2010年贵州省铜仁市中考数学试题 (NXPowerLite)
铜仁中考数学试题(解析版)
贵州省铜仁地区中考数学试卷一、选择题(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上.3.(4分)(2013•铜仁地区)一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,..的概率为=4.(4分)(2013•铜仁地区)如图,在下列条件中,能判断AD∥BC的是()解答:BC(内错角相等,两直线平行)5.(4分)(2013•铜仁地区)⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙OO6.(4分)(2013•铜仁地区)已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边AC DF=AB=DE+DF+EF=7.(4分)(2013•铜仁地区)已知矩形的面积为8,则它的长y与宽x之间的函数关系用图....y=(9.(4分)(2013•铜仁地区)张老师和李老花眼师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自BD.﹣=510.(4分)(2013•铜仁地区)如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是()二、填空题(本大题共8个小题,每小题4分,共32分)11.(4分)(2013•铜仁地区)4的平方根是±2.12.(4分)(2013•铜仁地区)方程的解是y=﹣4.13.(4分)(2013•铜仁地区)国家统计局于2013年4月15日发布初步核算数据,一季度中国国内生产总值(GDP)为119000亿元,同比增长7.7%.数据119000亿元用科学记数法表示为 1.19×105亿元.14.(4分)(2013•铜仁地区)不等式2m﹣1≤6的正整数解是1,2,3..15.(4分)(2013•铜仁地区)点P(2,﹣1)关于x轴对称的点P′的坐标是(2,1).16.(4分)(2013•铜仁地区)如图,在直角三角形ABC中,∠C=90°,AC=12,AB=13,则sinB的值等于.,代入求出即可.=,故答案为:.,cosB=.则该公司职工月工资数据中的众数是2000.案为18.(4分)(2013•铜仁地区)如图,已知∠AOB=45°,A1、A2、A3、…在射线OA上,B1、B2、B3、…在射线OB上,且A1B1⊥OA,A2B2⊥OA,…A n B n⊥OA;A2B1⊥OB,…,A n+1B n⊥OB (n=1,2,3,4,5,6…).若OA1=1,则A6B6的长是32.三、解答题(本题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10分)(2013•铜仁地区)(1)计算(﹣1)2013+2sin60°+(π﹣3.14)0+|﹣|;(2)先化简,再求值:,其中.×+1+;2×+2=2=20.(10分)(2013•铜仁地区)如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.考点:全专题:证出21.(10分)(2013•铜仁地区)为了测量旗杆AB的高度.甲同学画出了示意图1,并把测量结果记录如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同学画出了示意图2,并把测量结果记录如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.(1)请你帮助甲同学计算旗杆AB的高度(用含a、b、c的式子表示);(2)请你帮助乙同学计算旗杆AB的高度(用含m、n、α的式子表示).中,=tan22.(10分)(2013•铜仁地区)某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?=30%=,答:张明抽到去上海的车票的概率是.四、(本题满分12分)23.(12分)(2013•铜仁地区)铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90.(1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式.(2)请问前多少个月的利润和等于1620万元?x=五、(本题满分12分)24.(12分)(2013•铜仁地区)如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O 于B,连结PA、AB,且满足PC=50,PA=30,PB=18.(1)求证:△PAB∽△PCA;(2)求证:AP是⊙O的切线.,==,=,六、(本题满分14分)25.(14分)(2013•铜仁地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.的坐标为(﹣,解得:AC=4AC OB=×时,解得:,﹣时,,时,,,,﹣。
【真题】贵州省铜仁市中考数学试题含答案解析()
贵州省铜仁市中考数学试卷一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×1083.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3 4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.167.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.118.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1 10.(4.00分)计算+++++……+的值为()A. B. C.D.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=.12.(4.00分)因式分解:a3﹣ab2=.13.(4.00分)一元一次不等式组的解集为.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=°.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为.三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.贵州省铜仁市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题4分,共40分)本题每小题均有A、B、C、D4个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上1.(4.00分)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(4.00分)提出了未来五年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×107B.11.7×106C.0.117×107D.1.17×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:11700000=1.17×107.故选:A.3.(4.00分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求出已知方程的解.【解答】解:x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,故选:C.4.(4.00分)掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A.B.C.D.【分析】根据题意和题目中的数据可以求得点数为奇数的概率.【解答】解:由题意可得,点数为奇数的概率是:,故选:C.5.(4.00分)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120° D.125°【分析】根据圆周角定理进行求解.一条弧所对的圆周角等于它所对的圆心角的一半.【解答】解:根据圆周角定理,得∠ACB=(360°﹣∠AOB)=×250°=125°.故选:D.6.(4.00分)已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF 的面积为()A.32 B.8 C.4 D.16【分析】由△ABC∽△DEF,相似比为2,根据相似三角形的面积的比等于相似比的平方,即可得△ABC与△DEF的面积比为4,又由△ABC的面积为16,即可求得△DEF的面积.【解答】解:∵△ABC∽△DEF,相似比为2,∴△ABC与△DEF的面积比为4,∵△ABC的面积为16,∴△DEF的面积为:16×=4.故选:C.7.(4.00分)如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.11【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:A.8.(4.00分)在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为()A.1cm B.3cm C.5cm或3cm D.1cm或3cm【分析】分类讨论:当直线c在a、b之间或直线c不在a、b之间,然后利用平行线间的距离的意义分别求解.【解答】解:当直线c在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4﹣1=3(cm);当直线c不在a、b之间时,∵a、b、c是三条平行直线,而a与b的距离为4cm,b与c的距离为1cm,∴a与c的距离=4+1=5(cm),综上所述,a与c的距离为3cm或3cm.故选:C.9.(4.00分)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1 B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.10.