Adaptive Visual Tracking
Adaptive Trajectory Tracking Control of Skid-Steered Mobile Robots
1-4244-0602-1/07/$20.00 ©2007 IEEE.
2605
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on March 2, 2009 at 02:33 from IEEE Xplore. Restrictions apply.
I. I NTRODUCTION Skid-steered mobile robots have been widely used in many applications, such as terrain navigation and exploration, waste management, defense, security, and household services. Figure 1 shows an example of a skid-steered four-wheel mobile robot. The absence of a steering system for a skidsteered mobile robot (vehicle) makes the robot mechanically robust and simple for terrain or outdoor environment navigation. Due to the varying tire/ground interactions and overconstrained contact, it is quite challenging to obtain accurate dynamic models and tracking control systems for such mobile robots. Although there is a great deal of research on dynamic modeling and tracking control of differential-driven mobile robots that are under the nonholonomic constraint of zero lateral velocity, such as unicycles or car-like robots (readers can refer to [1] and references therein), the counterpart research on skid-steered mobile robots is less frequently reported. Because of the similarity between skid-steering of tracked and wheeled vehicles, the method of modeling the track/ground interaction for tracked vehicles can be utilized for skid-steered wheeled robots. Song et al. [2] use the tracked vehicle models discussed in [3]. In [4], localization of a tracked vehicle based on kinematic models is presented. For skid-steered modeling of tracked vehicles, readers can refer to [5]–[7] for details. Because of the difficulty in accurately capturing skid-steering, Anousaki and Kyriakopoulos [8] propose an experimental study to model the kinematic re-
哈姆林中心杨广中实验室
Predictive Cardiac Motion Modeling and Correction with PLSR Predictive cardiac motion modeling and correction based on partial least squares regression to extract intrinsic relationships between three-dimensional (3D) cardiac deformation due to respiration and multiple one-dimensional real-time measurable surface intensity traces at chest or abdomen. - see IEEE TMI 23(10), 2004
Myocardial Strain and Stain Rate Analysis Virtual tagging with MR myocardial velocity mapping - IEEE TMI Strain rate analysis with constrained myocardial velocity restoration Review of methods for measuring intrinsic myocardial mechanics - JMRI Atheroma Imaging and Analysis The use of selective volume excitation for high resolution vessel wall imaging (JMRI, 2003;17(5):572-80). 3D morphological modeling of the arterial wall Feature reduction based atheroma classification Volume Selective Coronary Imaging A locally focused MR imaging method for 3-D zonal echo-planar coronary angiography using volume selective RF excitation. Spatially variable resolution was used for delineating coronary arteries and reducing the effect of residual signals caused by the imperfect excitation profile of the RF pulse. The use of variable resolution enabled the derivation of basis functions having variable spatial characteristics pertain to regional object details and a significantly smaller number of phase encoded signal measurements was needed for image reconstruction. Gatehouse PD, Keegan J, Yang GZ, Firmin DN. Magn Reson Med, 2001 Nov;46(5):1031-6. Yang GZ, Burger P, Gatehouse, PD, Firmin DN. Magn Reson Med, 41, 171-178, 1999. Yang GZ, Gatehouse PD, Keegan J, Mohiaddin RH, Firmin DN. J. Magn Reson Med, 39: 833-842, 1998.
音响英语词汇
专业英语词汇A (1)专业英语词汇B (7)专业英语词汇C (10)专业英语词汇D (14)专业英语词汇E (19)专业英语词汇F (22)专业英语词汇G (25)专业英语词汇H (26)专业英语词汇I (28)专业英语词汇J (30)专业英语词汇K (31)专业英语词汇L (31)专业英语词汇M (34)专业英语词汇N (38)专业英语词汇O (39)专业英语词汇P (40)专业英语词汇Aampler 取样装置AAC automatic ampltiude control 自动幅度控制AAD active acoustic devide 有源声学软件AB AB制立体声录音法ABC auto base and chord 自动低音合弦Abeyancd 暂停,潜态A-B repeat A-B重复ABS absolute 绝对的,完全的,绝对时间ABS american bureau of standard 美国标准局ABSS auto blank secrion scanning 自动磁带空白部分扫描Abstime 绝对运行时间A.DEF audio defeat 音频降噪,噪声抑制,拌音静噪ADJ adjective 附属的ADJ Adjust 调节ADJ acoustic delay line 声延迟线Admission 允许进入,供给ADP acoustic data processor数据处理机ADP(T) adapter 延配器,转接器ADRES automatic dynamic range expansion system 动态范围扩展系统ADRM analog to digital remaster 模拟录音、数字处理数码唱盘ADS audio distribution system 音频分配系统A.DUB audio dubbing 配音,音频复制,后期录音ADV advance 送入,提升,前置量ADV adversum 对抗ADV advancer 相位超前补偿器Adventure 惊险效果AE audio erasing 音频(声音)擦除AE auxiliary equipment 辅助设备Aerial 天线AES audio engineering society 美国声频工程协会AF audio fidelity 音频保真度AF audio frequency 音频频率AFC active field control 自动频率控制AFC automatic frequency control 声场控制Affricate 塞擦音AFL aside fade listen 衰减后(推子后)监听A-fader 音频衰减AFM advance frequency modulation 高级调频AFS acoustic feedback speaker 声反馈扬声器AFT automatic fine tuning 自动微调AFTAAS advanced fast time acoustic analysis system 高级快速音响分析系统After 转移部分文件Afterglow 余辉,夕照时分音响效果Against 以……为背景AGC automatic gain control 自动增益控制AHD audio high density 音频高密度唱片系统AI advanced integrated 预汇流AI amplifier input 放大器输入AI artificial intelligence 人工智能AI azimuth indicator 方位指示器A-IN 音频输入A-INSEL audio input selection 音频输入选择Alarm 警报器ALC automatic level control 自动电平控制ALC automatic load control 自动负载控制Alford loop 爱福特环形天线Algorithm 演示Aliasing 量化噪声,频谱混叠Aliasing distortion 折叠失真Align alignment 校正,补偿,微调,匹配Al-Si-Fe alloy head 铁硅铝合金磁头Allegretto 小快板,稍快地Allegro 快板,迅速地Allocation 配置,定位All rating 全(音)域ALM audio level meter 音频电平表ALT alternating 震荡,交替的ALT alternator 交流发电机ALT altertue 转路ALT-CH alternate channel 转换通道,交替声道Alter 转换,交流电,变换器AM amperemeter 安培计,电流表AM amplitude modulation 调幅(广播)AM auxiliary memory 辅助存储器Ambience 临场感,环绕感ABTD automatic bulk tape degausser 磁带自动整体去磁电路Ambient 环境的Ambiophonic system 环绕声系统Ambiophony 现场混响,环境立体声AMLS automatic music locate system 自动音乐定位系统AMP ampere 安培AMP amplifier 放大器AMPL amplification 放大AMP amplitude 幅度,距离Amorphous head 非晶态磁头Abort 终止,停止(录制或播放)A-B TEST AB比较试听Absorber 减震器Absorption 声音被物体吸收ABX acoustic bass extension 低音扩展AC accumulator 充电电池AC adjustment caliration 调节-校准AC alternating current 交流电,交流AC audio coding 数码声,音频编码AC audio center 音频中心AC azimuth comprator 方位比较器AC-3 杜比数码环绕声系统AC-3 RF 杜比数码环绕声数据流(接口)ACC Acceleration 加速Accel 渐快,加速Accent 重音,声调Accentuator 预加重电路Access 存取,进入,增加,通路Accessory 附件(接口),配件Acryl 丙基酰基Accompaniment 伴奏,合奏,伴随Accord 和谐,调和Accordion 手风琴ACD automatic call distributor 自动呼叫分配器ACE audio control erasing 音频控制消磁A-Channel A(左)声道ACIA asynchronous communication interface adapter 异步通信接口适配器Acoumeter 测听计Acoustical 声的,声音的Acoustic coloring 声染色Acoustic image 声像Across 交叉,并行,跨接Across frequency 交叉频率,分频频率ACST access time 存取时间Active 主动的,有源的,有效的,运行的Active crossover 主动分频,电子分频,有源分频Active loudspeaker 有源音箱Active page 活动页Activity (线圈)占空系数,动作Actual level 有效电平ACTV advancde compatible television 与普通电视兼容的高清晰度电视系统ACU automatic calling unit 自动呼叫装置Adagio 柔板(从容地)ADAP Adapter 适配器,外接电源A/D audio to digital 模拟/数字ADC audio digital conversion 模拟数字转换ADD address 地址Adder 混频器AMS 跳曲播放AMS audio monitor selection 音频监听选择AMS Acoustic measuriment system 音响测量系统AMS automatic music sensor 自动音乐传感器AMSS automatic music select system 自动音乐选择系统Analog(ue) 模拟的,模型,类似Analog cueing track 模拟提示轨迹Analog audio master tape 模拟原版录音带Analog cassette tape 模拟磁带录机Analyzer 分析仪ANG automatic noise canceller 自动噪声消除器Anechoic chamber 消声室,无回声室Angle 角度ANL automatic noise limiter 自动噪声抑制器Announciator 报警器Anode 阳极,正极ANRS automatic noise reduction system 自动降噪系统ANT antenna 天线Antihum 哼声消除Anti-hunt 阻尼,反搜索Anti-noise 抗干扰AOM acoustic optical modulator 声光调制器AP automatic pan 自动声像(控制)APC automatic phase control 相位自动控制APC automatic power control 自动功率控制APCM adaptive PCM 自适应性脉冲编码调制Aperture distortion 孔径失真APLD automatic program locate device 自动选曲APN allochthonous 声像漂移APO automatic power off 自动电源关断Append 附加,插入APS automatic program search 自动节目搜索APSS auto program search system 自动选曲系统APSS automatic program