MAX7409中文资料

合集下载

MAX31785中文资料

MAX31785中文资料

_________________________________________________________________Maxim Integrated Products __1本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。

如需进一步确认,请在您的设计中参考英文资料。

有关价格、供货及订购信息,请联络Maxim 亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区),或访问Maxim 的中文网站: 。

6通道智能风扇控制器MAX3178519-5703; Rev 0; 12/10+表示无铅(Pb)/符合RoHS 标准的封装。

T = 卷带包装。

*EP = 裸焊盘。

概述MAX31785是一款闭环多通道风扇控制器。

自动闭环风扇控制架构将风扇控制在尽可能低的转速,从而节省系统功率。

低风扇转速的其它优势包括:有效降低可闻噪声和更长的风扇寿命、更少的系统维护。

根据用户可编程查找表(LUT),器件根据11个温度传感器中的一个或多个传感器测量值,自动调节6个独立风扇的转速。

也可以由外部主机手动控制风扇转速,器件自动调整风扇转速。

器件具有风扇状况诊断功能,帮助用户预防将要发生的风扇故障。

器件还可监测多达6路远端电压。

应用网络交换机/路由器基站服务器智能电网系统工业控制定购信息特性S 6路独立的风扇控制通道 支持3线和4线风扇 自动闭环风扇转速控制 基于RPM 或PWM 控制 可选手动控制模式快速、慢速PWM 频率选项 风扇交替启动,缓解电源压力 双转速计(支持12个风扇) 风扇故障检测 风扇运转状态监测 非易失风扇运转时间表S 支持多达11个温度传感器6个外部温度二极管,带有串联电阻自动抵消功能 1个内部温度传感器 4个I 2C 数字温度传感器对所有温度传感器进行故障检测S 6路ADC 测量远端电压S PMBus™兼容命令接口S I 2C/SMBus™兼容串行总线,带有总线超时功能S 板载非易失故障记录和默认配置设置S 无需外部时钟S +3.3V 供电PMBus 是SMIF, Inc.的商标。

MAX7400中文资料

MAX7400中文资料

8 Plastic DIP
MAX7400ESA
-40°C to +85°C
8 SO
MAX7400EPA
-40°C to +85°C
8 Plastic DIP
Ordering Information continued at end of data sheet.
Selector Guide
PART
MAX7400 MAX7403 MAX7404 MAX7407
o Clock-Tunable Corner Frequency (1Hz to 10kHz)
o 100:1 Clock-to-Corner Ratio
o Single-Supply Operation +5V (MAX7400/MAX7403) +3V (MAX7404/MAX7407)
o Low Power 2mA (Operating Mode) 0.2µA (Shutdown Mode)
The MAX7400/MAX7404 provide 82dB of stopband rejection and a sharp rolloff with a transition ratio of 1.5. The MAX7403/MAX7407 provide a sharper rolloff with a transition ratio of 1.2, while still delivering 60dB of stopband rejection. The fixed response of these devices simplifies the design task to corner-frequency selection by setting a clock frequency. The MAX7400/ MAX7403/MAX7404/MAX7407 are available in 8-pin SO and DIP packages.

7409中文资料

7409中文资料

Note The ‘‘Absolute Maximum Ratings’’ are those values beyond which the safety of the device cannot be guaranteed The device should not be operated at these limits The parametric values defined in the ‘‘Electrical Characteristics’’ table are not guaranteed at the absolute maximum ratings The ‘‘Recommended Operating Conditions’’ table will define the conditions for actual device operation
14-Lead Molded Dual-In-Line Package (N) Order Number DM7409N NS Package Number N14A
3
元器件交易网
5409 DM7409 Quad 2-Input AND Gates with Open-Collector Outputs
元器件交易网
5409 DM7409 Quad 2-Input AND Gates with Open-Collector Outputs
June 1989
5409 DM7409 Quad 2-Input AND Gates with Open-Collector Outputs
b 55
5409 Nom 5 Max 55 Min 4 75 2 08 55 16 125 0
DM7409 Nom 5 Max 5 25

MAX2605-MAX2609中文资料

MAX2605-MAX2609中文资料

General DescriptionThe MAX2605–MAX2609 evaluation kits (EV kits) simplify evaluation of this family of voltage-controlled oscillators (VCOs). These kits enable testing of the devices’ per-formance and require no additional support circuitry.Both signal outputs use SMA connectors to facilitate connection to RF test equipment.These EV kits are fully assembled and tested. Their oscil-lation frequencies are set to approximately the midrange of the respective VCOs.Featureso Easy Evaluationo Complete, Tunable VCO Test Board with Tank Circuit o Low Phase Noiseo Fully Assembled and TestedEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits19-1673 Rev 0; 9/00Ordering InformationComponent SuppliersFor free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.MAX2606 Component ListMAX2605 Component ListE v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 2_______________________________________________________________________________________Quick StartThe MAX2605–MAX2609 evaluation kits are fully assembled and factory tested. Follow the instructions in the Connections a nd Setup section for proper device evaluation.Test Equipment Required•Low-noise power supplies (these are recommended for oscillator noise measurement). Noise or ripple will frequency-modulate the oscillator and cause spectral spreading. Batteries can be used in place of power supplies, if necessary.– Use a DC power supply capable of supplying +2.7V to +5.5V. Alternatively, use two or three 1.5V batteries.– Use a DC power supply capable of supplying +0.4V to +2.4V, continuously variable, for TUNE.Alternatively, use two 1.5V batteries with a resistive voltage divider or potentiometer.•An RF spectrum analyzer that covers the operating frequency range of the MAX2605–MAX2609• A 50Ωcoaxial cable with SMA connectors •An ammeter (optional)Connections and Setup1)Connect a DC supply (preset to +3V) to the V CC and GND terminals (through an ammeter, if desired) on the EV kit.2)Turn on the DC supply. If used, the ammeter readingMAX2607 Component ListMAX2608 Component ListEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________3approximates the typical operating current specified in the MAX2605–MAX2609 data sheet.3)Connect the VCO output (OUT+ or OUT-) to a spec-trum analyzer with a 50Ωcoaxial cable.4)Apply a positive variable DC voltage between 0.4V and 2.4V to TUNE.5)Check the tuning bandwidth on the spectrum analyz-er by varying the tuning voltage (+0.4V to +2.4V).Layout ConsiderationsThe EV kit PC board can serve as a guide for laying out a board using the MAX2605–MAX2609. Generally, the VCC pin on the PC board should have a decoupling capacitor placed close to the IC. This minimizes noisecoupling from the supply. Also, place the VCO as far away as possible from the noisy section of a larger sys-tem, such as a switching regulator or digital circuits.The VCO ’s performance is strongly dependent on the availability of the external tuning inductor. For best per-formance, use high-Q components and choose their val-ues carefully. To minimize the effects of parasitic ele-ments, which degrade circuit performance, place the tuning inductor and C BYP close to the VCO. For higher-frequency versions, include the parasitic PC board inductance and capacitance when calculating the oscillation frequency. In addition, remove the ground plane around and under the tuning inductor to minimize the effect of parasitic capacitance.Noise on TUNE translates into FM noise on the outputs;therefore, keep the trace between TUNE and the control circuitry as short as possible. If necessary, use an RC filter to further suppress noise, as done on the EV kits.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 4_______________________________________________________________________________________Figure 2. MAX2608/MAX2609 EV Kits SchematicFigure 1. MAX2605/MAX2606/MAX2607 EV Kits SchematicEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________5Figure 3. MAX2605/MAX2606/MAX2607 EV Kits ComponentPlacement Guide—Top Silk ScreenFigure 4. MAX2608/MAX2609 EV Kits Component PlacementGuide—Top Silk ScreenFigure 5. MAX2605/MAX2606/MAX2607 EV Kits PC BoardLayout—Component SideFigure 6. MAX2608/MAX2609 EV Kits PC Board Layout—Component SideMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.6_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits Figure 7. MAX2605/MAX2606/MAX2607/MAX2608/MAX2609EV Kits PC Board Layout—Ground Plane。

AON7409规格书

AON7409规格书
a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
2 10
0.8 0
25 50 75 100 125 150 175
Temperature (°C) 0 Figure 4: On-Resistance vs. Junction18Temperature
(Note E)
RDS(ON) (mΩ)
RDS(ON) (mΩ)
30 ID=-16A
25
20
15
125°C
18.5
ns
trr
Body Diode Reverse Recovery Time IF=-16A, dI/dt=500A/µs
17.5
ns
Qrr
Body Diode Reverse Recovery Charge IF=-16A, dI/dt=500A/µs
44.5
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The Power dissipation PDSM is based on R θJA t ≤ 10s value and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

两种抗混叠滤波电路的运用

两种抗混叠滤波电路的运用
表1滤波器专用集成滤波器max7409max7414信号衰减效果时钟信号输入信号供电电压频率hz频率hz信号衰减db最小典型最大2抗混叠滤波电?的必要性在设计数据采集系统时一项重要的任务是选择ad转换器的采样频率如果没有适当的滤波处?这些信号会严重影响数据转换系统的性能指标
维普资讯
SI E H IF R A IND V L P E T& E O O Y C/ C O M TO E E O M N T N CNM
文章编号:0 5 63 (0 6 0 —2 2 0 10 — 0 32 0 ) 1 0 8 - 2
20 年 06
第 1卷 第 1 6 期
收稿 日 : 0 - 8 3 期 2 50— 1 0
信 号衰减/ d B’
最 小
—1
滤波器 时钟信号 输入信号 供 电电压
频 率/ z 频 率, z H f ' t
M“ 7 O 49
Ma 7 0 x 41 to; ot .

