2019年中考数学总复习不等式(组)与方程(组)阶段测评(二)试题
中考数学方程与不等式(组)复习专题训练精选试题及答案
一次方程及方程组专题训练一、填空题:(每题 3 分,共 36 分) 1、方程 2x -3=1 的解是____。
2、已知 2x -y =1,用含 x 的代数式表示 y =____。
3、“某数与 6 的和的一半等于 12”,设某数为 x ,则可列方程______。
4、方程 2x +y =5 的所有正整数解为______。
5、若x =1y =2是方程 3ax -2y =2 的解,则 a =____。
6、当 x =____时,代数式 3x +2 与 6-5x 的值相等。
7、试写出一个解为 x =-18、方程组 x +y =32x -3y =-4的解是______。
9、3 名同学参加乒乓球赛,每两名同学之间赛一场,一共需要____场比赛,则 5 名同学一共需要____比赛。
10、如图,是一个正方形算法图,□里缺的数是____,并总结出规律:________________。
11长为 12cm ,那么小矩形的周长为____cm 。
12、一轮船从重庆到上海要 5 昼夜,而从上海到重庆要 7 昼夜,那么一个竹排从重庆顺流漂到上海要___昼夜。
二、选择题:(每题 4 分,共 24 分)1、下列方程中,属于一元一次方程的是( )A 、x =y +1B 、1x=1 C 、x 2=x -1 D 、x =12、已知 3-x +2y =0,则 2x -4y -3 的值为( )A 、-3B 、3C 、1D 、03、用“加减法”将方程组2x -3y =92x +4y =-1中的 x 消去后得到的方程是( )A 、y =8B 、7y =10C 、-7y =8D 、-7y =104、某商品因换季准备打折出售,若按定价的七五折出售将赔 25 元,若按定价的九折出售将赚20 元,则这种商品的定价为( )A 、280 元B 、300 元C 、320 元D 、200 元5、小辉只带了 2 元和 5 元两种面额的人民币,他买了一件物品只需付 27 元,如果不麻烦售货员找零钱,他有几种不同的付款方法( )A 、一种B 、两种C 、三种D 、四种 6、为了防沙治沙,政府决定投入资金,鼓励农民植树种草,经测算,植树 1 亩需资金 200 元,种草 1 亩需资金 100 元,某组农民计划在一年内完成 2400 亩绿化任务,在实施中由于实际情况所限,植树完成 了计划的 90%,但种草超额完成了计划的 20%,恰好完成了计划的绿化任务,那么计划植树、种草各多少亩?若设该组农民计划植树 x 亩,种草 y 亩,则可列方程组为()A、x+y=2400x-90%+y (1-20%)=2400B、x+y=2400(1-90%) x+(1+20%) y=2400C、x+y=2400(1+90%) x+(1+20%) y=2400D、x+y=240090%x+(1+20%) y=2400三、解下列方程(组):(每题 6 分,共 36 分)1、12x-1=13(x-2) 2、x-30.2-x+40.1=5 3、72[53(65x-3)-1]=10x 4、3x+y=25x-y=65、x-3y=52x+5y=-126、x+23+y-12=3x+23+1-y2=1四、解答题:(每题 8 分,共 32 分)1、当 x 为何值时,代数式x+12的值比5-x3的值大 1。
浙江省2019年中考数学总复习阶段检测2 方程与不等式试题
阶段检测2 方程与不等式一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.关于x 的方程2x -m3=1的解为2,则m 的值是( )A .2.5B .1C .-1D .3 2.小明解方程1x -x -2x=1的过程如图,他解答过程中的错误步骤是( )解:方程两边同乘以x ,得1-(x -2)=1…①去括号,得1-x -2=1…② 合并同类项,得-x -1=1…③ 移项,得-x =2…④ 解得x =2…⑤第2题图A .①②⑤B .②④⑤C .③④⑤D .①④⑤ 3.已知一元二次方程x 2+x -1=0,下列判断正确的是( ) A .该方程有两个相等的实数根 B .该方程有两个不相等的实数根 C .该方程无实数根 D .该方程根的情况不确定4.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m ,可得出x 与y 的关系是( )A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-45.不等式组⎩⎪⎨⎪⎧2-x≥1,2x -1>-7的解集在数轴上表示正确的是( )6.关于x 的方程mx -1=2x 的解为正实数,则m 的取值范围是( ) A .m ≥2 B .m ≤2 C .m >2 D .m <27.某加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( )A.210030x =120020(26-x ) B.2100x =120026-xC.210020x =120030(26-x ) D.2100x ×30=120026-x×20 8.若关于x 的分式方程2x -3+x +m 3-x =2有增根,则m 的值是( )A .m =-1B .m =0C .m =3D .m =0或m =3 9.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h10.如图,在长方形ABCD 中,放入6个形状、大小都相同的长方形,所标尺寸如图所示,则图中阴影部分面积是( )第10题图A .44cm 2B .45cm2C .46cm 2D .47cm 2二、填空题(本大题有6小题,每小题5分,共30分)11.若代数式2x -1-1的值为零,则x =____________________.12.若关于x 的一元二次方程kx 2+4x +3=0有实数根,则k 的非负整数值是____________________.13.某商品的售价为528元,商家售出一件这样的商品可获利润是进价的10%~20%,设进价为x 元,则x 的取值范围是____________________.14.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张作纪念,全班共送了2070张相片.若全班有x 名学生,根据题意,列出方程为____________________.15.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A 为起点沿直线匀速爬向B 点的过程中,到达C 点时用了6分钟,那么还需要____________________分钟到达B 点.第15题图16.对于非零的两个实数a ,b ,规定a ⊗b =1b -1a ,若1⊗(x +1)=1,则x 的值为____________________.三、解答题(本大题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.解方程:(1)x 2-2x -1=0; (2)2x =32x -1.18.(1)解方程组⎩⎪⎨⎪⎧x -y =2, ①3x +5y =14. ②(2)解不等式组⎩⎪⎨⎪⎧1-2(x -1)≤5,3x -22<x +12,并把解集在数轴上表示出来.第18题图19.从A 地到B 地有两条行车路线: 路线一:全程30千米,但路况不太好;路线二:全程36千米,但路况比较好,一般情况下走路线二的平均车速是走路线一的平均车速的1.8倍,走路线二所用的时间比走路线一所用的时间少20分钟.那么走路线二的平均车速是每小时多少千米?20.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.应用题:小东在某商场看中的一台电视机和一台空调在“五一”前共需要5500元.由于该商场开展“五一”促销活动,同样的电视机打八折销售,,于是小东在促销期间购买了同样的电视机一台,空调两台,共花费7200元.求“五一”前同样的电视机和空调每台多少元?解:设“五一”前同样的电视机每台x 元,空调每台y 元,根据题意,得⎩⎨⎧,0.8x +2(y -400)=7200.21.某大型企业为了保护环境,准备购买A 、B 两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元.(1)求出A 型、B 型污水处理设备的单价;(2)经核实,一台A 型设备一个月可处理污水220吨,一台B 型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.22.今年小芳家添置了新电器.已知今年5月份的用电量是240千瓦时.(1)若今年6月份用电量增长率是7月份用电量增长率的1.5倍,设今年7月份用电量增长率为x ,补全下列表格内容;(用含x 的代数式表示)(2)在(1)的条件下,预计今年7月份的用电量将达到480千瓦时,求今年7月份用电量增长率x的值;(精确到1%)(3)若今年6月份用电量增长率是7月份用电量增长率的n倍,6月份用电量为360千瓦时,预计今年7月份的用电量将不低于500千瓦时.则n的最大值为____________________.(直接写出答案)23.某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男、女两种款式的书包.已知男款书包的单价50元/个,女款书包的单价70元/个.(1)原计划募捐3400元,购买两种款式的书包共60个,那么这两种款式的书包各买多少个?(2)在捐款活动中,由于学生捐款的积极性高涨,实际共捐款4800元,如果至少购买两种款式的书包共80个,那么女款书包最多能买多少个?24.小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD 区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB∶BC=2∶3,区域Ⅱ四周宽度相等.①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙两瓷砖单价之比为5∶3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.第24题图参考答案阶段检测2 方程与不等式一、1—5.BABAD6—10.CAABA二、11.3 12.1 13.440≤x≤480 14.x(x -1)=2070(或x 2-x -2070=0) 15.4 16.-12三、17.(1)x 1=1+2,x 2=1- 2 (2)x =2.18.(1)⎩⎪⎨⎪⎧x =3,y =1. (2)-1≤x<3,图略19.设走路线一的平均车速是每小时x 千米,则走路线二的平均车速是每小时1.8x 千米.得30x =361.8x +2060,得x =30,经检验x =30是原方程的解,所以1.8x =54.答:走路线二的平均车速是每小时54千米.20.被污染的条件为:同样的空调每台优惠400元,设“五一”前同样的电视机每台x元,空调每台y 元,根据题意得:⎩⎪⎨⎪⎧x +y =5500,0.8x +2(y -400)=7200,解得⎩⎪⎨⎪⎧x =2500,y =3000,答:“五一”前同样的电视机每台2500元,空调每台3000元.21.(1)设A 型污水处理设备的单价为x 万元,B 型污水处理设备的单价为y 万元,根据题意可得:⎩⎪⎨⎪⎧2x +3y =54,4x +2y =68,解得:⎩⎪⎨⎪⎧x =12,y =10.答:A 型污水处理设备的单价为12万元,B 型污水处理设备的单价为10万元. (2)设购进a 台A 型污水处理设备,根据题意可得:220a +190(8-a)≥1565,解得:a≥1.5,∵A 型污水处理设备单价比B 型污水处理设备单价高,∴A 型污水处理设备买越少,越省钱,∴购进2台A 型污水处理设备,购进6台B 型污水处理设备最省钱.22.(1)1.5x x 240(1+1.5x) 240(1+x)(1+1.5x) (2)480=240(1+x)(1+1.5x),得x =13或x =-2(不合题意舍去),∴x =13≈33% (3)9723.(1)设原计划买男款书包x 个,则买女款书包(60-x)个.根据题意:50x +70(60-x)=3400,解得:x =40,∴60-x =20.原计划买男款书包40个,买女款书包20个. (2)设最多能买女款书包x 个,则可买男款书包(80-x)个,由题意,得70x +50(80-x)≤4800,解得:x≤40,∴最多能买女款书包40个.24.(1)由题意300S +200(48-S)≤12000,解得S≤24.∴S 的最大值为24. (2)①设区域Ⅱ四周宽度为a ,则由题意(6-2a)∶(8-2a)=2∶3,解得a =1,∴AB =6-2a =4m ,CB =8-2a =6m . ②设乙、丙瓷砖单价分别为5x 元/m 2和3x 元/m 2,则甲的单价为(300-3x)元/m 2,∵PQ∥AD,∴甲的面积=矩形ABCD 的面积的一半=12,设乙的面积为s ,则丙的面积为(12-s),由题意12(300-3x)+5x·s+3x·(12-s)=4800,解得s =600x ,∵0<s <12,∴0<600x<12,又∵300-3x >0,综上所述,50<x <100,150<3x <300,∴丙瓷砖单价3x的范围为150<3x<300元/m2.。
中考数学 考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
3.(2022·龙东)2022 年北京冬奥会女子冰壶比赛有若干支队伍参加了单 循环比赛,单循环比赛共进行了 45 场,则共有多少支队伍参加比赛( B ) A.8 支 B.10 支 C.7 支 D.9 支
4.(2022·河南)一元二次方程 x2+x-1=0 的根的情况是 A.有两个不等的实数根 B.没有实数根 C.有两个相等的实数根 D.只有一个实数根
D.8(1+x2)=11.52
8.(2021·龙东)有一个人患了流行性感冒,经过两轮传染后共有 144 人 患了流行性感冒,则每轮传染中平均一个人传染的人数是 ( B ) A.14 人 B.11 人
C.10 人 D.9 人
9.方程 x2-6x+5=0 的解为 11或或55. 10. (2022·连云港)若关于 x 的一元二次方程 mx2+nx-1=0(m≠0)的一 个解是 x=1,则 m+n 的值是 11 . 11. (2022·宿迁) 若关于 x 的一元二次方程 x2-2x+k=0 有实数根,则 实数 k 的取值范围是 kk≤≤11.
第二节 一元二次方程及 其应用
1.(2022·临沂)方程 x2-2x-24=0 的根是 A.x1=6,x2=4 B.x1=6,x2=-4 C.x1=-6,x2=4 D.x1=-6,x2=-4
(B )
2.(2022·武威)用配方法解方程 x2-2x=2 时,配方后正确的是( C ) A.(x+1)2=3 B.(x+1)2=6 C.(x-1)2=3 D.(x-1)2=6
18.(2022·嘉兴)设 a5是一个两位数,其中 a 是十位上的数字(1≤a≤
9).例如,当 a=4 时, a5 表示的两位数是 45.