pause system 自动节目暂停系统APSS automatic program search system 自动节目搜索系统APU audio playback unit 音频重放装置AR assisted resonance 接受共振(声场控制方式)AR audio response 音频响应ARC automatic record control 自动录音控制(系统)ARC automatic remote control 自动遥控Architectural acoustics 建筑声学Armstrong MOD 阿姆斯特朗调制ARP azimuth reference pulse 方位基准脉冲Arpeggio 琶音Articulation 声音清晰度,发音Artificial 仿……的,人工的,手动(控制)Architectural acoustics 建筑声学Arm motor 唱臂唱机Arpeggio single 琶音和弦,分解和弦ARL aerial 天线ASC automatic sensitivity control 自动灵敏度控制ASGN Assign 分配,指定,设定ASP audio signal processing 音频信号处理ASS assembly 组件,装配,总成ASSEM assemble 汇编,剪辑ASSEM Assembly 组件,装配,总成Assign 指定,转发,分配Assist 辅助(装置)ASSY accessory 组件,附件AST active servo techonology 有源伺服技术A Tempo 回到原速Astigmatism method 象散法Asynchronous bit-stream 非同步比特流AT antenna 天线AT attenuator 衰减器ATC automatic timing correction 自动定时校正器ATC automatic tone correction 自动音调调整ATD automatic tape degausser 磁带自动去磁器ATF automatic track finding 自动寻迹ATRAC adaptive transform. acoustic coding 自适应转换声学编码ATS automatic tuning system 自动调谐系统ATSC advancde television systems committee 美国数字电视标准ATT attenuator 衰减器Attack 启动时间Attack delay 预延时Attenuater 衰减网络,屏蔽材料Attenuation 衰减AHD audio high density 音频高密度唱片AU Adapter unit 适配器AUD audio 音频的,音频,音响Audible sound 可听声Audience area 听众区Audifier 声频放大器Audio 音频Audiophile 音响发烧友Audition 试听发音,播音前试音Aural Exciter 听觉激励器Auricle effect 耳廓效应AUTO automatic 自动的,自动Auto fade 自动电平衰减Automatch 自动匹配Auto-changer 自动换片器Auto-reset overload protector 自动复原过载保护器Auto reverse 自动翻转Auto-select 自动选择Auto-space 自动插入空白信号Auto-sweep 自动扫描,自动搜寻Autotune 自动调谐AUTP autopunch 自动穿插录音AUX auxiliary 辅助输出,辅助输入AV audio/video 音视频,音像系统AV audio visual 视听,视听系统AVAL available volume control 自动音量控制AVC automatic volume control 自动音量控制Average value 平均值,平衡,抵消AVG average 平均值AV MUTING 音像系统静噪AWCS acoustic wave cannon system 声波管系统A-weighting A-计权AWG acoustic wave guide 声波导AWGN additive white gaussion noise 相加白高斯噪声AWM audio wave from memory 音频波形记忆AWM automatic writinf machine 自动写入机Axis 轴向的,轴线的Azimuth loss 方位损失APTWG copy protection technical working group 复制保护技术工作级专业英语词汇BB band 频带B Bit 比特,存储单元B Button 按钮Babble 多路感应的复杂失真Back 返回Back clamping 反向钳位Back drop 交流哼声,干扰声Background noise 背景噪声,本底噪声Backing copy 副版Backoff 倒扣,补偿Back tracking 补录Back up 磁带备份,支持,预备Backward 快倒搜索Baffle box 音箱BAL balance 平衡,立体声左右声道音量比例,平衡连接Balanced 已平衡的Balancing 调零装置,补偿,中和Balun 平衡=不平衡转换器Banana jack 香蕉插头Banana bin 香蕉插座Banana pin 香蕉插头Banana plug 香蕉插头Band 频段,Band pass 带通滤波器Bandwidth 频带宽,误差,范围Band 存储单元Bar 小节,拉杆BAR barye 微巴Bargraph 线条Barrier 绝缘(套)Base 低音Bass 低音,倍司(低音提琴)Bass tube 低音号,大号Bassy 低音加重BATT battery 电池Baud 波特(信息传输速率的单位)Bazooka 导线平衡转接器BB base band 基带BBD Bucket brigade device 戽链器件(效果器)B BAT Battery 电池BBE 特指BBE公司设计的改善较高次谐波校正程度的系统BC balanced current 平衡电流BC Broadcast control 广播控制BCH band chorus 分频段合唱BCST broadcast (无线电)广播BD board 仪表板Beat 拍,脉动信号Beat cancel switch 差拍干扰消除开关Bel 贝尔Below 下列,向下Bench 工作台Bend 弯曲,滑音Bender 滑音器BER bit error rate 信息差错率BF back feed 反馈BF Backfeed flanger 反馈镶边BF Band filter 带通滤波器BGM background music 背景音乐Bias 偏置,偏磁,偏压,既定程序Bidirectional 双向性的,8字型指向的Bifess Bi-feedback sound system 双反馈系统Big bottom 低音扩展,加重低音Bin 接收器,仓室BNG BNC连接器(插头、插座),卡口同轴电缆连接器Binaural effect 双耳效应,立体声Binaural synthesis 双耳合成法Bin go 意外现象Bit binary digit 字节,二进制数字,位,比特(二进制单位)Bitstream 数码流,比特流Bit yield 存储单元Bi-AMP 双(通道)功放系统Bi-wire 双线(传输、分音)Bi-Wring 双线BK break 停顿,间断BKR breaker 断电器Blamp 两路电子分音Blanking 关闭,消隐,断路Blaster 爆裂效果器Blend 融合(度)、调和、混合Block 分程序,联动,中断Block Repeat 分段重复Block up 阻塞Bloop (磁带的)接头噪声,消音贴片BNC bayonet connector 卡口电缆连接器Body mike 小型话筒Bond 接头,连接器Bongo 双鼓Boom 混响,轰鸣声Boomy 嗡嗡声(指低音过强)Boost 提升(一般指低音),放大,增强Booth 控制室,录音棚Bootstrap 辅助程序,自举电路Both sides play disc stereo system 双面演奏式唱片立体声系统Bottoming 底部切除,末端切除Bounce 合并Bourclon 单调低音Bowl 碗状体育场效果BP bridge bypass 电桥旁路BY bypass 旁通BPC basic pulse generator 基准脉冲发生器BPF band pass filter 带通滤波器BPS band pitch shift 分频段变调节器BR b-register 变址寄存器BR Bridge 电桥Break 中止(程序),减弱Breathing 喘息效应B.Reso base resolve 基本解析度Bridge 桥接,电桥,桥,(乐曲的)变奏过渡Bright 明亮(感)Brightness 明亮度,指中高音听音感觉Brilliance 响亮BRKRS breakers 断路器Broadcast 广播BTB bass tuba 低音大喇叭BTL balanced transformer-less 桥式推挽放大电路BTM bottom 最小,低音BU backup nuit 备用器件Bumper 减震器Bus 母线,总线Busbar 母线Buss 母线Busy 占线BUT button 按钮,旋钮BW band width 频带宽度,带度BYP bypass 旁路By path 旁路BZ buzzer 蜂音器B/C type Dolby System 杜比BC型系统专业英语词汇CC cathode 阴极,负极C Cell 电池C Center 中心C Clear 清除C Cold 冷(端)CA cable 电缆Cable 电缆Cabinet 小操纵台CAC coherent acoustic coding 相干声学编码Cache 缓冲存储器Cal calando 减小音量CAL Calendar 分类CAL Caliber 口径CAL Calibrate 标准化CAL Continuity accept limit 连续性接受极限Calibrate 校准,定标Call 取回,复出,呼出Can 监听耳机,带盒CANCL cancel 删除CANCL Cancelling 消除Cancel 取消Cannon 卡侬接口Canon 规则Cap 电容Capacitance Mic 电容话筒Capacity 功率,电容量CAR carrier 载波,支座,鸡心夹头Card 程序单,插件板Cardioid 心型的CATV cable television 有线电视Crispness 脆声Category 种类,类型Cartridge 软件卡,拾音头Carrkioid 心型话筒Carrier 载波器Cartridge 盒式存储器,盒式磁带Cascade 串联Cassette 卡式的,盒式的CAV constant angular velocity 恒角速度Caution 报警CBR circuit board rack 电路板架CC contour correction 轮廓校正CCD charge coupled device 电荷耦合器件CD compact disc 激光唱片CDA current dumping amplifier 电流放大器CD-E compact disc erasable 可抹式激光唱片CDG compact-disc plus graphic 带有静止图像的CD唱盘CD constant directional horn 恒定指向号角CDV compact disc with video 密纹声像唱片CE ceramic 陶瓷Clock enable 时钟启动Cell 电池,元件,单元Cellar club 地下俱乐部效果Cello 大提琴CEMA consumer electronics manufacturer'sassociation (美国)消费电子产品制造商协会CENELEC connector 欧洲标准21脚AV连接器Cent 音分Central earth 中心接地CES consumer electronic show (美国)消费电子产品展览会CF center frequency 中心频率Cross fade 软切换CH channel 声道,通道Chain 传输链,信道Chain play 连续演奏Chamber 密音音响效果,消声室CHAN channel 通道Change 交换Chapter 曲目Chaper skip 跳节CHAE character 字符,符号Characteristic curve 特性曲线Charge 充电Charger 充电器Chase 跟踪Check 校验CHC charge 充电CH - off 通道切断Choke 合唱Chromatic 色彩,半音Church 教堂音响效果CI cut in 切入CIC cross interleave code 交叉隔行编码CIRC circulate 循环Circuit 电路CL cancel 取消Classic 古典的Clean 净化CLR clear 归零Click 嘀哒声Clip 削波,限幅,接线柱CLK clock 时钟信号Close 关闭,停止CLS 控制室监听Cluster 音箱阵效果CLV ceiling limit value 上限值CMP compact 压缩CMPT compatibility 兼容性CMRR common mode rejection ratio 共模抑制比CNT count 记数,记数器CNTRL central 中心,中央CO carry out 定位输出Coarse 粗调Coax 同轴电缆Coaxial 数码同轴接口Code 码,编码Coefficient 系数Coincident 多信号同步Cold 冷的,单薄的Color 染色效果COM comb 梳状(滤波)COMB combination 组合音色COMBI combination 组合,混合COMBO combination 配合,组合Combining 集合,结合COMM communication 换向的,切换装置Command 指令,操作,信号COMMON 公共的,公共地端Communieation speed 通讯速度选择COMP comparator 比较器COMP compensate 补偿Compact 压缩Compander 压缩扩展器Compare 比拟Compatibility 兼容Compensate 补偿Complex 全套设备Copmoser 创意者,作曲者Compressor 压缩器COMP-EXP 压扩器Compromise (频率)平衡Computer 计算机,电脑CON concentric cable 同轴电缆CON console 操纵台CON controller 控制器Concentric 同轴的,同心的Concert 音乐厅效果Condenser Microphone 电容话筒Cone type 锥形(扬声器)CONFIG 布局,线路接法Connect 连接,联络CORR correct 校正,补偿,抵消Configuration 线路布局Confirmation 确认Consent 万能插座Console 调音台Consonant 辅音Constant 常数CONT continuous 连续的(音色特性)CONT control 控制,操纵Contact 接触器Content 内容Continue 连续,继续Continue button 两录音卡座连续放音键Contour 外形,轮廓,保持Contra 次八度Contrast 对比度Contribution 分配Controlled 可控的Controller 控制器CONV conventional 常规的CONV convert 变换CONV convertible 可转换的Copy 复制Correlation meter 相关表Coupler 耦合Cover 补偿Coverage 有效范围CP clock pulse 时钟脉冲CP control program 控制程序CPU 中央处理器CR card reader 卡片阅读机CRC cyclic redundancy check 循环冗余校验Create 建立,创造Crescendo 渐强或渐弱Crispness 清脆感CRM control room 控制室CROM control read only memory 控制只读存储器Crossfader 交叉渐变器Cross-MOD 交叉调制Crossover 分频器,换向,切断Cross talk 声道串扰,串音Crunch 摩擦音C/S cycle/second 周/秒CSS content scrambling system 内容加密系统CST case style. tape 盒式磁带CT current 电流CTM close talking microphone 近讲话筒CU counting unit 计数单元Cue 提示,选听Cue clock 故障计时钟Cueing 提示,指出Cursor 指示器,光标Curve (特性)曲线Custom 常规CUT 切去,硬切换Cut-in 断-通Cut-off 切去Cut-out 中断Cut-over 开通,转换Cutter 切换器CV converters 变换器CVD china video disc 中国数字视盘CW continuous wave 连续波CX cancel 删除,消除噪声Cyclelog 程序调节器Cmoscope 检波器专业英语词汇DD double 双重的,对偶的D drum 鼓,磁鼓DA delayed action 延迟作用D/Adigital/analog 数字/模拟DAB digital audio broadcasting 数字音频广播Damp 