/ V

典 型
— ,4 07
最 大
一. 24 -5 3 —8 5
O .
在采样之前使信号通过一个抗混滤波器滤除上述干扰。
片。 其特点是 : () 1五阶、 低通 、 开关 电容滤波器 ; () 2 工作电压 :5 ,3 ; + V + V
2 抗混叠滤波电路的必要性
在 设计数据采集系统时 , 一项重要的任务是选择 AD转 换器的采样 , 频率 , 如果没有适 当的滤 波处理 . 这些信 号会严重影 响数据转换 系统的 性能指标。 了避免这种现象 , 为 必须保证信 号中没有更高 的频率成分 。 因 此, 我们必须 了解信号的最高频率 , 采样 频率需要高于这个频率 的 2 1 ~O 倍。 一种最原始的考虑是 从数字域解决这个 问题 , 但这显然是不可取的 , 因为一旦完成信号采样 , 有些信号混叠 到所感兴趣 的频 段 , 无法 从信 则 号中移 除这些频率成分 。抗混叠滤波必须在模拟域进行 , 即在信号采样 之前 。 在实际的设计过 程中就需要我们对有用信号 中的混叠信号需要滤 除, 否则会得到不正确的结果 。设计抗混叠滤波器需要首先 确定所 希望 的滤波特性( 截止频率 、 渡带衰减 等 )然后选择 能够 满足应用需求 的 过 , 最佳滤 波方案 。 在此介绍 两种滤波 电路在数据采集 中如何去除混叠信号

74ls09

74ls09

行业速递
更多
·DS1338Z-33+实时时钟南皇电子为… ·IntraLinks 解决方案推出7种语言版… ·深圳市茂兴电子科技有限公司... ·T1-6T-KK81变压器南皇电子为您… ·中国规定引咎辞职干部2年内不得提... ·中国规定引咎辞职干部2年内不得提... ·深圳金城电子有限公司 ·ADI 公司表彰在符合其严格制造标… ·固安捷在《财富》杂志2010年“... ·Telnic 宣布将于6月15日推出包含16…
型号
tPLH
tphl
PD
54/7409
21ns
16ns 78mW
54/74S09
6.5ns
6.5ns 125mW
54/74LS09
20ns
17ns 17mW
引出端符号 1A-4A 1B-4B 1Y-4Y
逻辑图
输入端 输入端
输出端 双列直插封装
极限值 电源电压 …………………………………………. 7V 输入电压 54/7409、54/74S09………………………………. 5.5V 54/74LS09 ………………………………………. 7V A-B 间电压 54/7409、54/74S09………………………………. 5.5V 输出截止态电压……………………………………. 7V 工作环境温度
21
10
35
单位 V V V V mA
单位 V µA V mA µA mA mA mA
单位 ns ns
17ic电子渠道网可为您提供免费的中文资料、电路图 等资料并可提供在线采购电子元器件等
IC中文资料
型号A开头
型号B 开头
型号C开头
·MCP1316中文资料MCP1317应用MCP1318 MCP1319封装图MC... ·MCP111 中文资料 MCP112 应用 pdf 封装图 管脚说明... ·MCP102中文资料MCP103应用MCP111 MCP121封装图MCP131... ·MCP41010 中文资料 MCP41050 应用 pdf MCP41100 封... ·MCP40D17中文资料 MCP40D18应用 pdf MCP40D19 封装图... ·DS12R885 中文资料 DS12CR887 应用 pdf DS12R887封... ·MAX6972ATJ 中文资料 MAX6973ATJ 应用 pdf 封装图 管脚... ·MCP14E3中文资料MCP14E4 应用 pdf 封装图 MCP14E5管脚说... ·MCP6V06中文资料 MCP6V07应用 pdf 封装图 MCP6V08管脚说... ·MCP6V01中文资料MCP6V02应用 pdf 封装图MCP6V03 管脚说明...

MEMORY存储芯片MAX490CPA+中文规格书

MEMORY存储芯片MAX490CPA+中文规格书

±15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 TransceiversThe major difference between tests done using the Human Body Model and IEC1000-4-2 is higher peak current in IEC1000-4-2, because series resistance is lower in the IEC1000-4-2 model. Hence, the ESD with-stand voltage measured to IEC1000-4-2 is generally lower than that measured using the Human Body Model. Figure 7 shows the current waveform for the 8kV IEC1000-4-2 ESD contact-discharge test.The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.Machine Model The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resis-tance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protec-tion during manufacturing—not just inputs and outputs. Therefore,after PC board assembly,the Machine Model is less relevant to I/O ports.MAX487E/MAX1487E:128 Transceivers on the Bus The 48kΩ, 1/4-unit-load receiver input impedance of the MAX487E and MAX1487E allows up to 128 transceivers on a bus, compared to the 1-unit load (12kΩinput impedance) of standard RS-485 drivers (32 transceivers maximum). Any combination of MAX487E/MAX1487E and other RS-485 transceivers with a total of 32 unit loads or less can be put on the bus. The MAX481E, MAX483E, MAX485E, and MAX488E–MAX491E have standard 12kΩreceiver input impedance.MAX483E/MAX487E/MAX488E/MAX489E:Reduced EMI and Reflections The MAX483E and MAX487E–MAX489E are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. F igure 16 shows the driver output waveform and its Fourier analy-sis of a 150kHz signal transmitted by a MAX481E, MAX485E, MAX490E, MAX491E, or MAX1487E. High-frequency harmonics with large amplitudes are evident.F igure 17 shows the same information displayed for a MAX483E, MAX487E, MAX488E, or MAX489E transmit-ting under the same conditions. F igure 17’s high-fre-quency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.Low-Power Shutdown Mode(MAX481E/MAX483E/MAX487E) A low-power shutdown mode is initiated by bringing both RE high and DE low. The devices will not shut down unless both the driver and receiver are disabled. In shutdown, the devices typically draw only 0.5µA of supply current.RE and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if RE is high and DE is low for less than 50ns. If the inputs are in this state for at least 600ns, the parts are guaranteed to enter shutdown.F or the MAX481E, MAX483E, and MAX487E, the t ZH and t ZL enable times assume the part was not in the low-power shutdown state (the MAX485E, MAX488E–MAX491E, and MAX1487E can not be shut down). The t ZH(SHDN)and t ZL(SHDN)enable times assume the parts were shut down (see Electrical Characteristics).Figure 16. Driver Output Waveform and FFT Plot of MAX485E/MAX490E/MAX491E/MAX1487E Transmitting a 150kHz SignalFigure 17. Driver Output Waveform and FFT Plot ofMAX483E/MAX487E–MAX489E Transmitting a 150kHz SignalMAX481E/MAX483E/MAX485E/ MAX487E–MAX491E/MAX1487E 12±15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 TransceiversOrdering Information (continued)Selector GuideChip InformationTRANSISTOR COUNT: 295MAX481E/MAX483E/MAX485E/MAX487E–MAX491E/MAX1487E。

7407中文资料

7407中文资料

54/7407六高压输出缓冲器/驱动器(OC ,30V )简要说明54/7407为集电极开路输出的六组驱动器,其主要电特性的典型值如下:t PLHt phlP D6ns 20ns125mW引出端符号1A -6A 输入端 1Y -6Y 输出端逻辑图双列直插封装极限值电源电压 …………………………………………. 7V 输入电压 …………………………………………. 5.5V 输出截止态电压……………………………………. 30V 工作环境温度 5407 ……………………………………………. -55~125℃ 7407………… …………………………………. 0~70℃存储温度 …………………………………………. -65~150℃功能表:海纳电子资讯网:www.fpga-arm.com 为您提供各种IC中文资料推荐工作条件:5407/7407最小 额定 最大单位54 4.5 5 5.5电源电压V CC74 4.75 5 5.25V 输入高电平电压V iH 2 V 输入低电平电压V iL0.8 V 输出截止态电压V O(OFF) 30 V54 30输出低电平电流I OL74 40mA静态特性(TA 为工作环境温度范围)‘07 参 数测 试 条 件【1】最大单位V IK 输入嵌位电压 Vcc=最小,I ik =-12mA -1.5 V I O(OFF)输出截止态电流 Vcc =最小, V IH =2V ,V o =30V 250 uA V OL 输出低电平电压 Vcc=最小,V IL =0.8V ,I OL =16mA 0.4 V I I 最大输入电压时输入电流 Vcc =最大,V I =5.5V1 mA I IH 输入高电平电流 Vcc =最大,V IH =2.4V 40 uA I IL 输入低电平电流 Vcc =最大,V IL =0.4V -1.6 mA I CCH 输出高电平时电源电流 Vcc =最大 41 mA I CCL 输出低电平时电源电流 Vcc =最大30 mA[1]: 测试条件中的“最小”和“最大”用推荐工作条件中的相应值。

