耶鲁博弈论期中考试midterm_exam

合集下载

College Pressures 完整译文

College Pressures 完整译文

Unit 2 College PressuresDear Carlos: I desperately need a dean’s excuse for my chem.(化学)midterm(期中考试), which will begin in about one hour. All I can say is that I totally blew it this week. I’ve fallen incredibly(难以置信地,非常地), inconceivably(不可思议地)behind.敬爱的卡洛斯院长:还有一个小时就要化学期中考试了,我急切需要一个院长给我点建议。

我唯一能说的就是,我这周过得浑浑噩噩,课业落下一大截。

Carlos: Help! I am anxious to hear from you. I’ll be in my room and won’t leave it until I hear from you. Tomorrow is the last day for…帮帮我!我非常需要你的回应!我会一直在房间里等,直到你给我回应。

明天就是最后一天...Carlos: I left town because I started bugging out again. I stayed up all night to finish a take-home make-up exam and am typing it to hand in on the tenth. It was due on the fifth. PS: I’m going to the dentist. Pain is pretty bad.我离开城镇是因为我又得赶时间开溜了。

我熬了一整晚做完家庭完成的考试,然后打印出来在第十周上交。

规定截止时间是第十五周。

PS:我要去看牙医。

牙疼的厉害。

Carlos: Probably by Friday I’ll be able to get back to my studies. Right now, I’m going to take a long walk. This whole thing has taken a lot out of me.也许周五我能赶回来继续学习。

(仅供参考)2013经济博弈论期中答案

(仅供参考)2013经济博弈论期中答案

经济博弈论经济博弈论((2013年春季学期年春季学期))Game Theory Midterm Answers (Spring 2013)期中考试答案(2013/4/16)注意注意::请将所有题目的答案写在答题册上请将所有题目的答案写在答题册上,,写在本试题页上一律无效写在本试题页上一律无效。

Note: Please write all you answers on the answer book.Problem 1. (14 pts) True or false? Explain. Give examples to illustrate your answers if needed.(1) If a player has a dominant strategy in a simultaneous-move game, then she is sure to get herbest possible outcome.False. A dominant strategy yields you the highest payoff available to you against each of your opponent’s strategies. Playing a dominant strategy does not guarantee that you end up with the highest of all possible payoffs. In the prisoners’ dilemma game, both players have dominant strategies, but neither gets the highest possible payoff in the equilibrium of the game.(2) When a two-by-two game has a mixed-strategy equilibrium, a player’s equilibrium mixture isdesigned to yield her the same expected payoff when used against each of the other player’s pure strategies.False. A player’s equilibrium mixture is devised in order to keep her opponent indifferent among all of her (the opponent’s) possible mixed strategies; thus, a player’s equilibrium mixture yields the opponent the same expected payoff against each of the player’s pure strategies. But it would not necessarily yield the player himself the same expected payoff against the opponent’s pure strategies. An example would be a Chicken game, where the equilibrium mixture (1/2SW+1/2ST) of a player will give her payoff of 1/2*0+1/2*1=1/2 and 1/2*(-1)+1/2*(-2)=-1.5 when used against SW and ST strategy of her opponent respectively. The payoff is unequal.Note, however, that the statement will be true for zero-sum games, because when your opponent is indifferent in such a game, it must also be true that you are indifferent as well.问题2。

《博弈论》期中考试试卷及参考答案

《博弈论》期中考试试卷及参考答案

20XX 级经济学专业(1-2班)《博弈论》期中考试试卷(开卷)班级 ______ 学号 _________________ 姓名 ______________ 成绩 ________1、 不能用铅笔答题,违反者按缺考处理;2、 开卷考试,给足够时间答题,请认真完成考试; 卷面务必保持清楚整洁,每涂改一处扣 10分;3、 每一道题的解务必写出完整的解题过程,没有过程,只有答案不给分;4、 如果发现雷同卷,一律按零分处理。

一、下面的支付矩阵表示一个两人的静态博弈。

问当 a 、b 、c 、d 、f 、g 、h 之间满足什么条件时,该博弈存在严格优势策略均衡(20分)参考答案:1、 严格优势策略均衡是由各博弈方的严格优势策略组成的策略组合。

(2分)2、 对于博弈方1,如果a > e 且c > g ,则U 是相对于D 的严格优势策略;如果 a v e 且c v g , 则D 是相对于U 的严格优势策略;(3分)3、 对于博弈方2,如果b >d 且f >h 则L 是相对于R 的严格优势策略;如果 b v d 且f v h , 则R 是相对于L 的严格优势策略。

(3分)4、上述两个博弈方各自有两种严格优势策略的相对支付情况的组合,总共可能构成四种严格 优势策略均衡: (12 分)1) 如果a >e 且c >g , b >d 且f > h ,严格优势策略均衡是(U , L ) 2) 如果a > e 且c > g , b v d 且f v h ,严格优势策略均衡是(U , R ) 3) 如果a v e 且c v g , b >d 且f > h ,严格优势策略均衡是(D, L )4) 如果a v e 且c v g , b v d 且f v h ,严格优势策略均衡是(D , R ) (在求解本题时,如果前面三点没有写,但这四条都能写出来,可以按每条、一个工人给一个老板干活,工资标准是100元。

耶鲁大学开放课程博弈论笔记

耶鲁大学开放课程博弈论笔记

耶鲁大学开放课程博弈论笔记博弈论,是一门研究决策者之间互动行为的学科,它在经济学、政治学、社会学等多个领域发挥着重要作用。

耶鲁大学开放课程中的博弈论课程为我们提供了深入理解和掌握博弈论的机会。

在本篇文章中,我将分享我在学习耶鲁大学开放课程博弈论时所做的笔记和心得体会。

一、博弈论的基本概念和原理1.1 构成博弈论的基本要素博弈论研究的基本要素包括玩家、策略和支付。

玩家是博弈中的决策者,策略是玩家可选择的行动方案,支付是博弈的结果对玩家所产生的效用。

1.2 纳什均衡纳什均衡是博弈论中最重要的概念之一。

在一个博弈中,若每个参与者选择了一个策略,并且没有一个参与者愿意改变自己的策略,那么这种策略组合就被称为纳什均衡。

纳什均衡是一个非合作博弈中的稳定状态。

1.3 合作博弈与非合作博弈博弈论可分为合作博弈和非合作博弈两大类。

合作博弈强调玩家之间的合作与协调,而非合作博弈中玩家之间是相互独立的,没有直接的合作关系。

二、博弈论的应用领域2.1 经济学中的博弈论应用在经济学中,博弈论被广泛应用于市场竞争、拍卖、企业策略等方面。

通过博弈论的模型和方法,我们能够更好地理解各种经济行为和市场现象,并提供决策方案。

2.2 政治学中的博弈论应用政治学中,博弈论主要应用于研究选举、政策制定等政治行为。

博弈论揭示了政治参与者之间的互动关系和利益博弈,为我们分析政治决策提供了一种新的视角。

2.3 社会学中的博弈论应用博弈论在社会学中的应用主要涉及合作与互助、社会规范等方面。

通过博弈论的分析,我们能够更好地理解人类社会中的合作关系、道德行为和社会规范的形成。

三、耶鲁大学开放课程博弈论学习心得在学习耶鲁大学开放课程博弈论的过程中,我深刻体会到博弈论的重要性和应用广泛性。

通过学习博弈论,我不仅了解了博弈论的基本概念和原理,还学会了运用博弈论的方法分析和解决实际问题。

耶鲁大学开放课程博弈论课程的教学内容十分丰富,通过生动的案例分析和实践操作,课程帮助我更好地理解了博弈论的核心思想和应用方法。

博弈论 考试题目

博弈论 考试题目

bribes b1 and b2 , the PC maker accepts the highest bribe (and tosses a coin between them if they happen to be equal), and he rejects the other. If a firm’s offer is rejected, it goes out of business, and gets 0. Let i∗ denote the software developer whose bribe is accepted. Then, i∗ pays the bribe bi∗ , and the PC maker develops its PC compatible only with the operating system of i∗ . Then in the next stage, i∗ becomes the monopolist in the market for operating systems. In this market the inverse demand function is given by P = 1 − Q,
1 Gift No Gift
S S R 5,7 3,1