(1)尝试: ①当 a=1 时,152=225=1×2×100+25; ②当 a=2 时,252=625=2×3×100+25; ③当 a=3 时,352=1 225=33××4×41×0010+025;
中考数学总复习 第二章 方程与不等式综合测试题(含答案)
方程与不等式一、选择题(每小题3分,共30分)1.下列方程中,解为x =2的方程是(B )A. 3x -2=3B. -x +6=2xC. 4-2(x -1)=1D. 3x +1=02.下列各项中,是二元一次方程的是(B )A. y +12x B. x +y 3-2y =0 C. x =2y +1 D. x 2+y =03.已知方程组⎩⎪⎨⎪⎧2x +y =5,x +3y =5,则x +y 的值为(D ) A. -1B. 0C. 2D. 3 4.分式方程 x x -2-1x=0的根是(D ) A. x =1 B. x =-1C. x =2D. x =-2 5.分式方程x 2x -1+x1-x =0的解为(C ) A. x =1 B. x =-1C. x =0D. x =0或x =16.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15 min.他骑自行车的平均速度是250 m/min ,步行的平均速度是80 m/min.他家离学校的距离是2900 m .如果他骑车和步行的时间分别为x (min),y (min),列出的方程是(D )A. ⎩⎪⎨⎪⎧x +y =14,250x +80y =2900B. ⎩⎪⎨⎪⎧x +y =15,80x +250y =2900C. ⎩⎪⎨⎪⎧x +y =14,80x +250y =2900D. ⎩⎪⎨⎪⎧x +y =15,250x +80y =2900 7.若不等式组 ⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A ) A. 1B. 2C. 3D. 4 8.以方程组⎩⎪⎨⎪⎧y =-x +2,y =x -1的解为坐标的点(x ,y )在平面直角坐标系中的位置是(A ) A. 第一象限 B. 第二象限C. 第三角限D. 第四象限解:解方程组,得⎩⎪⎨⎪⎧x =1.5,y =0.5.∴点(1.5,0.5)在第一象限. 9.关于x 的分式方程a x +3=1,下列说法正确的是(B )A. 方程的解是x =a -3B. 当a >3时,方程的解是正数C. 当a <3时,方程的解为负数D. 以上答案都正确 10.小华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是1x ,矩形的周长是2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x(0>0),解得x =1,这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小,因此x +1x(x >0)的最小值是2.模仿小华的推导,你求得式子x 2+9x(x >0)的最小值是(C )(第10题图)A. 2B. 1C. 6D. 10解:∵x >0,∴x 2+9x =x +9x ≥2x ·9x =6, 则原式的最小值为6.二、填空题(每小题4分,共24分)11.已知关于x 的一元二次方程x 2-23x +k =0有两个相等的实数根,则k 的值为__3__.12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有__22__只,兔有__11__只.13.如图,将一条长为60 cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1∶2∶3,则折痕对应的刻度有__4__种可能.(第13题图)14.已知a =6,且(5tan 45°-b )2+2b -5-c =0,以a ,b ,c 为边组成的三角形面积等于__12__.15.若分式3x +5x -1无意义,当53m -2x -12m -x =0时,m =__37__. 16.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.三、解答题(本题有8小题,共66分)17.(本题8分)解下列方程(组).(1)解方程:x x +1-4x 2-1=1. 解:去分母,得x (x -1)-4=x 2-1.去括号,得x 2-x -4=x 2-1.解得x =-3.经检验,x =-3是分式方程的解.(2)解方程组:⎩⎪⎨⎪⎧3x -5y =3,x 2-y 3=1.解:方程组整理,得⎩⎪⎨⎪⎧3x -5y =3,①3x -2y =6.② ②-①,得3y =3,∴y =1.将y =1代入①,得x =83. ∴原方程组的解为⎩⎪⎨⎪⎧x =83,y =1.18.(本题6分)解方程:16x -2=12-21-3x . 设13x -1=y ,则原方程化为12y =12+2y ,解方程求得y 的值,再代入13x -1=y 求值即可.结果需检验.请按此思路完成解答. 解:设13x -1=y ,则原方程化为12y =12+2y , 解得y =-13.当y =-13时,有13x -1=-13,解得x =-23. 经检验,x =-23是原方程的根. ∴原方程的根是x =-23. 19.(本题8分)设m 是满足1≤m ≤50的正整数,关于x 的二次方程(x -2)2+(a -m )2=2mx+a 2-2am 的两根都是正整数,求m 的值.解:将方程整理,得x 2-(2m +4)x +m 2+4=0,∴x =2(m +2)±4m 2=2+m ±2m . ∵x ,m 均是正整数且1≤m ≤50,2+m ±2m =(m ±1)2+1>0,∴m 为完全平方数即可,∴m =1,4,9,16,25,36,49.20.(本题8分)已知⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5都是关于x ,y 的方程y =kx +b 的解. (1)求k ,b 的值.(2)若不等式3+2x >m +3x 的最大整数解是k ,求m 的取值范围.解:(1)将⎩⎪⎨⎪⎧x =2,y =3和⎩⎪⎨⎪⎧x =-2,y =-5代入y =kx +b ,得∴⎩⎪⎨⎪⎧2k +b =3,-2k +b =-5 解得⎩⎪⎨⎪⎧k =2,b =-1.∴k 的值是2,b 的值是-1.(2)∵3+2x >m +3x ,∴x <3-m .∵不等式3+2x >m +3x 的最大整数解是k =2,∴2<3-m ≤3,∴0≤m <1,即m 的取值范围是0≤m <1.21.(本题8分)解方程:|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.(第21题图)参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为x =1或x =-7.(2)解不等式|x -3|+|x +4|≥9.(3)若|x -3|-|x +4|≤a 对任意的x 都成立,求a 的取值范围.解:(1)x =1或x =-7.(2)∵3和-4的距离为7,因此,满足不等式的解对应的点在3与-4的两侧.当x 在3的右边时,如解图,易知x ≥4.当x 在-4的左边时,如解图,易知x ≤-5.∴原不等式的解为x ≥4或x ≤-5.(第21题图解)(3)原问题转化为: a 大于或等于|x -3|-|x +4|的最大值.当x ≥3时,|x -3|-|x +4|=-7≤0;当-4<x <3时,|x -3|-|x +4|=-2x -1随x 的增大而减小;当x ≤-4时,|x -3|-|x +4|=7,即|x -3|-|x +4|的最大值为7.故a ≥7.22.(本题8分)如图,长青化工厂与A ,B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(t·km),铁路运价为1.2元/(t·km),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(第22题图)(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售额比原料费与运输费的和多多少元?解:(1)设工厂从A 地购买了x (t)原料,制成运往B 地的产品y (t).由题意,得⎩⎪⎨⎪⎧1.5(10x +20y )=15000,1.2(120x +110y )=97200.解得⎩⎪⎨⎪⎧x =400,y =300. 答:工厂从A 地购买了400 t 原料,制成运往B 地的产品为300 t.(2)300×8000-400×1000-15000-97200=1887800(元).答:这批产品的销售额比原料费与运输费的和多1887800元.23.(本题10分)兴发服装店老板用4500元购进一批某款T 恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T 恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.(1)第一批该款式T 恤衫每件进价是多少元?(2)老板以每件120元的价格销售该款式T 恤衫,当第二批T 恤衫售出 45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T 恤衫每件售价至少要多少元(利润=售价-进价)?解:(1)设第一批T 恤衫每件进价是x 元,由题意,得4500x =4950x +9, 解得x =90.经检验,x =90是分式方程的解且符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50(件). 由题意,得120×50×45+y ×50×15-4950≥650, 解得y ≥80.答:剩余的T 恤衫每件售价至少要80元.24.(本题10分)2015年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车各可装多少件帐蓬.(2)如果这批帐篷有1490件,用甲、乙两种货车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其他装满,求甲、乙两种货车各有多少辆.解:(1)设甲种货车每辆车可装x 件帐蓬,则乙种货车每辆车可装(x -20)件帐蓬.由题意,得1000x =800x -20,解得x =100. 经检验,x =100是原方程组的解且符合题意.∴x -20=100-20=80.答:甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬.(2)设甲种货车有z 辆,乙种货车有(16-z )辆.由题意,得100z +80(16-z -1)+50=1490,解得z =12,∴16-z =16-12=4.答:甲种货车有12辆,乙种货车有4辆.。
课标通用安徽省2019年中考数学总复习单元检测2方程组与不等式组试题.doc
课标通用安徽省2019年中考数学总复习单元检测2方程组与不等式组试题单元检测二方程组与不等式组时间120分钟满分150分一、选择题本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.2018·山东淄博若单项式am-1b2与12a2bn的和仍是单项式,则nm的值是 A.3B.6C.8D.9 答案 C 2.2018·江苏宿迁若a-b3D.a2-3B.x≤2x-3 答案D 5.2018·合肥四十五中一模方程x1x42x4的解为 A.x1B.x-4 C.x11,x2-4D.x1-1,x24 答案C 6.2018·辽宁大连如图,有一张矩形纸片,长10 cm,宽6 cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面图中阴影部分面积是32 cm2,求剪去的小正方形的边长.设剪去的小正方形边长是x cm,根据题意可列方程为 A.106-46x32 B.10-2x6-2x32 C.10-x6-x32 D.106-4x232 答案B 解析设剪去的小正方形边长是xcm,则纸盒底面的长为10-2xcm,宽为6-2xcm,根据长方形的面积公式结合纸盒的底面图中阴影部分面积是32cm2,即可得出关于x的一元二次方程10-2x6-2x32.故选B. 7.2018·广西桂林已知关于x的一元二次方程2x2-kx30有两个相等的实数根,则k 的值为 A.±26B.±6C.2或3D.2或3 答案A 解析由题意得,2x2-kx30有两个相等的实数根,则该一元二次方程的根的判别式b2-4ac-k2-423k2-240,解得k±24±26,故选A. 8.2018·云南昆明甲、乙两船从相距300 km的A、B两地同时出发相向而行.甲船从A地顺流航行180 km时与B地逆流航行的乙船相遇,水流的速度为6 km/h,若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为A.180x6120x-6B.180x-6120x6 C.180x6120xD.180x120x-6 答案 A 解析由题意可列如下的表格速度时间路程顺流航行x6 180x6 180 逆流航行x-6 120x-6 300-180120 则180x6120x-6,故选A. 9.2018·合肥庐阳区一模某企业因春节放假,二月份产值比一月份下降20,春节后生产呈现良好上升势头,四月份比一月份增长15,设三、四月份的月平均增长率为x,则下列方程正确的是A.1-201x2115B.1151x21-20C.21-201x115D.21151x1-20 答案 A 解析设一月份产值为a,根据题意可知二月份的产值为1-20a,然后根据平均增长率为x可知四月份的产值是1-201x2a,再根据四月份比一月份增长15,可知1-201x2a115a.故选 A. 10.2017·安徽芜湖模拟若t为实数,关于x的方程x2-4xt-20的两个非负实数根为a,b,则代数式a2-1b2-1的最小值是 A.-15B.-16C.15D.16 答案A 解析∵a,b是关于x的方程x2-4xt-20的两个根, ∴ab4,abt-2; ∵关于x的方程x2-4xt-20有两个实数根, ∴Δ≥0,即-42-41t-2≥0,解得t≤6. ∵关于x的方程x2-4xt-20的两个实数根a,b非负, ∴ab4≥0,abt-2≥0,解得t≥2. 故t的取值范围是2≤t≤6. 而a2-1b2-1ab2-a2b21 ab2-ab22ab1 t-222t-2-15 t2-2t-15t-12-16, 所以当t2时,t2-2t-15有最小值-15.二、填空题本大题共4小题,每小题5分,满分20分11.2018·淮北模拟不等式3-x13的解集为. 答案x13-3,合并同类项,得-x-83,系数化为1,得xb0,且2a1b3b-a0,则ba . 答案-132 解析由题意得2bb-aab-a3ab0,整理,得2ba22ba-10, 解得ba-1±32. ∵ab0,∴ba-132. 14.2018·安徽模拟已知整数k0,方程有两个不相等的实数根, x-b±b2-4ac2a2±2221±2, 即x112,x21-2. 16.2018·安庆一模解不等式组x-1≤2-2x,2x3x-12并把解集在数轴上表示出来. 解x-1≤2-2x①,2x3x-12②, 解不等式①,得x≤1. 解不等式②,得x-3. ∴原不等式组的解集为-30. ∴原方程有两个不相等的实数根. 2答案不唯一,若方程有两个相等的实数根,则Δb2-4a0.如当a1,b2时,原方程为x22x10,解得x1x2-1.〚导学号16734152〛五、本大题共2小题,每小题10分,满分20分19.2018·安徽名校联考我国明代数学家程大位的名著直接算法统宗里有一道著名算题“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁” 译文为有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人请解答上述问题. 解设大、小和尚各有x、y人, 根据题意,可列方程组为xy100,3xy3100,解得x25,y75. 答大和尚25人,小和尚75人. 20.2017·安徽望江模拟先阅读后解题. 已知m22mn2-6n100,求m和n的值. 解把等式的左边分解因式m22m1n2-6n90. 即m12n-320. 因为m12≥0,n-32≥0. 所以m10,n-30即m-1,n-3. 利用以上解法,解下列问题1已知x2-4xy22y50,求x和y的值. 2已知a,b,c是△ABC的三边长,满足a2b212a8b-52且△ABC为等腰三角形,求 c. 解1x2-4xy22y50, x2-4x4y22y10, x-22y120, ∵x-22≥0,y12≥0, ∴x-20,y10, ∴x2,y-1. 