(4.00分)计算+++++……+的值为()A. B. C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4.00分)分式方程=4的解是x=﹣9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8,解得:x=﹣9,经检验x=﹣9是分式方程的解,故答案为:﹣912.(4.00分)因式分解:a3﹣ab2=a(a+b)(a﹣b).【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).13.(4.00分)一元一次不等式组的解集为x>﹣1.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.【解答】解:,由①得:x>﹣1,由②得:x>﹣2,所以不等式组的解集为:x>﹣1.故答案为x>﹣1.14.(4.00分)如图,m∥n,∠1=110°,∠2=100°,则∠3=150°.【分析】两直线平行,同旁内角互补,然后根据三角形内角和为180°即可解答.【解答】解:如图,∵m∥n,∠1=110°,∴∠4=70°,∵∠2=100°,∴∠5=80°,∴∠6=180°﹣∠4﹣∠5=30°,∴∠3=180°﹣∠6=150°,故答案为:150.15.(4.00分)小米的爸爸为了了解她的数学成绩情况,现从中随机抽取他的三次数学考试成绩,分别是87,93,90,则三次数学成绩的方差是6.【分析】根据题目中的数据可以求得相应的平均数,从而可以求得相应的方差,本题得以解决.【解答】解:,∴=6,故答案为:6.16.(4.00分)定义新运算:a※b=a2+b,例如3※2=32+2=11,已知4※x=20,则x=4.【分析】根据新运算的定义,可得出关于x的一元一次方程,解之即可得出x的值.【解答】解:∵4※x=42+x=20,∴x=4.故答案为:4.17.(4.00分)在直角三角形ABC中,∠ACB=90°,D、E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB=4.【分析】由CE所在直线垂直平分线段AD可得出CE平分∠ACD,进而可得出∠ACE=∠DCE,由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB,结合∠ACB=90°可求出∠ACE、∠A的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB的长度.【解答】解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.18.(4.00分)已知在平面直角坐标系中有两点A(0,1),B(﹣1,0),动点P 在反比例函数y=的图象上运动,当线段PA与线段PB之差的绝对值最大时,点P的坐标为(﹣1,﹣2)或(2,1).【分析】由三角形三边关系知|PA﹣PB|≥AB知直线AB与双曲线y=的交点即为所求点P,据此先求出直线AB解析式,继而联立反比例函数解析式求得点P的坐标.【解答】解:如图,设直线AB的解析式为y=kx+b,将A(1,0)、B(0,﹣1)代入,得:,解得:,∴直线AB的解析式为y=x﹣1,直线AB与双曲线y=的交点即为所求点P,此时|PA﹣PB|=AB,即线段PA与线段PB之差的绝对值取得最大值,由可得或,∴点P的坐标为(﹣1,﹣2)或(2,1),故答案为:(﹣1,﹣2)或(2,1).三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10.00分)(1)计算:﹣4cos60°﹣(π﹣3.14)0﹣()﹣1(2)先化简,再求值:(1﹣)÷,其中x=2.【分析】(1)先计算立方根、代入三角函数值、计算零指数幂和负整数指数幂,再分别计算乘法和加减运算可得;(2)先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=2﹣4×﹣1﹣2=2﹣2﹣1﹣2=﹣3;(2)原式=(﹣)÷=•=,当x=2时,原式==2.20.(10.00分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,求证:AE∥BF.【分析】可证明△ACE≌△BDF,得出∠A=∠B,即可得出AE∥BF;【解答】证明:∵AD=BC,∴AC=BD,在△ACE和△BDF中,,∴△ACE≌△BDF(SSS)∴∠A=∠B,∴AE∥BF;21.(10.00分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机机抽取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.【分析】(1)由B类人数及其所占百分比求得总人数,再用总人数分别乘以A、C类别对应百分比求得其人数,据此结合条形图进一步得出答案;(2)画树状图列出所有等可能结果,从中找到所选两位同学恰好是一男一女同学的结果数,利用概率公式求解可得.【解答】解:(1)∵被调查的总人数为(7+5)÷60%=20人,∴A类别人数为20×15%=3人、C类别人数为20×(1﹣15%﹣60%﹣10%)=3,则A类男生人数为3﹣1=2、C类女生人数为3﹣1=2,补全图形如下:(2)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况,∴所选两位同学恰好是一男一女同学的概率为.22.(10.00分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C、D、B在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)【分析】根据AB和∠ADB、AB和∠ACB可以求得DB、CB的长度,根据CD=CB ﹣DB可以求出AB的长度,即可解题.【解答】解:在Rt△ADB中,DB==AB,Rt△ACB中,CB==AB,∵CD=CB﹣DB,∴AB=≈23.7(米)答:电视塔AB的高度约23.7米.四、(本大题满分12分)23.(12.00分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据“甲种桌子总钱数+乙种桌子总钱数+所有椅子的钱数=24000、10把甲种桌子钱数﹣5把乙种桌子钱数+多出5张桌子对应椅子的钱数=2000”列方程组求解可得;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,根据“总费用=甲种桌子总钱数+乙种桌子总钱数+所有椅子的总钱数”得出函数解析式,再由“甲种办公桌数量不多于乙种办公桌数量的3倍”得出自变量a的取值范围,继而利用一次函数的性质求解可得.【解答】解:(1)设甲种办公桌每张x元,乙种办公桌每张y元,根据题意,得:,解得:,答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a张,则购买乙种办公桌(40﹣a)张,购买的总费用为y,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.五、(本大题满分12分)24.(12.00分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O 交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.【分析】(1)连接OC,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得:D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.【解答】(1)证明:如图,连接OC,CD,∵BC是⊙O的直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位线∴OD∥AC,∵DF为⊙O的切线,∴DF⊥AC;(2)解:如图,连接BG,∵BC是⊙O的直径,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,S△ABC=,6×4=5BG,BG=,由勾股定理得:CG==,∴tan∠CBG=tan∠E===.六、(本大题满分14分)25.(14.00分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x﹣2,则Q(m,﹣m2+m+2)、M(m,m﹣2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得==,再证△MBQ∽△BPQ得=,即=,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q 坐标.【解答】解:(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当﹣m2+m+4=时,四边形DMQF是平行四边形,解得:m=﹣1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则===,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴=,即=,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=﹣1,点Q的坐标为(﹣1,0);综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.。
车钩缓冲器 (NXPowerLite)
1 16、17型车钩简介
1990年初,17型车钩、16型车钩及配套的钩尾框通过了静拉破坏 强度试验,并装用在C63型运煤专用敞车上进行运用考验;同年17型车 钩、16型车钩通过了在秦皇岛三期卸煤码头三车翻车机上进行的空车 对重车不摘钩连续翻转卸货试验;1990年6月,17型车钩、16型车钩在 大秦线参加了万吨列车运行试验,取得了良好的效果。 1992年5月, 17型车钩、16型车钩通过了铁道部部级技术评审,并开始批量装用在 C63型运煤专用敞车上。 1997年3月,17型车钩、16型车钩通过了铁道部组织的科学技术成 17型车钩下锁销杆 铆钉