R -1,5 3,5 S R
S 6,6 4,0
R 0,4 4,4
(a) Find all subgame-perfect equilibria in pure strategies. Eachg subgame has two Nash equilibria in pure strategies: (S,S), (R,R). Therefore, there are 4 SPE in pure strategies. To describe these, let us first name the strategies for players. Player 1 has 8 strategies: GSS, GSR, GRS, GRR, NSS, NSR, NRS, and NRR, where the first letter indicates whether he gives gift (G) or not (N), and the second and third letters indicate the actions he takes in case of gift and no gift, respectively. Similarly, player 2 has four strategies: SS, SR, RS, and RR. The subgame perfect equilibria are: (NSS,SS), (NRR,RR), (NRS,RS), and (GSR,SR). (b) Using forward induction iteratively eliminate all of these equilibria except for one. Firstly, GRR and GRS are dominated by NRR. Moreover, GSS is not dominated. Hence, if player 1 gives a gift, then player 2 should understand that player 1 will play S (the first forward-induction argument). In that case, player 2 must play S. 1

《博弈论》期中考试试卷及参考答案

《博弈论》期中考试试卷及参考答案

20XX 级经济学专业(1-2班)《博弈论》期中考试试卷(开卷)班级 学号 姓名 成绩1、不能用铅笔答题,违反者按缺考处理;2、开卷考试,给足够时间答题,请认真完成考试;卷面务必保持清楚整洁,每涂改一处扣10分;3、每一道题的解务必写出完整的解题过程,没有过程,只有答案不给分;4、如果发现雷同卷,一律按零分处理。

一、下面的支付矩阵表示一个两人的静态博弈。

问当a 、b 、c 、d 、f 、g 、h 之间满足什么条件时,该博弈存在严格优势策略均衡(20分)参考答案:1、严格优势策略均衡是由各博弈方的严格优势策略组成的策略组合。

(2分)2、对于博弈方1,如果a >e 且c >g ,则U 是相对于D 的严格优势策略;如果a <e 且c <g ,则D 是相对于U 的严格优势策略;(3分)3、对于博弈方2,如果b >d 且f >h 则L 是相对于R 的严格优势策略;如果b <d 且f <h ,则R 是相对于L 的严格优势策略。

(3分)4、上述两个博弈方各自有两种严格优势策略的相对支付情况的组合,总共可能构成四种严格优势策略均衡:(12分)1)如果a >e 且c >g ,b >d 且f >h ,严格优势策略均衡是(U ,L ) 2)如果a >e 且c >g ,b <d 且f <h ,严格优势策略均衡是(U ,R ) 3)如果a <e 且c <g ,b >d 且f >h ,严格优势策略均衡是(D ,L ) 4)如果a <e 且c <g ,b <d 且f <h ,严格优势策略均衡是(D ,R )(在求解本题时,如果前面三点没有写,但这四条都能写出来,可以按每条5分计算,共20分)二、一个工人给一个老板干活,工资标准是100元。

工人可以选择是否偷懒,老板则选择是否克扣工资。

假设工人不偷懒有相当于50元的负效用,老板想克扣工资总有借口扣掉60元工资,工人不偷懒老板有150元产出,而工人偷懒时老板只有80元产出,但老板在支付工资之前无法知道实际产出,这些情况是双方都知道的。

耶鲁大学——博弈论

耶鲁大学——博弈论

中文片名: 耶鲁大学开放课程:博弈论英文片名: Open Yale course:Game Theory剧集分类: 悬疑影片类型: 教学资源格式: RMVB上影时间: 2010导演:主演:对白语言: 英语字幕语种: 中英介绍:中文名: 耶鲁大学开放课程:博弈论英文名: Open Yale course:Game Theory版本: 更新完毕[MOV]发行时间: 2009年地区: 美国对白语言: 英语字语言: 英文简介:课程类型:经济课程介绍:这门课程是系统介绍有关博弈论和战略思想。

比如支配思想、落后的感应、纳什均衡、进化稳定性、承诺,信誉,信息不对称,逆向选择等。

并在课堂上提供了各种游戏以及经济、政治,电影和其他方面的案例来讨论。

关于课程主讲人:Ben Polak教授任职于耶鲁大学管理学院经济系。

他在剑桥大学Trinity College获得学士学位,在西北大学获得硕士学位,在哈佛大学获得博士学位。

他是微观经济理论和经济史方面的专家。

他的论文在Economic Letters、Journal of Economic Theory、Journal of Economic History、Journal of Legal Studies、Journal of Theoretical and Institutional Economics、Econometrica等学术期刊多次发表。

他最近的研究是“广义功利主义和海萨尼的公正观察员定理”和“平均分散的偏好”课程结构:本耶鲁大学课程每周在学校上两次课,每次75分钟,2007年秋季拍摄作为耶鲁大学开放课程之一。

课程安排:1. Introduction: five first lessons第一讲:导论-五个入门结论2. Putting yourselves into other people'sshoes第二讲:学会换位思考3. Iterative deletion and the median-votertheorem第三讲:迭代剔除和中位选民定理4. Best responses in soccer and businesspartnerships第四讲:足球比赛与商业合作之最佳对策5. Nash equilibrium: bad fashion and bankruns第五讲:纳什均衡之坏风气与银行挤兑6. Nash equilibrium: dating and Cournot第六讲:纳什均衡之约会游戏与古诺模型7. Nash equilibrium: shopping, standing andvoting on a line第七讲:纳什均衡之伯川德模型与选民投票8. Nash equilibrium: location, segregationand randomization第八讲:纳什均衡之立场选择、种族隔离与策略随机化9. Mixed strategies in theory and tennis第九讲:混合策略定义及其在网球比赛中的应用10 Mixed strategies in baseball, dating and paying your taxes 混合战略棒球,约会和支付您的税11 Evolutionary stability: cooperation, mutation, and equilibrium 进化稳定:合作,突变,与平衡12 Evolutionary stability: social convention, aggression, and cycles 进化稳定:社会公约,侵略,和周期13 Sequential games: moral hazard, incentives, and hungry lions 顺序游戏:道德风险,奖励和饥饿的狮子14 Backward induction: commitment, spies, and first-mover advantages 落后的感应:承诺,间谍,和先行者优势15 Backward induction: chess, strategies, and credible threats 落后的感应:国际象棋,战略和可信的威胁16 Backward induction: reputation and duels 落后的感应:声誉和决斗17 Backward induction: ultimatums and bargaining 落后的感应:最后通牒和讨价还价18 Imperfect information: information sets and sub-game perfection 不完全信息:信息集和子博弈完美19 Subgame perfect equilibrium: matchmaking and strategic investments 子博弈完美均衡:招商引资和战略投资20 Subgame perfect equilibrium: wars of attrition 子博弈完美均衡:战争的消耗21 Repeated games: cooperation vs. the end game 重复博弈:合作与结局22 Repeated games: cheating, punishment, and outsourcing 重复博弈:作弊,惩罚和外包23 Asymmetric information: silence, signaling and suffering education 信息不对称:沉默,信令和苦难教育24 Asymmetric information: auctions and the winner's curse 信息不对称:拍卖和获奖者的诅咒学校介绍:耶鲁大学(Yale University),旧译“耶劳大书院”,是一所坐落于美国康乃狄格州纽黑文市的私立大学,始创于1701年,初名“大学学院”(Collegiate School)。

