1.2 第3课时 反比例函数的图象与性质的综合应用
反比例函数的应用PPT课件
学习目标
1、能根据实际问题中的条件确定反比例函数 的解析式。 2、能综合利用反比例函数的知识分析和解决 一些简单的实际问题。 3、经历分析实际问题中变量之间的关系,建立 反比例函数模型,进而解决问题的过程。 4、认识数学与生活的密切联系,激发学习数学 的兴趣,增强数学应用意识。
面积中的反比例函数
(1)此蓄电池的电压是 36V , 这一函数的
表达式为
.
(2)当电流为18A时,用电器的电阻为 2Ω ; 当电流为10A时,用电器的电阻为 3.6Ω.
(3)如果以此蓄电池为电源的用电器电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
答:可变电阻应不小于3.6Ω.
课堂检测,细心的你一定行!
(3)当空气中每立方米的含药量低于1.6mg时,学 生方可进教室,那么从消毒开始, 经过多长时间学生 才能回到教室?
1y 3 x
4
y(mg)
A 6
2y 48
x
O8
x(min)
深层思考,综合应用
1、为了预防“传染病”,某学校订教室采用药熏消 毒法进行消毒, 已知在药物燃烧时段内,室内每立方米 空气中的含药量y(mg)与时间x(min)成正比例.药物燃 后,y与x成反比例,如图所示。 (4)当空气中每立方米的含药量不低于3mg且持 续时间不低于10分钟时,才能有效杀灭空气中病 菌,那么此次消毒是否有效?为什么?
1.一个矩形的面积为20cm2 ,相邻两边的
长分别为xcm和ycm,则y与x之间的函数
关系式为
.
行程中的反比例函数
2.A、B两地间的高速公路长为300km,
一辆汽车行完全程所需的时间t(h)与
行驶的平均速度v(km/h)之间的函数关
人教版九年级数学下册《反比例函数的图象和性质》教学设计
反比例函数的图象和性质(二)三维目标一、知识与技能进一步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.二、过程与方法1.经历用反比例函数的图象和性质解决数学问题的过程.2.进一步体会分类讨论思想特别是数形结合思想的运用.三、情感态度与价值观1.积极参与数学活动、注意多与同伴交流看法.2.在参与数学活动的过程中,体会探索、创新的乐趣,养成乐于探索的习惯.教学重点用反比例函数的图象和性质解决数学中的简单问题.教学难点数形结合的思想在解题中的应用.教具准备多媒体课件.教学过程创设问题情境,引入新课活动11.•作反比例函数图象的基本步骤是:•(•1)•________;•(•2)•_________;•(•3)_________.2.反比例函数y=kx的图象是由_______组成的,通常称为_______,当k>0•时______位于________;当k<0时,_________位于________.3.反比例函数y=kx的图象,当k>0时,在每一个象限内,y的值随x值的增大而________;当k<0时,在每一个象限内,y的值随x的增大而________.4.反比例函数y=kx的图象上任取一点,过这一点分别作x轴、y轴的平行线,与坐标轴围成的矩形的面积是________.5.知识结构反比例函数的图象与性质(1)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩反比例函数的图象是__________(1)当k>0时_________ (2)性质(2)当k<0时__________设计意图:帮助学生回忆节上节课研究过的反比例函数的图象和性质,进一步让学生体会数形结合的思想.师生行为:由学生回答,教师引导学生进一步归纳总结.此活动中,教师应重点关注:①学生能否顺利地完成填空;②学生是否能由反比例函数的图象和性质整合起来理解.二、讲授新课活动2问题:【例3】已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?y随x的增大如何变化?(2)点B(3,4),C(-212,-445)和D(2,5)是否在这个函数的图象上?设计意图:根据已知条件确定反比例函数的解析式,并根据函数解析式判断点是否在函数图象上.师生行为:学生独立思考,自己解答.教师巡视解答过程并给予引导.在此活动中,教师应重点关注:①是否理解反比例函数解析式的确定就是k值的确定.②点是否在图象上,只需将点的横、纵坐标代入解析式,看是否符合解析式,即可判断. 生:解:(1)设这个反比例函数为y=k x ,因为它经过点A ,把点A 的坐标(2,6)代入函数式,得6=2k ,解得k=12. 这个反比例函数的表达式为y=12x. 因为k>0,所以这个函数的图象在第一、第三象限,在每个象限内,y 随x 的增大而减小.(2)把点B 、C 和D 的坐标代入y=12x,可知点B 、点C 的坐标满足函数关系式.点D•的坐标不满足函数关系式,所以点B 、点C 在函数y=12x 的图象上,点D 不在这个函数的图象上.活动3问题:【例4】如下图是反比例函数y=5m x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)如上图的图象上任取点A (a ,b )和点B (a ′,b ′)如果a>a ′,那么b 和b ′有怎样的大小关系?设计意图:熟练运用反比例函数的图象和性质解答数学问题,特别强调让学生注意数形结合思想的应用.师生行为:让学生先观察图象,然后结合反比例函数的性质完成此题.教师应给学生充分交流的时间和空间.在此活动中,教师应重点关注:①学生能否从图象的特点得到m-5的符号;②学生能否从图象的特点,结合函数的性质解决问题;③学生能否独立思考问题.生:解:(1)反比例函数的图象的分布只有两种可能,分布在第一、•第三象限,或者分布在第二、四象限,在这个函数的图象的一支在第一象限,则另一支必在第三象限.因此这个函数的图象分布在第一、三象限,所以m-5>0,解得m>5.(2)由函数的图象可知,在双曲线的一支上,y 随x 的增大而减小.所以当a>a ′时,b<b ′.三、巩固提高活动4练习:1.