176 答案 B解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43 答案 A解析 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现,题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( )A .45B .60C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45.(2)方法一 设数列{a n }的首项为a 1,公差为d , 则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n取得最大值,并求出它的最大值. 规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或n =13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53=-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130. 方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.1.(2018·济南质检)在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 因为数列是等差数列,a 2=4,2a 4=a 2+a 6=4,所以a 6=0,故选B.2.(2018·日照模拟)由公差为d 的等差数列a 1,a 2,a 3,…组成的新数列a 1+a 4,a 2+a 5,a 3+a 6,…是( )A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列 答案 B解析 设新数列a 1+a 4,a 2+a 5,a 3+a 6,…的第n 项是b n ,则b n =a n +a n +3=2a 1+(n -1)d +(n +2)d =2a 1+(2n +1)d ,∴b n +1-b n =2d ,∴新数列是以2d 为公差的等差数列,故选B. 3.(2019宁德一模)若数列{a n }为等差数列,S n 为其前n 项和,且a 2=3a 4-6,则S 9等于( ) A .54 B .50 C .27 D .25 答案 C解析 数列{a n }为等差数列,设公差为d ,则a 4=a 2+2d ,∴a 2=3(a 2+2d )-6,∴2a 2+6d -6=0,∴a 2+3d =3,即a 5=3,则S 9=(a 1+a 9)×92=9×a 5=27.故选C.4.(2019·河南百校联盟模拟)等差数列{a n }中,S n 是其前n 项和,a 1=-9,S 99-S 77=2,则S 10等于( )A .0B .-9C .10D .-10 答案 A解析 设公差为d ,∵S 99-S 77=2,∴9-12d -7-12d =2,∴d =2,∵a 1=-9,∴S 10=10×(-9)+10×92×2=0,故选A.5.(2019·唐山统考)等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8等于( ) A .18 B .12 C .9 D .6 答案 D解析 由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.6.(2019·湖南省湘中名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n >0成立的最大正整数n 是( ) A .2 016 B .2 017 C .4 032 D .4 033 答案 C解析 因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032(a 1+a 4 032)2=4 032(a 2 016+a 2 017)2>0,S 4 033=4 033(a 1+a 4 033)2=4 033a 2 017<0,所以使前n项和S n >0成立的最大正整数n 是4 032,故选C.7.(2019·安徽省安师大附中、马鞍山二中阶段性测试)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是________. 答案 24解析 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.8.等差数列{a n }中的a 4,a 2 016是3x 2-12x +4=0的两根,则14log a 1 010=________.答案 -12解析 因为a 4和a 2 016是3x 2-12x +4=0的两根,所以a 4+a 2 016=4.又a 4,a 1 010,a 2 016成等差数列,所以2a 1 010=a 4+a 2 016,即a 1 010=2,所以14log a 1 010=-12.9.(2017·郑州模拟)《张丘建算经》卷上第22题为:“今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈.”其意思为今有女子善织布,且从第2天起,每天比前一天多织相同量的布.若第一天织5尺布,现在一个月(按30天计)共织390尺布,则该女最后一天织________尺布. 答案 21解析 由题意得,织女每天所织的布的尺数依次排列形成一个等差数列,设为{a n },其中a 1=5,前30项和为390,于是有30(5+a 30)2=390,解得a 30=21,即该织女最后一天织21尺布.10.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.11.(2016·全国Ⅱ)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }的首项为a 1,公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3,解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎡⎦⎤2n +35.当n =1,2,3时,1≤2n +35<2,b n =1;当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3;当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为 1×3+2×2+3×3+4×2=24.12.(2018·贵州质检)已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n+n -4(n ∈N *).(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0, 解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3, 所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }是首项为3,公差为1的等差数列. (2)解 由(1)知a 1=3,d =1,所以数列{a n }的通项公式a n =3+(n -1)×1=n +2, 即a n =n +2.13.(2017·郑州一模)设数列{a n }满足:a 1=1,a 2=3,且2na n =(n -1)a n -1+(n +1)a n +1,则a 20的值是______.答案 245解析 ∵2na n =(n -1)a n -1+(n +1)a n +1,∴数列{na n }是以a 1=1为首项,2a 2-a 1=5为公差的等差数列,∴20a 20=1+5×19=96,解得a 20=9620=245. 14.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 ∵1a n +1=1a n +13,∴1a n +1-1a n =13, ∴⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,13为公差的等差数列, ∴1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14.15.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________. 答案 5解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. ∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验符合题意.16.(2017·保定一模)设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是________. 答案 121解析 设数列{a n }的公差为d ,由题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d , 化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2, 所以S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎫n +102n -12=⎣⎢⎢⎡⎦⎥⎥⎤12(2n -1)+2122n -12=14⎝⎛⎭⎫1+212n -12. 又⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫1+212n -12为单调递减数列, 所以S n +10a 2n ≤S 11a 21=112=121.。

