选择题、填空题78分练(七)

合集下载

人教版数学七年级下学期《期中检测试卷》有答案解析

人教版数学七年级下学期《期中检测试卷》有答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -= B. 1x y -=C. 1x y +=D. 21x y += 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --= B. 224x x --= C. 24x x -+= D. 224x x -+= 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 25. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1 B. 1 C. ﹣5 D. 56. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 47. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.10. 若三角形的两边长分别为 2cm 和 4cm ,且第三条边为偶数,那么这个三角形的周长为______cm . 11. 关于 x 的不等式-2 < x -1≤ 3 的所有整数解的和为_____.12. 某商品进价1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.三、解答题(共 78 分)15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x-++≥.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.17. 解不等式组:(1)513(1)182x xx x->+⎧⎨-≤-⎩;(2)2+53(2)123x xx x≤+⎧⎪+⎨<⎪⎩.18. “雷神山”病床安装突击队有22 名队员,按要求在规定时间内要完成340 张病床安装,其中高级工每人能安装20 张,初级工每人能安装15 张. 问该突击队高级工与初级工各多少人?19. 甲乙两辆汽车同时从A、B 两地相向开出,甲车每小时行56 千米,乙车每小时行48 千米,两车在距A、B 两地的中点32 千米处相遇.求甲乙两地相距多少千米?20. 如图,在△ABC 中,∠B=26°,∠BAC=30°,过点A 作BC 边上的高,交BC 的延长线于点D,CE 平分∠ACD,交AD 于点E.求∠AEC 的度数.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为200 元,每个口罩的标价为4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送10 个口罩;乙药店:额温枪和口罩全部按标价的9 折优惠.现某公司要购买20 支额温枪和若干个口罩,若购买的口罩为x 个(x>200).(1)分别用含x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为元;到乙药店购买需要金额为元.(2)购买的口罩至少为多少个时到乙药店购买更合算?22. 某中学为打造书香校园,计划购进甲、乙两种规格书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.23. (1)如图(1),在△ABC 中,∠BAC=70°,点D 在BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线BP,CP 相交于点P,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC=m°,那么∠P= °(用含有m 代数式表示)[探究]:如图(2)在四边形MNCB 中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD 的角平分线BP,CP 相交于点P.为了探究∠P 的度数与α 和β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边BM 与CN,设它们的交点为点A,如图( 3 ),则∠A= (用含有α 和β 的代数式表示),因此∠P= .(用含有α 和β 的代数式表示)[拓展]:将(2)中的α+β>180°改为α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)答案与解析一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 [答案]D[解析][分析]最高气温是23℃,即气温小于或等于23℃,最低气温是12℃,即气温大于或等于12℃,据此写出即可.[详解]解:如果长春市2020年4月30日最高气温是23℃,最低气温是12℃,则当天长春市气温 t (℃)的变化范围是:12≤t ≤23.故选:D .[点睛]本题考查了由实际问题抽象出不等式组,解题的关键是抓住关键词,正确理解最高和最低的含义. 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -=B. 1x y -=C. 1x y +=D. 21x y += [答案]C[解析][分析]直接利用二元一次方程解的定义求解即可解答.[详解]解:∵一个二元一次方程的一个解为21x y =⎧⎨=-⎩∴.x+y=1,x-y=3,y-x=-3,x+2y=0.故C 正确.故答案为C.[点睛]本题考查了二元一次方程的解.理解二元一次方程的解就是指示方程等号两边的值相等的两个未知数的值是解答本题的关键. 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --=B. 224x x --=C. 24x x -+=D. 224x x -+=[答案]D[解析][分析]方程组利用代入消元法变形得到结果,即可作出判断.[详解]用代入法解方程组124y x x y =-⎧⎨-=⎩时, 把y=1-x 代入x-2y=4,得:x-2(1-x )=4,去括号得:224x x -+=,故选:D .[点睛]本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 2[答案]C[解析][分析] 作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,利用中点的性质即可求出BCD △的面积,同理可求出阴影部分面积.[详解]解:作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,点D 是AB 边上的中点12BD AB ∴= 1111112622222BCD ABC S BD CF AB CF S ∴=⋅=⨯⋅==⨯= 点E 是BC 边上的中点 12CE BC ∴= 111116322222CED BCD S CE DG BC DG S ∴=⋅=⨯⋅==⨯= 所以阴影部分的面积为3.故选:C.[点睛]本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.5. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1B. 1C. ﹣5D. 5[答案]A[解析][分析]把x 与y 的值代入方程组求a +b 的值即可. [详解]解:把21x y =⎧⎨=⎩代入方程组14ax by bx ay +=⎧⎨+=-⎩, 得:2124a b b a +=⎧⎨+=-⎩①②, ①+②得:3(a +b )=3-,则a +b =.故选:A .[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 6. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 4[答案]C[解析][分析]几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐一判断即可.[详解]解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面; 四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面; 圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C .[点睛]本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.7. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + [答案]C[解析][分析]根据不等式基本性质,逐项判断即可.[详解]A 、∵a >b ,∴﹣a <-b ,1﹣a <1﹣b∴选项A 不符合题意;B 、∵a <b ,x 2≥0∴ax 2≤bx 2,∴选项B 不符合题意;C 、∵ac >bc ,c 是什么数不明确,∴a >b 不正确,∴选项C 符合题意;D 、∵m >n ,∴21m x +>21n x +, ∴选项D 不符合题意.故选:C .[点睛]此题主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 的度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°[答案]B[解析][分析]连接AD ,则∠1与∠2分别是△ADE 和△ADF 的外角,由三角形的外角性质即可解决问题.[详解]连接AD ,如图所示,则∠1与∠2分别是△ADE 和△ADF 的外角,∴∠1=∠EAD+∠EDA ,∠2=∠FAD+∠FDA∴∠1+∠2=∠EAD+∠EDA+∠FAD+∠FDA=∠EDF+∠EAF=∠EDF+α=120°∴∠EDF=120°-α故选:B.[点睛]本题考查三角形外角的性质,解题的关键是学会作辅助线构造三角形即可解决问题.二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.[答案]x<0[解析][分析]根据一元一次不等式的解法解答即可.[详解]解:移项,得2x-3x>1-1,即﹣x>0,解得:x<0.故答案为:x<0.[点睛]本题考查了一元一次不等式的解法,属于基础题型,熟练掌握解一元一次不等式的方法是解题关键.10. 若三角形的两边长分别为2cm 和4cm,且第三条边为偶数,那么这个三角形的周长为______cm.[答案]10[解析][分析]先根据三角形的三边关系确定第三边的范围,再由第三条边为偶数即可确定其具体的数值,进而可得答案.[详解]解:记这个三角形的第三边为c cm,则4-2<c<4+2,即2<c<6,∵c为偶数,∴c=4,∴这个三角形的周长=2+4+4=10cm.故答案为:10.[点睛]本题考查了三角形的三边关系和三角形的周长计算,属于基础题型,熟练掌握三角形的三边关系是解题的关键.11. 关于x 的不等式-2 <x -1≤ 3 的所有整数解的和为_____.[答案]10[解析][分析]此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值即可得解.[详解]不等式-2 <x-1≤ 3可以化简为-1<x≤4,适合不等式-1<x≤4的所有整数解0、1,2,3,4.所以,所有整数解的和为:0+1+2+3+4=10.故答案为:10.[点睛]此题考查是一元一次不等式组的解法,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.[答案]450元[解析][分析][详解]试题分析:设商店降x%出售商品,根据“进价是1000元,售价是1500元,利润率不低于5%”即可列不等式求解.设商店降x%出售商品,由题意得15001100x ⎛⎫⨯- ⎪⎝⎭≥1000×(1+5%) 解得x≥30则商店最多降30%出售商品.考点:一元一次不等式的应用点评:解题的关键是读懂题意,找到不等关系,正确列不等式求解.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.[答案]24[解析][分析]设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.[详解]解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ∵x 为正整数,∴x =2,∴10x +x +2=24,则这个两位数是24.故答案为:24.[点睛]本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键. 14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.[答案]30[解析][分析]由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .[详解]1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为30[点睛]本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.三、解答题(共 78 分) 15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x -++≥. [答案](1)7x >-;(2)2x ≥-[解析][分析](1)先去小括号,然后依次移项、合并同类项、系数化为1即可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.[详解](1) 3(x -1) < 4x + 4 ;3344-<+x x3434-<+x x7-<x∴7x>-;(2)342523 x x-++≥3(34)302(2)x x-+≥+9123024x x-+≥+9212430x x-≥+-714x≥-∴2x≥-[点睛]本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.[答案](1)42mn⎧=⎨=⎩;(2)17213xy⎧=⎪⎨⎪=⎩.[解析][分析](1)根据代入消元法求解即可;(2)先化简原方程组,再利用加减消元法解答.[详解]解:(1)22314m nm n-=⎧⎨+=⎩①②,由①得:m =2+n ③,把③代入②,得()22314n n ++=,解得:n =2,把n =2代入③,得:m =4,所以原方程组的解是:42m n ⎧=⎨=⎩;(2)原方程组即:25443x y x y ⎧⎨-=-=⎩-①②, ②×2,得4x -2y =8③,③-①,得y =13,把y =13代入②,得2x -13=4, 解得:172x =, 所以原方程组的解是:17213x y ⎧=⎪⎨⎪=⎩. [点睛]本题考查了二元一次方程组的解法,属于基础题型,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题关键.17. 解不等式组:(1)513(1)182x x x x ->+⎧⎨-≤-⎩; (2)2+53(2)123x x x x ≤+⎧⎪+⎨<⎪⎩. [答案](1)2<x ≤3;(2)无解.[解析][分析](1)分别求出每个不等式的解集,再取它们的公共部分即可得解;(2)分别求出每个不等式的解集,再取它们的公共部分即可得解.[详解](1)513(1)182x x x x ->+⎧⎨-≤-⎩①②; 解不等式①得,x >2解不等式②得,x ≤3,所以,不等式组的解集为:2<x ≤3;(2)2+53(2)1 23x x x x ≤+⎧⎪⎨+<⎪⎩①② 解不等式①得,x ≥-1;解不等式②得,x <-3;所以,不等式组无解.[点睛]本题考查的是解一元一次不等式组,正确求出每个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. “雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?[答案]该突击队有高级工2人,初级工20人.[解析][分析]设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.[详解]解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.[点睛]本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键. 19. 甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?[答案]甲乙两地相距832千米[解析][分析]设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.[详解]甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米[点睛]此题考查了列一元一次方程解决问题,关键是找出等量关系.20. 如图,在△ABC 中,∠B =26°,∠BAC =30°,过点 A 作 BC 边上的高,交 BC 的延长线于点 D , CE 平分∠ACD ,交 AD 于点 E .求∠AEC 的度数.[答案]118°[解析][分析]由三角形外角的性质求出∠ACD=56°,由角平分线定义求出∠ECD=28°,最后由外角性质得出∠AEC=118°.[详解]∵∠B =26°,∠BAC =30°,∴∠ACD=∠B +∠BAC =56°,∵CE 平分∠ACD ,∴∠DCE=12∠ACD=28° 又∠ADC=90°∴∠AEC=∠DCE+∠CDE=28°+90°=118°.[点睛]此题主要考查了三角形外角性质,灵活运用三角形外角的性质是解答本题的关键.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为 200 元,每个口罩的标价为 4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送 10 个口罩;乙药店:额温枪和口罩全部按标价的 9 折优惠.现某公司要购买 20 支额温枪和若干个口罩,若购买的口罩为 x 个(x >200).(1)分别用含 x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为 元;到乙药店购买需要金额为 元.(2)购买的口罩至少为多少个时到乙药店购买更合算?[答案](1)4x+3200;3.6x+3600;(2)购买口罩至少为1001个时到乙药店购买更合算[解析][分析](1)根据甲、乙两家药店推出各自的销售方案,列出代数式即可;(2)根据购买的口罩到乙药店购买更合算列出不等式进行计算即可.[详解](1)到甲药店购买所需金额:20×200+4(x-200)=4x+3200,到乙药店购买所需金额:(20×200+4x)×0.9=3.6x+3600,故答案为:4x+3200;3.6x+3600;(2)∵到乙药店购买更合算∴3.6x+3600<4x+3200解得x>1000∴购买的口罩至少为1001个时到乙药店购买更合算[点睛]此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.22. 某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.[答案](1)甲种书柜每个的价格为180元,乙种书柜每个的价格为240元;(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[解析][分析](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,根据“若购买一个乙种书柜比购买一个甲种书柜贵60元;若购买甲种书柜1个,乙种书柜2个,共需资金660元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种书柜m个,则购买乙种书柜(20-m)个,根据乙种书柜的数量不少于甲种书柜的数量且学校至多能够提供资金4320元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.[详解](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,依题意,得:602660y x x y ⎨⎩-+⎧==, 解得:180240x y ⎧⎨⎩==. 答:甲种书柜每个的价格为180元,乙种书柜每个的价格为240元.(2)设购买甲种书柜m 个,则购买乙种书柜(20-m )个,依题意,得:()20180240204320m m m m -≥+-≤⎧⎨⎩, 解得:8≤m≤10.∵m 为整数,∴m 可以取的值为:8,9,10.∴学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23. (1)如图(1),在△ABC 中,∠BAC =70°,点 D 在 BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线 BP ,CP 相交于点 P ,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC =m °,那么∠P = °(用含有 m 的代数式表示)[探究]:如图(2)在四边形 MNCB 中,设∠M =α,∠N =β,α+β>180°,四边形的内角∠MBC 与外角∠NCD 的角平分线 BP ,CP 相交于点 P .为了探究∠P 的度数与 α 和 β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边 BM 与 CN ,设它们的交点为点 A , 如图( 3 ), 则∠ A = (用含有 α 和 β 的代数式表示), 因此∠P = .(用含有 α 和 β 的代数式表示)[拓展]:将(2)中的 α+β>180°改为 α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)[答案](1)35°;感知:12m°,探究:α+β-180°,12(α+β)-90°;拓展:90°-12α-12β[解析] [分析](1)根据角平分线的定义可得∠CBP=12∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=12∠A,代入数据计算即可得解.[感知]求∠P度数的方法同(1)[探究] 添加辅助线,利用(1)中结论解决问题即可;根据四边形的内角和定理表示出∠BCN,再表示出∠DCN,然后根据角平分线的定义可得∠PBC=12∠ABC,∠PCD=∠DCN,三角形的一个外角等于与它不相邻的两个内角的和可得∠P+∠PBC=∠PCD,然后整理即可得解;拓展:同探究的思路求解即可[详解](1)∵BP平分∠ABC,∴∠CBP=12∠ABC,∵CP平分△ABC的外角,∴∠DCP=12∠ACD=12(∠A+∠ABC)=12∠A+12∠ABC,在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=12∠ABC+∠P,∴12∠A+12∠ABC=12∠ABC+∠P,∴∠P=12∠A=12×70°=35°.感知:由(1)知∠P=12∠A∵∠BAC=m°,∴∠P=12 m°,故答案为:12 m°,探究:延长BM交CN的延长线于A.∵∠A=180°-∠AMN-∠ANM=180°-(180°-α)-(180°-β)=α+β-180°,由(1)可知:∠P=12∠A,∴∠P=12(α+β)-90°;故答案为:α+β-180°,12(α+β)-90°;[拓展] 如图③,延长MB交NC的延长线于A.∵∠A=180°-α-β,∠P=12∠A,∴∠P=12(180°-α-β)=90°-12α-12β故答案为:90°-12α-12β[点睛]本题考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题.。