连接键
闭锁指示孔
17型车钩下锁销转轴
17型车钩下锁销组成
1 16、17型车钩简介
1.4 16型车钩组成
16型车钩如图所示,由 17型车钩钩体、钩舌、钩 舌推铁、钩舌销、锁铁组 成、下锁销转轴和下锁销 组成等零部件组成。
16型车钩组成
1 16、17型车钩简介
16型车钩钩体 为了使车钩在进行翻卸作业 时转动灵活,16型车钩的钩 身为圆柱形,钩身下面的磨 耗板为嵌入式磨耗板,减小 了车钩转动时的阻力。钩尾 与从板接触的部位为半径 133.5mm的球面。
1 16、17型车钩简介
1 16、17型车钩简介
1.5 16、17型车钩具有以下特点
a) 防分离可靠性高
2.1 17型车钩的组装
组装的顺序为:钩体 成 锁铁组成 钩舌 钩舌推铁 钩舌销 下锁销转轴 开口销。 下锁销组
2 16、17型车钩的组装与分解
2.1.1 安装钩舌推铁 将钩舌推铁从钩 体前面装入头部内腔 , 安装时钩舌推铁的锥 面轴向上,圆柱面的 推铁轴插入钩体的推 铁孔中,直到钩舌推 铁平稳的坐在钩腔内 部。
BLUEWATER MALL (NXPowerLite)
项目背景
所在地 类型 开发商 楼层
英国Dartford市,伦敦东南部 当今欧洲最大的郊区型购物中心 由欧洲Lend Lease公司开发建成 两层
车位
总面积 开幕日期
13000个
总建筑面积13.95万平方米 1999年落成
购物中心概况
Bluewater购物中心位于伦敦的东南部,是全英国最大的购物中心,
经营管理
Blue Water是Lend Lease公司在英国第一个主要的商业地产投资计划
最早的策略即是洽谈英国最高级的百货公司JohnLewis,通过主力商店的确定,可以 帮助后续招商的洽谈及建筑规划的设计
利用专业的、具有很高可信度的游说团队,将主要重点放在未来的计划如空间、规划 管理的完善等,Lend Lease公司经过艰难的谈判最终说服了JohnLewis。Blue Water是 JohnLewis进驻的第一个购物中心,其面积将近33000平方英尺,也是JohnLewis在伦敦 Oxford Street旗舰店以外最大的店面
结合JohnLewis的进驻,Blue Water同时积极宣传其完善的功能、高品味的格调及富 饶优美的周遭环境,由此说服英国其他最好的主力商店,包括Mark &Spencer、House OfFraser相继进驻,其它的次主力商店也跟著完成招商的计划
每星期到访客人达50万人
商圈分析
Blue Water购物中心,可说是当今欧洲最大的 郊区型购物中心,在其1小时车程主商圈内的人口 即有千万人,它不但影响周围的购物中心,甚至 吸引英国伦敦最主要的商业区West End的消费者
Bluewater 之所以能够成功吸引大批消费者光 临,原因首先在于发展商选择了良好的项目地址,
2010年贵州省铜仁市中考数学试卷及答案
保密*启用前2010年铜仁地区高中阶段教育招生统一考试数学科试题姓名:准考证号:注意事项:1.答题前,务必将自己的姓名、准考证号写在试卷和答题卡规定的位置.2.答题时,卷I必须使用2B铅笔,卷II必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整,笔迹清楚.3.所有题目必须在答题卡上作答,在试卷上答题无效.4.本试卷共8页,满分150分,考试时间120分钟.5.考试结束后,将试题卷和答题卡一并收回.卷I一、选择题(本大题共10小题,每小题4分,共40分.每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在答题卡相应的位置上.)1.下列式子中,正确的是()A. x3+x3=x6B.4=±2 C.(x·y3)2=xy6D.y5÷y2=y32.已知x=0是方程x2+2x+a=0的一个根,则方程的另一个根为()A.-1 B.1 C.-2 D.2 3.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是()A.180(1+x%)=300 B.80(1+x%)2=300C.180(1-x%)=300 D.180(1-x%)2=3004.不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.xx⎧⎨⎩≥-1≤2B.xx>⎧⎨⎩-1≤2C.xx>⎧⎨<⎩-12D.xx<⎧⎨⎩-1≥25.如图,顺次连结四边形ABCD各中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AB=DC C.AC⊥BD D.AC=BD6.如图,MN为⊙O的弦,∠M=30°,则∠MON等于()A .30°B .60°C .90°D .120°7. 如图,△ABC ≌△DEF ,BE=4,AE=1,则DE 的长是( )A .5B .4C .3D .28. (2010贵州铜仁,8,4分)已知正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减少,则一次函数y =kx +k 的图象大致是( )9. (2010贵州铜仁,9,4分)随机掷一枚质地均匀的硬币两次,落地后至多有一次反面朝上的概率为( )A .34 B .14 C .12 D .2310.如图,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2,B 2,C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第8个正△A 8B 8C 8的面积是( ) A 731()2 B 831()2 C 731()4 D 831()4卷II二、填空题:(本大题共8个小题,每小题4分,共32分)11.-5的相反数是_______.12.分解因式x2-9y2=.13.一副三角板,如图叠放在一起,∠1的度数是_______度.14.已知菱形的两条对角线的长分别为5和6,则它的面积是________.15.如图,请填写一个你认为恰当的条件_______,使AB∥CD.16.根据图中的程序,当输入x=5时,输出的结果y=__ __.17.定义运算“@”的运算法则为:x@y=xy-1,则(2@3)@4=__ __.18.一组数据有n个数,方差为S2.若将每个数据都乘以2,所得到的一组新的数据的方差是_______.三、解答题(本题共4个题,19题每小题5分,第20、21、22每题10分,共40分,要有解题的主要过程)19.(1)(-2010)0+3-2sin60°.(2)已知x2-2x=1,求(x-1)(3x+1)-(x+1)2的值.20.如图在Rt△ABC中,∠A=90°,AB=10,AC=5,若动点P从点B出发,沿线段BA 运动到A点为止,运动为每秒2个单位长度.过点P作PM∥BC,交AC于点M,设动点P运动时间为x秒,AM的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,△BPM的面积S有最大值,最大值是多少?21星期一星期二星期三星期四星期五星期六星期日路程(千米) 30 33 27 37 35 53 30 请你用学过的统计知识解决下面的问题:(1)小明家的轿车每月(按30天计算)要行驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升6.70元,请你算出小明家一年(按12个月计算)的汽油费用大约是多少元(精确到百元).22.如图,已知在⊙O中,AB=23,AC是⊙O的直径,AC⊥BD于F,∠ABD=60°.(1)求图中阴影部分的面积;(2)若用阴影部分围成一个圆锥侧面,请求出这个图象的底面圆的半径.23.(12分)五、(本题满分12分)24.(12分)已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC分别与AB、AC交于点G、F.(1)求证:GE=GF;(2)若BD=1,求DF的长.25.(14分)如图所示,矩形OABC位于平面直角坐标系中,AB=2,OA=3,点P是OA 上的任意一点,PB平分∠APD,PE平分∠OPF,且PD、PF重合.(1)设OP=x,OE=y,求y关于x的函数解析式,并求x为何值时,y的最大值;(2)当PD⊥OA时,求经过E、P、B三点的抛物线的解析式;(3)。
2010贵阳市中考数学试题及答案
贵阳市2010年初中毕业生学业考试试题卷数学考生注意:1.本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.可以使用科学计算器.选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分)1.-5的绝对值是(A)5 (B)51(C)-5 (D)0.52.下列多项式中,能用公式法分解因式的是(A)xyx-2(B)xyx+2(C)22yx+(D)22yx-3.据统计,2010年贵阳市参加初中毕业生学业考试的人数约为51000人,将数据51000用科学记数法表示为(A)5.1×105(B)0.51×105(C)5.1×104(D)51×1044.在下面的四个几何体中,左视图与主视图不相同的几何体是(A)正方体长方体(B)球(C)圆锥(D)5.小明准备参加校运会的跳远比赛,下面是他近期六次跳远的成绩(单位:m ):3.6,3.8,4.2,4.0,3.8,4.0.那么,下列结论正确的是(A )众数是3 .9 m (B )中位数是3.8 m (C )平均数是4.0m (D )极差是0.6m 6.下列式子中,正确的是(A )10<127<11 (B )11<127<12 (C )12<127<13 (D )13<127<14 7.下列调查,适合用普查方式的是 (A )了解贵阳市居民的年人均消费 (B )了解某一天离开贵阳市的人口流量(C )了解贵州电视台《百姓关注》栏目的收视率(D )了解贵阳市某班学生对“创建全国卫生城市”的知晓率8.如图1,AB 是⊙O 的直径,C 是⊙O 上的一点,若AC =8, AB =10,OD ⊥BC 于点D ,则BD 的长为(A )1.5 (B )3 (C )5 (D )6 9.一次函数b kx y +=的图象如图2所示,当y <0时, x 的取值范围是(A )x <0 (B )x >0 (C )x <2 (D )x >210.如图3是小华画的正方形风筝图案,他以图中的对角线AB 为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为苇癉雞讵戰尝轟氲觞壙鸯駭纺兹胪剮謖铒阔镳盘爱恋鋌。
