高二下学期理科练习题2
四川省凉山州宁南中学2022-2023学年高二下学期第二次月考理科数学试题
【详解】解:∵ A = {x 1 < x < 2}, B = {x 1 £ x £ 2} ,
∴ A Ç B = {x 1 < x < 2} ,
故选:D. 2.C 【分析】由复数运算法则可得 z 代数形式,后可得其虚部.
【详解】
z
=
3 + 2i 1+ i
=
(3 + 2i)(1- i) (1+ i)(1- i)
=
5
2
i
=
5 2
-
1 2
i
,则
z
的虚部是
-
1 2
.
故选:C 3.B
【分析】根据点 P ( x, y) 在椭圆上得
x2 a2
+
y2 b2
= 1,且 -a
£
x
£ a ,再利用两点距离求得
PF1
=
c a
x + a ,从而可确定
PF1
a, c 的最大值与最小值,即可求得 的值,即可得离心率
e
=
c a
的值.
【详解】设椭圆的半焦距为 c ,若椭圆上一点 P ( x,
为圆柱下底面圆
O
的直径,C
是下底面圆周上一点,已知
ÐAOC
=
π 3
,
OA
=
2
,圆柱的高为
5.若点
D
在圆柱表面上运动,且满足
uuur BC
×
uuur CD
=
0
,则点
D
的轨
迹所围成图形的面积为________.
试卷第31 页,共33 页
16.已知函数 f ( x) = aln2x +1- x (a Î R) 有且仅有一条切线经过点 (0, 0) .若"x Î[1, +¥) , f ( x) + mlnx £ 0 恒成立,则实数 m 的最大值是______.
高考复习高二理科综合第二学期考试题.doc
深圳市宝安中学高二理科综合第二学期考试题理科基础 2008~04~091、如图所示,重力为G 的均匀光滑小球放在互成120的两个光滑平面间,平面ON 是水平的,球与OM 面的接触点为A ,与ON 的接触点为B ,则球对OM 的压力为B.0C.12G D.G 2、如图所示,物体静止于倾斜放置的木板上,当倾角θ由很小缓慢增大到90的过程中,木板对物体的支持力N F 和摩擦力f 的变化情况是A.N F 、f 都增大B.N F 、f 都减小C.N F 增大、f 减小D.N F 减小,f 先增大后减小3、如图所示,质量为m 的木块A ,放在斜面B 上,若A 与B 在水平地面上以相同的速度向左作匀速直线运动,则A 、B 之间的相互作用力的大小为A.mgB.sin mg θC.cos mg θD.tan mg θ4、如图所示,在用力F 拉小船匀速靠岸的过程中,若水的阻力保持不变,下列叙述中不正确的是A.小船所受的合外力保持不变B.船所受的浮力不断减小C.绳子的拉力F 不断增大D.绳子的拉力F 保持不变5、如图所示,在车厢中的A 是用绳拴在底部上的氢气球,B 是用绳挂在车厢顶部的金属球,开始时它们和车厢一起向右做匀速直线运动,若突然刹车,车厢作匀减速运动,则下列哪个图能表示刹车时的情况?6、人走路时,人和地球间的作用力和反作用力的对数有A.一对B.两对C.三对D.四对7、下列有关力学单位制的说法中正确的是A.在有关力学的分析计算中,只能采用国际单位,不能采用其他单位B.力学单位制中,选为基本单位的物理量有长度、物质的量和质量C.力学单位制中,采用国际单位的基本单位有牛顿、千克、米、秒D.单位制中的导出单位可以用基本单位来表达8、某人推着自行车前进时,地面对前轮的摩擦力为1F ,对后轮的摩擦力为2F ;该人骑着自行车前进时,地面对前轮的摩擦力为3F ,对后轮的摩擦力为4F 。
下列说法中正确的是A.1F 与车前进方向相同B.2F 与车前进方向相同C.3F 与车前进方向相同D.4F 与车前进方向相同9、 如图所示,把球夹在竖直墙AC 和木板BC 之间,不计摩擦,球对墙的压力为1N ,球对板的压力为2N 。
四川省眉山市彭山区第一中学2020-2021学年高二下学期入学考试理科数学试题 PDF版含答案
两垂直,以 O 为坐标原点,OE 所在直线为 x 轴,OA1 所在直线为 y 轴,OB 所在直线为 z
轴建立空间直角坐标系,如图所示, C 1, 1, 0 , B 0, 0,1 , A0, 1, 0 , C1 1,1, 0 ,
所 以 CB 1,1,1 , AC1 1, 2, 0 , … 6 分 因 为
10.已知圆 C : x2 y2 1 ,从点 A2, 0 观察点 B 2,b ,若视线不被圆 C 挡住(视线所在
直线与圆 C 无公共点),则实数 b 的取值范围是
A. , 4 3 4 3, B. 4 3, 4 3
C.
,
4
3
3
4
3 3
,
D.
4
3
3
,
4
3
3
11.
已知双曲线 x2 a2
14. 5
15.
16. (1)(3)
17.
18.【解答】证明:(1)如图,取 PA 的中点 G,连接 BG,EG,
∵点 E,G 分别为 PD,PA 的中点,
,
又∵F 是 BC 的中点,四边形 ABCD 是正方形,∴BF∥EG 且 BF=EG,
故四边形 EFBG 为平行四边形,∴EF∥BG,∵BG⊂平面 ABP,EF⊄平面 ABP,
1
(1
x1
,
y1 )
ቤተ መጻሕፍቲ ባይዱ
x2
1,y2
2 m
2 (1 x2
,
y2 )
利用对应的纵坐标相等,得
y1
2 m
1 y1
,
y2
2 m
2 y2
,
整理得 1
1
2 my1
, 2
1
2021-2022学年广西玉林市普通高中高二下学期期末考试理科综合化学试题
2021-2022学年广西玉林市普通高中高二下学期期末考试理科综合化学试题1.从科技前沿到日常生活,化学无处不在。
下列说法错误的是A.“空气捕捉”法能实现从空气中捕获二氧化碳,利于碳中和B.2022 年北京冬奥会吉祥物“冰墩墩”使用的聚乙烯属于高分子材料C.“天和”核心舱中使用的氮化硼陶瓷基复合材料属于有机高分子材料D.在三星堆“祭祀坑”提取到丝绸制品残留物,其中丝绸主要成分为蛋白质2.设N A为阿伏加德罗常数的值,下列说法错误的是A.78g Na 2 O 2与足量水反应生成的O 2分子数目为0. 5 N AB.标准状况下,0.1 mol Cl 2溶于水,转移的电子数目为0.1 N AC.1L 0.1mol·L -1的K 2 SO 3溶液中,含K +的数目为0. 2 N AD.15g甲基(-CH 3 )中含有的电子数为9 N A3.有机物M的结构简式如图。
下列有关M的说法正确的是A.分子式为C 15 H 13 O 3B.苯环上的一氯代物有5种C.1moL M与足量金属钠反应可生成2mol H 2D.可发生取代反应、加成反应和氧化反应4.依据下列实验和现象,得出结论正确的是该溶液中存在溶液中一定含有Cl -A.A B.B C.C D.D5.短周期主族元素X、Y、Z、W原子序数依次增大, X的内层电子总数与最外层电子数相差3个,Z的最外层电子数等于周期数,Y与W同主族,W最高正价与最低负价的代数和为4。
下列说法正确的是B.Z的单质既有氧化性又有还原性A.W的最高价氧化物对应的水化物是强酸C.简单氢化物的稳定性: W> Y>X D.简单离子半径: Y<X<W<Z6.苯甲酸钠是一种常见的食品防腐剂。
常温时,关于苯甲酸钠【苯甲酸()的】水溶液,下列说法不正确的是A.该溶液呈碱性B.微粒浓度大小:C.溶液中存在:D.加水稀释时,溶液中减小7.空间实验室“天宫一号”的供电系统中有再生氢氧燃料电池(RFC), RFC是一种将水电解技术与氢氧燃料电池技术相结合的可充电电池。
高二理科数学下学期
高二期终考试理科数学试卷一.选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在复平面内,复数iz +=31对应的点位于 ( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知a R ∈,则“2a >”是“22a a >”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.直线(1)y k x =+与圆221x y +=的位置关系是 ( C )A.相离B.相切C.相交D.与k 的取值有关 4.函数b x A x f +ϕ+ω=)sin()((0,0,)22A ππωϕ>>-<<的图象如图,则)(x f 的解析式可以为 ( D )A. 3()sin 12f x x π=+B. 1()sin 12f x x =+C. 1()sin 124f xx π=+D.12sin 21)(+π=x x f 5.正四棱锥P -ABCD 的五个顶点在同一个球面上,若其底面边长为4,侧棱长为此球的表面积为 ( B )A. 18πB. 36πC. 72πD. 9π6的直线l 与双曲线22221xy a b-=交于不同的两点,且这两个交点在x 轴上的射影恰好是双曲线的两个焦点,则该双曲线的离心率为 ( )7.已知函数4()1||2f x x =-+的定义域为[a,b ] (,)a b ,值域为[0,1],那么满足条件的有序对(,)a b 共有( )A. 3对 B. 4对 C. 5对 D. 9对8.在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染16后面最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开始的第2009个数是 ( )A. 3948 B. 3953 C. 3955 D.39589.已知:奇函数)(x f 的定义域为R ,且是以2为周期的周期函数,数列}{n a 是首项为1,公差为1的等差数列,则)()()(1021a f a f a f +++ 的值等于( ) A 0 B 1 C -1 D 2 10. 如果关于x 的方程213ax x+=有且仅有一个正实数解,那么实数a 的取值范围为 ( )A. {|0}a a ≤B. {|0a a ≤或2}a =C. {|0}a a ≥D. {|0a a ≥若2}a =-二.填空题(本大题共5小题,每小题5分,共25分)11.若椭圆2221615x y p+=的左焦点在抛物线22y px =的准线上,则p 的值为_________.12.双曲线 22a x -22by =1的左右焦点分别为F 1 ﹑F 2,在双曲线上存在点P ,满足︱PF 1︱=5︱PF 2︱。
高二数学下学期第二次月考试题 理含解析 试题
智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。
高二数学(理)下学期第二次月考试题(含答案)