74系列芯片功能大全

74系列芯片功能大全

74系列芯片功能大全7400 TTL 2输入端四与非门7401 TTL 集电极开路2输入端四与非门7402 TTL 2输入端四或非门7403 TTL 集电极开路2输入端四与非门7404 TTL 六反相器7405 TTL 集电极开路六反相器7406 TTL 集电极开路六反相高压驱动器7407 TTL 集电极开路六正相高压驱动器7408 TTL 2输入端四与门7409 TTL 集电极开路2输入端四与门7410 TTL 3输入端3与非门74107 TTL 带清除主从双J-K触发器74109 TTL 带预置清除正触发双J-K触发器7411 TTL 3输入端3与门74112 TTL 带预置清除负触发双J-K触发器7412 TTL 开路输出3输入端三与非门74121 TTL 单稳态多谐振荡器74122 TTL 可再触发单稳态多谐振荡器74123 TTL 双可再触发单稳态多谐振荡器74125 TTL 三态输出高有效四总线缓冲门74126 TTL 三态输出低有效四总线缓冲门7413 TTL 4输入端双与非施密特触发器74132 TTL 2输入端四与非施密特触发器74133 TTL 13输入端与非门74136 TTL 四异或门74138 TTL 3-8线译码器/复工器74139 TTL 双2-4线译码器/复工器7414 TTL 六反相施密特触发器74145 TTL BCD—十进制译码/驱动器7415 TTL 开路输出3输入端三与门74150 TTL 16选1数据选择/多路开关74151 TTL 8选1数据选择器74153 TTL 双4选1数据选择器74154 TTL 4线—16线译码器74155 TTL 图腾柱输出译码器/分配器74156 TTL 开路输出译码器/分配器74157 TTL 同相输出四2选1数据选择器74158 TTL 反相输出四2选1数据选择器7416 TTL 开路输出六反相缓冲/驱动器74160 TTL 可预置BCD异步清除计数器74161 TTL 可予制四位二进制异步清除计数器74162 TTL 可预置BCD同步清除计数器74163 TTL 可予制四位二进制同步清除计数器74164 TTL 八位串行入/并行输出移位寄存器74165 TTL 八位并行入/串行输出移位寄存器74166 TTL 八位并入/串出移位寄存器74169 TTL 二进制四位加/减同步计数器7417 TTL 开路输出六同相缓冲/驱动器74170 TTL 开路输出4×4寄存器堆74173 TTL 三态输出四位D型寄存器74174 TTL 带公共时钟和复位六D触发器74175 TTL 带公共时钟和复位四D触发器74180 TTL 9位奇数/偶数发生器/校验器74181 TTL 算术逻辑单元/函数发生器74185 TTL 二进制—BCD代码转换器74190 TTL BCD同步加/减计数器74191 TTL 二进制同步可逆计数器74192 TTL 可预置BCD双时钟可逆计数器74193 TTL 可预置四位二进制双时钟可逆计数器74194 TTL 四位双向通用移位寄存器74195 TTL 四位并行通道移位寄存器74196 TTL 十进制/二-十进制可预置计数锁存器74197 TTL 二进制可预置锁存器/计数器7420 TTL 4输入端双与非门7421 TTL 4输入端双与门7422 TTL 开路输出4输入端双与非门74221 TTL 双/单稳态多谐振荡器74240 TTL 八反相三态缓冲器/线驱动器74241 TTL 八同相三态缓冲器/线驱动器74243 TTL 四同相三态总线收发器74244 TTL 八同相三态缓冲器/线驱动器74245 TTL 八同相三态总线收发器74247 TTL BCD—7段15V输出译码/驱动器74248 TTL BCD—7段译码/升压输出驱动器74249 TTL BCD—7段译码/开路输出驱动器74251 TTL 三态输出8选1数据选择器/复工器74253 TTL 三态输出双4选1数据选择器/复工器74256 TTL 双四位可寻址锁存器74257 TTL 三态原码四2选1数据选择器/复工器74258 TTL 三态反码四2选1数据选择器/复工器74259 TTL 八位可寻址锁存器/3-8线译码器7426 TTL 2输入端高压接口四与非门74260 TTL 5输入端双或非门74266 TTL 2输入端四异或非门7427 TTL 3输入端三或非门74273 TTL 带公共时钟复位八D触发器74279 TTL 四图腾柱输出S-R锁存器7428 TTL 2输入端四或非门缓冲器74283 TTL 4位二进制全加器74290 TTL 二/五分频十进制计数器74293 TTL 二/八分频四位二进制计数器74295 TTL 四位双向通用移位寄存器74298 TTL 四2输入多路带存贮开关74299 TTL 三态输出八位通用移位寄存器7430 TTL 8输入端与非门7432 TTL 2输入端四或门74322 TTL 带符号扩展端八位移位寄存器74323 TTL 三态输出八位双向移位/存贮寄存器7433 TTL 开路输出2输入端四或非缓冲器74347 TTL BCD—7段译码器/驱动器74352 TTL 双4选1数据选择器/复工器74353 TTL 三态输出双4选1数据选择器/复工器74365 TTL 门使能输入三态输出六同相线驱动器74365 TTL 门使能输入三态输出六同相线驱动器74366 TTL 门使能输入三态输出六反相线驱动器74367 TTL 4/2线使能输入三态六同相线驱动器74368 TTL 4/2线使能输入三态六反相线驱动器7437 TTL 开路输出2输入端四与非缓冲器74373 TTL 三态同相八D锁存器74374 TTL 三态反相八D锁存器74375 TTL 4位双稳态锁存器74377 TTL 单边输出公共使能八D锁存器74378 TTL 单边输出公共使能六D锁存器74379 TTL 双边输出公共使能四D锁存器7438 TTL 开路输出2输入端四与非缓冲器74380 TTL 多功能八进制寄存器7439 TTL 开路输出2输入端四与非缓冲器74390 TTL 双十进制计数器74393 TTL 双四位二进制计数器7440 TTL 4输入端双与非缓冲器7442 TTL BCD—十进制代码转换器74352 TTL 双4选1数据选择器/复工器74353 TTL 三态输出双4选1数据选择器/复工器74365 TTL 门使能输入三态输出六同相线驱动器74366 TTL 门使能输入三态输出六反相线驱动器74367 TTL 4/2线使能输入三态六同相线驱动器74368 TTL 4/2线使能输入三态六反相线驱动器7437 TTL 开路输出2输入端四与非缓冲器74373 TTL 三态同相八D锁存器74374 TTL 三态反相八D锁存器74375 TTL 4位双稳态锁存器74377 TTL 单边输出公共使能八D锁存器74378 TTL 单边输出公共使能六D锁存器74379 TTL 双边输出公共使能四D锁存器7438 TTL 开路输出2输入端四与非缓冲器74380 TTL 多功能八进制寄存器7439 TTL 开路输出2输入端四与非缓冲器74390 TTL 双十进制计数器74393 TTL 双四位二进制计数器7440 TTL 4输入端双与非缓冲器7442 TTL BCD—十进制代码转换器74447 TTL BCD—7段译码器/驱动器7445 TTL BCD—十进制代码转换/驱动器74450 TTL 16:1多路转接复用器多工器74451 TTL 双8:1多路转接复用器多工器74453 TTL 四4:1多路转接复用器多工器7446 TTL BCD—7段低有效译码/驱动器74460 TTL 十位比较器74461 TTL 八进制计数器74465 TTL 三态同相2与使能端八总线缓冲器74466 TTL 三态反相2与使能八总线缓冲器74467 TTL 三态同相2使能端八总线缓冲器74468 TTL 三态反相2使能端八总线缓冲器74469 TTL 八位双向计数器7447 TTL BCD—7段高有效译码/驱动器7448 TTL BCD—7段译码器/内部上拉输出驱动74490 TTL 双十进制计数器74491 TTL 十位计数器74498 TTL 八进制移位寄存器7450 TTL 2-3/2-2输入端双与或非门74502 TTL 八位逐次逼近寄存器74503 TTL 八位逐次逼近寄存器7451 TTL 2-3/2-2输入端双与或非门74533 TTL 三态反相八D锁存器74534 TTL 三态反相八D锁存器7454 TTL 四路输入与或非门74540 TTL 八位三态反相输出总线缓冲器7455 TTL 4输入端二路输入与或非门74563 TTL 八位三态反相输出触发器74564 TTL 八位三态反相输出D触发器74573 TTL 八位三态输出触发器74574 TTL 八位三态输出D触发器74645 TTL 三态输出八同相总线传送接收器74670 TTL 三态输出4×4寄存器堆7473 TTL 带清除负触发双J-K触发器7474 TTL 带置位复位正触发双D触发器7476 TTL 带预置清除双J-K触发器7483 TTL 四位二进制快速进位全加器7485 TTL 四位数字比较器7486 TTL 2输入端四异或门7490 TTL 可二/五分频十进制计数器7493 TTL 可二/八分频二进制计数器7495 TTL 四位并行输入\输出移位寄存器7497 TTL 6位同步二进制乘法器常用74系列标准数字电路的中文名称资料器件代号器件名称 74 74LS 74HC00 四2输入端与非门√√√01 四2输入端与非门(OC) √√02 四2输入端或非门√√√03 四2输入端与非门(OC) √√04 六反相器√√√05 六反相器(OC) √√06 六高压输出反相器(OC,30V) √√07 六高压输出缓冲,驱动器(OC,30V) √√√08 四2输入端与门√√√09 四2输入端与门(OC) √√√10 三3输入端与非门√√√11 三3输入端与门√√12 三3输入端与非门(OC) √√√13 双4输入端与非门√√√14 六反相器√√√15 三3输入端与门 (OC) √√16 六高压输出反相器(OC,15V) √17 六高压输出缓冲,驱动器(OC,15V) √20 双4输入端与非门√√√21 双4输入端与门√√√22 双4输入端与非门(OC) √√25 双4输入端或非门(有选通端) √√√26 四2输入端高压输出与非缓冲器√√√27 三3输入端或非门√√√28 四2输入端或非缓冲器√√√30 8输入端与非门√√√32 四2输入端或门√√√33 四2输入端或非缓冲器(OC) √√37 四2输入端与非缓冲器√√38 四2输入端与非缓冲器(OC) √√40 双4输入端与非缓冲器√√√42 4线-10线译码器(BCD输入) √√43 4线-10线译码器(余3码输入) √44 4线-10线译码器(余3葛莱码输入) √48 4线-7段译码器√49 4线-7段译码器√50 双2路2-2输入与或非门√√√51 2路3-3输入,2路2-2输入与或非门√√√52 4路2-3-2-2输入与或门√53 4路2-2-2-2输入与或非门√54 4路2-3-3-2输入与或非门√√55 2路4-4输入与或非门√60 双4输入与扩展器√√61 三3输入与扩展器√62 4路2-3-3-2输入与或扩展器√64 4路4-2-3-2输入与或非门√65 4路4-2-3-2输入与或非门(OC) √70 与门输入J-K触发器√71 与或门输入J-K触发器√72 与门输入J-K触发器√74 双上升沿D型触发器√√78 双D型触发器√√85 四位数值比较器√86 四2输入端异或门√√√87 4位二进制原码/反码√95 4位移位寄存器√101 与或门输入J-K触发器√102 与门输入J-K触发器√107 双主-从J-K触发器√108 双主-从J-K触发器√109 双主-从J-K触发器√110 与门输入J-K触发器√111 双主-从J-K触发器√√112 双下降沿J-K触发器√113 双下降沿J-K触发器√114 双下降沿J-K触发器√116 双4位锁存器√120 双脉冲同步驱动器√121 单稳态触发器√√√122 可重触发单稳态触发器√√√123 可重触发双稳态触发器√√√125 四总线缓冲器√√√126 四总线缓冲器√√√128 四2输入端或非线驱动器√√√132 四2输入端与非门√√√。

MAX44009_中文手册

MAX44009_中文手册

概述 MAX44009 环境光传感器提供I2 C 数字输出,可理想用于
智能手机、笔记本电脑、工业传感器等便携产品。器件工作 电流小于1µA,是业内功耗最低的环境光传感器,具有 22 位超宽动态范围 (0.045流明至188,000 流明)。 由于能够检测极其微弱的光线,可理想工作在深色玻璃环 境下。 片上光电二极管的光谱响应针对人眼对环境光的响应进行优 化,集成红外及紫外线屏蔽。自适应增益电路可自动选择正 确的流明范围优化测试 (计数值 / 流明)。
EVALUATION KIT AVAILABLE
19-5719; Rev 0; 1/11
AVAILAB
LE
MAX44009 功耗最低的环境光传感器, 内置 ADC
S 0.045流明至188,000 流明宽检测范围 S 小尺寸、2mm x 2mm x 0.6mm UTDFN-Opto 封装 S VCC = 1.7V至3.6V S 工作电流ICC = 0.65µA S -40°C至+85°C工作温度范围 S 器件可选地址
2
Maxim Integrated
MAX44009
功耗最低的环境光传感器, 内置 ADC
ELECTRICAL CHARACTERISTICS (continued)
(VCC = 1.8V, TMIN to TMAX = -40NC to +85NC, unless otherwise noted.) (Note 1) PARAMETER I2C TIMING Serial-Clock Frequency Bus Free Time Between a STOP and a START Condition Hold Time (Repeated) START Condition Low Period of the SCL Clock High Period of the SCL Clock Setup Time for a Repeated START Condition Data Hold Time Data Setup Time Fall Time of SDA Transmitting Setup Time for STOP Condition Pulse Width of Spike Suppressed Note Note Note Note 1: 2: 3: 4: fSCL tBUF tHD,STA tLOW tHIGH tSU,STA tHD,DAT tSU,DAT tF tSU,STO tSP Input filters on the SDA and SCL inputs suppress noise spikes (Note 4) ISINK P 6mA, tR and tF are measured between 0.3 x VDD and 0.7 x VDD 0.6 0 50 1.3 0.6 1.3 0.6 0.6 0 100 100 0.9 400 kHz Fs Fs Fs Fs Fs Fs ns ns Fs ns SYMBOL CONDITIONS MIN TYP MAX UNITS

MAX1978中文数据手册

MAX1978中文数据手册

用于Peltier模块的集成温度控制器概论MAX1978 / MAX1979是用于Peltier热电冷却器(TEC)模块的最小, 最安全, 最精确完整的单芯片温度控制器。

