经济数学基础微分学综合练习Word版
经济数学基础
四川广播电视大学直属部普睿教育
(2)令
100 C ( x) 2 0.25 0 ,得 x 20 ( x 20 舍去) x 因为 x 20 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当 x 20 时,平均成本最小.
2
=
lim
x 1 x 2 ( x 2)
=
1 4
2.解: lim
x 1 x 1 = lim x 1 x 1 x 3 x 2 ( x 1)( x 2)( x 1) 1 1 = lim x 1 2 ( x 2)( x 1)
3.解
lim
x 0
( x 1 1) sin 2 x sin 2 x = lim x 0 ( x 1 1)( x 1 1) x 1 1 sin 2 x = lim ( x 1 1) lim =2 2 x 0 x 0 x
y ( x) =
ey coHale Waihona Puke y xe yey.
17.解:方程两边对 x 求导,得
y e y xe y y
1 xe y 当 x 0 时, y 1
所以,
y
dy dx
x 0
e1 1 0 e1
e
18.解
在方程等号两边对 x 求导,得
[cos( x y)] (e y ) ( x) sin( x y)[1 y ] e y y 1 [e y sin( x y)] y 1 sin( x y)
(完整word版)经济数学基础试题及答案
经济数学基础(05)春模拟试题及参考答案一、单项选择题(每小题3分,共30分)1.下列各函数对中,( )中的两个函数是相等的.A .11)(2--=x x x f ,1)(+=x x g B .2)(x x f =,x x g =)( C .2ln )(x x f =,x x g ln 2)(= D .x x x f 22cos sin )(+=,1)(=x g2.设函数⎪⎩⎪⎨⎧=≠+=0,10,2sin )(x x k x x x f 在x = 0处连续,则k = ( ). A .—2 B .—1 C .1 D .23. 函数x x f ln )(=在1=x 处的切线方程是( ).A.1=-y x B 。
1-=-y xC 。
1=+y x D. 1-=+y x4.下列函数在区间(,)-∞+∞上单调减少的是( ).A .x sinB .2 xC .x 2D .3 - x5。
若c x F x x f +=⎰)(d )(,则x x xf d )1(2⎰-=( ).A 。
c x F +-)1(212B 。
c x F +--)1(212 C 。
c x F +-)1(22 D. c x F +--)1(226.下列等式中正确的是( ).A . )cos d(d sin x x x =B 。
)1d(d ln xx x = C. )d(ln 1d x x a a x a =D 。
)d(d 1x x x =二、填空题(每小题2分,共10分)7.若函数54)2(2++=+x x x f ,则=)(x f.8.设需求量q 对价格p 的函数为2e100)(p p q -=,则需求弹性为E p = .9.=⎰x x c d os d .三、极限与微分计算题(每小题6分,共12分)10.)3sin(32lim 23+-+-→x x x x 11.设函数)(x y y =由方程222e e =++xy y x 确定,求)(x y '.四、积分计算题(每小题6分,共12分)12.x x x d 2cos 20⎰π13.求微分方程12+=+'x xy y 的通解. 七、应用题(8分) 14.设生产某商品每天的固定成本是20元,边际成本函数为24.0)(+='q q C (元/单位),求总成本函数)(q C 。
经济数学基础微分学部分综合练习及参考答案
微积分考试复习题一、单项选择题1.函数()1lg +=x xy 的定义域是( D )D .1->x 且0≠x 2.下列各函数对中,D )中的两个函数相等D x x x f 22cos sin )(+=,1)(=x g3.设xx f 1)(=,则=))((x f f (C ). C .x 4.下列函数中为奇函数的是( C ).C .11ln +-=x x y 5.已知1tan )(-=x xx f ,当(A )时,)(x f 为无穷小量.A. x →06.当+∞→x 时,下列变量为无穷小量的是( D .xxsin 7.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩在x = 0处连续,则k = ( C ).C .18.曲线11+=x y 在点(0, 1)处的切线斜率为(A )A .21-9.曲线x y sin =在点(0, 0)处的切线方程为( A ).A. y = x10.设y x=l g 2,则d y =(B ). B .1d x x ln1011.下列函数在指定区间(,)-∞+∞上单调增加的是(B ).B .e x12.设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =(B )B .--p p32二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域[-5,2]2.函数xx x f --+=21)5ln()(的定义域是(-5, 2 ).3.若函数52)1(2-+=+x x x f ,则=)(x f 62-x .4.设21010)(xx x f -+=,则函数的图形关于y 轴对称.5.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为3.66.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = 45q – 0.25q 2.7. =+∞→x x x x sin lim18.已知xxx f sin 1)(-=,当0→x 时,)(x f 为无穷小量. 9. 已知⎪⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞.内连续,则=a 2. 10.曲线y =)1,1(处的切线斜率是(1)0.5y '=.11.函数y x =-312()的驻点是x =112.需求量q 对价格p 的函数为2e 100)(pp q -⨯=,则需求弹性为E p =2p - 三、计算题1.已知y xxx cos 2-=,求)(x y '.2.已知()2sin ln x f x x x =+,求)(x f '. 3.已知2s i n 2c o s x y x -=,求)(x y '.4.已知x x y 53e ln -+=,求)(x y '.5.已知x y cos 25=,求)2π(y ';6.设x x y x +=2cos e ,求y d 7.设x y x 5si n cos e +=,求y d .8.设x x y -+=2t an 3,求y d .四、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元),求:(1)当10=x 时的总成本、平均成本和边际成本;(2)当产量x 为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p=-100010(q 为需求量,p 为价格)试求(1)成本函数,收入函数(2)产量为多少吨时利润最大?3.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?4.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?5.已知某厂生产q 件产品的成本为C q q q()=++25020102(万元).问要使平均成本最少应生产多少件产品?三、计算题1.解:2cos sin cos ()(2)2ln 2x x x x x x y x x x --''=-=-2sin cos 2ln 2xx x x x +=+ 2.解xx x x f x x 1cos 2sin 2ln 2)(++⋅='3.解)(cos )2(2sin )(22'-'-='x x x y x x 2cos 22ln 2sin 2x x x x --=4.解:)5(e )(ln ln 3)(52'-+'='-x x x x y xx xx525e ln 3--= 5.解:因为5ln 5sin 2)cos 2(5ln 5)5(cos 2cos 2cos 2x x x x x y -='='='所以5ln 25ln 52πsin 2)2π(2πcos 2-=⋅-='y6.解:因为212cos 23)2sin (e 2x x y x +-='所以x x x y xd ]23)2sin (e 2[d 212cos +-=7.解:因为)(cos cos 5)(sin e 4sin '+'='x x x y x x x x x sin cos 5cos e 4sin -=所以x x x x y x d )sin cos 5cos e (d 4sin -=8解:因为)(2ln 2)(cos 1332'-+'='-x x x y x 2ln 2cos 3322xx x --=所以x xx y x d )2ln 2cos 3(d 322--=四、应用题1.解(1)因为总成本、平均成本和边际成本分别为x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C 所以,1851061025.0100)10(2=⨯+⨯+=C 5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C (2)令025.0100)(2=+-='xx C ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解(1)成本函数C q ()= 60q +2000.因为q p =-100010,即p q =-100110, 所以收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q () =1001102q q--(60q +2000) = 40q -1102q -2000 且'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点.所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.(1)由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,(2)最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元) 4.解因为()9800()0.536C q C q q q q==++(0)q > 298009800()(0.536)0.5C q q q q''=++=- 令()0C q '=,即0598002.-q =0,得q 1=140,q 2= -140(舍去).q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值. 所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为9800(140)0.514036176140C =⨯++=(元/件) 5.解因为C q ()=C q q()=2502010q q ++'C q ()=()2502010qq++'=-+2501102q令'C q ()=0,即-+=25011002q ,得150q =,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品. 积分学一、单项选择题1.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为(A .y = x 2 + 3 2.下列等式不成立的是(A .)d(e d e x x x = 3.若c x x f x +-=-⎰2ed )(,则)(x f '=(D .2e 41x--4.下列不定积分中,常用分部积分法计算的是(C .⎰x x x d 2sin 5. 若c x x f xx+-=⎰11e d e )(,则f (x ) =( C .21x 6.若)(x F 是)(x f 的一个原函数,则下列等式成立的是( B .)()(d )(a F x F x x f xa -=⎰7.下列定积分中积分值为0的是(A .x xx d 2e e 11⎰---8.下列定积分计算正确的是(D .0d sin =⎰-x x ππ9.下列无穷积分中收敛的是( C .⎰∞+12d 1x x10.无穷限积分 ⎰∞+13d 1x x =(C .21二、填空题1.=⎰-x x d e d 2x x d e 2-2.函数x x f 2sin )(=的原函数是-21cos2x + c (c 是任意常数)3.若)(x f '存在且连续,则='⎰])(d [x f )(x f '4.若c x x x f ++=⎰2)1(d )(,则=)(x f )1(2+x5.若c x F x x f +=⎰)(d )(,则x f xx)d e (e --⎰=c F x+--)e ( 6.=+⎰e12dx )1ln(d d x x7.积分=+⎰-1122d )1(x x x08.无穷积分⎰∞++02d )1(1x x 是收敛的.(判别其敛散性) 9.设边际收入函数为R '(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为2 + q 23三、计算题1.⎰+-x x x d 242解⎰+-x x x d 242=(2)d x x -⎰=2122x x c -+ 2.计算⎰x x x d 1sin 2 解 c x x x x xx +=-=⎰⎰1cos )1(d 1sin d 1sin23.计算⎰x xx d 2解c x xxxx x +==⎰⎰22ln 2)(d 22d 24.计算⎰x x x d sin 解 c x x x x x x x x x x ++-=+-=⎰⎰sin cos d cos cos d sin5.计算⎰+x x x d 1)ln (解⎰+x x x d 1)ln (=⎰+-+x xx x x d 1)(21ln 1)(2122=c x x x x x +--+4)ln 2(21226.计算 x x x d e 2121⎰解 x x xd e 2121⎰=21211211e e e )1(d e -=-=-⎰x xx7.2e 1x ⎰解 x x x d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x +=)13(2- 8.x x x d 2cos 2π⎰ 解:x x x d 2cos 20⎰π=22sin 21πx x -x x d 2sin 2120⎰π=202cos 41πx =21-9.x x d )1ln(1e 0⎰-+ 解法一 x x x x x x x d 1)1ln(d )1ln(1e 01e 01e 0⎰⎰---+-+=+ =x x d )111(1e 1e 0⎰-+--- =1e 0)]1ln([1e -+---x x =e ln =1四、应用题1.投产某产品的固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台).试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.解 当产量由4百台增至6百台时,总成本的增量⎰+=∆64d )402(x x C =642)40(x x +=100(万元)又 xc x x C x C x⎰+'=00d )()(=x x x 36402++ =x x 3640++ 令 0361)(2=-='xx C , 解得6=x .x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值所以产量为6百台时可使平均成本达到最小.2.