2010年贵州贵阳市中考数学试题(word版有答案)
贵阳市2010年初中毕业生学业考试试题卷数 学考生注意:1. 本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟. 2. 一律在《答题卡》相应位置作答,在试题卷上答题视为无效. 3. 可以使用科学计算器.一、 选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1.-5的绝对值是 (A )5 (B )51(C ) -5 (D ) 0.5 2.下列多项式中,能用公式法分解因式的是(A )xy x -2 (B )xy x +2 (C )22y x + (D )22y x -3.据统计,2010年贵阳市参加初中毕业生学业考试的人数约为51000人,将数据51000用科学记数法表示为(A )5.1³105(B )0.51³105(C )5.1³104(D )51³1044.在下面的四个几何体中,左视图与主视图不相同的几何体是5.小明准备参加校运会的跳远比赛,下面是他近期六次跳远的成绩(单位:m ):3.6,3.8,4.2,4.0,3.8,4.0.那么,下列结论正确的是 (A )众数是3 .9 m (B )中位数是3.8 m (C )平均数是4.0m (D )极差是0.6m 6.下列式子中,正确的是(A )10<127<11 (B )11<127<12 (C )12<127<13 (D )13<127<14(A ) 正方体 长方体(B )球(C )圆锥(D )7.下列调查,适合用普查方式的是 (A )了解贵阳市居民的年人均消费 (B )了解某一天离开贵阳市的人口流量(C )了解贵州电视台《百姓关注》栏目的收视率(D )了解贵阳市某班学生对“创建全国卫生城市”的知晓率8.如图1,AB 是⊙O 的直径,C 是⊙O 上的一点,若AC =8, AB =10,OD ⊥BC 于点D ,则BD 的长为(A )1.5 (B )3 (C )5 (D )6 9.一次函数b kx y +=的图象如图2所示,当y <0时, x 的取值范围是(A )x <0 (B )x >0 (C )x <2 (D )x >210.如图3是小华画的正方形风筝图案,他以图中的对角线AB 为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为二、填空题(每小题4分,共20分)11.方程x 2+1=2的解是 ▲ .12.在一个不透明的布袋中,有黄色、白色的乒乓球共10个,这些球除颜色外都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数很可能是 ▲ 个.13.如图4,河岸AD 、BC 互相平行,桥AB 垂直于两岸, 从C 处看桥的两端A 、B ,夹角∠BCA =60,测得BC =7m , 则桥长AB = ▲ m (结果精确到1m ) 14.若点(-2,1)在反比例函数xky =的图象上,则该函数的图象位于第 ▲ 象限. DCBA(图4)D C BOA(图1)(图2)(A )(B )(D )(C )(图3)AB15.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,……按此规律,那么请你推测第n 组应该有种子数是 ▲ 粒。
2010年贵州省贵阳市中考数学试卷及答案
2010年贵阳市初中毕业生学业考试试题卷数 学一、 选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1.-5的绝对值是 (A )5 (B )51(C ) -5 (D ) 0.5 2.下列多项式中,能用公式法分解因式的是(A )xy x -2(B )xy x +2(C )22y x + (D )22y x -3.据统计,2010年贵阳市参加初中毕业生学业考试的人数约为51000人,将数据51000用科学记数法表示为(A )5.1×105 (B )0.51×105 (C )5.1×104 (D )51×104 4.在下面的四个几何体中,左视图与主视图不相同的几何体是5.小明准备参加校运会的跳远比赛,下面是他近期六次跳远的成绩(单位:m ):3.6,3.8,4.2,4.0,3.8,4.0.那么,下列结论正确的是 (A )众数是3 .9 m (B )中位数是3.8 m (C )平均数是4.0m (D )极差是0.6m 6.下列式子中,正确的是(A )10<127<11 (B )11<127<12 (C )12<127<13 (D )13<127<14 7.下列调查,适合用普查方式的是 (A )了解贵阳市居民的年人均消费 (B )了解某一天离开贵阳市的人口流量(C )了解贵州电视台《百姓关注》栏目的收视率DC BOA(图1)(A ) 正方体长方体(B )球(C ) 圆锥(D )(D )了解贵阳市某班学生对“创建全国卫生城市”的知晓率 8.如图1,AB 是⊙O 的直径,C 是⊙O 上的一点,若AC =8, AB =10,OD ⊥BC 于点D ,则BD 的长为(A )1.5 (B )3 (C )5 (D )6 9.一次函数b kx y +=的图象如图2所示,当y <0时, x 的取值范围是(A )x <0 (B )x >0 (C )x <2 (D )x >210.如图3是小华画的正方形风筝图案,他以图中的对角线AB 为对称轴,在对角线的下方再画一个三角形,使得新的风筝图案成为轴对称图形,若下列有一图形为此对称图形,则此图为二、填空题(每小题4分,共20分)11.方程x 2+1=2的解是 .12.在一个不透明的布袋中,有黄色、白色的乒乓球共10个,这些球除颜色外都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中白色球的个数很可能是 个.13.如图4,河岸AD 、BC 互相平行,桥AB 垂直于两岸, 从C 处看桥的两端A 、B ,夹角∠BCA =60,测得BC =7m , 则桥长AB = m (结果精确到1m ) 14.若点(-2,1)在反比例函数xky =的图象上,则该函数的图象位于第 象限. 15.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,……按此规律,那么请你推测第n 组应该有种子数是 ▲ 粒。
2010中考数学试题及答案
2010中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. 0.33333C. πD. √2答案:D2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A4. 一个正数的倒数是:A. 它自己B. 它的相反数C. 它的平方D. 1除以它答案:D5. 下列哪个式子是正确的?A. 2x + 3 = 5x - 1B. 3x - 4 = 4x + 3C. 2x + 3 = 2x - 3D. 5x + 2 = 5x - 2答案:A6. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B7. 下列哪个不是二次根式?A. √3B. √xC. √x + 1D. √x²答案:D8. 如果一个数的立方是27,那么这个数是:A. 3B. -3C. 9D. -9答案:A9. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 零D. 正数或零答案:D10. 下列哪个是等差数列?A. 1, 3, 5, 7B. 2, 4, 6, 8C. 1, 2, 4, 8D. 3, 6, 9, 12答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是________。
答案:512. 一个数的绝对值是4,这个数可能是________或________。
答案:4 或 -413. 如果一个数的平方是16,那么这个数是________或________。
答案:4 或 -414. 一个圆的直径是10,那么它的半径是________。
答案:515. 如果一个三角形的三个内角分别是40度、50度和90度,那么这是一个________三角形。
答案:直角16. 一个数的立方根是2,那么这个数是________。
OEC9900Elite(NXPowerLite)
•弧深: 84cm
图像显示终端—独有的拉近模式
•全方位多角度观察 •所有操作3步完成 •满足各种手术摆位需求
GE OEC 9900 Elite ----2010年最新产品
术中DSA
1.DRM 多源成像技术 ----大C品质保证的核心技术 2.复合全电动多角度成像 ----业内唯一可移动复合电动C臂 3.低剂量模式,大视野模式 ----业界公认发展方向 4. 临床应用实例
全身骨
高空间分辨率
导管 导针 骨缘 细小血管 软组织 骨骼细节
低对比度
Company Confidential – Internal use only
噪声
1、DRM多源重建技术
1次曝光,6倍数据采集,6步图像处理,6幅图像合成
1、DRM多源重建技术
轻巧触控,所想即所得
1、DRM多源重建技术
1次曝光,6倍数据采集,6步图像处理,6幅图像合成
326 台GE OEC C型臂
GE OEC 9900:术中DSA
复合手术的最佳伙伴
谢谢!
Company Confidential – Internal use only
2.缺乏专业外科手术设备
3.导管室无法达到手术要求标准
在手术室使用小C
存在的问题: 1.无数字减影、路径图功能
2.9寸影增、C臂弧深小
3.球管曝光能力差
在手术室使用大C ---复合手术室
1.成本过高,约2000万左右
2.改造期间影响正常使用 3.设备固定,无法多手术室共享
是否有新的方案满足如下要求?