片上功率FET和热控制环路电路可最大限度地减少外部元件, 同时保持高效率。

可选择的500kHz / 1MHz开关频率和独特的纹波消除方案可优化元件尺寸和效率, 同时降低噪声。

内部MOSFET的开关速度经过优化, 可降低噪声和EMI。

超低漂移斩波放大器可保持±0.001°C的温度稳定性。

直接控制输出电流而不是电压, 以消除电流浪涌。

独立的加热和冷却电流和电压限制提供最高水平的TEC保护。

MAX1978采用单电源供电, 通过在两个同步降压调节器的输出之间偏置TEC, 提供双极性±3A输出。

真正的双极性操作控制温度, 在低负载电流下没有“死区”或其他非线性。

当设定点非常接近自然操作点时, 控制系统不会捕获, 其中仅需要少量的加热或冷却。

模拟控制信号精确设置TEC 电流。

MAX1979提供高达6A的单极性输出。

提供斩波稳定的仪表放大器和高精度积分放大器, 以创建比例积分(PI)或比例积分微分(PID)控制器。

仪表放大器可以连接外部NTC或PTC热敏电阻, 热电偶或半导体温度传感器。

提供模拟输出以监控TEC温度和电流。

此外, 单独的过热和欠温输出表明当TEC温度超出范围时。

片上电压基准为热敏电阻桥提供偏置。

MAX1978 / MAX1979采用薄型48引脚薄型QFN-EP 封装, 工作在-40°C至+ 85°C温度范围。

采用外露金属焊盘的耐热增强型QFN-EP封装可最大限度地降低工作结温。

评估套件可用于加速设计。

应用光纤激光模块典型工作电路出现在数据手册的最后。

WDM, DWDM激光二极管温度控制光纤网络设备EDFA光放大器电信光纤接口ATE特征♦尺寸最小, 最安全, 最精确完整的单芯片控制器♦片上功率MOSFET-无外部FET♦电路占用面积<0.93in2♦回路高度<3mm♦温度稳定性为0.001°C♦集成精密积分器和斩波稳定运算放大器♦精确, 独立的加热和冷却电流限制♦通过直接控制TEC电流消除浪涌♦可调节差分TEC电压限制♦低纹波和低噪声设计♦TEC电流监视器♦温度监控器♦过温和欠温警报♦双极性±3A输出电流(MAX1978)♦单极性+ 6A输出电流(MAX1979)订购信息* EP =裸焊盘。

MAX6409BS40+中文资料

MAX6409BS40+中文资料

General DescriptionThe MAX6406–MAX6411 is a family of ultra-low power circuits used for monitoring battery, power-supply, and regulated system voltages. Each detector contains a precision bandgap reference comparator and is trimmed to specified trip threshold voltages. These devices provide excellent circuit reliability and low cost by eliminating external components and adjustments when monitoring system voltages from 2.5V to 5.0V. A manual reset input is also included.The MAX6406–MAX6411 assert a signal whenever the V CC supply voltage falls below a preset threshold.These devices are differentiated by their output logic configurations and preset threshold voltages. The MAX6406/MAX6409 (push-pull) and the MAX6408/MAX6411 (open-drain) have an active-low output (OUT is logic low when V CC is below V TH ). The MAX6407/MAX6410 have an active-high push-pull output (OUT is logic high when V CC is below V TH ). All parts are guaranteed to be in the correct output logic state for V CC down to 1V. The detector is designed to ignore fast transients on V CC . The MAX6406/MAX6407/MAX6408 have voltage thresholds between 2.20V and 3.08V in approximately 100mV increments. The MAX6409/MAX6410/MAX6411 have voltage thresholds between 3.30V and 4.63V in approximately 100mV increments.Ultra-low supply current of 500nA (MAX6406/MAX6407/MAX6408) makes these parts ideal for use in portable equipment. These devices are available in 4-bump chip-scale packages (UCSP ).ApplicationsPortable/Battery-Powered Equipment Cell Phones PDAs MP3 Players PagersFeatureso Tiny 4-Bump (2 X 2) Chip-Scale Package, (Package Pending Full Qualification—Expected Completion Date 6/30/01. See UCSP Reliability Section for More Details.)o 70% Smaller Than SC70 Packages o Ultra-Low 500nA Supply Current (MAX6406/MAX6407/MAX6408)o Factory-Trimmed Reset Thresholds from 2.20V to 4.63V in Approximately 100mV Increments o ±2.5% Threshold Accuracy (-40°C to +85°C)o Manual Reset Inputo Guaranteed OUT Valid to V CC = 1.0Vo Three Reset Output Logic Options: Active-Low Push-Pull, Active-High Push-Pull, and Active-Low Open-Drain o Immune to Short V CC Transients o No External ComponentsMAX6406–MAX6411Voltage Detectors in 4-Bump (2 X 2)Chip-Scale PackageMaxim Integrated Products 119-2041; Rev 1; 8/01For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .The MAX6406–MAX6411 are available in factory-set V CCdetector thresholds from 2.20V to 4.63V, in approximately 0.1V increments. Choose the desired threshold suffix from Table 1and insert it in the blank space following “S”. There are 21standard versions with a required order increment of 2500pieces. Sample stock is generally held on the standard ver-sions only (Table1). Required order increment is 10,000 pieces for nonstandard versions (Table 2). Contact factory for avail-ability. All devices available in tape-and-reel only.UCSP reliability is integrally linked to the user’s assemblymethods, circuit board material, and environment. Refer to the UCSP Reliability Notice in the UCSP Reliability section of this data sheet for more information.Pin Configuration appears at end of data sheet.UCSP is a trademark of Maxim Integrated Products, Inc.Ordering InformationSelector GuideM A X 6406–M A X 6411Voltage Detectors in 4-Bump (2 X 2) Chip-Scale PackageABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.All voltages measured to GND unless otherwise noted.VCC..........................................................................-0.3V to +6V OUT/OUT ...................................................-0.3V to (V CC + 0.3V)OUT (open-drain).....................................................-0.3V to +6V MR ..............................................................-0.3V to (V CC + 0.3V)Input/Output Current into Any Pin.......................................20mAContinuous Power Dissipation (T A = +70°C)4-Pin/Bump UCSP (derate 3.8mW/°C above +70°C)....303mW Operating Temperature Range ..........................-40°C to +85°C Junction Temperature......................................................+150°C Storage Temperature Range ............................-65°C to +160°C Bump Reflow Temperature .............................................+235°CELECTRICAL CHARACTERISTICS(V CC = 1.0V to 5.5V, T A = -40°C to +85°C, unless otherwise noted. Typical values are at V CC = 3V and T A = +25°C.) (Note1)MAX6406–MAX6411Voltage Detectors in 4-Bump (2 X 2)Chip-Scale Package_______________________________________________________________________________________3Note 2:Guaranteed by design.ELECTRICAL CHARACTERISTICS (continued)(V CC = 1.0V to 5.5V, T A = -40°C to +85°C, unless otherwise noted. Typical values are at V CC = 3V and T A = +25°C.) (Note1)Typical Operating Characteristics(T A = +25°C, unless otherwise noted.)00.30.20.10.50.40.90.80.70.61.0-40-2020406080SUPPLY CURRENT vs. TEMPERATURETEMPERATURE (°C)S U P P L Y C U R R E N T (µA )050100200150250-40-2020406080PROPAGATION DELAY (V CC FALLING)vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (µs )M A X 6406–M A X 6411Voltage Detectors in 4-Bump (2 X 2) Chip-Scale Package 4_______________________________________________________________________________________Typical Operating Characteristics (continued)(T A = +25°C, unless otherwise noted.)040206012010080140-40-2020406080PROPAGATION DELAY (V CC RISING)vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (µs )01100010010MAXIMUM TRANSIENT DURATION vs. THRESHOLD OVERDRIVE500200100400300THRESHOLD OVERDRIVE V TH - V CC (mV)M A X I M U M T R A N S I E N T D U R A T I O N (µs )MAX6406–MAX6411Voltage Detectors in 4-Bump (2 X 2)Chip-Scale Package_______________________________________________________________________________________5M A X 6406–M A X 6411Detailed DescriptionManual Reset InputMany µP-based products require manual reset capabil-ity, allowing the operator, a test technician, or external logic circuit to initiate a reset. A logic low on MR asserts OUT/OUT . OUT/OUT remains asserted while MR is low.This input has an internal 50k Ωpullup resistor, so it can be left open if it is not used. MR can be driven with TTL or CMOS logic levels, or with open-drain/collector out-puts. Connect a normally open momentary switch from MR to GND to create a manual reset function. If MR is driven from long cables or if the device is used in a noisy environment, connect a 0.1µF capacitor from MR to ground to provide additional noise immunity.Applications InformationInterfacing to Different LogicVoltage ComponentsThe MAX6408/MAX6411 have an active-low, open-drain output. This output structure will sink current when OUT is asserted. Connect a pullup resistor from OUT to any supply voltage up to 5.5V (Figure 1). Select a resistor value large enough to allow a valid logic low (see Electrical Characteristics ), and small enough to register a logic high while supplying all input currents and leakage paths connected to the OUT line.Voltage Detectors in 4-Bump (2 X 2) Chip-Scale Package 6_______________________________________________________________________________________Negative-Going V CC TransientsThese devices are relatively immune to short-duration,negative-going V CC transients (glitches).The Typical Operating Characteristics show the Maximum Transient Duration vs. Threshold Overdrive graph, for which output pulses are not generated. The graph shows the maximum pulse width that a negative-going V CC transient may typically have before the devices issue output signals. As the amplitude of the transient increases, the maximum allowable pulse width decreases.UCSP ReliabilityThe chip-scale package (UCSP) represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliabil-ity tests. CSP reliability is integrally linked to the user ’s assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a CSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as it is primarily determined by the wafer-fabrication process.Mechanical stress performance is a greater considera-tion for a CSP package. CSPs are attached through direct solder contact to the user ’s PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be rmation on Maxim ’s qualification plan, test data, and usage recommendations are detailed in the UCSP appli-cation note, which can be found on Maxim ’s website at .Chip InformationTRANSISTOR COUNT: 512PROCESS: BiCMOSMAX6406–MAX6411Voltage Detectors in 4-Bump (2 X 2)Chip-Scale Package_______________________________________________________________________________________7Figure 1. Interfacing to Different Logic Voltage ComponentsPin ConfigurationM A X 6406–M A X 6411Voltage Detectors in 4-Bump (2 X 2) Chip-Scale Package Package InformationMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2001 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。

MAX3490摘出资料(部分中文)

MAX3490摘出资料(部分中文)

MAX3488,MAX3490,MAX3491功能,全双工通信,而MAX3483,MAX3485,MAX3486是专为半双工通信。

单一的3.3V电源供应,没有电荷注入;具有+5V逻辑电源互操作;最大偏斜为8ns;2ns低电流掉电模式;共模输入电压范围:-7~+12V,总线上允许多达32个收发器;全双工和半双工版本;具有电流限制和热关机驱动器过载保护
驱动器具有短路电流限制和对功耗过大的保护,热关断电路,驱动器输出置于高阻抗状态。