耶鲁大学博弈论第一章答案

耶鲁大学博弈论第一章答案
player 3 (b>c>a) b c player 2 (c>a>b) c
a a a a c
Now player 2 has strategy a weakly dominated by c and player 3 has b weakly dominated by c. The predicted outcome is that player 1,2 and 3 will choose strategy a,c and c respectively and finally winner is player candidate c.
Problem Set 1 Solution
Econ 159a/MGT522a, Yale University
M.Chen momotocmx@
1. Strictly and Weakly Dominated Strategies? A strategy si is a strictly dominated strategy if there exists a strategy si such that si always does strictly better than strategy si no matter what others do, that is ui (si , s−i ) > ui (si , s−i ) for all s−i A strategy si is a weakly dominated strategy if there exists a strategy si such that ui (si , s−i ) ≥ ui (si , s−i ) for all s−i ui (si , s−i ) > ui (si , s−i ) for some s−i ExampБайду номын сангаасe:

博弈论考研试题及答案

博弈论考研试题及答案

博弈论考研试题及答案试题:博弈论考研模拟试题一、单项选择题(每题2分,共10分)1. 在博弈论中,非合作博弈与合作博弈的主要区别在于()。

A. 参与者的数量B. 参与者是否可以形成具有约束力的协议C. 博弈的支付结构D. 博弈的时间顺序2. 囚徒困境中,如果两个参与者都选择背叛对方,那么他们将()。

A. 获得最大的个人利益B. 获得最大的集体利益C. 获得最小的个人利益D. 获得最小的集体利益3. 纳什均衡的概念是由哪位数学家提出的?()A. 约翰·纳什B. 约翰·冯·诺伊曼C. 让·梯若尔D. 莱昂尼德·赫维茨4. 在完全信息博弈中,每个参与者都完全知道博弈的结构和其他所有参与者的()。

A. 收益B. 策略C. 收益和策略D. 偏好5. 动态博弈与静态博弈的主要区别在于()。

A. 参与者的互动次数B. 是否存在随机因素C. 参与者的知识水平D. 博弈的支付方式二、简答题(每题10分,共20分)1. 简述零和博弈和非零和博弈的区别,并各举一例。

2. 解释什么是“弱支配策略”和“强支配策略”,并给出一个包含这两种策略的博弈例子。

三、计算题(每题15分,共30分)1. 考虑一个两人博弈,参与者A和B分别有两个策略:高风险(H)和低风险(L)。

支付矩阵如下:| B\ | H | LA \H | 3,2 | 4,1L | 2,3 | 1,4计算并找出这个博弈的纳什均衡。

2. 假设一个市场上有两个公司,公司1和公司2,它们可以选择高广告投入(H)或低广告投入(L)。

支付矩阵如下:| 2\ | H | L1 \H | 100,100 | 80,120L | 120,80 | 60,60计算并找出这个博弈的纳什均衡,并讨论如果公司能够形成合作协议,他们可能如何改变策略。

四、论述题(每题20分,共20分)1. 论述博弈论在经济学中的应用,并举例说明。

答案:一、单项选择题1. B2. C3. A4. C5. A二、简答题1. 零和博弈是指在一个博弈中,一个参与者的收益恰好等于另一个参与者的损失,总和为零。

耶鲁大学公开课博弈论笔记(博弈论24讲)

耶鲁大学公开课博弈论笔记(博弈论24讲)

博弈论作业(博弈论24讲)数应专业一、1、理性人:指代这一类人,他们只关心自己的利益。

2、如果选择a的结果严格优于b,那么就说a相对于b来说是一个严格优势策略。

结论:不要选择严格略施策略。

3、理性人的理性选择造成了次优的结果4、举例:囚徒困境、宿舍卫生打扫问题、企业打价格战等5、协和谬误收益很重要,“如欲得之,必先知之”6、要学会换位思考,站在别人的立场上看别人会怎么做,在考虑自己受益的同时,要注意别人会怎么选择二、1、打渔问题、全球气候变暖与碳排放问题2、博弈的要素:参与人、策略集合、收益3、如果策略a严格劣于策略b,那么不管他人怎么选择,b总是更好的选择4、军队的入侵与防卫问题5、所有人都从1到100中选个数字,最接近所有人选的数字的均值的2/3者为胜,这个数字是多少呢?作为理性人,每个人都会选择67(100*2/3)以下的数,进一步假设你的对手也是理性的,你会选择45(100*4/9)以下的数……依据哲学观点,如果大家都是理性程度相当的,那么最后数字将为1,然而结果却是9,这说明博弈的复杂性6、共同知识与相互知识的区别三、1、利用迭代剔除法领悟中间选民问题2、迭代剔除法就是严格下策反复消去法,不断地把劣势策略剔除出去,最后只剩下相对优势的策略3、中间选民问题就是,在两党制中,政党表述施政纲领要吸引位于中间位置的选民,他们认为在选举中处于中间标度可以吸引左右两边的选民,并以此获得胜利。

4、中间选民问题理论成立的条件是有两个参与人;政治立场能使选民相信。

5、由此延伸出来的还有加油站选址问题,两家加油站不是在不同的路口选址,而是在不确定哪个位置较佳的时候会选在同一处,这也是“中间选民定理”的凸显6、在迭代剔除法不能运用时,比如说该博弈中博弈方1和2均没有严格下策,可以用二维坐标系画出选择策略之后的收益分布四、1、罚点球:一个经过模型简化的点球模型:罚球者可以选择左路,中路,右路3种路线去踢点球,门将可以选择向左扑救或者向右扑救(门将没有傻站着不动的option)。

耶鲁博弈论24讲全笔记

耶鲁博弈论24讲全笔记

耶鲁博弈论24讲全笔记第一部分:博弈论的基础知识1、博弈论的定义及其在现实生活中的应用《耶鲁博弈论24讲全笔记》“1、博弈论的定义及其在现实生活中的应用”博弈论,这个引人入胜的学科,是一门研究决策问题的独特学科。

