现代物流中心运营阶段CO2排放计算分析
物流碳排放的估算
一
、
研 究综 述
表 明较少 有 文献对 供应 链 中的碳 排放 及环 境影 响进 行 分析 。关 于物 流企业 的碳 排放 主要 集 中在定 性 的
关 于物 流活 动 的碳排 放 ,中 国学 者大 多从 低碳 物 流 的内涵 进行研 究 ,王艳 ( 2 0 1 0 )认 为 ,低 碳物 流是 指 在整 个低碳 经 济 系统 的运行 中 ,通 过利 用先 进 的技 术来 优化 管理 ,提 升物 流 管理水 平 ,从 而 实 现 物流对 循 环经 济 的 良 l 生促进 。段 向云 ( 2 0 1 1 )认
活 动减量 化 、物 流要 素合 理化 以及 低碳 技 术产 业化 的基 础 上 , 以实 现低 能耗 、低 污染 、低 排 放 的物 流
发 展模式 。
由 于 中 国没 有 建 立 完 善 的 碳 排 放 监 测 体 系 , 目前 不 能 直 接 获 得 某 一 企 业 或 者 行 业 的直 接 碳 排
物流 园区的固定碳排放 ,二是 运输 途 中车辆 燃油 消耗 所产 生的碳 排放 ,并提 出了这两种碳 排放 的估 算方 法 , 旨在可 以定量地分析物流活动的碳排 放情况。
【 关 键 词 】物 流;碳排放 ;碳排放 系数 【 作者简 介】陈婧 ,同济大学经济与 管理 学院硕士研 究生,研究方向 :管理科 学与工程 。
构的不同,火力发电比例越高,单位电能产生的碳 排放量也就越大 。国家发展改革委气候 司公布 的
流活动的碳排放 ,而是用给定值直接计算 。
学 术界 对 于物 流企业 的碳 排 放 的理论 研究 比较 多 ,在 S e u r i n g 和 Mu l l e r( 2 0 0 8 )的文献 综 述 中 ,也
上海市物流业碳排放测算及影响因素研究
摘要近几年物流行业迅速扩张,成为了发展经济必不可少的一个环节,物流业的开展主要是依靠运输,需要消耗大量的能源,这是二氧化碳产生的主要途径。
上海市是一线城市且位列高碳地区行列,物流业一定会呈现低碳化行径的趋势。
上海市低碳化进程将会促进上海市经济走可持续发展的道路,并且带动整个东南沿海城市的物流行业向低碳化方向前进。
本文研究了上海市物流业碳排放的问题,概述了上海市物流业近年的基本情况,根据上海市物流业的能源消耗量测算了其物流业碳排放总量,探讨了经济变化与碳排放两者的相互联系。
通过LMDI模型把2011年-2014年间对上海市碳排放强度的影响因素分解为能源结构、能源强度、能源效率三个因素。
结果显示上海市物流业碳排放强度的降低主要是由于能源效率的变化,而上海市物流业的能源结构在这四年间仍然是以燃料油和煤油为主没有发生根本性的改变,抑制了物流业的低碳发展。
文章末尾对上海市发展低碳物流提出改进措施。
关键词:碳排放强度;影响因素;能源效率1 绪论1.1研究背景随着温室效应带来的危害日益加剧,气候问题受到了全世界的普遍重视。
随着我国经济的发展,在国际中的地位不断提高,作为发展中国家的代表,需要对节能减排作出表率,因此承诺了我国2020年单位GDP碳排放量同比2005年下降百分之四十五左右。
这使得节约能源,控制二氧化碳排放量的任务更加紧迫。
上海市是我国第一大都市,是我国的经济、交易、金融、运输枢纽。
其物流行业繁荣发展,运输网络发达。
2010年-2014年物流行业增加值逐年增长,年平均上升186.75亿元,2014年达到2784亿元。
年货物总运输量达到了9.0341亿吨,同比2013年减少了百分之一点三。
这五年内上海市生产总值也不断攀升,年平均增长8.24%,人均GDP年增长率为6.36%。
能源消费总量也呈现上升趋势,到了2014年消费总量为11084.63万吨标准煤且占我国总体消费量的2.6%,同年平均每人能源消耗量为0.47吨标准煤,高出全国年人均的35.47%。
碳排放量计算方法
碳排放量计算方法碳排放量计算是指根据特定活动或过程产生的二氧化碳排放量进行测算和统计的过程。
在当前全球温室气体排放问题日益突出的背景下,准确计算和监测碳排放量对于制定减排政策和实施减排措施至关重要。
本文将介绍常见的碳排放量计算方法,以期为相关研究和实践提供参考。
首先,碳排放量的计算需要明确排放源和排放因子。
排放源可以是工业生产、交通运输、能源消耗等,而排放因子则是指每个排放源单位产生的二氧化碳排放量。
其次,对于不同的排放源,计算方法也有所不同。
例如,对于工业生产排放源,可以根据生产过程中使用的能源类型和消耗量来计算二氧化碳排放量;而对于交通运输排放源,则可以根据车辆类型、行驶里程和燃料类型等因素来计算二氧化碳排放量。
在实际计算中,还需要考虑碳排放的间接影响。
例如,对于一个产品的碳排放量计算,除了考虑生产过程中的直接排放,还需要考虑原材料生产、运输、包装等环节的间接排放。
因此,碳排放量的计算需要全面考虑生命周期的各个环节,以确保计算结果的准确性和全面性。
除了以上介绍的基于排放源和排放因子的计算方法外,还有一些其他计算方法,如基准线方法、边际方法等。
基准线方法是指将某一活动的碳排放量与某个基准进行比较,以确定减排量;边际方法则是指在不同情境下对碳排放量进行边际变化的计算。
这些方法在实际应用中可以根据具体情况进行选择和组合,以更好地适应不同的碳排放量计算需求。
在碳排放量计算过程中,数据的准确性和可靠性至关重要。
因此,需要对能源消耗、生产过程、排放因子等数据进行准确测量和统计。
同时,还需要考虑不确定性因素对计算结果的影响,以便在结果分析和政策制定中进行合理的考虑和处理。
总之,碳排放量计算是一项复杂而重要的工作,需要综合考虑排放源、排放因子、生命周期等多个因素。
在实际应用中,需要根据具体情况选择合适的计算方法,并确保数据的准确性和可靠性。
希望本文介绍的内容能够为相关研究和实践提供一定的参考和帮助。
二氧化碳年排放量的计算方法
二氧化碳年排放量的计算方法计算二氧化碳年排放量的方法方法一:国家能源统计数据法•描述:该方法基于国家能源统计数据,通过计算各个能源行业的能源消耗量来估计二氧化碳排放量。
数据来源于国家能源统计年鉴等相关数据报表。
•优点:–数据来源可靠,经过政府统计机构的审核和验证。
–对于各个能源行业的计算比较准确。
•缺点:–只能计算全国范围的二氧化碳排放量,无法提供具体地区或单位的数据。
–针对能源不足、数据缺失等情况可能存在一定的误差。
方法二:企业自报数据法•描述:该方法基于企业自行报告的数据,通过企业主动提供的能源消耗量和排放因子来估计二氧化碳排放量。
•优点:–提供了更详细的数据,包括具体地区和企业单位的排放量。
–对于企业自身能源管理和环保政策制定具有促进作用。
•缺点:–数据的准确性受企业主观因素影响,存在一定的不确定性。
–难以监督和验证企业报告的真实性,可能存在误报、夸大等情况。
方法三:碳排放清单法•描述:该方法通过构建碳排放清单,对于每个碳源进行详细的能源消耗和相应排放因子的测算,从而得出二氧化碳的年排放量。
•优点:–提供了更准确的数据,具备较高的科学性和可比性。
–可以根据清单的结果进行针对性的能源管理和减排措施制定。
•缺点:–数据采集和处理相对复杂,对于小型企业和个人而言,可能存在较高的成本和技术门槛。
–对于某些碳源,如森林、土壤等,测算难度较大,准确性有待提高。
方法四:模型预测法•描述:该方法通过建立数学模型,综合考虑能源消耗、经济增长、人口变化等因素,预测未来的二氧化碳排放量。
•优点:–能够预测长期的排放趋势,为环境政策的制定提供参考依据。
–能够考虑到多种变量的影响,提供更全面的分析结果。
•缺点:–预测结果受到建模方法和数据质量的影响,存在不确定性。
–难以应对突发事件和意外情况,对于特殊情况的预测准确度较低。
以上是计算二氧化碳年排放量的几种常见方法,每种方法都有其适用的场景和优缺点。
在实际应用中,可以根据数据可获得程度、需求准确度以及成本等因素选择合适的方法进行计算。
物流业能源消耗碳排放量分析及低碳化策略
物流业能源消耗碳排放量分析及低碳化策略作者:欧阳强斌吴艳红来源:《金融经济·学术版》2013年第09期摘要:2012年全国社会物流总费用占GDP比率约为18. %,作为服务于生产、流通和生活消费的物流业,其能源消耗量大,碳排放量大,在低碳经济成为全球性共识背景下,发展低碳物流业意义重大。
文章在运用碳排放量测算等式近似计算1995-2011年间的物流业能源消耗及碳排放量的基础上,分析了物流业能源消耗碳排放量变化趋势、碳排放量的影响因素并提出了物流业低碳排放策略。
关键词:物流业;能源;碳排放一、引言随着经济发展,全球经济总量增加,世界能源消费与碳排放量剧增,生态环境不断恶化,气候变暖已严重威胁到人类的可持续发展,2012年全球的二氧化碳排放量再创历史新高,达到316亿吨,比2011年增加了1.4%,而中国再次成为全球碳排量最高的国家,2012年的碳排量增加了3亿吨,增排量也创下全球最高。
我国物流业规模大,目前全国社会物流总费用占GDP比率约18%,而且物流业中的运输业耗能大、碳排放量大,运输行业是中国节能减排的重点行业之一,因此物流业低碳碳排放研究具有重要意义。
二、物流业能源消耗碳排放量测算目前,由于没有直接的物流业能耗数据更没有物流业直接碳排放量的监测数据,因此物流业能源消耗碳排放量的测算只能通过间接的统计、测算得来。
其中物流业能耗数据采用国家统计局对交通运输、仓储及邮电通信业能耗的统计数据来近似替,由于物流业耗能量主要由运输仓储等耗能量构成,因此此种替代具有合理性和现实性。
这里采用的计算公式主要参考了徐国泉等学者提出并改进的碳排放量分解模型中的公式,该公式的算法己得到认可,因此采用该公式计算得到的碳排放量是可靠的,基本公式为:(1)C=Ei×θi×εiC为碳排放量,Ei为i种能源消耗量,θi为i种能源的的折煤标准系数,εi为i种能源碳排放系数。
收集1995至2011年数据物流业个类能源消耗数据代入计算公式(1),得出从1995到2011年期间的各能源的标准煤消耗量、碳排放量和总碳排放量。
物流环节碳排放计算与减排方案
物流环节碳排放计算与减排方案1. 引言随着全球贸易的增长和经济的发展,物流行业的重要性日益凸显。
然而,物流过程伴随着大量的能源消耗及碳排放,对环境造成了巨大的压力。
为了减少物流环节的碳排放并实现可持续发展,减排方案成为了当今物流行业的重要课题。
本文将介绍物流环节碳排放的计算方法以及一些常见的减排方案。
2. 物流环节碳排放计算方法2.1 运输过程的碳排放计算在物流过程中,运输环节通常是碳排放的主要来源之一。
运输的碳排放主要来自燃料的燃烧和车辆尾气的排放。
为了准确计算运输过程中的碳排放,可以采用以下方法:•基于能源消耗量的计算方法:通过测量运输过程中所消耗的能源,如燃油、电能等,根据能源消耗量和能源排放系数来计算碳排放量。
•基于行驶里程的计算方法:通过测量运输车辆的行驶里程以及车辆的能效性能,计算出运输过程中的碳排放量。
2.2 仓储和分拣环节的碳排放计算除了运输环节,仓储和分拣环节也是物流过程中的重要环节。
仓储和分拣过程中常常会使用到各类设备和机械,如堆高机、输送带等,这些设备的能源消耗会导致碳排放的增加。
计算仓储和分拣环节的碳排放可以采用以下方法:•基于设备能源消耗量的计算方法:通过测量设备在工作过程中所消耗的能源,结合能源排放系数,计算出仓储和分拣环节的碳排放量。
3. 物流环节碳排放的减排方案在面对物流环节碳排放的挑战时,采取适当的减排方案是必要的。
以下是一些常见的减排方案:3.1 推行绿色物流绿色物流是一种环保、节能、低碳的物流方式,其核心理念是通过使用清洁能源、提高能源利用效率、减少运输距离等手段来降低物流环节的碳排放。
采取以下措施可以推行绿色物流:•引入新能源车辆:大力推广电动汽车、混合动力车等新能源车辆,减少使用传统燃油车辆的比例。
•优化运输路线:通过优化运输路线,减少运输距离和时间,从而减少能源消耗和碳排放。
•提高运输效率:进行运输资源的合理配置,减少空载和半载运输,提高运输效率。
3.2 优化仓储和分拣环节在仓储和分拣环节,采取一些优化措施可以降低碳排放:•引入高效设备:采用能耗低、效率高的设备,例如高效堆高机、自动化输送带等,减少能源消耗。
二氧化碳排放计算标准
二氧化碳排放计算标准是指针对各类排放源头的二氧化碳排放量进行计量和监测的一套规范体系,其制定旨在控制和减少温室气体排放,应对气候变化,保护环境和生态。
二氧化碳排放计算标准的建立对于推动各行业减排工作,实现碳中和目标具有重要意义。
下面将从全球背景、国际标准、国内标准以及未来发展趋势等方面展开详细阐述。
一、全球背景随着全球工业化和城市化进程的加速,二氧化碳排放已成为全球性问题。
科学家们普遍认为,二氧化碳排放是主要的温室气体排放之一,其对地球气候和生态系统产生了深远影响,导致全球气候变暖和极端天气事件频发。
因此,全球各国纷纷响应《巴黎协定》,承诺制定并实施相应的二氧化碳排放计算标准,以减缓气候变化带来的负面影响。
二、国际标准在国际上,主要由联合国环境规划署(UNEP)和国际能源署(IEA)等机构发布了相关的二氧化碳排放计算标准。
这些标准通常包括了排放源的分类、排放因子的确定、数据采集和监测方法、报告与验证要求等内容,旨在为各国提供统一的计量方法和技术支持,促进全球范围内的排放数据透明度和可比性。
同时,国际间的合作与交流也为不同国家之间的经验互惠提供了平台,促进了技术的共享和进步。
三、国内标准在中国,二氧化碳排放计算标准的制定与实施得到了政府部门的高度重视和支持。
国家标准化管理委员会颁布了《温室气体排放核算与报告指南》,明确了各行业排放计算的方法和程序。
此外,针对不同行业和部门,相关部委也陆续发布了行业标准和技术规范,对于计算范围、数据采集、计算公式、监测方法等方面进行了详细规定,为各行业单位提供了明确的指导和依据。
四、未来发展趋势随着我国碳达峰和碳中和目标的提出和实施,二氧化碳排放计算标准将面临新的挑战和发展机遇。
未来,二氧化碳排放计算标准将更加注重对数据的精准性和真实性要求,强化监测手段和技术手段的创新应用,推动排放源头的实时监测和数据共享。
同时,还将加强对排放数据的报告和验证要求,完善排放数据的溯源和可追溯性,提高排放数据的可信度和公信力。