上学期第二次月考高二数学卷(理)考试时间:120分钟 满分:150一、选择题(每小题5分,共12题)1、已知全集{,,,,}U a b c d e =,{,,}M a c d =,{,,}N b d e =,则N M C U ⋂)( = ( )A .{}bB .{}dC .{,}b eD .{,,}b d e2、 5()a x x +(x R ∈)展开式中3x 的系数为10,则实数a 等于( )A .-1B .12 C .1 D .23、某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( )A. 24种B. 36种C. 38种D. 108种4、计算888281808242C C C C ++++ =( )A 、62B 、82C 、83 D 、63 5、一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每次取后不放回,则若已知第一只是好的,则第二只也是好的概率为( ) A.23 B.512 C.59 D.796、已知△ABC 的重心为P ,若实数λ满足:AB AC AP λ+=,则λ的值为A .2B .23C .3D .67、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有 ( )A .34种B .48种C .96种D .144种8、35(1(1+的展开式中x 的系数是(A )4- (B )2- (C )2 (D )49、某体育彩票规定: 从01到36共36个号码中抽出7个号码为一注,每注2元 某人想先选定吉利号18,然后再从01到17中选3个连续的号,从19到29中选2个连续的号,从30到36中选1个号组成一注,则此人把这种要求的号买全,至少要花( )A.1050元B. 1052元C. 2100元D. 2102元10、9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A.2524C C ⋅ B.443424C C C ++ C.2524C C + D.054415342524C C C C C C ⋅+⋅+⋅11、已知,)(为偶函数x f x x f x x f x f 2)(,02),2()2(=≤≤--=+时当,若*,(),n n N a f n ∈=则2011a = ( )A .1B .21C . 14D .1812、如图,在A 、B 间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A 、B 之间线路不通,则焊接点脱落的不同情况有 ( )A .10B .13C .12D .15二、填空题(每小题5分,共4小题)13、已知(1-2x)n的展开式中,二项式系数的和为64,则它的二项展开式中,系数最大的是第_____________项.14、乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_.15、同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是_____________ (结果要求写成既约分数).16、用5种不同颜色给图中的A 、B 、C 、D 四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有_______种不同的涂色方案。
高二数学第二学期理科第一次月考(含答案)
精品基础教育教学资料,仅供参考,需要可下载使用!第二学期第一次月考高二数学理科试卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,仅有一项符合题目要求)1. 已知集合P={x|1≤x≤3},Q={x|(x-1)2≤4},则P Q=()A.[-1,3] B . [1,3] C. [1,2] D. (],3-∞2. 已知,则()A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2)3.下列说法正确的是()A.“sinα=”是“cos2α=”的必要不充分条件B.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”C.已知命题p:∃x∈R,使2x>3x;命题q:∀x∈(0,+∞),都有<,则p∧(¬q)是真命题D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分层抽样4.已知函数f(x)的定义域为[﹣1,4],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图所示.x ﹣1 0 2 3 4f(x) 1 2 0 2 0当1<a<2时,函数y=f(x)﹣a的零点的个数为()A.2 B.3 C.4 D.55. 如图,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A. B.C. D.6.函数f(x)=sinx•ln(x2+1)的部分图象可能是()A. B.C. D.7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.18B.16C. D.18.如果函数f (x )为奇函数,当x<0时,f (x )= ln(-x)+3x,则曲线在点(1,-3)处的切线方程为 ( ).32(1) .32(1) .34(1) .34(1)A y x B y x C y x D y x +=--+=-+=--=+9. 已知圆C :(x ﹣3)2+(y ﹣4)2=1和两点A (﹣m ,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB=90°,则m 的最大值为( ) A .7B .6C .5D .410.如图,四棱锥P ﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD ,△PAB 和△PAD 都是等边三角形,则异面直线CD 与PB 所成角的大小为( ) A .45° B .75° C .60° D .90° 11.已知椭圆E :+=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x ﹣4y=0交椭圆E 于A ,B 两点,若|AF|+|BF|=4,点M 到直线l 的距离不小于,则椭圆E 的离心率的取值范围是( ) A .(0,] B .(0,] C .[,1) D .[,1)12. 设函数f (x )在(m ,n )上的导函数为g (x ),x ∈(m ,n ),若g (x )的导函数小于零恒成立,则称函数f (x )在(m ,n )上为“凸函数”.已知当a ≤2时,3211()62f x x ax x =-+,在x ∈(﹣1,2)上为“凸函数”,则函数f (x )在(﹣1,2)上结论正确的是( ) A .有极大值,没有极小值 B .没有极大值,有极小值C .既有极大值,也有极小值D .既无极大值,也没有极小值二、填空题(本大题共4小题,每小题5分,共20分). 13.设向量(,1)a m =,(1,2)b =,且222a b a b +=+,则m=________. 14.函数2cos 2y x =的图象可由sin 2cos 2y x x =+的图象至少向左平移_______个单位长度得到.15.若函数2()f x x x a =-()在 2x =处取得极小值,则a =________. 16. 设函数()f x 的导函数是'()f x ,且'1()2() () ,2f x f x x R f e ⎛⎫>∈=⎪⎝⎭(e 是自然对数的底数),则不等式2()f lnx x <的解集为___________.三.解答题(本大题共6小题,共70分;说明:17-21共5小题,每题12分,第22题10分). 17. 已知数列{a n }(n ∈N *)的前n 项的S n =n 2. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若,记数列{b n }的前n 项和为T n ,求使成立的最小正整数n 的值.18.设函数f (x )=lnx ﹣x+1. (Ⅰ)分析f (x )的单调性; (Ⅱ)证明:当x ∈(1,+∞)时,1<<x.19.如图,△ABC 和△BCD 所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E 、F 分别为AC 、DC 的中点.(Ⅰ)求证:EF ⊥BC ;(Ⅱ)求二面角E ﹣BF ﹣C 的正弦值.20.已知椭圆E :+=1(a >b >0)的离心率为,F 是椭圆的焦点,点A (0,﹣2),直线AF 的斜率为,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.21.已知函数2()1xe f x x mx =-+.(Ⅰ)若()2,2m ∈-,求函数()y f x =的单调区间;(Ⅱ)若10,2m ⎛⎤∈ ⎥⎝⎦,则当[]0,1x m ∈+时,函数()y f x =的图象是否总在直线y x =上方?请写出判断过程.22.(选修4-4坐标系与参数方程)在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.高二第一次月考理科数学参考答案一、BDCCC DBBBD BA 二、13. -2 ; 14 . 8π; 15. 2 ; 16. ()0,e .三、 17.解:(Ⅰ)∵S n =n 2,当n ≥2时,S n ﹣1=(n ﹣1)2∴相减得a n =S n ﹣S n ﹣1=2n ﹣1又a 1=S 1=1符合上式∴数列{a n },的通项公式a n =2n ﹣1 (II )由(I )知∴T n =b 1+b 2+b 3++b n ==又∵∴∴成立的最小正整数n 的值为518.解:(Ⅰ)由f (x )=lnx ﹣x+1,有'1()(0)xf x x x-=>,则()f x 在(0,1)上递增,在(1,+∞)递减; (Ⅱ)证明:当x ∈(1,+∞)时,1<<x ,即为lnx <x ﹣1<xlnx .结合(Ⅰ)知,当1x >时'()0f x <恒成立,即()f x 在(1,+∞)递减,可得f (x )<f (1)=0,即有lnx <x ﹣1;设F (x )=xlnx ﹣x+1,x >1,F′(x )=1+lnx ﹣1=lnx ,当x >1时,F′(x )>0,可得F (x )递增,即有F (x )>F (1)=0, 即有xlnx >x ﹣1,则原不等式成立; 19.解:(Ⅰ)证明:由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系,易得B (0,0,0),A (0,﹣1,),D (,﹣1,0),C (0,2,0),因而E (0,,),F (,,0),所以=(,0,﹣),=(0,2,0),因此•=0,所以EF ⊥BC .(Ⅱ)在图中,设平面BFC 的一个法向量=(0,0,1),平面BEF 的法向量=(x ,y ,z ),又=(,,0),=(0,,),由得其中一个=(1,﹣,1),设二面角E ﹣BF ﹣C 的大小为θ,由题意知θ为锐角,则 cosθ=|cos <,>|=||=,因此sinθ==,即所求二面角正弦值为.20.解:(Ⅰ) 设F (c ,0),由条件知,得又,所以a=2,b 2=a 2﹣c 2=1,故E 的方程.….(6分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y=kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y=kx ﹣2代入,得(1+4k 2)x 2﹣16kx+12=0, 当△=16(4k 2﹣3)>0,即时,从而又点O 到直线PQ 的距离,所以△OPQ 的面积=,设,则t >0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y=x ﹣2或y=﹣x ﹣2.…(12分)21. 