它的基本思想在于,把复杂多变的真实世界简化为具有明确规则和目标的多人决策问题。

在这个世界里,每一个参与者都需要根据其他参与者的策略来调整自己的决策,以期达到各自的目标。

博弈论起源于棋类游戏,如国际象棋和围棋,这些游戏的规则明确,且每个玩家都有可能成为赢家或输家。

然而,博弈论的应用远不止于此。

在现实世界中,博弈论的原理被广泛应用于政治、经济、生物、国际关系等多个领域。

在政治领域,博弈论可以帮助我们理解权力平衡和国际关系。

例如,囚徒困境就是一个经典的博弈论模型,它描述了两个囚犯因共同犯罪而受审的情况。

在这个情境中,两个囚犯都需要做出决策,是否选择揭发对方。

这个模型不仅可以解释为什么有时候合作会带来更大的利益,也可以揭示为什么有时候,即使个人利益最大化的选择也会导致集体的非最优结果。

在经济领域,博弈论更是具有广泛的应用。

例如,拍卖中的博弈论可以帮助我们理解为什么拍卖可以带来高昂的成交价,以及为什么有时候最低价拍卖可以带来最大的社会利益。

此外,博弈论还可以帮助我们理解市场垄断、价格竞争等复杂的市场行为。

在生物学领域,博弈论被用来解释生物种群的进化策略,如猎物的捕食者与被捕食者之间的动态关系。

在医学领域,博弈论也被用来理解和预测疾病的发展和传播。

总的来说,博弈论是一种独特的思考方式,它可以帮助我们理解真实世界中的决策和策略行为。

它的应用广泛,无论是在政治、经济、生物还是其他领域,都可以找到博弈论的应用实例。

通过学习博弈论,我们可以更好地理解真实世界中的决策过程,并找到更优的决策策略。

2、博弈的参与者、策略和结果《耶鲁博弈论24讲全笔记》是一本介绍博弈论的经典教材,第二讲“博弈的参与者、策略和结果”是其中的重要部分。

Mid-term考卷

Mid-term考卷

2010-2011年度中级经济学期中考试试卷学号:姓名:Part Ⅰ(True or False) 1.5 points each1. If the production function is f(x, y) = min{2x + y, x + 2y}, then there are constant returns to scale (规模收益不变).2. If the value of the marginal product of factor x(要素x的边际产量)increases as the quantity of x increases and the value of the marginal product of x(要素x的边际产量值)is equal to the wage rate, then the profit-maximizing amount of x is being used.3. If the price elasticity of demand (需求价格弹性)for a good is -1, then doubling the price of that good will leave total expenditures on that good unchanged.4. The average cost curve is decreasing with production quantity, if the production technology is decreasing returns to scale.5. If preferences are quasilinear (拟线形), then the slope of the Engel curve for any good will decrease as income increases.6. It is possible for a consumer to satisfy the weak axiom of revealed preference (弱显示性偏好公理)but violate the strong axiom of revealed preference.7.If somebody is buying 10 units of x and the price of x falls by $4, then that person’s net consumer’s surplus(消费者剩余)must increase by at least $40.8. If the equation for the demand curve is q = 50 - 4p, then the ratio of marginal revenue (边际收益)to price is constant as price changes.9.If someone has the utility function U= 1,000 + 2 min {x, y}, then x and y are perfect complements (完美互补)for that person.10. A person with the utility function U(x, y) = y + x2 has convex preferences (凸性偏好). Part Ⅱ(Single Choice) 2 points each1. If a simultaneous (同时)and equal percentage (同比例)decrease in the use of all physical inputs leads to a larger percentage decrease in physical output, a firm’s production function is said to exhibita. decreasing returns to scale.b. constant returns to scale.c. increasing returns to scale.d. diseconomies of scale.2. The price elasticity of demand is the same thing as the negative of thea. slope.b. reciprocal of slope.c. the first derivative of the demand function.d. reciprocal of slope times the ratio of price to quantity.e. all of the above.3. If a profit-maximizing firm’s marginal product of labor equals 1 ton of output, while the marginal product of capital equals 7 tons of output and the use of capital is priced at $14 per unit, thena. the price of labor must be $2.b. the price of labor must be $7.c. the price of labor must be $14 as well.d. none of the above is true.4. Mike consumes two commodities, x and y, and his utility function is min{x + 2y, y + 2x}. He chooses to buy 8 units of good x and 16 units of good y. The price of good y is $.50. What is his income?a. $32b. $40c. $24d. $16e. Mike’s income cannot be found unless the price of x is given too.5. Being a price taker (价格接受者)in a market means that the sellera. charges each consumer the maximum that she will be3 able to pay for the product.b. has no choice but to charge the equilibrium price that results from the market supplyand demand curves.c. takes her price from her average total cost curve.d. sells her products at different prices to different customers.6. When prices are ($4, $2), Tomoko chooses the bundle (9, 18), and when prices are ($1, $2), she chooses the bundle (8, 14).a. The bundle (8, 14) is revealed preferred to the bundle (9, 18) and she does not violate WARP.b. She violates SARP(强显示性偏好公理)but not WARP(弱显示性偏好公理).c. The bundle (9, 18) is revealed preferred to the bundle (8, 14) and she does not violate WARP.d. She violates WARP.e. None of the above.7. A competitive firm produces output using three fixed factors and one variable factor. The firm’s short-run production function is q = 524x - 4x2, where x is the amount of variable factor used. The price of the output is $3 per unit and the price of the variable factor is $12 per unit. In the short run, how many units of x should the firm use?a. 130b. 32c. 25d. 65e. None of the above.8. A competitive firm has the short-run cost function c(y) = 2y3 - 16y2 + 128y + 10. The firm will produce a positive amount in the short run if and only if the price is greater thana. $192.b. $48.c. $99.d. $96.e. $95.9. A firm has the short-run total cost function c(y) = 9y2 + 144. At what quantity of output is short-run average cost minimized(短期平均成本最小)?a. 4b. 16c. 0.75d. 3e. None of the above10. Madonna buys only two goods. Her utility function is Cobb-Douglas(科布道格拉斯). Her demand functions have which of the following properties?a. Her demand for one of the two goods does not depend on income.b. Her demand for neither good depends on income.c. Her demand for each of the goods depends on income and on the prices of both goods.d. Her demand for each of the two goods depends only on her income and on the price ofthat good itself.e. One of the goods is an inferior good and the other is a normal good.11. Katie Kwasi’s utility function is U(x1, x2) = 2(ln x1) + x2. Given her current income and the current relative prices, she consumes 10 units of x1 and 15 units of x2. If her income doubles, while prices stay constant, how many units of x1 will she consume after the change in income?a. 20b. 18c. 10d. 5e. There is not enough information to determine how many.12. Let A stand for the bundle (7, 9), B stand for the bundle (10, 5), and C stand for the bundle (6,6). When prices are (2, 4), Betty chooses C. When prices are (12, 3) she chooses A.a. A is directly revealed preferred to B.b. is indirectly revealed preferred to B.c. C is directly revealed preferred to A.d. B is directly revealed preferred to A.e. None of the above.13. The following can be said about the income and substitution effects (收入和替代效应)of a price increase on the demand for a good whose price rose:a. The former is always positive and the latter is always negative.b. Both can be either positive or negative.c. While the latter is always negative, the former can be either positive or negative.d. While the former is always negative, the latter can be either positive or negative.e. The former can at times be negative, but it will never overwhelm the latter.14. Bernice’s preferences can be represented by the utility functi on, U(x, y) = min{x, y}. She faces prices ($2, $1), and her income is $12. If prices change to ($3, $1), the compensating variation (补偿变化)a. equals the equivalent variation.b. is $2 greater than the equivalent variation.c. is $2 smaller than the equivalent variation.d. is $1 greater than the equivalent variation.e. There is not enough information to determine which variation is larger.15. If there are only two goods, an increase in the price of good 1 will increase the demand for good 2a. if and only if the price elasticity of demand for good 2 is greater than 1 in absolute value (绝对值).b. whenever both goods are normal goods.c. only if the two goods are perfect substitutes.d. never.e. None of the above.16. If you have an income of $40 to spend, commodity 1 costs $2 per unit, and commodity 2 costs $10 per unit, then the equation for your budget line can be writtena. x1 + 5x2 = 20.b. x1/2 + x2/10 = 40.c. (x1 + x2)/12 = 40.d. 3x1 + 11x2 = 41.e. 12(x1 + x2) = 40.17. Ernie’s utility function is U(x, y) = 32xy. He has 10 units of good x and 8 units of good y. Waldo’s utility function for the same two goods is U(x, y) = 3x + 5y. Waldo has 9 units of x and 13 units of y.a. Waldo prefers Ernie’s bundle to his own, but Ernie prefers his own bundle to Waldo’s.b. Each prefers the other’s bundle to his own.c. Neither prefers the other’s bundle to his own.d. Ernie prefers Waldo’s bundle to his own bundle, but Waldo prefers his own bundle toErnie’s.e. Since they have different preferences, there is not enough information to determine whoenvies whom.18. If the demand curve for a good is upward sloping(向上倾斜), then which of the following statements must be true?1. The good is inferior.2. The substitution effect is in the opposite direction to the income effect.3. The substitution effect overwhelms the income effect.a. 1 only.b. 2 onlyc. 1 and 2 only.d. 2 and 3 only.e. 1, 2, and 3.19. The marginal rate of substitution (边际替代率)between food and shelter for a given point on an indifference curvea. is equal to the absolute value of the slope of the indifference curve at that point.b. is equal to the rate at which the consumer is willing to exchange the two goods in themarketplace.c. reflects the relative values the consumer attaches to the two good.d. is described, in part, by each of the above statements.20. When the prices were ($5, $1), Vanessa chose the bundle (x, y) = (6, 3). Now at the new prices, (p x, p y), she chooses the bundle (x, y) = (5, 7). For Vanessa’s behavior to be consistent with the weak axiom of revealed preference, it must be thata. 4p y < p x.b. p x < 4p y.c. 5p y < p x.d. p y = 5p x.e. None of the above.Part Ⅲ (Problems) 55 points Totally1. (10 points.)The preferences of a consumer can be represented by: U= Min {2x1, 3x2}, the price of good 1 is $3, the price of good 2 is $2, and the total income is $60.a. Explain using a graph how the optimum consumption bundle will change if the price ofgood 1 is $1.b. Compute the substitution and income effects (of Slutsky effects) in the consumption ofgood 1.2. (10 points.)Ray Starr has the utility function U(x, y) = y/(100 - x).a. Does Ray prefer more to less of both goods?b. Draw a diagram showing Ray’s indifference curves corresponding to the utility levelsU = 1/2, U = 1, and U = 2.c. How can you describe the set of indifference curves for Ray?d. If the price of x is $1 and the price of y is $1, find Ray’s demand for x as a function ofhis income and draw a diagram showing his Engel curve for x.3. (13 points.)Beth works for the federal government and her job is to analyze the market for oranges.a) Suppose she found that the demand function is Q=50-5p, where Q is the quantity of oranges demanded and p is the ongoing price per pound. Graph the demand curve(remember to label the intercepts).b) The federal government is considering imposing some restrictions on the production of oranges because of environmental concerns. The current price is 4$ per pound, but after therestrictions it would increase to 5$ per pound. What is the consumer surplus before and after the restrictions? What is the loss in consumer surplus due to the restrictions? If a consumer advocacy group would try to bribe Beth to convince federal authorities that the restrictions should not be imposed, how much would they be willing to spend?c) Now suppose that Beth doesn’t know the demand function, but she observed that when the price of oranges grew from 4$ to 4.05$ per pound, the quantity of oranges demanded fell from 30 to 29 pounds. What is the elasticity of demand? Using this estimate, by how much would demand decrease if the government were to impose the quantity restrictions and raise the price from 4$ to 5$ per pound?4. (12 points.)The demand curve for ski lessons is given by D(p D)=100-2p D and the supply curve is given by S(p s)=3p s.a.What are the equilibrium price and quantity?b.A tax of $10 per ski lesson is imposed on consumers. Write an equation that relates the price paid by demanders to the price received by suppliers. Write an equation that states that supply equals demand.c.Solve these two equations for the two unknowns p s and p D. With the $10 tax, what is the the equilibrium price p D paid by consumers and the total number of lessons given?d.A senator from a mountainous state suggests that although ski lesson consumers are rich and deserve to be taxed, ski instructors are poor and deserve a subsidy. He proposes a $6 subsidy (补贴) on production while maintaining the $10 tax on consumption of ski lessons. How do the effects for suppliers or for demanders of this policy compare to the effects of a tax of $4 per lesson?2009-2010年度下学期期中考试试卷学号:姓名:Part Ⅰ(True or false)1. 2. 3. 4. 5. 6. 7.8. 9. 10.Part Ⅱ (Single choice)1. 2. 3. 4. 5. 6. 7.8. 9. 10. 11. 12. 14.15. 16. 17. 18. 19. 20.PartⅢ (Problems)。