二氧化碳排放核算方法(核算范围及公式以及电力调入调出二氧化碳间接排放量核算)
⼆氧化碳排放核算⽅法(核算范围及公式以及电⼒调⼊调出⼆氧化碳间接排放
量核算)
(⼀)核算范围及公式
⼆氧化碳排放指化⽯燃料燃烧过程产⽣的排放量。
核算公式为:
⼆氧化碳排放量=燃煤排放量+燃油排放量+燃⽓排放量+电⼒调⼊⼆氧化碳排放量-电⼒调
出⼆氧化碳排放量
其中:
燃煤排放量(吨⼆氧化碳)=当年煤炭消费量(吨标准煤)×上次燃煤综合排放因⼦(吨⼆氧化碳/
吨标准煤)
燃油排放量=当年油品消费量×上次燃油综合排放因⼦
燃⽓排放量=当年天然⽓消费量×上次燃⽓综合排放因⼦
说明: 单位化⽯燃料燃烧产⽣的⼆氧化碳排放理论上随着燃料质量、燃烧技术以及控制技术
等因素的变化每年应该有所差异,考虑到年度数据获取的滞后性以及可⽐性,核算各省⼆氧化
碳排放的排放因⼦数据采⽤2005年国家温室⽓体清单的初步数据,见下表。
2005年化⽯燃料燃烧过程CO2排放因⼦
\
(⼆)电⼒调⼊调出⼆氧化碳间接排放量核算
电⼒调⼊调出⼆氧化碳净排放量=电⼒调⼊⼆氧化碳排放量-电⼒调出⼆氧化碳排放量
=(调⼊电量×调⼊电⽹供电平均排放因⼦)-(调出电量×所在电⽹供电平均排放因⼦)
其中,调⼊或调出电量数据可以从各省能源平衡表或电⼒平衡表获得,并以千⽡时为单
位;区域电⽹供电平均排放因⼦,鉴于我国电⽹实⾏统⼀调度、分级管理,为了既能反映不同
地区电源结构特点,⼜便于确定区域电⽹的供电平均排放因⼦,建议将区域电⽹边界按⽬前的
东北、华北、华东、华中、西北和南⽅电⽹划分,并采⽤2005年我国区域电⽹排放因⼦数据,
见下表。
2005年江西省单位供电平均⼆氧化碳排放
\。
物流运输能耗与碳排放问题
仓库在运营过程中需要保持恒温、恒湿等环境条件,这需要 消耗大量的能源,如电力、燃气等,这些能源的消耗会产生 一定的二氧化碳排放。
物流信息碳排放问题
信息传输
物流信息在传输过程中需要消耗大量的能源和资源,如服务器、网络设备等, 这些设备的运行过程中会产生一定的二氧化碳排放。
信息处理
物流信息的处理需要消耗大量的计算资源和存储资源,如云计算、大数据等技 术,这些技术的运行过程中也会产生一定的二氧化碳排放。
CHAPTER 03
物流运输碳排放问题
运输工具碳排放问题
公路运输
公路运输是物流运输的主要方式之一,但同时也是碳排放 的主要来源。运输工具如货车、客车等在行驶过程中会产 生大量的二氧化碳排放。
水路运输
水路运输的碳排放量相对较低,但仍然存在一定的排放问 题。船舶在航行过程中会产生一定的二氧化碳排放。
物流运输能耗与碳排放的影响
对环境的影响
物流运输的能耗与碳排放是造成环境污染和气候变化的重要原因之一,对环境造成了严重的负面影响 。
对经济的影响
物流运输的高能耗和高碳排放也增加了企业的运营成本,影响了经济的可持续发展。
CHAPTER 02
物流运输能耗问题
运输工具能耗问题
运输工具能耗高
物流运输过程中需要大量使用各种运输工具,如货车、船 舶、飞机等,这些工具的能耗较高,是物流运输能耗的主 要来源之一。
运输效率低下
由于运输网络规划不合理、运输方式选择不当等原因,导 致物流运输效率低下,增加了运输过程中的能耗。
运输工具技术水平较低
目前,我国物流运输工具的技术水平相对较低,例如老旧 车辆、船舶和飞机等,这些工具的能耗更高。
仓储设施能耗问题
我国物流运输业碳排放测量及分解模型实证研究_李创
doi :10.3969/j.issn.1005-8141.2015.10.009我国物流运输业碳排放测量及分解模型实证研究李创,昝东亮(河南理工大学能源经济研究中心,河南焦作454000)摘要:随着我国能源约束趋紧,环境质量下降,多省份雾霾污染严重,生态文明建设受到社会各界的广泛关注。
在此背景下,以物流运输业这一碳排放大户为例,开展了实证研究。
运用LMDI 分解法得出影响运输碳排放的因素主要有:运输能源结构、能源消耗强度、碳排放强度、货运量等四个因素。
在此基础上提出三点政策建议:优化运输能源消费结构,重点提高新型能源和可再生能源的利用比例;整合运输资源,提高运输效率,优化运输路径,降低运量对碳排放的拉动效应;鼓励科技创新,加快新技术、新装备的研发与应用进程,建立相应的制度保障。
关键词:碳排放;能耗结构;LMDI 分解;低碳运输中图分类号:X511;F224.0文献标志码:A文章编号:1005-8141(2015)10-1197-03Empirical Study on Carbon Emissions Measurement and Decomposition Model of Chinese Logistics IndustryLI Chuang ,ZAN Dong -liang(Research Center of Energy Economy ,Henan Polytechnic University ,Jiaozuo 454000,China )Abstract :Along with our country energy constraint tightening ,declining of the environment quality serious haze pollution in the prov-inces ,the construction of ecological civilization was widely concerned by the community.Under the background ,this paper took the carbon e-missions of the logistics transportation industry as an example ,and carried out the empirical research.Specifically ,this paper used LMDI de-composition method and made the main factors affecting transport carbon emissions :Transport energy structure ,energy consumption intensity ,carbon emission intensity ,freight volume four factors.Finally ,this paper put forward three policy recommendations :To optimize the energy consumption structure ,increase the proportion of the use of new energy and renewable energy ,integrate transport resources ,improve transport efficiency ,optimize the transport path ,reduce the stimulating effect of transport volume on carbon emissions ,encourage scientific and techno-logical innovation ,speed up the process of research and application of new technology ,new equipment ,and complete the correlation system.Key words :carbon emission ;energy consumption structure ;LMDI decomposition ;low carbon transport收稿日期:2015-08-17;修订日期:2015-09-25基金项目:国家社科基金青年项目(编号:13CJY045);河南省教育厅科学技术研究重点项目(编号:14A790010);河南省教育厅人文社会科学研究重点项目(编号:2014-ZD -067);河南省高等学校重点科研项目(编号:15A790032)。
2021年二氧化碳排放量的计算方式
二氧化碳排放量如何计算?欧阳光明(2021.03.07)2009-12-10我国是以火力发电为主的国家,火力发电厂是利用燃烧燃料(煤、石油及其制品、天然气等)所得到的热能发电的。
节约化石能源和使用可再生能源,是减少二氧化碳排放的两个关键。
那么,如何计算二氧化碳减排量的多少呢?以发电厂为例,节约1度电或1公斤煤到底减排了多少“二氧化碳”?根据专家统计:每节约1度(千瓦时)电,就相应节约了0.4千克标准煤,同时减少污染排放0.272千克碳粉尘、0.997千克二氧化碳、0.03千克二氧化硫、0.015千克氮氧化物。
为此可推算出以下公式:节约1度电=减排0.997千克“二氧化碳”;节约1千克标准煤=减排2.493千克“二氧化碳”。
(说明:以上电的折标煤按等价值,即系数为1度电=0.4千克标准煤,而1千克原煤=0.7143千克标准煤。
)在日常生活中,每个人也能以自身的行为方式,为节能减排出一份力。
以下是“碳足迹”的基本计算公式:家居用电的二氧化碳排放量(千克)=耗电度数×0.785;开车的二氧化碳排放量(千克)=油耗公升数×0.785;短途飞机旅行(200公里以内)的二氧化碳排放量=公里数×0.275;中途飞机旅行(200公里到1000公里)的二氧化碳排放量=55+0.105×(公里数-200);长途飞机旅行(1000公里以上)的二氧化碳排放量=公里数×0.139二氧化碳排放量计算方法高黎敏(陕西省燃气设计院,陕西西安 710043)汽油、柴油、天然气作为车用燃料的二氧化碳排放量计算方法如下:根据CO2潜在排放系数和燃料的平均低位发热量,可计算出燃料燃烧产生CO2的量:①基础数据:根据中华人民共和国国家发展和改革委员会节能信息传播中心(National Development and Reform Commission-Energy Conservation Information Dissemination Center ,简称NDRC-ECIDC)发布的数据,CO2潜在排放系数见表1。
中国省域物流作业的CO2排放量测评及低碳化对策研究
瓮畏嚣孑・%。册,
宁夏
,175.187 9
--嘶蜘
・搋tsz,
地…,4
新疆
篙畏嚣静
-帆ssz
s
-z灿s6
2
t 136.293 3
注:其他省域物流活动未使用或末统计热能,故未核算。 ・83・
辔
量的19.48%)和热能(占排放量的5%)资源比其他大部 分省域的要高,而作为消费型城市其货物周转量又少,这
中国人口・资源与环境
2011年
第2l卷
第9期
CI-IlNAPOPULATION,船吲X】Ra啜ANDENVIRONMENT
V01.21
No.9
201I
杭州物流公司 /
中国省域物流作业的C02排放量测评及 低碳化对策研究
周 叶1,2
王道平1
赵耀1
(1.北京科技大学经济管理学院,北京100083;2.南昌航空大学经济管理学院,江西南昌330063)
流作业量的CO:排放量,本文采用单位货物周转CO:排
单位货物周转C02排放量=暮萋罢糕(9)
放量这个指标来进行核算对比,其核算公式见式(9):
根据该公式及相关数据,得出各省域的单位货物周转
CO:排放量,详见表3和图l,可以看出北京的单位货物周 转CO,排放量最大,达到2.862 4t/万tkm,北京作为陆运 交通枢纽,拥有诸多大型的物流节点,消耗的电能(占排放
(2)省域物流作业煤炭燃料的CO:排放量。物流作
业过程中所使用的煤炭燃料主要用于为物流节点供热,因 此,以区域内物流活动所消耗的煤炭燃料量来核算所排放
・82・
域的交通运输、仓储和邮政业的数据,核算出我国省域
周叶等:中国省域物流作业的C02排放量测评及低碳化对策研究
以城市配送系统为例研究CO2的排放量
以城市配送系统为例研究CO2的排放量,成本和服务质量交易评价来源:IA TSS作者单位:华盛顿大学城市与环境工程系摘要:越来越大的对温室气体的限制压力,迫使企业正在改变自己的经营方式,本文介绍了在这些变化的压力下,如何在成本、服务质量(由时间窗来表示)、城市皮卡的排放和配送系统间进行取舍,由ArcGIS的作者们研发的一个模型,可以用于对涉及具体的运营特点的具体案例的权衡进行评估研究,该问题是以带时间窗的车辆路径排放最小化进行建模的,对不同的外部政策和内部经营变化的分析,为洞察这些变化对成本、服务质量和排放的影响提供了依据,具体考虑的因素涵盖了时间窗口,客户密度以及车辆选择。
结果表明:货币成本和每公斤CO2排放量间有稳定的关系,即每排放1公斤的CO2,将会带来$3.50的成本上升,说明了燃料的使用对成本和排放的双重影响,此外,客户密度和时间窗长度与货币成本和每单CO2的排放量间有着非常紧密的联系,增加80个客户,或延长100分钟的时间窗将会为每个订单节省约为$3.50和1公斤的CO2排放;最后评价四个不同的车队,说明可以使用混合动力汽车取得显著的环境和货币收益。
最后的结果表明,CO2排放量和成本之间并不矛盾,这两个指标的趋势是一致的,这表明促使车辆运营商限制排放最有效的方式就是增加燃料和CO2生产的成本,因为这是符合目前的降低成本和排放的要求的。
1.引言2010年美国温室气体排放和下沉的清单表明,运输部分产生的燃料消耗是终端燃料消耗百分比最大的部分,在2008年产生了超过1800Tg的CO2排放,接近三分之一的排放来自化石燃料的排放。
随着对世界资源需求的不断增加,城市、地区和国家必须认识到,在促进经济增长和发展的同时,要最大限度的减少对环境的影响,有超过一千多个美国市长签署了京都议定书,承诺以1990年的排放水平作为基准,到2012年前使温室气体的排放量减少7%,作为竞争的利益来看,这些签署协议的市长都在努力保护本地居民的经济和社会福利,使其不会受到既定的环保目标的影响,不幸的是,目前的商业惯例和土地利用模式导致的结果是这些目标间是相互对立的,经济的运营需要广泛的能源开采和运输。
中国省域物流作业的碳排放量测评及区域差异化分析