练习反比例函数的图象经过点A (3,-4).(1)这个函数的图象分布在哪些象限?在图象的每一支上,y 随x 的增大如何变化?(2)点B (-3,4),点C (-2,6)和点D (3,4)是否在这个函数的图象上?2.如下图是反比例函数y=7n x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数n 的取值范围是什么?(2)在图象上任取一点A (a ,b )和B (a ′,b ′),如果a<a ′,那么b 和b ′有怎样的大小关系?设计意图:进一步熟悉由数得到形的特点,由形得到数的特点,渗透数形结合的思想.师生行为:由学生独立思考完成,教师进一步根据学生的情况进行评析.在此活动中,教师应重点关注:①学生是否具有数形结合的意识.②学生能否有独立思考问题的习惯.生:解:1.(1)设这个反比例函数为y=k x ,因它经过点A (3,-4),把点A 的坐标代入函数式,得-4=3k .解得k=-12.这个反比例函数的表达式为y=-12x.因为k<0,所以这个函数的图象在第二、四象限,在每个象限内,y随x的增大而增大.(2)把点B、C、D的坐标代入y=-12x,可知点B、点C的坐标满足函数关系式,点D的坐标不满足函数关系式,所以点B,点C在函数y=-12x的图象上,点D不在这个函数图象上.2.(1)因为反比例函数的图象的分布只有两种可能,分布在第一、三象限,•或者分布在第二、四象限,这个函数的图象的一支在第二象限,则另一支必在第四象限.因此这个函数的图象分布在第二、第四象限,所以n+7<0,n<-7.(2)由函数的图象可知,在双曲线的一支上,y随x的增大而增大,所以当a<a′时,b<b′.活动5问题:如下图,点A、B在反比例函数y=kx的图象上,且点A、B的横坐标分别为a,2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2.(1)求该反比例函数的解析式.(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小.设计意图:综合函数与几何知识,提高学生综合运用知识的能力.师生行为:先由学生独立思考,寻找解题的途径.教师应给予适当的引导,特别对于“学困生”.在此活动中,教师应重点关注:①综合运用数学知识的能力;②学生面对困难,有无面对困难的勇气和克服困难的坚强意志;③学生能否借助于新旧知识的联系,转化迁移旧知识.师生共析:通过Rt△AOC的面积S=12OC·AC=2,可知x A·y A=4.又因为点A在双曲线上,所以x A·y A=k,•可求出函数的解析式,再根据反比例函数的性质,k>0,y随x的增大而减小知,•自变量x 越大,函数值反而小,通过比较-a与-2a的大小可知y1与y2的大小.生:(1)解:因为点A在反比例函数y=kx的图象上,设点A的坐标为(a,ka).∵a>0,k>0,∴AC=ka,OC=a,又∵S△AOC=12OC·AC=2.∴12·a·ka=2,k=4,y=4x.即此反比例函数的解析式为y=.(2)∵A点,B点横坐标分别为a;2a(a>0)∴2a>a,即-2a<-a<0.由于点(-2a,y1),(-a,y2)在双曲线上,根据反比例函数的性质k>0,y随x•增大而减小知y1<y2.四、课时小结活动6谈谈你本节课有什么新的收获?掌握反比例函数的性质;会利用待定系数法求函数解析式.设计意图:这种形式的小结,激发学生主动参与的意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功体验的机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要.师生行为:让学生小组讨论、交流本节课的收获.教师根据学生的情况汇总.在活动中,教师应重点关注:①不同层次学生对本节知识的认识程度;②学生独立面对困难和克服困难的能力.板书设计17.1.2反比例函数的图象和性质(二)1.反比例函数①定义②图象③主要性质2.反比例函数的图象和性质的应用例3例43.练习4.小结活动与探究已知力F 所做的功是15焦,则力F 与物体在力的方向上通过的距离s 的图象大致是() 过程:在物理学中,功W=F ·s ,所以F=W s,又因为W=15为定值,所以F 是s 的反比例函数,因为W=15>0,s>0,所以其图象在第一象限.结果:应选B .习题详解习题17.11.(1)S=V h,此函数为反比例函数. (2)y=S x.此函数为反比例函数.2.B 是反比例函数,k=-3 3.(1)>,减小.(2)<,增大,(3)k=3,减小.4.如果y 是x 的反比例函数,那么x 也是y 的反比例函数.5.y 与x 具有正比例函数关系.6.y 与x 具有反比例函数关系.7.(1)设正比例函数y=x 的图象与反比例函数y=k x的图象的交点坐标为(a ,2),则 2,2,4.2;a a k k a =⎧=⎧⎪⎨⎨==⎩⎪⎩解得 所以反比例函数的解析式为y=4x . 当x=-3时,y=-43. (2)反比例函数y=4x 的图象在第三象限函数值y 随x 的增大而减小. 当x=-3时,y=-43;当x=-1时,y=-4. 所以-3<x<-1时,y 的取值范围是-4<y<-43. 8.BD9.(1)y=m x的图象的一支在第一象限,图象的另一支在第三象限,所以>0,得(2)的图象在第一、三象限,所以在每个象限y 随x 的增大而减小,所以b>b ′,•有a<a ′.备课资料参考练习1.如果k>0,那么函数y=k x的图象大致是下图中的( )2.已知y=(a-1)x a 是反比例函数,则它的图象在( )A .第一,三象限B .第二,四象限C .第一,二象限D .第三,四象限3.对于反比例函数y=-2x,下列结论错误的是( ) A .当x>0时,y 随x 的增大而增大B .当x<0时,y 随x 的增大而增大C .x=-1时的函数值小于x=1时的函数值D .在函数图象所在的每个象限内,y 随x 的增大而增大4.对于函数y=-12x,当x>0时,函数的这部分图象在第______象限. 5.若点(-2,-1)在反比例函数y=k x 的图象上,•则当x>•0•时,•y•值随x•值的增大而______.6.如果函数y=kx 222k k +-的图象是双曲线,且在第二、四象限内,那么k=_______.7.已知点P (1,a )在反比例函数y=k x (k ≠0)的图象上,其中a=m 2+2m+3(m 为实数),•则这个函数的图象在第________象限.8.设函数y=(m-2)x 255m m -+.当m 取何值时,它是反比例函数?它的图象位于哪些象限?•在每个象限内,y 随x 的增大而增大还是减小?画出其图象;并利用图象求当12≤x ≤2时,•y 的取值范围. 答案:1.C2.B3.C4.第四象限5.减小6.k=-17.第一、三象限8.m=3时,它是反比例函数,当m=3时,它的图象位于第一、三象限,在每一个象限y 随x•的增大而减小.图略,12≤y ≤2.。