解:(Ⅰ)易知()2,2m ∈-时,函数的定义域为R ,()()()2'2222(1)2(1)(1)()11x xx e x mx x m e e x x m f x xmx xmx -+-----==-+-+,①若11,m +=即0m =,则'()0f x ≥,此时()f x 在R 上递增;②11,m +>即02m <<,则当(),1x ∈-∞和()1,x m ∈++∞时,'()0f x >,()f x 递增;当()1,1x m ∈+时,'()0f x <,()f x 递减;综上,当0m =时,()f x 的递增区间为(),-∞+∞;当02m <<时,()f x 的递增区间为(),1-∞和()1,m ++∞,()f x 的减区间为()1,1m +(Ⅱ)当10,2m ⎛⎤∈ ⎥⎝⎦时,由(Ⅰ)知()f x 在()0,1上单调递增,在()1,1m +上单调递减.令()g x x =,①当[]0,1x ∈时min max ()(0)1,()1,f x f g x ===这时函数()f x 的图象总在直线()g x 上方. ②当[]1,1x m ∈+时,函数()f x 单调递减,所以1min()(1)2m e f x f m m +=+=+,()g x 的最大值为1m +.下面(1)f m +判断与1m +的大小,即判断xe 与(1)x x +的大小,其中311,.2x m ⎛⎤=+∈ ⎥⎝⎦解法一:令()(1)xm x e x x =-+,则'()21xm x e x =--,令'()()h x m x =,则'()2xh x e =-.因为311,.2x m ⎛⎤=+∈ ⎥⎝⎦所以'()20x h x e =->,所以'()m x 单调递增.又因为'(1)30m e =-<,3'23()402m e =->,所以存在031,2x ⎛⎤∈ ⎥⎝⎦,使得0'00()210.x m x e x =---所以()m x 在()01,x 上单调递减,在03,2x ⎛⎫ ⎪⎝⎭上单调递增,所以022200000000()()21 1.x m x m x e x x x x x x x ≥=--=+--=-++因为当031,2x ⎛⎤∈ ⎥⎝⎦时,2000()10,m x x x =-++>所以(1)x e x x >+,即(1)1f m m +>+,所以函数()f x 的图象总在直线y x =上方.解法二:判断xe 与(1)x x +的大小可以转化为比较x 与[]ln (1)x x +的大小.令[]()ln (1)x x x x ϕ=-+,则2'21()x x x x x ϕ--=+,令2()1,u x x x =--当31,2x ⎛⎤∈ ⎥⎝⎦时,易知()u x 递增,所以31()()024u x u ≤=-<,所以当31,2x ⎛⎤∈ ⎥⎝⎦时,'()0x ϕ<,()x ϕ递减,所以3315()()ln0224x ϕϕ≥=->.所以[]ln (1)x x x >+,所以(1)xe x x >+,所以(1)1f m m +>+,所以函数()f x 的图象总在直线y x =上方. 22.解:(1)曲线C 1的参数方程为(α为参数),移项后两边平方可得+y 2=cos 2α+sin 2α=1,即有椭圆C 1:+y 2=1; 曲线C 2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y ﹣4=0,即有C 2的直角坐标方程为直线x+y ﹣4=0; (2)由题意可得当直线x+y ﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).。
四川省达州市渠县中学2022-2023学年高二下学期开学考试理科数学试题
四川省达州市渠县中学2022-2023学年高二下学期开学考试理科数学试题一、单选题1.已知命题p :x ∀∈R ,sin 1x ≤,则( ) A .p ⌝:x ∃∈R ,sin 1x ≥ B .p ⌝:x ∀∈R ,sin 1x ≥ C .p ⌝:x ∃∈R ,sin 1x >D .p ⌝:x ∀∈R ,sin 1x >2.执行如图所示的程序框图,则输出的=SA .14B .310 C .13D .5143.对任意实数a ,b ,c ,给出下列命题: ①“a b =”是“ac bc =”充要条件;②“5a +是无理数”是“a 是无理数”的充要条件; ③“a b >”是“22a b >”的充分条件; ④“5a <”是“3a <”的必要条件. 其中真命题的个数是( ) A .1B .2C .3D .44.已知空间向量()()2,1,0,1,,3a b x =-=-r r ,且a b ⊥r r ,则x 等于( )A .1B .2C .3D .2-5.如果数据1x ,2x ,⋅⋅⋅,n x 的平均数为x ,方差为2s ,则152x +,252x +,⋅⋅⋅,52n x +的平均数和方差分别为( ) A .x ,sB .52x +,2sC .52x +,225sD .x ,225s6.已知圆台形的花盆的上、下底面的直径分别为8和6,该花盆的侧面展开图的扇环所对的圆心角为2π,则母线长为( ) A .4B .8C .10D .16 7.等差数列{}n a 公差为d ,且满足3a ,5a ,8a 成等比数列,则1da =( ) A .12B .0或12C .2D .0或28.如图,已知三棱锥P -ABC 的所有顶点都在球O 的球面上,PC 是球O 的直径,若平面PCA ⊥平面PCB ,P A =AC ,PB =BC ,三棱锥P -ABC 的体积为643,则球O 的表面积为( )A .16πB .32πC .48πD .64π9.ABC V 中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1)b c a b sinA ==-,则A= A .34π B .3π C .4π D .6π 10.在矩形ABCD 中,8,7==AB BC ,在该矩形内任取一点M ,则事件“90AMB ∠<︒”发生的概率为( )A .27π B .7π C .217-π D .17-π11.如图,1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,P 为椭圆C 上的点,Q 是线段1PF 上靠近1F 的三等分点,2PQF V 为正三角形,则椭圆C 的离心率为( )A B C .23D 12.已知双曲线()222210,0x y a b a b-=>>的左,右焦点分别为1F ,2F ,若双曲线的左支上存在一点P ,使得2PF 与双曲线的一条渐近线垂直于点Q ,且223PF F Q =,则双曲线的渐近线方程为( )A .34y x =?B .43y x =±C .23y x =±D .32y x =±二、填空题13.为加速推进科技城新区建设,需了解某科技公司的科研实力,现拟采用分层抽样的方式从A ,B ,C 三个部门中抽取16名员工进行科研能力访谈.已知这三个部门共有64人,其中B 部门24人,C 部门32人,则从A 部门中抽取的访谈人数 . 14.已知单位向量a r ,b r 满足()2a b b -⊥r r r ,则a r 与b r的夹角为.15.设命题:p 关于x 的一元二次方程()2220x a x a +++-=的一根大于零,另一根小于零;命题:q x ∀∈R ,2280x x a -+>; 若p q ∨为真命题,p q ∧为假命题,则实数a 的取值范围是.16.已知F 为抛物线C :24y x =的焦点,过点F 的直线l 与抛物线C 交于不同的两点A ,B ,抛物线在点A ,B 处的切线分别为1l 和2l ,若1l 和2l 交于点P ,则2164PF AB+的最小值为.三、解答题17.已知命题p :2680x x -+<,命题q :21m x m -<<+. (1)若命题p 为真命题,求实数x 的取值范围.(2)若p 是q 的充分条件,求实数m 的取值范围; 18.已知直线:2360l x y +-=(1)求过点()2,3P ,且与直线l 平行的直线m 的方程;(2)直线l 与圆22:2440C x y x y +--+=相交于A B 、两点,求线段AB 的长.19.某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[)25,30,第2组[)30,35,第3组[)35,40,第4组[)40,45,第5组[]45,50,得到的频率分布直方图如图所示.(1)下表是年龄的频率分布表,求正整数a ,b 的值.(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组抽取的员工的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.20.在ABC ∆ 中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=(1) 求sin sin CA的值 (2) 若1cos ,24B b == ,求ABC ∆的面积.21.如图,点O 是正方形ABCD 的中心,CD DE ⊥,//CD EF ,22CD EF ==,AC OE ⊥.(1)证明:DE ⊥平面ABCD ;(2)若直线OE 与平面ABCDE ACF --的余弦值. 22.已知双曲线2222:1Γ-=x y a b(0a >,0b >)的左、右顶点分别为()11,0A -、()21,0A ,离心率为2,过点()2,0F 斜率不为0的直线l 与Γ交于P 、Q 两点. (1)求双曲线Γ的渐近线方程;(2)记直线1A P 、2A Q 的斜率分别为1k 、2k ,求证:12k k 为定值.。
霍邱县第二中学2019_2020学年高二数学下学期开学考试试题理
安徽省霍邱县第二中学2019—2020学年高二数学下学期开学考试试题 理一、选择题(60分)1.复数5iz i =+的虚部为( )A .526B .526iC .526-D .526i -2.若,则“"是“”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 3.命题000:R,tan p xx x ∃∈>的否定是( )A .000,tan xR x x ∃∈≤B .,tan x R x x ∀∈<C .,tan x R x x ∀∈≤ D .000,tan xR x x ∃∈<4.已知f (x )=x 2+3xf ′(1),则f ′(2)等于( )A .1B .2C .4D .85.用数学归纳法证明:“()221*111,1n nn a a aaa n N a++-++++=≠∈-”,在验证1n =成立时,左边计算所得结果是( )A .1 B .1a + C .21a a ++ D .231a aa +++6。
观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,用你所发现的规律得出22 018的末位数字是( )A .2B .4C .6D .8 7。
已知椭圆C :错误!+错误!=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A .错误!B .错误!C .错误!D .错误!8。
过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )A 。
错误!B .2错误!C .2错误!D .3错误!9.设f (x )=错误!x 3+ax 2+5x +6在区间[1,3]上为单调函数,则实数a 的取值范围是( )A .[-5,+∞)B .(-∞,-3]C .(-∞,-3]∪[-5,+∞)D .[-5,错误!] 10。