2024年上海中考数学模拟练习卷三及参考答案

2024年上海中考数学模拟练习卷三及参考答案

上海2024年中考模拟练习试卷3数学(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列计算正确的是()A .448a a a +=B .4416a a a ⋅=C .()1446a a =D .842a a a ÷=2.(本题4分)用换元法解方程()22611711x x x x +++=++时,下列换元方法中最合适的换元方法是()A .设21y x =+B .设1y x =+C .211x y x +=+D .211y x =+3.(本题4分)下列函数中,在定义域内y 随x 的增大而增大的函数是()A .2y x =-;B .2y x =;C .2y x=D .2y x=-4.(本题4分)王大伯前几年承包了甲、乙两片荒山,各栽种了100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了四棵杨梅树上的杨梅,每棵的产量如图所示,由统计图提供的信息可知,杨梅产量较稳定的是()A .甲山B .乙山C .一样D .无法确定5.(本题4分)有一个内角是直角的四边形ABCD 的边长2AB =,3BC =,2CD =,3DA =,那么下列结论错误的是()A .四边形的对角线互相平分B .四边形的对角相等C .四边形的对角线互相垂直D .四边形的对角线相等6.(本题4分)在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是()A .AB DC=B .DAB ABC∠=∠C .ABC DCB∠=∠D .AC DB=第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:281m -=.8.(本题4分)计算:15a a+=.9.(本题43=的解是.10.(本题4分)函数11y x =-的定义域为.11.(本题4分)已知关于x 的方程210x kx -+=有两个相等的实数根,则k 的值是.12.(本题4分)一个不透明的盒子中装有5个红球和4个白球,它们除颜色外都相同.若从中任意摸出一个球,则摸到白球的概率是.13.(本题4分)一个正n 边形的中心角为36︒,则n 为.14.(本题4分)写出一个开口向上,顶点在y 轴的负半轴上的抛物线的解析式:.15.(本题4分)已知平行四边形ABCD 中,若AD a = ,AB b = ,则DB =.(用a 和b表示)16.(本题4分)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有棵.17.(本题4分)如图,将ABC 绕点A 旋转逆时针旋转30︒后得到ADE V ,若点E 恰好落在BC 上,则BED ∠的大小为.18.(本题4分)已知O 的半径OA 长为3,点B 在线段OA 上,且2OB =,如果B 与O 有公共点,那么B 的半径r 的取值范围是三、解答题(共78分)19.(本题612282-.20.(本题8分)解不等式组:2832x x x <⎧⎨->⎩.21.(本题10分)如图,AB 是O 的直径,CD 是O 的弦,如果30ACD ∠=︒.(1)求BAD ∠的度数.(2)若2AD =,求DB 的长.22.(本题12分)我们知道,海拔高度每上升1千米,温度下降6℃,某时刻,上海地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为16-℃,求此刻飞机离地面的高度为多少千米?23.(本题12分)如图,点E ,F 都在BAD ∠的平分线上,BF AD ∥交DE 于点C .CF BF =,14AB AD ==,,求ΔΔ:EFC EAD S S 的值.24.(本题14分)如图,在平面直角坐标系xOy中,抛物线2=++与x轴交于点y x bx c()1,0A和()B,与y轴交于点C.5,0(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x轴向左平移()0m m>个单位得到新抛物线,且新抛物线仍经过点C,求m的值.25.(本题16分)如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点,D DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若弦MN 垂直于AB ,垂足为1,,4AG G MN AB ==O 的半径;(3)在(2)的条件下,当36BAC ∠=︒时,求线段CE 的长.2024年中考预测模拟考试一(上海卷)数学(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列计算正确的是()A .448a a a +=B .4416a a a ⋅=C .()1446a a =D .842a a a ÷=【答案】C 【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A.4442a a a +=,故该选项不正确,不符合题意;B.448a a a ⋅=,故该选项不正确,不符合题意;C.()1446a a =,故该选项正确,符合题意;D.844a a a ÷=,故该选项不正确,不符合题意;故选:C .【点评】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项的运算法则是解题的关键.2.(本题4分)用换元法解方程()22611711x x x x +++=++时,下列换元方法中最合适的换元方法是()A .设21y x =+B .设1y x =+C .211x y x +=D .211y x =【答案】C【分析】设211x y x +=+,则原方程化为2760y y -+=,从而可得答案.【详解】解:()22611711x x x x +++=++,设211x y x +=+,3.(本题4分)下列函数中,在定义域内y 随x 的增大而增大的函数是()A .2y x =-;B .2y x =;C .2y x=D .2y x=-4.(本题4分)王大伯前几年承包了甲、乙两片荒山,各栽种了100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了四棵杨梅树上的杨梅,每棵的产量如图所示,由统计图提供的信息可知,杨梅产量较稳定的是()A .甲山B .乙山C .一样D .无法确定【答案】B【分析】根据平均数的求法求出平均数,再求出两组数据的方差,再比较即可解答.5.(本题4分)有一个内角是直角的四边形ABCD 的边长2AB =,3BC =,2CD =,3DA =,那么下列结论错误的是()A .四边形的对角线互相平分B .四边形的对角相等C .四边形的对角线互相垂直D .四边形的对角线相等【答案】C【分析】根据已知条件判断出平行四边形,再根据有一个角是直角判断矩形,最后根据矩形的性质判断正确选项即可.【详解】解:∵2AB CD ==,3BC AD ==,∴四边形ABCD 是平行四边形,∵有一个内角是直角,∴四边形ABCD 是矩形,∴对角线互相平分,对角相等,对角线相等,故A ,B ,D 正确,不合题意;对角线不一定互相垂直,故C 错误,符合题意;故选C .【点评】本题考查了矩形的判定和性质,解题的关键是根据已知条件判断出该四边形是矩形.6.(本题4分)在梯形ABCD 中,AD //BC ,那么下列条件中,不能判断它是等腰梯形的是()A .AB DC =B .DAB ABC∠=∠C .ABC DCB∠=∠D .AC DB=【答案】B【分析】等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形;②对角线相等的梯形是等腰梯形;③在同一底上的两个角相等的梯形是等腰梯形,根据以上内容判断即可.【详解】解:A 、∵四边形ABCD 为梯形,且AD //BC ,AB DC =,∴四边形ABCD 是等腰梯形,故本选项不符合题意;B 、∠DAB =∠ABC ,不能推出四边形ABCD 是等腰梯形,故本选项符合题意;C 、∵四边形ABCD 为梯形,且AD //BC ,∠ABC =∠DCB ,∴四边形ABCD 是等腰梯形,故本选项不符合题意;D 、∵四边形ABCD 为梯形,且AD //BC ,AC DB =,∴四边形ABCD 是等腰梯形,故本选项不符合题意.故选:B .【点评】本题考查了等腰梯形的判定定理,等腰梯形的判定定理有:①有两腰相等的梯形是等腰梯形,②对角线相等的梯形是等腰梯形,③在同一底上的两个角相等的梯形是等腰梯形.第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:281m -=.【答案】(9)(9)m m +-【分析】利用平方差公式22()()a b a b a b -=+-进行因式分解即可.【详解】解:281(9)(9)m m m -=+-,故答案为:(9)(9)m m +-.【点评】本题主要考查因式分解,掌握平方差公式是解题的关键.8.(本题4分)计算:15a a+=.9.(本题43=的解是.10.(本题4分)函数1y x =-的定义域为.【答案】1x ≠【分析】求函数的定义域就是找使函数有意义的自变量的取值范围.【详解】解:函数要有意义,则10x -≠,解得:1x ≠,故答案为:1x ≠.【点评】本题考查的知识点是函数的定义域,关键要知道函数有意义的自变量的取值范围.11.(本题4分)已知关于x 的方程210x kx -+=有两个相等的实数根,则k 的值是.【答案】±2【分析】一元二次方程有两个相等的实数根,则根的判别式△=b 2-4ac =0,建立关于k 的等式,求出k 的值.【详解】由题意知方程有两相等的实根,∴△=b 2-4ac =k 2-4=0,解得k =±2,故答案为:±2.【点评】本题考查了根的判别式:一元二次方程ax 2+bx +c =0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.12.(本题4分)一个不透明的盒子中装有5个红球和4个白球,它们除颜色外都相同.若从中任意摸出一个球,则摸到白球的概率是.13.(本题4分)一个正n 边形的中心角为36︒,则n 为.14.(本题4分)写出一个开口向上,顶点在y 轴的负半轴上的抛物线的解析式:.【答案】21y x =-(答案不唯一)【分析】根据二次函数的性质,抛物线开口向下a >0,与y 轴负半轴由交点c <0,然后写出即可.【详解】解:开口向上,并且与y 轴交点在y 轴负半轴,∴抛物线的表达式可以是:y =x 2﹣1.故答案为y =x 2﹣1(答案不唯一).【点评】本题考查了二次函数的性质,开放型题目,主要利用了抛物线的开口方向与y 轴的交点得到解析式.15.(本题4分)已知平行四边形ABCD 中,若AD a = ,AB b = ,则DB = .(用a 和b 表示)【答案】b a-【分析】根据题意,作出图形,由向量减法运算的三角形法则即可得到答案.【详解】解:如图所示:根据向量减法运算的三角形法则可得DB AB AD b a =-=- ,故答案为:b a - .【点评】本题考查向量的加法运算,熟练掌握向量运算法则是解决问题的关键.16.(本题4分)某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有棵.【答案】280【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.【点评】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.17.(本题4分)如图,将ABC 绕点A 旋转逆时针旋转30︒后得到ADE V ,若点E 恰好落在BC 上,则BED ∠的大小为.【答案】30︒/30度18.(本题4分)已知O 的半径OA 长为3,点B 在线段OA 上,且2OB =,如果B 与O 有公共点,那么B 的半径r 的取值范围是【答案】15r ≤≤【分析】求得B 在O 内部且有唯一公共点时B 的半径和⊙O 在B 内部且有唯一公共点时B 的半径,根据图形即可求得.【详解】解:如图,当B 在O 内部且有唯一公共点时,B 的半径为:321-=,当O 在B 内部且有唯一公共点时,B 的半径为325+=,∴如果B 与O 有公共点,那么B 的半径r 的取值范围是15r ≤≤,故答案为:15r ≤≤.【点评】本题考查了圆与圆的位置关系,注意掌握数形结合和分类讨论思想的应用.三、解答题(共78分)19.(本题612-.【答案】2【分析】根据二次根式的加减计算法则和负整数指数幂计算法则求解即可.20.(本题8分)解不等式组:2832x x x<⎧⎨->⎩.【答案】14x <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:由28x <得:4x <,由32x x ->得:1x >,则不等式组的解集为:14x <<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(本题10分)如图,AB 是O 的直径,CD 是O 的弦,如果30ACD ∠=︒.(1)求BAD ∠的度数.(2)若2AD =,求DB 的长.22.(本题12分)我们知道,海拔高度每上升1千米,温度下降6℃,某时刻,上海地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为16-℃,求此刻飞机离地面的高度为多少千米?【答案】(1)()6200y x x =-+>(2)6千米【分析】(1)根据高出的温度=地面温度-上升后降低的温度,列式即可得到答案;(2)把16y =-代入函数关系式进行计算即可得到答案.【详解】(1)解: 海拔高度每上升1千米,温度下降6℃,上海地面温度为20℃,()6200y x x ∴=-+>,∴y 与x 之间的函数关系式为:()6200y x x =-+>;(2)解:根据题意可得:当16y =-时,62016x -+=-,解得:6x =,∴此刻飞机离地面的高度为6千米.【点评】本题考查了一次函数的应用,读懂题目信息,根据高出的温度=地面温度-上升后降低的温度,得出函数关系式,是解题的关键.23.(本题12分)如图,点E ,F 都在BAD ∠的平分线上,BF AD ∥交DE 于点C .CF BF =,14AB AD ==,,求ΔΔ:EFC EAD S S 的值.【点评】本题考查了相似三角形的判定与性质,等腰三角形的判定等知识,相似三角形的判定与性质的运用是解题的关键.24.(本题14分)如图,在平面直角坐标系xOy中,抛物线2=++与x轴交于点y x bx c()1,0A和()B,与y轴交于点C.5,0(1)求此抛物线的表达式及点C的坐标;(2)将此抛物线沿x 轴向左平移()0m m >个单位得到新抛物线,且新抛物线仍经过点C ,求m 的值.【答案】(1)265y x x =-+,点C 的坐标是()0,5(2)6【分析】(1)用待定系数法求出二次函数的解析式,进而求出点C 的坐标;(2)把二次函数配方得到顶点式,根据题目进行平移解题即可.【详解】(1)解:把()1,0A 和()5,0B 代入2y x bx c =++010255b c b c=++⎧⎨=++⎩,解得65b c =-⎧⎨=⎩∴抛物线的表达式为265y x x =-+∴当0x =时,5y =∴点C 的坐标是()0,5(2)()226534y x x x =-+=--设平移后的抛物线表达式为()234y x m =-+-把()0,5C 代入得()25034m =-+-解得126,0m m ==∵0m >,∴6m =【点评】本题考查二次函数的解析式和抛物线的平移,掌握二次函数的图象和性质是解题的关键.25.(本题16分)如图,在ABC 中,AB AC =,以AB 为直径的O 与BC 相交于点,D DE AC ⊥,垂足为E .(1)求证:DE 是O 的切线;(2)若弦MN 垂直于AB ,垂足为1,,4AG G MN AB ==O 的半径;(3)在(2)的条件下,当36BAC ∠=︒时,求线段CE 的长.方法二:连接OD=OB OD∴∠=∠OBD ODBDE AC⊥∴∠+∠=︒EDC C90AB AC=∴∠=∠ABC C∴∠=∠ODB C∴∠+∠=︒90 EDC ODBODE∴∠=︒.90∴⊥OD DE的半径 是OOD的切线∴是ODE方法三:连接OD=OB OD∴∠=∠OBD ODBAB AC=∴∠=∠ABC ACB∴∠=∠ODB ACB∴∥OD AC⊥DE AC方法二:、连接AM MB的直径 是OAB∴∠=︒AMB90MN AB⊥。

小学数学新课程标准考试练习题题库含答案

小学数学新课程标准考试练习题题库含答案

小学数学新课程标准测试题题库含答案一、填空题、选择题1、数学是研究( 数量关系 )和( 空间形式 )的科学。

2、作为促进学生全面发展教育的重要组成部分,数学教育既要使学生掌握现代生活和学习中所需要的(数学知识与技能),更要发挥数学在培养(人的理性思维)和(创新能力)方面的不可替代的作用。

3、义务教育阶段的数学课程具有(基础)性、(普及)性和( 发展)性。

数学教育要面向(全体学生),适应学生个性发展的需要,实现:(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展)。

4、《课程标准》中的“三维”课程目标是指:(知识与技能)、(过程与方法)、(情感态度与价值观)。

5、数学课程能使学生掌握必备的(基础知识)和(基本技能);培养学生的(抽象思维和推理)能力;培养学生的(创新意识和实践)能力;促进学生在情感、态度与价值观等方面的发展。

6、义务教育阶段的数学课程其基本出发点是促进学生(全面)、(持续)、(和谐)地发展。

7、《课程标准》中要求,数学课程内容要反映社会的需要、数学的特点,要符合学生的(认知规律)。

课程内容的选择要贴近学生的实际,有利于学生(体验与理解)、(思考与探索)。

8、课程内容的组织要重视过程,处理好(过程与结果)的关系;要重视直观,处理好(直观与抽象)的关系;要重视直接经验,处理好(直接经验与间接经验)的关系。

9、数学教学活动是师生(积极参与)、(交往互动)、(共同发展)的过程。

10、有效的教学活动是(学生学)与(教师教)的统一,应体现(以人为本)的理念。

(学生)是学习的主体,教师是学习的(组织者)、(引导者)与(合作者)。

11、学生学习应当是一个(生动活泼的)、(主动的)和(富有个性的)过程。

除接受学习外,(动手实践)、(自主探索)与(合作交流)同样是学习数学的重要方式。

学生应当有足够的时间和空间经历(观察)、(实验)、(猜测)、(计算)、(推理)、(验证)等活动过程。

12、教师教学应该以学生的(认知发展水平)和(已有的经验)为基础,面向(全体学生),注重(启发式)和(因材施教)。

2024年上海市中考数学真题卷(含答案与解析)_5411

2024年上海市中考数学真题卷(含答案与解析)_5411

2024年上海市初中学业水平考试数学试卷考生注意:1.本场考试时间100分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,请在答题纸指定位置填写姓名、报名号、座位号.井将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确是( )A 55x y +<+ B. 55x y -<- C. 55x y > D. 55x y ->- 2. 函数2()3x f x x -=-的定义域是( ) A. 2x = B. 2x ≠ C. 3x = D. 3x ≠3. 以下一元二次方程有两个相等实数根的是( )A. 260x x -=B. 290x -=C. 2660x x -+=D. 2690x x -+=4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的. 种类 甲种类 乙种类 丙种类 丁种类平均数 2.3 2.328 3.1 方差1.05 0.78 1.05 0.78A. 甲种类B. 乙种类C. 丙种类D. 丁种类5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯形的..6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A. 内含B. 相交C. 外切D. 相离二、填空题(每题4分,共48分)7. 计算:()324x =___________.8. 计算()()a b b a +-=______.9.1=,则x =___________.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示) 11. 若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)12. 在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球. 15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r ,若2AE EC =,则DC = ___________(结果用含a ,b 式子表示).16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.的17. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________.18. 对于一个二次函数2()y a x m k =-+(0a ≠)中存在一点(),P x y '',使得0x m y k '-='-≠,则称2x m '-为该抛物线的“开口大小”,那么抛物线211323y x x =-++“开口大小”为__________. 三、简答题(共78分,其中第19-22题每题10分,第23、24题每题12分,第25题14分)19.计算:102|1|24(1-++-. 20. 解方程组:2234026x xy y x y ⎧--=⎨+=⎩①②. 21. 在平面直角坐标系xOy 中,反比例函数k y x=(k 为常数且0k ≠)上有一点()3,A m -,且与直线24y x =-+交于另一点(),6B n .(1)求k 与m 的值;(2)过点A 作直线l x ∥轴与直线24y x =+交于点C ,求sin OCA ∠的值.22. 同学用两幅三角板拼出了如下平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠),直角三角形斜边上的高都为h .的(1)直接写出:①两个直角三角形的直角边(结果用h 表示); ②小平行四边形的底、高和面积(结果用h 表示); (2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.23. 如图所示,在矩形ABCD 中,E 为边CD 上一点,且AE BD ⊥.(1)求证:2AD DE DC =⋅;(2)F 为线段AE 延长线上一点,且满足12EF CF BD ==,求证:CE AD =. 24. 在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.25. 在梯形ABCD 中,AD BC ∥,点E 在边AB 上,且13AE AB =.(1)如图1所示,点F 在边CD 上,且13DF CD =,联结EF ,求证:EF BC ∥;(2)已知1AD AE ==;①如图2所示,联结DE ,如果ADE V 外接圆的心恰好落在B ∠的平分线上,求ADE V 的外接圆的半径长;②如图3所示,如果点M 在边BC 上,联结EM 、DM 、EC ,DM 与EC 交于N ,如果4BC =,且2CD DM DN =⋅,DMC CEM ∠=∠,求边CD 的长.参考答案一、选择题(每题4分,共24分)1. 如果x y >,那么下列正确的是( )A. 55x y +<+B. 55x y -<-C. 55x y >D. 55x y ->-【答案】C【解析】【分析】本题主要考查了不等式的基本性质,根据不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A .两边都加上5,不等号的方向不改变,故错误,不符合题意;B .两边都加上5-,不等号的方向不改变,故错误,不符合题意;C .两边同时乘上大于零的数,不等号的方向不改变,故正确,符合题意;D .两边同时乘上小于零的数,不等号的方向改变,故错误,不符合题意;故选:C .2. 函数2()3x f x x -=-的定义域是( ) A. 2x =B. 2x ≠C. 3x =D. 3x ≠ 【答案】D【解析】【分析】本题考查求函数定义域,涉及分式有意义的条件:分式分母不为0,解不等式即可得到答案,熟练掌握求函数定义域的方法是解决问题的关键. 【详解】解:函数2()3x f x x -=-的定义域是30x -≠,解得3x ≠, 故选:D .3. 以下一元二次方程有两个相等实数根的是( )A 260x x -= B. 290x -=C. 2660x x -+=D. 2690x x -+= 【答案】D【解析】【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=->时,方程有两个不相等实数根;当240b ac ∆=-=时,方程的两个相等的实数根;当24<0b ac ∆=-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--⨯⨯=> ,该方程有两个不相等实数根,故A 选项不符合题意; B .()2Δ0419360=-⨯⨯-=> ,该方程有两个不相等实数根,故B 选项不符合题意; C .()2Δ6416120=--⨯⨯=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--⨯⨯= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .4. 科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的. 种类 甲种类 乙种类 丙种类 丁种类 .平均数 2.32.3 2.83.1 方差1.05 0.78 1.05 0.78A. 甲种类B. 乙种类C. 丙种类D. 丁种类【答案】B【解析】 【分析】本题主要考查了用平均数和方差做决策,根据平均数的定义以及方差的定义做决策即可. 解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵由表格可知四种花开花时间最短的为甲种类和乙种类,四种花的方差最小的为乙种类和丁种类,方差越小越稳定,∴乙种类开花时间最短的并且最平稳的,故选:B .5. 四边形ABCD 为矩形,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,如果四个垂线拼成一个四边形,那这个四边形为( )A. 菱形B. 矩形C. 直角梯形D. 等腰梯形【答案】A【解析】【分析】本题考查矩形性质、等面积法、菱形的判定等知识,熟练掌握矩形性质及菱形的判定是解决问题的关键.由矩形性质得到OBC OAD S S = ,OC OB OA OD ===,进而由等面积法确定CH BF AE DG ===,再由菱形的判定即可得到答案.【详解】解:如图所示:四边形ABCD 为矩形,OBC OAD S S ∴= ,OC OB OA OD ===,过A C 、作对角线BD 的垂线,过B D 、作对角线AC 的垂线,11112222OBC OAD S S OC BF OB CH OD AE OA DG ∴==⋅=⋅=⋅=⋅ ∴CH BF AE DG ===,如果四个垂线拼成一个四边形,那这个四边形为菱形,故选:A .6. 在ABC 中,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A B P 、、为圆心画,圆A 半径为1,圆B 半径为2,圆P 半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( )A. 内含B. 相交C. 外切D. 相离【答案】B【解析】【分析】本题考查圆的位置关系,涉及勾股定理,根据题意,作出图形,数形结合,即可得到答案,熟记圆的位置关系是解决问题的关键.【详解】解: 圆A 半径为1,圆P 半径为3,圆A 与圆P 内切, ∴圆A 含在圆P 内,即312PA =-=,P ∴在以A 为圆心、2为半径的圆与ABC 边相交形成的弧上运动,如图所示:∴当到P '位置时,圆P 与圆B 圆心距离PB =325<+=,∴圆P 与圆B 相交,故选:B .二、填空题(每题4分,共48分)7. 计算:()324x =___________.【答案】664x【解析】【分析】本题考查了积的乘方以及幂的乘方,掌握相关运算法则是解题关键.先将因式分别乘方,再结合幂的乘方计算即可.【详解】解:()326464x x =,故答案为:664x .8. 计算()()a b b a +-=______.【答案】22b a -【解析】【分析】根据平方差公式进行计算即可.【详解】解:()()a b b a +-()()b a b a =+-22b a =-,故答案为:22b a -.【点睛】本题考查平方差公式,此为基础且重要知识点,必须熟练掌握.9. 1=,则x =___________.【答案】1【解析】【分析】本题主要考查了二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.由二次根式被开方数大于0可知210x ->,则可得出211x -=,求出x 即可.【详解】解:根据题意可知:210x ->,∴211x -=,解得:1x =,故答案为:1.10. 科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的___________倍.(用科学记数法表示) 【答案】3810⨯【解析】【分析】本题考查科学记数法,按照定义,用科学记数法表示较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,按要求表示即可得到答案,确定a 与n 的值是解决问题的关键. 【详解】解:蓝光唱片的容量是普通唱片的53210800081025⨯==⨯倍, 故答案为:3810⨯.11. 若正比例函数y kx =的图像经过点(7,13)-,则y 的值随x 的增大而___________.(选填“增大”或“减小”)【答案】减小【解析】【分析】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,牢记“当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小”是解题的关键.利用一次函数图象上点的坐标特征,可求出137k =-,结合正比例函数的性质,即可得出y 的值随x 的增大而减小. 【详解】解: 正比例函数y kx =的图象经过点(7,13)-,137k ∴-=, 解得:137k =-, 又1307k =-< , y ∴的值随x 的增大而减小.故答案为:减小.12. 在菱形ABCD 中,66ABC ∠=︒,则BAC ∠=___________.【答案】57︒##57度【解析】【分析】本题考查了菱形的性质,等腰三角形的性质以及三角形内角和定理,利用菱形性质得出AB BC =,利用等边对等角得出BAC ACB ∠=∠,然后结合三角形内角和定理求解即可.【详解】解:∵四边形ABCD 是菱形,∴AB BC =, ∴()()11180180665722BAC ACB ABC ∠=∠=︒-∠=︒-︒=︒, 故答案为:57︒.13. 某种商品的销售量y (万元)与广告投入x (万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元,则投入80万元时,销售量为___________万元.【答案】4500【解析】【分析】本题考查求一次函数解析式及求函数值,设y kx b =+,根据题意找出点代入求出解析式,然后把80x =代入求解即可.【详解】解:设y kx b =+,把()10,1000,()90,5000代入,得101000905000k b k b +=⎧⎨+=⎩, 解得50500k b =⎧⎨=⎩, ∴50500y x =+,当80x =时,50805004500y =⨯+=,即投入80万元时,销售量为4500万元,故答案为:4500.14. 一个袋子中有若干个白球和绿球,它们除了颜色外都相同随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有___________个绿球. 【答案】3【解析】【分析】本题主要考查了已知概率求数量,一元一次不等式的应用,设袋子中绿球有3x 个,则根据概率计算公式得到球的总数为5x 个,则白球的数量为2x 个,再由每种球的个数为正整数,列出不等式求解即可.【详解】解:设袋子中绿球有3x 个, ∵摸到绿球的概率是35, ∴球的总数为3355x x ÷=个, ∴白球的数量为532x x x -=个,∵每种球的个数为正整数,∴20x >,且x 为正整数,∴0x >,且x 正整数,∴x 的最小值为1,∴绿球的个数的最小值为3,为∴袋子中至少有3个绿球,故答案为:3.15. 如图,在平行四边形ABCD 中,E 为对角线AC 上一点,设AC a = ,BE b =u u r r ,若2AE EC =,则DC = ___________(结果用含a ,b 的式子表示).【答案】23a b - 【解析】 【分析】本题考查了平面向量的知识,解答本题的关键是先确定各线段之间的关系.先求出23AE AC =,从而可得AB AE EB =+ .【详解】解: 四边形ABCD 是平行四边形, DC AB ∴∥,DC AB =.E 是AC 上一点,2AE EC =,23AE AC ∴=, 23AB AE EB AE BE a b =+=-=-, ∴23DC a b =- , 故答案为:23a b - . 16. 博物馆为展品准备了人工讲解、语音播报和AR 增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种),那么在总共2万人的参观中,需要AR 增强讲解的人数约有__________人.【答案】2000【解析】【分析】本题考查条形统计图及用样本的某种“率”估计总体的某种“率”,正确得出需要AR 增强讲解的人数占有需求讲解的人数的百分比是解题关键.先求出需求讲解的人数占有效问卷的百分比,再根据条形统计图求出需要AR 增强讲解的人数占有需求讲解的人数的百分比,进而可得答案.【详解】解:∵共回收有效问卷1000张,其中700人没有讲解需求,剩余300人有需求讲解, ∴需求讲解的人数占有效问卷的百分比为300100%30%1000⨯=, 由条形统计图可知:需要AR 增强讲解的人数为100人,∴需要AR 增强讲解的人数占有需求讲解的人数的百分比为10013003=, ∴在总共2万人的参观中,需要AR 增强讲解的人数约有12000030%20003⨯⨯=(人), 故答案为:200017. 在平行四边形ABCD 中,ABC ∠是锐角,将CD 沿直线l 翻折至AB 所在直线,对应点分别为C ',D ¢,若::1:3:7AC AB BC '=,则cos ABC ∠=__________. 【答案】27或47##47或27【解析】【分析】本题考查了平行四边形的翻折,求余弦值,等腰三角形的判定及性质,解题的关键是利用分类讨论的思想进行求解.【详解】解:当C '在AB 之间时,作下图,根据::1:3:7AC AB BC '=,不妨设1,3,7AC AB BC '===,由翻折的性质知:FCD FC D ''∠=∠,CD 沿直线l 翻折至AB 所在直线,BC F FC D FCD FBA '''∴∠+∠=∠+∠,BC F FBA '∴∠=∠。