中国省域物流作业的碳排放量测评及区域差异化分析房艳君;吴梦娜【摘要】给出了省域物流作业CO2排放量测量模型,测算了不同能源的CO2排放因子及排放系数.以物流作业直接能耗法核算我国各省域2003—2012年10年间的物流作业CO2排放指标,包括各省域的CO2排放量和单位货物周转CO2排放量,通过数据分析发现,我国物流作业的CO2排放量呈增长趋势,但是单位货物周转碳排放量在波动变化的过程中,呈现整体下降趋势.利用泰尔指数测算区域间和区域内的差异大小发现,我国东、中、西部地区之间的单位货物碳排放存在显著的差异性,差异性主要来自于区间内的差异,说明各省之间物流作业的碳排放量差异较大.【期刊名称】《环境科学导刊》【年(卷),期】2016(035)005【总页数】8页(P42-49)【关键词】物流作业;碳排放量;测评;泰尔指数;区域差异【作者】房艳君;吴梦娜【作者单位】山东师范大学商学院,济南山东250014;山东师范大学商学院,济南山东250014【正文语种】中文【中图分类】X3821世纪,人口、资源与环境三者之间的矛盾日益凸显,要求制造业提高其活动与环境的相容性,随着可持续发展战略的提出,温室气体的减排受到我国政府的密切关注。
2009年的世界气候峰会上,中国承诺到2020年实现单位GDP二氧化碳排放量比2005年的排放量下降40%~45%,同时将CO2排放量作为约束性指标纳入国民经济和社会发展中长期规划。
在2014年的世界气候峰会上,中国呈现的数据报告显示,为确保实现到2020年前碳强度下降40%~45%的应对气候变化行动目标,2013年已实现单位GDP二氧化碳排放比2005年累计下降28.56%。
同时,2014峰会展示的资料显示,世界银行做了一个测算,从节能的角度看,1990—2010年,中国累计节能量占了全球总节能量的58%,这说明全世界节能量当中中国占了一半以上。
在经济发展的各领域内,现代物流业既是经济构成的重要组成行业之一,同时又是能源消耗大户、主要的碳排放源之一,因此,关注物流作业的碳排放,是实现温室气体减排、缓解气候变化的有效途径之一。
2011-以一个城市配送系统为例研究CO2的排放量,成本和服务质量交易评价
Evaluating CO 2emissions,cost,and service quality trade-offs in an urban delivery system case studyErica Wygonik a ,⁎,Anne Goodchild b ,1a Department of Civil and Environmental Engineering,135More Hall Box 352700,University of Washington,Seattle,WA 98195–2700,United States of America bDepartment of Civil and Environmental Engineering,121E More Hall Box 352700,University of Washington,Seattle,WA 98195–2700,United States of Americaa b s t r a c ta r t i c l e i n f o Article history:Received 1February 2011Received in revised form 24May 2011Accepted 25May 2011Keywords:Vehicle routing problem EmissionsUrban delivery systemsGrowing pressure to limit greenhouse gas emissions is changing the way businesses operate.This paper presents the trade-offs between cost,service quality (represented by time window guarantees),and emissions of an urban pickup and delivery system under these changing pressures.A model,developed by the authors in ArcGIS,is used to evaluate these trade-offs for a speci fic case study involving a real fleet with speci fic operational characteristics.The problem is modeled as an emissions minimization vehicle routing problem with time windows.Analyses of different external policies and internal operational changes provide insight into the impact of these changes on cost,service quality,and emissions.Speci fic consideration of the in fluence of time windows,customer density,and vehicle choice are included.The results show a stable relationship between monetary cost and kilograms of CO 2,with each kilogram of CO 2associated with a $3.50increase in cost,illustrating the in fluence of fuel use on both cost and emissions.In addition,customer density and time window length are strongly correlated with monetary cost and kilograms of CO 2per order.The addition of 80customers or extending the time window 100minutes would save approximately $3.50and 1kilogram of CO 2per stly,the evaluation of four different fleets illustrates signi ficant environmental and monetary gains can be achieved through the use of hybrid vehicles.The results demonstrate there is not a trade-off between CO 2emissions and cost,but that these two metrics trend together.This suggests the most effective way to encourage fleet operators to limit emissions is to increase the cost of fuel or CO 2production,as this is consistent with current incentives that exist to reduce cost,and therefore emissions.©2011International Association of Traf fic and Safety Sciences.Published by Elsevier Ltd.All rights reserved.1.IntroductionThe 2010Inventory of U.S.Greenhouse Gas Emissions and Sinks (covering years 1990through 2008)indicates the transportation sector produces the largest percentage of emissions from fossil fuel combustion by end-use sector,producing more than 1800teragrams (Tg)of CO 2equivalents in 2008and representing nearly one-third of emissions from fossil fuel combustion [1].As demand on the world's resources continues to increase,cities,regions,and states find themselves needing to foster economic growth and development while minimizing impacts to the environment.More than one thousand mayors in the United States have signed the Kyoto Protocol,committing to reduce greenhouse gas emissions by 7percent over 1990levels by 2012[2].Often viewed as a competing interest,those very mayors are struggling to protect their residents ’economic and social well-being without compromising the environmental goals theyhave established.Unfortunately,current business practices and land use patterns often create situations in which these goals do con flict –economic well-being requires extensive use of energy and travel.This research offers one approach for including emissions into fleet assignment and vehicle routing to consider the trade-offs between monetary costs,emissions impacts,and service quality in residential urban pickup and delivery systems.While emissions from transpor-tation activities are understood at a broad level and between modes,this research looks carefully at emissions for an individual fleet.This approach enables evaluation of the impact of a variety of internal changes and external policies on fleet performance metrics such as time window size,spatial restrictions to target or avoid dense areas,and vehicle size or type restrictions.2.TheoryWhile few researchers have developed routing tools that optimize emissions,a number of researchers have considered emissions within routing problems and their work can provide insight into the expected relationships between cost,service quality,and emissions.A few of those relevant relationships are mentioned here.IATSS Research 35(2011)7–15⁎Corresponding author.Tel.:+12066856817;fax:+12065431543.E-mail addresses:ewygonik@ (E.Wygonik),annegood@ (A.Goodchild).1Tel.:+12065433747;fax:+12065431543.0386-1112/$–see front matter ©2011International Association of Traf fic and Safety Sciences.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.iatssr.2011.05.001Contents lists available at ScienceDirectIATSS ResearchSiikavirta et al.,Quak and de Koster,Allen et al.,and van Rooijen et al.