2a2b212a8b-52, a2-12a36b2-8b160, a-62b-420, ∵a-62≥0,b-42≥0, ∴a-60,b-40, ∴a6,b4, ∵△ABC为等腰三角形, ∴c4或6.六、本题满分14分21.2018·四川广安某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元,若卖出的数量相同,销售量总额将比去年减少20. 1求今年A 型车每辆车的售价. 2该车行计划新进一批A型车和B型车共45辆,已知A,B型车的进货价格分别是1 100元、1 400元,今年B型车的销售价格是2 000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少解1设今年的售价为x元,则去年的售价为x400元,根据题意,得60000x400600001-20x,解得x1600. 经检验,x1600是原方程的解. 所以今年A型车每辆的售价为1600元. 2设购进A型车的数量为m辆,则购进B型车45-m辆,最大利润为y,根据题意可知45-m≤2m,解得m≥15.则15≤m≤45. y1600-1100m2000-140045-m-100m27000, ∵-1000,∴y随m的增大而减小, 即当m15时,y最大25500元. 所以,应购进A型车15辆,B型车30辆,最大利润为25500元.七、本题满分14分22.2018·江苏连云港某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设规格大小相同的红色和蓝色地砖,经过调查获取信息如下购买数量低于5000块购买数量不低于5000块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售如果购买红色地砖 4 000块,蓝色地砖6 000块,需付款86 000元;如果购买红色地砖10 000块,蓝色地砖3 500块,需付款99 000元. 1红色地砖与蓝色地砖的单价各多少元2经过测算,需要购置地砖12 000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6 000块,如何购买付款最少请说明理由. 解1设红色地砖每块a元,蓝色地砖每块b元,由题意得, 4000a6000b0.986000,10000a0.83500b99000. 解得a8,b10. 答红色地砖每块8元,蓝色地砖每块10元. 2设购置蓝色地砖x 块,则购置红色地砖12000-x块,所需的总费用为y元. 由题意知x≥1212000-x,得x≥4000.又x≤6000, 所以蓝色地砖块数x 的取值范围为4000≤x≤6000. 当4000≤x5000时, y10x80.812000-x, 即y768003.6x. 所以x4000时,y有最小值91200. 当5000≤x≤6000时,y0.910x80.812000-x2.6x76800. 所以x5000时,y有最小值89800. ∵8980091200, 所以购买蓝色地砖5000块,红色地砖7000块,费用最少,最少费用为89800元.。
2019年中考数学不等式与不等式组专题复习试卷含答案
2018-2019学年初三数学专题复习不等式与不等式组一、单选题1.如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()A. 5B. 7C. 9D. 112.不等式组的解集在数轴上表示正确的是()A. B. C. D.3.不等式9>-3x的解集是()A. x>3B. x<3C. x>-3D. x<-34.在数学表达式① -3<0 ② 4x+3y>0 ③ x=3 ④ x2+xy+y2⑤ ⑥x+2>y+3中,是不等式的有()个.A. 1B. 2C. 3D. 45.不等式组的所有整数和是()A. -1B. 0C. 1D. 26.关于x的不等式组的解集为x>1,则a的取值范围是()A. a>1B. a<1C. a≥1D. a≤17.若t>0,那么a+t与的大小关系是()A. +t>B. a+t> aC. a+t≥ aD. 无法确定8.如图,是关于x的不等式2x-a≤-1的解集,则a的取值是()A. 0B. -3C. -2D. -19.不等式2x+1<8的最大整数解是()A. 4B. 3C. 2D. 110.下面说法正确的是()A. x=3是不等式2x>3的一个解B. x=3是不等式2x>3的解集C. x=3是不等式2x>3的唯一解D. x=3不是不等式2x>3的解11.不等式组的解集在数轴上表示正确的是()A.B.C.D.12.若“a是非负数”,则它的数学表达式正确的是()A. a>0B. |a|>0C. a<0D. a≥013.已知a>b,则下列不等式中,正确的是()A. -3a>-3bB. -<-C. 3-a>3-bD. a-3>b-314.某品牌电脑的成本为2400元,标价为4200元,如果商店要以利润率不低于5%的售价打折销售,最低可打()折出售.A. 6折B. 7折C. 7.5折D. 8折15.如果a>b,那么下列结论一定正确的是()A. a―3<b—3B. 3―a<3—bC. ac2>bc2D. a2>b216.一次测验共出5道题,做对一题得一分,已知26人的平均分不少于分,最低的得3分,至少有3人得4分,则得5分的有________ 人二、填空题17.请你写出一个满足不等式2x-1<6的正整数x的值:________.18.若商品原价为5元,如果降价x%后,仍不低于4元,那么x的取值为________19.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是 ________20.若a,b均为整数,a+b=﹣2,且a≥2b,则有最大值________21.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到江阴儿童福利院看望孤儿.如果分给每位儿童5盒牛奶,那么剩下18盒牛奶;如果分给每位儿童6盒牛奶,那么最后一位儿童分不到6盒,但至少能有3盒.则这个儿童福利院的儿童最少有________个,最多有________ 个.三、解答题22.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得________;(Ⅱ)解不等式②,得________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为________.23.解不等式组,并将它的解集在数轴上表示出来.四、计算题24.解不等式组.25.解不等式组;并写出解集中的整数解.26.解不等式:﹣1>6x.27.解不等式:2(x+1)-3(x+2)<0;-28. 解不等式.五、综合题29. 我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=________,<3.5>=________.(2)若[x]=2,则x的取值范围是________;若<y>=﹣1,则y的取值范围是________.(3)已知x,y满足方程组,求x,y的取值范围.30.解不等式组.请结合题意填空,完成本题的解答.(1)解不等式①,得:________;(2)解不等式②,得:________;(3)把不等式①和②的解集在数轴上表示出来;(4)不等式组的解集为:________.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】C4.【答案】D5.【答案】B6.【答案】D7.【答案】A8.【答案】D9.【答案】B10.【答案】A11.【答案】C12.【答案】D13.【答案】D14.【答案】A15.【答案】B16.【答案】22二、填空题17.【答案】1,2,318.【答案】x≤2019.【答案】a<320.【答案】121.【答案】19;21三、解答题22.【答案】x<2;x≥﹣1;﹣1≤x<223.【答案】解:不等式的解是,不等式的解是,∴不等式组的解是,四、计算题24.【答案】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<,则不等式组的解集为:25.【答案】解:解不等式组;解不等式①得:x≤2,解不等式②得:x>,∴不等式组的解集为:<x≤2;∴整数解为:1,2.26.【答案】解:去分母,得:3x+20﹣2>12x,移项、合并,得:﹣9x>﹣18,系数化为1,得:x<227.【答案】解:2(x+1)-3(x+2)<028.【答案】解:去分母得,x+1≥6(x﹣1)﹣8,去括号得,x+1≥6x﹣6﹣8,移项得,x﹣6x≥﹣6﹣8﹣1,合并同类项得,﹣5x≥﹣15.系数化为1,得x≤3.五、综合题29.【答案】(1)﹣5;4(2)2≤x<3;﹣2≤y<﹣1(3)解:解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.30.【答案】(1)x<3(2)x≥﹣4(3)(4)﹣4≤x<3。
2019年江苏省中考数学真题汇编专题02方程与不等式
专题02方程与不等式参考答案与试题解析一.选择题(共7小题)1.(2019•宿迁)不等式x﹣1≤2的非负整数解有()A.1个B.2个C.3个D.4个【答案】解:x﹣1≤2,解得:x≤3,则不等式x﹣1≤2的非负整数解有:0,1,2,3共4个.故选:D.【点睛】此题主要考查了一元一次不等式的整数解,正确把握非负整数的定义是解题关键.2.(2019•镇江)下列各数轴上表示的x的取值范围可以是不等式组的解集的是()A.B.C.D.【答案】解:由x+2>a得x>a﹣2,A.由数轴知x>﹣3,则a=﹣1,∴﹣3x﹣6<0,解得x>﹣2,与数轴不符;B.由数轴知x>0,则a=2,∴3x﹣6<0,解得x<2,与数轴相符合;C.由数轴知x>2,则a=4,∴7x﹣6<0,解得x,与数轴不符;D.由数轴知x>﹣2,则a=0,∴﹣x﹣6<0,解得x>﹣6,与数轴不符;故选:B.【点睛】本题主要考查解一元一次不等式组,解题的关键是掌握不等式组的解集在数轴上的表示及解一元一次不等式的能力.3.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10B.9C.8D.7【答案】解:设原计划n天完成,开工x天后3人外出培训,则15an=2160,得到an=144.所以15ax+12(a+2)(n﹣x)<2160.整理,得ax+4an+8n﹣8x<720.∵an=144.∴将其代入化简,得ax+8n﹣8x<144,即ax+8n﹣8x<an,整理,得8(n﹣x)<a(n﹣x).∵n>x,∴n﹣x>0,∴a>8.∴a至少为9.故选:B.【点睛】考查了一元一次不等式的应用,解题的技巧性在于设而不求,难度较大.4.(2019•苏州)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为()A.B.C.D.【答案】解:设软面笔记本每本售价为x元,根据题意可列出的方程为:.故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.5.(2019•淮安)若关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是()A.k<﹣1B.k>﹣1C.k<1D.k>1【答案】解:∵关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,∴b2﹣4ac=4﹣4×1×(﹣k)=4+4k>0,∴k>﹣1.故选:B.【点睛】此题主要考查了根的判别式,正确记忆公式是解题关键.6.(2019•泰州)方程2x2+6x﹣1=0的两根为x1、x2,则x1+x2等于()A.﹣6B.6C.﹣3D.3【答案】解:由于△>0,∴x1+x2=﹣3,故选:C.【点睛】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.7.(2019•盐城)关于x的一元二次方程x2+kx﹣2=0(k为实数)根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【答案】解:由根的判别式得,△=b2﹣4ac=k2+8>0故有两个不相等的实数根故选:A.【点睛】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.二.填空题(共14小题)1.(2019•常州)若是关于x、y的二元一次方程ax+y=3的解,则a=1.【答案】解:把代入二元一次方程ax+y=3中,a+2=3,解得a=1.故答案是:1.【点睛】本题运用了二元一次方程的解的知识点,运算准确是解决此题的关键.2.(2019•苏州)若a+2b=8,3a+4b=18,则a+b的值为5.【答案】解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.【点睛】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.3.(2019•宿迁)下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为10.【答案】解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.【点睛】本题考查了二元一次方程组的应用以及二元一次方程组的解法;设出未知数,根据题意列出方程组是解题的关键.4.(2019•淮安)不等式组的解集是x>2.【答案】解:根据“同大取大;同小取小;大小小大中间找;大大小小找不到.”得原不等式组的解集为:x>2.故答案为:x>2.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.5.(2019•泰州)不等式组的解集为x<﹣3..【答案】解:等式组的解集为x<﹣3,故答案为:x<﹣3.【点睛】本题考查了不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.6.(2019•淮安)方程1的解是x=﹣1.【答案】解:方程两边都乘以(x+2),得1=x+2,解得,x=﹣1,经检验,x=﹣1是原方程的解,故答案为:x=﹣1.【点睛】本题主要考查了解分式方程,是基础题,关键是熟记分式方程的解法和一般步骤.7.(2019•宿迁)关于x的分式方程1的解为正数,则a的取值范围是a<5且a≠3.【答案】解:去分母得:1﹣a+2=x﹣2,解得:x=5﹣a,5﹣a>0,解得:a<5,当x=5﹣a=2时,a=3不合题意,故a<5且a≠3.故答案为:a<5且a≠3.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.8.(2019•镇江)若关于x的方程x2﹣2x+m=0有两个相等的实数根,则实数m的值等于1.【答案】解:根据题意得△=(﹣2)2﹣4m=0,解得m=1.故答案为1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.(2019•泰州)若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是m<1.【答案】解:根据题意得△=22﹣4m>0,解得m<1.故答案为m<1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.(2019•南京)已知2是关于x的方程x2﹣4x+m=0的一个根,则m=1.【答案】解:把x=2代入方程得(2)2﹣4(2)+m=0,解得m=1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.(2019•连云港)已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则c的值等于2.【答案】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:c﹣2,则c=2,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.12.(2019•扬州)一元二次方程x(x﹣2)=x﹣2的根是1或2.【答案】解:x(x﹣2)=x﹣2,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1,故答案为:1或2.【点睛】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.13.(2019•盐城)设x1、x2是方程x2﹣3x+2=0的两个根,则x1+x2﹣x1•x2=1.