阻尼DASH digital audio stationar head 数字固定磁头Dashpot 缓冲器,减震器DAT digital audio tape 数字音频磁带,数字录音机DATA 数据DATAtron 数据处理机DATE 日期DB(dB) decibel 分贝DB distribution 分线盒DBA decibel asolute 绝对分贝DBA decibel adjusted 调整分贝DBB dynamic bass boost 动态低音提升DBK decibels referred to one kilowatt 千瓦分贝DBm decibel above one milliwatt in 600 ohms 毫瓦分贝DBS direct broadcast satellite 直播卫星DBX 压缩扩展式降噪系统DC distance controlled 遥控器DCA digital command assembly 数字指令装置DCE data circuit terminating equipment 数据通讯线路终端设备DCF digital comb filter 数字梳状滤波器DCH decade chorus 十声部合唱DCP date central processor 数据中心处理器DD direct drive 直接驱动DD dolby digital 数字杜比DDC direct digital control 直接数字控制DDS digital dynamic sound 数字动态声DDT data definition table 数据定义表Dead 具有强吸声特性的房间的静寂DEC decay 衰减,渐弱,余音效果Decibel 分贝Deck 卡座,录音座,带支加的,走带机构Deemphasis 释放Deep reverb 纵深混响De-esser 去咝声器DEF defeat 消隐,静噪Delete 删除Delivery end 输入端DEMO demodulator 解调器Demo 自动演奏Demoder 解码器Density 密度,声音密度效果Detune 音高微调,去谐DepFin 纵深微调Depth 深度Denoiser 降噪器Design 设计Destroyer 抑制器DET detector 检波器Deutlichkeit 清晰度DEV device 装置,仪器DEX dynamic exciter 动态激励器DF damping factor 动态滤波器DFL dynamic filter 动态滤波DFS digital frequency synthesizer 数字频率合成器DI data input 数据输入Diagram 图形,原理图Dial 调节度盘Difference 不同,差别DIFF differential 差动Diffraction 衍射,绕射Diffuse 传播Diffusion 扩散DIG digit 数字式Digital 数字的,数字式,计数的Digitalyier 数字化装置DIM digital input module 数字输入模块DIM diminished 衰减,减半音Dimension 范围,密度,尺寸,(空间)维,声像宽度Din 五芯插口(德国工业标准)DIN digital input 数字输入DIR direct 直接的,(调音台)直接输出,定向的Direct box 指令盒,控制盒Direct sound 直达声Directory 目录Direction 配置方式Directional 方向,指向的Directivity 方向性DIS display 显示器DISC disconnect 切断,开路DISC discriminator 鉴相器Disc 唱盘,唱片,碟Disc holder 唱片抽屉Disc recorder 盘片式录音机Dischage 释放,解除Disco 迪斯科,迪斯科音乐效果Discord 不谐和弦Disk 唱盘,碟DISP display 显示器,显示屏Dispersion 频散特性,声音分布Displacement 偏转,代换Distortion 失真,畸变DIST distance 距离,间距DIST district 区间Distributer 分配器,导向装置DITEC digital television camera 数字电视摄像机Dim 变弱,变暗,衰减DIV divergence 发散DIV division 分段DIV divisor 分配器Diversity 分集(接收)Divider 分配器Divx 美国数字视频快递公司开发的一种每次观看付费的DVDDJ Disc Jocker 唱片骑士DJ dust jacket 防尘罩DJ delay 延迟DLD dynamic linear drive 动态线性驱动DLLD direct linear loop detector 直接线性环路检波器DME digital multiple effector 数字综合效果器DMS date multiplexing system 数据多路传输系统DMS digital multiplexing synchronizer 数字多路传输同步器DMX data multiplex 数据多路(传输)DNL dynamic noise limiter 动态噪声抑制器DNR dynamic noise reduction 动态降噪电路DO dolly out 后移DO dropout 信号失落DOB dolby 杜比DOL dynamic optimum loudness 动态最佳响度Dolby 杜比,杜比功能Dolby Hx Pro dolby Hx pro headroom extension system 杜比Hx Pro动态余量扩展系统Dolby NR 杜比降噪Dolby Pro-logic 杜比定向逻辑Dolby SR-D dolby SR digital 杜比数字频谱记录Dolby Surround 杜比环绕Dome loudspeaker 球顶扬声器Dome type 球顶(扬声器)DOP doppler 多普勒(响应)Double 加倍,双,次八度Doubler 倍频器,加倍器Double speed 倍速复制D.OUT direct output 直接输出Down 向下,向下调整,下移,减少DPCM differential pulse code modulation 差动脉冲调制DPD direct pure MPX decoder 直接纯多路解调器DPL dolby pro logic 杜比定向逻辑DPL duplex 双工,双联DPLR doppler 多普勒(系统)D.Poher effect 德.波埃效应Dr displacement corrector 位移校准器,同步机DR distributor 分配器DR drum 磁鼓Drain 漏电,漏极DRAM direct read after write 一次性读写存储器Drama 剧场效果DRAW 只读追忆型光盘Dr.Beat 取字时间校准器DRCN dynamic range compression and normalization 动态范围压缩和归一化Drive 驱动,激励Dr.Rhythm 节奏同步校准器DRPS digital random program selector 数字式节目随机选择器DDrum 鼓Drum machine 鼓机Dry 干,无效果声,直达声DS distortion 失真DSC digital signal converter 数字信号转换器DSL dynamic super loudness 低音动态超响度,重低音恢复DSM dynamic scan modulation 动态扫描速度调制器DSP digital signal processor 数字信号处理器DSP display simulation program 显示模拟程序DSP digital sound processor 数字声音处理器DSP digital sound field processor 数字声场处理器DSP dynamic speaker 电动式扬声器DSS digital satellite system 数字卫星系统DT data terminal 数据终端DT data transmission 数据传输DTL direct to line 直接去线路DTS digital theater system 数字影剧院系统DTS digital tuning system 数字调谐系统DTV digital television 数字电视Dual 对偶,双重,双Dub 复制,配音,拷贝,转录磁带Dubbing mixer 混录调音台Duck 按入,进入Dummyload 假负载DUP Duplicate 复制(品)Duplicator 复制装置,增倍器Duration 持续时间,宽度Duty 负载,作用范围,功率Duty cycle 占空系数,频宽比DUX duplex 双工DV device 装置,器件DVC digital video cassette 数字录象带DVD digital video disc 数字激光视盘DX 天线收发开关,双重的,双向的DYN dynamic 电动式的,动态范围,动圈式的Dynamic filter 动态滤波(特殊效果处理)器Dynamic Microphone 动圈话筒Dynamic range 动态范围Dynode 电子倍增器电极专业英语词汇EE early warning 预警E earth 真地,接地E error 错误,差错(故障显示)EA earth 地线,真地EAR early 早期(反射声)Earphone 耳机Earth terminal 接地端EASE electro-acooustic simulators for engineers 工程师用电声模拟器,计算机电声与声学设计软件Eat 收取信号EBU european broadcasting union 欧洲广播联盟EC error correction 误差校正ECD electrochomeric display 电致变色显示器Echo 回声,回声效果,混响ECL extension zcompact limitter 扩展压缩限制器ECM electret condenser microphone 驻极体话筒ECSL equivalent continuous sound level 等级连续声级ECT electronec controlled transmission 电控传输ED edit editor 编辑,编辑器Edit 编辑Edge tone 边棱音EDTV enhanced definition television 增强清晰度电视(一种可兼容高清晰度电视)E-DRAW erasable direct after write 可存可抹读写存储器EE errors excepted 允许误差EFF effect efficiency 效果,作用Effector 操纵装置,效果器Effects generator 效果发生器EFM 8/14位调制法EFX effect 效果EG envelope generator 包络发生器EIA electronec industries association (美国)电子工业协会EIAJ electronic industries association Japan 日本电子工业协会EIN einstein 量子摩尔(能量单位)EIN equivalent input noise 等效输入噪声EIO error in operation 操作码错误Eject 弹起舱门,取出磁带(光盘),出盒EL electro luminescence 场致发光ELAC electroacoustic 电声(器件)ELEC electret 驻极体Electret condenser microphone 驻极体话筒ELF extremely low frequency 极低频ELEC electronec 电子的Electroacoustics 电声学EMI electro magnetic interference 电磁干扰Emission 发射EMP emphasispo 加重EMP empty 空载Emphasis 加重EMS emergency switch 紧急开关Emulator 模拟器,仿真设备EN enabling 启动Enable 赋能,撤消禁止指令Encoding 编码End 末端,结束,终止Ending 终端,端接法,镶边ENG engineering 工程Engine 运行,使用ENG land 工程接地Enhance 增强,提高,提升ENS ensemble 合奏ENS envelope sensation 群感Eensemble 合奏ENT enter 记录Enter 记入,进入,回车Entering 插入,记录Entry 输入数据,进入ENV envelope 包络线Envelopment 环绕感EOP electronic overload protection 电子过载保护EOP end of program 程序结束EOP end output 末端输出EOT end of tape 磁带尾端EP extend playing record 多曲目唱片EP extended play 长时间放录,密录EPG edit pulse generator 编辑脉冲发生器EPS emergency power supply 应急电源EQ equalizer 均衡器,均衡EQ equalization 均衡EQL equalization 均衡Equal-loudness contour 等响曲线Equipped 准备好的,已装备Equitonic 全音Equivalence 等效值ER erect 设置ER error 错误,误差ERA earphone 耳机Eraser 抹去,消除Erasing 擦除,清洗Erasure 抹音Erase 消除,消Er early 早期的ERCD extended resolution CD 扩展解析度CDEREQ erect equalizer 均衡器(频点)位置(点频补偿电路的中点频率)调整ERF early reflection 早期反射(声)Ernumber 早期反射声量Error 错误,出错,不正确ES earth swith 接地开关ES electrical stimulation 点激励Escqpe 退出ETER eternity 无限Euroscart 欧洲标准21脚AV连接器Event 事件EVF envelope follower 包络跟随器(音响合成装置功能单元)EX exciter 激励器EX exchange 交换EX expanding 扩展EXB expanded bass 低音增强EXC exciter 激励器EXCH exchange 转换Exclusive 专用的Excursion 偏移,偏转,漂移,振幅EXP expender 扩展器,动态扩展器EXP export 输出Exponential horn tweeter 指数型高音号角扬声器Expression pedal 表达踏板(用于控制乐器或效果器的脚踏装置)EXT extend 扩展EXT exterior 外接的(设备)EXT external 外部的,外接的EXT extra 超过EXTN extension 扩展,延伸(程控装置功能单元)Extract 轨道提出EXTSN extension 扩展,延伸(程控装置功能单元)专业英语词汇FF fast 快(速)F feedback 反馈F forward 向前F foot 脚踏(装置)F frequency 频率F function 功能Ffactor 因子,因素,系数,因数Fade 衰减(音量控制单元)Fade in-out 淡入淡出,慢转换Fader 衰减器Fade up 平滑上升Failure 故障Fall 衰落,斜度Faraday shield 法拉第屏蔽,静电屏蔽FAS full automatic search 全自动搜索Fast 快速(自动演奏装置的速度调整钮)Fastener 接线柱,闭锁Fat 浑厚(音争调整钮)Fattens out 平直输出(指频响特性曲线为一条直线时的信号输出)Fault 故障,损坏Fader 衰减器,调音台推拉电位器(推子)Fading in 渐显Fading out 渐显False 错误Fancier 音响发烧友Far field 远场FatEr 丰满的早期反射FB feedback 反馈,声反馈FB fuse block 熔丝盒F.B fiver by 清晰FBO feedback outrigger 反馈延伸FCC federal communications commission (美国)联邦通信委员会FD fade depth 衰减深度FD feed 馈入信号FDR fader 衰减器FeCr 铁铬磁带Feed 馈给,馈入,输入Feeder 馈线Feed/Rewind spool 供带盘/倒带盘Ferrite head 铁氧体磁头F.