2024届四川省绵阳市部分学校数学八下期末学业水平测试试题含解析

2024届四川省绵阳市部分学校数学八下期末学业水平测试试题含解析

2024届四川省绵阳市部分学校数学八下期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.将分式22x x y -中的x ,y 的值同时扩大为原来的2015倍,则变化后分式的值( ) A .扩大为原来的2015倍B .缩小为原来的12015C .保持不变D .以上都不正确2.某铁工艺品商城某天销售了110件工艺品,其统计如表:货种 A B C D E销售量(件) 10 40 30 10 20该店长如果想要了解哪个货种的销售量最大,那么他应该关注的统计量是( )A .平均数B .众数C .中位数D .方差3.把一根长7m 的钢管截成2m 长和1m 长两种规格的钢管,如果保证没有余料,那么截取的方法有( ) A .2种B .3种C .4种D .5种 4.使二次根式有意义的x 的取值范围为A .x≤2B .x≠-2C .x≥-2D .x <25.已知第一象限内点(4,1)P a +到两坐标轴的距离相等,则a 的值为( )A .3B .4C .-5D .3或-56.己知一个多边形的内角和是360°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形7.如图,已知一次函数y kx b =+的图象与x 轴,y 轴分别交于点(2,0),点(0,3).有下列结论:①关于x 的方程0kx b +=的解为2x =;②当2x >时,0y <;③当0x <时,3y <. 其中正确的是( )A.①②B.①③C.②③D.①③②8.如图,将等边△ABC沿直线BC平移到△DEF,使点E与点C重合,连接BD,若AB=2,则BD的长为()A.2B.C.3 D.29.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A.24 B.18 C.12 D.910.已知下列命题:①若a>0,b>0,则a+b>0;②若a2=b2,则a=b;③角的平分线上的点到角的两边的距离相等;④矩形的对角线相等.以上命题为真命题的个数是()A.1个B.2个C.3个D.4个11.若关于x的不等式3x-2m≥0的负整数解为-1,-2,则m的取值范围是()A.96m2-≤<-B.96m2-<≤-C.9m32-≤<-D.9m32-<≤-12.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是()A.y=﹣7x+7B.y=﹣7x+1C.y=﹣7x﹣17D.y=﹣7x+25二、填空题(每题4分,共24分)13.如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为___.14.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为__________米.15.化简2211xy x y x y ⎛⎫-⋅ ⎪-⎝⎭的结果是______. 16.4的算术平方根是 .17.如图,双曲线y=2x (x >0)经过四边形OABC 的顶点A 、C ,∠ABC=90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴.将△ABC 沿AC 翻折后得△AB′C ,B′点落在OA 上,则四边形OABC 的面积是 .18.若点(), 1A a 与点()3-B b ,关于原点对称,则b a =_______________.三、解答题(共78分)19.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,建立平面直角坐标系xOy ,ABC 的三个顶点的坐标分别为A(2,4),B(1,1),C(4,2).(1)平移ABC ,使得点A 的对应点为A 1(2,﹣1),点B ,C 的对应点分别为B 1,C 1,画出平移后的A 1B 1C 1; (2)在(1)的基础上,画出A 1B 1C 1绕原点O 顺时针旋转90°得到的A 2B 2C 2,其中点A 1,B 1,C 1的对应点分别为A 2,B 2,C 2,并直接写出点C 2的坐标.20.(8分)学校为了更新体育器材,计划购买足球和篮球共100个,经市场调查:购买2个足球和5个篮球共需600元;购买3个足球和1个篮球共需380元。

七上数学复习题

七上数学复习题

七年级数学《有理数》检测题一、选择题(共10小题,每小题4分,共40分)1.-+-+-=++---12113140650750651131214075..(.)(.),在这个运算中用了( )A.加法交换律B.加法结合律C.加法交换律和结合律D.分配律 2.下列各图中,符合数轴定义的是( )BD.-1 0 1 -1 0 13.计算02111153535⎛⎫⎛⎫⎛⎫-⨯÷-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的结果是( )A.9- B.10- C.11- D.12-4. 5月12日四川汶川发生8.0级大地震,给当地群众造成生命、财产重大损失,全国人民团结一心,帮助灾区人民渡过难关.中央电视台举办了《爱的奉献》抗震救灾募捐活动,募捐到救灾款15.14亿元.将15.14亿用科学记数法表示为( ) A .100.151410⨯B .9151410⨯C .91.51410⨯D .101.51410⨯5.若a+b <0,且a·b >0,则一定有( )A .a >0且b >0B .a <0且b <0C .a >0且b <0D .a <0且b >0 6.3131()545⎡⎤-⨯--=⎢⎥⎣⎦ 中,在( )内填上的数是( )A.14B.114C .114-D .14-7.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.05(保留两个有效数字)D .0.0502(精确到0.0001) 8.下列说法正确的是( )①在+5与-6之间没有正数;②在-1与0之间没有负数;③在+5与+6之间有无数个正分数;④在-1与0之间没有正分数。

A.仅④正确B.仅③正确C.仅③④正确D.①②④正确 9.下列判断正确的是( )A. 12004的相反数是2004;B. 12004的相反数是-2004;C.12004的相反数是-12004; D. 12004的相反数是12004-10.数a 的相反数是-a,那么a 表示( )A.负有理数B.正有理数C.正分数D.任意一个数二、填空题(共8小题,每小题4分,共32分)11、按照“神舟六号”飞船环境控制与生命保障系统的设计指标,“神舟六号”飞船返回舱的温度为21℃±4℃.则该返回舱的最高温度为___________℃. 12、-5的相反数是______,的倒数是______,的绝对值是______.13、有理数-3,0,20,-1.25,143, -12- ,-(-5) 中,正整数是 ,负数是 , 正分数是 。

鲁教版2022-2023学年七年级数学上册期末模拟测试题(附答案)

鲁教版2022-2023学年七年级数学上册期末模拟测试题(附答案)

鲁教版2022-2023学年七年级数学上册期末模拟测试题(附答案)一、选择题(共48分)1.在,π,,3.,,0,1010010001…(每两个1之间,逐次多一个0)中,无理数的个数有()A.2个B.3个C.4个D.5个2.下列曲线中,表示y是x的函数的是()A.B.C.D.3.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为()A.25B.25或20C.20D.154.已知函数y=(m﹣2)+1是一次函数,则m的值为()A.±B.C.±2D.﹣25.如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°6.如图,AC∥BD,AB交CD于点O,过O的直线EF分别交AC、BD于E、F,DF=CE,则图中全等的三角形的对数共有()A.1对B.2对C.3对D.4对7.一次函数y=kx+b的图象如图所示,则一次函数y=bx﹣k的图象所过象限为()A.一、三、四象限B.二、三、四象限C.一、二、三象限D.一、二、四象限8.已知点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)9.如图,在平面直角坐标系中,点A的坐标是(﹣3,0),点B的坐标是(0,4),点M是OB上一点,将△ABM沿AM折叠,点B恰好落在x轴上的点B'处,则点M的坐标为()A.(,0)B.(0,)C.(,0)D.(0,)10.如图,AB=AC,点B关于AD的对称点E恰好落在CD上,∠BAC=124°,AF为△ACE中CE边上的中线,则∠ADB的度数为()A.24°B.28°C.30°D.38°11.如图,矩形ABCD的顶点A(﹣3,0),B在x轴的负半轴上,顶点C(﹣1,3),D在第二象限内,对角线AC与BD的交点为M.将矩形ABCD沿x轴正方向滚动(无滑动),使其一边保持落在x轴上,点M的对应点分别为M1,M2,M3,…,则M2021的坐标为()A.(5050,1)B.(5050,)C.(5050,1)D.(5050,)12.如图,在△ABC中,∠ACB=45°,AD⊥BC,BE⊥AC,AD与BE相交下点F,连接并延长CF交AB于点G,∠AEB的平分线交CG的延长线于点H,连接AH.则下列结论:①∠EBD=45°;②AH=HF;③△ABD≌△CFD;④CH=AB+AH;⑤BD=CD﹣AF.其中正确的有()个.A.5B.4C.3D.2二、填空题(共24分)13.如图,将三角形纸片ABC沿着中线AD折叠,使点B落在点B′处,交BC于点E,若△AEC的面积为S1,△DEB′的面积为S2,则S1S2(填“>“、“<“或“=”)14.如图,Rt△ABC中,AB=4,BC=3,以Rt△ABC的三边为直径画3个半圆,则阴影部分的面积为.15.已知A(x1,y1)、B(x2,y2)是一次函数y=(2﹣m)x+3图象上两点,且(x1﹣x2)(y1﹣y2)<0,则m的取值范围为.16.在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向下平移3个单位后,得到一个正比例函数的图象,则m的值为.17.如图,小明站在堤岸的A点处,正对他的S点停有一艘游艇.他想知道这艘游艇距离他有多远,于是他沿堤岸走到电线杆B旁,接着再往前走相同的距离,到达C点.然后他向左直行,当看到电线杆与游艇在一条直线上时停下来,此时他位于D点.小明测得C、D间的距离为90米,则在A点处小明与游艇的距离为米.18.若a、b、c为三角形的三边长,且a、b满足|a﹣3|+(b﹣2)2=0,则第三边长c的取值范围是.三、解答题(共78分)19.计算与求值:(1)(﹣2+x)3=﹣216;(2);(3)若2a﹣4与3a+1是同一个正数的平方根,求a的值.20.在平面直角坐标系中,A(0,2),B(6,1),C(5,3),如图所示:(1)以x轴为对称轴,作△ABC的轴对称图形△DEF;(2)求△ABC的面积;(3)在x轴上找一点M,使M点到A、B两点的距离之和最小,请你通过作图观察,直接写出点M的坐标;21.如图,△ABC中,∠ABC=2∠C,BE平分∠ABC交AC于E、AD⊥BE于D,求证:(1)AC﹣BE=AE;(2)AC=2BD.22.如图,在长方形ABCD中,DC=9.在DC上找一点E,沿直线AE把△AED折叠,使D点恰好落在BC上,设这一点为F,若△ABF的面积是54,求DE的长.23.某公司要印制产品宣传材料,甲印刷厂提出:每份材料收2元印制费,另收1500元制版费;乙印刷厂提出:每份材料收3.5元印制费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印制数量x(份)之间的关系式;(2)若公司需印制800份宣传材料,通过计算说明选择哪家印刷厂比较合算?(3)若该公司拟拿出7000元用于印制宣传材料.选择哪家印刷厂印制宣传材料多些?24.如图,在△ABC中,∠A=90°,AB=AC,点D在射线AC上(点D不与点A重合)(1)若点D在边AC时,延长AC至点G,CG=AD,过点D作DE⊥BD,交BC于点E,过G作HG⊥AG交DE延长线于点H.求证:BD=DH.(2)过点A作AF⊥BD,垂足为F,射线AF交BC于点N,点Q在射线CA上,且∠QNC=∠ANB.求证:AQ=CD.25.如图,一次函数y=x+3的图象分别与x轴和y轴交于C,A两点,且与正比例函数y =kx的图象交于点B(﹣1,m).(1)求正比例函数的表达式;(2)若点D是x轴上的点,且△OBD的面积和△OBA的面积相等,求满足条件的点D 的坐标.参考答案一、选择题(共48分)1.解:,3.,,0是有理数,π,,1010010001…(每两个1之间,逐次多一个0)是无理数,故选:B.2.解:在某个变化过程中,有两个变量x、y,一个量变化,另一个量也随之变化,当x每取一个值,y就有唯一的值与之相对应,这时我们就把x叫做自变量,y叫做因变量,y 是x的函数,只有选项C中的“x每取一个值,y不是唯一值与之相对应”,其它选项中的都不是“有唯一相对应”的,所以选项C中的y表示x的函数,故选:C.3.解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25.故选:A.4.解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.5.解:∵CD平分∠BCA,∴∠ACD=∠BCD=∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=58°,∴∠BCA=116°,∴∠B=180°﹣30°﹣116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,6.解:全等三角形有△AEO≌△BFO,△CEO≌△DFO,△ACO≌△BDO,共3对,故选:C.7.解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴b>0,﹣k>0,∴一次函数y=bx﹣k图象第一、二、三象限,故选:C.8.解:∵点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,∴a﹣1=﹣2,解得a=﹣1,所以,a+5=﹣1+5=4,所以,点P的坐标为(4,﹣2).故选:A.9.解:∵将△ABM沿AM折叠,∴AB=AB',又A(﹣3,0),B(0,4),∴AB=5=AB',∴点B'的坐标为:(2,0),设M点坐标为(0,b),则B'M=BM=4﹣b,∵B'M2=B'O2+OM2,∴(4﹣b)2=22+b2,∴b=,∴M(0,),故选:B.10.解:如图,∵△AED与△ABD关于AD对称,∴AB=AE,∠ADB=∠ADE,∠BAD=∠DAE,∴AC=AE,∵AF是△ACE的中线,∴∠CAF=∠EAF,AF⊥CE,∴∠DAF=∠BAC=62°,∵∠AFD=90°,∴∠ADF=90°﹣62°=28°,∴∠ADB=∠ADF=28°,故选:B.11.解:∵长方形ABCD的顶点A(﹣3,0),顶点C(﹣1,3),∴M1的坐标为(,1),M2的坐标为(+,),M3的坐标为(+,1),M4的坐标为(+,),•M2021的坐标为(,1),∴M2021的坐标为(5050,1).故选:A.12.解:设EH与AD交于点M,如图,∵∠ACB=45°,BE⊥AC,∴∠EBD=90°﹣∠ACD=45°.故①正确;∵AD⊥BC,∠EBD=45°,∴∠BFD=45°.∴∠AFE=∠BFD=45°.∵BE⊥AC,∴∠F AE=∠AFE=45°.∴△AEF为等腰直角三角形.∵EM是∠AEF的平分线,∴EM⊥AF,AM=MF.即EH为AF的垂直平分线.∴AH=HF.∴②正确;∵AD⊥BC,∠ACD=45°,∴△ADC是等腰直角三角形,∴AD=CD.同理,BD=DF.在△ABD和△CFD中,,∴△ABD≌△CFD(SAS).∴③正确;∵△ABD≌△CFD,∴CF=AB.∵CH=CF+HF,由②知:HF=AH.∴CH=AB+AH.∴④正确;∵BD=DF,CD=AD,又∵DF=AD﹣AF,∴BD=CD﹣AF.∴⑤正确.综上,正确结论的个数为5个.故选:A.二、填空题(共24分)13.解:∵AD是△ABC的中线,∴S△ABD=S△ADC,由折叠的性质可知,S△AB′D=S△ABD,∴S△ADC=S△AB′D,∴S1=S2,故答案为:=.14.解:设分别以BC,AB,AC三边为直径的三个半圆面积分别表示为S1、S2、S3,则有:S1=π()2=,同理,S2=,S3=,∵BC2+AB2=AC2,∴S1+S2=S3;∴S阴影=S1+S2+S△ABC﹣S3=S△ABC,则S阴影=S△ABC=AB•BC=×4×3=6.故答案为6.15.解:(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y随x的增大而减小,因此,2﹣m<0,解得,m>2,故答案为:m>2.16.解:将一次函数y=2x+m﹣1的图象向下平移3个单位后,得到y=2x+m﹣1﹣3,把(0,0)代入,得到:0=0+m﹣1﹣3,解得m=4.故答案为:4.17.解:在△ABS与△CBD中,,∴△ABS≌△CBD(ASA),∴AS=CD,∵CD=90米,∴AS=CD=90米,答:在A点处小明与游艇的距离为90米,故答案为:90米.18.解:∵a、b满足|a﹣3|+(b﹣2)2=0,∴a﹣3=0,b﹣2=0,∴a=3,b=2.∵a、b、c为三角形的三边长,∴3﹣2<c<3+2,即1<c<5.故答案为:1<c<5.三、解答题(共78分)19.解:(1)∵(﹣2+x)3=﹣216,∴﹣2+x=﹣6,解得x=﹣4;(2)∵,=4,∴2x+1=±2,解得x=或﹣;(3)∵2a﹣4与3a+1是同一个正数的平方根,∴2a﹣4+3a+1=0或2a﹣4=3a+1,∴解得:a=或a=﹣5.20.解:(1)如图,△DEF即为所求;(2)△ABC的面积=3×6﹣×1×6﹣×1×2﹣×1×5=;(3)如图点M即为所求,点M的坐标(4,0).21.证明:(1)∵BE平分∠ABC,∴∠CBE=∠ABC,∵∠ABC=2∠C,∴∠EBC=∠C,∴BE=CE,∴AC﹣BE=AC﹣CE=AE;(2)延长BD至N,使DN=BD,连接AN.∵AD⊥BE,∴AD垂直平分BN,∴AB=AN,∴∠N=∠ABN=∠NBC=∠C,∴AN∥BC,∴∠C=∠NAC,∴∠NAC=∠N,∴AE=EN,∵BE=EC,∴AC=BN=2BD.22.解:在长方形ABCD中,DC=9,所以,AB=DC=9,∵△ABF的面积为54,∴×9•BF=54,解得BF=12,由勾股定理得,AF===15,∵△AED沿AE折叠点D落在BC上点F处,∴AD=AF=15,DE=EF,∴CF=BC﹣BF=15﹣12=3,设DE=x,则EF=x,EC=9﹣x,在Rt△CEF中,由勾股定理得,CF2+EC2=EF2,即32+(9﹣x)2=x2,解得x=5,∴DE=5.23.解:(1)由题意可得,y甲=2x+1500,y乙=3.5x;(2)当x=800时,y甲=2×800+1500=3100,y乙=3.5×800=2800,∵3100>2800,∴若公司需印制800份宣传材料,选择乙印刷厂比较合算;(3)当y甲=7000时,7000=2x+1500,得x=2750,当y乙=7000时,7000=3.5x,得x=2000,∵2750>2000,∴若该公司拟拿出7000元用于印制宣传材料.选择甲印刷厂印制宣传材料多些.24.(1)证明:∵CG=AD,∴CG+DC=AD+DC,∴DG=AC=AB,∵DE⊥BD,∴∠BDE=∠A=90°,∴∠ADB+∠GDH=∠ADB+∠ABD,∴∠ABD=∠GDH,在△ABD和△GDH中,,∴△ABD≌△GDH(ASA),∴BD=DH;(2)证明:如图,过C作CE⊥AC交AN延长线于点E,∴∠ECQ=90°,∵∠BAC=90°,AB=AC,∴∠ACB=45°,∴∠ECN=45°,∴∠QCN=∠ECN,∵∠QNC=∠ANB.∠ENC=∠ANB.∴∠QNC=∠ENC.在△QNC和ENC中,,∴△QNC≌ENC(ASA),∴CQ=CE,∵AF⊥BD,∴∠AFD=∠BAC=90°,∴∠ADB+∠F AD=∠ADB+∠ABD,∴∠ABD=∠F AD,在△ABD和△CAE中,,∴△ABD≌△CAE(ASA),∴AD=CE;∵CQ=CE,∴AD=CQ,∴AD+DQ=CQ+CQ,∴AQ=CD.25.解:(1)由一次函数与正比例函数交于点B(﹣1,m),当x=﹣1时,得出y=2,即m=2,将B(﹣1,2)代入y=kx,得﹣k=2,即k=﹣2.答:y=﹣2x.(2)∵A为y=x+3与y轴的交点,∴A为(0,3),∵B(﹣1,2),∴△OBA的面积为3×1÷2=1.5;又∵△OBD的面积与△OBA的面积相同,∴△OBD的面积为1.5,∵△OBD的高为2,∴OD=1.5×2÷2=1.5;答:D(1.5,0)或(﹣1.5,0).。

78年数学高考题解

78年数学高考题解

78年数学高考题解摘要:一、前言二、1978年数学高考题型概述1.选择题2.填空题3.解答题三、各题型解答方法与技巧1.选择题a.题型特点b.解题技巧c.真题举例2.填空题a.题型特点b.解题技巧c.真题举例3.解答题a.题型特点b.解题技巧c.真题举例四、总结正文:一、前言1978年的数学高考已经成为了历史,但这一年的试题却在一定程度上反映了当时我国教育改革的成果。

本文将针对1978年数学高考题进行解析,帮助大家更好地理解当时的考试要求和内容。

二、1978年数学高考题型概述1978年数学高考题分为选择题、填空题和解答题三种题型。

下面将对这三种题型进行简要概述。

(一)选择题选择题要求考生从四个选项中选择一个正确答案。

这类题型主要考察考生的基本概念、性质和定理的理解和掌握。

(二)填空题填空题要求考生填写空缺的数字或符号,使等式成立或不等式成立。

这类题型主要考察考生的计算能力和对基本知识的熟练程度。

(三)解答题解答题要求考生根据题目要求进行详细解答,通常包括证明题、计算题和应用题等。

这类题型主要考察考生的综合运用知识的能力。

三、各题型解答方法与技巧(一)选择题选择题的解题技巧主要包括以下几点:1.仔细阅读题目,理解题意。

2.分析四个选项,排除明显错误的选项。

3.运用基本概念、性质和定理进行判断。

4.注意题目中的关键词,如“正确的是”、“错误的是”等。

(二)填空题填空题的解题技巧主要包括以下几点:1.仔细阅读题目,理解题意。

2.分析题目中的已知条件,寻找解题思路。

3.注意计算过程中的精度和方法。

4.检查答案是否符合题意。

(三)解答题解答题的解题技巧主要包括以下几点:1.仔细阅读题目,理解题意。

2.分析题目要求,确定解题思路。

3.按照步骤进行解答,注意书写规范。

4.检查答案是否正确,进行简要说明。

四、总结1978年数学高考题在考查基本知识、基本技能的同时,注重对考生思维能力和应用能力的考察。

通过对当年试题的解析,我们可以了解到当时我国教育改革的方向和要求,为我们今天的教育事业提供借鉴。

人教版数学七年级下册《期中考试卷》(含答案)