学法大视野·数学·九年级上册(湘教版)·答案
学法大视野·数学·九年级上册(湘教版)·答案第1章反比例函数1.1反比例函数课前预习1.y=kx≠零课堂探究【例1】探究答案:-1k≠0 B 变式训练1-1:解:判断某函数是否是反比例函数,不是看表示变量的字母是不是有x与y,而要看它能否化为y=kx(k为常数,k≠0)的形式所以(2)是反比例函数,其中k=-6;(3)是反比例函数, 其中k=-3. 变式训练1-2:解:(1)由三角形的面积公式,得12xy=36 于是y=72x 所以,y是x的反比例函数. (2)由圆锥的体积公式,得13xy=60,于是y=180 所以y是x的反比例函数.【例2】探究答案:1.y=kx(k≠0) 2.(2,-2 解:设反比例函数的解析式为y=kx(k≠0 因为图象过点(2,-2), 将x=2,y=-2代入,得-2=k2,解得k=-2 因此,这个反比例函数的解析式为y=-2x 将x=-6,y=13代入,等式成立所以函数图象经过-6,13. 变式训练2-1:B 变式训练2-2:解:(1)设y1=k1x,y2=k2x(k1,k2为常数,且k1≠0,k2≠0),则y=k1x+ ∵x=1,y=4;x=2,y=5,∴k 解得k ∴y与x的函数表达式为y=2x+2x (2)当x=4时,y=2×4+24=81课堂训练 1.B 2.C 3.A 4.-2 5.解:设大约需要工人y个,每人每天生产纪念品x个. ∴xy=100,即y=100x(x>0∵5≤x≤8,∴1008≤y≤100 即1212≤y≤20 ∵y是整数,∴大约需工人13至20人.课后提升 1.D 2.A 3.C 4.B 5.C 6.27.4008.-12 9.解:(1)∵y是x的正比例函数, ∴m2-3=1, m2=4, m=±2. ∵m=2时,m-2=0, ∴舍去. ∴m=-2. (2)∵y是x的反比例函数, ∴m2-3=-1, m2=2, m=±2. 10.解:(1)由S=12xy=30,得y=60 x的取值范围是x>0. (2)由y=60x可知,y是x的反比例函数,系数为601.2反比例函数的图象与性质第1课时反比例函数的图象课前预习3.(1)一、三(2)二、四课堂探究【例1】探究答案:第一、三象限> 解:(1)∵这个反比例函数图象的一支分布在第一象限, ∴m-5>0,解得m>5. (2)∵点A(2,n)在正比例函数y=2x的图象上, ∴n=2×2=4,则A点的坐标为(2,4). 又∵点A在反比例函数y=m-5 ∴4=m-52,即m-5 ∴反比例函数的解析式为y=8x 变式训练1-1:C 变式训练1-2:-5【例2】探究答案:1.(1,5) 2.y 解:(1)∵点(1,5)在反比例函数y=kx的图象上∴5=k1,即k=5 ∴反比例函数的关系式为y=5x 又∵点(1,5)在一次函数y=3x+m的图象上, ∴5=3+m, ∴m=2. ∴一次函数的关系式为y=3x+2. (2)由题意可得y解得x1= ∴这两个函数图象的另一个交点的坐标为-53,-3. 变式训练2-1:A 变式训练2-2:解:(1)将A(-1,a)代入y=-x+2中, 得a=-(-1)+2,解得a=3. (2)由(1)得,A(-1,3),将A(-1,3)代入y=kx中得到3=k-1,即k=- 即反比例函数的表达式为y=-3x (3)如图:过A点作AD⊥x轴于D,∵A(-1,3),∴AD=3, 在直线y=-x+2中,令y=0,得x=2, ∴B(2,0),即OB=2, ∴△AOB的面积S=12×OB×AD=12×2×3=课堂训练1.A 2.C 3.B 4.m>15.解:(1)∵反比例函数y=kx 与一次函数y=x+b的图象,都经过点A(1,2 ∴将x=1,y=2代入反比例函数解析式得, k=1×2=2, 将x=1,y=2代入一次函数解析式得,b=2-1=1, ∴反比例函数的解析式为y=2x 一次函数的解析式为y=x+1. (2)对于一次函数y=x+1, 令y=0,可得x=-1; 令x=0,可得y=1. ∴一次函数图象与x轴,y轴的交点坐标分别为(-1,0),(0,1).课后提升 1.C 2.B 3.A 4.D 5.C 6.-37.-24 8.解:m2=(-4)×(-9)=36,∴m=±6. ∵反比例函数y=mx的图象位于第一、三象限,∴m>0 ∴m=6. 9.解:(1)∵y=m-5x的一支在第一象限内,∴ m-5 ∴m>5. 对直线y=kx+k来说,令y=0,得kx+k=0,即k(x+1)=0. ∵k≠0,∴x+1=0,即x=-1. ∴点A的坐标为(-1,0). (2)过点M 作MC⊥AB于点C, ∵点A的坐标为(-1,0),点B的坐标为(3,0),∴AB=4,AO=1. ∵S△ABM=12×AB× =12×4× =8, ∴MC=4. 又AM=5,∴AC=3, 又OA=1,∴OC=2.∴点M的坐标为(2,4). 把M(2,4)代入y=m- 得4=m-52,则m=13,第2课时反比例函数的性质课前预习1.在每一象限内减小在每一象限内增大2.y=±x坐标原点课堂探究【例1】探究答案:1.一、三>0 2.减小> 解:(1)图象的另一支在第三象限,则2n-4>0,解得n>2. (2)把点(3,1)代入y=2n-4x,得2n- 解得n=72 (3)因为在每个象限内,y随x的增大而减小,所以由a1<a2,得b1>b2. 