接收器输入具有故障安全功能,保证逻辑高输出,如果两个输入端开路。

选择MAX3490做RS-422,下图为MAX3490引脚图
1——VCC 3.3V
2——RO 接收器输出
3——DI 驱动器输入
4——GND
5——Y 同相驱动器输出
6——Z 反相驱动器输出
7——B 反相接收器输入
8——A 同相接收器输入
保证数据传输速率(Mbps)10
电源电压(V) 3.0 to 3.6
半/全双工全双工
摆率限制无
驱动器/接收器使无
关断电流(NA)关断时无
引脚数8
频率大,高频谐波明显
MAX3490没有接收器发送器使能,控制逻辑如下图
MAX3490(无RE、DE引脚)绝对最大额定值如下图:
MAX3490驱动器的开关特性如下图:
MAX3490型号及封装如下图
MAX3490引脚配置与典型工作电路,如下图
MAX3490封装尺寸。

MAX1979ETM资料

MAX1979ETM资料

Features
♦ Smallest, Safest, Most Accurate Complete Single-Chip Controller On-Chip Power MOSFETS—No External FETs Circuit Footprint < 0.93in2 Circuit Height < 3mm Temperature Stability to 0.001°C Integrated Precision Integrator and Chopper Stabilized Op Amps ♦ Accurate, Independent Heating and Cooling Current Limits ♦ Eliminates Surges By Directly Controlling TEC Current ♦ Adjustable Differential TEC Voltage Limit ♦ Low-Ripple and Low-Noise Design ♦ TEC Current Monitor ♦ ♦ ♦ ♦ Temperature Monitor Over- and Undertemperature Alarm Bipolar ±3A Output Current (MAX1978) Unipolar +6A Output Current (MAX1979)
MAX1978/MAX1979
Ordering Information
PART MAX1978ETM TEMP RANGE PIN-PACKAGE -40°C to +85°C 48 Thin QFN-EP* PKG CODE T4877-6 T4877-6
MAX1979ETM -40°C to +85°C 48 Thin QFN-EP* *EP = Exposed paddle.

MAXFILTERBRD+;中文规格书,Datasheet资料

MAXFILTERBRD+;中文规格书,Datasheet资料

_______________________________________________________________ Maxim Integrated Products 1For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, MAXFILTERBRDEvaluates: MAX7408–MAX7415/MAX7418–MAX7425General DescriptionThe MAXFILTERBRD is an unpopulated PCB design to evaluate the MAX7408–MAX7415/MAX7418–MAX7425 5th-order, lowpass, switched-capacitor filters (SCFs).Contact the factory for free samples of the pin-compat-ible MAX7408–MAX7415/MAX7418–MAX7425 SCFs to evaluate these devices.FeaturesS CLK Pad for External Clock Frequency S Lead(Pb)-Free and RoHS Compliant S Proven PCB LayoutOrdering InformationComponent SupplierPart Selection TableComponent List(Suggested Components)19-4884; Rev 0; 8/09+Denotes lead(Pb)-free and RoHS compliant.Note: Contact the factory to order a free sample of any of the SCF parts.µMAX is a registered trademark of Maxim Integrated Products, Inc.Note: Indicate that you are using the MAXFILTERBRD when contacting this component supplier.PART TYPE MAXFILTERBRD+EV KitPARTOPERATING VOLTAGEFILTER TYPEMAX7408CUA+5V Elliptic MAX7409CUA+5V Bessel MAX7410CUA+5V Butterworth MAX7411CUA+5V Elliptic MAX7412CUA+3V Elliptic MAX7413CUA+3V Bessel MAX7414CUA+3V Butterworth MAX7415CUA+3V Elliptic MAX7418CUA+5V Elliptic MAX7419CUA+5V Bessel MAX7420CUA+5V Butterworth MAX7421CUA+5V Elliptic MAX7422CUA+3V Elliptic MAX7423CUA+3V Bessel MAX7424CUA+3V Butterworth MAX7425CUA+3VEllipticDESIGNATIONQTY DESCRIPTIONC1Not installed, 47pF Q 5%, 50V C0G ceramic capacitor (0805)Murata GRM2165C1H470J or similarC20Not installed, 2200pF Q 5%, 50V C0G ceramic capacitor (0805)Murata GRM2165C1H222J or similarC3, C40Not installed, 0.1F F Q 10%, 16V X7R ceramic capacitors (0603)Murata GCM188R71C104K or similarJU1, JU20Not installed, 2-pin headers—shorted by PC traceR1Not installed, 10k I Q 1% resistor (0805)U10Not installed, lowpass SCF (8 F MAX M )See the Part Selection Table —1PCB: MAXFILTERBRD+SUPPLIERPHONE WEBSITEMurata Electronics North America, Inc.770-436-1300MAXFILTERBRD E v a l u a t e s : M A X 7408–M A X 7415/M A X 7418–M A X 74252 ______________________________________________________________________________________Quick StartRequired Equipment• MAXFILTERBRD• Suggested components (see Component List )• 5V or 3V DC power supply (depending on the IC installed)• Function generator (e.g., HP 33120A)• 2-channel digital oscilloscope (e.g., Tektronix TDS3012)ProcedureCaution: Do not turn on power supply until all connec-tions are completed.1) I nstall all suggested components shown in theComponent List onto the MAXFILTERBRD.2) I f the installed IC is the MAX7408–MAX7411 orMAX7418–MAX7421, connect the positive terminal ofthe 5V supply to the VDD pad and the negative termi-nal of the supply to the GND pad closest to the VDDpad. If the installed IC is the MAX7412–MAX7415 or MAX7422–MAX7425, connect the positive terminal of the 3V supply to the VDD pad and the negative terminal of the supply to the GND pad closest to the VDD pad (see Figure 1). Set the function generator to 4V P-P max, 2.2V offset (typ), and 1kHz sine wave, and connect the signal to the IN pad.3) C onnect the first channel of the oscilloscope to theIN pad.4) C onnect the second channel of the oscilloscope tothe OUT pad.5) C onnect the oscilloscope’s ground probe to any GNDpads.6) Turn on the power supply.7) Verify the output on the OUT pad.Figure 1. Filter Evaluation Test Block DiagramMAXFILTERBRDEvaluates: MAX7408–MAX7415/MAX7418–MAX7425_______________________________________________________________________________________ 3Detailed Description of HardwareThe MAXFILTERBRD is an unpopulated PCB design to evaluate the MAX7408–MAX7415/MAX7418–MAX7425 5th-order, lowpass SCFs.Internal ClockThe MAXFILTERBRD uses the internal oscillator when a capacitor is installed on C1. Refer to corresponding installed IC data sheet.For the MAX7409/MAX7410/MAX7413/MAX7414, the frequency can be altered using the following formula:f OSC (kHz) = k/C1 (pF)where k = 30 x 103 and f OSC is the internal oscillator frequency.For the MAX7408/MAX7411/MAX7412/MAX7415, k = 27 x 103.For the MAX7418/MAX7421/MAX7422/MAX7425, k = 87 x 103.For the MAX7419/MAX7420/MAX7423/MAX7424, k = 110 x 103.External ClockAn external clock that matches the specification of the corresponding IC data sheet can be used by cutting the trace of jumper JU2. Drive the CLK pin with a CMOS gate powered from 0 to VDD. Apply the clock signal to the CLK pad.ShutdownThe MAXFILTERBRD is configured for normal operation once the desired IC is installed. The desired IC enters shutdown by cutting the trace of jumper JU1 and driving the IC SHDN pin low through the side of the jumper that is still connected to the part.MAXFILTERBRDE v a l u a t e s : M A X 7408–M A X 7415/M A X 7418–M A X 74254 ______________________________________________________________________________________Figure 2. MAXFILTERBRD SchematicMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 5© 2009 Maxim Integrated ProductsMaxim is a registered trademark of Maxim Integrated Products, Inc.MAXFILTERBRDEvaluates: MAX7408–MAX7415/MAX7418–MAX7425Figure 3. MAXFILTERBRD Component Placement Guide—Component SideFigure 5. MAXFILTERBRD PCB Layout—Solder SideFigure 4. MAXFILTERBRD Component PCB Layout—Component Side Figure 6. MAXFILTERBRD Component Placement Guide—Solder Side分销商库存信息: MAXIM MAXFILTERBRD+。

MAX266中文数据手册

MAX266中文数据手册

MAX266中文数据手册MAX266/265中文数据手册By Hi_Cracker @whu引脚电阻可编程通用高效滤波器-----MAX266/265General Description和MAX265是高效的容滤波器,专门设计用于需要高精度滤波的应用MAX266场合。

内置了两个独立的滤波模块,可以配置成低通,高通,带通,带阻,全通滤波器。

中心频率或者截止频率的控制需要外接电阻以及6 Pin-Strapped 的输入特性来编程实现,然而,Q值仅用电阻连接实现。

各种各样类型的滤波器都可以实现(巴特沃斯,切比雪夫,椭圆滤波器等等)。

内部集成了两个运算放大器。

MAX265可以将中心/截止频率可以最高调到40Khz,然而,MAX266,通过使用一个低范围的fclk/fo比例系数,可以将fos 调到140Khz。

4MHZ系统时钟,可以通过一个晶振或是额外的源获得。

滤波器的操作电压为从±2.37v到±6.3v或者+5V的单电源供电。

Application:声纳电子设备Anti-Aliasing 滤波器数字信号处理震动音频分析远程通信测试仪器Features滤波器参数设置软件化256bit的频率控制字电阻调整Q值和fo140Khz频率调节范围±5V或者单电源﹢5V操作电压Introduction每个MAX266/265都包含的两个可配置滤波器模块已经显示在数据手册前面的功能框图上。