[3–7]adjusted output vehicle miles(or kilometers)traveled from delivery routing evaluations by emissions factors,finding more restrictive time windows have higher emissions than scenarios without time windows or with wider time windows.Given the significant contribution of fuel use to both costs and CO2emissions, any parameter that restricts the VRP optimization,including con-strictive time windows,will likely yield higher costs and emissions.Cairns published a number of papers in the late1990s illustrating significant VMT reductions associated with grocery delivery.Her work was based in the UK and focused on the density of customers and their distribution,finding that increasing VMT savings were possible with increasing customer density[8].Quak and de Koster and Allen et al. [4–6]also found restrictions on vehicle types negatively impacted environmental performance.The influence of vehicle type was dependent on the characteristics of the deliveries in question–delivery providers with a single large quantity of goods had the most negative environmental impacts under policies that limit vehicle size.Most of this work has appliedflat emissions factors to VRP distance outputs,treating emissions as a post-processing output,not as an input or influencing factor.Other work has aimed to explicitly reduce emissions but achieves this goal by reducing overall miles travelled or changing route start times to avoid congested times.In sum,while the literature discussing the relationships between time windows, customer density,vehiclefleet,and emissions do not solve the problem presented in this paper,they do indicate emissions can be reduced by providing wide time windows,serving high customer density,and carefully matching vehicles to necessary capacity.Overall,the literature supports the theory that in general the goals of the private market(to reduce costs)are frequently aligned with the goals of society(to reduce emissions)and any external restriction on private behavior will limit the effectiveness of those societal goals (see the work of Holguin-Veras[9]for a more thorough discussion of this relationship).This paper continues to test that theory and quantify the magnitude of the effect of external policies on societal goals.3.MethodsOptimizing the routing of urban pickup and delivery systems generally relies on solutions to the Vehicle Routing Problem(VRP). The VRP is an extension of the traveling salesman problem(TSP),a problem designed tofind the shortest route between a number of destinations.The TSP theory originated with actual traveling salesmen needing to optimize their route for visiting a number of destinations before returning to their origin.The VRP extends the TSP to consider multiple routes over afleet of vehicles,and the vehicle routing problem with time windows(VRPTW)extends the VRP to consider the influence of permitted time windows for stops on the routing solution.Solutions to this problem can improve any service that relies on routing and scheduling including garbage collection,third party logistics providers(UPS,FedEx),and airport shuttles.In general,this class of problems minimizes a particular cost for afleet of vehicles picking-up or delivering goods.Traditionally,the costs these tools utilize include monetary,distance,and time costs[10].Other costs of these services,for example noise and air pollution costs,are not currently paid by thefleet and are rarely reflected in VRP solutions.Few researchers have developed tools for solving the VRP optimizing on emissions.The following research examines different ways to include emissions within a VRP optimization,though each falls short of solving the problem presented in this paper.Figliozzi[11]has developed an emissions minimization vehicle routing problem(EVRP)solution which explicitly includes emissions in the cost minimization of a traditional vehicle routing problem with time windows.In this model,emissions are directly related to travel speed.To apply his model,Figliozzi modifies the Solomon[12]benchmark problems for vehicle routing problems with hard time windows to reflect the impact of congestion.His evaluation focuses on the impact of congestion on emissions using a simulated data set and does not apply that evaluation to a sample from an existing delivery provider.Dessouky,Rahimi and Weidner[13]consider trade-offs between cost,service,and environmental performance for a demand-respon-sive transit operation.Simulating transit operations with a scheduling heuristic and considering life-cycle impacts to the environment,they found significant environmental improvements are possible with minimal additional costs for heterogeneousfleets optimized for emissions.These same benefits were not observed for homogenous fleets.This research looks at a number of measures of environmental performance and considers the life-cycle environmental impacts of each solution;it does not focus on or minimize the CO2emissions associated with routing.Palmer[14]modified a vehicle routing problem solution to account for CO2emissions by a grocery delivery service.This model has the capability of minimizing on emissions or calculating emissions for optimizations on time or distance.He found reductions in emissions of4.8%when optimizing for emissions instead of time, and reductions in emissions of1.2%when optimizing for emissions instead of distance.His model focuses on estimating emissions based on speed and vehicle performance,and he estimates speed based on congestion.Palmer's model is the closest to date at providing a useful model to consider the trade-offs between emissions and service. Because his model requires as an input the cost of CO2it does not allow for insight into the appropriate cost of CO2to modify behavior.Benedek and Rilett[15]developed a traditional passenger assignment model using user equilibrium and system optimal cost functions to optimize on CO,finding minimal change in time(0.5%)or emissions(0.15%)between scenarios optimized on one or the other. Their model did not consider routes with multiple stops,time windows,or