1 血管外科 2 神经外科
3 肿瘤科
4 心内科
5 消化科
6 泌尿外科
7 妇产科
贵州省铜仁地区2010年中考真题理综试题
2010年铜仁地区高中阶段教育招生统一考试理科综合试题姓名:准考证号:注意事项:1.答题前,务必将自己的姓名、准考证号填写在试卷和答题卡规定的位置。
2.答题时,卷I必须使用2B铅笔,卷II必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整、笔迹清楚。
3.所有题目必须在答题卡上作答,在试卷上答题无效。
4.本试卷共8页,满分150分,考试时间150分钟。
可能用到的相对原子质量: H:1 O:16 S:32 Fe: 56第Ⅰ卷(选择题共36分)一、选择题(本题共12小题,每小题3分,共36分。
每小题只有一个选项符合题意,请将正确选项的序号在答题卡相应的位置填涂。
)1.节日里的下列景象伴随着化学变化的是A. 五光十色的烟火礼花B. 满屋飘香的茅台酒C. 变化无穷的音乐喷泉D. 不断闪烁的霓虹灯2.根据你已有的化学知识和生活经验判断,下列说法正确的是A. 儿童患佝偻病是因为体内缺乏微量元素碘B. 利用活性碳可以使硬水软化C. 羊毛、棉花、腈纶都是天然纤维D. 生石灰可以用作食品包装袋内的干燥剂3.小明为了探究X、Y、Z三种金属活动性强弱,做了如下实验:(1)取大小相等的三种金属片分别放入CuSO4溶液中,一段时间后,X、Z表面出现红色物质,Y没有现象。
(2)取大小相等的X、Z两种金属片,分别放入相同质量分数的稀盐酸中,X、Z表面都产生气泡,但X产生气泡的速度明显比Z 快。
则X、Y、Z三种金属的活动性顺序是A. X>Y>ZB. Z>Y>XC. X>Z>YD. Z>X>Y4.为了支援玉树地震灾区的防疫,全国紧急调运大量过氧乙酸消毒液,过氧乙酸的化学式是C2H4O3,下列说法错误的是A. 过氧乙酸中含有三种元素B. 过氧乙酸是一种高分子化合物C. 过氧乙酸是一种有机化合物D. 一个过氧乙酸分子由9个原子构成5.下面是小青同学对部分化学知识的归纳,其中有错误的一组是6.向H 2SO 4和CuSO 4的混合溶液中逐滴加入NaOH 溶液至过量,下列图象横坐标表示加入NaOH 溶液的质量,纵坐标表示反应的有关变化情况,其中正确的是7.触摸电冰箱门时手感到了 “麻”,下面列出对造成手“麻”原因的四种猜想,你认为合理的是 A .火线断路 B .火线与电冰箱的金属外壳漏电 C .火线与零线相碰 D .电冰箱的金属外壳接了地A.吸油烟机能将油烟吸走,是利用空气流动越快,压强越大的原理9.在实验的基础上进行科学推理是研究物理问题的方法之一,探究下列物理规律过程中运用了这一方法的是A .大气压值的测定B .牛顿第一定律C .伏安法测电阻D .平面镜成像特点10.如图所示的电路中,电源电压不变,当开关闭合,滑动变阻器的滑片P 向a 端移动时下列判断正确的是A .电流表示数变小,螺线管上端为N 极B .电流表示数变小,螺线管下端为N 极C .电流表示数变大,螺线管上端为S 极D .电流表示数变大,螺线管下端为S 极11.农村保留一种“舂米对”的古代简单机械,其示意图如图所示.使用这种装置时,人在A 端用力把它踩下后立即松脚,B 端就会立即下落,打在石臼内的谷物上,从而把谷物打碎 ,下列说法正确的是A .是省力杠杆,B 端下落过程重力势能转化为动能 B .是省力杠杆,B 端下落过程动能转化为重力势能C .是费力杠杆,B 端下落过程动能转化为重力势能D .是费力杠杆,B 端下落过程重力势能转化为动能12.2009年7月22日上午,我们观看到了本世纪发生的最重要的一次日全食,关于日食的形成,下列说法正确的是①煤、石油、天然气--不可再生的化石燃料 ②风能、水能、太阳能--未充分利用的绿色能源 ③使用氢能源--可以缓解温室效应,减少酸雨。
贵州省铜仁市中考数学真题及答案
贵州省铜仁市中考数学真题及答案一、选择题(共10小题)1.﹣3的绝对值是()A.﹣3B.3C.D.﹣2.我国高铁通车总里程居世界第一,预计到2020年底,高铁总里程大约39000千米,39000用科学记数法表示为()A.39×103B.3.9×104C.3.9×10﹣4D.39×10﹣33.如图,直线AB∥CD,∠3=70°,则∠1=()A.70°B.100°C.110°D.120°4.一组数据4,10,12,14,则这组数据的平均数是()A.9B.10C.11D.125.已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为()A.3B.2C.4D.56.实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()A.a>b B.﹣a<b C.a>﹣b D.﹣a>b7.已知等边三角形一边上的高为2,则它的边长为()A.2B.3C.4D.48.如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.9.已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x2﹣6x+k+2=0的两个根,则k的值等于()A.7B.7或6C.6或﹣7D.610.如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是()A.①②③B.①③C.①②D.②③二.填空题(共8小题)11.因式分解:a2+ab﹣a=.12.方程2x+10=0的解是.13.已知点(2,﹣2)在反比例函数y=的图象上,则这个反比例函数的表达式是.14.函数y=中,自变量x的取值范围是.15.从﹣2,﹣1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于.16.设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD 的距离是5cm,则AB与EF的距离等于cm.17.如图,在矩形ABCD中,AD=4,将∠A向内翻析,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=.18.观察下列等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;2+22+23+24+25=26﹣2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=(结果用含m的代数式表示).三.解答题(共7小题)19.(1)计算:2÷﹣(﹣1)2020﹣﹣(﹣)0.(2)先化简,再求值:(a+)÷(),自选一个a值代入求值.20.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.21.某校计划组织学生参加学校书法、摄影、篮球、乒乓球四个课外兴趣小组,要求每人必须参加并且只能选择其中的一个小组,为了了解学生对四个课外小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的两幅不完整的统计图,请你根据给出的信息解答下列问题:(1)求该校参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=,n=;(3)若该校共有2000名学生,试估计该校选择“乒乓球”课外兴趣小组的学生有多少人?22.如图,一艘船由西向东航行,在A处测得北偏东60°方向上有一座灯塔C,再向东继续航行60km到达B处,这时测得灯塔C在北偏东30°方向上,已知在灯塔C的周围47km内有暗礁,问这艘船继续向东航行是否安全?23.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?24.如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,=,求CD的长.25.如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S 关于m的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.参考答案一.选择题(共10小题)1-5 BBCBA6-10 DCDBC二.填空题(共8小题)11.答案为:a(a+b﹣1).12.答案为:x=﹣5.13.答案为:y=﹣.14.解:2x﹣4≥0解得x≥2.15.答案为:.16.答案为:7或17.17.答案为:.18.答案为:m(2m﹣1).三.解答题(共7小题)19.解:(1)原式=2×2﹣1﹣2﹣1=4﹣1﹣2﹣1=0;(2)原式=•=•=﹣,当a=0时,原式=﹣3.20.证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).21.解:(1)该校参加这次问卷调查的学生有:20÷20%=100(人),选择篮球的学生有:100×28%=28(人),补全的条形统计图如右图所示;(2)m%=×100%=36%,n%=×100%=16%,故答案为:36,16;(3)2000×16%=320(人),答:该校选择“乒乓球”课外兴趣小组的学生有320人.22.解:过点C作CD⊥AB,垂足为D.如图所示:根据题意可知∠BAC=90°﹣30°=30°,∠DBC=90°﹣30°=60°,∵∠DBC=∠ACB+∠BAC,∴∠BAC=30°=∠ACB,∴BC=AB=60km,在Rt△BCD中,∠CDB=90°,∠BDC=60°,sin∠BCD=,∴sin60°=,∴CD=60×sin60°=60×=30(km)>47km,∴这艘船继续向东航行安全.23.解:(1)设每一个篮球的进价是x元,则每一个排球的进价是90%x元,依题意有+10=,解得x=40,经检验,x=40是原方程的解,90%x=90%×40=36.故每一个篮球的进价是40元,每一个排球的进价是36元;(2)设文体商店计划购进篮球m个,总利润y元,则y=(100﹣40)m+(90﹣36)(100﹣m)=6m+5400,依题意有,解得0<m≤25且m为整数,∵m为整数,∴y随m的增大而增大,∴m=25时,y最大,这时y=6×25+5400=5550,100﹣25=75(个).故该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5550元.24.