高中数学课时达标训练(九)等差数列的前n项和(含解析)新人教A版必修5

高中数学课时达标训练(九)等差数列的前n项和(含解析)新人教A版必修5

高中数学课时达标训练(九)等差数列的前n 项和(含解析)新人教A 版必修5课时达标训练(九) 等差数列的前n 项和[即时达标对点练]题组1 等差数列前n 项和的有关计算1.设S n 是等差数列{}a n 的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49 D .63解析:选C S 7=7(a 1+a 7)2=7(a 2+a 6)2=7(3+11)2=49,或由⎩⎪⎨⎪⎧a 2=a 1+d =3,a 6=a 1+5d =11,解得⎩⎪⎨⎪⎧a 1=1,d =2. 即S 7=7a 1+7×62d =49.故选C.2.在等差数列{}a n 中,a 6=a 3+a 8,则S 9等于( ) A .0 B .1 C .-1 D .-1或1解析:选A 因为a 6=a 3+a 8,故a 5+d =a 2+d +a 8,得a 5=2a 5,即a 5=0.又a 1+a 9=2a 5=0,S 9=9(a 1+a 9)2=9a 5=0,故选A.3.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.4.已知等差数列{}a n 中,a 1=1,a 3=-3. (1)求数列{}a n 的通项公式;(2)若数列{}a n 的前k 项和S k =-35,求k 的值. 解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3可得1+2d =-3.解得d =-2. 从而,a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.进而由S k =-35可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7为所求结果. 题组2 已知S n 求通项公式a n5.若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =________.解析:当n =1时,a 1=S 1=1-10=-9;当n >1时,a n =S n -S n -1=n 2-10n -[(n -1)2-10(n -1)]=2n -11.又2×1-11=-9=a 1,所以数列{a n }的通项公式为a n =2n -11. 答案:2n -116.已知数列{a n }的前n 项和为S n ,且lg(S n +1)=n +1,求通项公式. 解:因为lg(S n +1)=n +1,所以S n +1=10n +1,即S n =10n +1-1.当n =1时,a 1=S 1=102-1=99,当n ≥2时,a n =S n -S n -1=(10n +1-1)-(10n -1)=9×10n ,从而,数列{a n }的通项公式为:a n =⎩⎪⎨⎪⎧99(n =1),9×10n(n ≥2). 题组3 等差数列前n 项和的性质7.设S n 是等差数列{}a n 的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310 B.13 C.18 D.19解析:选A 设S 3=m ,∵S 3S 6=13,∴S 6=3m ,∴S 6-S 3=2m ,由等差数列依次每k 项之和仍为等差数列,得S 3=m ,S 6-S 3=2m ,S 9-S 6=3m ,S 12-S 9=4m ,∴S 6=3m ,S 12=10m .∴S 6S 12=310,故选A. 8.已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n =2n 3n +1,则a 5b 5=( )A.23B.79C.2031D.914解析:选D ∵等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,S n T n =2n 3n +1,∴a 5b 5=9a 59b 5=S 9T 9=1828=914.故选D.题组4 等差数列前n 项和的最值9.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 等于( )A .8B .9C .10D .11 解析:选B ∵{a n }是等差数列,a 1=-26,a 8+a 13=5, ∴-26+7d -26+12d =5,解得d =3, ∴S n =-26n +n n -12×3=32n 2-552n =32⎝ ⎛⎭⎪⎫n -5562-3 02524,∴{a n }的前n 项和S n 取最小值时,n =9.故选B.10.设等差数列{}a n 的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0. (1)求公差d 的范围;(2)问前几项的和最大,并说明理由. 解:(1)∵a 3=12,∴a 1=12-2d , ∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧12a 1+66d >0,13a 1+78d <0, 即⎩⎪⎨⎪⎧24+7d >0,3+d <0, ∴-247<d <-3.故d 的取值范围为⎝ ⎛⎭⎪⎫-247,-3. (2)∵S 12>0,S 13<0,∴⎩⎪⎨⎪⎧a 1+a 12>0,a 1+a 13<0.∴⎩⎪⎨⎪⎧a 6+a 7>0,a 7<0.∴a 6>0, 又由(1)知d <0.∴数列前6项为正,从第7项起为负. ∴数列前6项和最大.[能力提升综合练]1.在等差数列{}a n 中,若a 2+a 8=4,则其前9项的和S 9等于( ) A .18 B .27 C .36 D .9 解析:选A ∵数列{}a n 是等差数列, ∴a 1+a 9=a 2+a 8=a 3+a 7=a 4+a 6=2a 5.∴S 9=92(a 2+a 8)=18.故选A.2.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A .12B .16C .9D .16或9解析:选C 设凸多边形的内角组成的等差数列为{a n },则a n =120+5(n -1)=5n +115,由a n <180,得n <13且n ∈N *.由n 边形内角和定理得,(n -2)×180=n ×120+n n -12×5.解得n =16或n =9.∵n <13,∴n =9.3.在等差数列{}a n 中,7a 5+5a 9=0,且a 9>a 5,则使数列前n 项和S n 取得最小值的n 等于( )A .5B .6C .7D .8解析:选B ∵a 9>a 5,∴公差d >0.由7a 5+5a 9=0,得7(a 1+4d )+5(a 1+8d )=0,∴d =-317a 1.由a n =a 1+(n -1)d ≤0,解得n ≤203,即使S n取得最小值的n 等于6.4.已知数列{}a n ,{}b n 都是公差为1的等差数列,其首项分别为a 1,b 1,且a 1+b 1=5,a 1>b 1.a 1,b 1,n ∈N *,则数列{}a bn 的前10项和等于( )A .55B .70C .85D .100解析:选 C a n =a 1+n -1,b n =b 1+n -1.ab n =a 1+b n -1=a 1+(b 1+n -1)-1=a 1+b 1+n -2=5+n -2=n +3,因此数列{}a bn 也是等差数列,并且前10项和等于10(4+13)2=85.5.设等差数列{a n }的前n 项和为S n ,且满足S 2 017>0,S 2 018<0.若对任意的正整数n ,都有S n ≤S k ,则k 的值为________.解析:∵等差数列{a n }的前n 项和为S n ,且满足S 2 017>0,S 2 018<0,∴2 017a 1+a 2 0172=2 017a 1 009>0,2 018a 1+a 2 0182=1 009(a 1 009+a 1 010)<0,∴a 1 009>0,a 1 010<0,∴在前n项和S n 中,S 1 009最大,∴对任意正整数n ,S n ≤S 1 009,则k =1 009.答案:1 0096.已知等差数列{}a n 的前三项为a -1,4,2a ,记前n 项和为S n . (1)设S k =2 550,求a 和k 的值;(2)设b n =S n n,求b 3+b 7+b 11+…+b 4n -1的值.解:(1)由已知得a 1=a -1,a 2=4,a 3=2a , 又a 1+a 3=2a 2,∴(a -1)+2a =8,即a =3. ∴a 1=2,公差d =a 2-a 1=2. 由S k =ka 1+k (k -1)2d ,得2k +k (k -1)2×2=2 550,即k 2+k -2 550=0,解得k =50或k =-51(舍去). ∴a =3,k =50. (2)由S n =na 1+n (n -1)2d ,得S n =2n +n (n -1)2×2=n 2+n .∴b n =S n n=n +1,∴{}b n 是等差数列.则b 3+b 7+b 11+…+b 4n -1=(3+1)+(7+1)+(11+1)+…+(4n -1+1)=2n 2+2n . 7.(选做题)在等差数列{}a n 中,a 10=23,a 25=-22, (1)该数列第几项开始为负? (2)前多少项和最大?(3)求数列{}|a n |的前n 项和. 解:设等差数列{a n }中,公差为d ,由题意得⎩⎪⎨⎪⎧a 25-a 10=15d =-45,23=a 1+(10-1)×d ,⇒⎩⎪⎨⎪⎧a 1=50,d =-3.(1)设第n 项开始为负,a n =50-3(n -1)=53-3n <0,n >533,所以从第18项开始为负.(2)法一:设前n 项和为S n ,则S n =50n +n (n -1)2(-3)=-32n 2+1032n =-32⎝⎛⎭⎪⎫n -10362+32×⎝ ⎛⎭⎪⎫10362, 所以当n =17时,S n 最大.即前17项和最大.法二:⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,则⎩⎪⎨⎪⎧53-3n ≥0,50-3n ≤0,503≤n ≤533,所以n =17.即前17项和最大.(3)|a n |=|53-3n |=⎩⎪⎨⎪⎧53-3n (0<n ≤17),3n -53(n >17).∴S ′n =|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+…+a 17-(a 18+a 19+…+a n ),当n ≤17时,S n ′=-32n 2+1032n ;当n >17时,S n ′=-⎝ ⎛⎭⎪⎫-32n 2+1032n +2S 17=32n 2-1032n +884,所以S n′=⎩⎪⎨⎪⎧-32n 2+1032n ,n ≤17,32n 2-1032n +884,n >17.。