金太阳好教育高二下学期期末考试仿真卷理科数学(二)解析版
金太阳好教育高二下学期期末考试仿真卷理科数学(二)解析版第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·遵化期中]i 是虚数单位,复数1i z =+,则22z z+=( ) A .1i -- B .1i -+ C .1i +D .1i -【答案】C【解析】由复数1i z =+,可得()()2221i 221i 12i 12i 1i 1i 1i 11z z -+=++=+-+=+-=+++. 故选C .2.[2018·潍坊检测]观察下列各式:1a b +=,223a b +=,334a b +=,447a b +=,5511a b +=,L ,则88a b +=( )A .18B .29C .47D .76【答案】C【解析】1a b +=Q ,223a b +=,334a b +=,447a b +=,5511a b +=,L , ∴通过观察发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和,6611718a b ∴+=+=,77181129a b +=+=,88291847a b +=+=.故选C .3.[2018·牡丹江一中]若()42f x x x=-,则()1f '等于( ) A .1- B .2C .3D .6【答案】D【解析】()42f x x x =-Q ,()3224f x x x∴=+',()1426f '∴=+=.故选D . 4.[2018·伊春二中]4名同学分别报名参加数、理、化竞赛,每人限报其中的1科,不同的报名方法种数( ) A .24 B .4C .34D .43【答案】D【解析】根据题意,4名同学分别报名参加数、理、化竞赛,每人都有3种选择方法,则不同的报名方法种数有433333⨯⨯⨯=种.故选D .5.[2018·山东师范附中]在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是( )A .10-B .10C .5-D .5【答案】B【解析】根据所给的二项式写出展开式的通项()()521031551C 1C rrr rr rr T x x x --+⎛⎫=-=-⋅ ⎪⎝⎭, 令1034r -=,解得2r =,解得()224351C 10T x =-⋅=,即4x 的系数为10.故选B .6.[2018·重庆期末]根据如下样本数据:得到回归方程 1.412.ˆ4yx =-+,则( ) A .5a =B .变量x 与y 线性正相关C .当11x =时,可以确定3y =D .变量x 与y 之间是函数关系 【答案】A【解析】由题意可得,357964x +++==,6321144a ay ++++==,回归方程过样本中心点,则11 1.4612.44a +=-⨯+,求解关于实数a 的方程可得5a =,由 1.40ˆb=-<可知变量x 与y 线性负相关;当11x =时,无法确定y 的值;变量x 与y 之间是相关关系,不是函数关系.故选A .7.[2018·棠湖中学]已知随机变量ξ服从正态分布()20N σ,,若()20023P ξ>=.,则()22P ξ≤≤=﹣( )A .0477.B .0625.C .0954.D .0977.【答案】C【解析】由题意可知正态分布的图象关于直线0x =对称,则()()220023P P ξξ<=>=.,据此有()221002320954P ξ-≤≤=-⨯=...故选C .8.[2018·济南一中]下列关于函数()()22e x f x x x =-的判断正确的是( ) ①()0f x >的解集是{}|02x x <<;②(f 极小值,f是极大值;③()f x 没有最小值,也没有最大值. A .①③ B .①②③C .②D .①②【答案】D【解析】由()()2202e 02002x f x x x x x x >⇒->⇒->⇒<<,故①正确;()()2e 2x f x x '=-,由()0f x '=得x =()0f x '<得x >或x <,由()0f x '>得x ()f x ∴的单调减区间为(,-∞和)+∞,单调增区间为(.()f x ∴的极大值为f,极小值为(f ,故②正确;x <Q 时,()0f x <恒成立.()f x ∴无最小值,但有最大值f,故③不正确.故选D .9.[2018·重庆一模]如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )种A .120B .260C .340D .420【答案】D【解析】由题意可知上下两块区域可以相同,也可以不同, 则共有5431354322180240420⨯⨯⨯⨯+⨯⨯⨯⨯=+=.故选D .10.[2018·西城14中]口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖.每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( )A .80243B .100243C .80729D .100729【答案】A【解析】每次摸球中奖的概率为114529C C 20536C 9==,由于是有放回地摸球, 故3次摸球相当于3次独立重复实验, 所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭.故选A . 11.[2018·赤峰二中]口袋中有5个形状和大小完全相同的小球,编号分别为0,1,2,3,4,从中任取3个球,以表示取出球的最小号码,则E ξ=( ) A .045. B .05. C .0.55 D .0.6【答案】B【解析】()2435C 305C P ξ===,()2335C 3110C P ξ===,()3511210C P ξ===,331101205510102E ξ=⨯+⨯+⨯==..故选B . 12.[2018·天津一中]已知定义在R 上的可导函数()y f x =的导函数为()f x ',满足()()f x f x <',且()02f =,则不等式)A .(),0-∞B .()0,+∞C .(),2-∞D .()2,+∞【答案】B ,从而()F x 为R 上的单调增函数,即为()2F x >,从而其解集为()0,+∞.故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·黑龙江期中]若复数()()3i 2i a -+是纯虚数,则实数a =___________.【答案】23-【解析】()()()3i 2i 326i a a a -+=++-为纯虚数,则320 60a a +=-⎧⎨⎩≠,解得23a =-.故答案为23-.14.[2018·长春十一中]已知下列命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在回归直线方程ˆ0.52yx =-+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均减少05.个单位;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________. 【答案】①②③【解析】①相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好,是正确的;②两个变量相关性越强,则相关系数r 的绝对值就越接近于1,是正确的;③在回归直线方程0.ˆ52x y=-+中,当解释变量x 每增加一个单位时,预报变量ˆy 平均减少05.个单位是正确的,因为回归方程,并不是样本点都落在方程上,故只能是估计值,所以说是平均增长;④对分类变量X 与Y ,它们的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越小,故原命题错误; 故答案为①②③.15.[2018·三明质检]设()9210012101241b x x a a x a x a x x x ⎛⎫+-=+++++ ⎪⎝⎭L ,则10120210222a a aa ++++=L _______. 【答案】5【解析】由题易知()999b C 11=⨯-=-,令12x =,可得1012021032b 222a a a a =+++++L , 101202105222a a a a ∴++++=L .故答案为5. 16.[2018·福建师范附中]已知函数()()1ln f x x a x a x =-+∈R 在其定义域上不单调,则a 的取值范围是__________.【答案】2a >【解析】()()1ln 0f x x a x x x =-+>Q ,()211a f x x x∴=--+'.①若函数()f x 在()0+∞,上单调递增,则()2110af x x x =--+≥'在()0,+∞上恒成立,1a x x ∴≥+在()0,+∞上恒成立,由于1y x x=+在()0,+∞上无最大值, ∴函数()f x 在()0+∞,上不单调递增.②若函数()f x 在()0+∞,上单调递减,则()2110af x x x =--+≤'在()0+∞,上恒成立,1a x x ∴≤+在()0+∞,上恒成立,又因为12x x +≥,所以当且仅当1x x=,即1x =时等号成立,2a ∴≤.综上可得,当函数()f x 在其定义域上不单调时,实数a 的取值范围是()2+∞,.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)[2018·辽宁实验中学]已知()*n ∈N ,在()2nx +的展开式中,第二项系数是第三(1)求展开式中二项系数最大项;(2)若()()()()20122111n nn x a a x a x a x +=+++++++L ,求①12n a a a +++L 的值; ②122n a a na +++L 的值.【答案】(1)333346C 2160T x x ==;(2)63;192. 【解析】(1,解得6n =,∴展开式中二项式系数最大项为333346C 2160T x x ==.(2)①()()()()()66260126211111x x a a x a x a x ⎡⎤⎣+=++=+++++++⎦L , 令0x =,得6016264a a a +++==L ,又令1x =-,得01a =. 1263n a a a +++=L ,②()()()()()66260126211111x x a a x a x a x ⎡⎤+=++=+++++++⎣⎦L ,两边求导,得()()()511262211n n x a a x na x -+=+++++L ,令0x =,得122192n a a na +++=L .18.(12分)[2018·大庆实验中学]已知函数()2ln f x x ax x =+-,a ∈R . (1)若1a =,求曲线()y f x =在点()()11f ,处的切线方程; (2)若函数()f x 在[]13,上是减函数,求实数a 的取值范围; 【答案】(1)20x y -=;(2)173⎛⎤-∞- ⎥⎝⎦,.