【答案】解:x1、x2是方程x2﹣3x+2=0的两个根,∴x1+x2=3,x1•x2=2,∴x1+x2﹣x1•x2=3﹣2=1;故答案为1;【点睛】本题考查一元二次方程根与系数的关系;牢记韦达定理是解题的关键.14.(2019•徐州)方程x2﹣4=0的解是±2.【答案】解:x2﹣4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.三.解答题(共16小题)1.(2019•盐城)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A 型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?【答案】解:(1)设每只A型球、B型球的质量分别是x千克、y千克,根据题意可得:,解得:,答:每只A型球的质量是3千克、B型球的质量是4千克;(2)∵现有A型球、B型球的质量共17千克,∴设A型球1个,设B型球a个,则3+4a=17,解得:a(不合题意舍去),设A型球2个,设B型球b个,则6+4b=17,解得:b(不合题意舍去),设A型球3个,设B型球c个,则9+4c=17,解得:c=2,设A型球4个,设B型球d个,则12+4d=17,解得:d(不合题意舍去),设A型球5个,设B型球e个,则15+4e=17,解得:a(不合题意舍去),综上所述:A型球、B型球各有3只、2只.【点睛】此题主要考查了二元一次方程组的应用,正确分类讨论是解题关键.2.(2019•淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?【答案】解:设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;【点睛】本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.3.(2019•盐城)【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如:第一次菜价3元/千克质量金额甲1千克3元乙1千克3元第二次:菜价2元/千克质量金额甲1千克2元乙 1.5千克3元(1)完成上表;(2)计算甲两次买菜的均价和乙两次买菜的均价.(均价=总金额÷总质量)【数学思考】设甲每次买质量为m千克的菜,乙每次买金额为n元的菜,两次的单价分别是a元/千克、b元/千克,用含有m、n、a、b的式子,分别表示出甲、乙两次买菜的均价、,比较、的大小,并说明理由.【知识迁移】某船在相距为s的甲、乙两码头间往返航行一次.在没有水流时,船的速度为v,所需时间为t1;如果水流速度为p时(p<v),船顺水航行速度为(v+p),逆水航行速度为(v﹣p),所需时间为t2.请借鉴上面的研究经验,比较t1、t2的大小,并说明理由.【答案】解:(1)2×1=2(元),3÷2=1.5(元/千克)故答案为2;1.5.(2)甲两次买菜的均价为:(3+2)÷2=2.5(元/千克)乙两次买菜的均价为:(3+3)÷(1+1.5)=2.4(元/千克)∴甲两次买菜的均价为2.5(元/千克),乙两次买菜的均价为2.4(元/千克).【数学思考】,∴═0∴【知识迁移】t1,t2∴t1﹣t2═∵0<p<v∴t1﹣t2<0∴t1<t2.【点睛】本题主要考查了均价=总金额÷总质量的基本计算方法,以及分式加减运算和完全平方公式在计算中的应用,本题计算量较大.4.(2019•苏州)解不等式组:【答案】解:解不等式x+1<5,得:x<4,解不等式2(x+4)>3x+7,得:x<1,则不等式组的解集为x<1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2019•盐城)解不等式组:【答案】解:解不等式①,得x>1,解不等式②,得x≥﹣2,∴不等式组的解集是x>1.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2019•连云港)解不等式组【答案】解:,由①得,x>﹣2,由②得,x<2,所以,不等式组的解集是﹣2<x<2.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).7.(2019•常州)解不等式组并把解集在数轴上表示出来.【答案】解:解不等式x+1>0,得:x>﹣1,解不等式3x﹣8≤﹣x,得:x≤2,∴不等式组的解集为﹣1<x≤2,将解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2019•扬州)解不等式组,并写出它的所有负整数解.【答案】解:解不等式4(x+1)≤7x+13,得:x≥﹣3,解不等式x﹣4,得:x<2,则不等式组的解集为﹣3≤x<2,所以不等式组的所有负整数解为﹣3、﹣2、﹣1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.(2019•南京)解方程:1.【答案】解:方程两边都乘以(x+1)(x﹣1)去分母得,x(x+1)﹣(x2﹣1)=3,即x2+x﹣x2+1=3,解得x=2检验:当x=2时,(x+1)(x﹣1)=(2+1)(2﹣1)=3≠0,∴x=2是原方程的解,故原分式方程的解是x=2.【点睛】本题考查了分式方程的求解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.10.(2019•镇江)(1)解方程:1;(2)解不等式:4(x﹣1)x【答案】解;(1)方程两边同乘以(x﹣2)得2x=3+x﹣2∴x=1检验:将x=1代入(x﹣2)得1﹣2=﹣1≠0x=1是原方程的解.∴原方程的解是x=1.(2)化简4(x﹣1)x得4x﹣4x∴3x∴x∴原不等式的解集为x.【点睛】本题分别考查了分式方程和一元一次不等式的求解问题,属于基础题型.11.(2019•徐州)(1)解方程:1(2)解不等式组:【答案】解:(1)1,两边同时乘以x﹣3,得x﹣2+x﹣3=﹣2,∴x;经检验x是原方程的根;(2)由可得,∴不等式的解为﹣2<x≤2;【点睛】本题考查分式方程,不等式组的解;掌握分式方程和不等式组的解法是关键.12.(2019•常州)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?【答案】解:设甲每小时做x个零件,则乙每小时做(30﹣x)个零件,由题意得:,解得:x=18,经检验:x=18是原分式方程的解,则30﹣18=12(个).答:甲每小时做18个零件,则乙每小时做12个零件.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意检验.13.(2019•扬州)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?【答案】解:设甲工程队每天修x米,则乙工程队每天修(1500﹣x)米,根据题意可得:,解得:x=900,经检验得:x=900是原方程的根,故1500﹣900=600(m),答:甲工程队每天修900米,乙工程队每天修600米.【点睛】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.14.(2019•无锡)解方程:(1)x2﹣2x﹣5=0;(2).【答案】解:(1)∵a=1,b=﹣2,c=﹣5,∴△=4﹣4×1×(﹣5)=24>0,则x1±,∴;(2)两边都乘以(x+1)(x﹣2),得:x+1=4(x﹣2),解得x=3,经检验x=3是方程的解.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.15.(2019•徐州)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?【答案】解:设剪去正方形的边长为xcm,则做成无盖长方体盒子的底面长为(30﹣2x)cm,宽为(20﹣2x)cm,高为xcm,依题意,得:2×[(30﹣2x)+(20﹣2x)]x=200,整理,得:2x2﹣25x+50=0,解得:x1,x2=10.当x=10时,20﹣2x=0,不合题意,舍去.答:当剪去正方形的边长为cm时,所得长方体盒子的侧面积为200cm2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.(2019•南京)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?【答案】解:设扩充后广场的长为3xm,宽为2xm,依题意得:3x•2x•100+30(3x•2x﹣50×40)=642000解得x1=30,x2=﹣30(舍去).所以3x=90,2x=60,答:扩充后广场的长为90m,宽为60m.【点睛】题考查了列二元一次方程解实际问题的运用,总价=单价×数量的运用,解答时找准题目中的数量关系是关键.。
2019年中考数学不等式与不等式组复习题及答案
第2讲不等式与不等式组|1・分层W 练f-miLienijiX mil ini(2012年广东广州)已知a > b , c 为任意实数,则下列不等式中总是成立的是 a + c v b + c B . a - c > b - c C . ac v be D . ac > be (2012年四川攀枝花)下列说法中,错误的是()不等式x v 2的正整数解中有一个 B . - 2是不等式2x - 1 v 1的一个解不等式—3x >9的解集是x >- 3 D .不等式x v 10的整数解有无数个 (2012年贵州六盘水)已知不等式x -1>0,此不等式的解集在数轴上表示为-I 0 I-I 0 I-1 0 I ^1 0 TABC 1>(2012年湖北荆州)已知点M (1 — 2m , m- 1)关于x 轴的对称点在第一象限,则( )1 2 0 I 2 0 1 2HC D2-2-2,数轴上表示的是下列哪个不等式组的解集 ( x >- 5, x >- 5, x v 5, x v 5, A.B.C.D.x > — 3x 》一3x v — 3x > — 38 . (2012年山东日照)某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人 4盒牛奶,那么剩下28盒牛奶;如果分给每位老人 5盒牛奶, 那么最后一位老人分得的牛奶不足 4盒,但至少1盒.则这个敬老院的老人最少有 ( )A . 29 人B . 30 人C . 31 人D . 32 人9 . (2012年四川南充)不等式x + 2>6的解集为 ______ .110 . (2012年浙江衢州)不等式2x - 1> 的解是 ______ .x + 1w 1,11 . (2012年贵州毕节)不等式组2的整数解是 ______ .1 - 2x v 4参考答案 1. A . 2. A . C. 3.4.值范围在数轴上表示正确的是m 的取5. A .’ 1L!厂-0(£50 0 51 A2x - 1> x + 1, C(2012年山东滨州)不等式x + 8< 4x - 1 x >3 B . x >2 C . 2<x w 3 D .空集x — 1》0,(2012年湖北咸宁)不等式组的解集在数轴上表示为()如图的解集是((2012年湖南益阳图 2- 2-212 . (2012年陕西)小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元, 乙饮料每瓶4元,则小宏最多能买_______ 瓶甲饮料.13 . (2011年广东惠州)解不等式:4x - 6v x,并在数轴上表示出解集.参考答案 14.(2012年湖北恩施)某大型超市从生产基地购进一批水果,运输过程中质量损失 10% 假设不计超市其他费用, 如果超市想要至少获得 20%勺利润,那么这种水果的售价在进价的基 础上至少提高( )A . 40%B . 33.4%C . 33.3%D . 30%15. 解不等式组,并把解集在如图 2-2-3所示的数轴上表示出来.X — 3 x — 2 < 4, ①■”5 7-3 -2 -J U12 3 4 5图 2— 2— 35a + 4 4x + 3—> 3 x + 1+ a3 3参考答案2x — a<1,17. 若不等式组的解集为一1 v X V 1,那么(a + 1)(b — 1)=.x — 2b>318. (2011年广东茂名)某养鸡场计划购买甲、乙两种小鸡苗共 2 000只进行饲养,已知 甲种小鸡苗每只2元,乙种小鸡苗每只 3元.(1) 若购买这批小鸡苗共用了 4 500元,求甲、乙两种小鸡苗各购买了多少只? (2) 若购买这批小鸡苗的钱不超过 4 700元,问:应选购甲种小鸡苗至少多少只? (3) 相关资料表明:甲、乙两种小鸡苗的成活率分别为 94呀口 99%若要使这批小鸡苗的 成活率不低于96%且买小鸡苗的总费用最小,问:应选购甲、乙两种小鸡苗各多少只?总费用1 +2x 3> x — 1. 16 . (2010年湖北荆门)试确定实数a 的取值范围,使不等式组X +1 ""3"" > 0, 恰有两个整数解.x最小是多少兀?第2讲 不等式与不等式组 【分层训练】1 . B 2.C 3.C 4.A2x — 1> x +1 ,① 5. A 解析: ②x + 8< 4x — 1 ,解①, 得x >2,解②,得 x > 3. 则不等式组的解集是 x > 3.6. D7.B8.B 29. x > 410.x > 311.— 1,0,112.313. 解:4x — 6<x.移项、合并同类项,得 3x<6, 系数化为1,得x<2.不等式的解集在数轴上表示如图D2.14. C15. 解:由①,得x > 1.由②,得x<4 . •••原不等式组的解集是 Kx<4,如图D3.-5 -X -3 -5 -1□12345图D3x x + 1 2+丁>°, ①16. 解:不等式组5a + 4 4 — x + — >3 x + 1 + a.② 3 3解不等式①,得x> — 2.解不等式②,得x<2a.52所以不等式组的解集为一 ~<x<2a ,5因为不等式组恰有两个整数解,则 1<2a w 2, 1即 一 <a w 1. 22x — a<1,17. — 6解析:不等式组x — 2b>3a + 1 a +12b + 3 v x v -2~,二 2b + 3 = — 1, 2 = 1.…a = 1, b = — 2. •• (a + 1)(b — 1) = — 6. 18. 解:设购买甲种小鸡苗 x 只,那么乙种小鸡苗为(2 000 — x)只. (1) 根据题意列方程,得 2x + 3(2 000 — x) = 4 500.2 图D2的解集为解这个方程,得x = 1 500.• 2 000 —x= 2 000 — 1 500 = 500,即购买甲种小鸡苗 1 500只,乙种小鸡苗500只.(2) 根据题意,得2x + 3(2 000 —x) < 4 700 ,解得x> 1 300 ,即选购甲种小鸡苗至少为 1 300只.(3) 设购买这批小鸡苗总费用为y元,根据题意,得y = 2x + 3(2 000 —x) = —x+ 6 000.又由题意,得94%x+ 99%(2 000 —x) > 2 000 X 96%.解得X W 1 200.因为购买这批小鸡苗的总费用y随x增大而减小,所以当x= 1 200时,总费用y最小.乙种小鸡为2 000 — 1 200 = 800(只),即购买甲种小鸡苗为 1 200只,乙种小鸡苗为800只时,总费用y最小,最小费用为 4 800兀.。
中考数学复习第二单元方程(组)与不等式(组)课时训练一元一次不等式(组)及其应用