变式训练1-1: A 变式训练1-2:<【例2】探究答案:|k|解:设点A的坐标为a,2a,则点B的坐标为-a,-2a, ∵BC‖x轴,AC‖y轴,∴AC⊥BC, 又由题意可得BC=2a,AC=4a S△ABC=12BC·AC=12·2a·4a 变式训练2-1:1 变式训练2-2:解:设A的坐标是(m,n),则n=km,即k=mn ∵OB=-m,AB=n,S长方形ABOC=OB·AB=(-m)n=-mn=3, ∴mn=-3,∴k=-3,则反比例函数的解析式是y=-3x课堂训练 1.A 2.C 3.6 4.25.解:设一次函数的解析式为y=kx+b(k≠0). ∵点A是直线与反比例函数y=2x的交点∴把A(1,a)代入y=2x,得a=2 ∴A(1,2). 把A(1,2)和C(0,3)代入y=kx+b,得k 解得k=-1,b=3. 所以一次函数的解析式为:y=-x+3.课后提升 1.D 2.D 3.A 4.C 5.C 6.C7.x<-2或0<x<1 8.6< span="">9.解:(1)图象的另一支在第三象限, ∵图象在一、三象限,∴5-2m>0, ∴m<52 (2)b1<b2.理由如下:∵m<52,∴m-4<m-3<0,∴b1<="" span="">【例1】探究答案:1.反比例v=PF2.解:(1)设反比例函数解析式为v=PF 把(3000,20)代入上式, 得20=P3000,P=3000×20=60000 ∴v=60000F (2)当F=1200时,v=600001200=50(米/秒)=180(千米/时即当它所受的牵引力为1200牛时,汽车的速度为180千米/时. (3)由v=60000F≤30,得F≥2000 所以,若限定汽车的速度不超过30米/秒,则F应不小于2000牛. 变式训练1-1:C 变式训练1-2:0.5【例2】探究答案:1.k2-2 2.图象解:(1)∵双曲线y=k2x 经过点A(1,2),∴k2= ∴双曲线的解析式为y=2x ∵点B(m,-1)在双曲线y=2x上∴m=-2,则B(-2,-1). 由点A(1,2),B(-2,-1)在直线y=k1x+b上, 得k 解得k ∴直线的解析式为y=x+1. (2)y2<y11或-2<x<0. < span="">变式训练2-1:C 变式训练2-2:解:(1)直线y=12x+b经过第一、二、三象限,与y轴交于点B ∴OB=b, ∵点A(2,t),△AOB的面积等于1. ∴12×2×b=1,可得b=1 即直线为y=12x+1 (2)由点A(2,t)在直线y=12x+1上可得t=2,即点A坐标为(2,2), 反比例函数y=kx(k是常量,k≠0)的图象经过点A,可得k=4 所求反比例函数解析式为y=4x 课堂训练 1.C 2.C 3.B 4.(1,-2) 5.解:(1)将A(2,4)代入反比例函数解析式得m=8, ∴反比例函数解析式为y2=8x 将B(-4,n)代入反比例函数解析式得n=-2, 即B(-4,-2), 将A与B坐标代入一次函数解析式得, 2 解得k 则一次函数解析式为y1=x+2. (2)联立两函数解析式得y 解得x=2 则y1=y2时,x的值为2或-4. (3)利用题图象得,y1>y2时, x的取值范围为-4<x<0或x>2. 课后提升1.D 2.D 3.C 4.D 5.x<0或1<x<4 6.1.67.(3,2) 8.19.< span="">解:(1)∵反比例函数y=kx的图象过B(4,-2)点∴k=4×(-2)=-8, ∴反比例函数的解析式为y=-8x ∵反比例函数y=-8x的图象过点A(-2,m ∴m=-8-2= 即A(-2,4). ∵一次函数y=ax+b的图象过A(-2,4),B(4,-2)两点, ∴- 解得a ∴一次函数的解析式为y=-x+2. (2)∵直线AB:y=-x+2交x轴于点C, ∴C(2,0).∵AD⊥x轴于D,A(-2,4), ∴CD=2-(-2)=4,AD=4,∴S△ADC=12·CD·AD=12×4×4= 10.解:(1)把A(m,2)代入反比例函数解析式y=2 得2=2m 所以m=1. ∴A(1,2). (2)把A(1,2)代入正比例函数解析式y=kx得2=k,所以k=2,因此正比例函数的解析式为y=2x. (3)因为正比例函数的解析式为y=2x,当x=2时,y≠3,所以点B(2,3)不在正比例函数图象上.第2章一元二次方程2.1一元二次方程课前预习1.一个2整式 3.相等课堂探究【例1】探究答案:1.2=2 2.≠0 解:根据题意,得m2-2=2,且m-2≠0. 解得m=±2,且m≠2.所以m=-2. 则m2+2m-4=(-2)2+2×(-2)-4=-4. 变式训练1-1:C 变式训练1-2:≠±1=1【例2】探究答案:1.移项合并同类项 2.符号0 解:(1)去括号,得4t2+12t+9-2(t2-10t+25)=-41, 去括号、移项、合并得2t2+32t=0, 所以二次项系数、一次项系数和常数项分别为2,32,0.(2)去括号,得12x2-x+12=3x+ 移项、合并,得12x2-4x+16= 所以二次项系数、一次项系数和常数项分别为12,-4,1 变式训练2-1:B 变式训练2-2:解:m 解得m=±2且m≠-2. ∴m=2.【例3】探究答案:1.根 2.≠0 解:根据题意,得(m-2)×12+(m2-3)×1-m+1=0, 即m2-4=0,故m2=4, 解得m=2或m=-2. ∵方程(m-2)x2+(m2-3)x-m+1=0是关于x的一元二次方程, ∴m-2≠0,即m≠2.故m=-2. 变式训练3-1:1 变式训练3-2:解:把x=0代入方程得a2-1=0, ∴a=±1, ∵a-1≠0,∴a≠1, ∴a=-1.课堂训练1.C 2.A 3.-10 4.-2 5.解:去括号,得9x2+12x+4=4x2-24x+36. 移项、合并同类项得,5x2+36x-32=0. ∴它的二次项为5x2 二次项系数为5, 一次项为36x, 一次项系数为36, 常数项为-32.