&B. forward and back 前后FET field effect technology 场效应技术FF flip flop 触发器FF fast forward 快进FG flag generator 标志信号发生器FI fade in 渐进Field 声场Field pickup 实况拾音File 文件,存入,归档,数据集,(外)存储器Fill-in 填入FILT filter 滤波器Final 韵母Fine 微调Fingered 多指和弦Finger 手指,单指和弦FIN GND 接地片Finish 结束,修饰FIP digital frequency display panel 数字频率显示板FIR finite-furation impulse response 有限冲激响应(滤波器)Fire 启动Fix 确定,固定Fizz 嘶嘶声FL fluorescein 荧光效果Flange 法兰音响效果,镶边效果Flanger 镶边器Flanging 镶边Flash 闪光信号Flat 平坦,平直Flat noise 白噪声Flat tuning 粗调Flex 拐点FLEX flexible cord 软线,塞绳FLEX frequency level expander 频率扩展器FLEXWAVE flexible waveguide 可弯曲波导管FLG flanger 镶边器Flip 替换,调换Floating 非固定的,悬浮式的Floppy disc 软磁盘FLTR filter 滤波器Fluorescent display 荧光显示器Flute 长笛Flutter 一种放音失真,脉冲干扰,颤动FLW follow 跟踪,随动FLY 均衡器FM fade margin 衰落设备FM frequency modulation 调频广播FM/SW telescopic rod aerial 调频/短波拉杆天线FO fade out 渐隐Focus 焦点,中心点Foldback 返送,监听Foot(board) 脚踏板(开关控制)Fomant 共振峰Force 过载,强行置入Format 格式,格式化,规格,(储存器中的)信息安排Forward 转送FPR floating point routine 浮点程序FPR full power response 全功率响应FR frequency 频率FR frequency response 频率响应Frame. 画面,(电视的)帧Frames 帧数Free 剩余,自由Free echoes 无限回声(延时效果处理的一种)Free edge 自由折环(扬声器)FREEQ frequency 频率F.Rew fast rewind 快倒Freeze 凝固,声音骤停,静止Frequency divider 分频器Frequency shifter 移频器,变频器Fricative 擦音Front 前面的,正面的Front balance 前置平衡Front process 前声场处理FRU field replaceable unit 插件,可换部件FS frequency shift 频移,变调FS full short 全景FT facility terminal 设备(输出)端口FT fine tuning 微调FT foot 脚踏装置FT function tist 功能测试FT frequency tracke 频率跟踪器FTG fitting 接头,配件FTS faverate track selection 最佳声迹选择Full 丰满,饱和Full auto 全自动Full effect recording 全效果录音Full range 全音域,全频Fullness 声音的丰满度Fully compatible player 全制式兼容(激光)唱机FUNC function 功能,操作Function 功能,作用Fundamental tone 基音Fuse 保险丝,熔断器Fuzz 杂乱声FX effect 效果FX foreign exchange 外交换FZ fuze 保险丝专业英语词汇GG gate 门(电路)G ground 接地GA general average 总平均值Gain 增益,提衰量Game 卡拉OK音响效果Gamut 音域Gap 间隔,通道Gate 噪声门,门,选通Gated Rev 选通混响(开门的时间内有混响效果)GB 吉字节Gear 风格,格调GEN generator (信号)发生器General 综合效果Generator 信号发生器GEQ graphie equalizier 图示均衡器GD ground 接地Girth 激励器的低音强度调节Glide strip 滑奏条(演奏装置)GLLS-sando 滑降(演奏的效果)Global 总体设计GM genertal MIDI 通用乐器数字接器GND ground 地线,接地端GP group 编组GPR general purpose receiver 通用接收机GPI general purpose interface 通用接口设备Govern 调整,控制,操作,运转GR group 组合Gramophone 留声机,唱机Graphic equalizer 图示均衡器,图表均衡器GRND ground 接地Groove 光盘螺旋道的槽Group 编组(调音台),组Growler 线圈短路测试仪GT gate 门,噪声门GT gauge template 样板GTE gate 门(电路)GTR gate reverb 门混响Guard 保护,防护装置GUI graphical user interface 图形用户接口Guitar 吉它Guy 拉线Gymnasium 体育馆效果Gyrator 回旋器专业英语词汇HH hard 硬的(音响效果特征)H horizonal 水平(状态)H hot 热(平衡信号端口的“热端”)Hall 厅堂效果Handle 手柄,控制HAR harmonec 谐波Hard knee 硬拐点(压限器)Harmonic 谐波Harmonic distortion 谐波失真Harmonic Generator 谐波发生器Harmonize (使)和谐,校音Harmony 和谐Harp 竖琴Hash 杂乱脉冲干扰Hass effect 哈斯效应HD harmonic distortion 谐波失真HDCD high definition compatible digital 高分辨率兼容性数字技术HDTV hight definiton television 高清晰度电视Head 录音机磁头,前置的,唱头Head azimuth 磁头方位角Head gap 磁头缝隙Headroom 动态余量,动态范围上限,电平储备Headphone 头戴式耳机Headset 头带式耳机Heavy metel 重金属HeiFin 垂直微调Hearing 听到,听觉Heat sink 散热板Help (对程序的)解释HF high frequency 高频,高音Hi hign 高频,高音HI band 高频带Hi-end 最高品质,顶级Hi-BLEND 高频混合指示High cut 高切High pass 高通Highway 总线,信息通道Hi-Fi high fidelity 高保真,高保真音响Hiss 咝声Hi-Z 高阻抗HL half reverb 大厅混响Hoghorn 抛物面喇叭Hoisting 提升Hold 保持,无限延续,保持时间Holder 支架,固定架Hold-off 解除保持Home 家庭,实用Home theatre 家庭影院Horizontal 水平的,横向的Horn 高音号角,号筒,圆号Hornloaded 号角处理Hot 热端,高电位端Hour 小时Howling 啸叫声Howlround 啸叫H.P headphone 头戴式耳机HPA haas pan allochthonous 哈斯声像漂移HPF high pass filter 高通滤波器HQ high quality 高质量,高品位HQAD high quality audio disc 高品位音频光盘HR handing room 操作室HR high resistance 高阻抗(信号端子的阻抗特性)HRTF head-related transfer function 人脑相关转换功能HS head set 头戴式耳机HS hybrid system 混合系统HT home theater 家庭影院,家庭剧场。
重要科研项目及成果——智慧冰壶
随机介质中成像模型和图像恢复方法研究
对抗学习中的博弈模型研究 球形视觉模型及全动态场景目标跟踪方法研究
重要科研项目及成果
繁体手写汉字识别 中英文混合手写识别 连续手写识别 金融系统手写票据识别
多光谱纸币图像分析技术
重要科研项目及成果
ห้องสมุดไป่ตู้
多光谱纸币图像分析技术 电力系统场景重建与仪表识别巡检机器人
师资队伍
唐降龙 黄剑华 刘 鹏 刘家锋 黄庆成 赵 巍 程丹松 吴 锐 刘松波 金 野 教 授 研究中心主任 模式识别与机器学习 教 授 图像处理与摄影测量 副教授 研究中心副主任 图像处理与分析 副教授 弱监督学习方法 副教授 多智能体与智能控制 副教授 图像处理与视觉计算 副教授 图像特征检测与机器学习 副教授 视觉与控制 助理研究员 电路系统集成 讲 师 图像处理与模式识别
1996年, 我国第一台手写输入电脑,获航天部科技进步二等奖;
1998年, 我国第一个人脸识别系统,获航天部科技进步二等奖。
发展历史
徐近霈教授
80年代初率先在国内开展语音识别研究。 1983年,微型机语音识别接口,获国防科工委科技进步二等奖; 1985年,LS-83语音\图像混合输入接口,获航天部科技进步三等奖; 1993年,汉语文本读入系统,获航天部科技进步二等奖; 1994年,高噪声背景下命令语音系统,获航天部科技进步三等奖; 1995年,电话语音识别和自动会话系统:获航天部科技进步三等奖; 1997年,机载语音识别及合成技术,获航天部科技进步三等奖。
航天科技集团
嫦娥五号返回器惯性导航单元 短道速滑多目标滑行数据视觉测量与动作分析 武器管理和身份认证系统
国家体育总局
哈医大附属医院
基于相关滤波器的目标跟踪方法综述
基于相关滤波器的⽬标跟踪⽅法综述0引⾔视觉跟踪是计算机视觉中引⼈瞩⽬且快速发展的领域,主要⽤于获取运动⽬标的位置、姿态、轨迹等基本运动信息,是理解服务对象或对⽬标实施控制的前提和基础。
其涉及许多具有挑战性的研究热点并常和其他计算机视觉问题结合出现,如导航制导、事件检测、⾏为识别、视频监控、⾃动驾驶、移动机器⼈等[1-4]。
虽然跟踪⽅法取得了长⾜进展,但由于遮挡、⽬标的平⾯内/外旋转、快速运动、模糊、光照及变形等因素的存在使其仍然是⾮常具有挑战性的⼯作。
近年来,基于相关滤波器CF(Correlation Filter)的跟踪⽅法得到了极⼤关注[5-9]。
CF 最⼤的优点是计算效率⾼,这归结于其假设训练数据的循环结构,因为⽬标和候选区域能在频域进⾏表⽰并通过快速傅⾥叶变换(FFT)操作。
Bolme [6]等⾸次将CF 应⽤于跟踪提出MOSSE 算法,其利⽤FFT 的快速性使跟踪速度达到了600-700fps 。
瑞典林雪平⼤学的Martin Danelljan 在2016年ECCV 上提出的相关滤波器跟踪算法C -COT [7]取得了VOT2016竞赛冠军,2017年其提出的改进算法ECO [8]在取得⾮常好的精度和鲁棒性的同时,显著提⾼运算速度⾄C-COT 的6倍之多。
基于CF 的跟踪算法如此优秀,已然成为研究热点。
近年和相关滤波有关的论⽂层出不穷,很有必要对这些论⽂及相关滤波的发展等进⾏⼀个归纳和总结,以推动该⽅向的发展。
⽂献[9]虽已做过综述并取得了⼀定效果,但有两点不⾜:(1)过多介绍现有⼏种⽅法的具体细节,没有对更多⽂献进⾏对⽐分析;(2)缺乏对基于相关滤波器跟踪⽅法的分类对⽐分析。
基于此,本⽂的不同基⾦项⽬:陕西理⼯⼤学科研项⽬资助(SLGKY16-03)基于相关滤波器的⽬标跟踪⽅法综述?马晓虹1,尹向雷2(1.陕西理⼯⼤学电⼯电⼦实验中⼼,陕西汉中723000;2.陕西理⼯⼤学电⽓⼯程学院,陕西汉中723000)摘要:⽬标跟踪是计算机视觉中的重要组成部分,⼴泛应⽤于军事、医学、安防、⾃动驾驶等领域。
S T A P L E 目 标 跟 踪 算 法
计算机视觉中,究竟有哪些好用的目标跟踪算法(下)在介绍SRDCF之前,先来分析下相关滤波有什么缺点。
总体来说,相关滤波类方法对快速变形和快速运动情况的跟踪效果不好。
快速变形主要因为CF是模板类方法。
容易跟丢这个比较好理解,前面分析了相关滤波是模板类方法,如果目标快速变形,那基于HOG的梯度模板肯定就跟不上了,如果快速变色,那基于CN的颜色模板肯定也就跟不上了。
这个还和模型更新策略与更新速度有关,固定学习率的线性加权更新,如果学习率太大,部分或短暂遮挡和任何检测不准确,模型就会学习到背景信息,积累到一定程度模型跟着背景私奔了,一去不复返。
如果学习率太小,目标已经变形了而模板还是那个模板,就会变得不认识目标。
(举个例子,多年不见的同学,你很可能就认不出了,而经常见面的同学,即使变化很大你也认识,因为常见的同学在你大脑里面的模型在持续更新,而多年不见就是很久不更新)快速运动主要是边界效应(Boundary Effets),而且边界效应产生的错误样本会造成分类器判别力不够强,下面分训练阶段和检测阶段分别讨论。
训练阶段,合成样本降低了判别能力。
如果不加余弦窗,那么移位样本是长这样的:除了那个最原始样本,其他样本都是“合成”的,100*100的图像块,只有1-10000的样本是真实的,这样的样本集根本不能拿来训练。
如果加了余弦窗,由于图像边缘像素值都是0,循环移位过程中只要目标保持完整那这个样本就是合理的,只有目标中心接近边缘时,目标跨越边界的那些样本是错误的,这样虽不真实但合理的样本数量增加到了大约2-3(padding= 1),即使这样仍然有1-3(3000-10000)的样本是不合理的,这些样本会降低分类器的判别能力。
再者,加余弦窗也不是“免费的”,余弦窗将图像块的边缘区域像素全部变成0,大量过滤掉分类器本来非常需要学习的背景信息,原本训练时判别器能看到的背景信息就非常有限,我们还加了个余弦窗挡住了背景,这样进一步降低了分类器的判别力(是不是上帝在我前遮住了帘。
目标跟踪算法综述
目标跟踪算法综述大连理工大学卢湖川一、引言目标跟踪是计算机视觉领域的一个重要问题,在运动分析、视频压缩、行为识别、视频监控、智能交通和机器人导航等很多研究方向上都有着广泛的应用。
目标跟踪的主要任务是给定目标物体在第一帧视频图像中的位置,通过外观模型和运动模型估计目标在接下来的视频图像中的状态。
如图1所示。
目标跟踪主要可以分为5部分,分别是运动模型、特征提取、外观模型、目标定位和模型更新。
运动模型可以依据上一帧目标的位置来预测在当前帧目标可能出现的区域,现在大部分算法采用的是粒子滤波或相关滤波的方法来建模目标运动。
随后,提取粒子图像块特征,利用外观模型来验证运动模型预测的区域是被跟踪目标的可能性,进行目标定位。
由于跟踪物体先验信息的缺乏,需要在跟踪过程中实时进行模型更新,使得跟踪器能够适应目标外观和环境的变化。
尽管在线目标跟踪的研究在过去几十年里有很大进展,但是由被跟踪目标外观及周围环境变化带来的困难使得设计一个鲁棒的在线跟踪算法仍然是一个富有挑战性的课题。
本文将对最近几年本领域相关算法进行综述。
二、目标跟踪研究现状1. 基于相关滤波的目标跟踪算法在相关滤波目标跟踪算法出现之前,大部分目标跟踪算法采用粒子滤波框架来进行目标跟踪,粒子数量往往成为限制算法速度的一个重要原因。
相关滤波提出了一种新颖的循环采样方法,并利用循环样本构建循环矩阵。
利用循环矩阵时域频域转换的特殊性质,将运算转换到频域内进行计算,大大加快的分类器的训练。
同时,在目标检测阶段,分类器可以同时得到所有循环样本得分组成的响应图像,根据最大值位置进行目标定位。
相关滤波用于目标跟踪最早是在MOSSE算法[1]中提出的。
发展至今,很多基于相关滤波的改进工作在目标跟踪领域已经取得很多可喜的成果。
1.1. 特征部分改进MOSSE[1] 算法及在此基础上引入循环矩阵快速计算的CSK[2]算法均采用简单灰度特征,这种特征很容易受到外界环境的干扰,导致跟踪不准确。
Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints
article
info
abstract
In this paper, adaptive tracking control is proposed for a class of uncertain multi-input and multi-output nonlinear systems with non-symmetric input constraints. The auxiliary design system is introduced to analyze the effect of input constraints, and its states are used to adaptive tracking control design. The spectral radius of the control coefficient matrix is used to relax the nonsingular assumption of the control coefficient matrix. Subsequently, the constrained adaptive control is presented, where command filters are adopted to implement the emulate of actuator physical constraints on the control law and virtual control laws and avoid the tedious analytic computations of time derivatives of virtual control laws in the backstepping procedure. Under the proposed control techniques, the closed-loop semi-global uniformly ultimate bounded stability is achieved via Lyapunov synthesis. Finally, simulation studies are presented to illustrate the effectiveness of the proposed adaptive tracking control. © 2011 Elsevier Ltd. All rights reserved.
