变分法和休克尔分子轨道法
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
例一:维一简维谐简振谐子振Ha子m试ilt探on波量资函料:仅供数参考,不当之处,请联系H 改ˆ正。2h2 ddx22 1 22x2
其本征函数是:
y n(x)N ne2x2/2H n( x)
下面我们根据上面所述原则构造试探波函数。 方法 I: 试探波函数可写成: y(x) c(2x2)
0
|x| |x|
显然,这不是谐振子的本征函数,但是它是合理的。
1.因为谐振子势是关于 x = 0 点对称的,我们的 试探波函数也是关于 x = 0 点对称的;
Gˆyk Gkyk
由于Hermite算符的本征函数构成正交归一化的完备函数集,
故可将用yk展开
ckyk k
其含义:若是体系的一个状态,那么它就可以由某一Hermite算符 Gˆ 的
本征函数的集合线性展开得到。如sp3杂化轨道,即不是原子的本征函数。 定域MO不是Hamilton的本征函数,而是离域MO的某种线性组合。
此法可推广于求第j个本征值及本征函数的近似值或近似 波函数。只要使变分函数与前(j-1)本征函数正交即可。
8
二、变分法的基本思路 资料仅供参考,不当之处,请联系改正。
(一) 能量的平均值
设体系的 Hamilton 量 H ˆ 的本征值由小到大顺序排列为:
E0 < E1 < E2 < ......< En < ...... |ψ0 > |ψ1 > |ψ2> .........| ψn >...... 上式第二行是与本征值相应的本征函数,其中 E0 、 |ψ0> 分别为基态能量和基态波函数。
4
ckyk k
资料仅供参考,不当之处,请联系改正。
将其代入(3)式 I* G ˆG 0 d
I
c*ky*k Gˆ G0 cjyjd
k
j
= c*ky*k cj Gˆ G0yjd
k
j
= c* kcj G jG 0 y * ky jd kj
= c* kcj GjG 0 kj kj
量子力学中可精确求解的Shrödinger方程不多。对于多电 子体系的原子,分子的Shrödinger方程都需要利用近似求解。 变分法就是一种重要的近似解法。
一、 变分法原理
变分法是求解泛函极值问题的方法
1. 定理
设是一个单值连续有限和归一化的函数,G0是Hermite算符
Gˆ 的最小本征值,则泛函(一个关于函数的函数)
* G ˆ d G 0
1
若是未经归一化的函数
*G ˆd
*d G 0
2
3
证明:
资料仅供参考,不当之处,请联系改正。
令 I * G ˆG0d
I * G ˆ d G 0 * d * G ˆ d G 0 3
设已归一化,现变为证明 I 0
若yk和 Gk分别是 Gˆ 的本征函数及本征值,则
(1)根据体系Hamilton量的形式和对称性推测合理 的试探波函数;
(2)试探波函数要满足问题的边界条件;
(3)为了有选择的灵活性,试探波函数应包含一个或 多个待定的参数,这些参数称为变分参数;
(4)若体系 Hamilton 量可以分成两部分: H = H0 + H1,
H0的本征函数已知有解析解,则该解析解可作为体 系的试探波函数。
若|y>未归一化,则
y| Hˆ |y H y|y E0
10
资料仅供参考,不当之处,请联系改正。
基于上述基本原理,我们可以选取很多波函数;
|y> →| y(1)>, |y(2)>,......, |y(k)>,......称为试探波函数,来
计算
H H1 , H2 , L L Hk
Min [H1, H2, L L Hk ] E0
i i
i
即 y c iy i i 0 i 1
亦若变分函数 y 为本征函数集除去 y 0 的其它的本征函数 的线性展开。 故 y 的期望值为
ci 2Gi
Gi0 ci 2 G1
6
7
i0பைடு நூலகம்
ci 2Gi Gi0 ci 2 G1
i0
资料仅供参考,不当之处,请联系改正。
6
y 的线性展开的波函数集合所对应本征集最小值为G1。 G1是 Gˆ 的次低本征值。因而,泛函 G 的极小值,即为G1的 近似值, y 即为相应的近似本征函数。