(完整word)耶鲁大学博弈论_精简版

(完整word)耶鲁大学博弈论_精简版

第一讲导论—五个入门结论1。

通过成绩博弈模型可以知道,不选择严格劣势策略,因为每次博弈会得到更好的收益.2。

通过囚徒的困境博弈模型可以知道,理性选择导致次优的结果(协商难以达成目的的原因不是因为缺少沟通,而是没有强制力)。

3。

通过愤怒天使博弈模型可以知道,汝欲得之,必先知之;永远选择优势策略,选择非劣势策略,损失小,如果对手有优势策略则应以此作为选择策略的指导.4.如果想要赢,就应该站在别人的立场去分析他们会怎么做.第二讲学会换位思考1.构成博弈要素包括,参与人,参与人的策略以及收益.2。

所谓严格优势策略,就是指不论对方采取什么策略,采取的这个策略总比采取其他任何策略都好的策略。

3。

在博弈中剔出某些选择时需要站在别人的角度去思考结果,因为对手不会选择劣势策略;同时要考虑到对手也是一个理性的参与人。

4.在博弈中剔除某些选择是一种直接思考,同时也是作为一个理性参与人的选择。

第三讲迭代剔除和中位选民定理1。

在选民投票博弈模型中,通过不断地迭代以及剔除来决定策略,由此,我们得到了一种新的选择策略的方法:迭代剔除法。

2.选民投票博弈模型的结果与现实存在偏差,主要是因为:现实中选民并不是均匀分布的;选民通常根据候选人的性格而非政治立场来进行投票,而政治立场只是单一维度;只适用于只有两个候选人的情况;④同时存在弃权票;⑤选民未必相信候选人所声明的立场。

3.建立模型,是为了更好的描述事实以激发灵感,模型是有重要的事是抽象而来,逐步增加约束条件完善模型观察结果,比较分析结果的变化。

第四节足球比赛与商业合作之最佳对策1。

点球博弈模型告诉我们,不要选择一个在任何情况或信念下都不是最佳对策的策略。

2.最佳对策:参与人针对对手策略的定义:参与人i的策略s^i(简写成BR)是对手策略S—i的最佳对策,如果参与人i在对手的策略S-i下选S^i的收益弱优于其它对策Si`,这对参与人i的所有Si`都适用,则策略S^i是其它参与人策略S—i的最佳对策。

(完整word版)耶鲁大学公开课博弈论原版资料

(完整word版)耶鲁大学公开课博弈论原版资料

Syllabusby (course_default) — last modified 10—14-2008 04:00 PMDocument Actions•This course is an introduction to game theory and strategic thinking. Ideas such as dominance, backward induction, Nash equilibrium, evolutionary stability,commitment, credibility, asymmetric information, adverse selection, and signaling are discussed and applied to games played in class and to examples drawn from economics,politics, the movies, and elsewhere.ECON 159: Game Theory (Fall, 2007)SyllabusProfessor:Ben Polak, Professor of Economics and Management, Yale UniversityDescription:This course is an introduction to game theory and strategic thinking. Ideas such as dominance, backward induction, Nash equilibrium, evolutionary stability, commitment,credibility, asymmetric information, adverse selection, and signaling are discussed and applied to games played in class and to examples drawn from economics, politics, the movies, and elsewhere.Texts:A。