课后提升 1.D 2.D 3.C 4.C 5.D 6.x(x+5)=300x2+5x-300=015-3007.18.≠1=1 9.解:(1)去括号,得x2-4=3x2+2x, 移项,得-2x2-2x-4=0,二次项系数为-2,一次项系数为-2,常数项为-4. (2)去括号,移项合并,得(1-2a)x2-2ax=0,二次项系数为1-2a,一次项系数为-2a,常数项为0. 10.解:小明的话有道理. 理由:若方程为一元二次方程,则m+1=2,m=1. 而m=1时,m2+m-2=0, 所以此方程不可能为一元二次方程.2.2一元二次方程的解法2.2.1配方法第1课时用配方法解简单的一元二次方程课前预习1.(1)平方根2.(1)a2±2ab+b2(2)完全平方式课堂探究【例1】探究答案:-a±b没有解:移项,得2(x+1)2=92 两边同时除以2,得(x+1)2=94 ∴x+1=±32 ∴x1=-1+32=12,x2=-1-32 变式训练1-1:m≥7 变式训练1-2:解:(1)移项,得(2x-1)2=25, 开平方得2x-1=±5, ∴2x-1=5或2x-1=-5, 解这两个方程得:x1=3,x2=-2. (2)两边同除以3,得(x-2)2=4, 开平方得:x-2=±2, ∴x-2=2或x-2=-2. 解这两个方程,得x1=4,x2=0.【例2】探究答案:一次项系数一半的平方解:移项,得x2-12x=1 配方,得x2-12x+142=916, ∴x-14=34或x-14=-34,∴x1=1,x 变式训练2-1:±4 变式训练2-2:解:移项,得x2-2x=2,配方,得(x-1)2=3, 解得x=1±3. ∴x1=1+3,x2=1-3.课堂训练1.D 2.B 3.±32 4.± 5.解:(1)移项得x2-2x=1,配方,得x2-2x+1=2, 即(x-1)2=2,开方,得x-1=±2, 则x1=1+2,x2=1-2. (2)移项,得x2-4x=-1, 配方,得x2-4x+4=-1+4,即(x-2)2=3, 开方,得x-2=±3, ∴原方程的解是x1=2+3,x2=2-3.课后提升1.D 2.B 3.D 4.B 5.3 6.-37.900 cm2 8.解:(1)直接开平方得,x-1=±3,即x-1=3或x-1=-3, ∴x1=1+3,x2=1-3. (2)配方,得x2-2x+1=4+1,即(x-1)2=5. ∴x-1=±5,即x-1=5或x-1=-5∴x1=1+5,x2=1-5. (3)方程两边都除以2,得x2-32=-52 移项,得x2+52x=3 配方,得x2+52x+542=32+542, 即x+542=4916. 开平方得,x+54=±74,∴x1=12,x2 9.解:用配方法解方程a2-10a+21=0,得a1=3,a2=7. 当a=3时,3、3、7不能构成三角形; 当a=7时,三角形周长为3+7+7=17. 10.解:移项得x2+px=-q, 配方得x2+px+p22=-q+p22, 即x+p22=p2- ∵p2≥4q, ∴p2-4q≥0, ∴x+p2=±p ∴x1=-p+p2-4第2课时用配方法解复杂的一元二次方程课前预习(1)1 (2)二次项和一次项常数项(3)一次项系数一半的平方课堂探究【例1】探究答案:1.1 2.完全平方式解:两边同时除以2,得x2-32x+12= 移项,得x2-32x=-1 配方,得x2-32x+-342=- 即x-34 两边开平方,得x-34=±14,x-34=14或x- ∴原方程的解为x1=1,x2=12 变式训练1-1:D 变式训练1-2:解:(1)二次项系数化为1, 得x2-16x-2=0 移项,得x2-16x=2,配方得x2-16x+1144=2+ 即x-1122=289144, ∴x-112=±1712,∴x1=32,x2 (2)二次项系数化为1,得x2-12x-12= 移项,得x2-12x=1 配方得x2-12x+142=12+142, 即x-142=916, ∴x-14=±3 ∴x1=1,x2=-12【例2】探究答案:1.1 2.减去解:2x2-4x+5=2(x2-2x)+5=2(x2-2x+12-12)+5 =2(x-1)2+3 ∵2(x-1)2≥0, ∴2(x-1)2+3>0, ∴代数式2x2-4x+5的值总是一个正数. 变式训练2-1:13 变式训练2-2:解:x2-4x+5=x2-4x+22-22+5 =(x-2)2+1. ∵(x-2)2≥0,且当x=2时值为0, ∴当x=2时, 代数式x2-4x+5的值最小,最小值为1.课堂训练1.A 2.B 3.x1=-2,x2=1 4.3或-7 5.-3或3 6.解:由题意得2x2-x=x+6,∴2x2-2x=6, ∴x2-x=3,∴x2-x+14=3+1∴x-122=134,∴x-12=±13 ∴x1=1+132,x2 ∴x=1+132或1-132时,整式2x2课后提升1.D 2.D 3.B 4.D 5.x1=1+3,x2=1-3 6.87.3 8.1±22 9.解:去括号,得4x2-4x+1=3x2+2x-7, 移项,得x2-6x=-8,配方,得(x-3)2=1, ∴x-3=±1,∴x1=2,x2=4. 10.解:由题意,得2x2+x-2+(x2+4x)=0, 化简,得3x2+5x-2=0. 系数化为1,得x2+53x=2 配方,得x+562=4936,∴x+56=±7 ∴x1=-2,x2=132.2.2公式法课前预习 1.x=-b±b2-4ac2 2.求根公式课堂探究【例1】探究答案:1.一般形式 2.a、b、c 解:原方程可化为x2+2x-1=0, ∵a=1,b=2,c=-1. b2-4ac=22-4×1×(-1)=8>0,∴x=-2±82×1= ∴x1=-1+2,x2=-1-2. 变式训练1-1:D 变式训练1-2:解:(1)移项,得2x2+3x-1=0, ∵a=2,b=3,c=-1,∴b2-4ac=17>0, ∴x=-3 ∴x1=-3+174,x (2)化简得,x2+5x+5=0, ∴a=1,b=5,c=5, ∴b2-4ac=5>0, ∴x=-5 ∴x1=-5+52,x【例2】探究答案:1.一元二次方程有实数根 2.