TDT1
TDT2004设置的另外一项新任务是层次话题检测(简称 为HTD),目的在于区分报道内容在层次上的差异,从而 建立结构化的话题模型。总体而言,话题检测研究的发展 逐步面向结构化和层次化。 TDT2004设置了有指导的自适应话题跟踪任务(ATT), 其与传统TT系统的区别在于嵌入了自学习机制,可以使跟 踪系统实时地依据话题的发展自动更新话题模型,从而有 效追踪话题的报道趋势。
2012-12-8
TDT研究现状(5)
2)事件回顾检测(RED) RED研究的必要性来源于话题波动出现的特性。 同一话题跳跃式地出现于不同时间,并且每次出现都伴随 着大量相关报道。 基于新闻语料的这种特性,话题检测系统往往只能识别出 局限于一个时期的事件,而构成话题的全部事件并没有有 机地结合起来,而是独立地作为一个话题被误检。 RED研究就是面向话题检测系统的这种缺陷提出的。 首次提出RED研究并给予定义的学者是Yiming Yang。 其采用凝聚式聚类算法与批平均聚类算法相结合的策略, 将近似于同一话题模型的相关事件综合在一起作为话题检 测的结果,从而使TD系统具备了回顾相关事件的能力。
2012-12-8
相关概念(2)
Story(报道):论述某个话题的新闻片断,它包括两 个以上独立表述该事件的说明语句。 • Story :a topically cohesive segment of news that includes two or more declarative independent clauses about a single event Subject(主题):,它的含义更广些。话题与某个具 体事件相关,而主题可以涵盖多个类似的具体事件或 者根本不涉及任何具体事件。 根据话题的定义,一篇Story(报道)只要论述的事 件或活动与一个话题的种子事件有着直接的联系,那 么这篇报道就与该话题相关。
Adaptive cooperative tracking control of higher-order nonlinear systems with
Contents lists available at SciVerse ScienceDirect
Automatica
journal homepage: /locate/automatica
Brief paper
Article history: Received 30 November 2010 Received in revised form 22 July 2011 Accepted 12 December 2011 Available online 8 June 2012 Keywords: Consensus Cooperative control Multi-agent system Neural adaptive control Nonlinear system Synchronization
✩ This work was supported by NSF grant ECCS-1128050, AFOSR grant FA9550-091-0278, and ARO grant W91NF-05-1-0314. The material in this paper was partially presented at the IEEE Conference on Decision and Control (CDC), December 15–17, 2010, Atlanta, Georgia, USA. This paper was recommended for publication in revised form by Associate Editor Shuzhi Sam Ge under the direction of Editor Miroslav Krstic. E-mail addresses: hwzhang@ (H. Zhang), lewis@ (F.L. Lewis). 1 Tel.: +1 817 272 5972; fax: +1 817 272 5989.
基于仿生眼的无人机视觉跟踪云台摄像机控制系统(英文)
In the UAV visual tracking system, the UAV, the onboard camera and the ground target are all in motion. Therefore, the system has the following characteristics. Firstly, UAV is inherently unstable and capable of exhibiting high acceleration rates, in addition there are the engine vibration and the wind, thus the image from the onboard camera is very unstable. Moreover, the image can't be processed using normal spatio-temporal filtering of the camera image sequence for estimation of local motion. Next, the system demands high-performance real-time processing. But UAV has limited on-board power and payload capacity, so that it limits the usage of the on-board hardware. Thus, the new appropriate hardware must be designed; meanwhile, the adaptive robust algorithm must be introduced. The vision and the control system must be compact, efficient, and lightweight for effective on-board integration. Thirdly, the on-board camera is always in motion, the distance and direction between the on-board camera and ground moving target change constantly, so the existing target recognition and tracking method, which fit for the image from the static camera, is no longer suitable. It is insufficient to only control the camera for UAV visual tracking system. The rolling angle and pitching angle of the on-board camera are requested to be extremely accurate. Once the angle has a tiny deflection, the target may be lost. Moreover, the flight attitude seriously influences the view of the on-board camera. The stable tracking must coordinate to ontrol the flight attitude of UAV and the movement of the onboard camera.
目标跟踪Visual tracking总结汇报
非线性:
w
i
(
x
i
)
i
求解(闭环解):
n
f (z) wT z i (z, xi) i 1
=(K+ I)1 y K ij (xi, x j)
检测:
f(z) (K Z )T
CSK的实现
检测阶段,从新的一帧中采样图像块 z,利用学习到的目标表观 x 和分器 α,可得出 z 内所有位置处的检测响应
训练:Ridge regression (岭回归)
线性:
f (z) wT z
x y min
(f( )
2
)
w2
w
i
i
i
求解(闭环解):
w ( X T X I )1 X T y
若样本在原始特征空间线性不可分,则通过一个映射函数 φ (x) 将输入的特征值映射到一个更
高维的特征空间实现线性可分
DCF:
d
S (x) xl * f l f l 1
Loss
function: SRDCF:
t
2
d
2
t( f )
S x y ( ) f l
k
fk
k
k 1
l 1
t
2
d
2
t( f )
S x y ( ) W f l
k
fk
k
k 1
Input image
Extraction
Sample
x patch
Cyclic
sxh(imfts, n)
Kernelized least
squaresA=Yuxu x(m, n) xm,n, x
孙富春简介pdf
孙富春简介pdf孙富春简历孙富春,清华大学计算机科学与技术系教授,博士生导师,国家863计划专家组成员,国家自然基金委重大研究计划“视听觉信息的认知计算”指导专家组成员,计算机科学与技术系学术委员会副主任, 智能技术与系统国家重点实验室常务副主任; 兼任国际刊物《IEEE Trans. on Fuzzy Systems》,《Mechatronics》和《International Journal of Control, Automation, and Systems》副主编或大区主编,《International Journal of Computational Intelligence Systems》和《Robotics and Autonumous Systems》编委;兼任国内刊物《中国科学F:信息科学》和《自动化学报》编委;兼任中国人工智能学会认知系统与信息处理专业委员会主任,IEEE CSS智能控制技术委员会委员。
98年3月在清华大学计算机应用专业获博士学位。
98年1月至2000年1月在清华大学自动化系从事博士后研究,2000年至今在计算机科学与技术系工作。
工作期间获得的主要奖励有:2000年全国优秀博士论文奖,2001年国家863计划十五年先进个人,2002年清华大学“学术新人奖”,2003年韩国第十八届Choon-Gang 国际学术奖一等奖第一名,2004年教育部新世纪人才奖,2005年清华大学校先进个人,2006年国家杰出青年基金。
获奖成果5项,两项分别获2010年教育部自然科学奖二等奖(排名第一)和2004年度北京市科学技术奖(理论类)二等奖(排名第一)、一项获2002年度教育部提名国家科技进步二等奖(排名第二)、三项获省部级科技进步三等奖。
译书一部,专著两部,在国内外重要刊物发表或录用论文150余篇,其中在IEE、IEEE汇刊、Automatica等国际重要刊物发表论文90余篇,80余篇论文收入SCI,SCI期刊他人引用700余次,200多篇论文收入EI,有两篇论文曾被评为国内二级学会的最佳优秀论文奖。
基于单应矩阵分解的轮式移动机器人视觉伺服轨迹跟踪
基于单应矩阵分解的轮式移动机器人视觉伺服轨迹跟踪李宝全,徐壮,冀东(天津工业大学电气工程与自动化学院,天津300387)Visual servo trajectory tracking of wheeled mobile robot based on fastdecomposition of homography matrixLI Bao-quan ,XU Zhuang ,JI Dong(School of Electrical Engineering and Automation ,Tiangong University ,Tianjin 300387,China )Abstract :In order to control the mobile robot to track the desired trajectory from the current trajectory袁a robot trajectorytracking algorithm without introducing additional variables is designed.Firstly袁according to the reference coordinate system of the robot in Euclidean space袁homography matrices are constructed with respect to the desired coordinate and the current coordinate袁respectively.Then袁the relationship between the current trajectory and the desired trajectory is obtained by the coordinate transformation and the rapid decomposition of the homography matrix.The trajectory tracking errors are defined according to the relative pose袁and the open-loop error equation can be obtained.Finally袁the adaptive visual servo trajectory tracking controllor is designed袁and the stablity of the closed -loop system is proved by Lyapunov techniques and extended Barbalat's Lemma.Simulation and contrast experiments show that the current linear velocity and angular velocity of the mobile robot match the expected linear velocity and angular velocity.The current motion trajectory is consistent with the expected motion trajectory.The feature points of the image are almost completely coincident with that of the simulation.The pose error will converge to 0袁proving that the mobile robot can track the desired trajectory.Key words :mobile robot ;visual servo trajectory tracking ;fast decomposition of homography matrix ;Lyapunov theory摘要:为了控制移动机器人从当前轨迹跟踪上期望轨迹,设计了一种不需要引入额外变量的机器人轨迹跟踪算法。
ProfessionalSummary职业概述
Professional SummaryDarren Dawson∙Education:Ph.D., Electrical Engineering, Georgia Institute of Technology, 1990B.S., Electrical Engineering, Highest Honors, Georgia Institute of Technology, 1984∙Work Experience:Westinghouse, Bettis Atomic Power Laboratory, Electrical Engineer, 1985-1987Georgia Institute of Technology, School of Electrical Engineering, Graduate Research Assistant and Post-Doctoral Research, 1987-1990.Clemson University, Department of Electrical and Computer EngineeringAssistant Professor - 1990, Associate Professor - 1993, Professor – 1996, ECE Chair - 2007∙Prestigious Honors:i)Office of Naval Research Young Investigator Awardee, ii)National Science Foundation Young Investigator Awardee, iii)McQueen Quattlebaum Faculty Achievement Awardee, iv)Georgia Institute of Technology Council of Outstanding Young Engineering Alumni, v)Provost’s Award for Scholarly Achievement, and vi) Alumni Award for Outstanding Achievement in Research (For a complete list of honors see full resume).∙Research Publication Activities: Research has culminated in over 190 journal papers, over 325 conference papers, nine books, and five book chapters which, as of 2013, have resulted in a total of over 6000 citations and an H-index of 38 according to Google Scholar.∙Graduate Student Advisement:Supervisor of 34 Ph.D. students and 53 M.S. thesis students.∙Professional Recognition: i) Invited addresses at over ten universities, and ii) twenty invited presentations at national and international conferences.∙Research and Teaching Funding:PI, Co-PI, Co-In of over 20 million dollars of funded activity from federal, state, and industrial sources (Estimated Expenditures of over $5M for Dr. Dawson).∙Participation in Professional Societies:i) Over 325 Faculty/Graduate Student Conference Presentations, ii)Over 20 Faculty/Graduate Student Invited Conference Presentations, iii) Co-Chaired and organized seven conference sessions at national and international conferences, and iv) Served on four program committees for international conferences.∙Editorial Service:i)Associate Editor, Automatica, The International Federation of Automatic Control (IFAC) Journal, 1992 –1996, and ii)Associate Editor, IEEE Transactions on Control Systems Technology, 1997 – 2002.∙Service to Professional, Public, and Private Sectors: i) Reviewer for over 15 journals and two book publishers, ii) Served on several NSF review panels, iii) Performed several book reviews for journal publications.Contributions to Control EngineeringLeadership in Academic Research: For two decades, Dawson has been developing rigorous solutions for numerous open problems associated with important and/or benchmark nonlinear control applications in practically important areas such as motion control, motor control, robotics, and mechanical system control. His work in these areas have resulted in a total of over 6000 citations and an H-index of 38 according to Google Scholar.One of the hallmarks of his work has been the implementation and validation of controllers for a variety of electromechanical systems. His leadership in his field is attested by his scholarship and the recognition of his work by top awards from his university, the NSF, and ONR. Dawson has served as the primary advisor of 34 completed Ph.D. dissertations and 53 completed master's theses. Many of his former graduate students are leaders at corporations such General Electric, Texas Instruments, Lucent, Boeing, Scientific Research, Intel, BF Goodrich, etc. In addition, his Ph.D. students received academic appointments as follows: J. Carroll - Clarkson University, M. Bridges - University of Michigan, T. Burg - Clemson University, M. Queiroz - Louisiana State University, H. Canbolat - Mersin University, P. Aquino - Centro Federal de Educacaçao Tecnológica, M. Feemster - Naval Academy, W. Dixon - University of Florida, E. Zergeroglu - Gebze Institute of Technology, A. Behal - University of Central Florida, Y. Fang - Nankai University, X. Bin - Tian Jin University, M. McIntyre - Western Kentucky University, M. Salah - Hashemite University, and E. Tatlicioglu - Izmir