fclk/fo编程输入(F0-F5)被两个滤波模块共用,然而,每个部分的fo仍然受到各自外接电阻的独立调节。

各个模块的的Q值也是受到各自的外接电阻的独立调节的。

MAX266使用比MAX265更低范围的取样比率(fclk/fo),这样就可以产生更高的信号带宽以及fo的可编程范围。

降低fclk/fo产生的影响主要就是比MAX265的滤波器参数的连续性稍微差了一些,但是这些不同可以通过使用图23所示的图形或是美信得滤波器软件来补偿。

MAX1989MEE+中文资料

MAX1989MEE+中文资料

________________General DescriptionThe MAX1668/MAX1805/MAX1989 are precise multi-channel digital thermometers that report the tempera-ture of all remote sensors and their own packages. The remote sensors are diode-connected transistors—typi-cally low-cost, easily mounted 2N3904 NPN types—that replace conventional thermistors or thermocouples.Remote accuracy is ±3°C for multiple transistor manu-facturers, with no calibration needed. The remote chan-nels can also measure the die temperature of other ICs,such as microprocessors, that contain an on-chip,diode-connected transistor.The 2-wire serial interface accepts standard system management bus (SMBus™) write byte, read byte, send byte, and receive byte commands to program the alarm thresholds and to read temperature data. The data for-mat is 7 bits plus sign, with each bit corresponding to 1°C, in two’s-complement format.The MAX1668/MAX1805/MAX1989 are available in small, 16-pin QSOP surface-mount packages. The MAX1989 is also available in a 16-pin TSSOP.________________________Applications____________________________Featureso Multichannel4 Remote, 1 Local (MAX1668/MAX1989)2 Remote, 1 Local (MAX1805)o No Calibration Required o SMBus 2-Wire Serial Interfaceo Programmable Under/Overtemperature Alarms o Supports SMBus Alert Response o Accuracy±2°C (+60°C to +100°C, Local)±3°C (-40°C to +125°C, Local)±3°C (+60°C to +100°C, Remote)o 3µA (typ) Standby Supply Current o 700µA (max) Supply Currento Small, 16-Pin QSOP/TSSOP PackagesMAX1668/MAX1805/MAX1989†Multichannel Remote/LocalTemperature Sensors________________________________________________________________Maxim Integrated Products119-1766; Rev 2; 5/03SMBus is a trademark of Intel Corp.†Patents PendingDesktop and Notebook Computers LAN Servers Industrial ControlsCentral-Office Telecom EquipmentTest and Measurement Multichip ModulesFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 1668/M A X 1805/M A X 1989†Multichannel Remote/Local Temperature Sensors 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = +3.3V, STBY = V CC , configuration byte = X0XXXX00, T A = 0°C to +125°C , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V CC to GND..............................................................-0.3V to +6V DXP_, ADD_, STBY to GND........................-0.3V to (V CC + 0.3V)DXN_ to GND ........................................................-0.3V to +0.8V SMBCLK, SMBDATA, ALERT to GND......................-0.3V to +6V SMBDATA, ALERT Current.................................-1mA to +50mA DXN_ Current......................................................................±1mA Continuous Power Dissipation (T A = +70°C)QSOP (derate 8.30mW/°C above +70°C)....................667mW TSSOP (derate 9.40mW/°C above +70°C)..................755mWOperating Temperature Range .........................-55°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX1668/MAX1805/MAX1989†Multichannel Remote/LocalTemperature Sensors_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V CC = +3.3V, STBY = V CC , configuration byte = X0XXXX00, T A = 0°C to +125°C , unless otherwise noted.)ELECTRICAL CHARACTERISTICS(V CC = +5V, STBY = V CC , configuration byte = X0XXXX00, T A = -55°C to +125°C , unless otherwise noted.) (Note 6)08416122024FREQUENCY (MHz)T E M P E R A T U R E E R R O R (°C )TEMPERATURE ERROR vs. SUPPLY NOISE FREQUENCY0.111010020-20110100TEMPERATURE ERROR vs. PC BOARD RESISTANCE-10LEAKAGE RESISTANCE (M Ω)T E M P E R A T U R E E R R O R (°C )10-2-101234-50-10-301030507090110TEMPERATURE ERROR vs. TEMPERATURETEMPERATURE (°C)T E M P E R A T U R E E R R O R (°C )Typical Operating Characteristics(Typical Operating Circuit , V CC = +5V, STBY = V CC , configuration byte = X0XXXX00, T A = +25°C, unless otherwise noted.)M A X 1668/M A X 1805/M A X 1989†Multichannel Remote/Local Temperature Sensors 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS (continued)(V= +5V, STBY = V , configuration byte = X0XXXX00, T = -55°C to +125°C , unless otherwise noted.) (Note 6)Note 1:Guaranteed by design, but not production tested.Note 2:Quantization error is not included in specifications for temperature accuracy. For example, if the MAX1668/MAX1805/MAX1989 device temperature is exactly +66.7°C, the ADC may report +66°C, +67°C, or +68°C (due to the quantization error plus the +0.5°C offset used for rounding up) and still be within the guaranteed ±1°C error limits for the +60°C to +100°C temperature range. See Table 2.Note 3: A remote diode is any diode-connected transistor from Table 1. T R is the junction temperature of the remote diode. See theRemote-Diode Selection section for remote-diode forward-voltage requirements.Note 4:The SMBus logic block is a static design that works with clock frequencies down to DC. While slow operation is possible, itviolates the 10kHz minimum clock frequency and SMBus specifications, and can monopolize the bus.Note 5:Note that a transition must internally provide at least a hold time in order to bridge the undefined region (300ns max) ofSMBCLK’s falling edge t HD:DAT.Note 6:Specifications from -55°C to +125°C are guaranteed by design, not production tested.020406080100120140160012345STANDBY SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )257550100125-220468RESPONSE TO THERMAL SHOCKTIME (s)T E M P E R A T U R E (°C )MAX1668/MAX1805/MAX1989†Multichannel Remote/LocalTemperature Sensors_______________________________________________________________________________________50.111000TEMPERATURE ERRORvs. COMMON-MODE NOISE FREQUENCYFREQUENCY (MHz)T E M P E R A T U R E E R R O R (°C )1010000.60.40.20.81.01.21.41.61.82.0Typical Operating Characteristics (continued)(Typical Operating Circuit , V CC = +5V, STBY = V CC , configuration byte = X0XXXX00, T A = +25°C, unless otherwise noted.)TEMPERATURE ERRORvs. DXP_ TO DXN_ CAPACITANCEM A X 16681805 t o c 05DXP_ TO DXN_ CAPACITANCE (nF)T E M P E R A T U R E E R R O R (°C )-10-6-8-2-42040203010405060STANDBY SUPPLY CURRENT vs. CLOCK FREQUENCYSMBCLK FREQUENCY (kHz)S U P P L Y C U R R E N T (µA )6010203040501101001000M A X 1668/M A X 1805/M A X 1989†Multichannel Remote/Local Temperature Sensors 6______________________________________________________________________________________________________Detailed DescriptionThe MAX1668/MAX1805/MAX1989 are temperature sensors designed to work in conjunction with an exter-nal microcontroller (µC) or other intelligence in thermo-static, process-control, or monitoring applications. The µC is typically a power-management or keyboard con-troller, generating SMBus serial commands by “bit-banging” general-purpose input-output (GPIO) pins or through a dedicated SMBus interface block.These devices are essentially 8-bit serial analog-to-digi-tal converters (ADCs) with sophisticated front ends.However, the MAX1668/MAX1805/MAX1989 also contain a switched current source, a multiplexer, an ADC, an SMBus interface, and associated control logic (Figure 1).In the MAX1668 and MAX1989, temperature data from the ADC is loaded into five data registers, where it is automatically compared with data previously stored in 10 over/undertemperature alarm registers. In the MAX1805, temperature data from the ADC is loaded into three data registers, where it is automatically compared with data previously stored in six over/undertemperature alarm registers.ADC and MultiplexerThe ADC is an averaging type that integrates over a 64ms period (each channel, typical), with excellent noise rejection.The multiplexer automatically steers bias currents through the remote and local diodes, measures their forward voltages, and computes their temperatures.Each channel is automatically converted once the con-version process has started. If any one of the channels is not used, the device still performs measurements on these channels, and the user can ignore the results of the unused channel. If any remote-diode channel is unused, connect DXP_ to DXN_ rather than leaving the pins open.The DXN_ input is biased at 0.65V above ground by an internal diode to set up the A/D inputs for a differential measurement. The worst-case DXP_ to DXN_ differential input voltage range is 0.25V to 0.95V.Excess resistance in series with the remote diode caus-es about +0.5°C error per ohm. Likewise, 200µV of offset voltage forced on DXP_ to DXN_causes about 1°C error.MAX1668/MAX1805/MAX1989†Multichannel Remote/LocalTemperature Sensors_______________________________________________________________________________________7Figure 1. MAX1668/MAX1805/MAX1989 Functional DiagramA/D Conversion SequenceIf a start command is written (or generated automatically in the free-running autoconvert mode), all channels are converted, and the results of all measurements are available after the end of conversion. A BUSY status bit in the status byte shows that the device is actually per-forming a new conversion; however, even if the ADC is busy, the results of the previous conversion are always available.Remote-Diode SelectionTemperature accuracy depends on having a good-qual-ity, diode-connected small-signal transistor. Accuracy has been experimentally verified for all of the devices listed in Table 1. The MAX1668/MAX1805/MAX1989 can also directly measure the die temperature of CPUs and other ICs having on-board temperature-sensing diodes.The transistor must be a small-signal type, either NPN or PNP, with a relatively high forward voltage; other-wise, the A/D input voltage range can be violated. The forward voltage must be greater than 0.25V at 10µA;check to ensure this is true at the highest expected temperature. The forward voltage must be less than 0.95V at 100µA; check to ensure this is true at the low-est expected temperature. Large power transistors do not work at all. Also, ensure that the base resistance is less than 100Ω. Tight specifications for forward-current gain (+50 to +150, for example) indicate that the manu-facturer has good process controls and that the devices have consistent VBE characteristics.F or heat-sink mounting, the 500-32BT02-000 thermal sensor from Fenwal Electronics is a good choice. This device consists of a diode-connected transistor, an aluminum plate with screw hole, and twisted-pair cable (Fenwal Inc., Milford, MA, 508-478-6000).Thermal Mass and Self-HeatingThermal mass can seriously degrade the MAX1668/MAX1805/MAX1989s’ effective accuracy. The thermal time constant of the 16-pin QSOP package is about 140s in still air. F or the MAX1668/MAX1805/MAX1989junction temperature to settle to within +1°C after a sudden +100°C change requires about five time con-stants or 12 minutes. The use of smaller packages for remote sensors, such as SOT23s, improves the situa-tion. Take care to account for thermal gradients between the heat source and the sensor, and ensure that stray air currents across the sensor package do not interfere with measurement accuracy.Self-heating does not significantly affect measurement accuracy. Remote-sensor self-heating due to the diode current source is negligible. F or the local diode, theworst-case error occurs when sinking maximum current at the ALERT output. For example, with ALERT sinking 1mA, the typical power dissipation is V CC x 400µA plus 0.4V x 1mA. Package theta J-A is about 150°C/W, so with V CC = 5V and no copper PC board heat sinking,the resulting temperature rise is:dT = 2.4mW x 150°C/W = 0.36°CEven with these contrived circumstances, it is difficult to introduce significant self-heating errors.ADC Noise FilteringThe ADC is an integrating type with inherently good noise rejection, especially of low-frequency signals such as 60Hz/120Hz power-supply hum. Micropower opera-tion places constraints on high-frequency noise rejec-tion; therefore, careful PC board layout and proper external noise filtering are required for high-accuracy remote measurements in electrically noisy environments. High-frequency EMI is best filtered at DXP_ and DXN_with an external 2200pF capacitor. This value can be increased to about 3300pF (max), including cable capacitance. Higher capacitance than 3300pF intro-duces errors due to the rise time of the switched cur-rent source.Nearly all noise sources tested cause additional error measurements, typically by +1°C to +10°C, depending on the frequency and amplitude (see the Typical Operating Characteristics ).PC Board Layout1)Place the MAX1668/MAX1805/MAX1989 as close aspractical to the remote diode. In a noisy environment,such as a computer motherboard, this distance canM A X 1668/M A X 1805/M A X 1989†Multichannel Remote/Local Temperature Sensors 8_______________________________________________________________________________________Table 1. Remote-Sensor Transistor ManufacturersNote:Transistors must be diode connected (base shorted to collector).be 4in to 8in (typ) or more as long as the worst noise sources (such as CRTs, clock generators, memory buses, and ISA/PCI buses) are avoided.2)Do not route the DXP_ to DXN_ lines next to thedeflection coils of a CRT. Also, do not route the traces across a fast memory bus, which can easily introduce +30°C error, even with good filtering.Otherwise, most noise sources are fairly benign.3)Route the DXP_ and DXN_ traces in parallel and inclose proximity to each other, away from any high-voltage traces such as +12VDC. Leakage currents from PC board contamination must be dealt with carefully, since a 20M Ωleakage path from DXP_ to ground causes about +1°C error.4)Connect guard traces to GND on either side of theDXP_ to DXN_ traces (Figure 2). With guard traces in place, routing near high-voltage traces is no longer an issue. 