人教版数学七年级下册《期中考试卷》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共计10个小题,每题4分,共计40分)1.下列方程是二元一次方程的是( )A. 2x-y=3B. x+1=2C. 335y x +=D. x y z 6++= 2.下列运算正确的是( )A. 224a a a +=B. 3412a a a ⋅=C. 3412()a a =D. 22()ab ab = 3.若=8,=4,则2m n +=( )A. 12B. 4C. 32D. 24.用加减消元法解方程3210415x y x y -=⎧⎨-=⎩①②时,最简捷的方法是( ) A. ②×2+①,消去B. ②×2-①,消去C. ①×4-②×3,消去D. ①×4+②×3,消去5.若12x y =-⎧⎨=⎩是关于x 、y 的方程2x ﹣y+2a =0的一个解,则常数a 为( ) A. 1 B. 2 C. 3 D. 46.若关于x y 、的一元二次方程组5323x y x y p +=⎧⎨+=⎩的解满足1x y -=-,则的值为( ) A. 3 B. 3- C. 6 D. 6-7.如果2n 3273⨯=,则n 的值为( )A. 6B. 1C. 5D. 8 8.计算(13)2019×32020 的结果为 ( ). A. 1 B. 3 C. 13 D. 20209.已知关于,方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则,的值分别为( ) A. ,3 B. 2,3 C. ,3- D. 2,3-10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意方程组是( ) A. 4.5112y x y x =+⎧⎪⎨=+⎪⎩ B. 4.5112y x y x =+⎧⎪⎨=-⎪⎩ C. 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D. 4.5112y x y x =-⎧⎪⎨=-⎪⎩ 二、填空题(本题共计8个小题,每题4分,共计32分)11.已知方程3x +5y -3=0,用含x 的代数式表示y,则y=________.12.写出一个以13x y =-⎧⎨=⎩为解的二元一次方程______. 13.已知则3632x y y x -=⎧⎨-=⎩,则x y +的值为______. 14.已知4m a =,3n a =,则2m n a +=__________.15.已知2m a =,32n b =,,为正整数,则3102m n +=_________.16.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b )(a-b )的值为_________. 17.三元一次方程组1,2,3x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是______.18.某体育场环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是_____.三、解答题(本题共计7个小题,共计78分)19.解方程组:(1)102x y x y +=⎧⎨-=⎩ (2)293217x y x y -=⎧⎨+=⎩20.计算:(1)()()24576332x x x x x ⋅+⋅-+ (2)2324251(3)()()2a b a b -⋅-⋅-21.(1)已知a m =2,a n =3,求a m +n 值;(2)已知3x +1=81,求x.22.已知2a =3,2b =6,2c =12,试问a ,b ,c 之间有怎样的关系?请说明理由.23.对于实数、,定义关于“”的一种运算:2a b a b ⊗=+,例如132135⊗=⨯+=.(1)求()43⊗-的值;(2)若()2x y ⊗-=-,()21y x ⊗=-,求x y +的值.24.已知方程组51542ax y x by +=⎧⎨+=-⎩①②由于甲看错了方程①中a ,得到方程组的解为31x y =-⎧⎨=-⎩乙看错了方程②中的b ,得到方程组的解为52x y =⎧⎨=⎩试求出a ,b 的值.25.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?答案与解析一、选择题(本题共计10个小题,每题4分,共计40分)1.下列方程是二元一次方程的是( )A. 2x-y=3B. x+1=2C. 335y x +=D. x y z 6++=[答案]A[解析][分析]根据二元一次方程的定义对各选项进行逐一分析即可.[详解]解: A.符合二元一次方程的定义,故是二元一次方程,故本选项正确;B.含有一个未知数,是一元一次方程,故本选项错误;C.是分式方程,故本选项错误;D.是三元一次方程,故本选项错误.故选A .[点睛]本题考查了二元一次方程的定义,即含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.下列运算正确的是( )A. 224a a a +=B. 3412a a a ⋅=C. 3412()a a =D. 22()ab ab = [答案]C[解析][分析]分别计算出各项的结果,再进行判断即可.[详解]A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误.故选C[点睛]本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.3.若=8,=4,则2m n+=()A. 12B. 4C. 32D. 2[答案]C[解析][分析]根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,可得22•2m n m n,据此用8乘以4,求出2m n+的值是多少即可.[详解]解:2?228432m n m n,故选:C.[点睛]此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是判断出:22•2m n m n.4.用加减消元法解方程3210415x yx y-=⎧⎨-=⎩①②时,最简捷的方法是()A. ②×2+①,消去B. ②×2-①,消去C. ①×4-②×3,消去D. ①×4+②×3,消去[答案]B[解析][分析]把②×2-①,即可消去.[详解]把②×2-①,得5x=20,故选B.[点睛]本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.5.若12x y =-⎧⎨=⎩是关于x 、y 的方程2x ﹣y+2a =0的一个解,则常数a 为( ) A. 1B. 2C. 3D. 4[答案]B[解析][分析] 将12x y =-⎧⎨=⎩代入2x ﹣y+2a =0解方程即可求出a.[详解]将x=-1,y=2代入方程2x-y+2a=0得:-2-2+2a=0,解得:a=2.故选B .6.若关于x y 、的一元二次方程组5323x y x y p +=⎧⎨+=⎩的解满足1x y -=-,则的值为( ) A. 3B. 3-C. 6D. 6- [答案]C[解析][分析]先消元用表示出方程组的解,再代入已知条件,即可求得.[详解]因为5323x y x y p+=⎧⎨+=⎩, 故可得23325232p x p y -⎧=⎪⎪⎨-⎪=⎪⎩, 代入1x y -=-,则424p =解得6p .故选:C.[点睛]本题考查二元一次方程组的求解,属基础题.7.如果2n 3273⨯=,则n 的值为( )A. 6B. 1C. 5D. 8 [答案]C[解析]∵2n 3273⨯=,∴23n 333⨯=,∴5n 33=,∴n =5.故选C.8.计算(13)2019×32020 的结果为 ( ). A. 1B. 3C. 13D. 2020[答案]B[解析][分析]直接利用积的乘方运算法则将原式变形求出答案. [详解]解:20192020201911()3(3)333⨯=⨯⨯ =3.故选:B .[点睛]此题主要考查了积的乘方运算,正确利用积的乘方法则将原式变形是解题关键.9.已知关于,的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则,的值分别为( )A. ,3B. 2,3C. ,3-D. 2,3-[答案]B[解析][分析] 将两个方程组中的3x-y=5与2x+3y=-4组合成新的方程组求出x 及y ,代入另两个方程得到关于a 与b 的方程组,解方程组求解即可.[详解]由题意解方程组35234x y x y -=⎧⎨+=-⎩,解得12x y =⎧⎨=-⎩, 将12x y =⎧⎨=-⎩代入4522ax by +=-及ax-by=8中,得到 4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 故选:B.[点睛]此题考查特殊法解方程组,由两个方程组的解相同,故将含有相同字母的方程重新组合进行求解,由此解决问题.10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意的方程组是( ) A. 4.5112y x y x =+⎧⎪⎨=+⎪⎩ B. 4.5112y x y x =+⎧⎪⎨=-⎪⎩ C. 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D. 4.5112y x y x =-⎧⎪⎨=-⎪⎩ [答案]B[解析][分析] 根据题意可以列出相应的二元一次方程组,从而本题得以解决.[详解]用一根绳子去量一根长木,绳子还剩余4.5尺,则 4.5y x =+,将绳子对折再量长木,长木还剩余1尺,则11 2y x=-,∴4.5 112y xy x=+⎧⎪⎨=-⎪⎩,故选B.[点睛]本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(本题共计8个小题,每题4分,共计32分)11.已知方程3x+5y-3=0,用含x的代数式表示y,则y=________.[答案]335x -;[解析]分析: 将x看作已知数求出y即可. 详解:方程3x+5y-3=0,解得:y=335x -.故答案为335x -.点睛: 此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.12.写出一个以13xy=-⎧⎨=⎩为解的二元一次方程______.[答案]x+y=2[解析][分析]先由-1和3列出一个算式:-1+3=2,即可得出x=-1,y=3为x+y=2解,得到正确答案.[详解]根据题意得:x+y=2.故答案为:x+y=2.[点睛]此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.13.已知则3632x yy x-=⎧⎨-=⎩,则x y+的值为______.[答案][解析][分析]将两个方程相加得到2x+2y=8,再两边同时除以2即可得到答案.[详解]3632x y y x -=⎧⎨-=⎩①②, 由①+②,得2x+2y=8,∴x+y=4,故答案为:4.[点睛]此题考查解二元一次方程组,求方程组中两个未知数的其他关系式时,可根据方程组中两个方程的关系直接求值.14.已知4m a =,3n a =,则2m n a +=__________.[答案]48[解析][分析]利用幂的运算中同底数幂相乘,底数不变指数相加的运算方法,先将2m n a +分解成几个数相乘的形式,即可得出结果.[详解]解:244348m n m m n a a a a +=⨯⨯=⨯⨯=故答案为:48.[点睛]本题主要考查是幂的运算中同底数幂相乘的运算法则,掌握同底数幂相乘,底数不变指数相加是解题的关键.15.已知2m a =,32n b =,,为正整数,则3102m n +=_________.[答案]32a b[解析][分析]逆用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.[详解]解:2m a =,32n b =,,为正整数,52n b ∴=,3103522(2)(2)m n m n +∴=⨯32a b =.故答案为:32a b .[点睛]此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键. 16.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b )(a-b )的值为_________. [答案]-15[解析][分析]把方程组的解代入方程组可得到关于a 、b 的方程组,解方程组可求出a ,b 的值,再代入代数式(a+b)(a-b)计算即可.[详解]解:∵21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解, 2227a b b a +=⎧∴⎨+=⎩, 解得:14a b =-⎧⎨=⎩, ∴(a+b )(a-b )=(-1+4)×(-1-4)=-15.故选:B .[点睛]本题考查二元一次方程组的解和解二元一次方程组.理解方程组的解满足方程组中的每一个方程是解题的关键.17.三元一次方程组1,2,3x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是______.[答案]1,0,2.x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解方程即可.[详解]解:1,2,3,x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,++①②③得2()6x y z ++=,所以3x y z ++=④.把①代入④,得2z =.把②代入④,得1x =.把③代入④,得0y =.所以原方程组的解为1,0,2.x y z =⎧⎪=⎨⎪=⎩[点睛]本题考查解三元一次方程组,解题的关键是通过加减消元法或代入消元法消去未知数,从而达到解方程的目的.18.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是_____.[答案]30()40080()400x y y x +=⎧⎨-=⎩ [解析]分析]此题中的等量关系有反向而行,则两人30秒共走400米;②同向而行,则80秒乙比甲多跑400米[详解]解:①根据反向而行,得方程为30(x+y )=400;②根据同向而行,得方程为80(y ﹣x )=400.那么列方程组30()40080()400x y y x +=⎧⎨-=⎩.[点睛]此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程组三、解答题(本题共计7个小题,共计78分)19.解方程组:(1)102x y x y +=⎧⎨-=⎩ (2)293217x y x y -=⎧⎨+=⎩[答案](1)64x y =⎧⎨=⎩;(2)51x y =⎧⎨=⎩ [解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.[详解]解:(1)102x y x y +=⎧⎨-=⎩①② ①+②得:2x =12,解得:x =6,把x =6代入①得:y =4,则方程组的解为64x y =⎧⎨=⎩; (2)293217x y x y -=⎧⎨+=⎩①②①×2+②得:7x =35,解得:x =5,把x =5代入①得:y =1,则方程组的解为51x y =⎧⎨=⎩. [点睛]此题考查了二元一次方程组的解法,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 20.计算:(1)()()24576332x x x x x ⋅+⋅-+ (2)2324251(3)()()2a b a b -⋅-⋅-[答案](1)412x ;(2)14132716a b [解析][分析] (1)先算幂的乘方、同底数幂相乘、再算加减;(2)先算积的乘方再算同底数幂乘法;[详解]解:(1)()()24576332x x x x x ⋅+⋅-+ =1266122x x x x +⋅+=1212122x x x ++=412x(2)2324251(3)()()2a b a b -⋅-⋅- =63810127()16a b a b -⋅⋅- =14132716a b [点睛]考核知识点:同底数幂乘法、幂的乘方、积的乘方.掌握相关运算法则是关键.21.(1)已知a m =2,a n =3,求a m +n 的值;(2)已知3x +1=81,求x.[答案](1)6.(2)x =3.[解析]试题分析:(1)用同底数幂的乘法法则,底数不变,指数相加;(2)逆用同底数幂的乘法法则,将3x +1转化为3x ×3,再求解.试题解析:(1)a m +n =a m ·a n =2×3=6.(2)因为3x +1=3x ×3=81,所以3x =27=33.所以x =3.22.已知2a =3,2b =6,2c =12,试问a ,b ,c 之间有怎样的关系?请说明理由.[答案]2b =a +c ,理由见解析.[解析][分析]由62=3×12,可得()22222b a c a c +=⨯=,即可求得a,b,c 之间的关系. [详解]解:(答案不唯一)方法一:∵2326212a b c ===,,,且2666312⨯==⨯,∴()22222a c a c b +=⨯=,∴2b =a +c .方法二:∵2b =6=3×2=2a ×2=2a +1,∴b =a +1.① 又∵2c =12=6×2=2b ×2=2b +1,∴c =b +1.② ①-②,得2b =a +c[点睛]考查幂的乘方与积的乘方,同底数幂的乘法,比较基础,找出等量关系是解题的关键.23.对于实数、,定义关于“”的一种运算:2a b a b ⊗=+,例如132135⊗=⨯+=.(1)求()43⊗-的值;(2)若()2x y ⊗-=-,()21y x ⊗=-,求x y +的值.[答案](1)5;(2)1x y +=-[解析][分析](1)利用题目中的新定义进行计算即可;(2)根据新定义,对式子进行化简后得到二元一次方程,求解该方程组即可.[详解]解:(1)根据题中的新定义得:原式=()243835⨯+-=-=;故答案为:5. (2)根据题中的新定义化简得:2241x y x y -=-⎧⎨+=-⎩, 两式相加得:333x y +=-,则1x y +=-.故答案为:.[点睛]本题借助新定义题型考查了二元一次方程组的解法,新定义题型就按照题目的意思来进行计算即可,本质还是要熟练掌握二元一次方程的解法.24.已知方程组51542ax yx by+=⎧⎨+=-⎩①②由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩乙看错了方程②中的b,得到方程组的解为52xy=⎧⎨=⎩试求出a,b的值.[答案]110 ab=⎧⎨=-⎩[解析] [分析]根据方程组解的定义,31xy=-⎧⎨=-⎩应满足方程②,52xy=⎧⎨=⎩应满足方程①,将它们分别代入方程②①,就可得到关于a,b的方程,解得a,b的值.[详解]解:根据题意31xy=-⎧⎨=-⎩是②方程的解,52xy=⎧⎨=⎩是①方程的解,∴4(3)(1)2 55215ba⨯-+⨯-=-⎧⎨+⨯=⎩解得110 ab=⎧⎨=-⎩[点睛]此题主要考查了二元一次方程组解的定义,解决本题的关键是二元一次方程组解的定义.25.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?[答案](1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少.[解析][分析](1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.[详解]解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得883520 6123480x yx y+=⎧⎨+=⎩解得300140 xy=⎧⎨=⎩答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.[点睛]本题主要考查二元一次方程组的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出甲组和乙组对应的工作时间,找出合适的等量关系,列出方程组,再求解.。