已知某产品的边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化?解 因为边际利润)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x 令)(x L '= 0,得x = 500x = 500是惟一驻点,而该问题确实存在最大值. 所以,当产量为500件时,利润最大.当产量由500件增加至550件时,利润改变量为5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰ =500 - 525 = - 25 (元)即利润将减少25元.3.生产某产品的边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x 令L '(x )=0, 得 x = 10(百台)又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大.又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x 即从利润最大时的产量再生产2百台,利润将减少20万元.4.已知某产品的边际成本为34)(-='q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求最低平均成本.解:因为总成本函数为⎰-=q q q C d )34()(=c q q +-322当q = 0时,C (0)= 18,得 c =18 即 C (q )=18322+-q q 又平均成本函数为 qq q q C q A 1832)()(+-== 令 0182)(2=-='qq A , 解得q = 3(百台) 该题确实存在使平均成本最低的产量. 所以当q = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台)5.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化?解:(1) 因为边际成本为 1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7 由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点.因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为87287)14(d )214(x x x x L -=-=∆⎰ =112–64 – 98 + 49 = -1 (万元)即利润将减少1万元.线性代数一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( )可以进行.A .AB2.设B A ,为同阶可逆矩阵,则下列等式成立的是( B .T T T )(A B AB = 3.以下结论或等式正确的是( ).C .对角矩阵是对称矩阵4.设A 是可逆矩阵,且A A B I +=,则A -=1( C .I B + 5.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( D .⎥⎦⎤⎢⎣⎡--5232 6.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=314231003021A ,则r (A ) =( C .2 7.设线性方程组b AX =的增广矩阵通过初等行变换化为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00000120004131062131,则此线性方程组的一般解中自由未知量的个数为( A .18.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( A . 无解9.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=01221λA ,则当λ=( )时线性方程组无解B .1210. 设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( D .n A r A r <=)()( 11.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组( B .无解正确答案:B12.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =(C .只有零解 二、填空题1.若矩阵A = []21-,B = []132-,则A T B=⎥⎦⎤⎢⎣⎡---264132 2.设矩阵⎥⎦⎤⎢⎣⎡-=3421A ,I 为单位矩阵,则T)(A I -=:⎥⎦⎤⎢⎣⎡--2240 3.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是B A ,是可交换矩阵4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 0 时,A 是对称矩阵.5.设B A ,均为n 阶矩阵,且)(B I -可逆,则矩阵X BX A =+的解X =A B I 1)(-- 6.设A 为n 阶可逆矩阵,则r (A )= n .7.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b 无解.8.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非零解,则=λ—1 9.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于n –r10. 已知齐次线性方程组O AX =中A 为53⨯矩阵,且该方程组有非0解,则≤)(A r 3 .11.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一般为为⎩⎨⎧=--=4243122x x x x x (其中43,x x 是自由未知量)12.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010********1t A :t 1-≠时,方程组有唯一解.三、计算题1.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-01241121,求逆矩阵1-A . 解 因为(AI ) =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-120001010830210411100010001012411210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200210201⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001 所以 A -1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----211231241122.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121511311,求逆矩阵1)(-+A I . 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→112100001310010501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I 3.设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1.解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435(BAI )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101所以(BA )-1=⎥⎥⎦⎤⎢⎢⎣⎡--252231 4.设矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=3221,5321B A ,求解矩阵方程B XA =.解:因为 ⎥⎦⎤⎢⎣⎡10530121⎥⎦⎤⎢⎣⎡--→13100121⎥⎦⎤⎢⎣⎡--→13102501 即 ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-132553211所以,X =153213221-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡13253221= ⎥⎦⎤⎢⎣⎡-1101 5.设线性方程组 ⎪⎩⎪⎨⎧=+-=-+--=+052231232132131x x x x x x x x ,求其系数矩阵和增广矩阵的秩,并判断其解的情况.解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211011101201051223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→300011101201 所以 r (A ) = 2,r (A ) = 3. 又因为r (A )≠r (A ),所以方程组无解.6.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 的一般解. 解 因为系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 所以一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量)7.求线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-126142323252321321321x x x x x x x x x 的一般解. 解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=1881809490312112614231213252A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→0000194101101 所以一般解为 ⎪⎪⎩⎪⎪⎨⎧+=+=1941913231x x x x (其中3x 是自由未知量)8.设齐次线性方程组⎪⎩⎪⎨⎧=+-=+-=+-0830352023321321321x x x x x x x x x λ问λ取何值时方程组有非零解,并求一般解 因为系数矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---61011023183352231λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→500110101λ 所以当λ = 5时,方程组有非零解. 且一般解为⎩⎨⎧==3231x x xx (其中3x 是自由未知量)9.当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-=-+=++1542131321321x x x x x x x x λ有解?并求一般解.解 因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=26102610111115014121111λλA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→λ00026101501 所以当λ=0时,线性方程组有无穷多解, 且一般解为:⎩⎨⎧+-=-=26153231x x x x (x 3是自由未知量〕 经济数学基础11年秋季学期模拟试卷一、单项选择题1.B 2.A 3. D 4.C 5. C1.下列函数在指定区间(,)-∞+∞上单调增加的是( B ).B .e x 2.曲线11+=x y 在点(0, 1)处的切线斜率为(A ).A .21-3.下列定积分计算正确的是(D ). D .0d sin =⎰-x x ππ4.设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C )C .111)(---=A B AB5.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =(C ) C .只有零解 二、填空题6.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是[-5, 2). 7.求极限 =+∞→x xx x sin lim1 . 8.若)(x f '存在且连续,则='⎰])(d [x f )(x f '.9.设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是BA AB =.10.设齐次线性方程组01=⨯⨯n n m X A ,且r (A ) = r < n ,则其一般解中的自由未知量的个数等于n -r三、微积分计算题11.设xx y -+=2tan 3,求y d . 12.计算积分 x x x d 2cos 20⎰π.四、代数计算题13.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---112401211,计算1)(-+A I .14.求线性方程组⎪⎩⎪⎨⎧=++-=++-=+-5532342243214321421x x x x x x x x x x x 的一般解. 五、应用题15.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?三、微积分计算题11.解:因)(2ln 2)(cos 1332'-+'='-x x x y x 2ln 2cos 3322xx x --=所以x xx y x d )2ln 2cos 3(d 322--=12.解:x x x d 2cos 20⎰π=22sin 21πx x -x x d 2sin 2120⎰π=22cos 41πx =21-四、线性代数计算题13.解:因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+012411210A I 且 (I +AI )=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-12000101083021041110001000101241121⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→12312411220001000112300101120021021⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→21123124112100010001所以 1)(-+A I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----2112312411214.解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---131101311021011551323412121011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000001311012101000001311021011 故方程组的一般解为:1342342131x x x x x x =++⎧⎨=+-⎩(x 3,4x 是自由未知量〕五、应用题15.