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tanA==tan∠BCE==,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴==,∵AD=8,∴CD=4.25.解:(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+6,得:,解得:,∴抛物线的解析式为y=﹣2x2+4x+6.(2)过点P作PF∥y轴,交BC于点F,如图1所示.当x=0时,y=﹣2x2+4x+6=6,∴点C的坐标为(0,6).设直线BC的解析式为y=kx+c,将B(3,0)、C(0,6)代入y=kx+c,得:,解得:,∴直线BC的解析式为y=﹣2x+6.设点P的坐标为(m,﹣2m2+4m+6),则点F的坐标为(m,﹣2m+6),∴PF=﹣2m2+4m+6﹣(﹣2m+6)=﹣2m2+6m,∴S△PBC=PF•OB=﹣3m2+9m=﹣3(m﹣)2+,∴当m=时,△PBC面积取最大值,最大值为.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴0<m<3.(3)存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似.如图2,∠CMN=90°,当点M位于点C上方,过点M作MD⊥y轴于点D,∵∠CDM=∠CMN=90°,∠DCM=∠NCM,∴△MCD∽△NCM,若△CMN与△OBC相似,则△MCD与△NCM相似,设M(a,﹣2a2+4a+6),C(0,6),∴DC=﹣2a2+4a,DM=a,当时,△COB∽△CDM∽△CMN,∴,解得,a=1,∴M(1,8),此时ND=DM=,∴N(0,),当时,△COB∽△MDC∽△NMC,∴,解得a=,∴M(,),此时N(0,).如图3,当点M位于点C的下方,过点M作ME⊥y轴于点E,设M(a,﹣2a2+4a+6),C(0,6),∴EC=2a2﹣4a,EM=a,同理可得:或=2,△CMN与△OBC相似,解得a=或a=3,∴M(,)或M(3,0),此时N点坐标为(0,)或(0,﹣).综合以上得,M(1,8),N(0,)或M(,),N(0,)或M(,),N(0,)或M(3,0),N(0,﹣),使得∠CMN=90°,且△CMN与△OBC相似.。
贵州省铜仁市中考数学真题试题(含解析)
贵州省铜仁市中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)2019的相反数是()A.B.﹣C.|2019| D.﹣20192.(4分)如图,如果∠1=∠3,∠2=60°,那么∠4的度数为()A.60°B.100°C.120°D.130°3.(4分)今年我市参加中考的学生约为56000人,56000用科学记数法表示为()A.56×103B.5.6×104C.0.56×105D.5.6×10﹣4 4.(4分)某班17名女同学的跳远成绩如下表所示:这些女同学跳远成绩的众数和中位数分别是()A.1.70,1.75 B.1.75,1.70 C.1.70,1.70 D.1.75,1.725 5.(4分)如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°6.(4分)一元二次方程4x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.(4分)如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A.12 B.14 C.24 D.218.(4分)如图,四边形ABCD为菱形,AB=2,∠DAB=60°,点E、F分别在边DC、BC上,且CE=CD,CF=CB,则S△CEF=()A.B.C.D.9.(4分)如图,平行四边形ABCD中,对角线AC、BD相交于点O,且AC=6,BD=8,P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形的两条边分别交于点E、F.设BP=x,EF=y,则能大致表示y与x之间关系的图象为()A.B.C.D.10.(4分)如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.6;其中正确的个数是()A.2 B.3 C.4 D.5二、填空题:(本大题共8个小题,每小题4分,共32分)11.(4分)因式分解:a2﹣9=.12.(4分)小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是S小刘2=0.6,S小李2=1.4,那么两人中射击成绩比较稳定的是;13.(4分)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;14.(4分)分式方程=的解为y=.15.(4分)某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为.16.(4分)如图,在△ABC中,D是AC的中点,且BD⊥AC,ED∥BC,ED交AB于点E,BC =7cm,AC=6cm,则△AED的周长等于cm.17.(4分)如果不等式组的解集是x<a﹣4,则a的取值范围是.18.(4分)按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是.(n为正整数)三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.(10分)(1)计算:|﹣|+(﹣1)2019+2sin30°+(﹣)0(2)先化简,再求值:(﹣)÷,其中x=﹣220.(10分)如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.21.(10分)某中学开设的体育选修课有篮球、足球、排球、羽毛球、乒乓球,学生可以根据自己的爱好选修其中1门.某班班主任对全班同学的选课情况进行了调查统计,制成了两幅不完整的统计图(图(1)和图(2)):(1)请你求出该班的总人数,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人选修排球,2人选修羽毛球,1人选修乒乓球.如果该班班主任要从他们4人中任选2人作为学生会候选人,那么选出的两人中恰好有1人选修排球、1人选修羽毛球的概率是多少?22.(10分)如图,A、B两个小岛相距10km,一架直升飞机由B岛飞往A岛,其飞行高度一直保持在海平面以上的hkm,当直升机飞到P处时,由P处测得B岛和A岛的俯角分别是45°和60°,已知A、B、P和海平面上一点M都在同一个平面上,且M位于P的正下方,求h(结果取整数,≈1.732)四、(本大题满分12分)23.(12分)如图,一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3.(1)求一次函数的表达式;(2)求△AOB的面积;(3)写出不等式kx+b>﹣的解集.五、(本大题满分12分)24.(12分)如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F 作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=2,求图中阴影部分的面积.六、(本大题满分14分)25.(14分)如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x 轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.(3)已知点P是直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q 为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.【解答】解:2019的相反数是﹣2019,故选:D.2.【解答】解:∵∠1=∠3,∴a∥b,∴∠5=∠2=60°,∴∠4=180°﹣60°=120°,故选:C.3.【解答】解:将56000用科学记数法表示为:5.6×104.故选:B.4.【解答】解:由表可知,1.75出现次数最多,所以众数为1.75;由于一共调查了2+3+2+3+1+1+1=17人,所以中位数为排序后的第9人,即:170.故选:B.5.【解答】解:一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a+b不可能是630°.故选:C.6.【解答】解:∵△=(﹣2)2﹣4×4×(﹣1)=20>0,∴一元二次方程4x2﹣2x﹣1=0有两个不相等的实数根.故选:B.7.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=BC,EF=GH=AD,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=7,∴四边形EFGH的周长=7+5=12.故选:A.8.【解答】解:∵四边形ABCD为菱形,AB=2,∠DAB=60°∴AB=BC=CD=2,∠DCB=60°∵CE=CD,CF=CB∴CE=CF=∴△CEF为等边三角形∴S△CEF==故选:D.9.【解答】解:当0≤x≤4时,∵BO为△ABC的中线,EF∥AC,∴BP为△BEF的中线,△BEF∽△BAC,∴,即,解得y=,同理可得,当4<x≤8时,y=(8﹣x).故选:A.10.【解答】解:∵正方形ABCD中,AB=6,E为AB的中点∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°∵△ADE沿DE翻折得到△FDE∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°∴BE=EF=3,∠DFG=∠C=90°∴∠EBF=∠EFB∵∠AED+∠FED=∠EBF+∠EFB∴∠DEF=∠EFB∴BF∥ED故结论①正确;∵AD=DF=DC=6,∠DFG=∠C=90°,DG=DG∴Rt△DFG≌Rt△DCG∴结论②正确;∵FH⊥BC,∠ABC=90°∴AB∥FH,∠FHB=∠A=90°∵∠EBF=∠BFH=∠AED∴△FHB∽△EAD∴结论③正确;∵Rt△DFG≌Rt△DCG∴FG=CG设FG=CG=x,则BG=6﹣x,EG=3+x在Rt△BEG中,由勾股定理得:32+(6﹣x)2=(3+x)2解得:x=2∴BG=4∴tan∠GEB==故结论④正确;∵△FHB∽△EAD,且∴BH=2FH设FH=a,则HG=4﹣2a在Rt△FHG中,由勾股定理得:a2+(4﹣2a)2=22解得:a=2(舍去)或a=∴S△BFG=×4×=2.4故结论⑤错误;故选:C.