vehicle capacity,and did not include the resulting costs for various routes.While each of these researchers have made significant progress toward accounting for the environmental impacts of vehicle routing, none accounts for the trade-offs between cost,service,and emissions while allowing optimization of each.ArcGIS software allows solving routing and scheduling problems. This software includes a complete road network with address data and link cost functions,but it does not estimate emissions from vehicle activity.This research extended the ArcGIS VRP tool to account for emissions enabling least-cost,least-time,and least-emissions routing for an urban pickup and delivery system with time windows. This tool enables analysis of different policies regarding changes in road network conditions,time window constraints,andfleet composition to consider the changes in cost and emissions for different scenarios.ArcGIS can solve the VRP for urban pickup and delivery systems with capacity-constraints,multiple vehicles,and time windows.This tool can consider hard or soft time windows and is extended here to account for emissions when the problem involves shorter than one-hour stops. Based on EPA standards,an engine with catalytic convertor in hot state will pass to a cold state after this amount of time and will require accounting for hot and cold start emissions,which is beyond the limits of this tool.However,stops in most residential urban pickup and delivery systems do not exceed this one-hour threshold.While the exact details of the heuristic used in the ArcGIS software is proprietary,their help manual[16]indicates shortest paths are identified with Dijkstra's algorithm[17]and order sequencing is completed with a tabu search heuristic[18].These solutions are well-regarded for quickly producing reasonable results.ArcGIS is used to minimize emissions and consider the trade-offs between emissions,cost,and service quality,for a specific case study fleet.This case study is based on a real pickup and delivery system,its8 E.Wygonik,A.Goodchild/IATSS Research35(2011)7–15customers,order quantities,and delivery time windows.Some details of the operator,including its name,are omitted to protect confidentiality.3.1.Model structureThe model used in this evaluation is a modified version of the standard ArcGIS vehicle routing problem tool,extended to incorpo-rate CO2emissions.Two key extensions are necessary.First,the ArcGIS VRP tool is designed to minimize one of two variables:time or distance.It also allows for a weighted combination of these two variables.While other tools in ArcGIS's Network Analyst package allow the user to minimize on any available data element,the VRP tool is restricted to one time and one distance variable.Additional variables are not possible,thus limiting the ability of modeling all three variables of interest(time and distance[to determine cost],and emissions)within one system.In addition,due to the necessity of adhering to time windows,the time variable cannot be altered.The distance variable,however,can represent any numericalfield labeled as such.By adding emissions information to the network before it was built,emissions could take the role of a distance in the optimization. Financial cost is minimized by using the distance-and time-based cost parameters to combine distance and time into one cost objective.Second,because only two variables can be modeled at once, additional processing was required to track the third variable.To gather this data,the VRP output allowed simplification of the problem into a TSP and the output ordered and route-assigned stops could be run through the traditional Network Analyst Routing tool,recording the remaining variable.3.2.AssumptionsBecause this delivery service provider places a premium on service quality,all optimizations used hard time windows,guaranteeing that promised delivery times would be met.Service times were developed based on the delivery type,delivery time(PreDawn or other),and the order size.The service time length directly affects how many customers can be served by one truck within the allowable window.Service times havefixed and variable components.Thefixed component is lower during the PreDawn service window,and the variable component,which is associated with the number of bins in an order,is lower for Delivery Type A.The values used in this analysis are used by the case study service in their planning and are based on observed delivery times.Customer orders are delivered in stackable plastic bins.These bins are picked up on subsequent orders.Because the bins nest when empty,they take up little space and are not considered in the capacity limits of the trucks.In addition,because the bins are returned by customers during their next order,no additional stops occur to pickup bins.This problem is therefore simplified to an urban delivery system, disregarding pickup.The model does not consider real-time routing changes.It is a planning tool and is not intended to provide dynamic routing information.In addition,this model currently assumes uncongested conditions.3.3.Data3.3.1.Fleet informationThe delivery service provider has a homogenousfleet,in terms of capacity and engine technology,of17vehicles.All of their trucks are less than three years old,all are diesel,and all are approximately16’single-unit vehicles.The vehicles can carry90bins,approximately30 customer orders,and spend5to15minutes servicing each customer. The customers are residences spread throughout the urban area and are served by one warehouse also located in the urban area.3.3.2.Cost dataActual costs associated with this delivery system are proprietary, therefore costs were developed using industry data.Costs were developed for each link in the network assuming average hourly wages of$26.55for van,light duty,and heavy duty truck drivers in the Seattle metropolitan area according to [19]and typical truck operating costs of$1.13per mile(not including driver wages and benefits which are included