= c* kck GkG0
k
= ck 2 GkG0 k
因为G0为最小本征值,故 Gk G0 ,而 c k 2 0
故 I0
得证
5
函数 为变分函数,积资料分仅供参考,不当*G之ˆ处,d请联系为改正。泛函;函数的函数。
选择变分函数以使泛函为极小值,其值必为最低本征值 的近似值,且为上界。变分法就是选择变分函数,通过 对其系数或某一参数进行变分,来求其近似值的方法。
6
2. 推论
资料仅供参考,不当之处,请联系改正。
近似求解 Gˆ 的其他本征函数。
若变分函数 y ,它同最低本征函数 y 0 正交。
y y 0 d 0
4
若将 y 向本征函数 y i 展开
y c iy i i
5
将(5)式代入(4)式,得
y 0 c iy i d c i y 0 y id c i i0 c 0 0
资料仅供参考,不当之处,请联系改正。
变分法与Hückel分子轨道法
➢变分法 ➢线性变分法LCAO ➢HMO的基本原理 ➢差分方程法 ➢s体系的处理
1
§2.1 变分法 资料仅供参考,不当之处,请联系改正。
➢变分法原理 ➢变分方法的基本思路 ➢实例
2
§2.1 变分法 资料仅供参考,不当之处,请联系改正。
其中最小的一个就最接近基态能量 E0,即
如果选取的试探波函数越接近基态波函数,则 H 的 平均值就越接近基态能量 E0 。这就为我们提供了一 个计算基态能量本征值近似值的方法。
如何寻找试探波函数。
11
资料仅供参考,不当之处,请联系改正。
(二) 如何选取试探波函数
试探波函数的好坏直接关系到计算结果,但是如何选取 试探波函数却没有一个固定可循的法则,通常是根据物 理上的直觉去猜测。
假定 Hˆ 本征值是分立的,本征函数组成正交归一完
备系,即
9
y y Hˆ |
y y
资料仅供参考,不当之处,请联系改正。
n En | n n0,1,2,L | n n |1
n
ym |yn mn
设|y>是任一归一化的波函数,在此态中体系能量平均
值:
yy E H |H ˆ | H 则 必 有 E E 0
例一:维一简维谐简振谐子振Ha子m试ilt探on波量资函料:仅供数参考,不当之处,请联系H 改ˆ正。2h2 ddx22 1 22x2
其本征函数是:
y n(x)N ne2x2/2H n( x)
下面我们根据上面所述原则构造试探波函数。 方法 I: 试探波函数可写成: y(x) c(2x2)
0
|x| |x|
显然,这不是谐振子的本征函数,但是它是合理的。
1.因为谐振子势是关于 x = 0 点对称的,我们的 试探波函数也是关于 x = 0 点对称的;
Gˆyk Gkyk
由于Hermite算符的本征函数构成正交归一化的完备函数集,
故可将用yk展开
ckyk k
其含义:若是体系的一个状态,那么它就可以由某一Hermite算符 Gˆ 的
本征函数的集合线性展开得到。如sp3杂化轨道,即不是原子的本征函数。 定域MO不是Hamilton的本征函数,而是离域MO的某种线性组合。
此法可推广于求第j个本征值及本征函数的近似值或近似 波函数。只要使变分函数与前(j-1)本征函数正交即可。
8
二、变分法的基本思路 资料仅供参考,不当之处,请联系改正。
(一) 能量的平均值
设体系的 Hamilton 量 H ˆ 的本征值由小到大顺序排列为:
E0 < E1 < E2 < ......< En < ...... |ψ0 > |ψ1 > |ψ2> .........| ψn >...... 上式第二行是与本征值相应的本征函数,其中 E0 、 |ψ0> 分别为基态能量和基态波函数。
4
ckyk k
资料仅供参考,不当之处,请联系改正。
将其代入(3)式 I* G ˆG 0 d
I
c*ky*k Gˆ G0 cjyjd
k
j
= c*ky*k cj Gˆ G0yjd
k
j
= c* kcj G jG 0 y * ky jd kj
= c* kcj GjG 0 kj kj