二、填空题:(本大题共8个小题,每小题4分,共32分)11.【解答】解:a2﹣9=(a+3)(a﹣3).12.【解答】解:由于S小刘2<S小李2,且两人10次射击成绩的平均值相等,∴两人中射击成绩比较稳定的是小刘,故答案为:小刘13.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°14.【解答】解:去分母得:5y=3y﹣6,解得:y=﹣3,经检验y=﹣3是分式方程的解,则分式方程的解为y=﹣3.故答案为:﹣315.【解答】解:设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.16.【解答】解:∵D是AC的中点,且BD⊥AC,∴AB=BC=7cm,AD=AC=3cm,∵ED∥BC,∴AE=BE=AB=3.5cm,ED=BC=3.5cm,∴△AED的周长=AE+ED+AD=10cm.故答案为:10.17.【解答】解:解这个不等式组为x<a﹣4,则3a+2≥a﹣4,解这个不等式得a≥﹣3故答案a≥﹣3.18.【解答】解:第1个数为(﹣1)1•,第2个数为(﹣1)2•,第3个数为(﹣1)3•,第4个数为(﹣1)4•,…,所以这列数中的第n个数是(﹣1)n•.故答案为(﹣1)n•.三、简答题:(本大题共4个小题,第19题每小题10分,第20、21、22题每小题10分,共40分,要有解题的主要过程)19.【解答】解:(1)|﹣|+(﹣1)2019+2sin30°+(﹣)0=+(﹣1)+2×+1=+(﹣1)+1+1=;(2)(﹣)÷====,当x=﹣2时,原式=.20.【解答】证明:∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE(ASA).∴BD=CE.21.【解答】解:(1)该班的总人数为12÷24%=50(人),足球科目人数为50×14%=7(人),补全图形如下:(2)设排球为A,羽毛球为B,乒乓球为C.画树状图为:共有12种等可能的结果数,其中有1人选修排球、1人选修羽毛球的占4种,所以恰好有1人选修排球、1人选修羽毛球的概率==,22.【解答】解:由题意得,∠A=30°,∠B=45°,AB=10km,在Rt△APM和Rt△BPM中,tan A==,tan B==1,∴AM==h,BM=h,∵AM+BM=AB=10,∴h+h=10,解得:h=15﹣5≈6;答:h约为6km.四、(本大题满分12分)23.【解答】解:(1)∵一次函数y=kx+b(k,b为常数,k≠0)的图象与反比例函数y=﹣的图象交于A、B两点,且与x轴交于点C,与y轴交于点D,A点的横坐标与B点的纵坐标都是3,∴3=﹣,解得:x=﹣4,y=﹣=﹣4,故B(﹣4,3),A(3,﹣4),把A,B点代入y=kx+b得:,解得:,故直线解析式为:y=﹣x﹣1;(2)y=﹣x﹣1,当y=0时,x=﹣1,故C点坐标为:(﹣1,0),则△AOB的面积为:×1×3+×1×4=;(3)不等式kx+b>﹣的解集为:x<﹣4或0<x<3.五、(本大题满分12分)24.【解答】(1)证明:连接OF,AO,∵AB=AF=EF,∴==,∴∠ABF=∠AFB=∠EBF=30°,∵OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,∴AB∥OF,∵FG⊥BA,∴OF⊥FG,∴FG是⊙O的切线;(2)解:∵==,∴∠AOF=60°,∵OA=OF,∴△AOF是等边三角形,∴∠AFO=60°,∴∠AFG=30°,∵FG=2,∴AF=4,∴AO=4,∵AF∥BE,∴S△ABF=S△AOF,∴图中阴影部分的面积==.六、(本大题满分14分)25.【解答】解:(1)将A(﹣1,0),B(2,0)分别代入抛物线y=ax2+bx﹣1中,得,解得:∴该抛物线的表达式为:y=x2﹣x﹣1.(2)在y=x2﹣x﹣1中,令x=0,y=﹣1,∴C(0,﹣1)∵点C关于x轴的对称点为C1,∴C1(0,1),设直线C1B解析式为y=kx+b,将B(2,0),C1(0,1)分别代入得,解得,∴直线C1B解析式为y=﹣x+1,设M(t,+1),则E(t,0),F(0,+1)∴S矩形MFOE=OE×OF=t(﹣t+1)=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,S矩形MFOE最大值=,此时,M(1,);即点M为线段C1B中点时,S矩形MFOE 最大.(3)由题意,C(0,﹣1),C1(0,1),以C、C1、P、Q为顶点的四边形为平行四边形,分以下两种情况:①C1C为边,则C1C∥PQ,C1C=PQ,设P(m,m+1),Q(m,﹣m﹣1),∴|(﹣m﹣1)﹣(m+1)|=2,解得:m1=4,m2=﹣2,m3=2,m4=0(舍),P1(4,3),Q1(4,5);P2(﹣2,0),Q2(﹣2,2);P3(2,2),Q3(2,0)②C1C为对角线,∵C1C与PQ互相平分,C1C的中点为(0,0),∴PQ的中点为(0,0),设P(m,m+1),则Q(﹣m,+m﹣1)∴(m+1)+(+m﹣1)=0,解得:m1=0(舍去),m2=﹣2,∴P4(﹣2,0),Q4(2,0);综上所述,点P和点Q的坐标为:P1(4,3),Q1(4,5)或P2(﹣2,0),Q2(﹣2,2)或P3(2,2),Q3(2,0)或P4(﹣2,0),Q4(2,0).。
九年级上册铜仁数学试卷【含答案】
九年级上册铜仁数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 26cmB. 28cmC. 30cmD. 32cm2. 下列函数中,哪个函数在其定义域内是增函数?A. y = -2x + 3B. y = x^2C. y = 1/xD. y = √x3. 一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的面积是多少cm²?A. 24cm²B. 48cm²C. 60cm²D. 120cm²4. 若|a| = 3,|b| = 4,则a + b的取值范围是?A. [-7, 7]B. [-7, -1] ∪ [1, 7]C. [-7, -3] ∪ [3, 7]D. [-7, -3] ∪ [3, 7]5. 下列哪个数是无理数?A. √9B. √16C. √25D. √2二、判断题(每题1分,共5分)1. 两个锐角互余。
(×)2. 任何数乘以0都等于0。
(√)3. 两个负数相乘的结果是正数。
(√)4. 任何数加上它的相反数等于0。
(√)5. 一元二次方程的解一定是实数。
(×)三、填空题(每题1分,共5分)1. 一个等差数列的第1项是3,第10项是31,则公差是______。
2. 若平行四边形的对角线互相垂直,则这个平行四边形是______。
3. 若|a 3| = 5,则a的值为______或______。
4. 下列函数中,函数值随x的增大而增大的是______。
5. 若一个三角形的两边长分别为5cm和12cm,则第三边的长度可能是______cm。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请简述因式分解的意义。
3. 请简述一元二次方程的求解方法。
4. 请简述函数的定义。
5. 请简述平行线的性质。
九年级上册铜仁数学试卷【含答案】
九年级上册铜仁数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是实数?A. √-1B. 2/3C. √9D. ∞2. 若 a > 0, b > 0,则下列哪个不等式成立?A. (a+b)/2 ≥ √(ab)B. a+b ≥ 2√(ab)C. (a+b)/2 ≤ √(ab)D. a+b ≤ 2√(ab)3. 下列哪个图形是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形4. 若a² + b² = 25,则下列哪个值是可能的?A. a = 6, b = -5B. a = 5, b = 12C. a = -5, b = -5D. a = 0, b = 55. 下列哪个函数是奇函数?A. f(x) = x²B. f(x) = x³C. f(x) = |x|D. f(x) = x² + 1二、判断题(每题1分,共5分)1. 任何两个实数之间都有有理数。
()2. 两个负数相乘的结果是正数。
()3. 平行四边形的对角线互相平分。
()4. 若 a > b,则a² > b²。
()5. 函数 y = 2x + 3 的图像是一条直线。
()三、填空题(每题1分,共5分)1. 若 a = 3, b = -2,则 |a + b| = ______。
2. 若一个正方形的边长为 4,则其对角线长度为 ______。
3. 若 f(x) = 2x 1,则 f(3) = ______。
4. 若 a = 2, b = 3,则a² + 2ab + b² = ______。
5. 若一个圆的半径为 5,则其面积 S = ______。
四、简答题(每题2分,共10分)1. 解释有理数的概念。
2. 解释无理数的概念。
3. 解释平行线的概念。
4. 解释函数的概念。
5. 解释圆的面积公式。
五、应用题(每题2分,共10分)1. 若 a = 4, b = -3,求 |a + b| 的值。
铜仁中考数学试题及答案