人教版数学七年级下学期《期中检测试题》含答案解析

人教版数学七年级下学期《期中检测试题》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程是( )A. 2x =1B. 120x -=C. 2x -y =5D. 2x +1=2x 2.二元一次方程组224x y x y +=⎧⎨-=⎩的解是( ) A. 02x y =⎧⎨=⎩ B. 20x y =⎧⎨=⎩ C. 31x y =⎧⎨=-⎩ D. 11x y =⎧⎨=⎩3.若m >n ,则下列不等式正确的是( )A. m -2<n -2B. 6m <6nC. -8m >-8nD. 44m n > 4.方程2143x x ++=,去分母后正确的是( ). A. ()32124x x ++= B. ()1221212x x ++=C. ()42123x x ++=D. ()3214x x ++= 5.由方程组43x m y m +=⎧⎨-=⎩,可得出x 与y 的关系是( ) A. x+y=1 B. x+y=-1 C. x+y=7 D. x+y=-76.不等式组10260x x +>⎧⎨-≤⎩解集在数轴上表示正确的是( ) A.B.C.D 7.某文具店一本练习本和一支中性笔单价合计为3元,小妮在该店买了20本练习本和10支中性笔,共花了40元.若设练习本每本为x 元,中性笔每支为y 元,则下面所列方程组正确的是( )A. 3201040x y x y -=⎧⎨+=⎩B. 3201040x y x y +=⎧⎨+=⎩C. 3201040y x x y -=⎧⎨+=⎩D. 3102040x y x y +=⎧⎨+=⎩ 8.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为( )A. 15x>20(x+6)B. 15(x+6)>20xC. 15x>20(x-6)D. 15(x-6)>20x二、填空题(每小题3分,共18分)9.如果x=6是方程2x +3a=0的解,那么a 的值是_____.10.x 的3倍与5的和不大于8,用不等式表示为______.11.若方程23x y -=,用含的代数式表示,则=____.12.不等式5140x +≥的负整数解的和是____.13.一个书包的标价为110元,按8折出售仍可获利10%,则该书包的进价为____元.14.如图,两个天平都平衡,则三个球体的质量等于____个正方体的质量.三、解答题(本大题共10小题,共78分)15.解方程:315(1)x x -=+.16.解方程组:20346x y x y +=⎧⎨+=⎩ 17.解方程组:2201160x y z x y z x y ++=-⎧⎪-+=⎨⎪+=⎩.18.解不等式213436x x --≥,并把解集数轴上表示出来. 19.已知x=1是方程2﹣13(a ﹣x)=2x 的解,求关于y 的方程a(y ﹣5)﹣2=a(2y ﹣3)的解. 20.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?21.已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围.(2)当m取最小整数时,解关于x的不等式112mxx+-<.22.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.(1)解方程:|3x-2|-4=0.(2)已知关于x的方程|x-2|=b+1.①若方程无解,则b的取值范围是.②若方程只有一个解,则b的值为.③若方程有两个解,则b的取值范围是.23.学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?24.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.答案与解析一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程的是( )A. 2x=1B. 120x-= C. 2x-y=5 D. 2x+1=2x[答案]A[解析][分析]依据一元一次方程的定义解答即可.[详解]解:A、2x=1是一元一次方程,故A正确;B、120x-=不是整式方程,故B错误;C、2x-y=5是二元一次方程,故C错误;D、2x+1=2x是一元二次方程,故D错误;故选:A.[点睛]本题主要考查的是一元一次方程的定义,熟练掌握一元一次方程的概念是解题的关键.2.二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩[答案]B[解析][分析]方程组利用加减消元法求出解即可.[详解]224x yx y①②+=⎧⎨-=⎩,①+②得:3x=6,即x=2, 把x=2代入①得:y=0,则方程组的解为20 xy=⎧⎨=⎩,故答案选B.[点睛]本题考查了解二元一次方程组,利用消元的思想,消元的方法有:代入消元法与加减消元法.解题的关键是熟练的掌握解二元一次方程组的方法.3.若m >n ,则下列不等式正确的是( )A. m -2<n -2B. 6m <6nC. -8m >-8nD. 44m n > [答案]D[解析][分析]根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,对A 进行判断;不等式两边乘(或除以)同一个正数,不等号的方向不变,对B 、D 进行判断;不等式两边乘(或除以)同一个负数,不等号的方向改变,对C 进行判断.[详解]∵不等式两边加(或减)同一个数(或式子),不等号的方向不变∵m >n∴m -2>n -2故A 错误∵不等式两边乘(或除以)同一个正数,不等号的方向不变∵m >n∴6m >6n ,44m n > 故B 错误,D 正确∵不等式两边乘(或除以)同一个负数,不等号的方向改变∵m >n∴-8m <-8n故C 错误故选:D[点睛]本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变. 4.方程2143x x ++=,去分母后正确的是( ). A. ()32124x x ++= B. ()1221212x x ++=C. ()42123x x ++=D. ()3214x x ++=[答案]A[解析]根据等式的性质方程两边都乘以12即可.解:24x ++1=3x,去分母得:3(x+2)+12=4x,故选A.“点睛”本题考查了一元一次方程的变形,注意:解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1.5.由方程组43x my m+=⎧⎨-=⎩,可得出x与y的关系是( )A. x+y=1B. x+y=-1C. x+y=7D. x+y=-7 [答案]C[解析][分析]将两个方程相加即可得到结论.[详解]43 x my m+=⎧⎨-=⎩①②由①+②得:x+y=7.故选C.[点睛]考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.6.不等式组10260xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D. [答案]C [解析] [分析]分别解两个不等式得到1x >-和3x ,从而得到不等式组的解集为13x -<,然后利用此解集对各选项进行判断.[详解]10{260x x ①②+>-≤,解①得x>-1,解②得x≤3,所以不等式组的解集为-1<x≤3.故选.[点睛]本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.某文具店一本练习本和一支中性笔的单价合计为3元,小妮在该店买了20本练习本和10支中性笔,共花了40元.若设练习本每本为x 元,中性笔每支为y 元,则下面所列方程组正确的是( )A. 3201040x y x y -=⎧⎨+=⎩B. 3201040x y x y +=⎧⎨+=⎩C. 3201040y x x y -=⎧⎨+=⎩D. 3102040x y x y +=⎧⎨+=⎩ [答案]B[解析][分析]根据等量关系“一本练习本和一支中性笔的单价合计为3元”,“20本练习本的总价+10支中性笔的总价=40”,列方程组求解即可.[详解]设练习本每本为x 元,中性笔每支为y 元,根据单价的等量关系可得方程为x+y=3,根据总价40得到的方程为20x+10y=40,所以可列方程为:3201040x y x y +=⎧⎨+=⎩, 故选:B .[点睛]此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关8.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为( )A. 15x>20(x+6)B. 15(x+6)>20xC. 15x>20(x-6)D. 15(x-6)>20x[答案]B[解析][分析]首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.[详解]设原来每天最多能生产x 辆,由题意得:15(x+6)>20x,故选B .[点睛]此题主要考查了由实际问题抽象出一元一次不等式,关键正确理解题意,抓住关键描述语. 二、填空题(每小题3分,共18分)9.如果x=6是方程2x +3a=0的解,那么a 的值是_____.[答案]-4[解析]把x =6代入方程2x +3a =0得:12+3a =0,解得:a =﹣4,10.x 的3倍与5的和不大于8,用不等式表示为______.[答案]358x +≤[解析]分析:先表示出x 的3倍,再表示出与5的和,最后根据和不大于...8可得不等式.详解:根据题意可列不等式:3x +5≤8.故答案为3x +5≤8.点睛:本题考查了由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.11.若方程23x y -=,用含的代数式表示,则=____.[答案]32x - [解析]要用含x 的代数式表示y ,就要把方程中含有x 的项和常数项移到等式的右边,再把y 的系数化为1即可.[详解]解:移项,得23y x -=-+,系数化为1,得32x y -=, 故答案为:32x -. [点睛]本题考查了代入消元法解二元一次方程组,解题关键是把方程中含有x 的项和常数项移到等式的右边,再把y 的系数化为1.12.不等式5140x +≥的负整数解的和是____.[答案]-3[解析][分析]先移项再系数化为1即可解不等式,再取负整数的解进行相加即可得到答案.[详解]解:5140x +≥,移项得到:514x ≥-,系数化为1得到:145x ≥-, ∴负整数解有:-2、-1,∴负整数解得和为:(-2)+(-1)= -3,故答案为:-3;[点睛]本题主要考查了解不等式以及整数的定义,掌握解不等式的步骤值解题的关键.13.一个书包的标价为110元,按8折出售仍可获利10%,则该书包的进价为____元.[答案]80[解析][分析]设该书包的进价为x 元,根据销售收入﹣成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.[详解]解:设该书包的进价为x 元,根据题意得:110×0.8﹣x =10%x ,解得:x =80.答:该书包的进价为80元.故答案为:80.[点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.如图,两个天平都平衡,则三个球体的质量等于____个正方体的质量.[答案]5[解析][分析]由图可知:2个球体的重量=5个圆柱体的重量,2个正方体的重量=3个圆柱体的重量.可设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程即可得出答案.[详解]解:设一个球体重x ,圆柱重y ,正方体重z .根据等量关系列方程:2x =5y ;2z =3y ,即:6x =15y ;10z =15y ,则:6x =10z ,即:3x =5z ,即三个球体的重量等于五个正方体的重量.故答案:5.[点睛]本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.三、解答题(本大题共10小题,共78分)15.解方程:315(1)x x -=+.[答案]x =-3.[解析][分析]方程去括号,移项合并,把x 系数化为1,即可求出解.[详解]解:去括号得:3x -1=5x +5,移项得:3x -5x =5+1,合并得:-2x =6,系数化为1得:x =-3.[点睛]此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.解方程组:20 346 x yx y+=⎧⎨+=⎩[答案]原方程组的解为=63 xy⎧⎨=-⎩[解析][分析]利用代入法进行求解即可得.[详解]20346x yx y+=⎧⎨+=⎩①②,由①得:x=-2y ③将③代入②得:3(-2y)+4y=6, 解得:y=-3,将y=-3代入③得:x=6,∴原方程组的解为63xy=⎧⎨=-⎩.[点睛]本题考查了解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.17.解方程组:220 1160x y zx y zx y++=-⎧⎪-+=⎨⎪+=⎩.[答案]6113xyz=⎧⎪=-⎨⎪=⎩.[解析][分析]①﹣②得出2y=-22,求出y=﹣11,把y=﹣11代入③,即可求得x=6,再把x=6,y=-11代入①进而求得z=3即可.[详解]解:220 1160x y zx y zx y++=-⎧⎪-+=⎨⎪+=⎩①②③①-②得,2y=-22, 解得y=-11.把y=-11代入③中, 得11x+6×(-11)=0,解得x=6.把x=6,y=-11代入①中, 得6-11+z=-2,解得z=3.∴原方程组的解为6113xyz=⎧⎪=-⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,利用了消元的思想,解决本题的关键是消元,消元的方法有:代入消元法与加减消元法.18.解不等式213436x x--≥,并把解集在数轴上表示出来.[答案]x≥-2;在数轴上表示见解析.[解析][分析]根据不等式的性质解一元一次不等式,然后在数轴上表示不等式的解集.[详解]解:2(2x-1)≥3x-4,4x-2≥3x-4,4x-3x≥-4+2,x≥-2.在数轴上表示如图所示:[点睛]本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.19.已知x=1是方程2﹣13(a﹣x)=2x的解,求关于y的方程a(y﹣5)﹣2=a(2y﹣3)的解.[答案]y=﹣4.[解析]试题分析:把x=1代入方程计算求出a的值,代入所求方程求出解即可.试题解析:把x=1代入方程得:2﹣13(a﹣1)=2,解得:a=1,代入方程a(y﹣5)﹣2=a(2y﹣3)得:(y﹣5)﹣2=2y﹣3, 解得:y=﹣4.20.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?[答案]21人,羊为150元[解析][分析]可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.[详解]设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150,答:买羊人数21人,羊价为150元.[点睛]本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.已知关于x的方程4x+2m+1=2x+5的解是负数.(1)求m的取值范围.(2)当m取最小整数时,解关于x的不等式112mxx+-<.[答案](1)m>2;(2)3x>-.[解析][分析](1)首先要解这个关于x的方程,然后根据解是负数,就可以得到一个关于m的不等式,最后求出m的范围.(2)本题是关于x的不等式,应先只把x看成未知数,根据m的取值范围求得x的解集.[详解]解:(1)4x+2m+1=2x+5,2x=4-2m,x=2-m.由题意,得x<0,即2-m<0,∴m>2,∴m的取值范围m>2;(2)∵m>2,∴m取最小整数为3.∴关于x的不等式为3112xx+-<,2(1)31x x-<+,2231x x-<+,3x>-∴不等式的解集为3x>-.[点睛]本题主要考查解一元一次不等式和一元一次方程的能力,(1)此题是一个方程与不等式的综合题目,解关于x的不等式是本题的一个难点.(2)需注意,在不等式两边都除以一个负数时,应改变不等号的方向.22.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.(1)解方程:|3x-2|-4=0.(2)已知关于x的方程|x-2|=b+1.①若方程无解,则b的取值范围是.②若方程只有一个解,则b的值为.③若方程有两个解,则b的取值范围是.[答案](1)x=2或23x=-;(2)①b<-1;②-1;③b>-1.[解析][分析](1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.[详解]解:(1)当3x-2≥0时,原方程可化为3x-2=4,解得x=2;当3x-2<0时,原方程可化为3x-2=-4,解得23x=-.所以原方程的解是x=2或23x=-.(2)∵|x﹣2|≥0,∴当b +1<0,即b <﹣1时,方程无解;当b +1=0,即b =﹣1时,方程只有一个解;当b +1>0,即b >﹣1时,方程有两个解故答案为:①b <-1;②-1;③b >-1.[点睛]本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.23.学校计划购买甲、乙两种图书作为“校园读书节”的奖品,已知甲种图书的单价比乙种图书的单价多10元,且购买3本甲种图书和2本乙种图书共需花费130元(1)甲、乙两种图书的单价分别为多少元?(2)学校计划购买这两种图书共50本,且投入总经费不超过1200元,则最多可以购买甲种图书多少本?[答案](1)甲种图书单价为30元,乙种图书单价为20元;(2)最多可购买甲种图书20本.[解析][分析](1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据题意可以列出相应的不等式,从而可以求得甲种图书最多能购买多少本.[详解](1)设甲种图书的单价为x 元,乙种图书的单价为y 元,由题意,得:1032130x y x y =+⎧⎨+=⎩解得:3020x y =⎧⎨=⎩. 答:甲种图书单价为30元,乙种图书单价为20元.(2)设最多可购买甲种图书m 本,则购乙种图书(50﹣m )本,由题意,得:30m +20×(50﹣m )≤1200解得:m ≤20.答:最多可购买甲种图书20本.[点睛]本题考查了二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和一元一次不等式.24.已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨,某物流公司现有26吨货物,计划A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱车方案,并求出最少租车费.[答案](1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨;(2)共有2种租车方案:①租A型车6辆,B型车2辆;②租A型车2辆,B型车5辆;(3)最省钱租车方案为方案②,租车费用为800元.[解析][分析](1)根据2辆A型车和1辆B型车装满货物=10吨;1辆A型车和2辆B型车装满货物=11吨,列出方程组即可解决问题.(2)由题意得到3a+4b=26,根据a、b均为正整数,即可求出a、b的值.(3)求出每种方案下的租金数,经比较、分析,即可解决问题.[详解]解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货λ吨、μ吨,由题意得:210211λμλμ+=⎧⎨+=⎩,解得:34λμ=⎧⎨=⎩故1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)由题意和(1)得:3a+4b=26,∵a、b均非负整数,∴62ab=⎧⎨=⎩或25ab=⎧⎨=⎩,∴共有2种租车方案:①租A型车6辆,B型车2辆,②租A型车2辆,B型车5辆.(3)方案①的租金为:6×100+2×120=840(元),方案②的租金为:2×100+5×120=800(元),∵840>800,∴最省钱的租车方案为方案②,租车费用为800元.[点睛]根据题意设未知数列方程,并确保计算的正确性.。

粮道街中学七年级上册第一次月考10月数学试题部分附答案共3份

粮道街中学七年级上册第一次月考10月数学试题部分附答案共3份
【答案】D
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】∵水位上升3米记作 米,
∴水位下降5米记作-5米.
故选:D.
【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
A. B. C. D.
9.实数 , 在数轴上的对应点如图所示,则下列不等式中错误的是()
A. B. C. D.
10.若 则 的取值范围是()
A. B. C. D.
11.下列说法错误的个数是()
(1)绝对值是它本身的数有两个,是 和
(2)任何有理数的绝对值都不是负数
(3)一个有理数的绝对值必为正数
(4)绝对值等于相反数的数一定是非负数
(3)若电子蚂蚁从B点开始连续移动,第1次向右移动1个单位长度;第2次向右移动2个单位长度;第3次向左移动3个单位长度;第4次向左移动4个单位长度;第5次向右移动5个单位长度;第6次向右移动6个单位长度;第7次向左移动7个单位长度;第8次向左移动8个单位长度...依次操作第2019次移动后到达点P,求P点表示的数。
5. 的相反数是()
A.9B. C. D.6
【答案】A
【解析】
【分析】
根据相反数的定义可得出答案.
【详解】解: 的相反数是 ,即9.
故选:A.
【点睛】本题考查了相反数.解题的关键是明确相反数的意义,一个数的相反数就是在这个数前面添上 号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.
星期





小学三年级上册数学练习题人教版(10篇)

小学三年级上册数学练习题人教版(10篇)