2020学年高中数学课时训练(九)等差数列的前n项和新人教A版必修5(最新整理)

2020学年高中数学课时训练(九)等差数列的前n项和新人教A版必修5(最新整理)

(浙江专用)2019-2020学年高中数学课时跟踪检测(九)等差数列的前n 项和新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2019-2020学年高中数学课时跟踪检测(九)等差数列的前n项和新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2019-2020学年高中数学课时跟踪检测(九)等差数列的前n项和新人教A 版必修5的全部内容。

课时跟踪检测(九) 等差数列的前n项和A级——学考水平达标1.已知数列{a n}的通项公式为a n=2-3n,则{a n}的前n项和S n等于() A.-错误!n2+错误!B.-错误!n2-错误!C。

错误!n2+错误!D。

错误!n2-错误!解析:选A ∵a n=2-3n,∴a1=2-3=-1,∴S n=错误!=-错误!n2+错误!. 2.等差数列{a n}的前n项和为S n,若a7>0,a8<0,则下列结论正确的是( ) A.S7〈S8B.S15<S16C.S13>0 D.S15>0解析:选 C 由等差数列的性质及求和公式得,S13=13a1+a132=13a7>0,S15=错误!=15a8〈0,故选C。

3.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9等于()A.63 B.45C.36 D.27解析:选B ∵a7+a8+a9=S9-S6,而由等差数列的性质可知,S3,S6-S3,S9-S6构成等差数列,所以S3+(S9-S6)=2(S6-S3),即a7+a8+a9=S9-S6=2S6-3S3=2×36-3×9=45.4.已知等差数列{a n}的前n项和为S n,7a5+5a9=0,且a9>a5,则S n取得最小值时n的值为()A.5 B.6C.7 D.8解析:选B 由7a5+5a9=0,得a1d=-错误!.又a9〉a5,所以d>0,a1<0.因为函数y=错误!x2+错误!x的图象的对称轴为x=错误!-错误!=错误!+错误!=错误!,取最接近的整数6,故S n取得最小值时n的值为6。