相等解:原方程可化为2x2+22x+1=0, ∵a=2,b=22,c=1,∴b2-4ac=(22)2-4×2×1=0, ∴x=-22± ∴x1=x2=-22 变式训练2-1:解:(1)b2-4ac=(-2)2-4×1×1=4-4=0. ∴此方程有两个相等的实数根.(2)b2-4ac=72-4×(-1)×6=49+24=73>0. ∴此方程有两个不相等的实数根. 变式训练2-2:C课堂训练 1.D 2.C 3.2 4.解:(1)b2-4ac=(-4)2-4×2×(-1)=16+8=24>0. ∴x=-b±b2-4a∴x1=2+62,x2 (2)整理,得4x2+12x+9=0, 所以a=4,b=12,c=9. 因为b2-4ac=122-4×4×9=0, 所以方程有两个相等的实数根, 所以x=-b± =-128=- ∴x1=x2=-32课后提升 1.C 2.A 3.D 4.D 5.-1+ 6.x1=1,x2=1 7.25或16 8.解:整理得x2+2x-1=0, b2-4ac=22-4×1×(-1)=8, x=-2±82×1=∴x1=-1+2,x2=-1-2. 9.解:(1)x2-4x-1=0, ∵a=1,b=-4,c=-1,∴Δ=(-4)2-4×1×(-1)=20, ∴x=4±202×1 ∴x1=2+5,x2=2-5.(2)∵3x(x-3)=2(x-1)(x+1), ∴x2-9x+2=0, ∵a=1,b=-9,c=2,∴Δ=(-9)2-4×1×2=73>0, ∴x=-b±b ∴x1=9+732,x2 10.解:由题意得,m2+1=2, 且m+1≠0, 解得m=1. 所以原方程为2x2-2x-1=0, 这里a=2,b=-2,c=-1. b2-4ac=(-2)2-4×2×(-1)=12. ∴x=2±23∴x1=1+32,x22.2.3因式分解法课前预习1.(2)(a-b)(a+b)(a±b)22.一次因式课堂探究【例1】探究答案:x[(x+2)-4]3(x-5)2-2(5-x)=0 (x-5)(3x-13) 解:(1)x(x+2)-4x=0,x[(x+2)-4]=0, 即x(x-2)=0, ∴x=0或x-2=0,∴x1=0,x2=2. (2)3(x-5)2=2(5-x), 3(x-5)2-2(5-x)=0, (x-5)[3(x-5)+2]=0,∴x-5=0或3x-15+2=0, ∴x1=5,x2=133 变式训练1-1:C 变式训练1-2:解:(1)(3x-4)2=3(3x-4), ∴(3x-4)(3x-7)=0, ∴x1=43,x2=7(2)3(x+2)2=(x+2)(x-2), (x+2)[3(x+2)-(x-2)]=0, ∴(x+2)(2x+8)=0,∴x1=-2,x2=-4.【例2】探究答案:直接开平方法配方法公式法因式分解法解:(1)公式法:∵a=1,b=-3,c=1, ∴b2-4ac=(-3)2-4×1×1=5>0, ∴x=-(-3 ∴x1=3+52,x2 (2)因式分解法:原方程可化为x(x-3)=0,∴x=0或x-3=0 ∴x1=0,x2=3. (3)配方法:配方,得x2-2x+1=4+1, 即(x-1)2=5, ∴x-1=±5, ∴x1=1+5,x2=1-5. 变式训练2-1:C 变式训练2-2:解:(1)用直接开平方法:原方程可化为(x-3)2=4, ∴x-3=±2,∴x1=5,x2=1. (2)用配方法:移项,得x2-4x=7. 配方,得x2-4x+4=7+4, 即(x-2)2=11, ∴x-2=±11 ∴x-2=11或x-2=-11, ∴x1=2+11,x2=2-11. (3)用因式分解法:方程两边分别分解因式,得(x-3)2=2(x-3)(x+3), 移项,得(x-3)2-2(x-3)(x+3)=0. 方程左边分解因式,得(x-3)[(x-3)-2(x+3)]=0, 即(x-3)(-x-9)=0, ∴x-3=0或-x-9=0.∴x1=3,x2=-9.课堂训练 1.C 2.D 3.7 4.-1或4 5.解:(1)∵a=3,b=1,c=-1, ∴b2-4ac=12-4×3×(-1)=13>0, ∴x=- ∴x1=-1+136,x (2)移项,得(3x-2)2-4(3-x)2=0, 因式分解, 得[(3x-2)+2(3-x)][(3x-2)-2(3-x)]=0,即(x+4)(5x-8)=0, ∴x+4=0或5x-8=0, ∴x1=-4,x2=85 (3)将原方程整理,得x2+x=0, 因式分解,得x(x+1)=0, ∴x=0或x+1=0, ∴x1=0,x2=-1.课后提升1.A 2.D 3.B 4.B 5.B 6.x1=3,x2=97.68.-1 9.解:(1)用求根公式法解得y1=3,y2=-8. (2)用分解因式法解得x1=52,x2=-1 (3)用求根公式法解得y1=-2+22,y 10.解:解方程x(x-7)-10(x-7)=0, 得x1=7,x2=10. ∵4<第三边长<10, ∴x2=10(舍去).第三边长为7. 这个三角形的周长为3+7+7=17.2.3一元二次方程根的判别式课前预习1.a≠02.(1)>(2)=(3)<课堂探究【例1】探究答案:1.一般形式 2.a、b、c b2-4ac 解:(1)原方程可化为x2-6x+9=0, ∵Δ=b2-4ac=(-6)2-4×1×9=0, ∴原方程有两个相等的实数根. (2)原方程可化为x2+3x+1=0,∵Δ=b2-4ac=32-4×1×1=5>0, ∴原方程有两个不相等的实数根. (3)原方程可化为3x2-26x+3=0. ∵Δ=b2-4ac=(-26)2-4×3×3=-12<0, ∴原方程无实数根. 变式训练1-1:A 变式训练1-2:B【例2】探究答案:1.≥ 解:由题意知:b2-4ac≥0, 即42-8k≥0,解得k≤2. ∴k的非负整数值为0,1,2. 变式训练2-1:B 变式训练2-2:解:∵a=2,b=t,c=2. ∴Δ=t2-4×2×2=t2-16, 令t2-16=0,解得t=±4, 当t=4或t=-4时,原方程有两个相等的实数根.课堂训练 1.D 2.A 3.D 4.k<-1 5.