Institute of Technology.At the Forefront of Electromechanical Control Design:Dawson was the first scholar to design a control theoretic, nonlinear adaptive position tracking controller for induction motors that compensates for unknown rotor resistance effects without measuring rotor flux (see Automatica Vol. 32, No 8. pp. 1127-1143, 1996). In addition, he illustrated how a nonlinear control scheme could be designed and analyzed to facilitate the practical use of induction motors as actuators for robot manipulators(See journal paper #1 in Part 2). His work in generalized mechanical systems (see journal paper #3 in Part 2) is often cited by other researchers as being the first paper to present a global adaptive output feedback tracking control solution for a general class of Lagrange Euler systems. He was also the first scholar to design, analyze, and implement a rigorously developed nonlinear algorithm for the important application area of sensorless control of induction motors (see journal paper #7 in Part 2). His work in underactuated systems (see his research monograph Nonlinear Control of Wheeled Mobile Robots, 2001) is recognized by other researchers as being one of the earliest solutions to the tracking control problem for systems with nonintegrable dynamics. Dawson’s contributions, which are at the forefront of his field, have also illustrated in a novel fashion how Lyapunov-based control design tools (e.g., integrator backstepping, boundary control, nonlinear observer/filter design) can be handcrafted to attack difficult nonlinear control applications involving modeling uncertainty or a lack of state measurements. For example, he designed a novel nonlinear filter to facilitate a global result in journal paper #3 in Part 2; furthermore, he illustrated how a dynamic oscillator technique used for induction motors could be redesigned to solve the underactuated mechanical system tracking problem addressed in his research monograph Nonlinear Control of Wheeled Mobile Robots, 2001. The theoretical and practical importance of his research has also been established by numerous research grants and contracts from federal agencies and industrial firms (e.g., Honda, Westinghouse, Sauer-Danfoss, Union Camp, etc.).Experimental Validation of Controller Performance: Dawson’s research is notable in that the performance gains associated with his control theoretic work has been verified experimentally by his research group (See the research monograph’s #1 a nd #2 in Part 1). Dawson’s other important contributions include: i) design, analysis, and implementation of nonlinear control schemes for mobile robotic systems (see his research monograph Nonlinear Control of Wheeled Mobile Robots, 2001), ii) design of a broad class of boundary controllers for regulating the vibration of many types of mechanical systems (see the research monograph #2 in Part 1), iii) synthesis of novel visual servo controllers and vision-based estimators (see journal paper #4 in Part 2), iv) design, analysis, and implementation of novel adaptive controllers for compensating for frictional effects, v) development of real-time MATLAB based software control education (see his journal paper in the IEEE Transactions on Education, Vol. 45, No. 3, pp. 218-226, August 2002), and vi) development of real-time QNX-based software for control research (see his paper in the IEEE Control Systems Magazine, Vol. 22, No. 3, pp. 12-26, June, 2002).Major Accomplishments as a ScholarPART 1 – Selected Books (Boldface co-authors denote students of Dawson)1. D. Dawson, J. Hu, and T. Burg, Nonlinear Control of Electric Machinery, Marcel Dekker,1998, ISBN 0-8247-0180-1.This 437-page monograph presents Professor Dawson’s research from 1991-1998 in the field of nonlinear control design and analysis for electric machines. Specifically, this book presents the mathematical foundation for designing feedback/feedforward algorithms that account for the nonlinearities and modeling uncertainties associated with controlling mechanical systems driven by electric machines.2.M. de Queiroz, D. Dawson, S. Nagarkatti, and F. Zhang, Lyapunov-Based Control ofMechanical Systems, Birkhauser, 1999, ISBN 0-8176-4086-X.This 316-page monograph presents Professor Dawson’s research from 1994-1999 in the field of nonlinear control design and analysis for mechanical systems. This book illustrates, in a unified framework, how Lyapunov-based techniques can be applied to a variety of control problems that can be modeled by ordinary and/or partial differential equations.3.W. Dixon, A. Behal, D. Dawson, and S. Nagarkatti, Nonlinear Control of EngineeringSystems: A Lyapunov-Based Approach, Birkhäuser, 2003, ISBN 0-8176-4265-X.This 394-page monograph presents Professor Dawson’s research from 1987-2003 in the field of nonlinear control design and analysis for a variety of systems (e.g. mechanical, electrical, robotic, aerospace, and underactuated systems). This book provides a practical yet rigorous development of nonlinear Lyapunov-based tools and their use in the solution of control-theoretic problems.PART 2 – Selected Journal Papers (Boldface co-authors denote students of Dawson) Nonlinear Control of Mechanical Systems1.T. Burg, D. Dawson, J. Hu, and M. de Queiroz, “An Adaptive Partial State Fee dbackController for RLED Robot Manipulators”, IEEE Transactions on Automatic Control, Vol.41, No. 7, pp. 1024-1031, July, 1996.One of the first controllers designed for the full order Rigid-Link Electrically-Driven (RLED) robot model. The controller was designed to adapt for parametric uncertainty in the electromechanical dynamics while utilizing a novel dynamic filter to eliminate the need for velocity measurements.2.M. de Queiroz, D. Dawson, M. Agarwal, and F. Zhang, “Adaptive Nonlinear BoundaryContr ol of a Flexible Link Robot Arm”, IEEE Transactions on Robotics and Automation, Vol. 15, No. 4, Aug., 1999, pp. 779-787.The paper blended nonlinear, adaptive ordinary differential equation control techniques with partial differential equation boundary control techniques to deal with parametric uncertainty.The approach was novel because, to the best of our knowledge, this was the first controller to compensate for unknown payload mass based on an infinite dimensional model of flexible link robots.3.F. Zhang, D. Dawson, M. de Queiroz, and W. Dixon, “Global Adaptive Output FeedbackTracking Control of Robot Manipulators”, IEEE Transactions on Automatic Control, Vol.45, No. 6, June 2000, pp. 1203-1208.This paper presented a global, adaptive, OFB tracking controller for uncertain robot manipulators. To the best of our knowledge, this result constituted the first global tracking result for this important nonlinear dynamical system.4.J. Chen, D. M. Dawson, W. E. Dixon, and A. Behal, “Adaptive Homography-Based VisualServo Tracking for Fixed and Camera-in-Hand Configurations,” IEEE Transactions on Control Systems Technology, Vol. 13, No. 5, pp. 814-825, Sept. 2005.This paper represented one of the first approaches with regard to blending a Lyapunov-based approach with projective homography tools for visual servoing. The controller was novel since it was the first approach to actively compensate for the lack of unknown depth measurements and unknown object model parameters.Nonlinear Control of Electric Machines5. D. Dawson, J. Carroll, and M. Schneider, “Integrator Backstepping Control for a Brush dcMotor Turning a Robotic Load”, IEEE Transactions on Controls Systems Technology, Vol.2, No. 3, Sept., 1994, pp. 233-244.One of the first papers to experimentally illustrate the performance gains that can be achieved using the integrator backstepping technique with regard to adaptive and robust nonlinear controllers for electromechanical systems.6.M. de Queiroz and D. Dawson, “Nonlinear Control of Active Magnetic Be arings: ABackstepping Approach”, IEEE Transactions on Control Systems Technology, Vol. 4, No. 5, Sept., 1996, pp. 545-552.To the best of our knowledge, this paper presented the first singularity-free, tracking controller for the third order, nonlinear model of an active magnetic bearing system. This result was achieved by a novel commutation strategy for switching the electrical currents.7.M. Feemster, P. Aquino, D. Dawson, and A. Behal, “Sensorless Rotor Velocity TrackingControl for Induction Motors,”IEEE Transactions on Control System Technology, Vol. 9, No. 4, pp. 645-653, July, 2001.In this paper, we presented one of the first sensorless observer/control algorithm that rigorously achieved semi-global exponential rotor velocity for the full-order nonlinear system induction motor model (i.e., only stator current measurements were required). Experimental results validated the performance of the sensorless controller.8. A. Behal, M. Feemster, and D. Dawson, “An Improved Indirect Field Oriented Control lerfor the Induction Motor”, IEEE Transactions on Control Systems Technology, Vol. 11, No. 2, pp. 248-252, March 2003.One of the first papers that illustrated how the standard indirect field-oriented controller can be modified using Lyapunov tools to design an adaptive controller to compensate for parametric uncertainty associated with the mechanical load.Nonlinear Control for General Classes of Systems9. B. Xian, D.M. Dawson, M. de Queiroz, and J. Chen, “A Continuous Asymptotic TrackingControl Strategy for Uncertain Nonlinear Systems”, IEEE Trans. on Automatic Control, Vol.49, No. 7, pp. 1206-1211, July 2004.This paper presented a tracking controller for a class of uncertain, high-order, MIMO nonlinear systems which includes time-varying and nonlinearly parameterized systems. A novel continuous control strategy was used to ensure semi-global asymptotic tracking under limited restrictions on the uncertain nonlinearities.10.J. Chen, A. Behal, and D. M. Dawson, “Robust Feedback Control for a Class of Uncer tainMIMO Nonlinear Systems”, IEEE Transactions on Automatic Control, Vol. 53, No. 2, pp.591-596, Mar. 2008.This paper presented an output feedback tracking controller for a broad class of uncertain MIMO nonlinear systems using a high gain observer.。
关于卡尔曼滤波的英文摘要