2019-2020年苏教版数学必修五课时分层作业9 等差数列前n项和的综合应用+Word版含解析

2019-2020年苏教版数学必修五课时分层作业9 等差数列前n项和的综合应用+Word版含解析

课时分层作业(九) 等差数列前n 项和的综合应用(建议用时:60分钟)[基础达标练]一、选择题1.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( )A .-2B .-1C .0D .1B [等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1.]2.已知S n 是等差数列{a n }的前n 项和,且S 6>S 7>S 5,有下列四个命题:①d <0;②S 11>0;③S 12<0;④数列{S n }中的最大项为S 11,其中正确命题的序号是( )A .②③B .①②C .①③D .①④B [∵S 6>S 7,∴a 7<0,∵S 7>S 5,∴a 6+a 7>0,∴a 6>0,∴d <0,①正确;又S 11=112(a 1+a 11)=11a 6>0,②正确;S 12=122(a 1+a 12)=6(a 6+a 7)>0,③不正确;{S n }中最大项为S 6,④不正确.故正确的是①②.]3.若数列{a n }的前n 项和是S n =n 2-4n +2,则|a 1|+|a 2|+…+|a 10|等于( )A .15B .35C .66D .100 C [易得a n =⎩⎪⎨⎪⎧-1,n =1,2n -5,n ≥2.|a 1|=1,|a 2|=1,|a 3|=1,令a n >0,则2n -5>0,∴n ≥3.∴|a 1|+|a 2|+…+|a 10|=1+1+a 3+…+a 10=2+(S 10-S 2)=2+[(102-4×10+2)-(22-4×2+2)]=66.]4.设数列{a n }是等差数列,若a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是( )A .18B .19C .20D .21C [a 1+a 3+a 5=105=3a 3,∴a 3=35,a 2+a 4+a 6=99=3a 4,∴a 4=33,∴d =a 4-a 34-3=-2,∴a n =a 3+(n -3)d =41-2n ,令a n >0,∴41-2n >0,∴n <412,∴n ≤20.]5.11×3+12×4+13×5+14×6+…+1n (n +2)等于( )A.1n (n +2)B.12⎝ ⎛⎭⎪⎫1-1n +2C.12⎝ ⎛⎭⎪⎫32-1n +1-1n +2 D.12⎝ ⎛⎭⎪⎫1-1n +1 C [通项a n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴原式=12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+ ⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =12⎝ ⎛⎭⎪⎫32-1n +1-1n +2.] 二、填空题6.已知等差数列{a n }中,S n 为其前n 项和,已知S 3=9,a 4+a 5+a 6=7,则S 9-S 6=________.5 [∵S 3,S 6-S 3,S 9-S 6成等差数列,而S 3=9,S 6-S 3=a 4+a 5+a 6=7,∴S 9-S 6=5.]7.已知等差数列{a n }中,|a 5|=|a 9|,公差d >0,则使得前n 项和S n 取得最小值的正整数n 的值是________.6或7 [由|a 5|=|a 9|且d >0得a 5<0,a 9>0,且a 5+a 9=0⇒2a 1+12d =0⇒a 1+6d =0,即a 7=0,故S 6=S 7且最小.]8.首项为正数的等差数列的前n 项和为S n ,且S 3=S 8,当n =________时,S n 取到最大值.5或6 [∵S 3=S 8,∴S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=0,∴a 6=0,∵a 1>0, ∴a 1>a 2>a 3>a 4>a 5>a 6=0,a 7<0.故当n =5或6时,S n 最大.]三、解答题9.已知等差数列{a n }中,a 1=9,a 4+a 7=0.(1)求数列{a n }的通项公式;(2)当n 为何值时,数列{a n }的前n 项和取得最大值?[解] (1)由a 1=9,a 4+a 7=0,得a 1+3d +a 1+6d =0,解得d =-2,∴a n =a 1+(n -1)·d =11-2n .(2)法一:a 1=9,d =-2,S n =9n +n (n -1)2·(-2)=-n 2+10n=-(n -5)2+25,∴当n =5时,S n 取得最大值.法二:由(1)知a 1=9,d =-2<0,∴{a n }是递减数列.令a n ≥0,则11-2n ≥0,解得n ≤112.∵n ∈N *,∴n ≤5时,a n >0,n ≥6时,a n <0.∴当n =5时,S n 取得最大值.10.若等差数列{a n }的首项a 1=13,d =-4,记T n =|a 1|+|a 2|+…+|a n |,求T n .[解] ∵a 1=13,d =-4,∴a n =17-4n .当n ≤4时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n=na 1+n (n -1)2d =13n +n (n -1)2×(-4)=15n -2n 2;当n ≥5时,T n =|a 1|+|a 2|+…+|a n |=(a 1+a 2+a 3+a 4)-(a 5+a 6+…+a n )=S 4-(S n -S 4)=2S 4-S n=2×(13+1)×42-(15n -2n 2) =2n 2-15n +56.∴T n =⎩⎪⎨⎪⎧15n -2n 2(n ≤4),2n 2-15n +56(n ≥5). [能力提升练]1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( )A .12B .14C .16D .18B [S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.] 2.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .6C [a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以公差d =a m +1-a m =1,由S m =m (a 1+a m )2=0,得a 1=-2,所以a m =-2+(m -1)·1=2,解得m =5,故选C.]3.已知数列:1,11+2,11+2+3,…,11+2+…+n,…,则其前n 项和等于________.2n n +1 [通项a n =11+2+…+n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, ∴所求的和为2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.] 4.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.11 7 [设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1, S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1, 所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.]5.已知数列{a n }的前n 项和为S n ,数列{a n }为等差数列,a 1=12,d =-2.(1)求S n ,并画出{S n }(1≤n ≤13)的图象;(2)分别求{S n }单调递增、单调递减的n 的取值范围,并求{S n }的最大(或最小)的项;(3){S n }有多少项大于零?[解] (1)S n =na 1+n (n -1)2d =12n +n (n -1)2×(-2)=-n 2+13n .图象如图.(2)S n =-n 2+13n =-⎝ ⎛⎭⎪⎫n -1322+1694,n ∈N *, ∴当n =6或7时,S n 最大;当1≤n ≤6时,{S n }单调递增;当n ≥7时,{S n }单调递减.{S n }有最大值,最大项是S 6,S 7,S 6=S 7=42.(3)由图象得{S n }中有12项大于零.。

高中数学等差数列的前n项和(有答案)

高中数学等差数列的前n项和(有答案)

2.3.1 等差数列的前n项和(1)一、解答题。

1. 如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+⋯+a7=()A.14B.21C.28D.352. 在等差数列{a n}中,S10=120,则a2+a9=()A.12B.24C.36D.483. 在等差数列{a n}中,a1+a2+a3=3,a18+a19+a20=87,则此数列前20项的和等于()A.290B.300C.580D.6004. 设等差数列{a n}的前n项和为S n,若a1=−11,a4+a6=−6,则当S n取得最小值时,n值为________.5. 已知等差数列{a n}的公差为1,且a1+a2+⋯+a98+a99=99,则a3+a6+a9+⋯+a96+a99=()A.99B.66C.33D.06. 自然数按照下表的规律排列,则上起第2013行,左起第2014列的数为()A.2013×2014+3B.2013×2014+2C.2013×2014+1D.2013×20147. 设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=________ .8. 等差数列{a n}的前n项和为S n.已知a m−1+a m+1−a m2=0.且S2m−1=38,则m=________.9. 等差数列{a n},{b n}的前n项和分别为S n、T n,若S nT n =2n3n+1,则a11b11=________.10. 若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有多少项.11. 等差数列{a n}的前n项的和S n=6n−n2,求数列{|a n|}的前10项之和.12. 设等差数列{a n}的前n项和为S n.已知a3=12,S12>0,S13<0.求公差d的取值范围.指出S1,S2,…,S12中,哪一个最大,并说明理由.参考答案与试题解析2.3.1 等差数列的前n项和(1)一、解答题。