课时训练(七)一元一次不等式(组)及其应用(限时:35分钟)|夯实基础|1.[2019·广安]若m>n,下列不等式不一定成立的是()A.m+3>n+3B.-3m<-3nC.>D.m2>n22.[2019·陇南]不等式2x+9≥ (x+2)的解集是()A.x≤B.x≤-3C.x≥D.x≥-33.[2018·益阳]不等式组211-2的解集在数轴上表示正确的是 ()图K7-14.[2019·德州]不等式组2(-112-1-2的所有非负整数解的和是()A.10B.7C.6D.05.[2019·南充]若关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为 ()A.-5<a<-3B.- ≤a<-3C.-5<a≤-3D.- ≤a≤-36.[2019·聊城]若不等式组12-1无解,则m的取值范围为()A.m≤2B.m<2C.m≥2D.m>27.[2019·重庆B卷]某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分超过120分,他至少要答对的题的个数为()A.13B.14C.15D.168.[2019·绵阳]红星商店计划用不超过4200元的资金购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种9.[2019·株洲]若a 为有理数,且2-a 的值大于1,则a 的取值范围为 . 10.[2019·益阳]不等式组-1 0 -的解集为 .11.[2019·大庆]已知x=4是不等式ax -3a -1<0的解,x=2不是不等式ax -3a -1<0的解,则实数a 的取值范围是 . 12.[2019·包头]已知不等式组 2 9 - 1 - 1的解集为x>-1,则k 的取值范围是 .13.[2019·宜宾]若关于x 的不等式组-2-12 - 2- 有且只有两个整数解,则m 的取值范围是 .14.[2018·山西]2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115 cm .某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为cm .15.(1)解不等式:4(x -1)-12<x.(2)[2019·新疆]解不等式组: 2 ( -2 ①22 -②并把解集在数轴上表示出来.16.若不等式组2112(-的整数解是关于x的方程2x-4=ax的解,求a的值.17.[2019·荆州]为拓宽学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生.现有甲、乙两种大型客车,它们的载客量和租金如表所示:2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆.(3)学校共有几种租车方案?最少租车费用是多少? |拓展提升|18.[2019·镇江]下列各数轴上表示的x的取值范围可以是不等式组2(2-1 -0的解集的是()图K7-219.[2019·重庆B卷]若数a使关于x的不等式组-21(--2(1-有且仅有三个整数解,且使关于y的分式方程1-2-11-=-3的解为正数,则所有满足条件的整数a的值之和是() A.-3 B.-2 C.-1 D.1【参考答案】1.D2.A3.A4.A [解析]解不等式5x +2>3(x -1),得x>-2;解不等式12x -1≤ -2x ,得x ≤ ; ∴不等式组的解集为-2<x ≤ .∴不等式组的非负整数解为0,1,2,3,4,这些非负整数解的和为10. 故选A .5.C [解析]解不等式2x +a ≤1 得:x ≤1-2, 不等式有两个正整数解,一定是1和2, 根据题意得:2≤1-2<3,解得:-5<a ≤-3. 故选C .6.A [解析]解不等式1 < 2-1,得x>8,当4m ≤8时,原不等式组无解,∴m ≤2 故选A . 7.C [解析] 设小华答对的题的个数为x 题,则答错或不答的题的个数为(20-x )题,可列不等式10x -5(20-x )>120,解得x>142,即他至少要答对的题的个数为15题.故选C . 8.C [解析]设该店购进甲种商品x 件,则购进乙种商品(50-x )件, 根据题意,得:0 100( 0- 200 10 20( 0- 0解得:20≤x<25,∵x 为整数,∴x=20,21,22,23,24, ∴该店进货方案有5种. 9.a<1 10.x<-311.a ≤-1 [解析]因为x=4是不等式ax -3a -1<0的解,所以4a -3a -1<0,a<1, 因为x=2不是不等式ax -3a -1<0的解, 所以2a -3a -1≥0 所以a ≤-1,所以a ≤-1.12.k ≤-2 [解析] 解2x +9>-6x +1得x>-1.解x -k>1得x>k +1.∵不等式组的解集为x>-1,∴k +1≤-1,解得k ≤-2.13.-2≤m<1 [解析]-2-1 ① 2 - 2- ② 解不等式①得:x>-2, 解不等式②得:x ≤2 ,∴不等式组的解集为-2<x ≤2,∵不等式组只有两个整数解, ∴0≤2 <1,解得:-2≤m<1,故答案为-2≤m<1.14.55 [解析] 设长为8x cm,高为11x cm,由题意可得20+8x +11x ≤11 解得:x ≤ .∴11x ≤ .15.解:(1)化简4(x -1)-12<x 得4x -4-12<x , ∴3x<92,∴x<2,∴原不等式的解集为x<2.(2)解不等式①,得:x<2. 解不等式②,得:x>1.所以,不等式组的解集为:1<x<2. 在数轴上表示如图所示:16.解:解不等式组得-1 -所以不等式组的解集为-3<x<-1, 则满足条件的整数解为-2,把x=-2代入方程2x -4=ax ,得-4-4=-2a ,解得a=4.17.[解析] (1)设参加此次研学活动的老师有x 人,学生有y 人,根据“若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生” 即可得出关于x ,y 的二元一次方程组,解之即可得出结论.(2)利用租车总辆数(至少)=师生人数÷ 结合每辆客车上至少要有2名老师,即可得出租车总辆数为8辆.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆,根据8辆车的座位数不少于师生人数及租车总费用不超过3000元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为正整数即可得出租车方案数.设租车总费用为w 元,根据租车总费用= 00×租用35座客车的数量+ 20×租用30座客车的数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.解:(1)设参加此次研学活动的老师有x 人,学生有y 人, 依题意,得: 1 10 1 - 解得: 1 2答:参加此次研学活动的老师有16人,学生有234人.(2)8 [解析] ∵每辆车上至少要有2名老师,∴客车总数不超过8辆,又要保证所有师生都有车坐,∴客车总数不能小于2 1= 0 (取整为8)辆,综合起来可知租车总辆数为8辆.故答案为:8.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆, 依题意,得: 0(8- 2 1 00 20(8- 000解得:2≤m ≤ 12.∵m 为正整数,∴m=2,3,4,5,∴共有4种租车方案. 设租车总费用为w 元,则w=400m +320(8-m )=80m +2560, ∵80>0,∴w 的值随m 值的增大而增大, ∴当m=2时,w 取得最小值,最小值为2720. ∴学校共有4种租车方案,最少租车费用是2720元. 18.B [解析]由x +2>a 得x>a -2,A .由数轴知x>-3,则a=-1,∴-3x -6<0,解得x>-2,与数轴不符;B .由数轴知x>0,则a=2,∴3x -6<0,解得x<2,与数轴相符合;C .由数轴知x>2,则a=4,∴7x -6<0,解得x<,与数轴不符;D .由数轴知x>-2,则a=0,∴-x -6<0,解得x>-6,与数轴不符;故选B . 19.A [解析] 第一部分:解一元一次不等式组 -2 1( - ①-2 (1- ② 解不等式①,得:x ≤ 解不等式②,得:x> 2 11. 因为有且仅有三个整数解, 所以三个整数解分别为:3,2,1. 所以2 11的范围为0≤2 11<1,解得-2. ≤a<3.第二部分:求分式方程1-2-11-=-3的解,得y=2-a ,根据分式方程的解为正数和分式方程的分母不能为零,得0 1 即 2-0 2- 1解得:a<2且a ≠1. 第三部分:根据第一部分a 的范围和第二部分a 的范围,找出a 的公共范围:-2. ≤a<2且a ≠1所以满足条件的整数a 为-2,-1,0. 它们的和为:-2-1+0=-3. 故选A .。
中考数学复习《方程(组)与不等式(组》测试题(含答案)
中考数学复习《方程(组)与不等式(组》测试题(含答案)一、选择题1.下列数值中不是不等式5x ≥2x +9的解的是( ) A. 5 B. 4 C. 3 D. 22.将不等式3x -2<1的解集表示在数轴上,正确的是( )3.若关于x 的方程x 2-2x +c =0有一根为-1,则方程的另一根为( ) A. -1 B. -3 C. 1 D. 34.已知甲、乙两数的和是7,甲数是乙数的2倍,设甲数为x ,乙数为y ,根据题意,列方程组正确的是( ) A. ⎩⎪⎨⎪⎧x +y =7x =2yB. ⎩⎪⎨⎪⎧x +y =7y =2x C. ⎩⎪⎨⎪⎧x +2y =7x =2y D. ⎩⎪⎨⎪⎧2x +y =7y =2x5.已知3是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A. 7 B. 10 C. 11 D. 10或11 6.若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( ) A. m <92 B. m <92且m ≠32 C. m >-94 D. m >-94且m ≠-347.定义新运算:a ★b =a (1-b ),若a ,b 是方程x 2-x +14m =0(m <1)的两根,则b ★b -a ★a 的值为( )A. 0B. 1C. 2D. 与m 无关8.在求3x 的倒数的值时,嘉淇同学误将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( )A. 13x =18x -5B. 13x =18x +5C. 13x =8x -5D. 13x =8x +5 9.如图,某小区有一块长为18 m ,宽为 6 m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60 m 2,两块绿地之间及周边留有宽度相等的人行通道.若设人行通道的宽度为x m ,则可列出关于x 的方程是( )A. x 2+9x -8=0 B. x 2-9x -8=0 C. x 2-9x +8=0 D. 2x 2-9x +8=010.从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a .若数a 使关于x 的不等式组⎩⎪⎨⎪⎧13(2x +7)≥3x -a <0无解,且使关于x 的分式方程x x -3-a -23-x =-1有整数解,那么这5个数中所有满足条件的a 的值之和是( )31二、填空题11.一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元. 12.分式方程1x -2=3x的解是________. 13.已知A ,B 两地相距160 km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4 h 到达,则这辆汽车原来的速度是________km/h.14.不等式组⎩⎪⎨⎪⎧x +2>12x -1≤8-x 的最大整数解是________.15.若方程(x -m )(x -n )=3(m ,n 为常数,且m <n )的两实数根分别为a 、b (a <b ),则m 、n 、a 、b 的大小关系为______________. 16.已知⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,则代数式(a +b )(a -b )的值为________.17.已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n x +2y =5n (0<n <3),若y >1,则m 的取值范围是________.三、解答题18.解方程组⎩⎪⎨⎪⎧9x 2-4y 2=36x -y =2.19.解方程:2x +3=1x -1.20.已知关于x 的不等式组⎩⎪⎨⎪⎧5x +2>3(x -1)12x ≤8-32x +2a 有四个整数解,求实数a 的取值范围.21.解不等式组⎩⎪⎨⎪⎧5x -3<4x4(x +1)+2≥x ,并把它们的解集在数轴上表示出来.22.关于x 的两个不等式①3x +a2<1与②1-3x >0.(1)若两个不等式的解集相同,求a 的值; (2)若不等式①的解都是②的解,求a 的取值范围.23.已知关于x 的方程x 2+mx +m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.24.某校学生利用双休时间去距学校10 km 的炎帝故里参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.25.某一公路的道路维修工程,准备从甲、乙两个工程队中选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?26.春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.27.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元,2016年投入教育经费8640万元,假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县将投入教育经费多少万元?28.五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同.(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求量的比例购买这2000件物品,需筹集资金多少元?29.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?30.如图,一块长5米、宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的1780.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.方程(组)与不等式(组)阶段测评1. D 【解析】不等式5x ≥2x +9的解集是x ≥3,因此2不是这个不等式的解,故选D.2. D 【解析】3x -2<1,解得x <1,故选D.3. D 【解析】设方程的另一个根为x 2,则根据根与系数关系有-1+x 2=2,解得x 2=3.4. A【解析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.设甲数为x ,乙数为y ,根据题意,可列方程组:⎩⎪⎨⎪⎧x +y =7x =2y,故选A.5. D 【解析】∵3是方程x 2-(m +1)x +2m =0的一个实数根,∴9-3(m +1)+2m =0,解得m =6,∴方程为x 2-7x +12=0,解得x 1=3,x 2=4,若等腰△ABC 的腰长为3,底边长为4,则其周长为3+3+4=10;若等腰△ABC 的腰长为4,底边长为3,则周长为4+4+3=11.6. B 【解析】由x +m x -3+3m 3-x =3,得x +m x -3-3m x -3=3,解得x =9-2m 2,解方程组⎩⎨⎧9-2m2>09-2m2≠3,得m <92且m ≠32,故选B.7. A 【解析】∵a ,b 是方程x 2-x +14m =0的两根,∴a 2-a =-14m ,b 2-b =-14m ,∴b ★b -a ★a=b (1-b )-a (1-a )=b -b 2-a +a 2=-(b 2-b )+(a 2-a )=14m -14m =0.8. B 【解析】根据题意可知:8x 的倒数18x 比3x 的倒数13x 小5,所以可列方程为13x =18x +5.9. C 【解析】因为人行道的宽度为x 米,所以阴影部分的长为(18-3x )米,宽为(6-2x )米,故阴影部分面积为(18-3x )(6-2x )=60,化简得x 2-9x +8=0.故选C.10. B 【解析】解不等式组得⎩⎪⎨⎪⎧x ≥1x <a,∵原不等式组无解,∴a ≤1,则a 不能取五个已知值中的3;解分式方程得x =5-a 2,又∵分式方程有整数解,∴5-a 2为整数,且5-a 2≠3,∴a 只能从-3,-1,12,1中取-3,1,所以满足条件的a 的值的和为-3+1=-2.11. 180 【解析】设成本为x 元,由题意得:300×0.8-x =60,解得x =180.12. x =3 【解析】去分母,两边同乘x(x -2)得x =3(x -2),去括号得x =3x -6,移项并合并同类项得x =3,经检验x =3是原分式方程的根.13. 80 【解析】设这辆汽车原来的速度是x km /h ,根据题意得:160x -160(1+25%)x =0.4,解得x =80,经检验x =80是原方程的根.14. 