【解析】(1)当1a =时,()2ln f x x x x =+-,所以()121f x x x+'=-,()12f '=, 又因为()12f =,所以曲线()y f x =在点()()11f ,处的切线方程为20x y -=.(2)因为函数在[]13,上是减函数,所以()212120x ax f x x a x x +-'=+-=≤在[]13,上恒成立. 做法一:令()221h x x ax =+-,有()()1030h h ⎧≤⎪⎨≤⎪⎩,得1173a a ≤-⎧⎪⎨≤-⎪⎩.故173a ≤-.∴实数a 的取值范围为173⎛⎤-∞- ⎥⎝⎦,.做法二:即2210x ax +-≤在[]13,上恒成立,则12a x x≤-在[]13,上恒成立, 令()12h x x x =-,显然()h x 在[]13,上单调递减,则()()min 3a h x h ≤=,得173a ≤-. ∴实数a 的取值范围为173⎛⎤-∞- ⎥⎝⎦,.19.(12分)[2018·牡丹江一中]2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在1575-岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为9:11.(1)根据已知条件完成上面的22⨯列联表,并判断能否有99%的把握认为关注“一带一路”是否和年龄段有关?(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X ,求X 的分布列及数学期望.附:,其中c d n a b =+++.临界值表:【答案】(1)有99%的把握认为关注“一带一路”和年龄段有关;(2)()1E X =. 【解析】(1)依题意可知抽取的“青少年”“中老年”共有1004555-=人. 完成的22⨯列联表如:()2 6.6350.01P K >=Q ,9.091 6.635>,∴有99%的把握认为关注“一带一路”和年龄段有关. (2)根据题意知,选出关注的人数为3,不关注的人数为6,在这9人中再选取3人进行面对面询问,X 的取值可以为0,1,2,3,所以X 的分布列为:20.(12分)[2018·孝感八校]现有5名男生、2名女生站成一排照相, (1)两女生要在两端,有多少种不同的站法? (2)两名女生不相邻,有多少种不同的站法?(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法? 【答案】(1)240;(2)3600;(3)3720.【解析】(1)两端的两个位置,女生任意排,中间的五个位置男生任意排,2525A A 240⋅=(种). (2)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生,5256A A 3600⋅=(种).(3)采用去杂法,在七个人的全排列中,去掉女生甲在左端的66A 个,再去掉女生乙在右端的66A 个,但女生甲在左端同时女生乙在右端的55A 种排除了两次,要找回来一次. 765765A 2A A 3720∴-+=(种). 21.(12分)[2018·榆林模拟]2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖凭着连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造了中国男子冰上竞速项目在冬奥会金牌零的突破.根据短道速滑男子500米的比赛规则,运动员自出发点出发进入滑行阶段后,每滑行一圈都要依次经过4个直道与弯道的交接口()1,2,3,4k A k =.已知某男子速滑运动员顺利通过每个交接口的概率均为34,摔倒的概率均为14.假定运动员只有在摔倒或到达终点时才停止滑行,现在用X 表示该运动员滑行最后一圈时在这一圈内已经顺利通过的交接口数.(1)求该运动员停止滑行时恰好已顺利通过3个交接口的概率;(2)求X 的分布列及数学期望()E X . 【答案】(1)27256;(2)见解析. 【解析】(1)由题意可知3312744256P ⎛⎫=⨯= ⎪⎝⎭.(2)X 的所有可能值为0,1,2,3,4. 则()()31,2,3,44k P A k ==,且1A ,2A ,3A ,4A 相互独立. 故()()1104P X P A ===,()()1231314416P X P A A ==⋅=⨯=, ()()212331924464P X P A A A ⎛⎫==⋅⋅=⨯= ⎪⎝⎭,()()312343127344256P X P A A A A ⎛⎫==⋅⋅⋅=⨯= ⎪⎝⎭,()()4123438144256P X P A A A A ⎛⎫==⋅⋅⋅== ⎪⎝⎭.从而X 的分布列为:()13927815250123441664256256256E X ∴=⨯+⨯+⨯+⨯+⨯=. 22.(12分)[2018·福建师范附中]设函数()()ln 1f x x a x =-+,()a ∈R , (1)讨论函数()f x 的单调性;(2)当函数()f x 有最大值且最大值大于31a -时,求a 的取值范围. 【答案】(1)见解析;(2)()10-,. 【解析】(1)()()ln 1(0)f x x a x x =-+>Q ,()()()1111a x f x a x x-+'∴=-+=. ①当10a +≤,即1a ≤-时,()0f x '>,∴函数()f x 在()0,+∞上单调递增. ②当10a +>,即1a >-时,令()0f x '=,解得11x a =+, 当101x a <<+时,()0f x '>,()f x 单调递增, 当11x a >+时,()0f x '<,()f x 单调递减.综上,当1a ≤-时,函数()f x 在()0,+∞上单调递增;当1a >-时,函数()f x 在10,1a ⎛⎫ ⎪+⎝⎭上单调递增,在1,1a ⎛⎫+∞ ⎪+⎝⎭上单调递减. (2)由(1)得若1a ≤-,则()f x 单调递增,无最值. 若1a >-,则当11x a =+时,()f x 取得最大值,且()max 11ln 111f x f a a ⎛⎫==- ⎪++⎝⎭. Q 函数()f x 的最大值大于31a -,1ln 1311a a ∴->-+,即()ln 130a a ++<, 令()()()ln 131g a a a a =++>-,则()g a 在()1-+∞,上单调递增, 又()00g =,∴当10a -<<时()()00g a g <=,故a 的取值范围为()10-,.。
安徽省铜陵市枞阳县浮山中学2020-2021学年高二下学期开学考试理科数学试题
3.已知函数 ,若 ,则此函数的单调减区间是()
A. B. C. D.
4.已知正实数 满足: ,则( )
A. B. C. D.
5.已知 ,若 的最大值为M, 的最小值为N,则M+N等于()
A.0B.2C. D.
6.己知函数 ,若关于的方程 恰有3个不பைடு நூலகம்的实数解,则实数 的取值范围是( )
【详解】
因为 是奇函数,所以 关于点 成中心对称,
又因为函数 也是关于点 成中心对称,
所以 的零点即为函数 与 交点的横坐标,且交点关于点 成中心对称,
所以 .
故选:C.
【点睛】
本题考查函数对称性的应用,难度一般.(1)已知函数 是奇函数 关于点 成中心对称;(2)已知函数 是偶函数 关于直线 对称.
A. B. C. D.
7.已知y=f(x+2)是奇函数,若函数g(x)=f(x) 有k个不同的零点,记为x1,x2,…,xk,则x1+x2+…+xk=( )
A.0B.kC.2kD.4k
8.已知函数 在 上有且仅有三个零点,则 的取值范围是()
A. B. C. D.
9.已知函数 ,若对任意两个不等的正数 , ,都有 恒成立,则 的取值范围为( )
故选:A
【点睛】
本题主要考查了复数的除法运算,复数的几何意义,属于容易题.
2.D
【分析】
由图像分析得函数为偶函数,排除法即可.
【详解】
由图像得函数的定义域为 ,排除B,C.
由 排除A.
故选:D.
【点睛】
本题考查的是利用函数的图像分析判断出函数是偶函数的问题,属于基础题.
3.D
河南省新乡市第十一中学2020-2021学年高二下学期第二次月考理科数学试题(含答案解析)
河南省新乡市第十一中学2020-2021学年高二下学期第二次月考理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知20211i z =+,则2z i -=()AB .C .2D2.用反证法证明“若a ,b ∈R ,220a b +≠,则a ,b 不全为0”时,假设正确的是()A .a ,b 中只有一个为0B .a ,b 至少一个不为0C .a ,b 至少有一个为0D .a ,b 全为03.下列运算正确的个数是()①(sin )cos 88ππ'=;②1(3)3x x x '-=⋅;③2()1log ln 2x x '=;④561()5x x -'-=-.A .1B .2C .3D .44.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于A .110B .18C .16D .155.记n S 为等差数列{}n a 的前n 项和.若218a =,580S =,则数列{}n a 的通项公式为n a =()A .222n +B .222n -C .202n-D .()21n n -6.若直线y x a =+和曲线ln 2y x =+相切,则实数a 的值为()A .12B .2C .1D .327.函数()cos sin f x x x x =-的导函数为()f x ',则函数()f x '的大致图象为()A .B .C .D .8.已知数列{n a }为等差数列,且1815πa a a ++=,()412cos a a +的值为a ,则1d ax x =⎰()A .1B .2C .-1D .39.某校开设了素描、摄影、剪纸、书法四门选修课,要求每位同学都要选择其中的两门课程.已知甲同学选了素描,乙与甲没有相同的课程,丙与甲恰有一门课程相同,丁与丙没有相同课程.则以下说法错误..的是()A .丙有可能没有选素描B .丁有可能没有选素描C .乙丁可能两门课都相同D .这四个人里恰有2个人选素描10.已知定义在()0,+¥上的函数()f x ,()f x ¢是()f x 的导函数,满足()()0xf x f x '-<,且()2f =2,则()0x xf e e ->的解集是()A .()20,eB .()ln2+∞,C .()ln2-∞,D .()2e +∞,11.近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布()2,30N μ和()2280,40N ,则下列选项不正确的是()附:若随机变量X 服从正态分布()2,N μσ,则()0.6826P X μσμσ-<<+≈.A .若红玫瑰日销售量范围在()30,280μ-的概率是0.6826,则红玫瑰日销售量的平均数约为250B .红玫瑰日销售量比白玫瑰日销售量更集中C .白玫瑰日销售量比红玫瑰日销售量更集中D .白玫瑰日销售量范围在()280,320的概率约为0.341312.一件刚出土的珍费文物要在博物馆大厅中央展出,需要设计各面是玻璃平面的无底正四棱柱将其罩住,罩内充满保护文物的无色气体.