解:(1)由已知201.014)01.014(q q q q qp R -=-== 利润函数22202.0201001.042001.014q q q q q q C R L --=----=-= 则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,(2)最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)经济数学基础一、单项选择 1.C 2.D 3.B 4.A 5.D 1.下列函数中为奇函数的是( C ).(C) 11ln+-=x x y 2.设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为=p E3.下列无穷积分中收敛的是(B) ⎰∞+12d 1x x 4.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( A )可以进行.(A) AB5.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是 D) 无解二、填空题 6.函数24)(2--=x x x f 的定义域是),2(]2,(∞+--∞7.函数1()1e xf x =-的间断点是0=x 8.若cx F x x f +=⎰)(d )(,则=⎰--x f x x d )e (e c F x +--)e (. 9.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201aA ,当=a 0 时,A 是对称矩阵10.若线性方程组⎩⎨⎧=+=-002121x x x x λ有非=三、微积分计算题1.设x y x5cos 3+=,求y d . 2. 计算定积分⎰e1d ln x x x .四、线性代数计算题11. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211010,211001B A ,求1T )(-A B .设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211010,211001B A ,求1T )(-A B .12.求齐次线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 的一般解.五、应用题15.生产某产品的总成本为x x C +=3)((万元),其中x 为产量,单位:百吨.边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量; (2) 从利润最大时的产量再生产1百吨,利润有什么变化?三、微积分计算题)11. 解:由微分四则运算法则和微分基本公式)(cos d )3(d )cos 3(d d 55x x y x x +=+=)(cos d cos 5d 3ln 34x x x x +=x x x x x d cos sin 5d 3ln 34-=x x x x d )cos sin 53ln 3(4--=12. 解:由分部积分法得⎰⎰-=e 12e12e1)d(ln 21ln 2d ln x x x x x x x 414e d 212e 2e 12+=-=⎰x x四、线性代数计算题13. 解:因为⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡=3121211001211100T A B 所以由公式⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡---⨯-⨯-=-11231123)1(23)1(1)(1T A B 14. 解:因为系数矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=111011101201351223111201A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101201 所以一般解为⎩⎨⎧-=+-=4324312x x x x x x (其中3x ,4x 是自由未知量) 五、应用题)15.解:(1)因为边际成本1)(='x C ,边际利润'='-'L x R x C x ()()()x x 2141215-=--=令'=L x ()0 得 7=x (百吨)又7=x 是L x ()的唯一驻点,根据问题的实际意义可知L x ()存在最大值,故7=x 是L x ()的最大值点,即当产量为7(百吨)时,利润最大. 16.x x x x L L d )214(d )(8787⎰⎰-='=1)14(872-=-=x x即从利润最大时的产量再生产1百吨,利润将减少1万元. 1 经济数学基础09秋模拟试卷一、单项选择题1.函数()1lg +=x xy 的定义域是( D ). D .1->x 且0≠x2.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( C .1 3.下列不定积分中,常用分部积分法计算的是( C .⎰x x x d 2sin4.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( A )可以进行A .AB5. 设线性方程组b AX =的增广矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------124220621106211041231,则此线性方程组的一般解中自由未知量的个数为( B .2 二、填空题( 6.设函数2)1(2++=+x x x f ,则42+x7.设某商品的需求函数为2e 10)(p p q -=,则需求弹性=p E 2p - 8.积分 =+⎰-1122d )1(x x x0 .9.设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵方程X BX A =+的解X =1)(--B I . 10. 已知齐次线性方程组O AX =中A 为53⨯矩阵,则≤)(A r 3 . 三、微积分计算题11.设x x y x +=cos e ,求y d . 12.计算积分 ⎰x x x d 1sin 2.四、代数计算题 13.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121511311,计算 1)(-+A I . 14.求线性方程组⎪⎩⎪⎨⎧=-+-=-+-=--1261423623352321321321x x x x x x x x x 的一般解.五、应用题15.已知某产品的边际成本为34)(-='q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求最低平均成本. 三、微积分计算题11.解:212co s 23co s 23)sin (e)()(cos ex x x x y xx+-='+'='x x x y x d )e sin 23(d 2cos 21-=12.解: c x x x x xx +=-=⎰⎰1cos )1(d 1sin d 1sin2四、线性代数计算题13.解:因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→11210000131001501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I 14.解:因为增广矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=18181809990362112614236213352A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101401 所以一般解为 ⎩⎨⎧+=+=1143231x x x x (其中3x 是自由未知量) 五、应用15.解:因为总成本函数为 ⎰-=q q q C d )34()(=c q q +-322 当q = 0时,C (0)= 18,得 c =18,即C (q )=18322+-q q 又平均成本函数为 qq q q C q A 1832)()(+-== 令 0182)(2=-='qq A , 解得q = 3(百台) 该问题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台)经济数学基础09秋模拟试卷2一、单项选择题1.下列各函数对中,( D )中的两个函数相等.D .x x x f 22cos sin )(+=,1)(=x g2.当+∞→x 时,下列变量为无穷小量的是( C .21e x -3.若c x x f xx+-=⎰11e d e )(,则f (x ) =( C .21x4.设A 是可逆矩阵,且A A B I+=,则A -=1( A .B 5.设线性方程组b X A n m =⨯有无穷多解的充分必要条件是( B .nA r A r <=)()(二、填空题6.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) =42+x7.曲线y =)1,1(处的切线斜率是2p -8.=+⎰x x xd )1ln(d d e12 09.设A 为n 阶可逆矩阵,则r (A )=1)(--B I10.设线性方程组b AX =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→010********1t A ,则t 3时,方程组有唯一解. 三、微积分计算题11.设x y x 5sin cos e +=,求y d . 12.计算积分 ⎰e1d ln x x x .四、代数计算题13.设矩阵 A =⎥⎦⎤⎢⎣⎡--021201,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142136,计算(AB )-1. 14.求线性方程组⎪⎩⎪⎨⎧=-+-=+-+-=-+03520230243214321431x x x x x x x x x x x 的一般解.五、应用题15.设生产某种产品q 个单位时的成本函数为:qq q C 625.0100)(2++=(万元),求:(1)当10=q 时的总成本、平均成本和边际成本;(2)当产量q 为多少时,平均成本最小?三、微积分计算题 四、解:212cos 23cos 23)sin (e)()(cos ex x x x y xx+-='+'='x x x y x d )e sin 23(d 2cos 21-=12.解: c x x x x x x +=-=⎰⎰1cos )1(d 1sin d 1sin2四、线性代数计算题13.解:因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=+021501310A I 且 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-110520001310010501100021010501001310 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→112100001310010501⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→1121003350105610001 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=+-1123355610)(1A I 14.解:因为增广矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=18181809990362112614236213352A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000011101401 所以一般解为 ⎩⎨⎧+=+=1143231x x x x (其中3x 是自由未知量) 五、应用题15.解:因为总成本函数为⎰-=q q q C d )34()(=c q q +-322 当q = 0时,C (0)= 18,得 c =18,即 C (q )=18322+-q q 又平均成本函数为q q q q C q A 1832)()(+-==令 0182)(2=-='qq A , 解得q = 3(百台) 该问题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台)经济数学基础期末模拟练习(二) 一、单项选择题 1.B 2.C 3.D 4.C 5.B 6.A 7.D 8.C 9.B10.A1.下列各对函数中,( )中的两个函数相同. (B) 1)(,cos sin )(22=+=x g x x x f2.当1→x 时,下列变量中的无穷小量是 (C) 1122+-x x3.若)(x f 在点0x 有极限,则结论( )成立 (D) )(x f 在点0x 可能没有定义4.下列函数中的单调减函数是( ) (C) x y -=5.下列等式中正确的是( ) (B) )cos d(d sin x x x -=6.若F x ()是f x ()的一个原函数,则=⎰--x f x x d )e (e ( ).(A) c F x +--)e (7.设A B ,为随机事件,下列等式成立的是( ). (D) )()()(AB P A P B A P -=- 8.已知)2,2(~2N X ,若)1,0(~N b aX +,那么( ). (C) 1,21-==b a 9.设A 是n s ⨯矩阵,B 是m s ⨯矩阵,则下列运算中有意义的是( (B) T AB 10.n 元线性方程组A Xb =有解的充分必要条件是( ). (A) 秩=A 秩)(A 二、填空题11.2sin 2+x 12. 减少 13.x cot -14.7.1 15.1 11.若函数2)(2+=x x f ,x x g sin )(=,则=))((x g f 12.函数x x f ln )(-=在区间),0(∞+内单调13.=⎰x xd sin 12. 14.设随机变量⎥⎦⎤⎢⎣⎡3.01.06.0210~X ,则=+)1(X E . 15.当λ=时,方程组⎩⎨⎧-=--=+112121x x x x λ有无穷多解.三、极限与微分计算题16.求极限xx x 21sin 1lim 0-+→.17.由方程x y x y ln sin =+确定y是x 的隐函数,求y d .四、积分计算18.计算积分⎰41d ex xx19.求微分方程xx x y y sin =+'的通解. 五、概率计算题 20.已知5.0)(=A P ,3.0)(=B A P ,求)(B A P +.21.设随机变量)9,3(~N X ,求)120(<≤X P .(已知ΦΦ().,().108413209772==,Φ().309987=) 六、代数计算题 22.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=244213001,543322011B A ,求1)(--B A . 23.求解线性方程组⎪⎩⎪⎨⎧=++-=++-=+-5532342243214321421x x x x x x x x x x x七、应用题24.厂家生产一种产品的需求函数为p q 80720-=(单位:件)而生产q 件该产品时的成本函数为1604)(+=q q C (单位:元)问生产多少件产品时厂家获得的利润最大?八、证明题25.设A 为矩阵,证明T AA 是对称矩阵.三、极限与微分计算题 16. 