高中数学同步练习 等差数列的前n项和跟踪训练含解析

高中数学同步练习 等差数列的前n项和跟踪训练含解析

第一章 数 列§2 等差数列2.2 等差数列的前n 项和第1课时 等差数列的前n 项和[A 组 学业达标]1.等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则数列{a n }的公差d 等于( )A .2B .3C .6D .7解析:由题意⎩⎪⎨⎪⎧2a 1+d =4,4a 1+6d =20,∴d=3.故选B.答案:B2.等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }前9项的和S 9等于() A .66 B .99C .144D .297解析:∵a 1+a 7=2a 4,a 3+a 9=2a 6,∴3a 4=39,3a 6=27,∴a 4=13,a 6=9,∴S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.故选B.答案:B3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3,∴d=a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m=5.故选C.答案:C4.数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n 取得最小值时,n 等于() A .24 B .25C .26D .27解析:要使前n 项的和取得最小值,则⎩⎪⎨⎪⎧a n =2n -49≤0,a n +1=2(n +1)-49≥0. 解得472≤n≤492.因n∈N +,所以n =24. 答案:A5.(2019·遵义市模拟)张邱建,北魏人,约公元5世纪,古代著名数学家,一生从事数学研究,造诣很深,其代表作《张邱建算经》采用问答式,条理精密,文词古雅,是世界数学资料库中的一份异常.其卷上第22题有一个“女子织布”问题:今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.问日益几何.翻译过来的意思是某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( )尺.( )A.1629B.815C.1631D.916 解析:由题意易知该女子每天织的布(单位:尺)成等差数列,设公差为d,由题意可得首项为5,前30项和为390,∴30×5+30×292d =390,解得d =1629.故选A. 答案:A6.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项的和S 11等于________.解析:由条件结合等差数列的性质知a 4+a 8=a 1+a 11=16,∴S 11=11(a 1+a 11)2=11×8=88. 答案:887.已知数列{a n }是以-15为首项,2为公差的等差数列,S n 是其前n 项和,则数列{S n }的最小项为第________项.解析:S n =(-15)n +n (n -1)2×2=n 2-16n =(n -8)2-64,所以n =8时,S n 最小. 答案:88.设S n 为等差数列{a n }的前n 项和.若S 3=3,S 6=24,则a 9=________.解析:记首项为a 1,公差为d,则有⎩⎪⎨⎪⎧3a 1+3×22d =3,6a 1+6×52d =24⇒a 1=-1,d =2. 则a 9=a 1+(9-1)d =-1+8×2=15.答案:159.已知等差数列{a n },解答下列问题:(1)已知a 1=5,a 10=95,求S 10;(2)已知a 1=100,d =-2,求S 50;(3)已知a 1=20,a n =54,S n =999,求n,d ;(4)已知d =2,S 100=10 000,求a 1与a n .解析:(1)S 10=10(a 1+a 10)2=10×(5+95)2=500. (2)S 50=50×100+50×492×(-2)=2 550. (3)S n =n (a 1+a n )2=n (20+54)2=999, ∴n=27,d =a n -a 1n -1=54-2027-1=1713. (4)∵S 100=100a 1+100×992×2=10 000,∴a 1=1, ∴a n =a 1+(n -1)·d=2n -1.10.一支军队有15辆车,某天依次出发执行任务.第1辆车于下午2时出发,第2辆车于下午2时10分出发,第3辆车于下午2时20分出发,依此类推.假设所有的司机都连续开车,并且都在下午6时停下休息.(1)到下午6时,最后一辆车行驶了多长时间?(2)如果每辆车的行驶速度都是60 km/h,这支车队当天一共行驶了多少路程?解析:由题意,知第1辆车休息时行驶了240 min,各辆车行驶的时间构成一个等差数列{a n },其中a 1=240,公差d =-10,则a n =240-10(n -1)=-10n +250.(1)因为a 15=-10×15+250=100,所以到下午6时,最后一辆车行驶了100 min.(2)这支车队所有车辆行驶的总时间为240+1002×15=2 550 min =852h,所以这支车队当天一共行驶的路程为852×60=2 550(km). [B 组 能力提升]11.(2019·湛江市模拟)设等差数列{a n }前n 项和为S n ,若a 1=1,公差d =2,S k +2=28+S k ,则k =( )A .8B .7C .6D .5解析:∵等差数列{a n }前n 项和为S n ,a 1=1,公差d =2,S k +2=28+S k ,∴(k+2)×1+(k +2)(k +1)2×2=28+k×1+k (k -1)2×2,解得k =6.故选C. 答案:C12.(2019·岳麓区模拟)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M,现将该金杖截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2<…<a 10,若48a i =5 M,则i =( )A .4B .5C .6D .7解析:由题意知由细到粗每段的重量成等差数列,记为{a n },设公差为d,则⎩⎪⎨⎪⎧2a 1+d =22a 1+17d =4,解得a 1=1516,d =18, ∴该金杖的总重量M =10×1516+10×92×18=15. ∵48a i =5 M,∴48⎣⎢⎡⎦⎥⎤1516+(i -1)×18=75, 即39+6i =75,解得i =6.故选C.答案:C13.(2019·孝感市模拟)《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最多的人所得的橘子个数是________.解析:设第一个人分到的橘子个数为a 1,由题意得S 5=5a 1+5×42×3=60, 解得a 1=6,则a 5=a 1+(5-1)×3=6+12=18,∴得到橘子最多的人所得的橘子个数是18.答案:1814.(2019·商丘市模拟)若数列{a n }是等差数列,首项a 1<0,a 2 017+a 2 018>0,a 2 017·a 2 018<0,则使前n 项和S n <0的最大自然数n 是________.解析:∵数列{a n }是等差数列,首项a 1<0,a 2 017+a 2 018>0,a 2 017·a 2 018<0,∴a 2 017<0,a 2 018>0,公差d >0,∴S 4 034=4 034(a 1+a 4 034)2=2 017(a 2 017+a 2 018)>0, S 4 033=4 0332(a 1+a 4 033)=4 033a 2 017<0, ∴使前n 项和S n <0的最大自然数n 是4 033.答案:4 03315.等差数列{a n }中,a 3=12,S 12>0,S 13<0.(1)求公差d 的取值范围.(2)指出S 1,S 2,…,S n 中哪一个值最大,并说明理由.解析:(1)由题意⎩⎪⎨⎪⎧S12=12a 1+12×112d >0,S 13=13a 1+13×122d <0, 即⎩⎪⎨⎪⎧2a 1+11d >0,a 1+6d <0.因为a 3=12,所以a 1=12-2d. 从而有⎩⎪⎨⎪⎧24+7d >03+d <0,故-247<d <-3. (2)法一:S n =na 1+n (n -1)2d =n(12-2d)+n (n -1)2d =d 2⎣⎢⎡⎦⎥⎤n -12⎝ ⎛⎭⎪⎫5-24d 2-d 2⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫5-24d 2. 因为对称轴n =12⎝ ⎛⎭⎪⎫5-24d ,而由(1)知-247<d <-3,所以6<12⎝⎛⎭⎪⎫5-24d <6.5. 又d <0,所以n =6时,S n 最大.16.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c 的值. 解析:(1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117, 所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4, 所以a 3=9,a 4=13,从而可得a 1=1,d =4,所以a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2·d =2n 2-n =2⎝ ⎛⎭⎪⎫n -142-18, 所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n,所以b n =S n n +c =2n 2-n n +c , 所以b 1=11+c ,b 2=62+c ,b 3=153+c . 因为数列{b n }是等差数列,所以2b 2=b 1+b 3, 即62+c ×2=11+c +153+c, 得2c 2+c =0,所以c =-12或c =0(舍去), 所以c =-12.。