解:(1)当m=3时,Δ=b2-4ac=22-4×1×3=-8<0, ∴原方程没有实数根. (2)当m=-3时,x2+2x-3=0, x2+2x=3, x2+2x+1=3+1, (x+1)2=4, ∴x+1=±2,∴x1=1,x2=-3.课后提升 1.D 2.A 3.C 4.C 5.D 6.m>17.m<2且m≠1 8.6或12或10 9.解:由题意,得b 由①,得4(k+1)+4-8k>0, 即-4k>-8,解得k<2. 由②得,k≠12,由③得,k≥-1 ∴-1≤k<2且k≠12 10.解:(1)Δ=b2-4ac =4-4(2k-4) =20-8k. ∵方程有两个不等的实根,∴20-8k>0,∴k<52 (2)∵k为正整数, ∴0<k<52(且k为整数即k为1或2,∴x="-1±5-" ∵方程的根为整数,∴5-2k为完全平方数.="" 当k="1时,5-2k=3;当k=2时,5-2k=1." ∴k="2.2.4一元二次方程根与系数的关系课前预习-ba课堂探究【例1】探究答案:1.-1 2.2ab a 解:因为方程x2-x-1=0的两实根为a、b. 所以(1)a+b=1; (2)ab=-1;(3)a2+b2=(a+b)2-2ab=12-2×(-1)=3; (4)1a+1b=a+ 变式训练1-1:-2变式训练1-2:-65【例2】探究答案:1.2(m+1) 2.>0 解:∵方程有两个不相等的实数根, ∴Δ=b2-4ac=[-2(m+1)]2-4×1×(m2-3) =16+8m>0, 解得m>-2; 根据根与系数的关系可得x1+x2=2(m+1),∵(x1+x2)2-(x1+x2)-12=0, ∴[2(m+1)]2-2(m+1)-12=0, 解得m1=1或m2=-52 ∵m>-2,∴m2=-52(舍去∴m=1. 变式训练2-1:1 变式训练2-2:解:∵x1+x2=2,∴m=2. ∴原方程为x2-2x-3=0,即(x-3)(x+1)=0, 解得x1=3,x2=-1.课堂训练 1.B 2.A 3.-2 4.5 5.解:设x1,x2是方程的两个实数根, ∴x1+x2=-32,x1x2=1 又∵1x1+1x2=3,∴∴-31-∴-3=3-3m,∴m=2, 又∵当m=2时,原方程的Δ=17>0, ∴m的值为2.课后提升 1.B 2.B 3.D 4.B 5.B 6.-20147.68.2014 9.解:将-2代入原方程得:(-2)2-2+n=0, 解得n=-2, 因此原方程为x2+x-2=0, 解得x1=-2,x2=1, ∴m=1. 10.解:(1)根据题意得m≠1Δ=(-2m)2-4(m-1)(m+1)=4, ∴x1=2m+2 x2=2m-2 (2)由(1)知x1=m+1m- 又∵方程的两个根都是正整数, ∴2m- ∴m-1=1或2. ∴m=2或3.2.5一元二次方程的应用第1课时增长率与利润问题课前预习 1.a(1±x) 2.(1)单件售价(2)单件利润课堂探究【例1】探究答案:(1)10000(1+x)10000(1+x)2 (2)12100(1+x) 解:(1)设捐款增长率为x,根据题意列方程得, 10000(1+x)2=12100, 解得x1=0.1,x2=-2.1(不合题意,舍去); 答:捐款增长率为10%. (2)12100×(1+10%)=13310元. 答:第四天该单位能收到13310元捐款. 变式训练1-1:A 变式训练1-2:B【例2】探究答案:200+40x0.1解:设应将每千克小型西瓜的售价降低x元. 根据题意,得(3-2-x)200+40x0.1-24= 解这个方程,得x1=0.2,x2=0.3. 答:应将每千克小型西瓜的售价降低0.2元或0.3元. 变式训练2-1:2或6 变式训练2-2:解:设每件童装应降价x 元. 根据题意得(40-x)(20+2x)=1200, 解这个方程得x1=10,x2=20. 因为在相同利润的条件下要扩大销售量,减少库存, 所以应舍去x1=10. 答:每件童装应降价20元.课堂训练 1.B 2.D 3.B 4.20% 5.解:设每千克核桃应降价x元. 根据题意得(60-x-40)(100+x2×20)= 解这个方程得x1=4,x2=6. 答:每千克核桃应降价4元或6元.课后提升 1.C 2.C 3.D 4.B 5.10% 6.30007.40(1+x)2=48.48.10% 9.解:(1)设每轮传染中平均一个人传染了x个人, 由题意,得1+x+x(1+x)=64, 解之,得x1=7,x2=-9. 答:每轮传染中平均一个人传染了7个人. (2)7×64=448. 答:又有448人被传染. 10.解:(1)设每年市政府投资的增长率为x, 根据题意,得:2+2(1+x)+2(1+x)2=9.5, 整理,得x2+3x-1.75=0, 解之,得x1=0.5, x2=-0.35(舍去) 所以每年市政府投资的增长率为50%. (2)到2013年年底共建廉租房面积=9.5×82=38(万平方米)第2课时面积与动点问题课堂探究【例1】探究答案:1.(6-x)2x 2.12(6-x)·2x= 解:设经过x秒钟后,△PBQ的面积等于8 cm2. 根据题意得12(6-x)·2x=8 解这个方程得x1=2,x2=4. 答:经过2秒或4秒后,△PBQ的面积等于8 cm2. 变式训练1-1:解:(1)由勾股定理:AC=5 cm,设x秒钟后,P、Q之间的距离等于5 cm,这时PC=5-x,CQ=2x, 则(5-x)2+(2x)2=52,即x2-2x=0. 解这个方程,得x1=0,x2=2,其中x1=0不合题意,舍去. 答:再运动2秒钟后,P、Q间的距离又等于5 cm. (2)设y秒钟时,可使△PCQ的面积等于4 cm2. 12×(5-y)×2y=4 即y2-5y+4=0, 解得y1=1,y2=4. 经检验,它们均符合题意. 答:1秒钟或4秒钟时,△PCQ的面积等于4 cm2. 变式训练1-2:解:设应移动x米.OA=AB2-O 则由题意得(3+x)2+(4-x)2=52. 解这个方程得x1=1,x2=0(不合题意,舍去). 答:应移动1米.【例2】探究答案:(100-2x)(50-2x) 解:设正方形观光休息亭的边长为x米. 