已知文物近似于塔形,高1.8米,体积为0.5立方米,其底部是直径为0.9米的圆(如图),要求文物底部与玻璃罩底边间隔0.3米,文物顶部与玻璃罩上底面间隔0.2米,气体每立方米1000元,则气体费用为()A .4500元B .4000元C .2880元D .2380元二、填空题13.已知函数()f x x =,则1()f x dx ⎰=_______.14.已知数列{}n a 为各项均为正数的等比数列,n S 是它的前n 项和,若174a a =.且47522a a +=,则5S =______.15.已知函数()||x x f x e=,若关于x 的方程2()()10f x mf x m -+-=有四个不相等的实数根,则实数m 的取值范围是_________.三、双空题16.从分别标有1,2,…,5的5张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的奇偶性不同的概率是______,记随机变量X 为两张卡片的数字和,则EX =______.四、解答题17.设ABC 的内角A B C ,,所对边分别为a b c ,,,且有2sinBcosA sinAcosC cosAsinC+=(1)求角A 的大小;(2)若21b c =,=,D 为BC 中点,求AD 的长.18.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.19.甲乙两支球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率为23外,其余每局甲队获胜的概率都是12,假设每局比赛结果相互独立.(1)求甲队分别以3:0,3:2获胜的概率;(2)若比赛结果为3:0,胜方得3分,对方得0分,比赛结果为3:1,胜方得3分,对方得1分,比赛结果为3:2,胜方得3分,对方得2分,求甲队得分的分布列和数学期望.20.已知椭圆E :()222210x y a b a b +=>>经过点()0,1A -,(1)求椭圆E 的方程;(2)过点()2,1P 的直线与椭圆E 交于不同两点B 、C .求证:直线AB 和AC 的斜率之和为定值.21.已知函数()(1),()a f x x a lnx a R x=--+∈.(1)当2a =时,求()f x 的极值;(2)若0a >,求()f x 的单调区间.22.在平面直角坐标xOy 中,已知曲线C 的参数方程为3cos 4sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()74πθ+=.(1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 上的两个动点M ,N 满足MN =P 在曲线C 上,以M ,N ,P 为顶点构造平行四边形MNPQ ,求平行四边形MNPQ 面积的最大值.参考答案:1.D【分析】化简得1z i =+,即得解.【详解】由题得1z i =+,所以21,z i i -=-所以|2||1|z i i -=-=故选:D 2.D【分析】把要证的结论否定之后,即得所求的反设.【详解】由于“a ,b 不全为0”的否定为:“a ,b 全为0”,所以假设正确的是a ,b 全为0.故选:D .3.A【分析】直接利用初等函数的导数公式运算判断得解.【详解】①(sin )08π'=,所以该运算错误;②3l 3)n (3'=x x ,所以该运算错误;③2()1log ln 2x x '=,所以该运算正确;④56()5x x -'-=-,所以该运算错误.所以正确的个数为1.故选:A.【点睛】易错点睛:(sin )cos 808ππ'=≠,因为sin 8π是一个实数,所以要代公式0C '=,不能代公式(sin )cos x x '=.所以代导数公式时,要看清函数的类型.4.D【详解】考点:古典概型及其概率计算公式.分析:从正六边形的6个顶点中随机选择4个顶点,选择方法有C 64=15种,且每种情况出现的可能性相同,故为古典概型,由列举法计算出它们作为顶点的四边形是矩形的方法种数,求比值即可.解:从正六边形的6个顶点中随机选择4个顶点,选择方法有C 64=15种,它们作为顶点的四边形是矩形的方法种数为3,由古典概型可知它们作为顶点的四边形是矩形的概率等于315=15故选D .5.B【分析】联立218a =,580S =,求出首项和公差,按照公式求通项即可.【详解】设等差数列{}n a 的公差为d ,则21511851080a a d S a d =+=⎧⎨=+=⎩,解得1202a d =⎧⎨=-⎩,所以()()2012222n a n n =+-⨯-=-.故选:B .6.C【分析】先求导1()f x x'=,再设切点坐标为00(,)x x a +,求出0x 即得解.【详解】因为()=ln 2y f x x =+,所以1()f x x'=,设切点坐标为00(,)x x a +,所以0001()=1,1f x x x '=∴=.所以00()=ln12=2=1,1f x x a a a ++=+∴=.故选:C【点睛】结论点睛:函数()y f x =在点00(,())x f x 处的切线方程为000()()()y f x f x x x '-=-.7.B【解析】先求出()f x ',判断()f x '的奇偶性可排除AD ,再判断0,2x π⎛⎫∈ ⎪⎝⎭时sin 0x >可排除C.【详解】 ()cos sin cos sin f x x x x x x x '=--=-,显然()()()=sin =sin f x x x x x f x '---=,故()f x '为偶函数,排除AD .又0,2x π⎛⎫∈ ⎪⎝⎭上,sin 0x >,()0f x '∴<,排除C.故选:B .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.8.B【分析】由{}n a 为等差数列,且1815πa a a ++=,利用等差数列的性质得到412a a a =+的值,然后求定积分即可.【详解】因为{}n a 为等差数列,由等差数列的性质,得181583πa a a a ++==,即8π3a =.所以41282π23a a a +==,所以()4122π1cos cos 32a a a =+==-,所以()11111220d d 22102a x x x x x-===-=⎰⎰.故选:B 9.C【解析】根据题意合理推理,并作出合理的假设,最终得出正确结论.【详解】因为甲选择了素描,所以乙必定没选素描.那么假设丙选择了素描,则丁一定没选素描;若丙没选素描,则丁必定选择了素描.综上,必定有且只有2人选择素描,选项A ,B ,D 判断正确.不妨设甲另一门选修为摄影,则乙素描与摄影均不选修,则对于素描与摄影可能出现如下两种情况:由上表可知,乙与丁必有一门课程不相同,因此C 不正确.故选:C.【点睛】本题主要考查学生的逻辑推理能力,属于中档题.10.C【解析】由导数公式得出2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,从而得出函数()f x x 的单调性,将不等式()0xxf ee->可化为()(2)2x xf e f e >,利用单调性解不等式即可.【详解】因为2()()()0f x xf x f x x x ''-⎡⎤=<⎢⎥⎣⎦,所以函数()f x x 在区间()0,+¥上单调递减不等式()0xxf e e->可化为()(2)2x xf e f e >,即2xe <,解得ln 2x <故选:C【点睛】关键点睛:解决本题的关键是由导数公式得出函数()f x x的单调性,利用单调性解不等式.11.C【分析】求出μ的值,可判断A 选项的正误;比较红玫瑰日销售量和白玫瑰日销售量方差的大小,可判断BC 选项的正误;计算()280320P X <<的值,可判断D 选项的正误.【详解】若红玫瑰的日销售量范围在()30,280μ-的概率是0.6826,则30280μ+=,解得250μ=,A 对;红玫瑰日销售量的方差为21900σ=,白玫瑰日销售量的方差为221600σ=,且2212σσ<,故红玫瑰日销售量比白玫瑰日销售量更集中,B 对C 错;因为32028040=+,所以,()()0.6826280320280280400.34132P X P X <<=<<+==,D 对.故选:C.12.B【分析】根据题意,先求得正四棱柱的底面棱长和高,由体积公式即可求得正四棱柱的体积,减去文物的体积,即可求得罩内的气体体积,进而求得所需费用.【详解】由题意可知,文物底部是直径为0.9米的圆形,文物底部与玻璃罩底边至少间隔0.3米所以由正方形与圆的位置关系可知:底面正方形的边长为0.920.3 1.5m +⨯=文物高1.8,文物顶部与玻璃罩上底面至少间隔0.2米所以正四棱柱的高为1.80.22m +=则正四棱柱的体积为231.52 4.5m V =⨯=因为文物体积为30.5m 所以罩内空气的体积为34.50.54m -=气体每立方米1000元所以共需费用为410004000⨯=元故选:B 13.142π+【分析】先利用数形结合求出4π=⎰,再利用定积分的运算和微积分基本原理求解.【详解】令221),+1(0,01)y x x y y x =≤≤∴=≥≤≤,它表示单位圆在第一象限的14个圆,因为⎰表示14个圆的面积,所以21144ππ=⨯⨯=⎰.所以1121000011()|4242f x dx xdx x ππ=+=+=+⎰⎰⎰.故答案为:142π+【点睛】方法点睛:定积分的计算常用的方法有:(1)利用微积分基本原理求解;(2)数形结合转化为几何图形的面积求解.要根据已知条件灵活选择方法求解.14.31【解析】化简得到42a =,714a =,故12q =,116a =,在计算5S 得到答案.【详解】21744a a a ==,故42a =,47522a a +=,故714a =,故37418a q a ==,故12q =,116a =.551121631112S ⎛⎫- ⎪⎝⎭==-.故答案为:31.【点睛】本题考查了等比数列基本量的计算,求和,意在考查学生对于等比数列公式的灵活运用.15.1(1,1)e+【分析】方程2()()10f x mf x m -+-=有四个不相等的实数根,即方程()[]()1()10f x m f x ⎡⎤---=⎣⎦有四个不相等的实数根,则()()=1f x m -或()=1f x 有四个不相等的实数根,结合图象利用分类讨论()=1f x 与()()=1f x m -的根的情况,其中当0x >时分别构造函数()xg x e x =-与()()1x h x m e x =--分析,最后由转化思想将函数()h x 有两个零点转化为()min h x 小于0构造不等式求得答案.