等差数列的前n项和-高中数学知识点讲解(含答案)

等差数列的前n项和-高中数学知识点讲解(含答案)

等差数列的前n 项和(北京习题集)(教师版)一.选择题(共7小题)1.(2020•密云区一模)设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12B .21C .24D .362.(2019秋•丰台区期末)已知等差数列{}n a 的公差为d ,前n 项和为n S ,首项124a =-.若当且仅当4n =时,n S 取得最小值,则d 的取值可能是( ) A .5B .6C .7D .83.(2020•门头沟区一模)若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ) A .21B .63C .13D .844.(2020•北京模拟)等差数列{}n a 中,若1476a a a ++=,n S 为{}n a 的前n 项和,则7(S = ) A .28B .21C .14D .75.(2020•西城区一模)设等差数列{}n a 的前n 项和为n S ,若32a =,145a a +=,则6(S = ) A .10B .9C .8D .76.(2019•北京模拟)已知数列{}n a 满足12(*)n n a a n N +=-∈,且14a =,那么{}n a 的前4项和为( ) A .0B .1C .2D .47.(2019秋•西城区校级期中)已知等差数列{}n a 中,11a =-,公差2d =,则{}n a 的前5项和等于( ) A .15-B .17-C .15D .17二.填空题(共8小题)8.(2020•海淀区校级模拟)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,236n n S S +-=,则n = . 9.(2019•朝阳区一模)天坛公园是明清两代皇帝“祭天”“祈谷”的场所天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石铺成(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是 ;上、中、下三层坛所有的扇面形石块数是 .10.(2019•西城区校级模拟)若等差数列{}n a 满足1461,52a a a =+=,则2019a =11.(2018秋•朝阳区期末)已知数列{}n a 为等差数列,n S 为其前n 项的和.若136a a +=,47a =,则5S = . 12.(2019秋•海淀区校级期中)等差数列{}n a 的前n 项和为n S ,已知70S <,80S >,则n = 时,n S 取得最小值. 13.(2019秋•通州区期中)设等差数列{}n a 的前n 项和为n S ,若1122S =,71a =,则数列{}n a 的公差等于 . 14.(2019•西城区校级模拟)已知{}n a 是等差数列,n S 为其前n 项和,若16a =,464a a +=,则5S = . 15.(2019•房山区二模)设n S 为等差数列{}n a 的前n 项和,14a =,6812a a +=,则7S = .等差数列的前n 项和(北京习题集)(教师版)参考答案与试题解析一.选择题(共7小题)1.(2020•密云区一模)设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12B .21C .24D .36【分析】利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出数列的前7项和. 【解答】解:数列{}n a 是等差数列,1356a a a ++=,76a =. ∴111124666a a d a d a d ++++=⎧⎨+=⎩,解得10a =,1d =,∴这个数列的前7项和为:776701212S ⨯=⨯+⨯=. 故选:B .【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查了推理能力与计算能力,属于基础题.2.(2019秋•丰台区期末)已知等差数列{}n a 的公差为d ,前n 项和为n S ,首项124a =-.若当且仅当4n =时,n S 取得最小值,则d 的取值可能是( ) A .5B .6C .7D .8【分析】结合已知可得,4524302440a d a d =-+<⎧⎨=-+>⎩,解不等式可求公差的范围,可求.【解答】解:等差数列{}n a 的公差为d ,124a =-.当且仅当4n =时,n S 取得最小值, 则4524302440a d a d =-+<⎧⎨=-+>⎩,解可得68d <<, 结合选项可知,C 符合. 故选:C .【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题.3.(2020•门头沟区一模)若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ) A .21B .63C .13D .84【分析】由已知结合等差数列的通项公式及求和公式可求d ,1a ,然后结合等差数列的求和公式即可求解. 【解答】解:因为130S =,3421a a +=,所以111313602521a d a d +⨯=⎧⎨+=⎩,解可得,3d =-,118a =,则7171876(3)632S =⨯+⨯⨯⨯-=.故选:B .【点评】本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题.4.(2020•北京模拟)等差数列{}n a 中,若1476a a a ++=,n S 为{}n a 的前n 项和,则7(S = ) A .28B .21C .14D .7【分析】结合等差数列的性质可求4a ,然后结合等差数列的求和公式即可求解. 【解答】解:由等差数列的性质可知,147436a a a a ++==, 42a ∴=,则17747()7142a a S a +=== 故选:C .【点评】本题考查了等差数列的性质,考查了等差数列的前n 项和,是基础题.5.(2020•西城区一模)设等差数列{}n a 的前n 项和为n S ,若32a =,145a a +=,则6(S = ) A .10B .9C .8D .7【分析】先求出公差,再根据求和公式即可求出.