3 【解析】由x +2>1得x >-1,由2x -1≤8-x 得x ≤3,所以原不等式组的解集是-1<x ≤3,最大整数解为x =3.15. a <m <n <b 【解析】如解图,解方程(x -m)(x -n)=3可以看作是求y =(x -m)(x -n)与y =3这两个函数图象的交点,由解图易得a <m <n <b.16. -8 【解析】⎩⎪⎨⎪⎧x =3y =-2是方程组⎩⎪⎨⎪⎧ax +by =3bx +ay =-7的解,即⎩⎪⎨⎪⎧3a -2b =3 ①3b -2a =-7 ②,①+②得a +b =-4,①-②得5a -5b =10,则a -b =2,∴(a +b)(a -b)=-4×2=-8.17. 25<m <23 【解析】解原方程组,得⎩⎪⎨⎪⎧x =n +2y =2n -1.∵y >1,∴2n -1>1,即n >1.∵0<n <3,∴1<n <3,∴3<x <5.当x =3时,m =2x =23;当x =5时,m =2x =25.∵当x >0时,m 随x 的增大而减小,∴25<m <23.18. 【思路分析】利用代入消元法,将方程②变为y =x -2,将此方程代入方程①求x ,进而求出y.解:⎩⎪⎨⎪⎧9x 2-4y 2=36①x -y =2 ②,将②变形为y =x -2 ③,将③代入①得:9x 2-4(x -2)2=36, 化简得:5x 2+16x -52=0,将方程左边因式分解得:(x -2)(5x +26)=0, 解得x =2或x =-265,将x =2代入方程②得y =0; 将x =-265代入方程②得y =-365.综上所述,原方程组的解为⎩⎪⎨⎪⎧x =2y =0或⎩⎨⎧x =-265y =-365.19. 解:去分母,得2(x -1)=x +3, 去括号、移项、合并同类项,得x =5, 经检验,x =5是原方程的根. ∴原方程的解为x =5.20. 解:⎩⎪⎨⎪⎧5x +2>3(x -1) ①12x ≤8-32x +2a ②, 解不等式①得x >-52,解不等式②得x ≤a +4,由不等式组的解集有四个整数解,得1≤a +4<2, ∴-3≤a <-2.21. 解:解不等式5x -3<4x 得x<3, 解不等式4(x +1)+2≥x 得x ≥-2, ∴不等式组的解集为-2≤x<3. 解集在数轴上表示如解图所示:22. 解:解不等式①,得x<2-a3,解不等式②,得x<13.(1)∵两个不等式的解集相同, ∴2-a 3=13, ∴a =1.(2)∵不等式①的解都是不等式②的解, ∴2-a 3≤13, ∴a ≥1.23. (1)解:将x =1代入x 2+mx +m -2=0,得 12+1×m +m -2=0, 解得m =12.(2) 证明:一元二次方程x 2+mx +m -2=0的根的判别式为: b 2-4ac =m 2-4(m -2)=m 2-4m +8=(m -2)2+4. ∵不论m 取何实数,(m -2)2≥0, ∴(m -2)2+4>0,即b 2-4ac >0,∴不论m 取何实数,原方程都有两个不相等的实数根.24. 解:设骑车学生的速度为x km /h ,则汽车的速度为2x km /h ,可得:10x =102x +2060,解得x =15,经检验x =15是原方程的解,汽车的速度为:2x =2×15=30 km /h ,答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h . 25. 解:设甲队单独完成此项工程需x 天,则乙队需(x +5)天, 依据题意可以列方程: 1x +1x +5=16, 解得x 1=10,x 2=-3(舍去),经检验x =10是原方程的解;设甲队每天的工程费用为y 元,则乙队每天的工程费用为(y -4000)元,依据题意得: 6y +6(y -4000)=385200, 解得y =34100,∴甲队单独完成此项工程费用为:34100×10=341000元 , 乙队单独完成此项工程费用为:30100×15=451500元 , ∵341000<451500,∴选择甲工程队.答:从节省资金的角度考虑,应该选择甲工程队.⎪⎧2x +3y =270解得⎩⎪⎨⎪⎧x =30y =70,答:甲种商品每件进价为30元,乙种商品每件进价为70元. (2)设商场购进甲种商品a 件,则购进乙种商品为(100-a)件,利润为w 元.根据题意得a ≥4(100-a), 解得a ≥80,由题意得w =(40-30)a +(90-70)(100-a)=-10a +2000, ∵k =-10<0,∴w 随a 的增大而减小,∴当a 取最小值80时,w 最大=-10×80+2000=1200(元),∴100-a =100-80=20(件).答:当商场购进甲种商品80件,乙种商品20件时,获利最大,最大利润为1200元. 27. 解:(1)设这两年该县投入教育经费的年平均增长率为x ,根据题意得: 6000(x +1)2=8640,解得x 1=-2.2(舍去),x 2=0.2答:这两年该县投入教育经费的年平均增长率为20%. (2)2017年该县投入教育经费为: 8640×(0.2+1)=10368(万元),答:预算2017年该县将投入教育经费为10368万元.28. 解:(1)设乙种救灾物品每件x 元,则甲种救灾物品每件(x +10)元,由题意得: 350x +10=300x, 解得x =60,经检验x =60是原方程的解,∴x +10=70(元).答:甲、乙两种救灾物品每件的价格分别为70元、60元. (2)70×2000×14+60×2000×34=125000(元).答:需筹集资金125000元.29. 解:(1)设购买A 种型号健身器材x 套,B 种型号健身器材y 套,根据题意得:⎩⎪⎨⎪⎧x +y =50310x +460y =20000, 解得⎩⎪⎨⎪⎧x =20y =30.答:购买A 种型号健身器材20套,B 种型号健身器材30套. (2)设购买A 种型号健身器材z 套,根据题意得: 310z +460(50-z)≤18000, 解得z ≥3313.∵z 为整数,∴z 的最小值为34.答:A 种型号健身器材至少要购买34套.11 重叠部分的面积”, 列方程求解即可.解:设配色条纹的宽度为x 米,由题意得5x ×2+4x ×2-4×x 2=1780×4×5, 解得:x =14或x =174(不合题意舍去). 答:配色条纹的宽度为14米. (2)解:由题意得地毯的总造价为:1780×4×5×200+(1-1780)×4×5×100=850+1575=2425(元), 答:地毯的总造价为2425元.。
河北省2019年中考数学总复习第二单元方程组与不等式组单元测试练习
单元测试(二)范围:方程(组)与不等式(组) 限时:45分钟 满分:100分一、 选择题(每小题4分,共40分)1.下列方程的变形中,正确的是 ( )A .方程3x-2=2x+1,移项,得3x-2x=-1+2B .方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C .方程23x=32,未知数系数化为1,得x=1D .方程x -12-x 5=1化成5(x-1)-2x=102.已知a<b ,下列不等式中,变形正确的是 ( )A .a-3>b-3B .3a-1>3b-1C .-3a>-3bD .a 3>b 33.已知关于x 的方程kx=x-9有正整数解,则整数k 的最大值是 ( )A .-8B .-2C .0D .104.一元二次方程x (x-1)=2(x-1)2的解为 ( )A .1B .2C .1和2D .1和-25.若关于x 的不等式x-a 2<1的解集为x<1,则关于x 的一元二次方程x 2+ax+1=0的根的情况是 () A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定6.若分式方程1x -2+3=a +1x -2有增根,则a 的值是 ( )A.-1B.0C.1D.27.对于不等式组13x-6≤1-53x,3(x-1)<5x-1,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为-1<x≤76C.此不等式组有5个整数解D.此不等式组无解8.如果不等式组x<5,x>m有解,那么m的取值范围是()A.m>5B.m≥5C.m<5D.m≤89.关注数学文化中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里10.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图D2-1所示,则第三束气球的价格为()图D2-1A.19元B.18元C.16元D.15元二、填空题(每小题4分,共16分)11.如果x=1是关于x的方程ax+2bx-c=3的解,那么式子2a+4b-2c的值为.12.已知方程组 a x +5y =15,①4x -b y =-2,②由于甲看错了方程①中的a ,得到方程组的解为 x =-3,y =-1,乙看错了方程组②中的b ,得到方程组的解为 x =5,y =4.若按正确的a ,b 计算,则原方程组的解为 . 13.已知关于x 的分式方程k x +1+x +kx -1=1的解为负数,则k 的取值范围是 .14.五一篮球联赛前期,某中学购进甲、乙两种品牌的篮球,购买甲品牌篮球花费了2500元,购买乙品牌篮球花费了2000元,且购买甲品牌篮球数量是购买乙品牌篮球数量的2倍.已知购买一个乙品牌篮球比购买一个甲品牌的篮球多花30元,则购买一个甲品牌篮球需 元.三、 解答题(共44分)15.(10分)解方程:(x+1)(x-1)+2(x+3)=8.16.(10分)解方程:3x +2+1x =4x 2+2x .17.(10分)解不等式组: 4x >2x -6,x -13≤x +19,并把解集在数轴上表示出来.18.(14分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?参考答案1.D2.C3.C [解析] 解方程kx=x-9得:x=-9k -1, ∵关于x 的方程kx=x-9有正整数解,k 为整数,∴k-1=-9或-3或-1,解得:k=-8或-2或0,∴k 的最大值是0.4.C [解析] x (x-1)=2(x-1)2, x (x-1)-2(x-1)2=0,(x-1)(x-2x+2)=0,即(x-1)(-x+2)=0,∴x-1=0或-x+2=0,解得:x=1或x=2.5.C [解析] 由x-a 2<1的解集为x<1,得x<1+a 2,即1+a 2=1,得a=0,将a=0代入x 2+ax+1=0,得x 2+1=0,因为判别式<0,所以选C .6.B [解析] ∵分式方程1x -2+3=a +1x -2有增根,∴x=2是方程1+3(x-2)=a+1的根,∴a=0. 7.A [解析] 解不等式组得-1<x ≤72,它的正整数解为1,2,3,故选项A 正确. 8.C9.C [解析] 设第一天走了x 里,依题意得x+12x+14x+18x+116x+132x=378,解得x=192.则132×192=6(里).10.B [解析] 设笑脸气球的单价为x 元/个,爱心气球的单价为y 元/个,根据题意得: 3x +y =16①,x +3y =20②,(①+②)÷2,得:2x+2y=18.11.612. x =14,y =29513.k>-12且k ≠0 [解析] 去分母,得k (x-1)+(x+k )(x+1)=(x+1)(x-1),整理得(2k+1)x=-1,∴x=-12k +1.∵方程k x +1+x +kx -1=1的解为负数,∴x<0且x ≠±1,即2k+1>0且2k+1≠1且2k+1≠-1,解得k>-12且k ≠0,即k 的取值范围为k>-12且k ≠0.14.5015.解:原方程可化为x 2+2x-3=0,(x-1)(x+3)=0,解得x 1=1,x 2=-3.16.解:去分母,得3x+x+2=4,解得x=12.经检验,x=12是原分式方程的解.17.解: 4x >2x -6,①x -13≤x +19.② 解不等式①得x>-3,解不等式②得x ≤2.∴不等式组的解集为-3<x ≤2,在数轴上表示解集如下图所示.18.解:(1)设二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元, 根据题意得:30000x +100=27000x ,解得:x=900,经检验,x=900是原分式方程的解.答:二月份每辆车售价是900元.(2)设每辆山地自行车的进价为y元, 根据题意得:900×(1-10%)-y=35%y, 解得:y=600.答:每辆山地自行车的进价是600元.。
2019年中考数学精选(二)二次方程与不等式专题测试卷
2019年中考数学精选(二)二次方程与不等式一、选择题1. (2019 江苏省无锡市) 】.(3分)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.7二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)2. (2019 山东省德州市) 】.(4分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为( )A.4.5112y xy x-=⎧⎪⎨-=⎪⎩B.4.5112x yy x-=⎧⎪⎨-=⎪⎩C.4.5112x yx y-=⎧⎪⎨-=⎪⎩D.4.5112y xx y-=⎧⎪⎨-=⎪⎩3. (2019 山东省临沂市) 】.(3分)不等式1﹣2x≥0的解集是()A.x≥2 B.x≥C.x≤2 D.x4. (2019 四川省达州市) 】.(3分)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=91005. (2019 新疆建设兵团) 】.】.(5分)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x 个队参赛,根据题意,可列方程为( ) A .x (x ﹣1)=36 B .x (x +1)=36 C .x (x ﹣1)=36D .x (x +1)=366. (2019 重庆市) 】.】.(4分)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则可建立方程组为( )A .B .C .D .7. (2019 四川省遂宁市) 】.】.(4分)关于x 的方程﹣1=的解为正数,则k 的取值范围是( )A .k >﹣4B .k <4C .k >﹣4且k ≠4D .k <4且k ≠﹣48. (2019 河南省) 】.(3分)一元二次方程(x +1)(x ﹣1)=2x +3的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根9. (2019 山东省威海市) 】.(3分)已知a ,b 是方程x 2+x ﹣3=0的两个实数根,则a 2﹣b +2019的值是( )A .2023B .2021C .2020D .201910. (2019 广西玉林市) 】.(3分)若一元二次方程220x x --=的两根为1x ,2x ,则121(1)(1)x x x ++-的值是( ) A .4B .2C .1D .2-11. (2019 湖南省永州市) 】.(4分)若关于x 的不等式组26040x m x m -+<⎧⎨->⎩有解,则在其解集中,整数的个数不可能是( ) A .1B .2C .3D .4二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内.每小题4分,共32分)12. (2019 内蒙古赤峰市) 】.(3分)某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x ,根据题意列方程为( ) A .400(1+x 2)=900 B .400(1+2x )=900C .900(1﹣x )2=400D .400(1+x )2=900二、填空题13. (2019 内蒙古通辽市) 】.(3分)取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m ,则数字m 使分式方程11(1)(2)x mx x x -=--+无解的概率为 .14. (2019 山西省) 】.如图,在一块长12m ,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m ²,设道路的宽为x m ,则根据题意,可列方程为 .15. (2019 四川省绵阳市) 】.一艘轮船在静水中的最大航速为30km /h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行60km 所用时间相同,则江水的流速为______km /h .16. (2019 四川省自贡市) 】.