AbstractSince the middle of the last century, since the concept of activity tracking is proposed, the purpose of activity detection and tracking skills obtained rapid development and widespread use of. Since ninety time, the purpose of video tracking methods have gradually increased based on. Because the real tracking situation complex, was tracking activities objective model affirmation and identity, activity objective visual tracking techniques become one of the research contents are very challenging computer vision research in the field of. In this paper, based on actual Calman filter, on the activity of objective visual tracking techniques carried out research in various ways, and put forward the measures and shadow detection of new activities objective detection and removal method, obtained a better test results. The important task of this paper as follows:In the aspect of the objective activity detection, lack of target image of a three frame difference method to detect the noise and objective Department area undetected, using mathematical morphological principle of test results processing, removal of noise detection results, filling Department undetected area, and puts forward a kind of algorithm based on edge linking based on the results, improvements on the purpose of activity edge detection. Edge detection methods in this paper combined with three frame difference method and modified for detection of the objective activity. This method not only improved objective detection accuracy, and prevents the activity objective regional departments omission.In the objective activity tracking, using the classical Calman filtering algorithm is completed on the objective activity tracking, but the classic Calman filtering approach is filtering algorithm for linear, nonlinear results about tracking consequences due to good. This paper uses adaptive unscented filtering approach of Calman, in the image sequences of single objective and multiple objective activity activity stop tracking test, the test results of annotation adaptive unscented Calman filtering approach can be better on the objective to stop tracking.In the aspect of shadow detection and removal, reasons and characteristics of Shadow form analysis, and put forward the algorithm of shadow detection and removal based on shadow in HSV color space characteristic and texture characteristics. The test results of the algorithm can effectively remove the annotation accuracy of shadow, progress on the purpose of the activity detection and tracking.Key words: moving target detection moving target tracking Calman filter for multiple target tracking and remove shadow detection。
S T A P L E 目 标 跟 踪 算 法
目标跟踪相关资源(含模型,CVPR2017论文,代码,牛人等)Visual TrackersECO: Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg. "ECO: Efficient Convolution Operators for Tracking." CVPR (2017). [paper] [project] [github]CFNet: Jack Valmadre, Luca Bertinetto, Jo?o F. Henriques, Andrea Vedaldi, Philip H. S. Torr. "End-to-end representation learning for Correlation Filter based tracking." CVPR (2017). [paper] [project] [github]CACF: Matthias Mueller, Neil Smith, Bernard Ghanem. "Context-Aware Correlation Filter Tracking." CVPR (2017 oral). [paper] [project] [code]RaF: Le Zhang, Jagannadan Varadarajan, Ponnuthurai Nagaratnam Suganthan, Narendra Ahuja and Pierre Moulin "Robust Visual Tracking Using Oblique Random Forests." CVPR (2017). [paper] [project] [code]MCPF: Tianzhu Zhang, Changsheng Xu, Ming-Hsuan Yang. "Multi-task Correlation Particle Filter for Robust Visual Tracking ." CVPR (2017). [paper] [project] [code]ACFN: Jongwon Choi, Hyung Jin Chang, Sangdoo Yun, Tobias Fischer, Yiannis Demiris, and Jin Young Choi. "Attentional Correlation Filter Network for Adaptive Visual Tracking." CVPR (2017) [paper] [project] [test code)][training code]LMCF: Mengmeng Wang, Yong Liu, Zeyi Huang. "Large Margin Object Tracking with Circulant Feature Maps." CVPR (2017). [paper] [zhihu]ADNet: Sangdoo Yun, Jongwon Choi, Youngjoon Yoo, Kimin Yun, Jin Young Choi. "Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning ." CVPR (2017). [paper] [project]CSR-DCF: Alan Luke?i?, Tomá? Vojí?, Luka ?ehovin, Ji?í Matas, Matej Kristan. "Discriminative Correlation Filter with Channel and Spatial Reliability." CVPR (2017). [paper][code]BACF: Hamed Kiani Galoogahi, Ashton Fagg, Simon Lucey. "Learning Background-Aware Correlation Filters for Visual Tracking." CVPR (2017). [paper]Bohyung Han, Jack Sim, Hartwig Adam "BranchOut: Regularization for Online Ensemble Tracking with Convolutional Neural Networks." CVPR (2017).SANet: Heng Fan, Haibin Ling. "SANet: Structure-Aware Network for Visual Tracking." CVPRW (2017). [paper] [project] [code]DNT: Zhizhen Chi, Hongyang Li, Huchuan Lu, Ming-Hsuan Yang. "Dual Deep Network for Visual Tracking." TIP (2017). [paper]DRT: Junyu Gao, Tianzhu Zhang, Xiaoshan Yang, Changsheng Xu. "Deep Relative Tracking." TIP (2017). [paper]BIT: Bolun Cai, Xiangmin Xu, Xiaofen Xing, Kui Jia, Jie Miao, Dacheng Tao. "BIT: Biologically Inspired Tracker." TIP (2016). [paper] [project][github]SiameseFC: Luca Bertinetto, Jack Valmadre, Jo?o F. Henriques, Andrea Vedaldi, Philip H.S. Torr. "Fully-Convolutional Siamese Networks for Object Tracking." ECCV workshop (2016). [paper] [project] [github]GOTURN: David Held, Sebastian Thrun, Silvio Savarese. "Learning to Track at 100 FPS with Deep Regression Networks." ECCV (2016). [paper] [project] [github]C-COT: Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. "Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking." ECCV (2016). [paper] [project] [github]CF+AT: Adel Bibi, Matthias Mueller, and Bernard Ghanem. "Target Response Adaptation for Correlation Filter Tracking." ECCV (2016). [paper] [project]MDNet: Nam, Hyeonseob, and Bohyung Han. "Learning Multi-Domain Convolutional Neural Networks for Visual Tracking." CVPR (2016). [paper] [VOT_presentation] [project] [github]SINT: Ran Tao, Efstratios Gavves, Arnold W.M. Smeulders. "Siamese Instance Search for Tracking." CVPR (2016). [paper] [project]SCT: Jongwon Choi, Hyung Jin Chang, Jiyeoup Jeong, Yiannis Demiris, and Jin Young Choi. "Visual Tracking Using Attention-Modulated Disintegration and Integration." CVPR (2016). [paper] [project]STCT: Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. "STCT: Sequentially TrainingConvolutional Networks for Visual Tracking." CVPR (2016). [paper] [github]SRDCFdecon: Martin Danelljan, Gustav H?ger, Fahad Khan, Michael Felsberg. "Adaptive Decontamination of the Training Set: A Unified Formulation for Discriminative Visual Tracking." CVPR (2016). [paper] [project]HDT: Yuankai Qi, Shengping Zhang, Lei Qin, Hongxun Yao, Qingming Huang, Jongwoo Lim, Ming-Hsuan Yang. "Hedged Deep Tracking." CVPR (2016). [paper] [project]Staple: Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej Miksik, Philip H.S. Torr. "Staple: Complementary Learners for Real-Time Tracking." CVPR (2016). [paper] [project] [github]DLSSVM: Jifeng Ning, Jimei Yang, Shaojie Jiang, Lei Zhang and Ming-Hsuan Yang. "Object Tracking via Dual Linear Structured SVM and Explicit Feature Map." CVPR (2016). [paper] [code] [project]CNT: Kaihua Zhang, Qingshan Liu, Yi Wu, Minghsuan Yang. "Robust Visual Tracking via Convolutional Networks Without Training." TIP (2016). [paper] [code]DeepSRDCF: Martin Danelljan, Gustav H?ger, Fahad Khan, Michael Felsberg. "Convolutional Features for Correlation Filter Based Visual Tracking." ICCV workshop (2015). [paper] [project]SRDCF: Martin Danelljan, Gustav H?ger, Fahad Khan, Michael Felsberg. "Learning Spatially Regularized Correlation Filters for Visual Tracking." ICCV (2015). [paper][project]CNN-SVM: Seunghoon Hong, Tackgeun You, Suha Kwak and Bohyung Han. "Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network ." ICML (2015) [paper] [project]CF2: Chao Ma, Jia-Bin Huang, Xiaokang Yang and Ming-Hsuan Yang. "Hierarchical Convolutional Features for Visual Tracking." ICCV (2015) [paper] [project] [github]FCNT: Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. "Visual Tracking with Fully Convolutional Networks." ICCV (2015). [paper] [project] [github]LCT: Chao Ma, Xiaokang Yang, Chongyang Zhang, Ming-Hsuan Yang. "Long-term Correlation Tracking." CVPR (2015). [paper] [project] [github]RPT: Yang Li, Jianke Zhu and Steven C.H. Hoi. "Reliable Patch Trackers: Robust Visual Tracking by Exploiting Reliable Patches." CVPR (2015). [paper] [github]CLRST: Tianzhu Zhang, Si Liu, Narendra Ahuja, Ming-Hsuan Yang, Bernard Ghanem."Robust Visual Tracking Via Consistent Low-Rank Sparse Learning." IJCV (2015). [paper] [project] [code]DSST: Martin Danelljan, Gustav H?ger, Fahad Shahbaz Khan and Michael Felsberg. "Accurate Scale Estimation for Robust Visual Tracking." BMVC (2014). [paper] [PAMI] [project]MEEM: Jianming Zhang, Shugao Ma, and Stan Sclaroff. "MEEM: Robust Tracking via Multiple Experts using Entropy Minimization." ECCV (2014). [paper] [project]TGPR: Jin Gao,Haibin Ling, Weiming Hu, Junliang Xing. "Transfer Learning Based Visual Tracking with Gaussian Process Regression." ECCV (2014). [paper] [project]STC: Kaihua Zhang, Lei Zhang, Ming-Hsuan Yang, David Zhang. "Fast Tracking via Spatio-Temporal Context Learning." ECCV (2014). [paper] [project]SAMF: Yang Li, Jianke Zhu. "A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration." ECCV workshop (2014). [paper] [github]KCF: Jo?o F. Henriques, Rui Caseiro, Pedro Martins, Jorge Batista. "High-Speed Tracking with Kernelized Correlation Filters." TPAMI (2015). [paper] [project]OthersRe3: Daniel Gordon, Ali Farhadi, Dieter Fox. "Re3 : Real-Time Recurrent Regression Networks for Object Tracking." arXiv (2017). [paper] [code]DCFNet: Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang, Weiming Hu. "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking." arXiv (2017). [paper] [code]TCNN: Hyeonseob Nam, Mooyeol Baek, Bohyung Han. "Modeling and Propagating CNNs in a Tree Structure for Visual Tracking." arXiv (2016). [paper] [code]RDT: Janghoon Choi, Junseok Kwon, Kyoung Mu Lee. "Visual Tracking by Reinforced Decision Making." arXiv (2017). [paper]MSDAT: Xinyu Wang, Hanxi Li, Yi Li, Fumin Shen, Fatih Porikli . "Robust and Real-time Deep Tracking Via Multi-Scale DomainAdaptation." arXiv (2017). [paper]RLT: Da Zhang, Hamid Maei, Xin Wang, Yuan-Fang Wang. "Deep Reinforcement Learning for Visual Object Tracking in Videos." arXiv (2017). [paper]SCF: Wangmeng Zuo, Xiaohe Wu, Liang Lin, Lei Zhang, Ming-Hsuan Yang. "Learning Support Correlation Filters for Visual Tracking." arXiv (2016). [paper] [project]DMSRDCF: Susanna Gladh, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg. "Deep Motion Features for Visual Tracking." ICPR Best Paper (2016). [paper]CRT: Kai Chen, Wenbing Tao. "Convolutional Regression for Visual Tracking." arXiv (2016). [paper]BMR: Kaihua Zhang, Qingshan Liu, and Ming-Hsuan Yang. "Visual Tracking via Boolean Map Representations." arXiv (2016). [paper]YCNN: Kai Chen, Wenbing Tao. "Once for All: a Two-flow Convolutional Neural Network for Visual Tracking." arXiv (2016). [paper]Learnet: Luca Bertinetto, Jo?o F. Henriques, Jack Valmadre, Philip H. S. Torr, Andrea Vedaldi. "Learning feed-forward one-shot learners." NIPS (2016). [paper]ROLO: Guanghan Ning, Zhi Zhang, Chen Huang, Zhihai He, Xiaobo Ren, Haohong Wang. "Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking." arXiv (2016). [paper] [project] [github]Yao Sui, Ziming Zhang, Guanghui Wang, Yafei Tang, Li Zhang. "Real-Time Visual Tracking: Promoting the