解:利用重要极限的结论和极限运算法则得)1sin 1(2)1sin 1)(1sin 1(lim21sin 1lim00++++-+=-+→→x x x x x x x x )1sin 1(2sin lim 0++=→x x x x 41= 17. 解:等式两端同时求微分得 左)sin (d d )sin (d y x y y x y +=+=y y x x y y y x x y y d cos d sin d )(sin d d sin d ++=++= 右x xx d 1)(ln d ==由此得x x y y x x y y d 1d cos d sin d =++ 整理得 x yx yx y d cos 1sin 1d +-= 18. 解:利用积分的性质和凑微分法得⎰⎰=4141)(d 2e d ex x xxx⎰==21212ed 2e u uu )e 2(e 2-=19. 解:方程是一阶线性微分方程,xx P 1)(=,积分因子为x x xx ==⎰ln d 1e e原方程改为x y y x sin =+' 上式左端为)('xy ,两端同时积分得c x x x xy +-==⎰cos d sin即微分方程的通解为xcx x y +-=cos 其中c 为任意常数. 五、概率计算题 20. 解:由事件的关系得B A A B A +=+且A 与B A 互斥,再由加法公式得)()()(B A P A P B A P +=+8.03.05.0=+= 21. 解:对X 做变换得出)1,0(~33N X -,于是 )3331()331233330()120(<-≤-=-<-≤-=<≤X P X P X P)]1(1[)3()1()3(ΦΦΦΦ--=--=84.018413.09987.0=-+=六、代数计算题22. 解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-301111010B A 利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--110210001010010111100301010111001010 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→2121211001010010111111200001010010111 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---→212121100001010212323001212121100001010212321011即 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--=--212121001212323)(1B A 23. 解:将线性方程组的增广矩阵化为行简化阶梯形矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=131101311021011551323412121011A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→000001311012101000001311021011 线性方程组的一般解为 ⎩⎨⎧-+=++=1312432431x x x x x x (其中43,x x 是自由未知量)24. 解:由已知条件可得809q p -=809)(2q q pq q R -== 又由已知条件得1604)(+=q q C进一步得到160805)1604(809)()()(22--=+--=-=q q q q q q C q R q L对利润函数求导得405)(qq L -=' 令'=Lq ()0得200=q ,在定义域内只有一个驻点,故为最值点.即生产200件产品时厂家获得的利润最大. 八、证明题25. 证:由转置的性质得T T T T T T AA A A AA ==)()( 由定义可知T AA 是对称矩阵. 中央广播电视大学2018-2018学年度第二学期 经济数学基础 试卷一、单项选择题二、填空题三、微积分计算题四、线性代数计算题五、应用题一、单项选择题(每小题3分.本题共15分)1.D 2.B 3.A 4.C 5.A。
电大经济数学基础微积分试题及答案(最新)
经济数学基础微积分试题(07.1-14.1)一、单项选择题:1、设xx f 1)(=,则=))((x f f ( C ). (10.1)A.x 1B.21x C.x D.2x2、下列各函数对中,( C )中的两个函数相等. (08.7) A. x x g x x f ==)(,)(2 B. x x g x x f ==)(,)()(2C. x x g x y ln 3)(,ln 3==D. x x g x y ln 2)(,ln 2==3、下列各函数对中,( D )中的两个函数相等. (07.7,13.1,14.1)A.x x g x x f ==)(,)()(2B.1)(,11)(2+=--=x x g x x x fC.x x g x y ln 2)(,ln 2==D.1)(,cos sin )(22=+=x g x x x f4、下列函数在指定区间(-∞,+∞﹚上单调增加的是( B ). (10.7,11.7) A.x sin B.x e C.2x D.x -35、下列函数在指定区间(-∞,+∞﹚上单调下降的是( B ).(09.1) A.x sin B. x 3 C.2x D. 5-x6、下列函数在指定区间(-∞,+∞﹚上单调增加的是( C ).(08.7)A.x sinB.x 21C.x 3D.21x -7、函数242--=x x y 的定义域是( B ). (07.1) A. [-2,+ ∞) B. [-2,2)),2(+∞⋃C. (-∞,-2)),2(+∞-⋃D. (-∞,2)),2(+∞⋃ 8、函数xx y -++=41)2ln(的定义域是( A ). (09.7)A.(-2,4)B. (-2,4)),4(+∞⋃C.)4,(-∞D.),2(+∞-9、函数)1lg(+=x xy 的定义域是( D ). (11.7)A.1->xB.0>xC.0≠xD. 1->x 且0≠x 10、下列函数中为奇函数的是( C ). (11.1,13.7) A.x x y -=2 B.x x e e y -+=C.11ln +-=x x y D.x x y sin =11、下列函数中为偶函数的是( A ). (08.1)A.x x y sin =B.x x y +=2C.x x y --=22D.x x y cos = 12、下列函数中为偶函数的是( C ). (12.1)A. x x y -=2B. 11ln +-=x x yC.2xx e e y -+= D.x x y sin 2=13、已知xxx f sin 1)(-=,当x ( A )时,)(x f 为无穷小量. (09.1) A.0→ B.∞→ C.1→ D.+∞→14、已知1sin )(-=xxx f ,当( A )时,)(x f 为无穷小量. (07.7,10.1) A.0→x B.1→x C.-∞→x D.+∞→x 15、当0→x 时,变量( D )是无穷小量. (09.7)A.x 31 B.x x sin C.)2ln(+x D.x x 1sin16、函数⎪⎩⎪⎨⎧=≠=0,0sin )(x k x xxx f ,在)(x f 在x=0处连续,则k =( C ).(13.1)A.-2B.-1C.1D.217、若4cos )(π=x f ,则=∆-∆+∞→xx f x x f x )()(lim( A ). (07.1)A.0B.22C.4sin π-D. 4sin π18、曲线x y sin =在点(π,0)处的切线斜率为( D ). (08.1)A.1B.2C.21D.-1 19、曲线11+=x y 在点(0,1)处的切线斜率为( A ). (10.7)A.21-B.21C.2)1(21+xD.- 2)1(21+x20、曲线1sin +=x y 在点(0,1)处的切线方程为( A ).A.1+=x yB. 12+=x yC. 1-=x yD. 12-=x y 21、在切线斜率为2x 的积分曲线中,通过点(1,4)的曲线为( A ).(13.7) A.32+=x y B. 42+=x y C. 22+=x y D. x y 4= 22、设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为=P E ( D )。
注意经济数学基础综合练习及模拟试题(含答案)
注意:经济数学基础综合练习及模拟试题(含答案)一、单项选择题 1.若函数xxx f -=1)(, ,1)(x x g +=则=-)]2([g f ( ). A .-2 B .-1 C .-1.5 D .1.5 正确答案:A2.下列函数中为偶函数的是( ).A .x x y -=2B .x x y --=e eC .11ln +-=x x y D .x x y sin = 正确答案:D3.函数)1ln(1-=x y 的连续区间是( ).A .),(),(∞+⋃221B .),(),∞+⋃221[C .),(∞+1D .),∞+1[正确答案:A李蓉:为什么是A ,答案B 的前面有中括号的定义与答案A 区别是?顾静相:答案B 左边的是方括号[,表示能取到端点,在左端点处函数没有意义。
4.曲线11+=x y 在点(0, 1)处的切线斜率为( ). A .21 B .21- C .3)1(21+x D .3)1(21+-x正确答案:B5.设c xxx x f +=⎰ln d )(,则)(x f =( ). A .x ln ln B .x x ln C .2ln 1x x - D .x 2ln 正确答案:C6.下列积分值为0的是( ).A .⎰ππ-d sin x x x B .⎰-+11-d 2e e x xx C .⎰--11-d 2e e x xx D .⎰-+ππx x x d )(cos 正确答案:C7.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T=( ). A .⎥⎦⎤⎢⎣⎡--5232 B .⎥⎦⎤⎢⎣⎡--6321 C .⎥⎦⎤⎢⎣⎡--6231 D .⎥⎦⎤⎢⎣⎡--5322 正确答案:A8. 设B A ,为同阶方阵,则下列命题正确的是( ). A .若O AB =,则必有O A =或O B =B .若O AB ≠,则必有O A ≠,O B ≠C .若秩O A ≠)(,秩O B ≠)(,则秩O AB ≠)(D . 111)(---=B A AB正确答案:B9. 当条件( )成立时,n 元线性方程组b AX =有解.A . r A n ()<B . r A n ()=C . n A r =)(D . O b = 正确答案:D蒋玉兰:关于这题,上午我们一些辅导教师还在说难了点。
经济数学基础综合练习及参考答案
经济数学基础综合练习及参考答案第一部分 微分学我们的课程考试时间:08年7月12日下午14:00-15:30 方式:闭卷笔试,90分钟题型:单项选择题,填空题,计算题和应用题。
第1章函数一、单项选择题1.函数()1lg +=x xy 的定义域是( ).A .1->xB .0≠xC .0>xD .1->x 且0≠x2.函数x x x f -+-=4)1ln(1)(的定义域是( )。
A .],1(+∞ B .)4,(-∞ C .]4,2()2,1(⋃ D )4,2()2,1(⋃ 答案:C3.下列各函数对中,( )中的两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,x x g =)(+ 1C .2ln )(x x f =,x x g ln 2)(=D .x x x f 22cos sin )(+=,1)(=x g 答案:D4.设xx f 1)(=,则))((x f f =( ).A .x 1B .21x C .x D .2x答案:C5.下列函数中为奇函数的是( ).A .x x y -=2B .x x y -+=e eC .)1ln(2x x y ++=D .x x y sin = 答案:C6.下列函数中为偶函数的是( ).A .x x y --=22B .x x cosC .2sin x x +D .x x sin 3 答案:D练习册:不是基本初等函数的( ) 二、填空题1.函数xx x f --+=21)5ln()(的定义域是 .答案:(-5, 2 )2.若函数52)1(2-+=+x x x f ,则=)(x f . 答案:62-x3.设21010)(xx x f -+=,则函数的图形关于 对称.答案:y 轴第2章,极限、导数与微分一、单项选择题1. 已知1sin )(-=xxx f ,当( )时,)(x f 为无穷小量. A . x →0 B . 1→x C . -∞→x D . +∞→x答案:A2.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( ).A .-2B .-1C .1D .23. 函数⎪⎩⎪⎨⎧=≠+=0,10,1sin )(x x k xx x f 在x = 0处连续,则=k ( ). A . 1 B . 0 C . 2 D .1-答案:A4.曲线11+=x y 在点(0, 1)处的切线斜率为( ).A .21- B .21 C .2 D .2-答案:A5. 曲线1+=x y 在点(1, 2)处的切线方程为( ).A .2121+=x yB . 2321+=x yC . 2121-=x yD . 2321-=x y答案:B6.若函数x xf =)1(,则)(x f '=( ).A .21xB .-21xC .x 1D .-x 1二、填空题1.已知xxx f sin 1)(-=,当 时,)(x f 为无穷小量.答案:0→x2.已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a .答案23.函数3212--+=x x x y 的间断点是 .答案:3,1=-=x x4. 函数233)(2+--=x x x x f 的连续区间是.答案:),2()2,1()1,(+∞⋃⋃-∞5.曲线y =)1,1(处的切线斜率是.答案:21.6. 已知x x f 2ln )(=,则])2(['f = . 答案:0 三、计算题1.已知y x x x 2cos -=,求)(x y ' .解: x x x y 2sin )2(ln 22321+='2.已知)(x f x x sin 2=,求)(x f '解:)(x f 'xxx x x 21cos 2sin 2ln 2+=.3.已知x xe x y -=2cos ,求)(x y '; 解:)()2(sin 2x x xe e x x y +--='4.已知223sin x e x y -+=,求d y . 解: )4()(cos sin 3222x e x x y x -+='- d y=dx xe x x x )4)(cos sin 3(222--5.设 y x x x ln 2++=,求d y . 解:xxx y 12123+-='-dx xxxdy )121(23+-=- 6.设2e 2sin x x y -+=,求y d . 解:2e 22cos 2x x x y --='x x x y x d )e 22cos 2(d 2--=第3章,导数应用一、单项选择题1.下列函数在指定区间(,)-∞+∞上单调减少的是( ).A .sin xB .e xC .x 2D .3 – x答案:D2.下列结论正确的有( ).A .x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0B .x 0是f (x )的极值点,则x 0必是f (x )的驻点C .若f '(x 0) = 0,则x 0必是f (x )的极值点D .使)(x f '不存在的点x 0,一定是f (x )的极值点 答案:A3. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =( ).A .p p 32-B .--pp 32 C .32-p pD .--32pp 答案:B 二、填空题1.函数2)1(+=x y 的单调增加区间为 . 答案:(),1+∞-2. 函数y x =-312()的驻点是 . 答案:1=x3.需求量q 对价格p 的函数为2e 100)(p p q -⨯=,则需求弹性为E p =。