小学三年级上册数学练习题人教版(10篇)小学三年级上册数学练习题人教版【篇1】一、填空题1、在90后面添( )个0是90万,添( )个0是9亿。

2、和1000000相邻的两个数是( )和( )。

3、 500005005这个数,在左边的5表示( ),中间的5表示( ),右边的5表示( )。

4、57925680这个数里包括( )级和( )级,它是( )位数,最高位是( )位,表示( )。

5、最小的五位数和最大的五位数的和是( )。

6、用3个5和2个0组成的五位数中,最大的五位数是( ),最小的五位数是( ),只读一个零的数是( ),两个零都读出来的数是( )。

7、三个连续自然数的和是231,这个数分别是( )、( )和( )。

8、万位后面一位是( )位,右面一位是( )位;十亿位左面一位是( )位,右面一位是( )位。

二、判断题1、万位、十万位、百万位和千万位都是计数单位。

( )2、比较两个数的大小时,首先看最高位上的数。

( )3、自然数的个数是无限的,没有最大的自然数。

( )4、最小的七位数比最大的八位数少1。

( )5、用5、7、9、0组成的最大的四位数是9705。

( )6、17500050读作一千万七百五十万零五十。

( )7、一个数字占有的数位不同,表示的数的大小也不同。

( )8、一个数四舍五入到万位后是9万,这个数最大是94999。

( )三、选择题1、下面各数,只读一个零的是()。

A .20600000 B.94000000 C.10600900 D.502207032、7( )580≈8万,( )里可填的数字范围是()。

A.0~4B.1~4C.5~9D.0~93、读两级数时,( )的0都不读。

A. 每级前面B.每级中级C.每级末尾小学三年级上册数学练习题人教版【篇2】一、判断。

(对的在括号里画“√”,错的`画“×”。

)共18分,每小题4.5分1、一个数的11倍加上115,等于这个数的16倍,这个数是32。

2024年上海中考数学模拟练习卷七及参考答案

2024年上海中考数学模拟练习卷七及参考答案

上海市2024年中考数学模拟练习卷7(考试时间:100分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题)一、单选题(共24分)1.(本题4分)下列运算正确的是()A =B .3412a a a ⋅=C .()222a b a b -=-D .()32628a a -=-2.(本题4分)用换元法解方程22114x x x x+++=时,设1y x x =+则原方程可变形为()A .24y y +=B .22y y +=C .26y y +=D .24y y -=3.(本题4分)下列说法正确的是()A .函数2y x =的图象是过原点的射线B .直线2y x =-+经过第一、二、三象限C .函数()20y x x=-<,y 随x 增大而增大D .函数23y x =-,y 随x 增大而减小4.(本题4分)下图是国家统计局发布的2021年2月至2022年2月北京居民消费价格涨跌情况折线图(注:2022年2月与2021年2月相比较称为同比,2022年2月与2022年1月相比较称为环比).根据图中信息,有下面四个推断:①2021年2月至2022年2月北京居民消费价格同比均上涨;②2021年2月至2022年2月北京居民消费价格环比有涨有跌;③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数.上述结论中,正确的有()A .①②③B .①②④C .①③④D .②③④5.(本题4分)如图,在四边形ABCD 中,AB AD =,BC DC =,AC ,BD 交于点O .添加一个条件使这个四边形成为一种特殊的平行四边形,则以下说法错误..的是()A .添加“//AB CD ”,则四边形ABCD 是菱形B .添加“90BAD ∠=︒”,则四边形ABCD 是矩形C .添加“OA OC =”,则四边形ABCD 是菱形D .添加“90ABC BCD ∠=∠=︒”,则四边形ABCD 是正方形6.(本题4分)如图,已知等腰梯形ABCD ,AB ∥CD ,AD =BC ,AC ⊥BC ,BE ⊥AB 交AC 的延长线于E ,EF ⊥AD 交AD 的延长线于F ,下列结论:①BD ∥EF ;②∠AEF =2∠BAC ;③AD =DF ;④AC =CE +EF .其中错误的结论有()A .0个B .1个C .2个D .3个第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:2250x -=.8.(本题4分)化简22933b a a b b a +--的结果是.9.(本题4分)若实数x 、y )23+=,则x y +=.10.(本题4分)函数1y x =+的定义域是.11.(本题4分)关于x 的方程()2110kx k x --+=有有理根,则整数k 的值为.12.(本题4分)一个不透明的袋子中装有12个白球、9个黄球和若干个黑球,它们除颜色外,完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.4,则可判断袋子中黑球的个数为.13.(本题4分)如果一个正多边形的中心角为72°,则该正多边形的对角线条数为.14.(本题4分)已知函数满足下列两个条件:①0x >时,y 随x 的增大而增大:②它的图像经过点()1,2.请写出一个符合上述条件的函数的表达式.15.(本题4分)在梯形ABCD 中,AB CD ∥,2AB CD =,AC 与BD 交于点P ,令AB a = ,BC b = ,那么AP = ;(用向量a 、b 表示)16.(本题4分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,被调查的学生中骑车的有21人,则下列四种说法:①被调查的学生有60人;②被调查的学生中,步行的有27人;③被调查的学生中,骑车上学的学生比乘车上学的学生多20人;④扇形图中,乘车部分所对应的圆心角为54︒.其中正确的说法有.(填写序号)17.(本题4分)如图,在ABC 中,AB AC =,将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,如果BE BF =,那么DBC ∠的大小是.18.(本题4分)如图,在平面直角坐标系中,有7个半径为1的小圆拼在一起,下面一行的4个小圆都与x 轴相切,上面一行的3个小圆都在下一行右边3个小圆的正上方,且相邻两个小圆只有一个公共点,从左往右数,y 轴过第2列两个小圆的圆心,点P 是第3列两个小圆的公共点.若过点P 有一条直线平分这7个小圆的面积,则该直线的函数表达式是.三、解答题(共78分)19.(本题6分)计算:2323;(2)()23223364-+--20.(本题8分)解不等式组()()12112122213x x x x ⎧--+≤⎪⎪⎨+⎪<-⎪⎩21.(本题10分)如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若55,sin 25AF ABD =∠=O 的半径.22.(本题12分)如图,把一些相同规格的碗整齐地叠放在水平桌面上,这摞碗的高度与碗的数量的关系如下表:碗的数量(个)234…cm10.211.412.6…高度()(1)若把6个这样的碗整齐地叠放在水平桌面上时,这摞碗的高度是______cm;(2)设摞碗的数量为x(个),摞碗的高度为()y,求y与x之间的函数关系式;cm(3)这摞碗的高度是否可以为18.6cm,如果可以,求这摞碗的数量;如果不可以,请说明理由.23.(本题12分)已知:如图,在矩形ABCD中,E、F分别是边CD、AD上的点,AE⊥BF,且AE=BF.(1)求证:矩形ABCD 是正方形;(2)联结BE 、EF ,当线段DF 是线段AF 与AD 的比例中项时,求证:∠DEF =∠ABE .24.(本题14分)在平面直角坐标系xOy 中,点(2,)m 和点(6,)n 在抛物线2(0)y ax bx a =+<上.(1)若412m n ==,﹣,求抛物线的对称轴和顶点坐标;(2)已知点12(1,(,)4A y B y ),在该抛物线上,且0mn =.①比较12,,0y y 的大小,并说明理由;②将线段AB 沿水平方向平移得到线段A B '',若线段A B ''与抛物线有交点,直接写出点A '的横坐标x 的取值范围.25.(本题16分)【问题初探】(1)如图1,等腰Rt ABC △中,AB AC =,点D 为AB 边一点,以BD 为腰向下作等腰Rt BDE △,90DBE ∠=︒.连接CD ,CE ,点F 为CD 的中点,连接AF .猜想并证明线段AF 与CE 的数量关系和位置关系.【深入探究】(2)在.(.1.).的条件下....,如图2,将等腰Rt BDE △绕点B 旋转,上述结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【拓展迁移】(3)如图3,等腰ABC 中,AB AC =,120BAC ∠=︒.在Rt BDE △中,90DBE ∠=︒,12BDE BAC ∠=∠.连接CD ,CE ,点F 为CD 的中点,连接AF .Rt BDE △绕点B 旋转过程中,①线段AF 与CE 的数量关系为:__________;②若413BC =3BD =F 在等腰ABC 内部且BCF ∠的度数最大时,线段AF 的长度为__________.参考答案:一、单选题(共24分)1.(本题4分)下列运算正确的是()A =B .3412a a a ⋅=C .()222ab a b -=-D .()32628a a -=-2.(本题4分)用换元法解方程224x x x x +++=时,设y x x =+则原方程可变形为()A .24y y +=B .22y y +=C .26y y +=D .24y y -=3.(本题4分)下列说法正确的是()A .函数2y x =的图象是过原点的射线B .直线2y x =-+经过第一、二、三象限C .函数()20y x x=-<,y 随x 增大而增大D .函数23y x =-,y 随x 增大而减小【答案】C 【分析】根据一次函数的图象与性质、反比例函数的图象与性质逐项判断即可得.4.(本题4分)下图是国家统计局发布的2021年2月至2022年2月北京居民消费价格涨跌情况折线图(注:2022年2月与2021年2月相比较称为同比,2022年2月与2022年1月相比较称为环比).根据图中信息,有下面四个推断:①2021年2月至2022年2月北京居民消费价格同比均上涨;②2021年2月至2022年2月北京居民消费价格环比有涨有跌;③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数.上述结论中,正确的有()A.①②③B.①②④C.①③④D.②③④【答案】D【分析】直接利用折线图,结合环比与同比的概念,判断①②③④的结论,即可得出答案.【详解】解:从同比来看,2021年2月至2022年2月北京居民消费价格同比数据有正数也有负数,即同比有上涨也有下跌,故①错误;从环比来看,2021年2月至2022年2月北京居民消费价格环比数据有正数也有负数,即环比有上涨也有下跌,故②正确;从折线统计图看,2021年4月至8月的同比数据波动小于2021年4月至8月的同比数据波动,所以2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差,故③正确;2021年4月至8月的环比数据的平均数为:()00.10.40.70.150.06--++÷=,2021年9月至2022年1月环比数据的平均数为:()0.10.900.30.250.14-++-+÷=,∴2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数,故④正确;故选:D .【点评】本题考查折线统计图,方差,平均数,从统计图获取的所要的信息是解题的关键.5.(本题4分)如图,在四边形ABCD 中,AB AD =,BC DC =,AC ,BD 交于点O .添加一个条件使这个四边形成为一种特殊的平行四边形,则以下说法错误..的是()A .添加“//AB CD ”,则四边形ABCD 是菱形B .添加“90BAD ∠=︒”,则四边形ABCD 是矩形C .添加“OA OC =”,则四边形ABCD 是菱形D .添加“90ABC BCD ∠=∠=︒”,则四边形ABCD 是正方形【答案】B【分析】依次分析各选项,对各选项进行推导证明即可求出说法错误的选项.【详解】解:A 选项添加AB ∥CD ,则可得出∠ABD =∠BDC ,由AB =AD ,BC =DC ,可得出∠ABD =∠ADB ,∠BDC =∠CBD ,∴∠ABD =∠ADB =∠BDC =∠CBD ,∴AD ∥BC ,∴四边形ABCD 是平行四边形,∴四边形ABCD 是菱形;B 选项添加∠BAD =90°,无法证明其余的角也是90°,因此无法得到四边形ABCD 是矩形;C 选项添加OA =OC ,由AB =AD ,BC =DC ,可得出AC 垂直平分BD ,∵OA =OC ,∴BD也垂直平分AC,∴AB=BC,∴AB=AD=BC=DC,所以四边形ABCD是菱形;D选项添加“∠ABC=∠BCD=90°,由等腰三角形的性质,∠ABD=∠ADB,∠BDC=∠CBD,∴∠ABC=∠ADC=90°,∴∠ABC=∠ADC=∠BAC=∠BCD=90°,∴四边形ABCD是矩形,由AB=AD,∴四边形ABCD是正方形.故选B.【点评】本题考查了等腰三角形、菱形、矩形、正方形、线段的垂直平分线、平行线等内容,解决本题的关键是逐项分析和推导论证,本题一图多用,能较好的检测学生的基础知识与技能,加深学生对相关知识点的融会贯通.6.(本题4分)如图,已知等腰梯形ABCD,AB∥CD,AD=BC,AC⊥BC,BE⊥AB交AC的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中错误的结论有()A.0个B.1个C.2个D.3个【答案】A【分析】根据等腰梯形的性质结合全等三角形的判定与性质、平行线的判定与性质、等腰三角形的判定、三角形的外角性质、三角形的中位线等知识进行逐个判断解答即可.【详解】解:∵四边形ABCD是等腰梯形,∴AC=BD,又AD=BC、AB=AB,∴△ABC≌△BAD(SSS),∴∠BAC=∠ABD,∠ADB=∠BCA,又AC⊥BC,∴OA=OB,OC=OD,∠ADB=∠BCA=90°即BD⊥AD,∵EF ⊥AD ,∴BD ∥EF ,故①正确;∴∠AEF =∠AOD =∠BAC +∠ABD ,∴∠AEF =2∠BAC ,故②正确;∵BE ⊥AB ,∴∠BAC +∠AEB =∠ABD +∠OBE =90°,∴∠AEB =∠OBE ,∴OB =OE ,∴AO =OE ,又OD ∥EF ,∴AD =DF ,故③正确;∴EF =2OD =2OC ,∵OA =OE =OC +CE ,∴AC =OA +OC =OC +CE +OC =2OC +CE =EF +CE ,故④正确,综上,正确的结论有4个,即错误的结论有0个,故选:A .【点评】本题考查等腰梯形的性质、全等三角形的判定与性质、平行线的判定与性质、等腰三角形的判定、三角形的外角性质、三角形的中位线性质等知识,熟练掌握相关知识的联系与运用是解答的关键.第II 卷(非选择题)二、填空题(共48分)7.(本题4分)分解因式:2250x -=.【答案】2(5)(5)x x +-【分析】先提公因式,再利用平方差公式继续分解即可.【详解】2250x -,22(25)x =-,2(5)(5)x x =+-,故答案为:2(5)(5)x x +-【点评】本题考查了提公因式法和公式法的综合运用,熟练掌握因式分解的几种方法是解题的关键.8.(本题4分)化简22933b a a b b a +--的结果是.【答案】3b a--9.(本题4分)若实数x 、y 23+=,则x y +=.10.(本题4分)函数1y x =+的定义域是.【答案】5x ≥-且0x ≠【分析】判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.【详解】根据题意得:50x +≥且0x ≠,解得:5x ≥-且0x ≠,故答案为:5x ≥-且0x ≠.【点评】本题考查了函数的定义域.一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数为非负数.11.(本题4分)关于x 的方程()2110kx k x --+=有有理根,则整数k 的值为.【答案】0或6【分析】分两种情况讨论:当0k =时,方程为一元一次方程;当0k ≠时,方程是一元二次方程,分别求出k 的取值范围即可.【详解】解:分两种情况讨论:当0k =时,方程为10x +=,有实根=1x -;当0k ≠时,方程()2110kx k x --+=是一元二次方程,∵方程有有理根,∴根的判别式()22261414a k k b c k k =-=--=-+ 为完全平方数,∴存在非负数m ,使得2261k k m -+=,即()()338k m k m -+--=∴3,3k m k m -+--是奇偶性相同的整数,且积为8∴3432k m k m -+=⎧⎨--=⎩或3234k m k m -+=-⎧⎨--=-⎩∴6k =或0k =(舍弃)综上,关于x 的方程()2110kx k x --+=有有理根,则0k =或6k =.故答案是:0或6.【点评】本题主要考查了一元二次方程根的判别式的应用,掌握分类讨论思想是解答本题的关键.12.(本题4分)一个不透明的袋子中装有12个白球、9个黄球和若干个黑球,它们除颜色外,完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.4,则可判断袋子中黑球的个数为.13.(本题4分)如果一个正多边形的中心角为72°,则该正多边形的对角线条数为.14.(本题4分)已知函数满足下列两个条件:①0x >时,y 随x 的增大而增大:②它的图像经过点()1,2.请写出一个符合上述条件的函数的表达式.【答案】21y x =+(答案不唯一)【分析】根据常见的几种函数:一次函数,反比例函数和二次函数的图像和性质写出一个符合上述条件的函数的表达式即可.【详解】解:若选择二次函数,∵当0x >时,y 随x 的增大而增大,∴二次函数开口向上,即0a >,∵它的图像经过()1,2,∴二次函数可以是21y x =+.故答案为:21y x =+(答案不唯一).【点评】本题主要考查函数的图像和性质,掌握常见函数的图像和性质是解题的关键.15.(本题4分)在梯形ABCD 中,AB CD ∥,2AB CD =,AC 与BD 交于点P ,令AB a = ,BC b = ,那么AP = ;(用向量a 、b 表示)16.(本题4分)某校对学生上学方式进行了一次抽样调查,如图是根据此次调查结果所绘制的一个未完成的扇形统计图,被调查的学生中骑车的有21人,则下列四种说法:①被调查的学生有60人;②被调查的学生中,步行的有27人;③被调查的学生中,骑车上学的学生比乘车上学的学生多20人;④扇形图中,乘车部分所对应的圆心角为54︒.其中正确的说法有.(填写序号)【答案】①②④【分析】利用骑车的人数除以其所占的百分比求出调查的总人数,再求出步行所占的百分比,利用总人数乘以步行所占的百分比求得步行的人数,然后利用乘车所占的百分比乘以总人数求得乘车的人数,再与骑车的人数相比即可,最后利用乘车所占的百分比乘以360︒即可求得乘车所对应的圆心角.【详解】解:由题意可得,参与调查的总人数为:2135%60÷=(人),故①正确;∵步行所占的百分比为:135%15%5%=45%---,∴步行的人数为:6045%=27⨯(人),故②正确;∵乘车的人数为:15%60=9⨯(人),21912-=(人),∴骑车上学的学生比乘车上学的学生多12人,故③错误,乘车部分所对应的圆心角为:15%36054⨯︒=︒,故④正确,故答案为:①②④.【点评】本题考查扇形统计图,熟练掌握频数除以总人数等于其所占的百分比,求圆心角的方法是解题的关键.17.(本题4分)如图,在ABC 中,AB AC =,将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,如果BE BF =,那么DBC ∠的大小是.【答案】108︒/108度【分析】设A x ∠=,由AB AC =,BE BF =得ABC C ∠∠=,BEF BFE ∠∠=,再由旋转的性质得DEB C ABC DBE ∠∠∠∠===,BE BC =,从而有CBE A x ∠∠==,同理可证:EBF A x ∠∠==,利用三角形的内角和定理构造方程即可求解.【详解】解:设A x ∠=,∵AB AC =,BE BF =,∴ABC C ∠∠=,BEF BFE ∠∠=,∵将ABC 绕着点B 旋转后,点C 落在AC 边上的点E 处,点A 落在点D 处,DE 与AB 相交于点F ,∴DEB C ABC DBE ∠∠∠∠===,BE BC =,∵180BEC C CBE ABC C A ∠∠∠∠∠∠++=++=︒,∴CBE A x ∠∠==,同理可证:EBF A x ∠∠==,∴2DBE ABC C BEC x ∠∠∠∠====,∵180ABC C A ∠∠∠++=︒,∴22180x x x ++=︒,解得36x =︒,∴3108DBC DBE CBE x ∠∠∠=+==︒故答案为108︒.【点评】本题主要考查了三角形的内角和定理,等腰三角形的性质,旋转的性质以及一元一次方程的应用,熟练掌握三角形的内角和定理时解题的关键.18.(本题4分)如图,在平面直角坐标系中,有7个半径为1的小圆拼在一起,下面一行的4个小圆都与x 轴相切,上面一行的3个小圆都在下一行右边3个小圆的正上方,且相邻两个小圆只有一个公共点,从左往右数,y 轴过第2列两个小圆的圆心,点P 是第3列两个小圆的公共点.若过点P 有一条直线平分这7个小圆的面积,则该直线的函数表达式是.【答案】1342 y x=+【分析】当直线y过P、N两点时,由中心对称图形的特征可得直线y平分7个小圆的面积,由直线和圆的位置关系,圆和圆的位置关系求得N、P的坐标,再待定系数法求一次函数解析式即可;【详解】解:如图,⊙N、⊙G、⊙M与x轴相切于F、O、E,连接NF、NG、GM、ME、PM,直线y过P、N两点,∵右边6个小圆关于点P中心对称,直线y经过点P,∴直线y平分右边6个小圆的面积,∵直线y经过左边小圆的圆心,∴直线y平分⊙N的面积,∴直线y平分7个小圆的面积,NF⊥x轴,GO⊥x轴,则NF∥GO,NF=GO=1,则NFOG是平行四边形,∠GOF=90°,则NFOG是矩形,∵⊙N、⊙G相切,∴NG=2,即N(-2,1),同理可得M(2,1),∵P在⊙M的正上方,E点在⊙M的正下方,∴PE为⊙M的直径,即P、M、E共线,∴P(2,2),设直线y=kx+b,则三、解答题(共78分)19.(本题6分)计算:;(2)()22-+-20.(本题8分)解不等式组()()12112122213x x x x ⎧--+≤⎪⎪⎨+⎪<-⎪⎩21.(本题10分)如图,AB 是O 的直径,AC 是一条弦,D 是 AC 的中点,DE AB ⊥于点E ,交AC 于点F ,交O 于点H ,DB 交AC 于点G .(1)求证:AF DF =.(2)若5,sin 2AF ABD =∠=O 的半径.22.(本题12分)如图,把一些相同规格的碗整齐地叠放在水平桌面上,这摞碗的高度与碗的数量的关系如下表:碗的数量(个)234…cm10.211.412.6…高度()(1)若把6个这样的碗整齐地叠放在水平桌面上时,这摞碗的高度是______cm;(2)设摞碗的数量为x(个),摞碗的高度为()y,求y与x之间的函数关系式;cm(3)这摞碗的高度是否可以为18.6cm,如果可以,求这摞碗的数量;如果不可以,请说明理由.【答案】(1)15(2)7.8 1.2y x=+(3)可以,9个【分析】(1)由表格中的数据可得:每摞1个碗的高度增加1.2cm ,然后在4个碗的基础上求解即可;(2)先求出1个碗时高度为()10.2 1.29cm -=,然后即可得出x 个碗的高度为()9 1.21y x =+-,即得答案;(3)把18.6y =代入(2)中的关系式,解出相应的x ,即可作出判断.【详解】(1)把6个这样的碗整齐地叠放在水平桌面上时,这摞碗的高度是12.62 1.215+⨯=cm ;故答案为:15;(2)∵每摞1个碗的高度增加1.2cm ,∴1个碗时高度为()10.2 1.29cm -=,∴x 个碗的高度为()9 1.21y x =+-,∴y 与x 之间的函数关系式为7.8 1.2y x =+.(3)可以.当18.6y =时,18.67.8 1.2x =+,解得9x =,∴这摞碗的数量是9个.【点评】本题考查了一次函数的应用,正确理解题意、得出一次函数的关系式是解题的关键.23.(本题12分)已知:如图,在矩形ABCD 中,E 、F 分别是边CD 、AD 上的点,AE ⊥BF ,且AE =BF .(1)求证:矩形ABCD 是正方形;(2)联结BE 、EF ,当线段DF 是线段AF 与AD 的比例中项时,求证:∠DEF =∠ABE .【答案】(1)见解析(2)见解析【分析】(1)根据正方形的性质得到∠BAD =∠ADE =90°,进而证明∠ABF =∠DAE ,得到△ABF ≌△DAE ,根据全等三角形的性质得到AB =AD ,根据正方形的判定定理证明结论;(2)证明△FDE ∽△BCE ,根据相似三角形的性质得到∠DEF =∠CEB ,根据平行线的性质证明.24.(本题14分)在平面直角坐标系xOy 中,点(2,)m 和点(6,)n 在抛物线2(0)y ax bx a =+<上.(1)若412m n ==,﹣,求抛物线的对称轴和顶点坐标;(2)已知点12(1,(,)4A y B y ),在该抛物线上,且0mn =.①比较12,,0y y 的大小,并说明理由;②将线段AB 沿水平方向平移得到线段A B '',若线段A B ''与抛物线有交点,直接写出点A '的横坐标x 的取值范围.综上,A'的横坐标x 的取值范围为:当=0n 时,15x -<<,当=0m 时,51x -<<.【点评】本题主要考查了待定系数法确定函数的解析式,二次函数的性质,平移的点的坐标的特征,数形结合法,利用待定系数法和数形结合法解答是解题的关键.25.(本题16分)【问题初探】(1)如图1,等腰Rt ABC △中,AB AC =,点D 为AB 边一点,以BD 为腰向下作等腰Rt BDE △,90DBE ∠=︒.连接CD ,CE ,点F 为CD 的中点,连接AF .猜想并证明线段AF 与CE 的数量关系和位置关系.【深入探究】(2)在.(.1.).的条件下....,如图2,将等腰Rt BDE △绕点B 旋转,上述结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【拓展迁移】(3)如图3,等腰ABC 中,AB AC =,120BAC ∠=︒.在Rt BDE △中,90DBE ∠=︒,12BDE BAC ∠=∠.连接CD ,CE ,点F 为CD 的中点,连接AF .Rt BDE △绕点B 旋转过程中,①线段AF 与CE 的数量关系为:__________;②若BC =BD =F 在等腰ABC 内部且BCF ∠的度数最大时,线段AF 的长度为__________.ABC为等腰直角三角形,ABC∴∠=︒,45为等腰直角三角形,BDE∠=∠DB EB∴=,DBC点F,O分别是CD,∴=,BD OF2,BD BE=∴=,2BE OF∵120BAC ∠=︒,12BDE BAC ∠=∠∴60BDE ∠=︒,∵90DBE ∠=︒,∴90BDH DBE DHE ∠=∠=∠=︒,∴四边形BDHE 为矩形,∴,23DH BE EH BD ===,【点评】本题主要考查了相似三角形的判定和性质,图形的旋转,勾股定理,等腰三角形的性质,直角三角形的性质等知识,熟练掌握相关知识点,利用类比思想解答是解题的关键.。

遗传学第七章细菌的遗传分析78习题

遗传学第七章细菌的遗传分析78习题

遗传学第七章细菌的遗传分析78习题第七章细菌的遗传分析一、填空题1、细菌的遗传重组可通过________ 、_______________ 、________ 和 _______ 四种途径实现2、Hfr 的染色体进入受体菌后,此时的细菌细胞被称为____________ 二倍体。

3、细菌重组有两个特点: ________________ 和 _______________ 。

4、判断所转化的两个基因是连锁的还是独立遗传的,可通过观察DNA 浓度降低时的转化频率的改变来说明。

如果当 DNA 浓度下降时,AB 共转化频率下降和A 或B 转化下降程度相同,则说明A 和B 是 ;如果AB 共转化频率的下降远远超过 A 或B 转化频率下降的程度,则说明 A 和B 是。

5、在互补测验中,两个突变型若表现岀互补效应,则证明 ___ ;若不能岀现互补,则证明 ______6、顺反子既有功能上的 _____ ,又有结构上的 _____ 。

7、在原核生物中,()是指遗传物质从供体转换到受体的过程;以噬菌体为媒介所进行的细菌遗传物质重组的过程称()。

8、戴维斯的“ U ”型管试验可以用来区分细菌的遗传重组是由于()还是由于()。

9、细菌的遗传重组是由接合还是由转导所致,可以通过()试验加以鉴别,其依据是()。

10、用S ( 35)标记的噬菌体感染细菌放在液体培养基中培养,而后分离菌体和培养液,绝大部分的放射性将在()测得。

11、将E.Coli 放入含有氚标记的胸腺嘧啶培养基中培养一个世代,取岀后再在无放射性的培养基中培养2个世代,被标记的细胞比例应该是()12、入噬菌属于()噬菌体,噬菌体是通过一种叫做()的拟有性过程实现遗传重组。

14、野生型T4噬菌体能侵染大肠杆菌B 菌株和K12(入)株,形成小而边缘模糊的噬菌斑,而突变型T4噬菌体能侵染大肠杆菌 B 菌株,形成大而边缘清楚的噬菌斑,但不能侵染K12(入)株通过两种不同突变型的杂交,可以估算岀两个突变型之间的重组值,大肠杆菌两个突变型重组值试验中的作用是()二、选择题1、假设用两种噬菌体(一种是 a-b-,另一种是a+b+)感染大肠杆菌,然后取其裂解液涂布培养基,得到以下结果: a+b+ = 4750,a+b- = 370, a-b+ = 330, a-b- = 4550,从这些资料看, a 和b 间的重组率有多大?。

安全标准化知识考试题

安全标准化知识考试题

安全生产知识考试题及答案部门姓名得分一、填空题(每题1分,共14分)1、《安全生产法》规定,生产经营单位必须为从业人员提供符合国家标准或者行业标准的劳动防护用品。

2、《安全生产法》规定,因生产安全事故受到损害的从业人员,除依法享有工伤社会保险外,依照有关民事法律尚有获得赔偿的权利的,有权向本单位提出赔偿要求。

3、依照《安全生产法》的规定,生产经营单位的特种作业人员未经培训并取得特种作业操作资格证书的,不得上岗作业。

4、《安全法》规定,劳动者对用人单位管理人员违章指挥、强令冒险作业,有权拒绝执行。

5、依据《职业病防治法》的规定,对遭受急性职业病危害的劳动者,用人单位应当及时组织救治、进行健康检查和医学观察,所需费用由用人单位承担。

6、生产经营单位是安全生产的责任主体,应当依法加强安全生产管理,建立、健全安全生产责任制,完善安全生产条件,确保安全生产。

7、二氧化碳灭火器是扑救精密仪器火灾的最佳选择。

8、干粉灭火器要求一年维修换药一次。

9、新进员工必须进行三级安全教育,并填写《安全生产三级教育卡》。

厂级安全教育时间不得少于16 学时。

车间(部门)级安全教育培训不得少于8学时。

班组级安全教育培训时间不得少于8学时。

10、在6级以上强风条件下,禁止室外登高作业。

特殊需要时,必须采取可靠的安全措施,部门主管领导亲临现场指挥,确保安全。

11、生产经营单位从业人员超过三百人的,应当设置安全生产管理机构或者配备专职安全生产管理人员。

35、用人单位必须采用有效的职业病防护设施,并为劳动者提供个人使用的劳动防护用品。

12、特种作业人员必须定期参加复审,特种作业人员的复审周期按国家有关规定执行,有效期届满未经复审或复审不合格的视同无证上岗。

13、发生重大以上事故,各级安全管理部门要及时组织职工开展案例警示教育,认真汲取教训,防止类似事故再次发生。

14、消防控制室应按规定配备值班人员,保证_2_人24小时值班。

操作人员上岗前应经过专业培训,做到持证上岗,人员要保持相对稳定。

山东省菏泽市巨野县2023-2024学年七年级上学期期中数学试题(含解析)

山东省菏泽市巨野县2023-2024学年七年级上学期期中数学试题(含解析)

.B.C.D.,22.如图,平面上有四个点A 、B 、C 、D ,根据下列语句画图.(1)画线段交于点(2)画射线;(3)取一点P ,使点P 23.如图,点C 在线段(1)求线段的长.AC BD 、BC MN故答案为:或.12.1【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,m -6=0,7+n =0,解得m =6,n =-7,所以(m +n )2018=(6-7)2018=1故答案为1.【点睛】此题考查了非负数的运算性质,几个非负数和为0,那么每一个必为0.13.b <−a <a <−b【分析】根据绝对值的性质,可得点的位置关系,根据数轴上的点右边的总比左边的大,可得答案.【详解】解:如图,由数轴上的点右边的总比左边的大,得b <−a <a <−b ,故答案为:b <−a <a <−b .【点睛】本题考查了有理数的大小比较,利用数绝对值画出数轴是解题关键.14.【分析】本题考查了图形类规律探索,有理数的乘方运算,根据已知图形发现一般规律:第行的苹果个数为,据此即可得到答案.【详解】解:第一行有1个苹果,;第二行有2个苹果,;第三行有4个苹果,;第四行有8个苹果,第五行有16个苹果,……,观察可知,第行的苹果个数为:,即第2017行有个苹果,故答案为:.15.﹣(+4)<﹣2.5<+(﹣1)<|﹣3.5|1218-20162n 12n -011122-==121222-==231422-==341822-==4511622-==n 12n -2016220162,;(2)解:如图,射线;(3)解:如图,点.23.(1)(2),理由见解析【分析】本题考查的是线段中点的含义,线段的和差运算,7cmMN =1cm 2MN a =。

2022-2023学年苏科版七年级数学上册《第2章有理数》期中复习综合练习题(附答案)

2022-2023学年苏科版七年级数学上册《第2章有理数》期中复习综合练习题(附答案)