above)provided by Trego and Murray[20].These values were converted to costs per second and costs per foot for analysis.3.3.3.Emissions factorsEmissions factors were obtained from the2010MOVES model[21]. This analysis assumed uncongested conditions,so speed limit data from the StreetMap North America data set was used as the default flow speed for each road segment.Since the trucks work with hot engines due to their short stopping time,only running exhaust emissions are tracked.The base assumption in the model reflects the providerfleet and uses emissions factors for single-unit short haul trucks with diesel fuel.Emissions factors were also developed for three scenarios:hybrid vehicles,larger trucks,and smaller trucks.To develop emissions factors for hybrid trucks,the base emissions factors were reduced by 40%as suggested by an EPA white paper[22].Emissions factors for large trucks were represented with factors for combination short-haul trucks with diesel fuel,and emissions factors for smaller trucks were represented with factors from light commercial trucks with diesel fuel.Emission factors were selected for an analysis year of2010.Hourly kilograms of CO2equivalents per mile were extracted and averaged over each hour of the day,for weekdays,throughout the year for the King County,Washington region.Roadways with speeds of5,20,25, and35miles per hour used urban unrestricted roadtype emissions factors,and roadways with speeds of45and55miles per hour used urban restricted roadtype emissions factors.Since the case studyfleet is comprised of modern vehicles of varying age,emissions factors for 2007–2010model years were averaged.3.3.work data setThe base network is pulled from the ESRI StreetMap North America data set[23].Thesefiles include geographically-accurate representa-tions of the road network for North America,and include information regarding speed limit,functional class,street name,and street number range.This data set was modified in a number of ways for this evaluation. First,the data set was trimmed to only include road segments in the study area to reduce processing time.Next,the length in feet of each road segment was calculated and appended to the data table.Finally, information regarding the CO2emissions associated with each road segment for each vehicle type was also appended to the data table, based on the MOVES emissions factors,the roadway speed limit,the roadway functional class,the roadway length,and the vehicle type.3.3.5.Customer sampleA one-day customer sample was gathered from the case study delivery service.The data set reflects three service windows (PreDawn,Breakfast,and Lunch/Dinner)and includes576customers. The PreDawn sample includes283customers all served within one3.5 hour time window between2:30AM and6:00AM.The Breakfast sample includes140customers and time windows from7:00AM until 1:00PM,and the Lunch/Dinner sample includes153customers and time windows from3:00PM until9:00PM.The Breakfast service window includes one3-hour time window,in which one third of its customers are served,andfive1-hour time windows.The Lunch/ Dinner service window includes two3-hour time windows,in which9E.Wygonik,A.Goodchild/IATSS Research35(2011)7–1560percent of its customers are served;six1-hour time windows;and one2-hour time window.Two types of deliveries occur(Delivery Type A and B),and service times vary according to this delivery type and the order size.Each customer's address,time window,order size in bins,and delivery type was recorded.3.4.Analysis scenariosThe delivery provider considered in this case study offers different delivery time windows to its customers.Given the constraints the different time windows impose on routing and scheduling,a primary focus of this evaluation is the potential emission reductions from changing the length of time windows.In addition,the model is used to examine the influence of customer density on emissions as well as the potential emissions reductions from modifying thefleet either to a newerfleet of cleaner trucks or by utilization of trucks with different capacity.Twelve scenarios in addition to the baseline were consid-ered.Table1below illustrates the differences between the various scenarios.For each scenario,two different objective functions were minimized;cost(dollars)and emissions(kilograms of CO2).Current-ly,this provider assigns delivery vehicles in three shifts:PreDawn, Breakfast,and Lunch/Dinner.To replicate that baseline,initial optimizations were run for each of the three delivery shifts.An additional baseline(Scenario1)was developed with the three shifts merged into one mainfile,to determine potential gains from redistribution of the time windows within the service windows. Scenarios2–5examine the impact of time windows;Scenarios6–9 examine the impact of destination density;and Scenarios10,11,and 12examine the impact offleet modification.Thefirst analysis considers the influence of time windows on cost and emissions.Scenarios2–5considered the impact of time windows, and all orders were reassigned into90-minute,60-minute,30-minute, and15-minute time windows,respectively.Shorter time windows are more convenient for customers,therefore represent higher service quality,but are associated with higher costs and potentially higher emissions for the service provider.If service windows are extended, businesses have greaterflexibility on route choice and delivery ordering (which can reduce vehicle miles traveled).Thefirst scenario set enables agencies to consider timing restrictions for freight/delivery vehicles,and provides agencies insight about the costs to businesses of these policies. Some governmental agencies trying to balance delivery needs with quality of life issues and congestion concerns use prohibitions on the time of day certain size or classes of vehicles can access roadways or urban centers.By evaluating the impacts of limiting or extended permissible time windows,thefirst scenario set provides insight into the potential environmental and cost impacts of