【解答】解:等差数列{}n a 的前n 项和为n S ,若32a =,145a a +=, 3325a d a d ∴-++=,45d ∴-=,解得1d =-,1224a ∴=+=,615451a a d =+=-=-,1666()6(41)922a a S +⨯-∴===, 故选:B .【点评】本题考查了等差数列的通项公式和求和公式,属于基础题.6.(2019•北京模拟)已知数列{}n a 满足12(*)n n a a n N +=-∈,且14a =,那么{}n a 的前4项和为( )A .0B .1C .2D .4【分析】根据条件便可求出数列{}n a 的前4项,从而求出前4项的和. 【解答】解:12n n a a +=-,14a =; 22a ∴=,30a =,42a =-; 12344a a a a ∴+++=.故选:D .【点评】考查数列的定义,以及数列的递归公式,前n 项和的定义.7.(2019秋•西城区校级期中)已知等差数列{}n a 中,11a =-,公差2d =,则{}n a 的前5项和等于( ) A .15-B .17-C .15D .17【分析】等差数列{}n a 中,由11a =-,公差2d =,能求出{}n a 的前5项和. 【解答】解:等差数列{}n a 中,11a =-,公差2d =, {}n a ∴的前5项和为:5545(1)2152S ⨯=⨯-+⨯=. 故选:C .【点评】本题考查等差数列的前5项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题. 二.填空题(共8小题)8.(2020•海淀区校级模拟)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,236n n S S +-=,则n = 8 . 【分析】由题意求出等差数列的前n 项和,代入236n n S S +-=求得n 的值. 【解答】解:等差数列{}n a 的首项11a =,公差2d =, 则22(1)2n n n S n n -=+=, 22(2)n S n +=+, 由236n n S S +-=,得22(2)2(22)36n n n +-=+=,解得:8n =. 故答案为:8.【点评】本题考查了等差数列的前n 项和,是基础的计算题.9.(2019•朝阳区一模)天坛公园是明清两代皇帝“祭天”“祈谷”的场所天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石铺成(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是 243 ;上、中、下三层坛所有的扇面形石块数是 .【分析】根据条件知每环石块数构成等差数列,首项19a =,9d =,利用等差数列的通项公式以及前n 项和公式进行计算即可.【解答】解:由题意知每环石块数构成等差数列,首项19a =,9d =, 则271269269243a a d =+=+⨯=,上、中、下三层坛所有的扇面形石块数为前27项和, 即1272727()27(9243)272523402222a a S +⨯+⨯====, 故答案为:243,3402【点评】本题主要考查等差数列的应用,结合等差数列的通项公式是解决本题的关键. 10.(2019•西城区校级模拟)若等差数列{}n a 满足1461,52a a a =+=,则2019a = 20192【分析】利用等差数列的通项公式求出公差12d =,由此能求出2019a 的值. 【解答】解:等差数列{}n a 满足112a =,465a a +=, ∴1135522d d +++=, 解得12d =, 20191120192018222a ∴=+⨯=. 故答案为:20192. 【点评】本题考查等差数列的第2019项的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题. 11.(2018秋•朝阳区期末)已知数列{}n a 为等差数列,n S 为其前n 项的和.若136a a +=,47a =,则5S = 25 .【分析】运用等差数列的前n 项和公式可解决此问题. 【解答】解:根据题意得,226a =, 23a ∴= 又47a =,2734d ∴=-=, 2d ∴=,11a =,51545520252S a d ⨯∴=+⨯=+=, 故答案为:25.【点评】本题考查等差数列的前n 项和公式的应用.12.(2019秋•海淀区校级期中)等差数列{}n a 的前n 项和为n S ,已知70S <,80S >,则n = 4 时,n S 取得最小值.【分析】由等差数列的性质,得40a <,50a >,再得出结论.【解答】解:等差数列{}n a 的前n 项和为n S ,由7470S a =<,得40a <, 188458()4()02a a S a a +==+>,故50a >, 所以前4项和最小, 故答案为:4.【点评】考查等差数列前n 项和为n S 及其性质,基础题.13.(2019秋•通州区期中)设等差数列{}n a 的前n 项和为n S ,若1122S =,71a =,则数列{}n a 的公差等于 1- . 【分析】根据等差数列的前n 项和公式及等差中项的性质,利用1122S =,可以求出6a ,再结合71a =,即可求出公差.【解答】解:依题意,等差数列{}n a 的前11项和为1111162211112a a S a +==⨯=⨯, 所以62a =, 又71a =,设等差数列{}n a 的公差为d , 所以76121d a a =-=-=-, 故答案为:1-.【点评】本题考查了等差数列的性质,考查了等差数列的前n 项和,考查了分析解决问题的能力和计算能力,属于基础题.14.(2019•西城区校级模拟)已知{}n a 是等差数列,n S 为其前n 项和,若16a =,464a a +=,则5S = 20 . 【分析】设{}n a 是等差数列的公差为d ,由16a =,464a a +=,可得2684d ⨯+=,解得d ,再利用求和公式即可得出.【解答】解:设{}n a 是等差数列的公差为d ,16a =,464a a +=, 2684d ∴⨯+=,解得1d =-.则55465202S ⨯=⨯-=. 故答案为:20.【点评】本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题. 15.(2019•房山区二模)设n S 为等差数列{}n a 的前n 项和,14a =,6812a a +=,则7S = 35 . 【分析】14a =,6812a a +=,所以13d =,将1a 和d 代入前n 项和公式即可得到7S .【解答】解:数列{}n a 是等差数列,因为14a =,68121212a a a d +=+=,所以124d =,即13d =, 所以7761743523S ⨯=⨯+⨯=. 故填:35,【点评】本题考查了等差数列的通项公式,前n 项和公式,考查计算能力,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时达标训练(九) 等差数列的前n 项和