量子力学中可精确求解的Shrödinger方程不多。对于多电 子体系的原子,分子的Shrödinger方程都需要利用近似求解。 变分法就是一种重要的近似解法。
一、 变分法原理
变分法是求解泛函极值问题的方法
1. 定理
设是一个单值连续有限和归一化的函数,G0是Hermite算符
Gˆ 的最小本征值,则泛函(一个关于函数的函数)
* G ˆ d G 0
1
若是未经归一化的函数
*G ˆd
*d G 0
2
3
证明:
资料仅供参考,不当之处,请联系改正。
令 I * G ˆG0d
I * G ˆ d G 0 * d * G ˆ d G 0 3
设已归一化,现变为证明 I 0
若yk和 Gk分别是 Gˆ 的本征函数及本征值,则
(1)根据体系Hamilton量的形式和对称性推测合理 的试探波函数;
(2)试探波函数要满足问题的边界条件;
(3)为了有选择的灵活性,试探波函数应包含一个或 多个待定的参数,这些参数称为变分参数;
(4)若体系 Hamilton 量可以分成两部分: H = H0 + H1,
H0的本征函数已知有解析解,则该解析解可作为体 系的试探波函数。
若|y>未归一化,则
y| Hˆ |y H y|y E0
10
资料仅供参考,不当之处,请联系改正。
基于上述基本原理,我们可以选取很多波函数;
|y> →| y(1)>, |y(2)>,......, |y(k)>,......称为试探波函数,来
计算
H H1 , H2 , L L Hk
Min [H1, H2, L L Hk ] E0
i i
i
即 y c iy i i 0 i 1
亦若变分函数 y 为本征函数集除去 y 0 的其它的本征函数 的线性展开。 故 y 的期望值为
ci 2Gi
Gi0 ci 2 G1
6
7
i0பைடு நூலகம்
ci 2Gi Gi0 ci 2 G1
i0
资料仅供参考,不当之处,请联系改正。
6
y 的线性展开的波函数集合所对应本征集最小值为G1。 G1是 Gˆ 的次低本征值。因而,泛函 G 的极小值,即为G1的 近似值, y 即为相应的近似本征函数。
= c* kck GkG0
k
= ck 2 GkG0 k
因为G0为最小本征值,故 Gk G0 ,而 c k 2 0
故 I0
得证
5
函数 为变分函数,积资料分仅供参考,不当*G之ˆ处,d请联系为改正。泛函;函数的函数。
选择变分函数以使泛函为极小值,其值必为最低本征值 的近似值,且为上界。变分法就是选择变分函数,通过 对其系数或某一参数进行变分,来求其近似值的方法。
6
2. 推论
资料仅供参考,不当之处,请联系改正。
近似求解 Gˆ 的其他本征函数。
若变分函数 y ,它同最低本征函数 y 0 正交。
y y 0 d 0
4
若将 y 向本征函数 y i 展开
y c iy i i
5
将(5)式代入(4)式,得
y 0 c iy i d c i y 0 y id c i i0 c 0 0
资料仅供参考,不当之处,请联系改正。
变分法与Hückel分子轨道法
➢变分法 ➢线性变分法LCAO ➢HMO的基本原理 ➢差分方程法 ➢s体系的处理
1
§2.1 变分法 资料仅供参考,不当之处,请联系改正。
➢变分法原理 ➢变分方法的基本思路 ➢实例
2
§2.1 变分法 资料仅供参考,不当之处,请联系改正。
其中最小的一个就最接近基态能量 E0,即
如果选取的试探波函数越接近基态波函数,则 H 的 平均值就越接近基态能量 E0 。这就为我们提供了一 个计算基态能量本征值近似值的方法。
如何寻找试探波函数。
11
资料仅供参考,不当之处,请联系改正。
(二) 如何选取试探波函数
试探波函数的好坏直接关系到计算结果,但是如何选取 试探波函数却没有一个固定可循的法则,通常是根据物 理上的直觉去猜测。
假定 Hˆ 本征值是分立的,本征函数组成正交归一完
备系,即
9
y y Hˆ |
y y
资料仅供参考,不当之处,请联系改正。
n En | n n0,1,2,L | n n |1
n
ym |yn mn
设|y>是任一归一化的波函数,在此态中体系能量平均
值:
yy E H |H ˆ | H 则 必 有 E E 0