耶鲁智商测试题(3篇)

耶鲁智商测试题(3篇)

第1篇在繁忙的生活中,我们常常渴望一窥自己的智力水平,而无需花费大量的时间和精力。

耶鲁大学认知心理学教授Shane Frederick教授曾设计了一套名为CRT (Cognitive Reflection Test)的测试,旨在通过简单的三个问题来快速评估个人的认知反射能力。

以下是一套基于CRT理念的耶鲁智商测试题,共有15个问题,旨在挑战你的思维能力和智慧。

测试说明:请在阅读每个问题后,仔细思考,并选择你认为最合理的答案。

请注意,有些问题可能没有唯一正确答案,但请尽量选择最符合逻辑的选项。

问题一:智慧与金钱假设你面临以下选择:A. 现在给你1000美元。

B. 如果你赢,你将获得2000美元;如果你输,你将损失2000美元。

你会选择哪个选项?为什么?问题二:逻辑推理一个盒子里有5个红球和5个蓝球,随机取出一个球后放回,再取出一个球。

现在盒子里有3个红球和5个蓝球。

请问,取出的第二个球是红球的概率是多少?问题三:数字游戏你有三个盒子,每个盒子里都装有一些红球和蓝球。

盒子的标签分别是“2红2蓝”、“3红2蓝”和“4红1蓝”。

如果你随机从标签为“2红2蓝”的盒子里取出一个球,发现是红球,那么从标签为“3红2蓝”的盒子里取出一个球,它是红球的概率是多少?问题四:概率与直觉你参加一个抽奖活动,有100%的机会赢得一个奖品。

奖品有三种可能:一个价值100美元的奖券、一个价值50美元的奖券或一个价值25美元的奖券。

如果你选择不抽奖,而是选择一个随机给出的奖券,那么你赢得价值100美元奖券的概率是多少?问题五:时间与效率如果你每天工作8小时,一周工作5天,那么在接下来的10周内,你将工作多少小时?问题六:几何问题一个正方形的对角线长度是10厘米,那么这个正方形的面积是多少平方厘米?问题七:智力与选择一个房间里有100个人,其中50个人说了谎,50个人说了真话。

现在有两个陈述:A. “在这个房间里,只有一个人说了真话。

耶鲁大学公开课博弈论课习题

耶鲁大学公开课博弈论课习题

耶鲁大学公开课:博弈论习题集1(第1-3讲内容)Ben Polak, Econ 159a/MGT522a.由人人影视博弈论制作组Darrencui翻译1.严格劣势策略与弱劣势策略:严格劣势策略的定义是什么?弱劣势策略的定义是什么?请用一个包含两个参与人的博弈矩阵来举例说明,要求其中一个参与人有三个策略且三者之一为严格劣势策略;另一个参与人有三个策略但三者之一为弱劣势策略。

请指出你所举例子中的劣势策略。

2.迭代剔除(弱)劣势策略:请看下面的博弈2(a). 这个博弈中是否存在严格劣势策略和弱劣势策略?如果存在,请指出并说明。

(b). 剔除掉严格劣势策略和弱劣势策略之后,在简化的博弈中是否还有劣势策略呢?如果是,请指出并说明。

最后哪些策略不会被剔除呢?(c). 回顾你第一次剔除劣势策略时哪些策略是劣势策略并给出解释。

把它与第二次剔除的劣势策略作比较。

从中你能得出关于迭代剔除劣势策略的何种结论?3. 霍特林的选址博弈(也称霍特林模型):回顾一下课堂中所讲的选票博弈。

其中有两个参与人,每个参与人都从集合* +中选出自己的立场。

这十个立场均分全部的选票。

选民把选票投给与自己立场最接近的候选人。

如果两个候选人站在同一个立场上,那么持该立场选民的选票平均分给每个候选人。

候选人想要最大化自己的得票率。

举例来说,()。

而() [提示:回答这道题时不必画出整个矩阵](a).课堂中我们指出立场2严格优于立场1,而实际上还有其它的立场也是严格优于立场1的,请找出所有优于立场1的立场并作出解释。