[即时达标对点练]
题组1 等差数列前n 项和的有关计算
1.设S n 是等差数列{}a n 的前n 项和,已知a 2=3,a 6=11,则S 7等于( )
A .13
B .35
C .49
D .63
解析:选C S 7=7(a 1+a 7)2=7(a 2+a 6)2=7(3+11)2
=49, 或由⎩⎪⎨⎪⎧a 2=a 1+d =3,a 6=a 1+5d =11,解得⎩
⎪⎨⎪⎧a 1=1,d =2. 即S 7=7a 1+7×62
d =49.故选C. 2.在等差数列{}a n 中,a 6=a 3+a 8,则S 9等于( )
A .0
B .1
C .-1
D .-1或1
解析:选A 因为a 6=a 3+a 8,故a 5+d =a 2+d +a 8,得a 5=2a 5,即a 5=0.又a 1+a 9=2a 5
=0,S 9=9(a 1+a 9)2
=9a 5=0,故选A. 3.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )
A .-12
B .-10
C .10
D .12
解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.
4.已知等差数列{}a n 中,a 1=1,a 3=-3.
(1)求数列{}a n 的通项公式;
(2)若数列{}a n 的前k 项和S k =-35,求k 的值.
解:(1)设等差数列{a n }的公差为d ,
则a n =a 1+(n -1)d .由a 1=1,a 3=-3可得1+2d =-3.解得d =-2.
从而,a n =1+(n -1)×(-2)=3-2n .
(2)由(1)可知a n =3-2n ,
所以S n =n [1+(3-2n )]2=2n -n 2.
进而由S k =-35可得2k -k 2=-35,
即k 2
-2k -35=0,解得k =7或k =-5.
又k ∈N *,故k =7为所求结果.
题组2 已知S n 求通项公式a n
5.若数列{a n }的前n 项和S n =n 2-10n (n =1,2,3,…),则此数列的通项公式为a n =________.
解析:当n =1时,a 1=S 1=1-10=-9;
当n >1时,a n =S n -S n -1=n 2-10n -[(n -1)2-10(n -1)]=2n -11.又2×1-11=-9=a 1,
所以数列{a n }的通项公式为a n =2n -11.
答案:2n -11
6.已知数列{a n }的前n 项和为S n ,且lg(S n +1)=n +1,求通项公式.
解:因为lg(S n +1)=n +1,所以S n +1=10
n +1,即S n =10n +1-1.当n =1时,a 1=S 1=
102-1=99,
当n ≥2时, a n =S n -S n -1=(10n +1-1)-(10n -1)=9×10n ,
从而,数列{a n }的通项公式为:a n =⎩
⎪⎨⎪⎧99(n =1),9×10n (n ≥2). 题组3 等差数列前n 项和的性质
7.设S n 是等差数列{}a n 的前n 项和,若S 3S 6=13,则S 6S 12
等于( ) A.310 B.13 C.18 D.19
解析:选A 设S 3=m ,∵S 3S 6=13
,∴S 6=3m ,∴S 6-S 3=2m ,由等差数列依次每k 项之和仍为等差数列,得S 3=m ,S 6-S 3=2m ,S 9-S 6=3m ,S 12-S 9=4m ,
∴S 6=3m ,S 12=10m .∴S 6S 12=310
,故选A. 8.已知等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n =2n 3n +1,则a 5b 5
=( ) A.23 B.79 C.2031 D.914
解析:选D ∵等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,S n T n =2n 3n +1,∴a 5b 5=9a 59b 5
=S 9T 9=1828=914
.故选D. 题组4 等差数列前n 项和的最值
9.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 等于( )
A .8
B .9
C .10
D .11
解析:选B ∵{a n }是等差数列,a 1=-26,a 8+a 13=5,
∴-26+7d -26+12d =5,解得d =3,
∴S n =-26n +n n -2×3=32n 2-552n =32⎝ ⎛⎭⎪⎫n -5562-3 02524
, ∴{a n }的前n 项和S n 取最小值时,n =9.故选B.
10.设等差数列{}a n 的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.
(1)求公差d 的范围;
(2)问前几项的和最大,并说明理由.
解:(1)∵a 3=12,∴a 1=12-2d ,
∵S 12>0,S 13<0,
∴⎩
⎪⎨⎪⎧12a 1+66d >0,13a 1+78d <0, 即⎩
⎪⎨⎪⎧24+7d >0,3+d <0, ∴-247
<d <-3. 故d 的取值范围为⎝ ⎛⎭
⎪⎫-247,-3. (2)∵S 12>0,S 13<0,
∴⎩⎪⎨⎪⎧a 1+a 12>0,
a 1+a 13<0.∴⎩⎪⎨⎪⎧a 6+a 7>0,a 7<0.
∴a 6>0,
又由(1)知d <0.
∴数列前6项为正,从第7项起为负.
∴数列前6项和最大.
[能力提升综合练]
1.在等差数列{}a n 中,若a 2+a 8=4,则其前9项的和S 9等于( )
A .18
B .27
C .36
D .9
解析:选A ∵数列{}a n 是等差数列,
∴a 1+a 9=a 2+a 8=a 3+a 7=a 4+a 6=2a 5.
∴S 9=92
(a 2+a 8)=18.故选A. 2.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )。

相关文档
最新文档