5)Route through as few vias and crossunders as possi-ble to minimize copper/solder thermocouple effects. 6)When introducing a thermocouple, make sure thatboth the DXP_ and the DXN_ paths have matching thermocouples. In general, PC board-induced ther-mocouples are not a serious problem. A copper-sol-der thermocouple exhibits 3µV/°C, and it takes about 200µV of voltage error at DXP_ to DXN_ to cause a +1°C measurement error. So, most para-sitic thermocouple errors are swamped out.7)Use wide traces. Narrow ones are more inductiveand tend to pick up radiated noise. The 10mil widths and spacings recommended in Figure 2 are not absolutely necessary (as they offer only a minor improvement in leakage and noise), but try to use them where practical.8)Copper cannot be used as an EMI shield, and onlyferrous materials such as steel work well. Placing a copper ground plane between the DXP_ to DXN_traces and traces carrying high-frequency noise sig-nals does not help reduce EMI.PC Board Layout Checklist•Place the MAX1668/MAX1805/MAX1989as close as possible to the remote diodes.•Keep traces away from high voltages (+12V bus).•Keep traces away from fast data buses and CRTs.•Use recommended trace widths and spacings.•Place a ground plane under the traces.•Use guard traces flanking DXP_ and DXN_ and con-necting to GND.•Place the noise filter and the 0.1µF V CC bypass capacitors close to the MAX1668/MAX1805/MAX1989.•Add a 200Ωresistor in series with V CC for best noise filtering (see the Typical Operating Circuit ).Twisted-Pair and Shielded CablesFor remote-sensor distances longer than 8in, or in partic-ularly noisy environments, a twisted pair is recommend-ed. Its practical length is 6ft to 12ft (typ) before noise becomes a problem, as tested in a noisy electronics lab-oratory. F or longer distances, the best solution is a shielded twisted pair like that used for audio micro-phones. For example, Belden #8451 works well for dis-tances up to 100ft in a noisy environment. Connect the twisted pair to DXP_ and DXN_ and the shield to GND,and leave the shield’s remote end unterminated.Excess capacitance at DX_ _ limits practical remote-sen-sor distances (see the Typical Operating Characteristics ).F or very long cable runs, the cable’s parasitic capaci-tance often provides noise filtering, so the 2200pF capac-itor can often be removed or reduced in value.Cable resistance also affects remote-sensor accuracy;1Ωseries resistance introduces about +0.5°C error.Low-Power Standby ModeStandby mode disables the ADC and reduces the sup-ply-current drain to less than 12µA. Enter standby mode by forcing the STBY pin low or through the RUN/STOP bit in the configuration byte register.Hardware and software standby modes behave almost identically: all data is retained in memory, and the SMB interface is alive and listening for reads and writes.Activate hardware standby mode by forcing the STBY pin low. In a notebook computer, this line can be con-nected to the system SUSTAT# suspend-state signal. The STBY pin low state overrides any software conversion command. If a hardware or software standby command is received while a conversion is in progress, the conver-MAX1668/MAX1805/MAX1989†Multichannel Remote/LocalTemperature Sensors_______________________________________________________________________________________9Figure 2. Recommended DXP_/DXN_ PC Tracession cycle is truncated, and the data from that conversion is not latched into either temperature-reading register. The previous data is not changed and remains available.In standby mode, supply current drops to about 3µA.At very low supply voltages (under the power-on-reset threshold), the supply current is higher due to the address pin bias currents. It can be as high as 100µA,depending on ADD0 and ADD1 settings.SMBus Digital InterfaceF rom a software perspective, the MAX1668/MAX1805/MAX1989appear as a set of byte-wide registers that contain temperature data, alarm threshold values, or control bits. A standard SMBus 2-wire serial interface is used to read temperature data and write control bits and alarm threshold data. Each A/D channel within the devices responds to the same SMBus slave address for normal reads and writes.The MAX1668/MAX1805/MAX1989employ four standard SMBus protocols: write byte, read byte, send byte, and receive byte (Figure 3). The shorter receive byte protocol allows quicker transfers, provided that the correct data register was previously selected by a read byte instruc-tion. Use caution with the shorter protocols in multimaster systems, since a second master could overwrite the com-mand byte without informing the first master.The temperature data format is 7 bits plus sign in two’s-com-plement form for each channel, with each data bit represent-ing 1°C (Table 2), transmitted MSB first. Measurements are offset by +0.5°C to minimize internal rounding errors; for example, +99.6°C is reported as +100°C.Alarm Threshold RegistersTen (six for MAX1805) registers store alarm threshold data, with high-temperature (T HIGH ) and low-tempera-ture (T LOW ) registers for each A/D channel. If either measured temperature equals or exceeds the corre-sponding alarm threshold value, an ALERT interrupt is asserted.The power-on-reset (POR) state of all T HIGH registers of the MAX1668 and MAX1805 is full scale (0111 1111, or +127°C). The POR state of the channel 1 T HIGH register of the MAX1989 is 0110 1110 or +110°C, while all other channels are at +127°C. The POR state of all T LOW reg-isters is 1100 1001 or -55°C.M A X 1668/M A X 1805/M A X 1989†Multichannel Remote/Local Temperature Sensors 10______________________________________________________________________________________Figure 3. SMBus ProtocolsThere is a continuity fault detector at DXP_ that detects whether the remote diode has an open-circuit condi-tion. At the beginning of each conversion, the diode fault is checked, and the status byte is updated. This fault detector is a simple voltage detector; if DXP_ rises above V CC - 1V (typ) due to the diode current source, a fault is detected. Note that the diode fault is not checked until a conversion is initiated, so immediately after power-on reset, the status byte indicates no fault is present, even if the diode path is broken.If any remote channel is shorted (DXP_ to DXN_ or DXP_ to GND), the ADC reads 0000 0000 so as not to trip either the T HIGH or T LOW alarms at their POR set-tings. In applications that are never subjected to 0°C in normal operation, a 0000 0000 result can be checked to indicate a fault condition in which DXP_ is acciden-tally short circuited. Similarly, if DXP_ is short circuited to V CC , the ADC reads +127°C for all remote and local channels, and the device alarms.A L E R T InterruptsThe ALERT interrupt output signal is latched and can only be cleared by reading the alert response address.Interrupts are generated in response to T HIGH and T LOW comparisons and when a remote diode is disconnected (for continuity fault detection). The interrupt does not halt automatic conversions; new temperature data continues to be available over the SMBus interface after ALERT is asserted. The interrupt output pin is open drain so that devices can share a common interrupt line. The interrupt rate can never exceed the conversion rate.The interface responds to the SMBus alert response address, an interrupt pointer return-address feature (see Alert R esponse Address section). Prior to taking corrective action, always check to ensure that an inter-rupt is valid by reading the current temperature.Alert Response AddressThe SMBus alert response interrupt pointer provides quick fault identification for simple slave devices that lack the complex, expensive logic needed to be a bus master. Upon receiving an ALERT interrupt signal, the host master can broadcast a receive byte transmission to the alert response slave address (0001 100). Then any slave device that generated an interrupt attempts to identify itself by putting its own address on the bus (Table 3).The alert response can activate several different slave devices simultaneously, similar to the I 2C general call. If more than one slave attempts to respond, bus arbitra-tion rules apply, and the device with the lower address code wins. The losing device does not generate an acknowledge and continues to hold the ALERT line low until serviced (implies that the host interrupt input isMAX1668/MAX1805/MAX1989†Multichannel Remote/LocalTemperature Sensors______________________________________________________________________________________11Table 3. Read Format for Alert Response Address (0001100)ADD66Provide the currentMAX1668/MAX1805/MAX1989slave address that was latched at POR (Table 8)FUNCTIONADD55ADD44ADD33ADD22ADD11ADD77(MSB)10(LSB)Logic 1BIT NAMElevel sensitive). Successful reading of the alert response address clears the interrupt latch.Command Byte FunctionsThe 8-bit command byte register (Table 4) is the master index that points to the various other registers within the MAX1668/MAX1805/MAX1989. The register ’s PORstate is 0000 0000, so that a receive byte transmission (a protocol that lacks the command byte) that occurs immediately after POR returns the current local temper-ature data.M A X 1668/M A X 1805/M A X 1989†Multichannel Remote/Local Temperature Sensors 12______________________________________________________________________________________**Not available for MAX1805.MAX1668/MAX1805/MAX1989†Multichannel Remote/LocalTemperature Sensors______________________________________________________________________________________13Manufacturer and DeviceID CodesTwo ROM registers provide manufacturer and device ID codes. Reading the manufacturer ID returns 4Dh,which is the ASCII code M (for Maxim). Reading the device ID returns 03h for MAX1668, 05h for MAX1805,and 0Bh for MAX1989. If the read word 16-bit SMBus protocol is employed (rather than the 8-bit Read Byte),the least significant byte contains the data and the most significant byte contains 00h in both cases.Configuration Byte FunctionsThe configuration byte register (Table 5) is used to mask (disable) interrupts and to put the device in soft-ware standby mode.Status Byte FunctionsThe two status byte registers (Tables 6 and 7) indicate which (if any) temperature thresholds have been exceeded. The first byte also indicates whether the ADC is converting and whether there is an open circuit in a remote-diode DXP_ to DXN_ path. After POR, the normal state of all the flag bits is zero, assuming none of the alarm conditions are present. The status byte is cleared by any successful read of the status byte,unless the fault persists. Note that the ALERT interrupt latch is not automatically cleared when the status flag bit is cleared.When reading the status byte, you must check for inter-nal bus collisions caused by asynchronous ADC timing,or else disable the ADC prior to reading the status byte (through the RUN/STOP bit in the configuration byte).To check for internal bus collisions, read the status byte. If the least significant 7 bits are ones, discard the data and read the status byte again. The status bits LHIGH, LLOW, RHIGH, and RLOW are refreshed on the SMBus clock edge immediately following the stop con-dition, so there is no danger of losing temperature-relat-ed status data as a result of an internal bus collision.The OPEN status bit (diode continuity fault) is only refreshed at the beginning of a conversion, so OPEN data is lost. The ALERT interrupt latch is independent of the status byte register, so no false alerts are generated by an internal bus collision.If the THIGH and TLOW limits are close together, it ’s possible for both high-temp and low-temp status bits to be set, depending on the amount of time between sta-tus read operations (especially when converting at the fastest rate). In these circumstances, it ’s best not to relyon the status bits to indicate reversals in long-term tem-perature changes and instead use a current tempera-ture reading to establish the trend direction.Conversion RateThe MAX1668/MAX1805/MAX1989 are continuously measuring temperature on each channel. The typical conversion rate is approximately three conversions/s (for both devices). The resulting data is stored in the temperature data registers.Slave AddressesThe MAX1668/MAX1805/MAX1989 appear to the SMBus as one device having a common address for all ADC channels. The device address can be set to one of nine different values by pin-strapping ADD0 and ADD1 so that more than one MAX1668/MAX1805/MAX1989 can reside on the same bus without address conflicts (Table 8).The address pin states are checked at POR only, and the address data stays latched to reduce quiescent supply current due to the bias current needed for high-Z state detection.The MAX1668/MAX1805/MAX1989 also respond to the SMBus alert response slave address (see the Alert Response Address section).POR and Undervoltage LockoutThe MAX1668/MAX1805/MAX1989 have a volatile memory. To prevent ambiguous power-supply condi-tions from corrupting the data in memory and causing erratic behavior, a POR voltage detector monitors V CC and clears the memory if V CC falls below 1.8V (typ, see the Electrical Characteristics table). When power is first applied and V CC rises above 1.85V (typ), the logic blocks begin operating, although reads and writes at V CC levels below 3V are not recommended. A second V CC comparator, the ADC UVLO comparator, prevents the ADC from converting until there is sufficient head-room (V CC = 2.8V typ).Power-Up Defaults•Interrupt latch is cleared.•Address select pins are sampled.•ADC begins converting.•Command byte is set to 00h to facilitate quick remote receive byte queries.•T HIGH and T LOW registers are set to max and min limits, respectively.。