Robustness ofCorrelation Filter Learning." ECCV (2016). [paper] [project]Yao Sui, Guanghui Wang, Yafei Tang, Li Zhang. "Tracking Completion." ECCV (2016). [paper] [project]EBT: Gao Zhu, Fatih Porikli, and Hongdong Li. "Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals." CVPR (2016). [paper] [exe]RATM: Samira Ebrahimi Kahou, Vincent Michalski, Roland Memisevic. "RATM: Recurrent Attentive Tracking Model." arXiv (2015). [paper] [github]DAT: Horst Possegger, Thomas Mauthner, and Horst Bischof. "In Defense of Color-based Model-free Tracking." CVPR (2015). [paper] [project] [code]RAJSSC: Mengdan Zhang, Junliang Xing, Jin Gao, Xinchu Shi, Qiang Wang, Weiming Hu. "Joint Scale-Spatial Correlation Tracking with Adaptive Rotation Estimation." ICCV workshop (2015). [paper] [poster]SO-DLT: Naiyan Wang, Siyi Li, Abhinav Gupta, Dit-Yan Yeung. "Transferring Rich Feature Hierarchies for Robust Visual Tracking." arXiv (2015). [paper] [code]DLT: Naiyan Wang and Dit-Yan Yeung. "Learning A Deep Compact Image Representation for Visual Tracking." NIPS (2013). [paper] [project] [code]Naiyan Wang, Jianping Shi, Dit-Yan Yeung and Jiaya Jia. "Understanding and Diagnosing Visual Tracking Systems." ICCV (2015). [paper] [project] [code]Dataset-MoBe2016:Luka ?ehovin, Alan Luke?i?, Ale? Leonardis, Matej Kristan. "Beyond standard benchmarks: Parameterizing performance evaluation in visual object tracking." arXiv (2016). [paper]Dataset-UAV123: Matthias Mueller, Neil Smith and Bernard Ghanem. "A Benchmark and Simulator for UAV Tracking." ECCV (2016) [paper] [project] [dataset]Dataset-TColor-128: Pengpeng Liang, Erik Blasch, Haibin Ling. "Encoding color information for visual tracking: Algorithms and benchmark." TIP (2015) [paper] [project] [dataset]Dataset-NUS-PRO: Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, and Shuicheng Yan. "NUS-PRO: A New Visual Tracking Challenge." PAMI (2015) [paper] [project] [Data_360(code:bf28)]?[Data_baidu]][View_360(code:515a)]?[View_baidu]]Dataset-PTB: Shuran Song and Jianxiong Xiao. "Tracking Revisited using RGBD Camera: Unified Benchmark and Baselines." ICCV (2013) [paper] [project] [5 validation] [95 evaluation]Dataset-ALOV300+: Arnold W. M. Smeulders, Dung M. Chu, Rita Cucchiara, Simone Calderara, Afshin Dehghan, Mubarak Shah. "Visual Tracking: An Experimental Survey." PAMI (2014) [paper] [project]?Mirror Link:ALOV300++ Dataset?Mirror Link:ALOV300++ GroundtruthDataset-DTB70: Siyi Li, Dit-Yan Yeung. "Visual Object Tracking for Unmanned Aerial Vehicles: A Benchmark andNew Motion Models." AAAI (2017) [paper] [project] [dataset]Dataset-VOT: [project][VOT13_paper_ICCV]The Visual Object Tracking VOT2013 challenge results[VOT14_paper_ECCV]The Visual Object Tracking VOT2014 challenge results[VOT15_paper_ICCV]The Visual Object Tracking VOT2015 challenge results[VOT16_paper_ECCV]The Visual Object Tracking VOT2016 challenge results深度学习方法(Deep Learning Method)由于其独有的优越性成为当前研究的热点,各种框架和算法层出不穷,这在前文的目标检测部分都有较为详细的介绍。
arot概念
AROT概念简介AROT,全称为Adaptive Real-time Object Tracking(自适应实时物体追踪),是一种在计算机视觉领域应用广泛的技术。
它能够实时地追踪物体并估计其状态,为目标跟踪、行为分析、增强现实等应用提供强有力的支持。
本文将简要介绍AROT的原理、应用和发展趋势。
原理AROT的核心原理是通过从连续视频帧中提取目标物体的特征,并使用适当的算法来建立目标模型。
这个模型可以捕捉目标的外观和运动状态。
然后,AROT使用目标模型来实时跟踪目标,不断更新模型以适应目标的变化,如形状变化、遮挡、光照变化等。
AROT常用的特征提取算法包括颜色直方图、局部二值模式(LBP)、方向梯度直方图(HOG)等。
目标模型通常由机器学习算法训练得到,如支持向量机(SVM)、结构化输出支持向量机(SVM-HMM)等。
这些算法能够在不同的场景下鲁棒地跟踪目标。
应用AROT在许多领域都有广泛的应用,特别是在智能监控、自动驾驶、人机交互等方面发挥了重要作用。
下面列举一些典型的应用场景:1.智能监控:在安防系统中,AROT可以用于实时追踪安全区域内的可疑行为,从而及时发现并报警异常情况。
2.自动驾驶:在自动驾驶系统中,AROT可以实时跟踪周围的车辆、行人和障碍物,帮助汽车做出智能的驾驶决策。
3.增强现实:AROT可以通过实时追踪现实世界中的物体,将虚拟信息与真实场景相结合,实现增强现实的交互效果。
4.人机交互:AROT可以用于跟踪用户的手势和动作,实现自然的人机交互界面。
发展趋势随着计算机视觉和机器学习的不断发展,AROT技术也在不断进步。
未来,AROT有望在以下几个方面取得更大的突破:1.端到端学习:目前AROT中的各个组成部分通常需要分别设计和调整,导致整个系统复杂度高。
未来,通过端到端学习,可以实现将特征提取、目标模型训练和跟踪等步骤集成在一起,从而简化系统设计和调整。
2.多目标追踪:现有的AROT技术主要针对单个目标进行追踪。
水下航行器视觉控制技术综述
水下航行器视觉控制技术综述高 剑, 何耀祯, 陈依民, 张元旭, 杨旭博, 李宇丰, 张桢驰(西北工业大学 航海学院, 陕西 西安, 710072)摘 要: 视觉控制是通过视觉信息进行环境和自身状态感知的一种控制方式, 文中将该技术应用于水下航行器控制, 并对不同应用场景下的相关研究进展、难点与趋势进行分析。
首先介绍水下航行器视觉控制技术发展现状与任务场景, 然后对水下图像增强、目标识别与位姿估计技术进行介绍, 并从水下视觉动力定位与目标跟踪、水下航行器对接及水下目标抓取作业等3个任务场景, 对水下航行器视觉控制技术发展现状进行总结和分析, 最后梳理了水下航行器视觉控制技术的难点与发展趋势。
关键词: 水下航行器; 水下视觉; 视觉控制中图分类号: TJ630; U674.941 文献标识码: R 文章编号: 2096-3920(2024)02-0282-13DOI: 10.11993/j.issn.2096-3920.2023-0061Review of Visual Control Technology for Undersea VehiclesGAO Jian, HE Yaozhen, CHEN Yimin, ZHANG Yuanxu, YANG Xubo, LI Yufeng, ZHANG Zhenchi (School of Marine Science and Technology, Northwestern Polytechnical University , Xi’an 710072, China)Abstract: Visual control is a control method that utilizes visual information for environmental and self-state awareness. In this paper, this technology was applied to control undersea vehicles, and relevant research progress, challenges, and trends in different application scenarios were analyzed. The current development and task scenarios of visual control technology for undersea vehicles were first introduced, mainly focusing on underwater image enhancement, target recognition, and pose estimation technologies. The current development of visual control technology for undersea vehicles was then summarized and analyzed based on three task scenarios: underwater visual dynamic positioning and target tracking, undersea vehicle docking, and underwater operational tasks such as target grasping. Finally, the challenges and development trends of visual control technology for undersea vehicles were outlined.Keywords: undersea vehicle; underwater vision; visual control0 引言水下航行器因具备工作时间长、航行范围广、用途灵活、风险小及维护成本低等特点, 已成为一种可代替人类在水下复杂环境下完成任务的机器人平台。
自适应背景混合模型
Adaptive background mixture models for realtime tracking
卡尔曼滤波器、单高斯、混合高斯模型
单分布高斯背景模型
• 单分布高斯背景模型认为,对一个背景图像,特定像素亮 度的分布满足高斯分布,即对背景图像B,(x,y)点的亮度 满足: • IB(x,y) ~ N(u,d) • 这样我们的背景模型的每个象素属性包括两个参数: 平均值u 和 方差d。 • 对于一幅给定的图像G,如果 Exp(-(IG(x,y)u(x,y))^2/(2*d^2)) > T,认为(x,y)是背景点,反之是前景 点。 • 同时,随着时间的变化,背景图像也会发生缓慢的变 化,这时我们要不断更新每个象素点的参数 • u(t+1,x,y) = a*u(t,x,y) + (1-a)*I(x,y) • 这里,a称为更新参数,表示背景变化的速度,一般 情况下,我们不更新d(实验中发现更不更新d,效果变化 不大)。
自适应混合高斯背景模型
参数
像素在t时刻的值 权系数估计值
协方差矩阵
高斯分布的概率密度函 数
混合高斯模型的参数更新
• 每个高斯模型的权值和均向量都初始化为0 • 协方差赋予一个较大的初始值K • 在时刻t,对图像帧的每个像素值Xt和它对 应的混合高斯模型进行匹配检验:
• 如果像素值Xt与混合高斯模型中第i个高斯分布Gi 均值的距离小于其标准差的2.5倍,则定义该高 斯分布Gi与像素值Xt匹配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
qiningonline@
Abstract
Recent attempts of integrating metric learning in visual tracking have produced encouraging results. Instead of using fixed and pre-specified metric in visual appearance matching, these methods are able to learn and adjust the metric adaptively by finding the best projection of the feature space. Such learned metric is by design the best to discriminate the target of interest and its distracters from the background. However, an important issue remained unaddressed is how we can determine the optimal dimensionality of the projection to achieve best discrimination. Using inappropriate dimensions for the projection is likely to result in larger classification error, or higher computational costs and over-fitting. This paper presents a novel solution to this structural order determination problem, by introducing sparsity regularization for metric learning (or SRML). This regularization leads to the lowest possible dimensionality of the projection and thus determining the best order. This can actually be viewed as the minimum description length regularization in metric learning. The experiments validate this new approach on standard benchmark datasets, and demonstrate its effectiveness in visual tracking applications.
Order Determination and Sparsity-Regularized Metric Learning for Adaptive Visual Tracking
Nan Jiang 1 , Wenyu Liu 1 , Ying Wu 2 Huazhong University of Sci. & Tech. 2 Northwestern University Wuhan, Hubei, P. R. China. Ev-1-4673-1228-8/12/$31.00 ©2012 IEEE
1956
case, although the learned metric gives low training error, but it does not perform well in unseen testing data (e.g., from the video frames unseen). And thus it may still produce unsatisfactory results for tracking. The other is the computational cost. A larger M demands a higher computational cost. Some methods use a full projection A ∈ RN ×N . Studies have shown that this treatment is very likely to lead to over-fitting and inefficiency. Thus, it is desirable to determine the optimal order of the projection for best metric adjustment. A naive solution to order determination problem is through trial-and-error experiments, but such a solution is not an option for the tracking applications. To address this problem in a more principled way, we pursue a novel regularization for metric learning. Many existing metric learning methods do not regularize the metric projection. As the metric projection A has a large number of parameters, without a proper regularization, the learning procedure might end up with unwanted solutions. In this paper, we aim to impose a structural regularization of the projection in order to find the optimal order determination. Our basic idea of regularization is to maximize the number of all-zero rows in the projection matrix A. As each row in A is a basis of the projected space, an all-zero row shall eliminate a one-dimensional subspace. Thus the optimal order can be easily identified when eliminating these all-zero rows. This can be viewed as a minimum description length regularization. Formulated via a new sparsity constraint on A, we design gradient-based procedures for solution. We call this new approach Sparsity-Regularized Metric Learning or SRML. This paper contributes to the research of adaptive metric tracking in the following ways. (1) It proposes a general sparsity-regularized approach to the order determination problem in metric learning. This is novel to the research of metric learning. (2) This paper gives a lower-bound of the sparsity constraint, which leads to an analytical form for sparsity regularization. (3) This paper substantializes this sparsity regularization in two solid case studies, and obtains effective methods. (4) This paper integrates the proposed sparsity-regularized metric learning and target tracking. As the proposed tracking method is able to automatically identify the optimal order of the metric to distinguish the target from its distracters, it produces more accurate tracking results and remains to be computationally efficient.
1. Introduction
Having the right matching metric for visual appearances (e.g., visual features and/or their models) is critical for target tracking, especially when the differences between the target and the background is subtle and dynamic. Instead of using predefined and fixed metric, recent attempts have been made to integrate metric learning in tracking [10, 11, 15]. These methods adjust matching metric adaptively, by projecting the original feature space to a new metric space so as to maximize the discrimination between the target and