【详解】方程2()()10f x mf x m -+-=有四个不相等的实数根,即方程()[]()1()10f x m f x ⎡⎤---=⎣⎦有四个不相等的实数根,则()()=1f x m -或()=1f x 有四个不相等的实数根,因为函数()||0101xx f x m m e =≥⇒-≥⇒≥,对方程()=1f x 的根分析,令||1||x x x x e e=⇒=,由图象分析可知,当0x <时,必有一根,当0x >时,令()xg x e x =-,则()10x g x e '=->,所以函数()g x 单调递增,故()()00010g x g e >=-=>,所以当0x >时,方程()=1f x 无根,故方程()=1f x 只有1个根,那么方程()()=1f x m -应有3个根,对方程()()=1f x m -的根分析,令()||1||1x x x m x m e e=-⇒=-,由图象分析可知,当0x <时,必有一根,当0x >时,方程()||1x x m e =-应有2两个不等的实根,其等价于方程()1||0x m e x --=有2个不等的实根,令()()1x h x m e x =--,则()()11x h x m e '=--,且其在0x >内有两个零点,显然当()()()211020x m h x m e h m ''≥⇒=-->=-≥,函数()h x 单调递增,不满足条件,则2m <;令()()110110ln 011x x h x m e e x m m '=⇒--=⇒=⇒=>--,则函数()h x 在区间10,ln 1m ⎛⎫ ⎪-⎝⎭上单调递减,在区间1ln ,1m ⎛⎫+∞ ⎪-⎝⎭单调递增;所以函数()h x 在1ln 1x m =-取得极小值,同时也为最小值,()()()1ln 1min 11ln 1ln ln 111m h x h m e e m m m -⎛⎫==--=-⎡⎤ ⎪⎣⎦--⎝⎭,函数()h x 若要有两个零点,则()()()min 10ln 10111h x e m e m m e<⇒-<⇒-<⇒<+⎡⎤⎣⎦,综上所述,实数m 的取值范围是1(1,1)e+.故答案为:1(1,1)e+【点睛】本题考查了函数与方程的数学思想,还考查了由函数零点个数求参数取值范围与利用导数分析方程的根的个数,属于难题.16.356【分析】结合组合的思想分别求出抽取2次的组合数以及奇偶性不同的组合数,即可求出概率;写出X 的可能取值,并且求出每种取值下的概率,即可求出EX .【详解】解:5张卡片中不放回地随机抽取2次共有25C 种可能,其中奇偶性不同共有3211C C 种,所以2张卡片上的奇偶性不同的概率是11322535C C C =;由题意知,3,4,5,...,9X =,则()1310P X ==,()1410P X ==,()215105P X ===,()216105P X ===,()217105P X ===,()1810P X ==,()1910P X ==,所以11111113456789610105551010EX =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,故答案为:35;6.【点睛】本题考查了组合数的计算,考查了古典概型概率的求解,考查了离散型随机变量的数学期望的求解.17.(1)A =3π;(2)2.【分析】(1)对等式右边使用正弦两角和公式,化简可得;(2)用余弦定理求出a ,利用已知数据得2B π=,在直角三角形中利用勾股定理求解.【详解】解(1)由题设知,)2(sinBcosA sin A C sinB=+=因为sinB 0≠,所以1cos 2A =由于0A π<<,故3A π=(2)因为222124122132a b c bccosA 创=+-=+-,所以222a c b +=,所以2B π=.因为D 为BC中点,所以12BD AB ==,所以AD =【点睛】本题考查平面几何中解三角形问题.其求解思路:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理、勾股定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.18.(1)证明详见解析;(2)证明详见解析.【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ⊥平面1AB C ,来证得平面1AB C ⊥平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C .(2)由于1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C ,由于AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.19.(1)甲队分别以3:0,3:2获胜的概率分别为11,84;(2)分布列见解析;期望为178.【分析】(1)根据相互独立事件的概率公式计算可得;(2)由题意知,随机变量X 的所有可能的取值,根据事件的互斥性计算概率值,从而写出X 的分布列,求出所对应的数学期望.【详解】解:(1)甲乙两支球队进行比赛,约定先胜3局者获得比赛的胜利,记“甲队以3:0获胜”为事件A ,记“甲队以3:2获胜”为事件B ,3223234111121(),()1282234P A C P B C ⎛⎫⎛⎫⎛⎫⎛⎫===-= ⎪ ⎪ ⎪⎝⋅⋅ ⎪⎝⎭⎝⎭⎭⎝⎭,所以甲队分别以3:0,3:2获胜的概率分别为11,84.(2)若甲队得3分,则甲胜,结果可以为3:0,3:1,3:2,若甲队得0分,1分,2分,则甲败,结果可以为0:3,1:3,2:3,设甲队得分为X 则X 的可能取值为0、1、2、3,0303111(0)1228P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⋅⎭⋅⎝,12131113(1)1122216P X C ⋅⋅⋅⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2224111(2)1122382P X C ⎛⎫⎛⎫⎛⎫==⋅--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⋅⋅302122322334111111129(3)112222222316P X C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⋅⎝⎭⎝⎭⋅⋅⋅⋅⋅⋅⋅X 的分布列为:X0123P 1831618916甲队得分的数学期望31917()123168168E X =⨯+⨯+⨯=20.(1)2214x y +=;(2)证明见解析.【分析】(1)利用a b c 、、的关系直接求解即可;(2)设出BC 的方程为()()210y k x k =-+>,联立椭圆方程,再表示出AB 和AC 的斜率,最后说明之和为定值.【详解】解:(1)由椭圆E 经过点()0,1A -得,1b =.设半焦距为c ,由离心率为2得,2c a =又因为222a b c =+,所以22314a a =+,解得2a =故椭圆E 的方程为2214x y +=.(2)因为直线BC 过点()2,1P 且与轨迹E 有两个不同交点所以直线BC 的斜率一定存在且大于零.于是可设直线BC 的方程为()()210y k x k =-+>.代入2244x y +=并整理得()()()22418211610k x k k x k k +--+-=.()()()222=8124141616640k k k k k k ∆--+-=>⎡⎤⎣⎦设()11,B x y ,()22,C x y ,则()12282141k k x x k -+=+,()12216141k k x x k -=+.设直线AB 和AC 的斜率分别为1k 和2k ,则()()1212121212222211k x k x y y k k x x x x -+-++++=+=+()()()()()1212211612122161k x x k k k k k x x k k -+--=-=--()2211k k =--=为定值,此题得证.【点睛】考查椭圆方程的求法以及根据直线和椭圆的位置关系求两条直线的斜率之和为定值.直线和椭圆相交时,采用设交点坐标而不求出的方法,一定注意判别式大于零,同时用上韦达定理,可使解题简单;难题.21.(1)极大值1-;极小值132ln -;(2)答案不唯一,具体见解析.【分析】(1)首先求函数的导数,2232()(0)x x f x x x -+'=>,判断函数的单调性后得到函数的极值;(2)222(1)()(1)()x a a x x a x f x x x +-+--'==,分1a >,1a =和01a <<三种情况讨论求函数的单调递减区间.【详解】解:(1)因为当2a =时,2()3f x x lnx x =--,所以2232()(0)x x f x x x -+'=>,由()0f x '=得1x =或2x =,当x 变化时,()f x ',()f x 的变化情况列表如下:x(0,1)1(1,2)2(2,)+∞()f x '+0-0+()f x 单调递增1-单调递减132ln -单调递增所以当1x =时,()f x 取极大值1-;当2x =时,()f x 取极小值132ln -.(2)222(1)()(1)()x a a x x a x f x x x +-+--'==,12()0,1f x x a x '=⇒==①当1a >时,当(0,1)x ∈,()0f x '>,()f x 单调递增,当(1,)x a ∈,()0f x '<,()f x 单调递减,当(,)x a ∈+∞,()0f x '>,()f x 单调递增.②当1a =时,()0f x '≥在(0,)+∞恒成立,所以()f x 在(0,)+∞上单调递增;③当01a <<时,当(0,)x a ∈,()0f x '>,()f x 单调递增,当(,1)x a ∈,()0f x '<,()f x 单调递减,当(1,)x ∈+∞,()0f x '>,()f x 单调递增,综上所述,①当1a >时,()f x 单调递增区间为(0,1),(,)a +∞.单调递减区间为(1,)a ;②当1a =时,()f x 单调增区间为(0,)+∞,无减区间;③当01a <<时,()f x 单调递增区间为(0,)a ,(1,)+∞,单调递减区间为(,1)a .22.(1)221916x y +=;70x y --=;(2)【分析】(1)曲线C 的参数方程消去参数θ,即可求出C 的普通方程,再把极坐标化为直角坐标即可求出直线l 的直角坐标方程;(2)设曲线C 上的点坐标为(3cos ,4sin )P αα,利用点到直线的距离公式和辅助角公式求出d 的最大值,再利用求面积的公式代入即可.【详解】解:(1)曲线C 的参数方程为3cos 4sin x y θθ=⎧⎨=⎩,消去参数θ,可得曲线C 的标准方程为221916x y +=.直线l cos()74πθ+=,化简可得cos sin 7ρθρθ-=,∵cos ,sin x y ρθρθ==,∴70x y --=.(2)设(3cos ,4sin )P αα,则点P 到直线70x y --=的距离d =所以max d =当且仅当cos()1αϕ+=-,即2,k k Z αϕππ+=+∈取到最大值,所以平行四边形MNPQ 面积的最大值max S ==.。
河南省伊川高中下学期限时训练高二数学(理科)试题2(牛海轩)