MAX481_MAX483_MAX485_MAX487_MAX1487_MAX490_MAX491_中文资料

MAX481_MAX483_MAX485_MAX487_MAX1487_MAX490_MAX491_中文资料

本文是Maxim 正式英文资料的译文,Maxim 不对翻译中存在的差异或由此产生的错误负责。

请注意译文中可能存在文字组织或翻译错误,如需确认任何词语的准确性,请参考Maxim 提供的英文版资料。

索取免费样品和最新版的数据资料,请访问Maxim 的主页: 。

_____________________________ _概述MAX481、MAX483、MAX485、MAX487-MAX491以及MAX1487是用于RS-485与RS-422通信的低功耗收发器,每个器件中都具有一个驱动器和一个接收器。

MAX483、MAX487、MAX488以及MAX489具有限摆率驱动器,可以减小EMI ,并降低由不恰当的终端匹配电缆引起的反射,实现最高250k b p s 的无差错数据传输。

M A X 481、MAX485、MAX490、MAX491、MAX1487的驱动器摆率不受限制,可以实现最高2.5Mbps 的传输速率。

这些收发器在驱动器禁用的空载或满载状态下,吸取的电源电流在120(A 至500(A 之间。

另外,MAX481、MAX483与MAX487具有低电流关断模式,仅消耗0.1µA 。

所有器件都工作在5V 单电源下。

驱动器具有短路电流限制,并可以通过热关断电路将驱动器输出置为高阻状态,防止过度的功率损耗。

接收器输入具有失效保护特性,当输入开路时,可以确保逻辑高电平输出。

MAX487与MAX1487具有四分之一单位负载的接收器输入阻抗,使得总线上最多可以有128个M A X 487/MAX1487收发器。

使用MAX488-MAX491可以实现全双工通信,而MAX481、MAX483、MAX485、MAX487与MAX1487则为半双工应用设计。

_______________________________应用低功耗RS-485收发器低功耗RS-422收发器电平转换器用于EMI 敏感应用的收发器工业控制局域网____________________下一代器件的特性♦容错应用MAX3430: ±80V 故障保护、失效保护、1/4单位负载、+3.3V 、RS-485收发器MAX3440E-MAX3444E: ±15kV ESD 保护、±60V 故障保护、10Mbps 、失效保护、RS-485/J1708收发器♦对于空间受限应用MAX3460-MAX3464: +5V 、失效保护、20Mbps 、Profibus RS-485/RS-422收发器MAX3362: +3.3V 、高速、RS-485/RS-422收发器,采用SOT23封装MAX3280E-MAX3284E: ±15kV ESD 保护、52Mbps 、+3V 至+5.5V 、SOT23、RS-485/RS-422、真失效保护接收器MAX3293/MAX3294/MAX3295: 20Mbps 、+3.3V 、SOT23、RS-485/RS-422发送器♦对于多通道收发器应用MAX3030E-MAX3033E: ±15kV ESD 保护、+3.3V 、四路RS-422发送器♦对于失效保护应用MAX3080-MAX3089: 失效保护、高速(10Mbps)、限摆率RS-485/RS-422收发器♦对于低电压应用MAX3483E/MAX3485E/MAX3486E/MAX3488E/MAX3490E/MAX3491E: +3.3V 供电、±15kV ESD 保护、12Mbps 、限摆率、真正的RS-485/RS-422收发器MAX481/MAX483/MAX485/MAX487–MAX491/MAX1487低功耗、限摆率、RS-485/RS-422收发器_____________________________________________________________________选择表19-0122; Rev 8; 10/03定购信息在本资料的最后给出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 2 3
8 7
CLK SHDN OS OUT
CLOCK CLK
VDD 4
MAX7409 MAX7410 MAX7413 MAX7414
µMAX/DIP
6 5
MAX7409 MAX7410 MAX7413 MAX7414
GND
COM OS 0.1µF
________________________________________________________________ Maxim Integrated Products
元器件交易网
19-4766; Rev 1; 9/98
5th-Order, Lowpass, Switched-Capacitor Filters
General Description
The MAX7409/MAX7410/MAX7413/MAX7414 5th-order, lowpass, switched-capacitor filters (SCFs) operate from a single +5V (MAX7409/MAX7410) or +3V (MAX7413/ MAX7414) supply. These devices draw only 1.2mA of supply current and allow corner frequencies from 1Hz to 15kHz, making them ideal for low-power post-DAC filtering and anti-aliasing applications. They feature a shutdown mode, which reduces the supply current to 0.2µA. Two clocking options are available on these devices: self-clocking (through the use of an external capacitor) or external clocking for tighter corner-frequency control. An offset adjust pin allows for adjustment of the DC output level. The MAX7409/MAX7413 Bessel filters provide low overshoot and fast settling, while the MAX7410/MAX7414 Butterworth filters provide a maximally flat passband response. Their fixed response simplifies the design task to selecting a clock frequency.
5th-Order, Lowpass, Switched-Capacitor Filters MAX7409/MAX7410/MAX7413/MAX7414
ABSOLUTE MAXIMUM RATINGS
VDD to GND ..............................................................-0.3V to +6V IN, OUT, COM, OS, CLK, SHDN ................-0.3V to (VDD + 0.3V) OUT Short-Circuit Duration...................................................1sec Continuous Power Dissipation (TA = +70°C) 8-Pin DIP (derate 9.09mW/°C above +70°C) ...............727mW 8-Pin µMAX (derate 4.1mW/°C above +70°C) .............330mW Operating Temperature Ranges MAX74 _ _C_A ...................................................0°C to +70°C MAX74 _ _E_A ................................................-40°C to +85°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C
MAX7409/MAX7410/MAX7413/MAX7414
Ordering Information
PART MAX7409CUA MAX7409CPA MAX7409EUA MAX7409EPA MAX7410CUA MAX7410CPA MAX7410EUA MAX7410EPA TEMP. RANGE 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C PIN-PACKAGE 8 µMAX 8 Plastic DIP 8 µMAX 8 Plastic DIP 8 µMAX 8 Plastic DIP 8 µMAX 8 Plastic DIP
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Байду номын сангаас
Features
o 5th-Order Lowpass Filters Bessel Response (MAX7409/MAX7413) Butterworth Response (MAX7410/MAX7414) o Clock-Tunable Corner Frequency (1Hz to 15kHz) o Single-Supply Operation +5V (MAX7409/MAX7410) +3V (MAX7413/MAX7414) o Low Power 1.2mA (operating mode) 0.2µA (shutdown mode) o Available in 8-Pin µMAX/DIP Packages o Low Output Offset: ±4mV
1
For free samples & the latest literature: , or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.
元器件交易网
ELECTRICAL CHARACTERISTICS—MAX7409/MAX7410
(VDD = +5V, filter output measured at OUT, 10kΩ || 50pF load to GND at OUT, OS = COM, 0.1µF capacitor from COM to GND, SHDN = VDD, fCLK = 100kHz, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER FILTER CHARACTERISTICS Corner Frequency Clock-to-Corner Ratio Clock-to-Corner Tempco Output Voltage Range Output Offset Voltage DC Insertion Gain with Output Offset Removed Total Harmonic Distortion plus Noise Offset Voltage Gain COM Voltage Range Input Voltage Range at OS Input Resistance at COM Clock Feedthrough Resistive Output Load Drive Maximum Capacitive Output Load Drive Input Leakage Current at COM Input Leakage Current at OS CLOCK Internal Oscillator Frequency Clock Output Current (Internal Oscillator Mode) Clock Input High Clock Input Low fOSC ICLK VIH VIL COSC = 1000pF (Note 3) VCLK = 0 or 5V 4.5 0.5 21 30 ±13.5 38 ±20 kHz µA V V RL CL SHDN = GND, VCOM = 0 to VDD VOS = 0 to VDD 10 50 THD+N AOS VCOM VOS RCOM VOFFSET VIN = VCOM = VDD / 2 VCOM = VDD / 2 (Note 2) fIN = 200Hz, VIN = 4Vp-p, measurement bandwidth = 22kHz OS to OUT Input, COM externally driven Output, COM unconnected Input, OS externally driven 110 2.0 2.3 MAX7409 MAX7410 -0.2 0.25 ±4 0 -85 -78 1 2.5 2.5 VCOM ±0.1 180 5 1 500 ±0.1 ±0.1 ±10 ±10 3.0 2.7 fc fCLK / fc (Note 1) 0.001 to 15 100:1 10 VDD - 0.25 ±25 0.2 ppm/°C V mV dB dB V/V V V kΩ mVp-p kΩ pF µA µA kHz SYMBOL CONDITIONS MIN TYP MAX UNITS
相关文档
最新文档