(4分)某活动小组购买了4个篮球和5个足球,一共花费了466元,其中篮球的单价比足球的单价多4元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 .17. (2019 四川省广元市) 】.(3分)若关于x 的一元二次方程ax 2﹣x ﹣=0(a ≠0)有两个不相等的实数根,则点P(a+1,﹣a﹣3)在第象限.18. (2019 山东省威海市) 】.(3分)一元二次方程3x2=4﹣2x的解是.三、计算题19. (2019 四川省自贡市) 】.(8分)解方程:﹣=1.四、应用题20. (2019 云南省) 】.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.21. (2019 重庆市) 】.(10分)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.22. (2019 广西百色市) 】.(10分)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?23. (2019 内蒙古赤峰市) 】.(12分)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?五、复合题24. (2019 四川省乐山市) 】.已知关于x 的一元二次方程04)4(2=++-k x k x . (1)求证:无论k 为任何实数,此方程总有两个实数根; (2)若方程的两个实数根为1x 、2x ,满足431121=+x x ,求k 的值; (3)若ABC Rt ∆的斜边长为5,另外两边的长恰好是方程的两个根1x 、2x ,求ABC Rt ∆ 的内切圆半径.2019年中考数学精选(二)二次方程与不等式一、选择题1.】.】.B2.】.答案B解析解:设绳长x尺,长木为y尺,依题意得,故选:B.本题的等量关系是:绳长-木长=4.5;木长-绳长=1,据此可列方程组求解.此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.3.】.分析先移项,再系数化为1即可.解答解:移项,得﹣2x≥﹣1系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.点评本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.4.】.分析分别表示出5月,6月的营业额进而得出等式即可.解答解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.点评此题主要考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.5.】.】.分析关系式为:球队总数×每支球队需赛的场数÷2=36,把相关数值代入即可.解答解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.点评本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.】.】.分析设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.解答解:设甲的钱数为x,乙的钱数为y,依题意,得:.故选:A.点评本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.】.】.分析分式方程去分母转化为整式方程,求出整式的方程的解得到x的值,根据分式方程解是正数,即可确定出k的范围.解答解:分式方程去分母得:k﹣(2x﹣4)=2x,解得:x=,根据题意得:>0,且≠2,解得:k>﹣4,且k≠4.故选:C.点评此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.8.】.分析先化成一般式后,在求根的判别式.解答解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A .点评本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.9. 】.解答解:a ,b 是方程x 2+x ﹣3=0的两个实数根,∴b =3﹣b 2,a +b =﹣1,ab ﹣3,∴a 2﹣b +2019=a 2﹣3+b 2+2019=(a +b )2﹣2ab +2016=1+6+2016=2023; 故选:A .10. 】.分析根据根与系数的关系得到121x x +=,122x x =-,然后利用整体代入的方法计算121(1)(1)x x x ++-的值.解答解:根据题意得121x x +=,122x x =-,所以1211212(1)(1)111(2)4x x x x x x x ++-=++-=+--=. 故选:A .点评本题考查了根与系数的关系:若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12bx x a+=-,12c x x a=.11. 】.分析先分别求出每一个不等式的解集,再根据不等式组有解,求出4m <,然后分别取2m =,0,1-,得出整数解的个数,即可求解.解答解:解不等式260x m -+<,得:62mx -<, 解不等式40x m ->,得:4m x >, 不等式组有解,∴642m m-<, 解得4m <,如果2m =,则不等式组的解集为122m <<,整数解为1x =,有1个; 如果0m =,则不等式组的解集为03m <<,整数解为1x =,2,有2个; 如果1m =-,则不等式组的解集为1742m -<<,整数解为0x =,1,2,3,有4个; 故选:C .点评本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内.每小题4分,共32分)12. 】.分析设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.解答解:设月平均增长率为x , 根据题意得:400(1+x )2=900. 故选:D .点评本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.二、填空题13. 】.分析由分式方程,得(2)(1)(2)1m x x x x x =+--+=或2-时,分式方程无解,1x =时,2m =,2x =-时,0m =,所以在1,2,3,4,5取一个数字m 使分式方程无解的概率为15. 解答解:由分式方程,得(2)(1)(2)m x x x x =+--+ 1x =或2-时,分式方程无解, 1x =时,2m =, 2x =-时,0m =,所以在1,2,3,4,5取一个数字m 使分式方程无解的概率为15. 点评本题考查了概率,熟练掌握解分式方程是解题的关键.14. 】.解析由题意可知:77)8)(12(=--x x ,故答案为77)8)(12(=--x x15. 】.答案10解析解:设江水的流速为xkm/h ,根据题意可得:=,解得:x=10,经检验得:x=10是原方程的根, 答:江水的流速为10km/h . 故答案为:10.直接利用顺水速=静水速+水速,逆水速=静水速-水速,进而得出等式求出答案.此题主要考查了分式方程的应用,正确得出等量关系是解题关键.16.】.分析根据题意可得等量关系:①4个篮球的花费+5个足球的花费=466元,②篮球的单价﹣足球的单价=4元,根据等量关系列出方程组即可.解答解:设篮球的单价为x元,足球的单价为y元,由题意得:,故答案为:,点评此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.17.】.分析由二次项系数非零及根的判别式△>0,即可得出关于a的一元一次不等式组,解之即可得出a的取值范围,由a的取值范围可得出a+1>0,﹣a﹣3<0,进而可得出点P在第四象限,此题得解.解答解:∵关于x的一元二次方程ax2﹣x﹣=0(a≠0)有两个不相等的实数根,∴,解得:a>﹣1且a≠0.∴a+1>0,﹣a﹣3<0,∴点P(a+1,﹣a﹣3)在第四象限.故答案为:四.点评本题考查了根的判别式、一元二次方程的定义以及点的坐标,利用二次项系数非零及根的判别式△>0,找出关于a的一元一次不等式组是解题的关键.18.】.解答解:3x2=4﹣2x3x2+2x﹣4=0,则b2﹣4ac=4﹣4×3×(﹣4)=52>0,故x=,解得:x1=,x2=.故答案为:x1=,x2=.三、计算题19. 】.分析分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.点评此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.四、应用题20.】.分析设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.解答解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.点评本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.21.】.分析(1)设该小区有x套80平方米住宅,则50平方米住宅有2x套,根据物管费90000元,可列方程求解;(2)50平方米住宅有500×40%=200户参与活动一,80平方米住宅有250×20%=50户参与活动一;50平方米住宅每户所交物管费为100(1﹣%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有50(1+6a%)户参与活动二.根据参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,列出方程求解即可.解答(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250套80平方米的住宅.(2)参与活动一:50平方米住宅每户所交物管费为100元,有500×40%=200户参与活动一,80平方米住宅每户所交物管费为160元,有250×20%=50户参与活动一;参与活动二:50平方米住宅每户所交物管费为100(1﹣%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有50(1+6a%)户参与活动二.由题意得100(1﹣%)•200(1+2a%)+160(1﹣%)•50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1﹣a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=,∴a=50.答:a的值为50.点评本题是一元二次方程的综合应用题,数据较多,分析清楚题目中相关数据,根据等量关系列出方程是解题的关键.22.】.分析(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度⨯时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设甲、丙两地相距a千米,则乙、丙两地相距(90)a-千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.解答解:(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,依题意,得:6()90 (64)()90x yx y+=⎧⎨+-=⎩,解得:123xy=⎧⎨=⎩.答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a千米,则乙、丙两地相距(90)a-千米,依题意,得:90 123123a a-=+-,解得:2254a =. 答:甲、丙两地相距2254千米. 点评本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.23. 】.分析(1)设小明原计划购买文具袋x 个,则实际购买了(x +1)个,根据对话内容列出方程并解答;(2)设小明可购买钢笔y 支,根据两种物品的购买总费用不超过400元列出不等式并解答.解答解:(1)设小明原计划购买文具袋x 个,则实际购买了(x +1)个,依题意得:10(x +1)×0.85=10x ﹣17.解得x =17.答:小明原计划购买文具袋17个.(2)设小明可购买钢笔y 支,则购买签字笔(50﹣x )支,依题意得:[8y +6(50﹣y )]×80%≤400.解得y ≤100.即y 最大值=100.答:明最多可购买钢笔100支.点评考查了一元一次方程的应用和一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.五、复合题24. 】.解:(1)证明:0)4(16816)4(222≥-=+-=-+=∆k k k k k ,……………………2分 ∴无论k 为任何实数时,此方程总有两个实数根. ………………3分(2)由题意得:421+=+k x x ,k x x 421=⋅, ……………………4分 431121=+x x,432121=⋅+∴x x x x ,即4344=+k k , ……………………5分 解得:2=k ; ……………………6分(3)方法1:根据题意得:222215=+x x ,而22221221222148)4(2)(+=-+=-+=+k k k x x x x x x ,∴22254=+k ,解得:3=k 或3-=k (舍去)…………8分 设直角三角形ABC 的内切圆半径为r ,如图,由切线长定理,可得:5)4()3(=-+-r r ,∴直角三角形ABC 的内切圆半径r =12543=-+; ………10分 方法2:解方程得:41=x ,k x =2, ………………7分 根据题意得:22254=+k ,解得:3=k 或3-=k (舍去)………………8分设直角三角形ABC 的内切圆半径为r ,如图,由切线长定理,可得:5)4()3(=-+-r r ,∴直角三角形ABC 的内切圆半径r =12543=-+; ………………10分4。
安徽省中考数学精品复习试卷:方程(组)与不等式(组)(含答案解析)
2019年安徽省中考数学精品复习试卷:方程(组)与不等式(组)(含答案解析)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.方程4x -1=3的解是( )A.x =1B.x =-1C.x =-2D.x =22.一个实数的平方根是a +1和2a -10,则这个实数是 ( ) A.4B.16C.3D.93.已知 3243x y k x y k +=,⎧⎨-=+,⎩ 如果x 与y 互为相反数,那么 ( )A.k =0B.34k =-C.32k =-D.34k =4.不等式组221x x -≤,⎧⎨-<⎩ 的解集在数轴上表示正确的是 ( )5.某种商品进价100元,标价150元出售,但销量较小.为了促销,商场决定打折销售,若为了保证利润率不低于5%,那么最低可以打( ) A.6折B.7折C.8折D.9折6.某工厂生产一种机器,计划机器在50天内完成,若每天多生产5台,则40天完成且还多生产10台,问原计划每天生产多少台机器?设原计划每天生产x 台,根据题意可列出方程 ( )A.5010540x x -+=B.5010540x x ++=C.5054010x x +=+D.501054010x x ++=-7.在公式12()S a b h =+中,已知a =3,b =5,S =12,则h 的值为 ( )A.34B.43C.3D.48.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 值为 ( ) A.1 B.-1C.3D.49.若实数x ,y 满足(x +y +2)(x +y -1)=0,则x +y 的值为 ( ) A.1 B.-2C.2或-1D.-2或110.若不等式组4151x m x m <-,⎧⎨>+⎩无解,则m 的取值范围是 ( )A.2m ≥B.2m ≥-C.2m ≤D.2m ≤-二、填空题(本大题共4小题,每小题5分,满分20分) 11.已知x =1是方程x -1=k -2x 的解,那么k = . 12.若2(2)0m -+=,则mn = .13.某学校准备用5000元购买文学名著和辞典作为科技创新节奖品,其中名著每套65元,辞典每本35元,现已购买名著40套,最多还能购买辞典 本.14.某工厂第一季度的一月份生产电视机1万台,第一季度生产电视机的总台数是3.31万台,则二月份、三月份生产电视机平均增长率是 . 三、(本大题共2小题,每小题8分,满分16分)15.解方程组2375 3.x y x y -=,⎧⎨+=-⎩ ① ②16.