经济数学基础积分部分综合练习及解答
《经济数学基础》积分部分综合练习及解答(06春)中央电大 顾静相前面我们介绍了微分部分的综合练习题,现在给出积分部分的综合练习题,供大家学习和复习参考。
在这里要提醒大家的是,上学期网上教学辅导栏目中的综合练习内容,本学期还是有很好的参考价值。
三、积分学部分综合练习及解答(一)单项选择题1.下列函数中,( )是2cos x x 的原函数.A .21sin x 2B .2 sin x 2C .-2 sin x 2D .-21 sin x2 答案:A 2.下列等式不成立的是(). A .A .x x x 1d d ln = B .21d d 1xx x -= C .x x x sin d d cos = D .xx x 1d d 12= 答案:C3. 设c xx x x f +=⎰ln d )(,则)(x f =( ). A .x ln ln B .x x ln C .2ln 1x x - D .x 2ln 答案:C4. 若c x x f x x +-=⎰11ede )(,则f (x ) =( ). A .x 1 B .-x 1 C .21x D .-21x 答案:C5.下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x x x d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππ D .x x x d )sin (2⎰-+ππ答案:A 6.⎰+∞1-d e 2x x x =( ).A .eB .e 21 C .e 21- D .∞+ 答案:B(二)填空题1.若c x x x f ++=⎰2)1(d )(,则=)(x f . 填写:)1(2+x 2.若c x F x x f +=⎰)(d )(,则x f x x )d e (e --⎰= .填写:c F x +--)e (3.=-⎰-112d )2sin (x x x . 填写:-4 4.x x d e 02⎰∞- .. 填写:21 5. 微分方程2e +='-x y 的通解是 .填写:c x y x ++-=-2e(三)计算题⒈ ⎰+x x x xx )d ln sin ( 解 ⎰+x x x x x )d ln sin (=⎰+4774)d(ln ln sin x x x c x x ++-=4774ln cos 2.⎰+x x x d 1)ln ( 解 ⎰+x x x d 1)l n (=⎰+-+x xx x x d 1)(21ln 1)(2122 =c x x x x x +--+4)ln 2(21223.x x xd )e 1(e 102⎰+ 解 x x x d )e 1(e 102⎰+)e d(1)e 1(1102x x ++=⎰ e 1121)e 1(110+-=+-=x 4.x x x d 15023⎰+ 解 x x x d 15023⎰+=x x x x x d 15023⎰+-+=x x x x x x x d 1d 1)1(5025022⎰⎰+-++ =x x x x x d 1d 50250⎰⎰+- =502502)1(ln 2121+-x x =21(25-ln26) 5.求微分方程12+=+'x y y 满足初始条件3)1(=y 的特解.解 因为 1)(=x P ,1)(2+=x x Q用公式 ]d 1)e ([e d 2d c x x y x x +⎰+⎰=⎰-]d 1)e ([e 2c x x x x ++=⎰- =)e d e 2e (e 2c x x x x x x x ++-⎰-=)e d e 2e 2e (e 2c x x x x x x x x +++-⎰-=)e e 2e 2e (e 2c x x x x x x x +++--=x c x x -++-e 322由 3e 321)1(12=++-=-c y , 得 e =c所以,特解为 422+-=x x y6.求微分方程x x y y x sin =+'满足 1==πx y 的特解. 解:因为xx P 1)(=,x x Q sin )(=,由通解公式得)d e sin (e d 1d 1c x x y x x x x +⎰⎰=⎰-=)de sin (e ln ln c x x x x +⎰- =)d sin (1c x x x x +⎰=)sin cos (1c x x x x ++- 由 1)s i n c o s (1)(=++-=c y πππππ, 得 0=c所以,特解为 x x x y s i n 1c o s +-= 7.求微分方程y y x y ln tan ='的通解.解 将原方程分离变量 x x y y y d c o t ln d =两端积分得 lnln y = ln C sin x通解为 y = e C sin x8.求微分方程0e e 32=--'y y y x x 的通解.解 首先将方程等号左边的第2,3项移到等号右边,并进行变量分离x yy yx d e )31(d 2=+ 两边积分得1e )31(ln 31c yx +=+- 通解为 c y y x +=+-e 3)3ln(ln(四)应用题1.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求:(1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化? (较难)(熟练掌握)解 (1) 因为边际成本为 1)(='x C边际利润)()()(x C x R x L '-'=' = 14 – 2x令0)(='x L ,得x = 7由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为87287)14(d )214(x x x x L -=-=∆⎰ =112 – 64 – 98 + 49 = - 1 (万元)即利润将减少1万元.2.设某种产品的固定成本为9800元,边际成本为36)(+='q q C ,其中q 为产量.求使平均成本最低的产量.解:因为,成本函数 c x q q q q C ++=+=⎰365.0d )36()(2由 980003605.0)0(2=+⨯+⨯=c C ,得9800=c即 9800365.0)(2++=q q q C又平均成本为 C q ()=C q q ()=05369800.q q++ 'C q ()=(.)05369800q q ++'=0598002.-q 令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去), q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实有使平均成本函数最低的点. 所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低的产量为140个单位.。
《经济数学基础》微积分部分复习Word版
《经济数学基础》微积分部分复习第一篇 微分学 第一章 函数一、本章考核点1、掌握函数奇偶性的判定,掌握总成本、平均成本、收入、利润函数的概念及表达式,掌握五个基本初等函数的概念及表达式。
2、熟练掌握函数定义域、求函数值、复合函数的复合与分解的计算。
二、基本概念基本初等函数、函数的奇偶性、总成本、平均成本、收入、利润函数奇偶性:若f(-x)=f(x),则函数f(x)为偶函数 若f(-x)=-f(x),则函数f(x)为奇函数 若f(x)不满足上述两式,则函数f(x)为非奇非偶函数总成本函数:10C C C += 隐含条件: 0)0(C C =平均成本:q CC =总收入函数:pq R = 隐含条件:0)0(=R总利润函数:C R L -=基本初等函数: 常数:y=C幂函数:αx y =指数函数:xa y =对数函数:x y log = 自然对数:x y ln = 三角函数:正弦函数 y=sinx 余弦函数 y=cosx 正切函数 y=tanx 余切函数 y=cotx 三、计算1、求函数的定义域重点是已知函数的解析式求函数的定义域——四个限制已知函数的解析式求定义域,有以下几个限制:①分式的分母不为零; ②对数的真数大于零;③开偶次方的被开方数非负;④2tan ππ+≠=k x x y 中πk x x y ≠=中cot 其中k=0, ±1,2,3,…… 2、求函数值3、复合函数的分解第二章 极限、导数与微分一、本章考核点1、熟练掌握极限的计算、导数微分的计算。
2、掌握函数间断点的求法,判断分段函数分段点是否有极限、是否连续。
二、计算1、极限——数列的极限、函数的极限方法:利用四则运算性质、利用两个重要极限公式 2、导数和微分方法:利用导数的四则运算法则和导数基本公式; 复合函数的导数;隐函数的导数;高阶导数 3、求函数的间断点——两种类型初等函数:初等函数在其定义域内连续 ——函数无定义的点即为初等函数的间断点; 分段函数:分段函数的间断点存在于分段点中。
(金融保险类)经济数学基础微分部分综合练习及解答
经济数学基础微分部分综合练习及解答(06春)中央电大顾静相从2005年秋季开始经济数学基础课程的教学计划、教学内容进行了调整。
具体情况上学期的各种教学活动中都给大家讲过,而且已经执行了一个学期,并得到了大家的肯定。
为了使大家更好地进行本课程学习和复习,本文首先还要简要地介绍本课程的调整情况,然后给出微分学部分的综合练习题,剩下的内容在后两次再给大家介绍。
在这里要提醒大家的是,上学期网上教学辅导栏目中的综合练习内容,本学期还是有很好的参考价值。
一、本课程教学内容、教学安排说明从2005年秋季开始经济数学基础课程的教学内容作如下调整:1.电大开放教育财经类专科教学计划中经济数学基础课程的教学内容调整为微积分学(含多元微分学)和线性代数两部分,其中微积分学的主要内容为:函数、极限、导数与微分、导数应用、多元函数微分学;不定积分、定积分、积分应用、微分方程。
线性代数的主要内容为:行列式、矩阵、线性方程组。
2.教材采用由李林曙、黎诣远主编的,高等教育出版社出版的“新世纪网络课程建设工程——经济数学基础网络课程”的配套文字教材:•经济数学基础网络课程学习指南•经济数学基础——微积分•经济数学基础——线性代数3.教学媒体(1)配合文字教材的教学,有26讲的电视录像课,相对系统地讲授了该课程的主要内容。
同时还有2合录音带,对学生的学习进行指导性的提示和总结性的复习。
(2)计算机辅助教学课件(CAI课件)有助于提高学生做作业的兴趣,帮助学生复习、掌握基本概念和基本方法。
(3)《经济数学基础网络课程》已经放在“电大在先学习网”上,在主页的处找到经济数学基础网络课程,并点击就可以进入学习。
网络课程的模块包括课程序言、课程说明、预备知识、本章引子、学习方法、教学要求、课堂教学、课间休息、跟我练习、课后作业、本章小结、典型例题、综合练习、阶段复习、专题讲座、课程总结、总复习等。
(4)速查卡主要是根据学生学习的流动性特点,考虑到本课程学时少、知识点多、相对抽象、不易记忆和理解等特点而设计。
经济类专业学位联考综合能力数学基础(微积分)模拟试卷16
经济类专业学位联考综合能力数学基础(微积分)模拟试卷16(总分:58.00,做题时间:90分钟)一、<B>计算题</B>(总题数:29,分数:58.00)1.设F(x)是xcosx 的一个原函数,则dF(x 2)=( ). A.2x 2cosxdx B.2x 3 cosxdx C.2x 2cosx 2dx D.2x 3cosx 2dx √由题设F(x)为xcosx 的一个原函数,可知 F'(x)=xcosx , 因此 dF(x 2)=F'(x 2)d(x 2)=F'(x 2).2xdx=2x3cosx 2dx . 故选D .2.设f'(x)=cosx ,则f(x)的一个原函数为( ). A.1-sinx B.1+sinx C.1-cosx √ D.1+cosx这个题目有两种常见的解法. 解法1由于f'(x)=cosx ,可知 f(x)=∫f'(x)dx=∫cosxdx=sinx+C 1 , 则f(x)的原函数为 ∫f(x)dx=∫(sinx+C 1 )dx=-cosx+C 1 x+C 2 . 对照四个选项,当C 1 =0,C 2 =1时,得1-cosx .故选C . 解法2将四个选项分别求导数,得出f(x),再分别求导数,哪个导数值为cosx ,则哪个为正确选项.换句话说,将四个选项分别求二阶导数,值为cosx 的选项正确,可知C 正确. 此时(1-cosx)"=(sinx)'=cosx .3.设f(x)为[a ,b]上的连续函数,[-c ,,b],则下列命题正确的是( ).A.∫ a bf(x)dx=∫ a bf(t)dt √ B.∫ a bf(x)dx ≥∫ c df(x)dx C.∫ a bf(x)dx ≤∫ c df(x)dxD.∫ a bf(x)dx 与∫ a bf(t)dt 不能比较大小由题设f(x)为[a ,b]上的连续函数,因此∫ a bf(x)dx 存在,故它的值为确定的数值,取决于f(x)和[a ,b],与积分变量无关,因此∫ a bf(x)dx=∫ a b f(t)dt ,可知A 正确,D 不正确.由于题设并没有指明f(x)的正负变化,可知B ,C 都不正确.故选A .4.设f(x)为连续函数,且F(x)=∫ 1/x lnx(t)dt ,F'(x)=( ). A. √ B. C. D.如果f(x)为连续函数,φ i (x)为可导函数,i=1,2,则 [ f(t)dt]'-f[φ 2 (x)φ' 2 (x)-f[φ 1 (x)φ' 1 (x), 因此 F'(x)=f(lnx)(lnx)'-f(1/x)(1/x)'故选A . 若f(x)为连续函数,则 [∫axf(t)dt]'=f(x),[∫ x bf(t)dt]'=-f(x). 又φ(x)可导,则有 [∫ a φ(x)f(t)dt]'=f[φ(x)].φ'(x),[∫ φ(x) bf(t)dt]'=-f[φ(x)].φ'(x). 这里有两个前提条件:(1)f(x)为连续函数,φ(x)为可导函数; (2)被积函数中不含变上(下)限的变元.5.设F(x)=∫ 1 x(2->0),则F(x)的单调增加区间为( ).A.(0,1/4)B.(0,1/2)C.(0,1)D.(1/4,+∞) √因为F'(x)=2F'(x)=0,得x=1/4为F(x)的唯一驻点.所以当0<x<1/4时,F'(x)<0,F(x)单调减少;当x>1/4时,F'(x)>0,F(x)单调增加.故选D.6.函数f(x)=x 2在闭区间[1,3]上的平均值为( ).A.5B.13/3 √C.4D.-11/3由连续函数f(x)在[a,b]上的平均值定义知其为∫a b f(x)dx.可知B.7..A.ln(x 2 +4x+5)+CB.1/2ln(x 2 +4x+5)+C √C.1/3ln(x 2 +4x+5)+CD.1/4ln(x 2 +4x+5)+CB.8.已知f(x,y)=3x+2y,则f[1,f(x,y)]=( ).A.3x+2y+1B.3x+2y+3C.6x+4y+1D.6x+4y+3 √由题设f(x,y)=3x+2y,意味着 f(□,○)=3.□+2.○,其中□,○分别表示f的表达式中第一个位置和第二个位置的元素.因此 f[1,f(x,y)]=3+2f(x,y)=3+2.(3x+2y)=6x+4y+3.故选D.9.设z=,则( )A.B. √C.D.已知z=f(x,y),则可知(0,0)不存在,可排除A.故选B.10.设z=(3x+2y) 3x+2y,则.A.5(3x+2y) 3x+2y [1+ln(3x+2y)]B.3(3x+2y) 3x+2y [1+ln(3x+2y)]C.