these types of restrictions.A second set of scenarios examines the influence of service area on cost and emissions levels.Scenarios6–9considered the impact of density and included50percent,33percent,25percent,and12.5 percent of the original number of orders,respectively.In these scenarios,the customers who are served continued to be provided with excellent service,but the potential customer base is reduced. Only providing service to dense neighborhoods may allow businesses to provide service at a reduced cost and emission level but may hamper their long-term growth potential.The second scenario set provides information about the residential densities that can support delivery service from cost and environmental perspectives.Similar to the Boston metro impositions on bike share,where the chosen vendor is required to serve the high-value and riskier communities,this evaluation can inform policies using delivery service to address food deserts by requiring complete city coverage.Finally,a third evaluation compares the benefits from these earlier analyses with gains achieved by vehiclefleet modification.Scenarios10, 11,and12consider the impact of alternative vehicles by adjusting the capacity,cost,and emissions factors representing hybrid,larger,and smaller vehicles.The hybrid vehicles were assumed to have the same capacity as the currentfleet,but with more efficient engine technology. The larger vehicles were assumed to be two-thirds larger and carry150 bins,while the smaller vehicles were assumed to be half the size of the existingfleet and carry45bins.Cleaner vehicles will likely be associated with reduced emissions,but at a higher rger vehicles may provide more efficient service,but require a capital investment and have higher externalities per vehicle.Smaller vehicles have less impact per vehicle but may require additional routes.Thefinal scenario set allows evaluation of clean vehicle policies and policies that restrict the size or type of vehicle.Another way some governmental agencies balance10 E.Wygonik,A.Goodchild/IATSS Research35(2011)7–15delivery needs with quality of life issues and congestion concerns use prohibitions on the size or classes of vehicles can access roadways or urban centers.This scenario set considers the cost and environmental impacts of clean vehicle use or restrictions on vehicle size.In addition to the policies targeted by each scenario,the baseline evaluation (examining the sensitivity of cost and emissions as direct trade-offs)informs the effectiveness of roadway tolling and carbon taxes as incentives to change behavior.While the results of this type of analysis are not presented here,these policies can be evaluated by modifying the assumed costs for each link by time of day.Given the close association between cost and CO 2emissions observed in the results,roadway tolling and carbon taxes will further incent both lower cost and lower emissions routing and scheduling choices.The hourly costs were kept consistent for all scenarios,since they re flect driver wages and bene fits.The mileage costs were kept consistent for all scenarios except the one that considers implementation of a hybrid fleet.For this scenario,the ATRI fuel/oil costs and fuel tax costs were reduced to re flect the 70%improvement in fuel economy reported by the EPA [22]and leasing and maintenance costs were increased by 25%to re flect additional costs of owning and repairing hybrid vehicles.In the end,the hybrid scenario assumed each mile of travel cost $0.91,a reduction of approximately 20%over standard vehicles.The scenarios included constraints to ensure work hour regulations were not violated (8hour limits on each truck),and the truck capacities were not violated (90bins using current vehicles).The provider currently operates 17trucks,and this limit was considered the upper bound of the number of allowable vehicles.Table 2illustrates the number of orders and given or weighted average (denoted with an [a])time windows for all scenarios.The weighted average time window is given for all Breakfast and Lunch/Dinner scenarios that use the base time window distribution and thus have a mixed set of time windows.4.Results4.1.Cost and emissionsThe method described above allows an analysis of the relationship between cost and emissions.Fig.1illustrates the relationship be-tween cost in dollars per order and kilograms of CO 2per order,considering Scenario 2through Scenario 9,along with the Baseline,grouped by scenario type (base,time window,density).As illustrated,the cost per order increases between $3.15and $3.77for each addi-tional kilogram of CO 2for each scenario type,with high r 2values (0.85to 0.91).This relationship is very consistent within all of these scenarios and illustrates the close relationship between monetary cost and CO 2emissions.This relationship is examined in comparison to the number of orders and the time window length for each case in Fig.2.Most of the cases have dollars per kilogram of CO 2values between 0and 5,with no discernable relationship to the number of orders or the time window size.Two outliers are observed,each with notably high values of dollars per kilogram of CO 2.These two figures indicate a stable relationship between monetary cost and CO 2emissions,with an average value of approximately $3.50per kilogram of CO 2.This value is a function of the fuel cost included in the operating costs of trucks.As the cost of fuel increases or taxes are added to carbon this value will also increase,but without signi ficant changes to the technology there will continue to be a linear relationship between monetary cost and kilograms of CO 2produced.4.2.Monetary and environmental costs of improved serviceTo quantify the relationship between service quality and monetary and environmental cost,a multiple linear regression analysis was performed and regression equations were developed considering time window size,number of customers,and monetary cost or CO 2emissions.Equation 1illustrates how monetary cost depends