2022-2023学年苏科版七年级数学上册《第2章有理数》期中复习综合练习题(附答案)一、选择题(每小题3分,共24分)1.采摘杨梅时,每筐杨梅以5kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录数据如图所示,则这4筐杨梅的总质量是()A.19.7kg B.19.9kg C.20.1kg D.20.3kg2.﹣|﹣|的倒数是()A.B.﹣C.﹣D.3.下列运算错误的是()A.﹣8×2×6=﹣96B.(﹣1)2020+(﹣1)2021=0C.﹣(﹣3)2=﹣9D.2÷=24.一个数的相反数仍是它本身,这个数是()A.1B.﹣1C.0D.正数5.长江三峡工程电站总装机容量科学记数法表示为1.82×107千瓦,把它写成原数是()A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦6.如图,A、B两点在数轴上表示的数分别为a、b,下列式子成立的是()A.ab>0B.a+b<0C.(b﹣1)(a+1)>0D.(b﹣1)(a﹣1)>07.若|a﹣1|+(b+3)2=0,则ba=()A.1B.﹣1C.3D.﹣38.不相等的有理数a,b,c在数轴上的对应点分别是A、B、C,如果|a﹣b|+|b﹣c|=|a﹣c|,那么点B()A.在A、C点的左边B.在A、C点的右边C.在A、C点之间D.上述三种均可能9.张老师买了一辆启辰R50X汽车,为了掌握车的油耗情况,在连续两次加油时做了如下工作:(1)把油箱加满油;(2)记录了两次加油时的累计里程(注:“累计里程”指汽车从出厂开始累计行驶的路程),以下是张老师连续两次加油时的记录:加油时间加油量(升)加油时的累计里程(千米)2016年4月28日1862002016年5月16日306600则在这段时间内,该车每100千米平均耗油量为()A.3升B.5升C.7.5升D.9升10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN =NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,|a|+|b|=3,则原点是()A.M或R B.N或P C.M或N D.P或R二、填空题(每小题3分,共18分)11.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.12.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=.13.将640000精确到十万位为,4.10×105精确到了位.14.计算:1+2﹣3﹣4+5+6﹣7﹣8+9+10﹣11﹣12+……+2017+2018﹣2019﹣2020=.15.观察下列三行数,并按规律填空:﹣1,2,﹣3,4,﹣5,_____,_____,……1,4,9,16,25,_____,_____,……0,3,8,15,24,_____,_____,……(1)第一行数按什么规律排列?;(2)第二行数、第三行数分别与第一行数有什么关系?;(3)取每行数的第10个数.计算这三个数的和.16.已知三个互不相等的有理数,既可表示为1,a+b,a的形式,又可表示为0,,b的形式,则a2020+b2021的值为.三、解答题(共78分)17.把下列各数的序号填在相应的数集内:①1;②﹣;③+3.2;④0;⑤;⑥﹣6.5;⑦+180;⑧﹣4;⑨﹣6.(1)正整数集合:{…};(2)正分数集合:{…};(3)负分数集合:{…};(4)负数集合:{…}.18.如图,一个单位长度表示2,解答下列问题:(1)若点B与点D所表示的数互为相反数,求点D所表示的数;(2)若点A与点B所表示的数互为相反数,求点D所表示的数;(3)若点B与点F所表示的数互为相反数,求点D所表示的数的相反数.19.计算:(1);(2)﹣23+(﹣2)2×(﹣1)﹣(﹣2)4÷(﹣2)3;(3)(﹣)÷(﹣);(4)29×(﹣12)20.规定一种新的运算:a△b=ab﹣a﹣b+1,如3△4=3×4﹣3﹣4+1=6.试求:[(﹣5)△4]△(﹣3)的值.21.已知点A在数轴上对应的数是a,点B在数轴上对应的数是b,且|a+4|+(b﹣1)2=0.现将A、B之间的距离记作|AB|,定义|AB|=|a﹣b|.(1)|AB|=;(2)设点P在数轴上对应的数是x,当|P A|﹣|PB|=2时,求x的值.22.某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表:星期一二三四五六日增减﹣5+7﹣3+4+9﹣8﹣25(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比是增加了还是减少了?具体数量是多少?产量最多的一天比产量最少的一天多生产了多少?23.如图是3×3的三阶幻方,将2.4.6.8.10.12.14.16.18这九个数分别填入下列两个方格中,使得每行、每列、每条对角线上的三个数之和相等.(1)方格正中间位置的数是;(2)将下列两个幻方补充完整.24.一位病人上午8时的体温是39.4℃,下表表示该病人一天中的体温变化:时间11时14时17时20时23时凌晨2时凌晨5时上午8时体温℃﹣1.2+1+0.5﹣1.2﹣0.5﹣0.5﹣0.4+0.2(1)这位病人的最高体温出现在几时?最高体温和最低体温相差多少度?(2)从这位病人的病情变化看,请你分析他的病情在恶化还是好转?25.阅读下列材料,解答问题.饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天用电约5度,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费多少元钱来购买纯净水饮用;(2)请计算:在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?(3)这项便利学生的措施实施后,某中学一年要为全体学生共节约多少元?参考答案一、选择题(每小题3分,共24分)1.解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),答:4筐杨梅的总质量是20.1千克.故选:C.2.解:﹣|﹣|=﹣,﹣的倒数是﹣,故B正确;故选:B.3.解:A、﹣8×2×6=﹣96,故A不符合题意;B、(﹣1)2020+(﹣1)2021=0,故B不符合题意;C、﹣(﹣3)2=﹣9,故C不符合题意;D、2÷,故D符合题意.故选:D.4.解:0的相反数是其本身.故选:C.5.解:把数据1.82×107中1.82的小数点向右移动7位就可以得到,为18 200 000.故选C.6.解:a、b两点在数轴上的位置可知:﹣1<a<0,b>1,∴ab<0,a+b>0,故A、B错误;∵﹣1<a<0,b>1,∴b﹣1>0,a+1>0,a﹣1<0故C正确,D错误.故选:C.7.解:由题意得,a﹣1=0,b+3=0,解得a=1,b=﹣3,所以,ba=(﹣3)×1=﹣3.故选:D.8.解:∵|a﹣b|+|b﹣c|=|a﹣c|,∴点B在A、C点之间.故选:C.9.解:由题意可得:两次加油间耗油30升,行驶的路程为6600﹣6200=400(千米)所以该车每100千米平均耗油量为:30÷(400÷100)=7.5(升).故选:C.10.解:∵MN=NP=PR=1,∴a、b两个数之间的距离小于3,∵|a|+|b|=3,∴原点不在a、b两个数之间,即原点不在N或P,∴原点是M或R.故选:A.二、填空题(每小题3分,共18分)11.解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.12.解:∵a、b互为相反数,∴a+b=0即a=﹣b.当b为正数时,∵|a﹣b|=6,∴b=3,b﹣1=2;当b为负数时,∵|a﹣b|=6,∴b=﹣3,b﹣1=﹣4.故答案填2或﹣4.13.解:将640000精确到十万位为6×105,4.10×105精确到了千位.故答案为:6×105,千.14.解:1+2﹣3﹣4+5+6﹣7﹣8+9+10﹣11﹣12+……+2013+2014﹣2015﹣2016+2017+2018﹣2019﹣2020=(1+2﹣3﹣4)+(5+6﹣7﹣8)+(9+10﹣11﹣12)+...+(2013+2014﹣2015﹣2016)+(2017+2018﹣2019﹣2020)=(﹣4)+(﹣4)+(﹣4)+...+(﹣4)+(﹣4)=(﹣4)×505=﹣2020,故答案为:﹣2020.15.解:(1)第一行数是﹣1,2,﹣3,4,﹣5,…,排列规律是:第n个数为(﹣1)n n,故答案为:第n个数为(﹣1)n n;(2)对于一、二两行中位置对应的数,可以发现:第二行数是与第一行数的每一个相对应的数的平方,第三行每一个数是第二行对应的数减1得到的,即为第一行数的每一个相对应的数的平方减1得到.故答案为:第二行数是与第一行数的每一个相对应的数的平方;第三行每一个数是第二行对应的数减1得到的,即为第一行数的每一个相对应的数的平方减1得到;(3)根据规律得出:第一行数第10个数为10,第二行数第10个数为100,第三行数第10个数为99,则这三个数的和为:10+100+99=209.故答案为:209.16.解:由分析得,a+b=0,b=1,解得a=﹣1,b=1,∴a2020+b2021=1+1=2.故答案为:2.三、解答题(共78分)17.解:(1)正整数集合:{①1;⑦+180,……};故答案为:①⑦;(2)正分数集合:{③+3.2;⑤,……};故答案为:③⑤;(3)负分数集合:{②﹣;⑥﹣6.5,……};故答案为:②⑥;(4)负数集合:{②﹣;⑥﹣6.5;⑧﹣4;⑨﹣6,……}.故答案为:②⑥⑧⑨.18.解:(1)∵点B与点D所表示的数互为相反数,∴点C是原点,∴D点表示两个单位长度,∵一个单位长度表示2,∴D点表示的数是4;(2)∵点A与点B所表示的数互为相反数,∴A、B的中点为原点,∵D点与B点之间是4个单位长度,∴D点表示的数是9;(3)∵点B与点F所表示的数互为相反数,∴B、F的中点为原点,∴D点表示的数是2,∴D点所表示的数的相反数是﹣2.19.解:(1)原式=﹣3÷(﹣)=+18=18;(2)原式=﹣8﹣4+2=﹣10;(3)原式=(﹣﹣+﹣)×(﹣48)=8+6﹣36+4=﹣18;(4)原式=(30﹣)×(﹣12)=﹣360+=﹣359.20.解:由题意得:[(﹣5)△4]△(﹣3)=[(﹣5)×4﹣(﹣5)﹣4+1]△(﹣3)=(﹣20+5﹣4+1)△(﹣3)=(﹣18)△(﹣3)=(﹣18)×(﹣3)﹣(﹣18)﹣(﹣3)+1=54+18+3+1=76.21.解:(1)∵|a+4|+(b﹣1)2=0,∴a=﹣4,b=1,∴|AB|=|a﹣b|=5;(2)当P在点A左侧时,|P A|﹣|PB|=﹣(|PB|﹣|P A|)=﹣|AB|=﹣5≠2.当P在点B右侧时,|P A|﹣|PB|=|AB|=5≠2.∴上述两种情况的点P不存在.当P在A、B之间时,|P A|=|x﹣(﹣4)|=x+4,|PB|=|x﹣1|=1﹣x,∵|P A|﹣|PB|=2,∴x+4﹣(1﹣x)=2.∴x=﹣,即x的值为﹣.故答案为:5.22.解:(1)250﹣8=242(辆),答:本周六生产了242辆摩托车;(2)本周总产量:250×7﹣5+7﹣3+4+9﹣8﹣25=1729(辆),+9﹣(﹣25)=34(辆).答:本周总产量与计划相比减少了,具体数量是1729辆,产量最多的一天比产量最少的一天多生产了34辆.23.解:(1)在所有幻方中,所有数字按照大小排序,中间的数字填写在方格正中间,故答案为:10.(2)将两个幻方补充完整如下:24.解:(1)这位病人的最高体温出现在17时,即39.4﹣1.2+1+0.5=39.7℃,最低体温=39.4﹣1.2+1+0.5﹣1.2﹣0.5﹣0.5﹣0.4=37.1℃,∴最高体温和最低体温相差39.7℃﹣37.1℃=2.6℃;(2)体温逐渐降低到人体正常温度37℃左右,病情好转.25.解:(1)∵每个学生春、秋、冬季每天1瓶矿泉水,夏季每天2瓶,∴一个学生在春、秋、冬季共要购买180瓶的矿泉水,夏天要购买120瓶矿泉水,∴一年中一个学生共要购买300瓶矿泉水,即一个学生全年共花费1.5×300=450(元).故全年平均每个学生要花费450元钱来购买纯净水饮用;(2)购买饮水机后,一年每个班所需纯净水的桶数为:春秋两季,每1.5天4桶,则120天共要(4×120)×=320(桶).夏季每天5桶,共要60×5=300(桶),冬季每天1桶,共60桶,∴全年共要纯净水(320+300+60)=680(桶),故购买矿泉水费用为:680×6=4080(元),使用电费为:240×5×0.5=600(元),故每班学生全年共花费:4080+600+150=4830(元).故每班当年共要花费4830元;(3)∵一个学生节省的钱为:450﹣=353.4(元),∴全体学生共节省的钱数为:353.4×24×50=424080(元).故某中学一年要为全体学生共节约424080元.。

山东省泰安市岱岳区2022-2023学年七年级上学期期末数学试题(含答案)

山东省泰安市岱岳区2022-2023学年七年级上学期期末数学试题(含答案)

岱岳区2022-2023学年七年级上学期期末数学试题一、选择题,每小题3分,共48分.1.下列数学符号中,是轴对称图形的是()A .B .C .D .2.如图,已知,补充下列哪一个条件,仍不能判定和全等的是( )A .B .C .D .3)A .2个 B .3个 C .4个 D .5个4.根据下列表述,能确定准确位置的是( )A .万达影城6号厅5排B .东岳大街中段C .岱庙南偏东D .东经,北纬5在()A .5与6之间 B .6与7之间 C .7与8之间 D .8与9之间6.如图,要在街道设立一个牛奶站,向居民区提供牛奶,下列设计图形中使值最小的是( )A .B .∠⊥≌≠12∠=∠ABD △ACD △BAD CAD ∠=∠B C ∠=∠BD CD =AB AC =22,7π-40︒117︒36︒l O ,A B OA OB +C .D .7.已知一个函数的因变量与自变量的几组对应值如表,则这个函数的表达式可以是()…012……024…A .B .C .D .8.如图,点是平面直角坐标系中的一点,轴,垂足为轴,垂足为,且,点的坐标为( )A .B .C .D .9如图,射线,分别表示甲、乙两名运动员在自行车比赛中行驶路程与行驶时间的关系,则他们的行驶速度( )A .无法确定B .甲、乙同速C .乙比甲快D .甲比乙快10.在平面直角坐标系中,点到原点的距离是()A .5 B . CD11.在下列说法中:①无理数和有理数统称为实数;②实数和数轴上的点是一一对应的;③y x x1-y 2-2y x =1y x =-2y x=2y x =M MA x ⊥,A MB y ⊥B 5,4MA MB ==M ()5,4()5,4--()4,5-()5,4-l 甲l 乙S t ()2,1--5-0的算术平方根是0;④无限小数都是无理数.(5)没有立方根正确的有()A .1个 B .2个 C .3个 D .4个12.已知点在轴上,则的值为()A .0 B . C. D .13.满足的一次函数的图象大致是()A . B .C .D .14.如图,在中,,则点到直线的距离是( )A .B .3C .D .215.如图,的垂直平分线交于点,则( )A . B . C . D .16.为测量一池塘两端间的距离.甲、乙两位同学分别设计了两种不同的方案.甲:1-()1,3A m m --x m 1-14120,2k b >=-y kx b =+Rt ABC △90,3,4ACB AC BC ∠=︒==C AB 185125,30,AB AC B AC ∠=︒=MN BC D DAC ∠=30︒40︒60︒120︒,A B如图1,先过点作的垂线,再在射线上取两点,使,接着过点作的垂线,交的延长线于点.则测出的长即为间的距离;乙:如图2,先确定直线,过点作射线,在射线上找可直接到达点的点,连接,作,交直线于点,则测出的长即为间的距离,则下列判断正确的是( )A .只有甲同学的方案可行B .只有乙同学的方案可行C .甲、乙同学的方案均可行D .甲、乙同学的方案均不可行二、填空题,每小题4分,共24分.17.如图,,若,则______________.18.等腰三角形的一个内角为,则另外两个角的度数分别为______________.19.如图,是台阶的模型图,已知每个台阶的宽度都是,每个台阶的高度都是,连接,则等于______________.20.如图是小明和小红在教室座位的相对位置,如果用表示小明的位置,则小红的位置可表示为______________.B AB BF BF ,CD BC CD =D BD DE AC E DE ,A B AB B BE AB ⊥BE A D DA DC DA =AB C BC AB ABC AED △≌△132∠=︒2∠=︒52︒2cm 1cm AB AB cm ()2,121.一次函数的图像上有两点则______________(比较大小)22.如图,已知一次函数的图象与轴,轴分别交于点,点,有下列结论:①图象经过点;②关于的方程的解为;③当时,.其是正确的是______________.三、解答题,本大题共7小题,78分.23.(12分)计算(1(224.(8分)如图,在中,.点为边上任意一点,过点作,交于点.是等腰三角形吗?说说你的理由.25.(8分)如图,已知点在同一直线上,且,与相等吗?请说明理由.3y x m =-+()()5,,3,a b --a b y kx b =+x y ()1,0()0,2()2,3x 0kx b +=1x =1x >0y <2021(1)--2-ABC △AB AC =D AB D DE AC ∥BC E DBE △A E B D 、、、,,AE DB EF BC EF BC ==∥A ∠D ∠26.(10分)有一个小朋友拿一根竹竿要通过一个长方形的门,若把竹竿竖着放比门高出1尺,斜着放恰好等于门的对角线长,已知门宽为4尺,求竹竿高.解:设竹笁高为尺,则门高______________尺.(用的代数式表示)请将解答过程补充完整27.(12分)某公司为了测试一款新开发的快速充电器,对其与普通型充电器进行了对比测试,电脑生成了两款充电器同时充电过程中电池电量和充电时间的图像,根据信息及图像,回答下列问题:(1)那条线段代表快速充电器的充电图像;充电前两部手机内剩余多少电量?(2)求对应的函数表达式;(3)当快充充电充满电时,普通充电器的电池电量是多少.28.(14分)如图,平面直角坐标系中,小正方形组成的网格的边长是1,的三个顶点均在格点上,且经过坐标原点,请按要求完成下列各题.x x AB AC 、ABC △AC O(1)写出A 、B 、C 三点的坐标;(2)写出点关于轴对称的点的坐标;(3)计算的面积;(4)试判断的形状并说明理由.29.(14分)如图,平面直角坐标系中,直线经过原点和点,经过点的另一条直线交轴于点,交轴于点,点坐标为(1)求直线的表达式;(2)求直线的表达式;(3)求的面积;(4)点是第三象限在直线上一点,满足,求点坐标.七年级数学练习题答案一、选择题题号12345678910111213141516答案B D A D D D AC DC C A B C A C 二、填空题17.32 18.,或,19.1320.21.> 22.②③三、解答题.23.解:(1)原式B y 1B 1AB C △ABC △l O ()5,3A A x B y C ()0,8l BC AOB △P l BOP AOB S S =△△P 52︒76︒64︒64︒()1,1--5412=-+=(2)原式24.解:是等腰三角形理由:,,,,,,是等腰三角形.25.解:相等,理由如下:,,,,在与中,26.解:设竹竿高为尺,则门高尺根据题意,得:解得:,答:竹䇲高为8.5尺.27.解:(1)线段代表快速充电器图像充电前两部手机剩余的电量.(2)设的表达式为,过点设的表达式为过点()233=--2=-DBE △AB AC = B C ∴∠=∠DE AC ∥C DEB ∴∠=∠B DEB ∴∠=∠DE DB ∴=DBE ∴△AE DB = AB DE ∴=EF BC ∥FED CBA ∴∠=∠EFD △BCA △,EF BC FED CBA DE AB =⎧⎪∠=∠⎨⎪=⎩()EFD BCA SAS ∴△≌△A D∴∠=∠x ()1x -222(1)4x x-+=8.5x =AB 20%AB 0.2y kx =+()2,1B 20.21k +=0.4K =0.40.2Y x =+AC 0.2y mx =+()8,180.21m +=快速充电器2小时充满电当时代入快速充电器充满电时,普通充电器充电的手机电池量是28.解:(1);;;(2);(3)的面积.(4)由勾股定理得,,,,,是直角三角形解:(1)设直线的解析式为:,其中点在直线上.直线的解析式为.(2)设直线的解析式为:.点在直线上,直线的表达式为.0.1m =0.10.2Y x =+2x =0.10.2y x =+0.4Y =40%()1,2A -()3,1B -()1,2C -()13,1B 1AB C △11144142324222=⨯-⨯⨯-⨯⨯-⨯⨯16234=---169=-7=222125AB =+=2223425BC =+=2222420AC =+=2252025AB AC +=+= 222AB AC BC ∴+=ABC ∴△l y kx =0k ≠ ()5,3A y kx =53k ∴=35k ∴=∴l 35y x =BC y mx n =+()()0,85,3C A 8,583n m ∴=+=1m =-BC 8y x =-+(3)点在轴上,设点坐标点坐标为过点作于点,(4)如图,当P 与A 点关于坐标原点中心对称时,点坐标为B x B (),0a 80,8a a -+==B ()8,0A AC OB ⊥D ()()5,3,8,0A B 3,8AD OB ∴==11831222AOB S OB AD =⨯=⨯⨯=△BOP AOB S S =△△P ()5,3--。

吉林省长春市(市命题)2021-2021学年七年级第一学期第一次月考数学试卷(含解析)

吉林省长春市(市命题)2021-2021学年七年级第一学期第一次月考数学试卷(含解析)