(3x+2y) 3x+2y [1+ln(3x+2y)]D.0 √若令u=3x+2y,取z=u 2,由此求运算较复杂.如果再令v=3x+2y,取z=u v (虽然u,v取相同表达式,但是z=u v的表达式中u,v的地位不同,下面将很快发现这种代换简化了运算!).由于因此=vu v-1.3+u v lnu.3=3(3x+2y) 3x+2y [1+ln(3x+2y)],=vu v-1.2+u v lnu.2=3(3x+2y) 3x+2y [1+ln(3x+2y)].所以故选D.11.设函数z=f(u),方程u=φ(u)+∫y x p(t)dt,确定u是x,y的函数,其中f(u),φ(u)可微,p(t),φ'(u)连续,且φ'(u)≠1,则p(y) =( ).A.p(x)-p(y)B.p(x)+p(y)C.0 √D.1所给问题为综合性题目.本题包含隐函数求导,可变上(下)限积分求导及抽象函数求导.由z=f(u)可得方程u=φ(u)+∫y x p(t)dt两端分别关于x,y求偏导数,可得由φ'(u)≠1可得故选C.A. √B.C.D.A.13.设f(x,y)与φ(x,y)均为可微函数,且φ' y (x,y)≠0.已知(x 0,y 0 )是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是( ).A.若f' x (x 0,y 0 )=0,则f' y (x 0,y 0 )=0B.若f' x (x 0,y 0 )=0,则f' y (x 0,y 0 )≠0C.若f' x (x 0,y 0 )≠0,则f' y (x 0,y 0 )=0D.若f' x (x 0,y 0 )≠0,则f' y (x 0,y 0 )≠0 √由于φ(x,y)可微,且φ' y(x,y)≠0,由隐函数存在定理可知由φ(x,y)=0可以确定可导函数y=y(x).因此求f(x,y)在条件φ(x,y)=0下的极值等价于求f[x,y(x)]的极值.可知点(x 0,y 0 )为f[x,y(x)]的极值点.由于f[x,y(x)]可微,因此必定有=f' x [x,y(x)]+f' y [x,y(x)].y'(x).由隐函数求导公式可知 y'(x)=-φ' x (x,y)/φ' y (x,y),从而则 f' x (x 0,y 0 )-f' y (x 0,y 0 ).=0.若f' x (x 0,y 0 )≠0,由上式可知f' y (x 0,y 0 )≠0.故选D.14.设z=f(x,( ).A.f' x-f' y =0B.f' x +f' y =0C.f' x-f' y =fD.f' x +f' y =f √z=f(x,y)= ,则因此 f' x +f' y D.15.计算∫x 2 sin(3-2x 3 )dx.__________________________________________________________________________________________ 正确答案:(正确答案:利用凑微分法.∫x 2 in(3-2x 3 )dx=-1/6∫sin(3-2x 3 )d(3-2x 3 ) =1/6cos(3-2x 3 )+C.)16.计算不定积分∫sin(lnx)dx.__________________________________________________________________________________________ 正确答案:(正确答案:利用分部积分法.∫sin(lnx)dx=xsin(lnx)-∫x.cos(lnx).1/xdx =xsin(lnx)-∫cos(lnx)dx =xsin(lnx)-[xcos(lnx)+∫x.sin(lnx).1/xdx] =x[sin(lnx)-cos(lnx)]-∫sin(lnx)dx,因此 2∫sin(lnx)dx=x[sin(lnx)-cos(lnx)]+C 1,∫sin(lnx)dx=x/2[sin(lnx)cos(lnx)]+C.)17.设f(x)为连续函数,且f(x)+a∫01 f(x)dx=a 2 x求能使∫01 f(x)dx取得极值的a的值.__________________________________________________________________________________________ 正确答案:(正确答案:由题设可知∫01f(x)dx的值与a有关,因此只需考∫01f(x)dx与a的关系.设t=∫01 f(x)dx,则所给表达式可化为 f(x)+at=a 2 x,将上式两端在[0,1]上积分,得∫01 f(x)dx+∫01 atdx=∫01 xdx,t+at=1/2a 2,令dt/da=0,得t的两个驻点a 1 =0,a 2 =-2.故当a<-2时,dt/da>0,t单调增加;当-2<a<-1时,dt/da<0,t单调减少;当-1<a<0时,dt /da<0,t单调减少;当a>0时,dt/da>0,t单调增加.所以当a=-2时,t取得极大值,即∫01 f(x)dx取得极大值,为-2;当a=0时,t取得极小值,即∫01 f(x)dx取得极小值,为0.)18.计算定积分∫01.__________________________________________________________________________________________正确答案:(正确答案:=∫01d(e x)=arctane x| 01=arctane-arctan1 =arctane-)19.计算定积分∫01__________________________________________________________________________________________正确答案:(正确答案:令u= ,则xdx=-d(1-x 2 )=-d(u 2 )=-udu.当x=0时,u=1;当x=1时,u=0.因此=-arctanu| 10 =π/4.)20.已知函数f(x)的原函数为lnx/x,求∫1e xf'(x)dx.__________________________________________________________________________________________正确答案:(正确答案:由题设lnx/x为f(x)的原函数,可知因此由分部积分公式可得∫1exf'(x)dx=xf(x)| 1e-∫1e f(x)dx )21.当a(0≤a≤4)为何值时,曲线y=-a)与y=(4-a)x(x-a)所围图形面积最大.__________________________________________________________________________________________ 正确答案:(正确答案:所给两条曲线都是二次方程,因此都是抛物线.又都过点x=0与x=a.又0≤a≤4,故当0≤x≤a时,y=(4-a)x(x-a)在x轴下方;曲线y=-x(x-a)在x轴上方,如图1—3—4所示.因此两条曲线所围图形面积为 S(a)=∫0a [-x(x-a)-(4-a)x(x-a)]dx =-1/18a 3 (3a-14). S'(a)=-1/3a 2 (2a-7),S"(a)=-2a 2 + a.令S'(a)=0,得S(a)的两个驻点a 1 =0,a 2 =7/2.又由S"(7/2)<0知,a 2 =7/2为S(a)的极大值点,也是最大值点,故当a=7/2时,所求面积最大.)22.x>y>z>0,当三个自变量x,y,z分别增加一个单位时,哪个变量的变化对函数u影响最大?__________________________________________________________________________________________ 正确答案:(正确答案:由偏导数的几何意义可知,偏导数表示函数沿平行于该坐标轴方向的变化率.只需求出三个偏导数并比较它们的值.可以将所给函数认作是隐函数,将所给表达式两端分别关于x,y,z求偏导数,可得由于x>y>z>0,因此x 2>y 2>z 2,进而有 u 2/x 2<u 2/y 2<u 2/z 2,即,可知当x,y,z分别增加一个单位时,z的变化对u的影响最大.)23.设二元函数z=,其中f(u)__________________________________________________________________________________________正确答案:(正确答案:设u=x 2-y 2,v=y,则x=v/24.设二元函数f(x,x+y)=2x 2 y,z=f(x,y),求__________________________________________________________________________________________ 正确答案:(正确答案:设u=x,v=x+y.可得x=u,y=v-u.因此f(x,x+y)=f(u,v)=2u 2(v-u).z=f(x,y)=2x 2 (y-x)=2x 2 y-2x 3,=4xy-6x 2.)25.设z=e xy (x 2 +y),其中f(u)是可导函数,求__________________________________________________________________________________________正确答案:(正确答案:设u=xy,v=x 2+y,则z=e u f(v).u.y.f(v)+e u f'(v).2x =e xy[yf(x 2 +y)+2xf'(x 2 +y)].)26.设z=z(x,y)由方程xy=xf(z)+yg(z)确定,其中f,g为可导函数,且xf'(z)+yg'(z)≠0,求[zx-g(z)]__________________________________________________________________________________________ 正确答案:(正确答案:设F(x,y,z)=xy-xf(z)-yg(z),则 F' x =y-f(z),F' y =x-g(z),F' x =-xf'(z)-yg'(z).因此)27.设z=e 2x (x+2y+y 2 ),求z的极值点与极值.__________________________________________________________________________________________ 正确答案:(正确答案:由z=e 2x (x+2y+y 2 ),知=2e 2x (x+2y+y 2 )+e 2x =e 2x (2x+4y+2y 2 +1),=e 2x (2+2y).由于=2e 2x (2x+4y+2y 2 +1)+e 2x.2=e 2x (4x+8y+4y 2 +4), B 2-AC=-4e 2<0.依据极值的充分条件知点(1/2,-1)为极小值点,极小值为-e/2.)28.求f(x,y)=x 2-y 2 +2在椭圆域D={(x,y)|x 21}上的最大值和最小值.__________________________________________________________________________________________正确答案:(正确答案:求f(x,y)x 2-y 2 +2在区域D={(x,y)|x 2 + ≤1}上的最值应分两种情形考虑:在椭圆域D的内点考虑无约束极值问题;在椭圆域D的边界考虑条件极值问题.解法1考查f(x,y)=x 2-y 2 +2在区域x 2 + <1内的极值.令解得x=0,y=0,即f(x,y)在x 2 + <1内有唯一驻点(0,0).在x 2 + =1上,记y 2 =4-4x 2,因此有 f(x,y)=x 2-(4-4x 2 )+2=5x 2-2,-1≤x≤1,令df/dx=10x=0,得x=0.当x=0时,y=±2;当x=±1时,y=0.所以f(±1,0)=3,f(0,±2)=-2.又f(0,0)=2,因此f(x,y)在D上的最大值为3,最小值为-2.解法2在区域x 2 +<1内解法同解法1.在椭圆x 2 + =1上,利用拉格朗日乘数法求极值.设 L=x 2-y 2 +2+λ(x 2 + -1),由4个可能的极值点M 1 (0,2),M 2 (0,-2),M 3 (1,0),M 4 (-1,0).所以 f(M 1 )=-2,f(M 2 )=-2,f(M 3 )=3,f(M 4 )=3,可知f(x,y)在D上的最大值为3,最小值为-2.)29.假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是 p 1 =18-2Q 1,p 2 =12-Q 2,其中p 1和p 2分别表示该产品在两个市场的价格(单位:万元/吨);Q 1和Q 2分别表示该产品在两个市场的销售量(即需求量,单位:吨),并且该企业生产这种产品的总成本函数是 C=2Q+5,其中Q表示该产品在两个市场的销售总量,即Q=Q 1 +Q 2. (1)如果该企业实行价格差别策略,试确定两个市场上该产品的销售量和价格,使该企业获得最大利润; (2)如果该企业实行价格无差别策略,试确定两个市场上该产品的销售量及其统一的价格,使该企业获得的总利润最大,并比较这两种价格策略下的总利润大小.__________________________________________________________________________________________ 正确答案:(正确答案:该企业实行价格差别策略进行销售,则问题为无条件极值.而该企业实行价格无差别策略进行销售,即p 1 =p 2,问题为条件极值. (1)如果该企业实行价格差别策略,总利润函数为 L=R-C=p 1 Q 1 +p 2 Q 2-(2Q+5)=-2Q 12-Q 22 +16Q 1 +10Q 2-5,令解得Q 1 =4,Q 2 =5,则p 1 =10,p 2 =7.因驻点(4,5)唯一,且实际问题一定存在最大值,故最大值必在驻点处达到最大利润为L=-2×4 2-5 2 +16×4+10×5-5=52(万元). (2)若该企业实行价格无差别策略,则p 1 =p 2,于是有约束条件18-2Q 1 =12-Q 2,即 2Q 1-Q 2 =6,构造拉格朗日函数 L(Q 1,Q 2,λ)=-2Q 12-Q 22+16Q 1 +10Q 2-5+λ(2Q 1-Q 2-6).令解得Q 1 =5,Q 2 =4,λ=2,则p 1 =p 2 =8.最大利润为 L=-2×5 2-4 2 +16×5+10×4-5=49(万元).由上述结果可知,企业实行差别定价所得总利润大于统一价格的总利润.)。
《经济数学基础12》综合练习及参考答案