on time windows and number of orders for cases when the routes are designed to minimize monetary cost.Equation 2illustrates how monetary cost depends on time windows and number of orders for cases when theTable 2Number of Orders and Weighted Average or Given Time Window Size.PreDawn Breakfast Lunch/Dinner Number of OrdersTime Window (minutes)Number of Orders Time Window (minutes)Number of Orders Time Window (minutes)BaseBaseline283210140101a 153137a Scenario 1new baseline283210140101a 153137a Scenario 2 1.5-hour time windows 283901409015390Scenario 31-hour time windows 283601406015360Scenario 430-minute time windows 283301403015330Scenario 515-minute time windows 283151401515315Scenario 650%customer density 14221070103a 76197a Scenario 733%customer density 9421047111a 51198a Scenario 825%customer density 702103598a 39213a Scenario 912.5%customer density 3521017109a 20215a Scenario 10hybrid vehicles283210140101a 153137a Scenario 11larger vehicle –N comb.short-haul truck 283210140101a 153137a Scenario 12smaller vehicle –N light commercial truck283210140101a153137a10.015.020.025.0D o l l a r s p e r o r d e rkg of CO2 per OrderFig.1.Relationship between dollars and kilograms of CO 2.11E.Wygonik,A.Goodchild /IATSS Research 35(2011)7–15。
碳排放量计算范文
碳排放量计算范文碳排放量是指单位时间内由人类活动释放到大气中的二氧化碳(CO2)量。
计算碳排放量的目的是为了评估和监测人类活动对气候变化的贡献。
下面将介绍碳排放量的计算方法以及各种活动的碳排放量。
碳排放量的计算方法计算碳排放量的一般方法是通过使用碳排放因子和活动数据。
碳排放因子是指将各种活动转化为二氧化碳排放量的因子,可以根据不同活动的特点进行调整。
活动数据是指活动的数量和使用的能量等数据。
以下是常用的活动的计算方法:1.交通运输2.能源使用3.工业生产4.农业和畜牧业活动的碳排放量不同活动的碳排放量差别很大。
下面列举一些常见活动的碳排放量。
1.汽车行驶根据不同汽车的耗油量以及所行驶的距离,汽车的碳排放量差别很大。
大型SUV比小型轿车排放更多的碳。
2.家庭能源使用家庭能源使用包括用电和取暖或制冷等,并且取决于家庭的大小和使用的设备。
使用节能设备和采取节能措施可以减少家庭的碳排放量。
3.工业生产工业生产的碳排放量取决于不同工业过程中使用的能源,如燃煤和石油。
工业部门需要采取减少碳排放的措施,如使用更清洁的能源和改善生产效率。
4.农业和畜牧业农田肥料的使用会导致氮氧化物的排放,畜牧业的碳排放量来自动物的排泄物和粪便分解产生的甲烷等。
农业和畜牧业需要采取措施减少氮氧化物和甲烷的排放,例如改变农田管理方式和改进废物处理方法。
总结计算碳排放量是了解和评估人类活动对气候变化的影响的重要手段。
通过使用碳排放因子和活动数据,可以计算不同活动的碳排放量。
交通运输、能源使用、工业生产、农业和畜牧业是主要的碳排放源,减少这些领域的碳排放量是应对气候变化的关键。
因此,对于个人、企业和政府来说,采取减排措施非常重要,如使用清洁能源、提高能源效率、改变生产和生活方式等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岸边桥式起重机
电
集装箱
3
kwh/TEU
港口水平运 输设备
堆场 装卸设备
汽车 带式输送机 龙门起重机(参考轨道 式集装箱门式起重机) 轮胎起重机
柴油 电 电 柴油
除散货的其他货物 散货
重大件 杂货
0.086 0.18 0.25 0.08
kg/t kwh/t.km
kwh/t kg/t
设备功能
单斗装载机
柴油
2.2 物流园区内部货物装卸运输 CO2 排放计算
物流园区内 CO2 排放包括仓库、堆场和车间以及这三个主要功能区域之间的货物交换。 测算重点考虑仓库、堆场以及车间内部装卸货物的温室气体排放,且主要是垂直方向的装卸 作业。流程如图 6 所示。
图 6 物流园区内货物流通区域与作业设备
7
中国城市规划学会城市交通规划学术委员会 中国城市规划设计研究院 编
本文借鉴成熟的碳足迹计算理论和方法,以 CO2 为碳排放计算代表,首次展开对现代物流 中心运营阶段碳排放计算,重点分析了项目建成后运营阶段的 CO2 排放。首先梳理了现代物 流中心运营阶段 CO2 排放过程,将排放源归纳为两大类:一是交通运输类 CO2 排放,主要 针对港口作业区与物流园区在内部货物装卸和对外货物运输过程中产生的 CO2;二是建筑物 类 CO2 排放,主要针对相关建筑物日常运营过程中产生的 CO2。然后,本文提出基于能耗统 计的 CO2 排放清单法计算方法,并以宜昌市三峡现代物流中心基础设施项目作为计算对象, 分析了各个部分温室气体排放的计算清单,构建了现代物流中心运营阶段 CO2 排放计算框 架。最后,结合案例数据,定量分析了各个环节的减排潜力。
【关键词】环境工程;现代物流中心;清单法;CO2 排放计算
0 引言
温室气体过度排放造成全球气候变暖已成为当今社会面临的重大问题。2015 年 12 月通 过的《巴黎协定》设定了全球应对气候变化的长期目标,把全球平均气温比工业化之前水平 的升高幅度控制在 2℃之内[1]。2016 年 1 月国家发改委发布了《国家发展改革委办公厅关于 切实做好全国碳排放权交易市场启动重点工作的通知》,计划于 2017 年启动全国碳排放权 交易[2]。现代物流中心作为重要的交通基础设施,承担着货物吞吐、运输和仓储功能,其建 设和运营过程都需要消耗大量的原料和能源,是碳排放产生的重要来源之一。计算分析现代 物流中心基础设施碳排放,对制定相应的节能减排策略具有重要意义。
表 1 港区作业设备能耗系数
设备功能
设备名称
能源类型 适用货物类型
进口散货
港口
门座起重机
电
杂货
装卸设备
重大件
移动式装船机
电
出口散货Βιβλιοθήκη 能耗系数 0.32 0.29 0.29 0.076
能耗系数单位 kwh/t kwh/t kwh/t kwh/t
2
交叉创新与转型重构——2017 年中国城市交通规划年会论文集
排放系数可能偏差幅度
(取 95%置信区间)
下限
上限
-2.6%
+5.3%
-2.0%
+0.9%
电力排放系数
预设排放系数
系数选用 预设系数
原燃物料名称 电力
CO2 排放系数
-
CH4 排放系数
-
N2O 排放系数
-
CO2e 排放系数
0.62
单位 kg/kwh
世界资源研究所(WRI)制定的《中国城市温室气体核算工具指南》[16]也给出不同类型能
近年来,国内外学者对工程建设项目 CO2 排放计算进行了方法探究和案例分析。蔺瑞玉 从节能减排的角度出发进行不同路面材料和施工工艺的选择,构建了沥青路面建设过程温室 气体排放评价体系[3]。Chang 和 Kendall 对一条高速铁路进行了生命周期碳排放的评估[4]。潘 美萍研究了沥青路面和水泥混凝土路面生命周期能耗与碳排放[5]。陈康海等人基于全生命周 期理论和清单法,构建了施工阶段温室气体排放核算数学模型[6]。周新军等提出了铁路运输企业 温室气体排放量核算的基本框架[7]。徐剑对沥青路面进行了全生命周期能耗评价[8]。陈莎等计算 了北京地区某办公和教学用公共建筑的生命周期温室气体排放量[9]。廖凯等开发了适用于中国不 同数据水平的城市层面交通温室气体排放核算的“城市交通温室气体排放评价模型”[10]。李静等 构建了建筑物物化阶段碳足迹快速计算模型[11]。Helen Murphy 对澳大利亚维多利亚公路局旗下 管理的米克勒姆公路的建设阶段进行了碳足迹估算,并对公路建设过程中的碳排放单元进行了清
业模块、物流园区内部作业模块和港口物流园区对外运输模块);第二类是建筑物类 CO2 排
放(包含建筑物日常运营模块)。
式中,C
=
+
+
+
为白洋港现代物流中心项目 CO2 总排放量;C
(2) 为白洋港口作业区内部货
物装卸运输 CO2 排放量;C
为白洋物流园区内部货物装卸运输 CO2 排放量;C
为港口与园区对外货物运输 CO2 排放量;C
图 3 港区内不同设备货物装卸运输作业 CO2 排放
2.1.2 港口内部减排潜力分析
1)基于不同环节的 CO2 减排分析 港口内部作业分为三个阶段:港口装卸阶段、货物水平运输阶段和堆场装卸阶段,CO2 排放比例如图 4。堆场货物和港口码头装卸的货物种类和数量相同,但堆场装卸年碳排放是 港口码头的 1.33 倍。由于港口码头装卸相较堆场装卸,使用了大型的装卸设备,进行集约 化的装卸,规模效应下单位货物装卸 CO2 排放可以显著降低。
散货
表 2 物流园区作业设备能耗系数
设备名称
燃料类型 适用货物类型
0.059
kg/t
能耗系数
能耗系数单 位
仓库装卸设备 堆场装卸设备
叉车 桥式起重机 龙门起重机(参考轨道 式集装箱门式起重机) 轮胎起重机
柴油 电 电 柴油
杂货 杂货 重大件/杂货 杂货
0.054 0.23 0.25 0.08
kg/t kwh/t kwh/t kg/t
交叉创新与转型重构——2017 年中国城市交通规划年会论文集
现代物流中心运营阶段 CO2 排放计算
张桂正 叶建红
【摘要】区别于现有研究对房屋建筑和高速公路建设阶段碳排放的计算,以现代物流中心为计算对象, 将项目运营阶段的碳排放梳理为交通运输类 CO2 排放和建筑物日常运营类 CO2 排放,基于清单法构建现代物 流中心运营阶段的 CO2 排放计算框架。以宜昌市三峡现代物流中心基础设施为例进行定量计算。结果表明港 区作业 CO2 排放量为 2913.84 吨/年,物流园区作业 CO2 排放量为 2772.49 吨/年,港口和物流园区对外辐射 运输 CO2 排放量为 201686.64 吨/年;现代物流中心运营阶段碳排放主要来自对外辐射运输环节,占比高达 97.33%。同时定量分析各环节的减排潜力,研究发现通过能源替换、设备更新、运输方式结构性优化和技 术工艺改进等措施可以带来显著的减排效果。
为建筑运营过程中 CO2 排放量。对各个模
块碳排放计算流程进行梳理,如图 1 所示。
4
交叉创新与转型重构——2017 年中国城市交通规划年会论文集
图 1 现代物流中心运营阶段碳排放计算流程图
2.1 港口内部货物装卸运输 CO2 排放 2.1.1 港口内部 CO2 排放分析
港区货物运输分为到港和离港两大流向。以到港货物为例,货物运输作业主要包括三大 环节:①货物到港后选择相应的码头泊位进行停靠装卸;②利用汽车或水平传送带将货物运 送到后方堆场;③在堆场内再次装卸、存储。流程如图 2 所示。
1.2 排放系数的选取
联合国政府间气候变化专门委员会(IPCC)于 2006 年公布常见能源的 CO2 排放系数,
燃料油及电能 CO2 排放系数如表 3、表 4 所示。 表 3 燃料油 CO2 排放系数(IPCC)
燃料类型
汽油 柴油
IPCC 建议排放系数
数值
单位
2.26
kg/L
2.73
kg/L
表 4 电能 CO2 排放系数(IPCC)
车间装卸设备 堆场装卸设备
桥式起重机 轮胎起重机
电 柴油
杂货 杂货
0.23 0.08
kwh/t kg/t
水平运输设备 对外运输设备
汽车 汽车
柴油 柴油
全部货种 全部货种
0.086 0.0336
kg/t kg/t.km
注:①龙门起重机和桥式起重机尚无代表性能耗系数,前者参考与其功能和规模相近的轨道式集装箱门式 起重机能耗系数;同时根据起重机的机械工作机理对后者进行理论推导和计算;②物流园区对外运输设备 能耗系数参考《营运货车燃料消耗量限值及计算方法》(JT719-2008 标准)[14];③其他机械设备能耗系 数均参考《水运工程节能设计规范》[15]。
图 4 港口内部不同过程 CO2 排放比例 2)基于不同设备的碳排放贡献分析 在港口内部作业过程中,CO2 排放主要由 8 种设备贡献,每种设备的单位万吨货物碳排 放量如图 5 所示。
6
交叉创新与转型重构——2017 年中国城市交通规划年会论文集
图 5 不同设备万吨货物 CO2 排放值 ①在堆场装卸阶段,轮胎起重机、单斗装载车和龙门起重机三种设备装卸不同类型货物, 没有功能的可替代性。②在港口泊位码头装卸阶段,移动式装船机、岸边桥式起重机和门座 起重机三种设备分别装卸不同类型货物,没有功能的可替代性。③在港口内部水平运输阶段, 带式传输机和汽车都用来运输散货,且带式传输机使用电能,运输单位货物的 CO2 排放远 小于汽车。根据港口规划,白洋港港区每年 500 万吨散货吞吐量,假设全部使用传送带替代 汽车,可减少 1285.9 吨/年的 CO2 排放,约占到当前港口作业总排放的 43%,能源替代带来 的减排效益相当可观。