解方程:21331x x x ---+=.四、(本大题共2小题,每小题8分,满分16分)17.解不等式组303(1)2(21)1x x x -≤,⎧⎨---<,⎩ ① ② 并把解集在数轴上表示出来.18.解方程组278ax by cx y +=,⎧⎨-=⎩时,正确的解应该为32x y =,⎧⎨=-.⎩由于看错了系数c ,得到方程组的解为22x y =-,⎧⎨=.⎩求a +2b +3c 的值.五、(本大题共2小题,每小题10分,满分20分)19.我市计划在两年内将现在的商品房价格调低19% ,求平均每年应降低的百分数.20.观察下列各等式:3 11112111 244224464324466844⨯⨯⨯⨯⨯⨯⨯⨯⨯=,+=,++=,….(1)猜想并写出第n个等式.(2)这个等式的结果能等于1980吗?若能,请写出这个等式;若不能,请分析原因.六、(本题满分12分)21.仔细阅读下列材料,然后解答问题.某商场在促销期间规定:商场内所有商品按标价的80%出售.同时,当顾客在该商场消费一定金额后,按如下方案获得相应金额的奖券:消费金额a(元) 200400a≤<400500a≤<500700a≤<700900a≤<…获得奖券的金额(元)30 60 100 130 …根据上述促销方法,顾客在商场内购物可以获得双重优惠.例如,购买标价为450元的商品,则消费金额为45080%360⨯=元,共获得的优惠额为450(180%)30120⨯-+=%元.设购买该商品得到的优惠率=购买商品获得的优惠额商品的标价.(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到13的优惠率?七、(本题满分12分)22.某中学为了落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?八、(本题满分14分)23.某汽车销售公司销售的汽车价格全在11万元以上,最近推出两种分期付款购车活动:①首付款满11万元,减1万元;②首付款满10万元,分期交付的余款可享受八折优惠.(1)小王看中了一款汽车,交了首付款后,还有12万余款需要分期交付,设他每月付款p万元,n个月结清余款,用关于p的代数式表示n;(2)设小王看中的汽车的价格为x万元,他应该采取哪种付款方式最省钱?请说明理由;(3)已知小王分期付款的能力是每月0.2万元,若不考虑其他因素,只希望早点结清余款,他该怎样选择?请说明理由.阶段检测二 方程(组)与不等式(组)1.A 【解析】本题考查解一元一次方程.解方程4x -1=3,得x =1.2.B 【解析】由题意得(a +1)+(2a -10)=0,解得a =3,所以这个实数是2(31)16+=.3.C 【解析】本题考查二元一次方程组的求解以及相反数的概念.解题中关于x ,y 的方程组得9611955k k x y ++=,=-.∵x 与y 互为相反数,∴9611955k k ++=,解得32k =-.4.C 【解析】解本题中的不等式组得-2≤x <3观察选项知C 正确.5.B 【解析】设打x 折销售,由题意得110150100x ⨯-≥5%100⨯,解得x ≥7故最低可以打7折. 6.B 【解析】本题考查列方程解应用题.由题意知,原计划每天生产x 台, 实际每天生产(x +5)台,生产任务为50x 台,实际40天完成(50x +10)台,根据题意可列出方程5010540x x ++=.7.C 【解析】把a =3,b =5,S =12代入公式12()S a b h =+中,得1212(35)h =⨯+,解得h =3.8.B 【解析】本题考查一元二次方程的性质与求解.把x =0代入一元二次方程22(1)10a x x a -++-=,解得1a =±,又∵a =1不合题意,应舍去,∴a =-1.9.D 【解析】本题考查整体思想和一元二次方程的求解.把x +y 整体看成一个未知数,解关于x +y 的一元二次方程(x +y +2)(x +y -1)=0,得x +y =-2或x +y =1.10.B 【解析】本题考查不等式组的求解.由题意可得41m -≤5m +1,解得m ≥-2 11.2 【解析】本题考查解一元一次方程.由题意得1-1=k -2,解得k =2. 12.-16 【解析】由题意得m -2=0,且n +8=0,解得m =2,n =-8,故mn =-16.13.68 【解析】设还能购买辞典x 本,由题意得654035x ⨯+≤5000,解得x ≤4807,x 取整数,其最大值为68,即最多还能购买辞典68本.14.10% 【解析】设二月份、三月份生产电视机平均增长率为x ,由题意得211(1)1(1) 3.31x x +⨯++⨯+=,解得10.1x =,2x =-3.1(不合题意,舍去),则二月份、三月份生产电视机平均增长率为10%.15.解:由②2⨯得2x +10y =-6, ③ 2分①-③得-13y =13,解得y =-1,代入②,解得x =2. 6分故原方程组的解为21x y =,⎧⎨=-.⎩ 8分16.解:方程两边同时乘x -3,得2-x -1=x -3, 解得x =2. 4分检验:当x =2时310x ,-=-≠, 所以原分式方程的根为x =2. 8分 17.解:解①得3x ≤,解②得x >-2.3分 所以原不等式组的解集为23x -<≤.6分 在数轴上表示为8分18.解:由 32x y =,⎧⎨=-⎩ 是方程组 278ax by cx y +=,⎧⎨-=⎩ 的解,得3223148a b c -=,⎧⎨+=,⎩①②解②得c =-2. 2分另一方面,由于是看错了系数c ,而未看错系数a ,b 得到解 22x y =-,⎧⎨=,⎩因而x =-2,y =2仍是方程ax +by =2的解, 4分 从而有-2a +2b =2 ③,联立①③建立方程组,解得a =4,b =5. 7分 所以a 23425(2)38b c ++=+⨯+-⨯=. 8分19.解:设平均每年应降低的百分数为x ,现在的房价为a . 2分 由题意得2(1)(119a x ,-=-%)a ,解得x =10%. 8分 答:平均每年应降低的百分数为10%. 10分20.解:(1)第1个式子左边最后一项为1124(21)(22)⨯⨯⨯⨯=,右侧为142⨯;第2个式子左边最后一项为1146(22)(23)⨯⨯⨯⨯=,右侧为243⨯;第3个式子左边最后一项为1168(23)(24)⨯⨯⨯⨯=,右侧为344⨯; 2分……依此类推,第n 个式子左边最后一项为1(2)[2(1)]n n ⨯⨯⨯+,即12(22)n n ⨯+,右侧为4(1)nn +. 4分∴第n 个等式为111244668⨯⨯⨯+++…12(22)4(1)nn n n +++=. 5分(2)当194(1)80nn +=时,解得n =19,经检验n =19是原方程的根, 8分则这个等式的结果能等于1980,且这个等式为111244668⨯⨯⨯+++…191384080⨯+=. 10分21.解:(1)购买一件标价为1 000元的商品消费金额为1 00080⨯%=800元,因此可获得奖券为130元,购买该商品得到的优惠率为1000(180%)130100033%⨯-+=. 4分答:购买一件标价为1 000元的商品,顾客得到的优惠率为33%. 5分 (2)因为50080⨯%=400元80080,⨯%=640元.所以对于标价在500元与800元之间(含500元和800元)的商品的优惠价在400元与640元之间(含400元和640元). 7分设顾客购买标价为x 元的商品,可以得到13的优惠率.当优惠额在400元(含400)与500元之间时,有(180%)6013x x-+=,解得x =450,又45080⨯%=360<400,不合题意,舍去; 9分 当优惠价在500元(含500)与700元之间时,有(180%)10013x x-+=,解得x =750.经检验,x =750是分式方程的解,且满足题意.答:顾客购买标价为750元的商品,可以得到13的优惠率. 12分 22.解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意得8030(30)19005060(30)1620x x x x +-≤,⎧⎨+-≤,⎩ 解得1820x ≤≤. 2分∵x 只能取整数,∴x 的所有可能取值是18,19,20.①当x =18时,30-x =12;②当x =19时,30-x =11;③当x =20时,30-x =10. 5分故有三种组建方案:方案一,中型图书角18个,小型图书角12个;方案二,中型图书角19个,小型图书角11个;方案三,中型图书角20个,小型图书角10个. 7分 (2)方案一的费用是860185701222320⨯+⨯=元; 方案二的费用是860195701122610⨯+⨯=元; 方案三的费用是860205701022900⨯+⨯=元. 10分 故方案一的费用最低,最低费用是22320元. 12分 23.解:(1)由题意可得12pn ,=. 2分(2)由题意可知,第①种方式中,应实付款(x -1)万元,第②种方式中,应实付款0.8(x -10)+10=(0.8x +2)万元, 4分 则(x -1)-(0.8x +2)=0.2x -3, 令0.2x -3=0,解得x =15. 6分∴当汽车价格11<x <15时,采取第①种方式较省钱;当汽车价格x =15时,两种方式一样;当汽车价格x >15时,采取第②种方式较省钱. 8分(3)小王采取第①种优惠方式所购汽车的价格x (万元)与结清余款所需的月数1n 之间的关系为x -11-1=0.12n ,即1n =5x -60.小王采取第②种优惠方式所购汽车的价格x (万元)与结清余款所需的月数2n 之间的关系为0.8(x -10)=0.22n ,即2440n x =-. 10分 则12(560)(440)20n n x x x -=---=-,令x -20=0,解得x =20,当x =20时1240n n ,==.12分∴当汽车价格在11~20万元之间时,采取第①种方式可早点结清余款; 当汽车价格等于20万元时,两种方式都需要40个月才能结清余款; 当汽车价格大于20万元时,采取第②种方式可早点结清余款. 14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段测评(二) 不等式(组)与方程(组)
(时间:45分钟 总分:100分)
一、选择题(本大题共6小题,每小题5分,共30分)
1.(2018·嘉兴中考)不等式1-x≥2的解集在数轴上表示正确的是( A )
,A )
,B )
,C )
,D )
2.(2018·深圳中考)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( A )
A .⎩⎪⎨
⎪
⎧x +y =70,8x +6y =480 B .⎩
⎪⎨⎪
⎧x +y =70,6x +8y =480
C .⎩⎪⎨⎪⎧x +y =480,6x +8y =70
D .⎩
⎪⎨⎪⎧x +y =480,8x +6y =70 3.(2018·荆门中考)已知关于x 的不等式3x -m +1>0的最小整数解为2,则实数m 的取值范围是( A )
A .4≤m<7
B .4<m<7
C .4≤m ≤7
D .4<m ≤7
4.已知x =2是不等式(x -5)(ax -3a +2)≤0的解,且x =1不是这个不等式的解,则实数a 的取值范围是( C )
A .a >1
B .a ≤2
C .1<a≤2
D .1≤a ≤2且m≠1
5.关于x 的一元二次方程(m -1)x 2
-2x -1=0有两个实数根,则实数m 的取值范围是( C )
A .m ≥0
B .m >0
C .m ≥0且m≠1
D .m >0且m≠1
6.(2018·常德中考)阅读理解:a 、b 、c 、d 是实数,我们把符号错误!))称为2×2阶行列式,并且规定:错误!))=a×d-b×c.例如,错误!))=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组错误!的解可以利用2×2阶行列式表示为⎩⎪⎨⎪⎧x =D
x D
,y =D y
D ,
其中
D =⎪⎪⎪a 1
a 2
⎪⎪⎪
b 1b 2,D x =⎪⎪⎪
c 1
c 2
⎪⎪⎪
b 1 b 2,D y =⎪⎪⎪a 1
a 2
⎪
⎪⎪c 1c 2.问题:对于用上面的方法解
二元一次方程组⎩
⎪⎨⎪
⎧2x +y =1,3x -2y =12时,下面说法错误的是( C )
A .D =⎪⎪⎪2
3
⎪
⎪⎪
1-2=-7 B .D x =-14 C .D y =27
D .方程组的解为⎩
⎪⎨⎪⎧x =2,
y =-3
二、填空题(本大题共6小题,每小题5分,共30分)
7.已知2x -3和1+4x 互为相反数,则x =__1
3
__.
8.不等式组⎩
⎪⎨⎪⎧x>3,
x>a 的解集是x>a,则a 的取值范围是__a≥3__.
9.(2018·黄冈中考)一个三角形的两边长分别为3和6,第三边长是方程x 2
-10x +21=0的根,则三角形的周长为__16__.
10.(2018·山西中考)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115
cm .某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm ,长与高的比为8∶11,则符合此规定的行李箱的高的
最大值为__55__cm .
11.(2018·泸州中考)已知x 1、x 2是一元二次方程x 2
-2x -1=0的两实数根,则12x 1+1+12x 2+1
的值是__6__.
12.(2018·德州中考)对于实数a 、b,定义运算“◆”:a◆b=⎩⎨⎧a 2+b 2,a ≥b ,
ab ,a<b.
例如4◆3,因为4>3.所以
4◆3=42
+32
=5.若x 、y 满足方程组⎩
⎪⎨⎪⎧4x -y =8,
x +2y =29,则x◆y=__60__.
三、解答题(本大题共3小题,共40分) 13.(12分)(2018·永州中考)解不等式组: ⎩⎪⎨⎪
⎧2(x -1)+1<x +2,x -1
2
>-1, 并把解集在数轴上表示出来. 解:解2(x -1)+1<x +2,得x <3. 解
x -1
2
>-1,得x >-1. ∴所求不等式组的解集为-1<x <3, 在数轴上表示如下:
14.(12分)(2018·黄石中考)已知关于x 的方程x 2
-2x +m =0有两个不相等的实数根x 1、x 2. (1)求实数m 的取值范围; (2)若x 1-x 2=2,求实数m 的值. 解:(1)由题设可得Δ=4-4m>0,
解得m<1,
∴m 的取值范围是m<1;
(2)由一元二次方程的根与系数的关系,得
⎩⎪⎨⎪⎧x 1+x 2=2,x 1x 2
=m. 又∵x 1-x 2=2,∴(x 1-x 2)2
=4, ∴(x 1+x 2)2
-4x 1x 2=4, ∴4-4m =4, ∴m =0.
15.(16分)(2018·内江中考)某商场计划购进A 、B 两种型号的手机,已知每部A 型号手机的进价比每部B 型号手机进价多500元,每部A 型号手机的售价是2 500元,每部B 型号手机的售价是2 100元.
(1)若商场用50 000元共购进A 型号手机10部、B 型号手机20部.求A 、B 两种型号的手机每部进价各是多少元;
(2)为了满足市场需求,商场决定用不超过7.5万元采购A 、B 两种型号的手机共40部,且A 型号手机的数量不少于B 型号手机数量的2倍.
①该商场有哪几种进货方式?
②该商场选择哪种进货方式,获得的利润最大?
解:(1)设A 、B 两种型号的手机每部进价分别是x 元、y 元,根据题意,得
⎩⎪⎨⎪⎧x =y +500,10x +20y =50 000,解得⎩
⎪⎨⎪⎧x =2 000,y =1 500. 答:A 、B 两种型号的手机每部进价分别是2 000元、1 500元;
(2)①设购进A 种型号手机a 部,则购进B 种型号手机(40-a)部,根据题意,得
⎩
⎪⎨⎪⎧2 000a +1 500(40-a )≤75 000,a ≥2(40-a ), 解得80
3
≤a≤30.
∵a 为正整数,∴a =27,28,29,30, ∴有4种进货方案:
a .购进A 种型号手机27部、B 种型号手机13部;
b .购进A 种型号手机28部、B 种型号手机12部;
c .购进A 种型号手机29部、B 种型号手机11部;
d .购进A 种型号手机30部、B 种型号手机10部;
②设A 种型号的手机购进a 部,则获得的利润为w 元,根据题意,得 w =500a +600(40-a)=-100a +24 000. ∵-10<0,∴w 随a 的增大而减小,
∴当a =27时,能获得最大利润,此时w =-100×27+24 000=21 300(元).
因此,购进A种型号手机27部、B种型号手机13部时,获得的利润最大.。