《经济数学基础12》综合练习及参考答案第一部分 微分学一、单项选择题1.函数()1lg +=x xy 的定义域是( ).A .1->xB .0≠xC .0>xD .1->x 且0≠x2.若函数)(x f 的定义域是[0,1],则函数)2(x f 的定义域是( ). A .1],0[ B .)1,(-∞ C .]0,(-∞ D )0,(-∞3.下列各函数对中,()中的两个函数相等.A .2)()(x x f =,x x g =)( B .11)(2--=x x x f ,x x g =)(+ 1C .2ln x y =,x x g ln 2)(= D .x x x f 22cos sin )(+=,1)(=x g4.设11)(+=xx f ,则))((x f f =( ).A .11++x xB .x x +1C .111++xD .x+115.下列函数中为奇函数的是( ).A .x x y -=2B .xxy -+=ee C .11ln+-=x x y D .x x y sin = 6.下列函数中,()不是基本初等函数.A .102=y B .xy )21(= C .)1ln(-=x y D .31xy = 7.下列结论中,( )是正确的. A .基本初等函数都是单调函数 B .偶函数的图形关于坐标原点对称 C .奇函数的图形关于坐标原点对称 D .周期函数都是有界函数8. 当x →0时,下列变量中( )是无穷大量.A .001.0x B . x x 21+ C . x D . x-29. 已知1tan )(-=xxx f ,当( )时,)(x f 为无穷小量.A . x →0B . 1→xC . -∞→xD . +∞→x10.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( ).A .-2B .-1C .1D .211. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在x = 0处( ).A . 左连续B . 右连续C . 连续D . 左右皆不连续 12.曲线11+=x y 在点(0, 1)处的切线斜率为( ).A .21-B .21C .3)1(21+x D .3)1(21+-x13. 曲线y = sin x 在点(0, 0)处的切线方程为( ). A . y = x B . y = 2x C . y = 21x D . y = -x 14.若函数x xf =)1(,则)(x f '=( ).A .21x B .-21x C .x 1 D .-x 115.若x x x f cos )(=,则='')(x f ( ).A .x x x sin cos +B .x x x sin cos -C .x x x cos sin 2+D .x x x cos sin 2-- 16.下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .sin xB .e xC .x 2D .3 - x 17.下列结论正确的有( ).A .x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0B .x 0是f (x )的极值点,则x 0必是f (x )的驻点C .若f '(x 0) = 0,则x 0必是f (x )的极值点D .使)(x f '不存在的点x 0,一定是f (x )的极值点18. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =( ).A .p p32- B .--pp32 C .32-ppD .--32pp二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是. 2.函数x x x f --+=21)5ln()(的定义域是.3.若函数52)1(2-+=+x x x f ,则=)(x f. 4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f.5.设21010)(xx x f -+=,则函数的图形关于对称.6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为 .7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = .8. =+∞→xxx x sin lim.9.已知xxx f sin 1)(-=,当 时,)(x f 为无穷小量.10. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a .11. 函数1()1exf x =-的间断点是 . 12.函数)2)(1(1)(-+=x x x f 的连续区间是 .13.曲线y =)1,1(处的切线斜率是.14.函数y = x 2 + 1的单调增加区间为.15.已知x x f 2ln )(=,则])2(['f = . 16.函数y x =-312()的驻点是 . 17.需求量q 对价格p 的函数为2e 100)(p p q -⨯=,则需求弹性为E p =.18.已知需求函数为p q 32320-=,其中p 为价格,则需求弹性E p= .三、计算题1.423lim 222-+-→x x x x 2.231lim 21+--→x x x x 3.0x → 4.2343lim sin(3)x x x x →-+-5.113lim21-+--→x x x x 6.2)1tan(lim21-+-→x x x x ; 7. ))32)(1()23()21(lim 625--++-∞→x x x x x x 8.20sin e lim()1x x x x x →++ 9.已知y xx x--=1cos 2,求)(x y ' .10.已知)(x f xx x x+-+=11ln sin 2,求)(x f ' .11.已知2cos ln x y =,求)4(πy ';12.已知y =32ln 1x +,求d y . 13.设 y x x x x ln +=,求d y .14.设x x y 22e 2cos -+=,求y d . 15.由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '.16.由方程0e sin =+yx y 确定y 是x 的隐函数,求)(x y '.17.设函数)(x y y =由方程y x y e 1+=确定,求0d d =x x y.18.由方程x y x y=++e )cos(确定y 是x 的隐函数,求y d .四、应用题1.设生产某种产品x 个单位时的成本函数为:x x x C 625.0100)(2++=(万元), 求:(1)当10=x 时的总成本、平均成本和边际成本; (2)当产量x 为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),问产量为多少时可使利润达到最大?最大利润是多少.5.某厂每天生产某种产品q 件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?6.已知某厂生产q 件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品?试题答案一、 单项选择题1.D 2.C 3.D 4.A 5.C 6.C 7.C 8. B 9. A 10. C 11. B 12.A 13. A 14. B 15. D 16. B 17. A 18. B 二、填空题1.[-5,2]2. (-5, 2 )3. 62-x 4.43-5. y 轴6.3.67. 45q – 0.25q 28. 19. 0→x 10. 2 11.0x = 12.)1,(--∞,)2,1(-,),2(∞+ 13.(1)0.5y '= 14.(0, +∞) 15. 0 16.x =1 17.2p- 18.10-p p三、极限与微分计算题1.解 423lim 222-+-→x x x x =)2)(2()1)(2(lim 2+---→x x x x x = )2(1lim 2+-→x x x = 412.解:231lim21+--→x x x x =)1)(2)(1(1lim 1+---→x x x x x =21)1)(2(1lim1-=+-→x x x3.解0x →x →=xxx x x 2sin lim )11(lim 00→→++=2⨯2 = 44.解 2343lim sin(3)x x x x →-+-=3(3)(1)lim sin(3)x x x x →---= 333limlim(1)sin(3)x x x x x →→-⨯--= 2 5.解 )13)(1()13)(13(lim113lim2121x x x x x x x x x x x x ++--++-+--=-+--→→ )13)(1()1(2lim )13)(1())1(3(lim 2121x x x x x x x x x x x ++----=++--+--=→→)13)(1(2lim 1x x x x ++-+-=→221-=6.解 )1)(2()1tan(lim 2)1tan(lim 121-+-=-+-→→x x x x x x x x1)1tan(lim 21lim 11--⋅+=→→x x x x x 31131=⨯=7.解:))32)(1()23()21(lim 625--++-∞→x x x x x x =))32)(11()213()21(lim 625xx x x x x --++-∞→ =2323)2(65-=⨯-8.解 20sin e lim()1x x x x x →++=000sin e lim limsin lim 1xx x x x x x x →→→++ =0+ 1 = 19.解 y '(x )=)1cos 2('--xx x=2)1(cos )1(sin )1(2ln 2x x x x x ------=2)1(sin )1(cos 2ln 2x x x x x----10.解 因为)1ln()1ln(sin 2)(x x x x f x+--+= 所以 x x x x x f xx+---+⋅='1111cos 2sin 2ln 2)( 212]cos sin 2[ln 2xx x x --+⋅= 11.解 因为 2222tan 22)sin (cos 1)cos (ln x x x x xx y -=-='=' 所以 )4(πy '=ππππ-=⨯-=-1)4tan(42212.解 因为 )ln 1()ln 1(312322'++='-x x y=x x x ln 2)ln 1(31322-+ =x x x ln )ln 1(32322-+ 所以 x x x xy d ln )ln 1(32d 322-+= 13.解 因为 y x x ln 47+=xx y 14743-='所以 d y = (xx 14743-)d x14.解:因为 xx x y 222e 2)2(2sin--'-='x x x 22e 22sin ---= 所以 y d x x x x d )e 22sin (22---= 15.解 在方程等号两边对x 求导,得 )e ()e (])1ln([2'='+'+xyx y 0)(e 1)1ln(='+++++'y x y xyx y xy xy xyy xyy x x e 1]e )1[ln(-+-='++ 故 ]e )1)[ln(1(e )1(xy xyx x x y x y y +++++-='16.解 对方程两边同时求导,得 0e e cos ='++'y x y y yyyyy x y e )e (cos -='+)(x y '=yyx y ecos e +-. 17.解:方程两边对x 求导,得 y x y y y '+='e e yy x y e 1e -='当0=x 时,1=y所以,d d =x xye e01e 11=⨯-=18.解 在方程等号两边对x 求导,得 )()e (])[cos('='+'+x y x y1e ]1)[sin(='+'++-y y y x y)sin(1)]sin(e [y x y y x y++='+- )sin(e )sin(1y x y x y y +-++='故 x y x y x y yd )sin(e )sin(1d +-++=四、应用题1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C(2)令 025.0100)(2=+-='xx C ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 q p =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -.(2)因为利润函数L q ()=R q ()-C q () =1001102q q --(60q +2000)= 40q -1102q -2000 且 'L q ()=(40q -1102q -2000')=40- 0.2q 令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.解 C (p ) = 50000+100q = 50000+100(2000-4p ) =250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2 利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令 )(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. 最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 4.解 由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q . 因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大, 且最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元) 5. 解 因为 C q ()=C q q ()=05369800.q q++ (q >0) 'C q ()=(.)05369800q q ++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2= -140(舍去). q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值.所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=0514*******140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q++ 'C q ()=()2502010q q ++'=-+2501102q 令'C q ()=0,即-+=25011002q ,得q 1=50,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是C q ()的最小值点,即要使平均成本最少,应生产50件产品.。
经济数学基础积分部分教学要求与综合练习
经济数学基础积分学部分教学要求与综合练习大家好!现在是经济数学基础本学期第二次学习辅导活动,欢迎大家参加! 第一次辅导活动给出了微分学部分的学习要求和综合练习,应该说它们对您的学习会有很大的帮助的,希望大家重视。
本次活动的主要内容安排了三个,一是对本课程的期末考试作一些说明,二是对第二部分积分学提出一些学习要求,最后给出积分学部分的综合练习,希望大家按照这些要求和练习进行复习。
考核说明考核对象:本课程的考核对象是中央广播电视大学财经类高等专科开放教育金融、工商管理、会计学等专业的学生.考核依据:以本课程的教学大纲和指定的参考教材为依据制定的.本课程指定的参考教材是由李林曙、黎诣远主编的、高等教育出版社出版的“新世纪网络课程建设工程——经济数学基础网络课程”的配套文字教材:经济数学基础网络课程学习指南 经济数学基础——微积分 经济数学基础——线性代数考核方式:本课程的考核形式为形成性考核和期末考试相结合的方式.考核成绩由形成性考核作业成绩和期末考试成绩两部分组成,其中形成性考核作业成绩占考核成绩的30%,期末考试成绩占考核成绩的70%.课程考核成绩满分100分,60分以上为合格,可以获得课程学分.考核要求:本课程的考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次.试题类型及结构:试题类型分为单项选择题、填空题和解答题.三种题型分数的百分比为:单项选择题15%,填空题15%,解答题70%.考核形式:期末考试采用闭卷笔试形式,卷面满分为100分. 考试时间:90分钟.积分学部分学习要求第1章 不定积分1.理解原函数与不定积分概念。
这里要解决下面几个问题: (1)什么是原函数?若函数)(x F 的导数等于)(x f ,即)()(x f x F =',则称函数)(x F 是)(x f 的原函数。
作业五经济数学基础积分学综合练习