2021-2021学年吉林省长春市名校调研七年级〔上〕第一次月考数学试卷〔市命题〕一、选择题〔共8小题,每题3分,总分值24分〕1.如果向右走5步记为+5,那么向左走3步记为〔〕A.+3 B.﹣3 C.+D.﹣2.四个数﹣3,0,1,2,其中负数是〔〕A.﹣3 B.0 C.1 D.23.以下各对数互为相反数的是〔〕A.4和﹣〔﹣4〕B.﹣3和C.﹣2和﹣D.0和04.以下算式正确的选项是〔〕A.〔﹣14〕﹣5=﹣9 B.0﹣〔﹣3〕=3 C.〔﹣3〕﹣〔﹣3〕=﹣6 D.|5﹣3|=﹣〔5﹣3〕5.如图,数轴上点M所表示的数可能是〔〕A.1.5 B.﹣1.66.一个数的绝对值是3,那么这个数可以是〔〕A.3 B.﹣3 C.3或﹣3 D.7.点A,B在数轴上的位置如下图,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的选项是〔〕A.甲、乙B.丙、丁C.甲、丙D.乙、丁8.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,那么第8个图案中有n个白色纸片,那么n的值为〔〕A.23 B.24 C.25 D.26二、填空题〔共6小题,每题3分,总分值18分〕9.比拟大小〔用“>,<,=〞表示〕:﹣|﹣2| ﹣〔﹣2〕.10.的相反数是,倒数是.11.计算〔﹣2〕×3×〔﹣1〕的结果是.12.绝对值小于2的整数是.13.比﹣3大5的数是.14.如图是一个数值转换机,假设输入的x为﹣5,那么输出的结果是.三、解答题〔共10小题,总分值78分〕15.计算:〔﹣12〕+〔+3〕.16.计算:10+5×〔﹣3〕.17.+〔﹣14〕+〔﹣16〕+〔+8〕.18.计算:〔﹣18〕×〔﹣+〕.19.将以下各数在数轴上表示,再用“<〞把各数连接起来:﹣3,﹣|﹣|,﹣〔﹣2〕,﹣1<<<.20.把以下各数填入表示一些数集合的相应的大括号里:﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%整数集:{ …};分数集:{ …};有理数集:{ …}.21.a,b互为相反数,x的绝对值为1,求2021〔a+b〕+2021﹣x的值.22.如表是一种股票星期一至星期五收盘价的变化情况,星期一前一个交易日的收盘价为8.8〔单位:元〕.星期一二三四五收盘价变化〔与前一个交易日比拟〕+ + +〔1〕请计算这五日的收盘价;〔2〕这五日内哪一天的收盘价最高?是多少?23.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程〔单位:千米〕为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.〔1〕问收工时相对A地是前进了还是后退了?距A地多远?〔2〕假设检修组最后回到了A地且每千米耗油,问共耗油多少升?24.如图,数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t〔t大于0〕秒.〔1〕点C表示的数是.〔2〕求当t等于多少秒时,点P到达点A处?〔3〕点P表示的数是〔用含字母t的式子表示〕〔4〕求当t等于多少秒时,P、C之间的距离为2个单位长度.2021-2021学年吉林省长春市名校调研七年级〔上〕第一次月考数学试卷〔市命题〕参考答案与试题解析一、选择题〔共8小题,每题3分,总分值24分〕1.如果向右走5步记为+5,那么向左走3步记为〔〕A.+3 B.﹣3 C.+D.﹣【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:向右记为正,那么向左就记为负,据此解答即可.【解答】解:如果向右走5步记为+5,那么向左走3步记为﹣3;应选:B.【点评】此题主要考察正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,那么和它意义相反的就为负.2.四个数﹣3,0,1,2,其中负数是〔〕A.﹣3 B.0 C.1 D.2【考点】正数和负数.【专题】计算题.【分析】﹣3小于零,是负数,0既不是正数也不是负数,1和2是正数.【解答】解:∵﹣3<0,且小于零的数为负数,∴﹣3为负数.应选:A.【点评】题目考察了正负数的定义,解决此类问题关键是熟记正负数的定义,需要注意的是,0既不是正数也不是负数.3.以下各对数互为相反数的是〔〕A.4和﹣〔﹣4〕B.﹣3和C.﹣2和﹣D.0和0【考点】相反数.【分析】根据只有符号不同的两个数叫做相反数对各选项分析判断即可得解.【解答】解:A、4和﹣〔﹣4〕=4,是一样的两个数,不是互为相反数,故本选项错误;B、﹣3和,不是互为相反数,故本选项错误;C、﹣2和﹣,不是互为相反数,故本选项错误;D、0和0是互为相反数,故本选项正确.应选D.【点评】此题考察了相反数的定义,是根底题,熟记概念是解题的关键.4.以下算式正确的选项是〔〕A.〔﹣14〕﹣5=﹣9 B.0﹣〔﹣3〕=3 C.〔﹣3〕﹣〔﹣3〕=﹣6 D.|5﹣3|=﹣〔5﹣3〕【考点】有理数的减法;绝对值.【分析】根据有理数的减法运算法那么和绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、〔﹣14〕﹣5=﹣19,故本选项错误;B、0﹣〔﹣3〕=0+3=3,故本选项正确;C、〔﹣3〕﹣〔﹣3〕=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣〔5﹣3〕=﹣2,故本选项错误.应选B.【点评】此题考察了有理数的减法,绝对值的性质,熟记运算法那么和性质并准确计算是解题的关键.5.如图,数轴上点M所表示的数可能是〔〕A.1.5 B.﹣1.6【考点】数轴.【分析】由数轴可知:M所表示的数在﹣3与﹣2之间.【解答】解:设M表示的数为x,由数轴可知:﹣3<x<﹣2,M可能是﹣2.6,应选〔C〕【点评】此题考察利用数轴表示数的大小,属于根底题型.6.一个数的绝对值是3,那么这个数可以是〔〕A.3 B.﹣3 C.3或﹣3 D.【考点】绝对值.【专题】计算题.【分析】此题根据绝对值的性质进展求解即可.【解答】解:∵一个数的绝对值是3,可设这个数位a,∴|a|=3,∴a=±3应选C.【点评】此题主要考察绝对值的性质,比拟简单.7.点A,B在数轴上的位置如下图,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的选项是〔〕A.甲、乙B.丙、丁C.甲、丙D.乙、丁【考点】绝对值;数轴.【专题】推理填空题.【分析】根据图示,可得b<﹣3,0<a<3,据此逐项判断即可.【解答】解:∵b<a,∴b﹣a<0;∵b<﹣3,0<a<3,∴a+b<0;∵b<﹣3,0<a<3,∴|b|>3,|a|<3,∴|a|<|b|;∵b<0,a>0,∴ab<0,∴正确的选项是:甲、丙.应选:C.【点评】此题主要考察了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.8.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,那么第8个图案中有n个白色纸片,那么n的值为〔〕A.23 B.24 C.25 D.26【考点】规律型:图形的变化类.【分析】观察图形,发现:白色纸片在4的根底上,依次多3个;根据其中的规律得出第n个图案中有白色纸片,求出n=8的值即可.【解答】解:∵第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,∴第n个图案中有白色纸片3n+1张,当n=8时,3n+1=25,应选:C.【点评】此题主要考察图形的变化规律,此题的关键是注意发现前后图形中的数量之间的关系.二、填空题〔共6小题,每题3分,总分值18分〕9.比拟大小〔用“>,<,=〞表示〕:﹣|﹣2| <﹣〔﹣2〕.【考点】有理数大小比拟.【分析】先求出各数的值,再根据负数小于一切正数即可得出结论.【解答】解:∵﹣|﹣2|=﹣2<0,﹣〔﹣2〕=2>0,∴﹣|﹣2|<﹣〔﹣2〕.故答案为:<.【点评】此题考察的是有理数的大小比拟,熟知负数小于一切正数是解答此题的关键.10.的相反数是,倒数是.【考点】倒数;相反数.【分析】两数互为相反数,和为0;两数互为倒数,积为1.【解答】解:设的相反数为x,倒数为y.依题意得: +x=0, y=1,所以x=,y=.那么的相反数是,倒数是﹣.【点评】此题考察的是相反数和倒数的概念.两数互为相反数,和为0;两数互为倒数,积为1.11.计算〔﹣2〕×3×〔﹣1〕的结果是 6 .【考点】有理数的乘法.【专题】计算题;实数.【分析】原式利用乘法法那么计算即可得到结果.【解答】解:原式=6,故答案为:6【点评】此题考察了有理数的乘法,熟练掌握乘法法那么是解此题的关键.12.绝对值小于2的整数是﹣1,0,1 .【考点】绝对值.【分析】可以根据数轴得到答案,到原点距离小于2的整数只有三个:﹣1,1,0.【解答】解:绝对值小于2的整数是:﹣1,0,1.【点评】此题考察了绝对值的概念.13.比﹣3大5的数是 2 .【考点】有理数的加法.【分析】比﹣3大5的数是﹣3+5,根据有理数的加法法那么即可求解.【解答】解:﹣3+5=2.故答案是:2.【点评】此题考察了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法那么.在应用过程中,要牢记“先符号,后绝对值〞.14.如图是一个数值转换机,假设输入的x为﹣5,那么输出的结果是21 .【考点】有理数的乘法.【专题】图表型.【分析】根据转换机的设置,结合有理数的混合运算法那么求出即可.【解答】解:如下图:假设输入的x为﹣5,那么输出的结果是:〔﹣5﹣2〕×〔﹣3〕=﹣7×〔﹣3〕=21.故答案为:21.【点评】此题主要考察了有理数的混合运算,熟练掌握运算法那么是解题关键.三、解答题〔共10小题,总分值78分〕15.计算:〔﹣12〕+〔+3〕.【考点】有理数的加法.【专题】计算题;实数.【分析】原式利用异号两数相加的法那么计算即可得到结果.【解答】解:原式=﹣12+3=﹣9.【点评】此题考察了有理数的加法,熟练掌握运算法那么是解此题的关键.16.计算:10+5×〔﹣3〕.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=10﹣15=﹣5.【点评】此题考察了有理数的混合运算,熟练掌握运算法那么是解此题的关键.17.〔+26〕+〔﹣14〕+〔﹣16〕+〔+8〕.【考点】有理数的加法;正数和负数.【专题】计算题.【分析】根据有理数的加法法那么对式子进展计算.把同号的先相加,得出的结果再相加,得出最后结果.【解答】解:原式=〔+26〕+〔+8〕+〔﹣14〕+〔﹣16〕=34+〔﹣30〕=4.【点评】此题主要考察了有理数加法法那么:〔1〕同号相加,取一样符号,并把绝对值相加.〔2〕绝对值不相等的异号两数加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.〔3〕一个数同0相加,仍得这个数.18.计算:〔﹣18〕×〔﹣+〕.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式利用乘法分配律计算即可得到结果.【解答】解:原式=﹣9+10﹣15=﹣14.【点评】此题考察了有理数的混合运算,熟练掌握运算法那么是解此题的关键.19.将以下各数在数轴上表示,再用“<〞把各数连接起来:﹣3,﹣|﹣|,﹣〔﹣2〕,﹣1﹣3 <﹣1 <﹣|﹣| <﹣〔﹣2〕.【考点】有理数大小比拟;数轴;绝对值.【分析】结合有理数大小比拟的法那么:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.进展求解即可.【解答】解:数轴如下图:∴﹣3<﹣1<﹣|﹣|<﹣〔﹣2〕.故答案为:﹣3,﹣1,﹣|﹣|,﹣〔﹣2〕.【点评】此题考察了有理数大小的比拟,解答此题的关键在于熟练掌握有理数大小比拟的法那么:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.20.把以下各数填入表示一些数集合的相应的大括号里:﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%整数集:{ 325,﹣20,0 …};分数集:{ ﹣0.1,,0.6,10.1,﹣5% …};有理数集:{ ﹣0.1,,325,0,0.6,﹣20,10.1,﹣5% …}.【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解:整数集:{ 325,﹣20,0…};分数集:{﹣0.1,,0.6,10.1,﹣5%…};有理数集:{﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%…},故答案为:325,﹣20,0;﹣0.1,,0.6,10.1,﹣5%;﹣0.1,,325,0,0.6,﹣20,10.1,﹣5%.【点评】此题考察了有理数,熟记有理数的分类是解题关键.21.a,b互为相反数,x的绝对值为1,求2021〔a+b〕+2021﹣x的值.【考点】代数式求值.【专题】计算题;实数.【分析】利用相反数,绝对值的代数意义求出各自的值,代入原式计算即可得到结果.【解答】解:由题意得:a+b=0,|x|=1,那么原式=2021﹣x=2021±1=2021或2021【点评】此题考察了代数式求值,熟练掌握运算法那么是解此题的关键.22.如表是一种股票星期一至星期五收盘价的变化情况,星期一前一个交易日的收盘价为8.8〔单位:元〕.星期一二三四五收盘价变化〔与前一个交易日比拟〕+ + +〔1〕请计算这五日的收盘价;〔2〕这五日内哪一天的收盘价最高?是多少?【考点】正数和负数.【分析】〔1〕根据有理数的加法,可得每天股票的价格;〔2〕比拟〔1〕中计算结果即可求解.【解答】解:〔1〕这五日的收盘价分别是:+0.3=9.1〔元〕,周二9.1﹣0.5=8.6〔元〕,周三8.6﹣0.7=7.9〔元〕,+1.4=9.3〔元〕,+0.4=9.7〔元〕;〔2〕∵>>>>7.9,∴这五日内星期五的收盘价最高,是9.7元.【点评】此题考察了正数和负数,利用了有理数的加法运算,有理数的大小比拟进展解题,此题难度不大.23.某公路检修组乘汽车沿公路检修,约定前进为正,后退为负,某天自A地出发到收工时所走的路程〔单位:千米〕为+10,﹣3,+4,﹣2,﹣8,+13,﹣2,﹣11,+7,+5.〔1〕问收工时相对A地是前进了还是后退了?距A地多远?〔2〕假设检修组最后回到了A地且每千米耗油,问共耗油多少升?【考点】正数和负数.【分析】〔1〕约定前进为正,后退为负,依题意列式求出和即可;〔2〕要求耗油量,需求他共走了多少路程,这与方向无关.【解答】解:〔1〕10﹣3+4﹣2﹣8+13﹣2﹣11+7+5=13〔千米〕.故收工时相对A地是前进了,距A地13千米;〔2〕自A地出发到收工时所走的路程:|+10|+|﹣3|+|+4|+|﹣2|+|﹣8|+|+13|+|﹣2|+|﹣11|+|+7|+|+5|=65〔千米〕,自A地出发到回到A地时所走的路程:65+13=78〔千米〕,78×0.2=15.6〔升〕.答:假设检修组最后回到了A地且每千米耗油,共耗油.【点评】此题考察了有理数的加减混合运算,以及正数与负数,弄清题意是解此题的关键.正负数是表示相反意义的量,如果规定一个量为正,那么与它相反的量一定为负.24.如图,数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t〔t大于0〕秒.〔1〕点C表示的数是 1 .〔2〕求当t等于多少秒时,点P到达点A处?〔3〕点P表示的数是2t﹣4 〔用含字母t的式子表示〕〔4〕求当t等于多少秒时,P、C之间的距离为2个单位长度.【考点】一元一次方程的应用;数轴;列代数式.【分析】〔1〕根据题意得到点C是AB的中点;〔2〕、〔3〕根据点P的运动路程和运动速度列出方程;〔4〕分两种情况:点P在点C的左边有右边.【解答】解:〔1〕依题意得,点C是AB的中点,故点C表示的数是: =1.故答案是:1;〔2〕[6﹣〔﹣4〕]÷2=10÷2=5〔秒〕答:当t=5秒时,点P到达点A处.〔3〕点P表示的数是2t﹣4.故答案是:2t﹣4;〔4〕当点P在点C的左边时,2t=3,那么t=1.5;当点P在点C的右边时,2t=7,那么t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【点评】此题考察了一元一次方程的应用,列代数式和数轴.解题时,利用了数形结合的数学思想.。

初中必刷题七下答案数学2022乘方公式的应用

初中必刷题七下答案数学2022乘方公式的应用

初中必刷题七下答案数学2022乘方公式的应用一、选择题(每题4分,共40分)1.已知是完全平方式,则m的值为() [单选题] *A.6B.-6C.3D.6或-6(正确答案)2.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649…,根据其中的规律可得71 +72+…+72020的结果的个位数字是()[单选题] *A.0(正确答案)B.1C.7D.83.已知xyz≠0,且,则 x:y:z 等于() [单选题] * A.3:2:1B.1:2:3(正确答案)C.4:5:3D.3:4:54.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n);②a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn,你认为其中正确的有() [单选题] *A.①②B.②③C.①③④(正确答案)D.①②③④5.如果,,,那么这四个数中负数有() [单选题] * A.4个B.3个C.2个D.1个或3个(正确答案)6.将如图所示的图形剪去两个小正方形,使余下的部分图形恰好能折成一个正方体,应剪去的两个小正方形可以是() [单选题] *A.①⑥(正确答案)B.①⑦C.②⑥D. ②③7.已知,当时,则的值是() [单选题] *A.5(正确答案)B.10C.15D.208.如图,数轴上4个点表示的数分别为a、b、c、d.若|a﹣d|=10,|a﹣b|=6,|b ﹣d|=2|b﹣c|,则|c﹣d|=()[单选题] * A.1B.1.5C.1.5D.2(正确答案)9.代数式4x3–3x3 y+8x2 y+3x3 +3x3 y–8x2 y–7x3的值 [单选题] *A.与x,y有关B.与x有关C.与y有关D.与x,y无关(正确答案)10.a是不为2的有理数,我们把称为a的“哈利数”.如:3的“哈利数”是=﹣2,﹣2的“哈利数”是1/2,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,…,依此类推,则a2019=() [单选题] *A.3B.﹣2C.0.5(正确答案)D.4 /3二、填空题(每题4分,共32分)11.若关于x的方程(m﹣1)x|m−2| =3是一元一次方程,则m的值为______. [填空题] *空1答案:312.若一个角的余角为35°,则它的补角度数为 ____________度. [填空题] *空1答案:12513.若,则________________ [填空题] *空1答案:8空2答案:1614.如图,将矩形ABCD沿MN折叠,使点B与点D重合,若∠DNM=75°,则∠AMD=______.[填空题] *空1答案:30度15.若a2 +b2 + c2 - ab - bc- ac =0,且a +3b +4c =16,则a + b + c的值为________. [填空题] *空1答案:616.如图长方形ABCD是一个游乐场的平面示意图,AB=22,AD=26,它是由6个正方形拼成的长方形,则中间阴影部分的正方形的边长是_________.[填空题] *空1答案:217.如图,在△ABC中,将△ABC沿直线折叠,使点B落在点D的位置,若, DF∥AC,则的度数是__________.[填空题] *空1答案:125度18.观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为,且满足.则________,_________. [填空题] *空1答案:0.2空2答案:1/3032三、解答题(共78分,每问只需写出结果)19.已知,试求:(1)a+b的值;(2)|a|+|b|的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

选择题、填空题78分练(七)
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )
A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题
B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题
C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题
D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题【解析】选D.f'(x)=e x-m,由f'(x)≥0在(0,+≦)上恒成立得m≤e x在(0,+≦)上恒成立,又e x>1,所以m≤1,故原命题是真命题,从而其逆否命题是真命题,故选
D.
2.已知全集U=R,集合A={x|x+1<0},B={x|x-3<0},那么集合(
ðA)∩B= ( )
U
A.{x|-1≤x<3}
B.{x|-1<x<3}
C.{x|x<-1}
D.{x|x>3}
【解析】选A.A={x|x+1<0}={x|x<-1},B={x|x-3<0}={x|x<3},画出数轴可得应选
A.
3.在△ABC中,“sinA>”是“A>”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】选A.因为0<A<π,sinA>,
所以根据正弦函数的图象易知<A<,
所以可以得到A>,
即“sinA>”是“A>”的充分条件;
反之,若A>,则推不出sinA>,
如A=,则sinA=.
4.(2014·烟台模拟)等差数列{a n}的前n项和为S n,且9a1,3a2,a3成等比数列.若a1=3,则S4= ( )
A.7
B.8
C.12
D.16
【解析】选 C.因为9a1,3a2,a3成等比数列,所以(3a2)2=9a1·a3,即(a1+d)2=a1·(a1+2d),解得d=0,所以等差数列{a n}为常数数列,所以S4=4〓3=12.
5.设a=log54,b=(log53)2,c=log45,则( )
A.a<c<b
B.b<c<a
C.a<b<c
D.b<a<c
【解析】选D.因为log45>1,0<log54<1,0<log53<1,
所以(log53)2<log53<log54,
所以b<a<c.
6.若m是2和8的等比中项,则圆锥曲线x2+=1的离心率是( )
A. B. C.或 D.或
【解析】选C.因为m是2和8的等比中项,
所以m2=16,
所以m=〒4,当m=4时,
圆锥曲线为椭圆x2+=1,离心率为,
当m=-4时,圆锥曲线为双曲线x2-=1,
离心率为,
故离心率为或.
【加固训练】点M(5,3)到抛物线y=ax2的准线的距离为6,那么抛物线的方程是
( ) A.y=12x2 B.y=12x2或y=-36x2
C.y=-36x2
D.y=x2或y=-x2
【解析】选D.将y=ax2化为x2=y,
当a>0时,准线y=-,
由已知得3+=6,
所以=12,所以a=.
当a<0时,准线y=-,
由已知得=6,
所以a=-或a=(舍).
所以抛物线方程为y=或y=-.
7.若实数x,y满足不等式组:则该约束条件所围成的平面区域的面积是( )
A.3
B.
C.2
D.2
【解析】选C.由题意得可行域为直角三角形,其面积为S=〓2〓=2.
8.若函数f(x)=sinωx+cosωx(ω>0)的最小正周期为π,则它的图象的一个对称中心为( )
A. B.
C. D.
【解析】选A.f(x)=sinωx+cosωx=sin,这个函数的最小正周期是
,令=π,解得ω=2,
故函数f(x)=sinωx+cosωx=sin,把选项代入检验知点为其一个对称中心.
9.一个空间几何体的三视图及其尺寸如图所示,则该空间几何体的体积是
( )
A. B. C.14 D.7
【解析】选A.这个空间几何体是一个一条侧棱垂直于底面的四棱台,这个四棱台的高是2,上底面是边长为1的正方形,下底面是边长为2的正方形,故其体积
V=(12++22)〓2=.
10.设△ABC 的内角A,B,C 所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C= ( )
A. B. C. D. 【解析】选A.由正弦定理得3a=5b, 而c=2a-a=a, 令a=5,b=3,c=7,
则由余弦定理c 2=a 2+b 2-2abcosC, 得49=25+9-2〓3〓5cosC, 解得cosC=-,所以C=,故选A.
二、填空题(本大题共7小题,每小题4分,共28分.把答案填在题中横线上) 11.已知f(x)=
,若f(m)=,则f(-m)= .
【解析】依题意,f(m)=,即=.所以f(-m)=
=
=-=-.
答案:-
12.若对于任意的x>0,不等式≤a 恒成立,则实数a 的取值范围
为 . 【解析】
=

=,当且仅当x=1时取等号,所以要使≤a
恒成立,则a ≥,即实数a 的取值范围为a ≥. 答案:a ≥
13.向量a =(-1,1)在向量b =(3,4)方向上的投影为 .
【解析】设向量a =(-1,1)与b =(3,4)的夹角为θ,则向量a 在向量b 方向上的投
影为|a |·cos θ=
||
a b
b ==.
答案:
【加固训练】(2014·许昌模拟)已知向量a 的模为1,且a ,b 满足|a -b |=4,|a +b |=2,则b 在a 方向上的投影等于 . 【解析】因为|a -b |=4, 所以a 2+b 2-2a ·b =16①, 又因为|a +b |=2, 所以a 2+b 2+2a ·b =4②, 由②-①得a ·b =-3,
又|a |=1,所以b 在a 方向上的投影为||
a b
a =-3. 答案:-3
14.如图所示,在四棱锥P-ABCD 中,PA ⊥底面ABCD,且底面各边都相等,M 是PC 上的一动点,当点M 满足 时,平面MBD ⊥平面PCD.(只要填写一个你认为是正确的条件即可)
【解析】由定理可知,BD ⊥PC.所以当DM ⊥PC(或BM ⊥PC)时,即有PC ⊥平面MBD,而PC 平面PCD,所以平面MBD ⊥平面PCD. 故DM ⊥PC(或BM ⊥PC 等) 答案:DM ⊥PC(答案不唯一)
15.(2014·嘉兴模拟)设等差数列{a n }的前n 项和为S n ,若-1<a 3<1,0<a 6<3,则S 9
的取值范围是.
【解析】因为数列{a n}是等差数列,
设公差为d,首项为a1,
所以S9=9a1+36d.
令S9=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,
由待定系数法可得
解得x=3,y=6.
因为-3<3a3<3,0<6a6<18,
所以两式相加即得-3<S9<21,
所以S9的取值范围为(-3,21).
答案:(-3,21)
16.点P是椭圆+=1上的一点,F1,F2是椭圆的两个焦点,且△PF1F2的内切圆半径为1,当P在第一象限时,P点的纵坐标为.
【解析】由题意得,|PF1|+|PF2|=10,|F1F2|=6,
|+|F1F2|)·1=8.
=(|PF
又因为=|F 1F2|·y P=3y P.
所以y P=.
答案:
17.(2014·威海模拟)设集合A=[0,1),B=[1,2],函数f(x)=x0∈A,且f(f(x0))∈A,则x0的取值范围是.
【解析】当x 0∈A时,f(x0)=∈[1,2),
所以f(f(x 0))=4-2〓=4-∈(0,2],
又f(f(x0))∈A,
所以0<4-<1,
解得:log2<x0<1.
答案:
关闭Word文档返回原板块。

相关文档
最新文档