(b).假设现在有三名候选人。

举例来说,()而()。

此时立场2是否严格优于立场1?立场3呢?请作出解释。

另外,假设我们剔除了立场1和10,但是该立场的选票依然存在。

在简化的博弈中,立场2是否严格劣于或弱劣于其它(纯)策略?请作出解释。

4. “到底谁的话语权更重”:由三人组成的评审委员会要决出一场全国艺术大赛的冠军。

经过激烈的讨论之后,有三名选手进入最后的获奖候选人名单,分别是:一名画城市中的羚羊的女画家、一名做铅盒的男工匠、一名做根雕的男雕塑家。

耶鲁公开课--博弈论笔记

耶鲁公开课--博弈论笔记

耶鲁公开课—博弈论笔记第一节、名词解释优势策略(Dominant strategy ):不论其他局中人采取什么策略,优势策略对一个局中人而言都是最好的策略。

即某些时候它胜于其他策略,且任何时候都不会比其他策略差。

注:1、“优势策略”的优势是指你的这个策略对你的其他策略占有优势,而不是无论对手采用什么策略,都占有优势的策略。

2、采用优势策略得到的最坏的结果不一定比采用另外一个策略得到的最佳的结果略胜一筹。

严格劣势策略(strictly dominated strategy):被全面的严格优势策略压住的那个策略,也就是说不是严格优势策略以外的策略。

弱劣势策略:原来不是严格劣势策略,但是经过剔除严格劣势策略后,这个策略就成了严格劣势策略。

例:囚徒困境囚徒到底应该选择哪一项策略,才能将自己个人的刑期缩至最短?两名囚徒由于隔绝监禁,并不知道对方选择;而即使他们能交谈,还是未必能够尽信对方不会反口。

就个人的理性选择而言,检举背叛对方所得刑期,总比沉默要来得低。

试设想困境中两名理性囚徒会如何作出选择:若对方沉默、背叛会让我获释,所以会选择背叛。

若对方背叛指控我,我也要指控对方才能得到较低的刑期,所以也是会选择背叛。

二人面对的情况一样,所以二人的理性思考都会得出相同的结论——选择背叛。

背叛是两种策略之中的支配性策略。

因此,这场博弈中唯一可能达到的纳什均衡,就是双方参与者都背叛对方,结果二人同样服刑2年。

例:协和谬误20世纪60年代,英法两国政府联合投资开发大型超音速客机,即协和飞机。

该种飞机机身大、装饰豪华并且速度快,其开发可以说是一场豪赌,单是设计一个新引擎的成本就可能高达数亿元。

难怪政府也会被牵涉进去,竭力要为本国企业提供更大的支持。

项目开展不久,英法两国政府发现:继续投资开发这样的机型,花费会急剧增加,但这样的设计定位能否适应市场还不知道;但是停止研制也是可怕的,因为以前的投资将付诸东流。

随着研制工作的深入,他们更是无法做出停止研制工作的决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Answers to Midterm ExamEcon159a/MGT522aBen Polak Fall2007The answers below are more complete than required to get the points.In general,more concise explanations are better.Question1.[15total points:use blue book1].Short-Answer Questions. State whether each of the following claims is true or false(or can not be determined).For each, explain your answer in(at most)one short paragraph.Each part is worth5points,of which 4points are for the explanation.Explaining an example or a counter-example is su cient. Absent this,a nice concise intuition is su cient:you do not need to provide a formal proof. Points will be deducted for incorrect explanations.(a)[5points]\A strictly dominated strategy can never be a best response."Answer:True.The strategy that strictly dominates it,by de nition,yields a strictly higher payo against all strategies and hence is a better response.(b)[5points]\In the candidate-voter model,if two people are standing,one to the left ofcenter and one to the right of center,and neither of them is`too extreme',then it is an equilibrium."Answer:We accepted true,false or it depends depending on the explanation.This is an equi-librium provided that the players are symmetric around1=2;i.e.,equidistant from half.If they are not symmetric,it is not an equilibrium.Notice that players cannot move in the candidate voter model so this is not a possible deviation.(c)[5points]\If(^s;^s)is a Nash equilibrium of a symmetric,two-player game then^s isevolutionarily stable."Answer:False.For example consider the game below.a ba1;10;0b0;00;0Clearly,(b;b)is a symmetric NE since u(b;b) u(a;b).It is not ES,however,since,we have u(b;b)=u(a;b)=0,but u(b;a)<u(a;a),a violation of condition(B).Hence a monomorphic population of b would be vulnerable to an invasion of mutants that played a.2Question2.[30total points]\Party Games".Roger has invited Caleb to his party.Roger must choose whether or not to hire a clown.Simultaneously,Caleb must decide whether or not to go the party.Caleb likes Roger but he hates clowns{he even hates other people seeing clowns!Caleb's payo from going to the party is4if there is no clown,but0if there is a clown there.Caleb's payo from not going to the party is3if there is no clown at the party,but1if there is a clown at the party.Roger likes clowns{he especially likes Caleb's reaction to them |but does not like paying for them.Roger's payo if Caleb comes to the party is4if there is no clown,but8 x if there is a clown(x is the cost of a clown).Roger's payo if Caleb does not come to the party is2if there is no clown,but3 x if there is a clown there.(a)[6points]Write down the payo matrix of this game.Answer:(Throughout,let underlines indicate best-response payo s.)Calebgo not goRoger Hire8 x;03 x;1Not4;42;3(b)[6points]Suppose x=0.Identify any dominated strategies.Explain.Find the Nash equilibrium.What are the equilibrium payo s?Answer:First notice,that no matter what x is,neither of Caleb's strategies are dominated since,u2(Hire;go)=0<1=u2(Hire;not)and u2(Not;go)=4>3=u2(Not;not)So this will be the case for(c),(d)and(e)below.Now,when x=0,the payo matrix becomes:Calebgo not goRoger Hire8;03;1Not4;42;3and we see that Hire strictly dominates Not for Roger since,u1(Hire;go)=8>4=u1(Not;go)and u1(Hire;not)=3>2=u1(Not;not).The NE is indicated by the best-response underlining on the matrix,or it can be found as follows. Caleb,knowing that Roger will not play a strictly dominated strategy,should expect Roger to hire a clown.Given Roger is hiring a clown,Caleb's choice is then between choosing go and getting0or choosing not and getting1.Thus the NE is(Hire;not)which yields a payo of (3;1)= 93;1 .(c)[6points]Suppose x=2.Identify any dominated strategies.Explain.Find the Nash equilibrium.What are the equilibrium payo s?3Answer:When x=2,the payo matrix becomesCalebgo not goRoger Hire6;01;1pNot4;42;3(1 p)q(1 q)and we see that neither of Roger's strategies dominates the other since,u1(Hire;go)=6>4=u1(Not;go)and u1(Hire;not)=1<2=u1(Not;not).None of the four pure-strategy pro les has the property that each is strategy a best response to the other,hence there are no pure strategy Nash equilibria.To nd the mixed strategy equilibrium, let q denote the probability that Caleb plays go and let p denote the probability that Roger plays Hire.In a mixed-strategy Nash equilibrium,q must be such that Roger is indi erent between playing either of her pure strategies,that is,they must both yield the same expected payo . Similarly,p must be such that Caleb is indi erent between playing either of his pure strategies, that is,they both must yield the same expected payo .Hence q must satisfyq 6+(1 q) 1=q 4+(1 q) 2)q=1=3;and p must satisfyp 0+(1 p) 4=p 1+(1 p) 3)p=1=2.So mixed strategy Nash equilibrium is((1=2;1=2);(1=3;2=3)),yielding payo s of 83;2 .(d)[6points]Suppose x=3.Identify any dominated strategies.Explain.Find the Nash equilibrium.What are the equilibrium payo s?Answer:When x=3,the payo matrix becomesCalebgo not goRoger Hire5;00;1pNot4;42;3(1 p)q(1 q)and again,we see that neither of Roger's strategies dominates the other since,u1(Hire;go)=5>4=u1(Not;go)and u1(Hire;not)=0<2=u1(Not;not).Just as in(c)we see that none of the four pure-strategy pro les has the property that each strategy is a best response to the other,hence there are no pure strategy Nash equilibria.So again to nd the mixed strategy equilibrium,let q denote the probability that Caleb plays go and4let p denote the probability that Roger plays Hire..As Caleb's payo are unchanged from(c)p must be the same i.e.p=1=2.And q must satisfyq 5+(1 q) 0=q 4+(1 q) 2)q=2=3.So mixed strategy Nash equilibrium is((1=2;1=2);(2=3;1=3))yielding payo s 103;2 .(e)[6points]Suppose x=5.Identify any dominated strategies.Explain.Find the Nash equilibrium.What are the equilibrium payo s?Answer:When x=5,the payo matrix becomesCalebgo not goRoger Hire3;0 2;1Not4;42;3Now Roger's strategy Not strictly dominates Hire since,u1(Hire;go)=3<4=u1(Not;go)and u1(Hire;not)= 2<2=u1(Not;not).The NE is indicated by the best-response underlining on the matrix,or it can be found as follows. Caleb,knowing that Roger will not play a strictly dominated strategy,should expect Roger not to hire a clown(i.e.he should anticipate she will choose NOT).Given Roger is not hiring a clown,Caleb's choice is then between choosing go and getting4or choosing not and getting3. Thus the NE is(Not;go)yielding a payo of(4;4).Notice that compared to the equilibrium from part(a),the higher cost of hiring a clown leads to a outcome that is better for both of them.5Question3.[30total points]\Road Trip".Six Yale students are going on a foreign trip on which they will live close together.Where they are going,there is a disease which spreads easily among people who live close together.The value of the trip to a student who does not get the disease is6.The value of the trip to a student who gets the disease is0.There is a vaccination against the disease.The vaccination costs di erent amounts for di erent students(perhaps they have di erent health plans).Let's call the students1;2;3;4;5 and6respectively.The vaccination costs1for student1;it costs2for student2;etc....If a student gets vaccinated,she will not get the disease.But,if she is not vaccinated then her probability of getting the disease depends on the total number in the group who are not vaccinated.If she is the only person not to get vaccinated then the probability that she gets the disease is1=6.If there is one other person who is not vaccinated(i.e.,two in all including her) then the probability that she gets the disease is2=6.If there are two other people who are not vaccinated(i.e.,three including her)then the probability that she gets the disease is3=6,etc..