综合练习一、单项选择题1.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为( A ). A .y = x 2 + 3 B .y = x 2 + 4 C .y = 2x + 2 D .y = 4x 正确答案:A2.下列等式不成立的是( ).A .)d(e d e x x x =B .)d(cos d sin x x x =-C .x x xd d 21= D .)1d(d ln x x x = 正确答案:A3.若c x x f x +-=-⎰2ed )(,则)(x f '=( ).A . 2e x -- B . 2e 21x- C . 2e 41x- D . 2e 41x--正确答案:D4.下列不定积分中,常用分部积分法计算的是( ).A .⎰+x x c 1)d os(2B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x xxd 12正确答案:C5. 若c x x f xx+-=⎰11e d e )(,则f (x ) =( ).A .x 1 B .-x 1 C .21x D .-21x正确答案:C6. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ).A .)(d )(x F x x f x a=⎰ B .)()(d )(a F x F x x f xa-=⎰C .)()(d )(a f b f x x F b a-=⎰ D .)()(d )(a F b F x x f ba-='⎰正确答案:B7.下列定积分中积分值为0的是( ).A .x x x d 2e e 11⎰---B .x x x d 2ee 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ正确答案:A8.下列定积分计算正确的是( ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0d sin 22=⎰-x x ππ D .0d sin =⎰-x x ππ正确答案:D9.下列无穷积分中收敛的是( ).A .⎰∞+1d ln x x B .⎰∞+0d e x xC .⎰∞+12d 1x x D .⎰∞+13d 1x x正确答案:C10.无穷限积分 ⎰∞+13d 1x x =( ). A .0 B .21- C .21D. ∞正确答案:C二、填空题1.=⎰-x x d e d 2.应该填写:x x d e 2-2.函数x x f 2sin )(=的原函数是 .应该填写:-21cos2x + c (c 是任意常数)3.若)(x f '存在且连续,则='⎰])(d [x f . 应该填写:)(x f '4.若c x x x f ++=⎰2)1(d )(,则=)(x f . 应该填写:)1(2+x5.若c x F x x f +=⎰)(d )(,则x f x x )d e (e --⎰= .应该填写:c F x +--)e (6.=+⎰e12dx )1ln(d d x x .应该填写:07.积分=+⎰-1122d )1(x x x. 应该填写:08.无穷积分⎰∞++02d )1(1x x 是 .(判别其敛散性) 应该填写:收敛的9.设边际收入函数为R '(q ) = 2 + 3q ,且R (0) = 0,则平均收入函数为 .应该填写:2 + q 23三、计算题1.⎰+-x x x d 242 解 ⎰+-x x x d 242=(2)d x x -⎰=2122x x c -+2.计算⎰x x x d 1sin2解 c x x x x xx +=-=⎰⎰1cos )1(d 1sin d 1sin23.计算⎰xxx d 2解 c x xx x x x +==⎰⎰22ln 2)(d 22d 24.计算⎰x x x d sin解 c x x x x x x x x x x ++-=+-=⎰⎰sin cos d cos cos d sin 5.计算⎰+x x x d 1)ln (解 ⎰+x x x d 1)ln (=⎰+-+x x x x x d 1)(21ln 1)(2122=c x x x x x +--+4)ln 2(2122 6.计算 x x xd e 2121⎰ 解 x xxd e 2121⎰=21211211e e e )1(d e -=-=-⎰x xx7.2e1x ⎰解 x x x d ln 112e 1⎰+=)ln d(1ln 112e 1x x++⎰=2e 1ln 12x +=)13(2- 8.x x x d 2cos 2π0⎰解:x x x d 2cos 20⎰π=202sin 21πx x -x x d 2sin 2120⎰π=22cos 41πx =21-9.x x d )1ln(1e 0⎰-+解法一 x x x x x x x d 1)1ln(d )1ln(1e 01e 01e 0⎰⎰---+-+=+ =x x d )111(1e 1e 0⎰-+---=1e 0)]1ln([1e -+---x x =e ln =1解法二 令1+=x u ,则u uu u u u u x x d 1ln d ln d )1ln(e1e1e11e 0⎰⎰⎰-==+-=11e e e e1=+-=-u四、应用题1.投产某产品的固定成本为36(万元),且边际成本为)(x C '=2x + 40(万元/百台). 试求产量由4百台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低.解 当产量由4百台增至6百台时,总成本的增量为⎰+=∆64d )402(x x C =642)40(x x += 100(万元)又 xc x x C x C x⎰+'=00d )()(=x x x 36402++ =xx 3640++令 0361)(2=-='xx C , 解得6=x .x = 6是惟一的驻点,而该问题确实存在使平均成本达到最小的值. 所以产量为6百台时可使平均成本达到最小.2.已知某产品的边际成本C '(x )=2(元/件),固定成本为0,边际收益R '(x )=12-0.02x ,问产量为多少时利润最大?在最大利润产量的基础上再生产50件,利润将会发生什么变化? 解 因为边际利润)()()(x C x R x L '-'='=12-0.02x –2 = 10-0.02x令)(x L '= 0,得x = 500x = 500是惟一驻点,而该问题确实存在最大值. 所以,当产量为500件时,利润最大.当产量由500件增加至550件时,利润改变量为5505002550500)01.010(d )02.010(x x x x L -=-=∆⎰ =500 - 525 = - 25 (元)即利润将减少25元.3.生产某产品的边际成本为C '(x )=8x (万元/百台),边际收入为R '(x )=100-2x (万元/百台),其中x 为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?解 L '(x ) =R '(x ) -C '(x ) = (100 – 2x ) – 8x =100 – 10x 令L '(x )=0, 得 x = 10(百台)又x = 10是L (x )的唯一驻点,该问题确实存在最大值,故x = 10是L (x )的最大值点,即当产量为10(百台)时,利润最大.又 x x x x L L d )10100(d )(12101210⎰⎰-='=20)5100(12102-=-=x x即从利润最大时的产量再生产2百台,利润将减少20万元.4.已知某产品的边际成本为34)(-='q q C (万元/百台),q 为产量(百台),固定成本为18(万元),求最低平均成本. 解:因为总成本函数为⎰-=q q q C d )34()(=c q q +-322 当q = 0时,C (0) = 18,得 c =18 即 C (q )=18322+-q q 又平均成本函数为qq q q C q A 1832)()(+-==令 0182)(2=-='q q A , 解得q = 3 (百台) 该题确实存在使平均成本最低的产量. 所以当q = 3时,平均成本最低. 最底平均成本为9318332)3(=+-⨯=A (万元/百台)5.设生产某产品的总成本函数为 x x C +=3)((万元),其中x 为产量,单位:百吨.销售x 百吨时的边际收入为x x R 215)(-='(万元/百吨),求: (1) 利润最大时的产量;(2) 在利润最大时的产量的基础上再生产1百吨,利润会发生什么变化? 解:(1) 因为边际成本为 1)(='x C ,边际利润)()()(x C x R x L '-'=' = 14 – 2x 令0)(='x L ,得x = 7由该题实际意义可知,x = 7为利润函数L (x )的极大值点,也是最大值点. 因此,当产量为7百吨时利润最大.(2) 当产量由7百吨增加至8百吨时,利润改变量为87287)14(d )214(x x x x L -=-=∆⎰ =112 – 64 – 98 + 49 = - 1 (万元)即利润将减少1万元.。
经济数学基础微分部分教学要求与综合练习
经济数学基础微分学部分教学要求与综合练习经济数学基础是经济学科各专业重要的基础课。
本课程5学分,课内学时90,电视课27学时,开设一学期。
通过本课程的学习,使学生获得微积分和线性代数的基本运算能力,使学生受到基本数学方法的训练和运用变量数学方法解决简单的实际问题的初步训练,为学习后续课程和今后工作的需要打好必要的数学基础。
这次活动主要有二个内容,一是给出本课程微分学部分学习要求,二是微分学部分的综合练习,希望这些内容对大家的学习有些帮助。
本学期我们还将安排分别针积分学部分和线性代数部分的两次学习辅导活动,届时请大家积极参加。
微分学部分学习要求。
第1章函数1.理解函数概念。
理解函数概念时,要掌握函数的两要素−−定义域和对应关系,这要解决下面四个方面的问题:(1)掌握求函数定义域的方法,会求初等函数的定义域和函数值。
函数的定义域就是使函数有意义的自变量的变化范围。
学生要掌握常见函数的自变量的变化范围,如分式的分母不为0,对数的真数大于0,偶次根式下表达式大于0,等等。
(2)理解函数的对应关系f的含义:f表示当自变量取值为x时,因变量y的取值为f (x)。
(3)会判断两函数是否相同。
从函数的两个要素可知,两个函数相等,当且仅当他们的定义域相同,对应规则相同,而与自变量或因变量所用的字母无关。
(4)了解分段函数概念,掌握求分段函数定义域和函数值的方法。
2.掌握函数奇偶性的判别,知道它的几何特点。
判断函数是奇函数或是偶函数,可以用定义去判断,即(1)若)f=-,则)f为偶函数;(xx()(xf(2)若)=-,则)(xf-f为奇函数。
x)(f(x也可以根据一些已知的函数的奇偶性,再利用“奇函数±奇函数、奇函数×偶函数仍为奇函数;偶函数±偶函数、偶函数×偶函数、奇函数×奇函数仍为偶函数”的性质来判断。
3.了解复合函数概念,会对复合函数进行分解。
4.知道初等函数的概念,牢记常数函数、幂函数、指数函数、对数函数和三角函数(正弦、余弦、正切和余切)的解析表达式、定义域、主要性质及图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
(2)令 ,得 ( 舍去)
因为 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当 20时,平均成本最小.
2.解(1)成本函数 = 60 +2000.
因为 ,即 ,
所以 收入函数 = =( ) = .
(2)因为利润函数 = - = -(60 +2000)
= 40 - -2000
且 =(40 - -2000 =40-0.2
4.解 因为
令 ,即 =0,得 =140, = -140(舍去).
=140是 在其定义域内的唯一驻点,且该问题确实存在最小值.
所以 =140是平均成本函数 的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为
(元/件)
5.解因为 = =
= =
令 =0,即 ,得 , =-50(舍去),
二、填空题
1.[-5,2]2.(-5, 2 )3. 4.y轴5.3.66.45q– 0.25q27.18. 9.210. 11. 12.
三、计算题
1.解:
2.解
3.解
4.解:
5.解:因为
所以
6.解:因为
所以7.解:因为所以来自8.解:因为所以
四、应用题
1.解(1)因为总成本、平均成本和边际成本分别为:
,
=50是 在其定义域内的唯一驻点.
所以, =50是 的最小值点,即要使平均成本最少,应生产50件产品.
(注:可编辑下载,若有不当之处,请指正,谢谢!)
经济数学基础
综合练习
一、单项选择题
1.函数 的定义域是().
A. B. C. D. 且
2.下列各函数对中,()中的两个函数相等.
A. , B. , + 1
C. , D. ,
3.设 ,则 ( ).
A. B. C. D.
4.下列函数中为奇函数的是().
A. B.
C. D.
5.已知 ,当( )时, 为无穷小量.
(1)产量为多少时可使利润达到最大?(2)最大利润是多少?
4.某厂每天生产某种产品 件的成本函数为 (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少?
5.已知某厂生产 件产品的成本为 (万元).问:要使平均成本最少,应生产多少件产品?
参考解答
一、单项选择题
1.D2.D3.C4.C5.A6.D7.C8.A9.A10.B11.B12.B
(2)当产量 为多少时,平均成本最小?
2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为 ( 为需求量, 为价格).试求:
(1)成本函数,收入函数;(2)产量为多少吨时利润最大?
3.某厂生产某种产品q件时的总成本函数为C(q) = 20+4q+0.01q2(元),单位销售价格为p= 14-0.01q(元/件),试求:
令 = 0,即40- 0.2 = 0,得 = 200,它是 在其定义域内的唯一驻点.
所以, = 200是利润函数 的最大值点,即当产量为200吨时利润最大.
3.解 (1)由已知
利润函数
则 ,令 ,解出唯一驻点 .
因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,
(2)最大利润为
(元)
5.已知生产某种产品的成本函数为C(q) = 80 + 2q,则当产量q= 50时,该产品的平均成本为.
6.已知某商品的需求函数为q= 180 – 4p,其中p为该商品的价格,则该商品的收入函数R(q) =.
7. .
8.已知 ,当时, 为无穷小量.
9. 已知 ,若 在 内连续,则 .
10.曲线 在点 处的切线斜率是.
11.函数 的驻点是.
12.需求量q对价格 的函数为 ,则需求弹性为 .
三、计算题
1.已知 ,求 .
2.已知 ,求 .
3.已知 ,求 .
4.已知 ,求 .
5.已知 ,求 ;
6.设 ,求
7.设 ,求 .
8.设 ,求 .
四、应用题
1.设生产某种产品 个单位时的成本函数为: (万元),
求:(1)当 时的总成本、平均成本和边际成本;
10.设 ,则 ( ).
A. B. C. D.
11.下列函数在指定区间 上单调增加的是().
A.sinxB.exC.x2D.3 -x
12.设需求量q对价格p的函数为 ,则需求弹性为Ep=( ).
A. B. C. D.
二、填空题
1.函数 的定义域是.
2.函数 的定义域是.
3.若函数 ,则 .
4.设 ,则函数的图形关于对称.
A. B. C. D.
6.当 时,下列变量为无穷小量的是( )
A. B. C. D.
7.函数 在x= 0处连续,则k= ().
A.-2B.-1C.1 D.2
8.曲线 在点(0, 1)处的切线斜率为( ).
A. B. C. D.
9.曲线 在点(0, 0)处的切线方程为().
A.y=xB.y= 2xC.y= xD.y= -x