指数函数、对数函数单元练习(07-09高考试题汇编)姓名:__________一、选择题:1.(07安徽文)设a >1,且)2(log ),1(log )1(log 2a p a n a m a a a =-=+=,则p n m ,,的大小关系为( )(A) n >m >p (B) m >p >n (C) m >n >p (D) p >m >n2.(07湖南文、理)函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( )A .4B .3C .2D .13.(07江苏)设2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是( ) A .(1,0)- B .(0,1) C .(,0)-∞ D .(,0)(1,)-∞+∞4.(07江西文)函数41lg )(--=x xx f 的定义域为( )A .(1,4)B .[1,4)C .(-∞,1)∪(4,+∞)D .(-∞,1]∪(4,+∞) 5.(07辽宁文)函数212log (56)y x x =-+的单调增区间为( )A .52⎛⎫+∞ ⎪⎝⎭,B .(3)+∞,C .52⎛⎫-∞ ⎪⎝⎭,D .(2)-∞,6.(07全国Ⅰ文、理)设a>1,函数f(x)=log,x 在区间[a,2a ]上的最大值与最小值之差为,21则a=( )(A)2 (B )2 (C )22 (D )47(07全国Ⅱ文、理)以下四个数中的最大者是( )(A) (ln2)2(B) ln(ln2) (C) ln 2 (D) ln28.(2007四川文、理)函数f (x )=1+log 2x 与g (x )=2-x+1在同一直角坐标系下的图象大致是( )9.(07天津理)设a b c ,,均为正数,且122log a a =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( )A.a b c << B.c b a << C.c a b <<D.b a c <<10.(07天津文)函数2log (4)(0)y x x =+>的反函数是( )A .24(2)xy x =+> B .24(0)xy x =+> C .24(2)x y x =->D .24(0)xy x =->11.(09湖南理)若2log a <0,1()2b>1,则 ( )A .a >1,b >0B .a >1,b <0 C. 0<a <1, b >0 D. 0<a <1, b <0 12.(09湖南卷文)2log 的值为( )A..12- D . 1213(09辽宁卷)若01x y <<<,则( )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y<14.(辽宁卷文6)已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2log 3)f += (A )124 (B )112 (C )18 (D )3815.(09全国7)设323log ,log log a b c π===A. a b c >>B. a c b >>C. b a c >>D. b c a >>16.(09全国Ⅱ卷文7)设2lg ,(lg ),a e b e c ===(A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >>17.(09山东卷文7)定义在R 上的函数f(x )满足f(x)= ⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x ,则f (3)的值为( )A.-1B. -2C.1D. 2 18.(09天津卷文5)设3.02131)21(,3log ,2log ===c b a ,则A a<b<cB a<c<bC b<c<aD b<a<c19. (09上海春14)已知函数⎩⎨⎧>≤=+.0,log ,0,3)(21x x x x f x 若()30>x f ,则0x 的取值范围是( )(A )80>x . (B )00<x 或80>x . (C )800<<x . (D )00<x 或800<<x . 20.(08北京卷理2)若0.52a =,πlog 3b =,22πlog sin 5c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>21(08北京卷文2)若372log πlog 6log 0.8a b c ===,,,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>22.(08湖南卷文6)下面不等式成立的是( )A .322log 2log 3log 5<<B .3log 5log 2log 223<<C .5log 2log 3log 232<<D .2log 5log 3log 322<< 23(08江西卷文4)若01x y <<<,则( )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y<24.(08辽宁卷文4)已知01a <<,log log a ax =,1log 52a y =,log log a a z = )A .x y z >>B .z y x >>C .y x z >>D .z x y >>25.(08全国Ⅱ卷理4文5)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a26.(08山东卷文12)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<< B .101b a-<<<C .101ba -<<<-D .1101ab --<<<27.(天津卷文10)设1a >,若对于任意的[]2x a a ∈,,都有2y a a ⎡⎤∈⎣⎦,满足方程log log 3a a x y +=,这时a 的取值的集合为( )A .{}12a a <≤B .{}2a a ≥C .{}23a a ≤≤D .{}23,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年铜仁地区高中阶段教育招生统一考试
数学试题
一、选择题(本大题共10小题,每小题4分,共40分)
1.下列式子中,正确的是()
A.x3+x3=x6 B.错误!未找到引用源。
=±2 C.(x·y3)2=xy6D.y5÷y2=y3 2.已知x=0是方程x2+2x+a=0的一个根,则方程的另一个根为()
A.-1 B.1 C.-2 D.2
3.某商品原价为180元,连续两次提价x%后售价为300元,下列所列方程正确的是()A.180(1+x%)=300 B.80(1+x%)2=300
C.180(1-x%)=300 D.180(1-x%)2=300
4.不等式组的解集在数轴上表示如图,则该不等式组的
解集是()
A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
5.如图,顺次连结四边形ABCD各中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()
A.AB∥DC B.AB=DC C.AC⊥BD D.AC=BD
6.如图,MN为⊙O的弦,∠M=30°,则∠MON等于()
A.30°B.60°C.90°D.120°
7.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是()
A.5 B.4 C.3 D.2
8.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减少,则一次函数y=kx+k的图象大致是()9.随机掷一枚质地均匀的硬币两次,落地后至多有一次反面朝上的概率为()
A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
10.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第8个正△A8B8C8的面积是()
A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
二、填空题(本大题共8个小题,每小题4分,共32分)
11.-5的相反数是_______.
12.分解因式x2-9y2=_______.
13.一副三角板,如图叠放在一起,∠1的度数是_______度.
14.已知菱形的两条对角线的长分别为5和6,则它的面积是
________.
15.如图,请填写一个你认为恰当的条件_______,使AB∥CD.
16.根据图中的程序,当输入x=5时,输出的结果y=__ __.
17.定义运算“@”的运算法则为:x@y=xy-1,则(2@3)@4=
__ __.
18.一组数据有n个数,方差为S2.若将每个数据都乘以2,所得到的一组新的数据的方差是_______.三、解答题(本题共4个题,19题每小题5分,第20、21、22每题10分,共40分,要有解题的主要过程)
19.(每小题5分,共10分)
(1)(-2010)0+错误!未找到引用源。
-2sin60°.
(2)已知x2-2x=1,求(x-1)(3x+1)-(x+1)2的值.
20.如图在Rt△ABC中,∠A=90°,AB=10,AC=5,若动点P从点B出发,沿线段BA运动到A点为止,运动为每秒2个单位长度.过点P作PM∥BC,交AC于点M,设动点P运动时间为x秒,AM的长为y.
(1)求出y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,△BPM的面积S有最大值,最大值是多少?
21.(10
星期一星期二星期三星期四星期五星期六星期日
路程(千米) 30 33 27 37 35 53 30
(1)小明家的轿车每月(按30天计算)要行驶多少千米?
(2)若每行驶100千米需汽油8升,汽油每升6.70元,请你算出小明家一年(按12个月计算)的汽油费用大约是多少元(精确到百元).
22.(10分)如图,在⊙O中,AB=错误!未找到引用源。
,AC是⊙O的直径,AC⊥BD于F,
∠ABD=60°.
(1)求图中阴影部分的面积;
(2)若用阴影部分围成一个圆锥侧面,请求出这个图象的底面圆的半径.
23.(12分)已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC分别与AB、AC交于点G、F.
(1)求证:GE=GF;
(2)若BD=1,求DF的长.
23.(2010贵州铜仁,25,14分)如图所示,矩形OABC位于平面直角坐标系中,AB=2,OA=3,点P是OA上的任意一点,PB平分∠APD,PE平分∠OPF,且PD、PF重合.(1)设OP=x,OE=y,求y关于x的函数解析式,并求x为何值时,y的最大值;
(2)当PD⊥OA时,求经过E、P、B三点的抛物线的解析式;
更多加V:nene2893。