[For example,suppose only students2and4get vaccinated.Then2's expected payoff is6 [2]where the[2]is the cost of the vaccination.Student4's expected payoff in this case is6 [4].Student5's expected payoff in this case(recall she did not get vaccinated)is 26 6+ 46 0=2where the fraction 46 is the probability that she gets the disease.] To make this into a game,suppose that each student aims to maximize her expected payo . The students decide,individually and simultaneously,whether or not to get a vaccination.(a)[8points]Explain concisely whether or not it is a Nash equilibrium for students1,2,3 and4to get vaccinated and students5and6not to get vaccinated.Answer:To show that it is not a NE,we only need to nd one player who has a strictly pro table deviation.Consider student4.Her cost of getting vaccinated is4,hence her payo from getting vaccinated is6 4=2.If she instead decided not to get vaccinated as there would be three people(including herself)who were not vaccinated,her payo would be36 6+ 36 0=3>2.So student4is not playing best response,which means this particular strategy pro le is not a Nash equilibrium.(b)[8points]Explain concisely whether or not it is a Nash equilibrium for students1,2 and3to get vaccinated and students4,5,and6not to get vaccinated.Answer:We will show that no student has a pro table deviation.First consider those students who are getting vaccinated;in particular,start with student3.Her cost of getting vaccinated is3,hence her payo from getting vaccinated is6 3=3.If she instead decided not to get vaccinated,as there would be four people(including herself)who were not vaccinated,her payo would be 26 6+ 46 0=2<3.So student3is playing a best response.Since the vaccination costs students1and2less than it does student3;both students1and2have higher payo s than student3from getting vaccinated:6Each of these two students would have the same payo as would student3if they deviated to not getting vaccinated.So they are also playing best responses by choosing to get vaccinated.Next consider the group of students who are choosing not to get vaccinated.Since there are three students who are not getting vaccinated each has an expected payo of36 6+ 36 0=3.Student4's payo if she chose to get vaccinated would be6 4=2.So she is playing a best response.As the other two students have higher costs of getting vaccinated than student4,the payo they would get by choosing to get vaccinated would be even lower.So they are also both playing a best response.Hence all six students are playing best responses,and this is a Nash equilibrium.(c)[6points]Which players in this game have strictly or weakly dominated strategies? Explain your answers carefully including whether any domination is strict or weak.Answer:First,consider student1.She has the lowest cost of getting vaccinated.Her payo from getting vaccinated is6 1=5.The highest payo she could get from not getting vaccinated is when the other ve students all get vaccinated in which case her expected payo from choosing not to get vaccinated would be 56 6+ 16 0=5.Thus for student1getting vaccinated weakly dominates not getting vaccinated.For student 2(respectively,3,4,5and6),as she faces a higher cost of vaccination,getting vaccinated yields a lower payo than not getting vaccinated when her ve companions all choose to get vaccinated.Hence for all students except student1,getting vaccinated does not dominate not getting vaccinated.Now consider student 6.She has the highest cost of getting vaccinated.Her payo from getting vaccinated is6 6=0.The lowest payo she could get from not getting vaccinated is when none of her ve companions get vaccinated in which case student6's expected payo from choosing not to get vaccinated would be06 6+ 66 0=0.Thus for student6not getting vaccinated weakly dominates getting vaccinated.For student5 (respectively,4,3,2and1),not getting vaccinated yields a lower payo than getting vaccinated when her ve companions all choose not to get vaccinated.Hence for all students except student 6,not getting vaccinated does not dominate getting vaccinated.(d)[4points]If we delete all strictly and weakly dominated strategies from all players,which players in the game now have(iteratively)strictly or weakly dominated strategies?Explain carefully.Answer:Suppose students1and6do not play their weakly dominated strategies,that is, suppose student1is choosing to get vaccinated and student6is choosing not to get vaccinated.Consider student2.Her payo from getting vaccinated is6 2=4.In this reduced game (where6is choosing not to get vaccinated)the highest payo she could get from not getting7vaccinated is when the remaining four students all get vaccinated.In this case her expected payo from choosing not to get vaccinated would be46 6+ 260=4.Thus for student 2,getting vaccinated weakly dominates not getting vaccinated.By a similar argument to the one given in (c)above,getting vaccinated does not weakly dominate not getting vaccinated for students 3,4and 5.Now consider student 5.Her payo from getting vaccinated is 6 5=1.In this reduced game,since student 1is choosing to get vaccinated,the lowest payo student 5could get from not getting vaccinated is when none of students 2,3,and 4(and of course 6)choose to get vaccinated.In this case student 5's expected payo from choosing not to get vaccinated would be 16 6+ 560=1.Thus for student 5not getting vaccinated weakly dominates getting vaccinated.By a similar argument to the one given in (c)above,getting vaccinated does not weakly dominate not getting vaccinated for students 4,3and 2.Some students went further (which turns out to be helpful in answering the last part).Doing a second round of elimination of weakly dominated strategies just leaves students 3and 4.Let V denote the strategy \get vaccinated"and let D denote the strategy \don't get vaccinated."Once we x player 1's and player 2's strategies as getting vaccinated,and x player 5's and player 6's strategy as not getting vaccinated then all we are left with is players 3and 4.We can write down player 3's and player 4's payo s (taking as given the actions of players 1,2,5and 6).This gives us a reduced game matrix as follows (where V means vaccinate and D means don't):Student 4V DStudent 3V 3;23;3D3;22;2From this matrix we see that for student 3,V weakly dominates D and for student 4,D weakly dominates V .Hence a third round of elimination of weakly dominated strategies yields the equilibrium strategy pro le,considered in part (b).(e)[4points][Harder ]Find all the (possibly mixed)NE in this game.Explain.Answer:From parts (b)and (d)we have seen that it is a Nash equilibrium for students 1,2and 3to get vaccinated and students 4,5and 6not to get vaccinated.Notice also that from the payo matrix of the reduced game we used in part (d),we see that for student 3,D is a best response to student 4playing V ,and for student 4,V is a best response to student 3playingD .Hence it is also a Nash equilibrium for 1,2and 4to get vaccinated and students 3,5and 6not to get vaccinated.Could there also be other equilibria?Recall that player 1had a weakly dominant strategy to get vaccinated.Hence for player1to put any weight on not getting vaccinated as part of an equilibrium (in which he must be playing a best response),it would have to be the case that8all the other players(including player6)were getting vaccinated.Similarly,player6had a weakly dominant strategy not to get vaccinated.Hence for player1to put any weight on getting vaccinated as part of an equilibrium(in which he must be playing a best response),it would have to be the case that all the other players(including player1)were not getting vaccinated.But these two things are mutually inconsistent.Hence,in any equilibrium player1and6must play their weakly dominant strategies.Once we know this,a similar argument rules there being an equilibrium in which player2 puts any weight on not getting vaccinated and rules out an equilibrium in which player5puts any weight on getting vaccinated.That is,any equilibrium must involve player2getting vaccinated and player5not getting vaccinated.Thus the only strategies left to determine in equilibrium are those of players3and4,and we have already found all the pure-strategy equilibria involving those choices.Could there be other mixed-strategy equilibria involving mixing by players3and4.To see that no other such equilibrium exists,consider again the matrix that represents the choices and payo s of players3and4taking as given the undominated choices of players1;2;5and6.Let p(respectively,q)denote the probability that student3(respectively,student4)chooses V.Student4V DStudent3V3;23;3pD3;22;2(1 p)q(1 q)In a mixed-strategy Nash equilibrium,q must be such that Student3is indi erent between playing either of her pure strategies,that is,they must both yield the same expected payo .Similarly,p must be such that Student4is indi erent between playing either of her pure strategies,that is, they both must yield the same expected payo .Hence q must satisfyq 3+(1 q) 3=q 3+(1 q) 2)q=1;and p must satisfyp 2+(1 p) 2=p 3+(1 p) 2)p=0.That is,the`mixed-strategy'Nash equilibrium is((0;1);(1;0)).But that just corresponds to the pure strategy equilibrium(D;V)that we already found.9。

相关文档
最新文档