河南省伊川高中2010—2011学年下学期期末限时训练高二数学(理科)试题1. i 为虚数单位,则201111i i +⎛⎫⎪-⎝⎭= ( )A.- iB.-1C. iD.1 2. 设,a b 是向量,命题“若a b ≠-,则∣a ∣= ∣b ∣”的逆命题是 ( )(A )若a b ≠-,则∣a ∣≠∣b ∣ (B )若a =—b ,则∣a ∣≠∣b ∣ (C )若∣a ∣≠∣b ∣,则a ≠—b (D )若∣a ∣=∣b ∣,则a = -b3. 在ABC ∆中,2sin sin cos 2C A B ⋅=,则ABC ∆的形状一定是 ( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形 4、从5男4女中选4位代表,要求至少有2位男代表且至少有1位女代表,这4位代表被分配到4个单位调查,则选配方法有 ( ) A . 100种B . 400种C . 480种D . 2400种5.54)1()1(-⋅+x x 展开式中x 4的系数为 ( )A.-40B.10C.40D.456.已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)= ( )A.0.6 B.0.4 C.0.3 D.0.27、如图,底面ABCD 为平行四边形的四棱柱1111ABCD A BC D -,M 是AC 与BD 的交点,若AB a = ,11A D b = ,1A A c = ,则下列向量中与1B M相等的向量是 ( )A .1122a b c -++B .1122a b c ++C .1122a b c -+D .1122a b c --+8.由直线,,033x x y ππ=-==与cos y x =所围成的封闭图形的面积为( )A. 12A B C DA 1B 1C 1D 19.设m >1,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数Z=x+my 的最大值小于2,则m 的取值范围为 ( )A.(1,1+ B.(1++∞) C.(1,3 ) D.(3,+∞)10.已知椭圆)0(12222>>=+b a by a x 的左焦点为F ,右顶点为A ,点B 在椭圆上,且x BF ⊥轴,直线AB 交y 轴于点P ,若||2||PB AP =,则椭圆的离心率是( )A .23 B .22 C .31D .21 11、已知双曲线12222=-by x (b>0)的左、右焦点分别是1F 、2F ,其一条渐近线方程为x y =,点P ),3(0y 在双曲线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学试卷(理科)31.集合{4,5,3}M m =-,{9,3}N =-,若M N ≠∅ ,则实数m 的值为( ) A .3或1- B .3 C .3或3- D .1- 2.函数xx x f 1log )(2-=的零点所在的区间为( ) A .)21,0( B .)1,21( C .)2,1( D .)3,2(3.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1)4.函数()sin()(0,0,||)2f x A x A πωφωφ=+>><的部分图象如图示,则将()y f x =的图象向右平移)0(>m m 得到的图象关于原点对称,则m 的最小值为( ) A .24πB .12π C .6π D .3π 5.已知)(x f y =是定义在R 上的函数,R a ∈,那么“对任意的R x ∈,a x f ≥|)(|恒成立”的充要条件是( ) A .对任意的R x ∈,a x f ≥)(或a x f -≤)( 恒成立B .对任意的R x ∈,a x f ≥)(恒成立 或 对任意的R x ∈,a x f -≤)(恒成立C .对任意的R x ∈,||)(a x f ≥或||)(a x f -≤ 恒成立D .对任意的R x ∈,a x f ≥)(恒成立 且 对任意的R x ∈,a x f -≥)(恒成立6.若P Q R ∆的三个顶点坐标分别为)sin ,(cos A A P ,)sin ,(cos B B Q ,)sin ,(cos C C R ,其中C B A ,,是ABC ∆的三个内角且满足C B A <<,则PQR ∆的形状是( )A .锐角或直角三角形B .钝角或直角三角形C .锐角三角形D .钝角三角形 7.设}{n a 是公比为q 的等比数列,首项6411=a ,422<<q ,对于+∈N n ,n n ab 21log =,若数列{}n b 的前k 项和取得最大值,则k 的值为( )A .3B .4C .5D .4或5 8.记)]'([)()1(x f x f=,)]'([)()1()2(x f x f =,…,)]'([)()1()(x f x f n n -= )2,(≥∈+n N n .若x x x f cos )(=,则)0()0()0()0()2012()2()1(f f ff ++++ 的值为( )A .1006B .2012C .2012-D . 1006-9.等差数列}{n a 的前n 项和为n S ,如果存在正整数k 和)(l k l ≠,使得2kl S k =,2lk S l =,则( ) A .l k S +的最小值为6- B .l k S +的最大值为6-C .l k S +的最小值为6D .l k S +的最大值为610.设定义域为),0(+∞的单调函数)(x f ,对任意的),0(+∞∈x ,都有6]log )([2=-x x f f ,则)161(f 的值为( )A .8 B .4 C .41D . 0 11.已知21,e e 是两个不共线的平面向量,向量212e e a -=,21e e b λ+=)(R ∈λ,若//a b,则λ= .12.记n S 为数列}{n a 的前n 项和,若051==a a ,当5,4,3,2=k 时有1)(21=--k k a a 成立,则5S 的所有可能值组成的集合为 .13.函数22π()cos ()sin 6f x x x =--,π[0,]2x ∈的值域为 .14.若在函数a x a x f x2)(--=0(>a 且)1≠a 的图象上存在不同两点B A ,,且B A ,关于原点对称,则a 的取值范围是 .15.C B A ,,是圆O 上的三点,120=∠AOB ,CO 的延长线...与线段AB 交于点D ,若n m +=),(R n m ∈,则n m +的取值范围是 .16.已知数列{}n a 满足n n a a a n2111111221+=-++-+- (1)求数列}{n a 的通项公式;(2)若对任意的n *N ∈,不等式nn n a )1(8-⋅+<λ恒成立,求实数λ的取值范围. 17.在ABC ∆中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,已知32=c ,4=+b a .(1)求BA B A sin sin )sin(++的值;(2)求ABC ∆的面积S 的最大值;(3)若DB AD 2=,求||CD 的最小值.18.已知函数3)(ax x x f -=)0(>a ,x x g sin )(=.(1)若3=a ,求函数)(x f y =的极值; (2)当]2,0[π∈x 时)()(x f x g ≥恒成立,求a 的取值范围;(3)若2,≥∈n N n ,求证:求证:nn n n n 61261sin 31sin 321sin 21sin 2+->++++ .高二数学答案(理科)一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共5小题,每小题4分,共20分.) 11.21-12.}4,2,0,2,4{-- 13.]23,43[- 14.21>a 且1≠a 15.]1,2[--三、解答题(本大题共3小题,共40分,解答应写出文字说明、证明过程或演算步骤) 16.解:(1)1=n 时有3111=-a ,所以321=a 2≥n 时,有)1(2)1(1111112121-+-=-++-+--n n a a a n 从而1211+=-n a n ,得122+=n n a n ,此式对1=n 也适用综上,122+=n na n ……………………………………………………6分 (2)由nn n n )1(8122-⋅+<+λ得n n n n 2])1(8)[12(-⋅++<λ n 为奇数时,)1582(21281522--=--<nn n n n λ 当1=n 时,)1582(21--n n 取得最小值221-,所以此时有221-<λ n 为偶数时,)1782(21281722++=++<nn n n n λ 当2=n 时,)1782(21++n n 取得最小值225,所以此时有225<λ 综上,λ的取值范围是221-<λ………………………………………………….12分17.解(1)23sin sin sin sin sin )sin(=+=+=++b a c B A C B A B A …………….........4分(2)由余弦定理得)cos 1(2)(cos 22222C ab b a C ab b a c +-+=-+=,代入4=+b a 及32=c 得Cab cos 12+=由44)(2=+≤b a ab 得21cos -≥C ,所以320π≤<C 从而33tan 2tan 2cos 22cos 2sin2cos 1sin sin 212=≤==+==πC C CC CC C ab S当2,32===b a C π时取到等号. 综上,S 的最大值为3………………………………………………………….9分 (3)易得CB CA CD 3231+=所以9898)34(382294949||222222222≥+-=-+=-+⋅++=a b a ab c b a ab a b CD即322||≥当38,34==b a 时取到等号 综上,||CD 的最小值为322…………………………………………………..14分18.解:(1)极大值为92)31(=f ,极小值为92)31(-=-f …………………….4分 (2)设x ax x x f x g x h -+=-=3sin )()()(13c o s )('2-+=ax x x h ax x x h 6sin )(''+-= a x x h 6c o s )('''+-=注意到0)0('')0(')0(===h h h 若160<<a 即610<<a ,)2,0(0π∈∃x ,使0cos 6)('''00=-=x a x hx),0(0x )2,(0πx)('''x h 0)(''')('''0=<x h x h0)(''')('''0=>>x h x h)(''x h递减,0)0('')(''=<h x h )('x h 递减,0)0(')('=<h x h)(x h递减,0)0()(=<h x h这与题目要求矛盾.若16≥a 即61≥a , 当]2,0[π∈x 时0)('''≥x h ,进而)(''x h 在]2,0[π上递增,从而0)0('')(''=≥h x h ,于是)('x h ]2,0[π上递增,所以0)0(')('=≥h x h ,故)(x h 在]2,0[π上递增,所以0)0()(=≥h x h 恒成立,满足题目要求.综上所述,a 的取值范围是61≥a ………………………………………………..9分 (3)由(2)知当)1,0(∈x 时有6sin 3x x x ->即61sin 2x x x -> 所以261111sin1sinn nn nn ->= 从而 nn n n n n n n n n n n n 6126)12(61))1(13212111(61)131211(61)611()2611()611(1s i n 31s i n 321s i n 21s i n 222222+-=--=-++⨯+⨯+->++++-=-++⨯-+->++++证毕…………………14分。