依题意,有(100-2x)(50-2x)=3600. 整理,得x2-75x+350=0.解得x1=5,x2=70. ∵x=70>50,不合题意,舍去,∴x=5. 答:矩形花园各角处的正方形观光休息亭的边长为5米. 变式训练2-1:B 变式训练2-2: 解:设P、Q两块绿地周围的硬化路面的宽都为x米, 根据题意,得(40-2x)(60-3x)=60×40×14 解之,得x1=10, x2=30(不符合题意,舍去). 答:两块绿地周围的硬化路面的宽都是10米.课堂训练1.B 2.C 3.D 4.1 5.解:设花边的宽为x米, 根据题意,得(2x+6)(2x+3)=40. 解得x1=1,x2=-112 但x2=-112不合题意,舍去答:花边的宽为1米.课后提升 1.D 2.C 3.C 4.B 5.D 6.97.24458.1000 9.解:(1)设小货车原计划每辆每次运送帐篷x顶,则大货车原计划每辆每次运送帐篷(x+200)顶,根据题意,得2[8x+2(x+200)]=16800,解得x=800, x+200=800+200=1000. 故大、小货车原计划每辆每次分别运送帐篷1000顶,800顶. (2)根据题意,得2(1000-200m)1+12m+8(800-300)(1+m)=14400, 化简为m2-23m+42=0,解得m1=2,m2=21. ∵1000-200m不能为负数,且12m为整数∴m2=21(不符合实际,舍去),故m的值为2. 10.解:设x秒后四边形APQB的面积是△ABC面积的23 在Rt△ABC中,AB=10,AC=8, 由勾股定理,得BC2=AB2-AC2=102-82=36,∴BC=6. 则12(8-2x)(6-x)=13×12×6 解得x1=2,x2=8(不合题意,舍去), ∴2秒后四边形APQB的面积是△ABC面积的23 第3章图形的相似3.1比例线段3.1.1比例的基本性质课前预习 1.(1)比值比值(2)比例内项 2.(1)bc课堂探究【例1】探究答案:1.3x3y=2y 2.7y=4x7∶4 解:(1)∵3x=2y, ∴3x3y 即xy=2 (2)∵7x=4 ∴7y=4x, xy=7 变式训练1-1:D 变式训练1-2:4【例2】探究答案:1.2 解:∵ADAB=AEA ∴AD+A 即△ADE 设△ADE和△ABC的周长分别为2x cm和3x cm,则有3x-2x=15,得x=15. ∴△ABC的周长为45 cm,△ADE的周长为30 cm. 变式训练2-1:D 变式训练2-2:解:设x3=y5=z7=k,则x=3k,y=5k,z= ∴x-y+zx+y 课堂训练 1.C 2.A 3.2∶3=4∶6(答案不唯一) 4.1 5.解:因为m-nn 所以3(m-n)=2n, 化简得3m=5n, 所以mn=53,则3m+2nn=3mn+2=mn×3+课后提升 1.C 2.C 3.D 4.C 5.A 6.52727.338.2或9.解:∵a∶b∶c=1∶2∶4, 设a=k,b=2k, c=4k, 则a+2b+3ca 10.解:∵ab=cd=ef ∴2a2b=-c- ∴2a-c3.1.2成比例线段课前预习 1.m∶n ABC 2.ab=c 3.BCAC黄金比课堂探究【例1】探究答案:1.(12-x)x12-x=64 2 解:(1)设AD=x cm,则DB=(12-x)cm. 则有x12-x=64,解这个方程得x= 所以AD=7.2 cm.(2)DBAB=12-7.212= 所以DBAB 所以线段DB、AB、EC、AC是成比例线段. 变式训练1-1:B 变式训练1-2:解:利用比例线段的定义, ∵a=1 mm=0.1 cm,b=0.8 cm, c=0.02 cm,d=4 cm,∴d>b>a>c, 而db=40.8=5,ac ∴db=a ∴d、b、a、c四条线段是成比例线段.【例2】探究答案:1.ACAB=CBAC 解:设CB=x,∵点C为线段AB的黄金分割点, ∴ACAB=CBAC,即3x+3= 解得x1=35-32,x2=- 故CB的长为35 变式训练2-1:C 变式训练2-2:解:因为点C是AB的黄金分割点, 所以当AC>BC时,ACAB 又因为AB=10 cm, 所以AC=5-12×10=(55-5 当AC<bc时,bcab 所以bc="5-12×10=(55-5" 所以ac="AB-BC=10-(55-5)=(15-55)(cm)," 所以ac的长为(55-5)cm或(15-55)cm. <="" span="">课堂训练 1.D 2.4535 3.6-25 5.解:(1)a∶b=c∶d,即a∶0.2=0.5∶1, 则a=0.2×0.5=0.1. (2)a∶b=c∶d,即3∶7=c∶21,则7c=21×3,得c=9.课后提升 1.B 2.D 3.C 4.B 5.B 6.6.987.168.5-1 9.解:设相邻两个钉子之间的距离为1个单位长度, 则AD=2,BD=5,BE=5, CE=1,CF=4,AF=3. 在直角三角形ABD中, AB=AD2+BD 在直角三角形BCE中, BC=BE2+CE 在直角三角形ACF中, AC=CF2+AF 所以ABAC=295, 10.解:设每一份为k, 由(a-c)∶(a+b)∶(c-b)=(-2)∶7∶1, 得a-c 而(3k)2+(4k)2=(5k)2, 即a2+b2=c2, 所以△ABC是直角三角形.3.2平行线分线段成比例课前预习(1)在另一条直线上截得的线段也相等(2)对应线段(3)成比例课堂探究【例1】探究答案:1.35 2. 解:∵l1‖l2‖l3, ∴ABAC∵ABBC=32,∴∴DEDF 由DF=20 cm,得DE=35DF=12 cm∴EF=DF-DE=8 cm. 变式训练1-1:D 变式训练1-2:1【例2】探究答案:1.AEAC 2.x-4x-4 D 变式训练2-1:B 变式训练2-2:A课堂训练 1.B 2.A 3.A 4.5 5.解:∵DE⊥AB,CB⊥AB,∴DE‖BC, ∴ADAB=AEAC ∴AC=253 ∴BC=AC2-AB课后提升 1.C 2.C 3.A 4.D 5.D 6.97.68.14 9.解:∵DE‖BC,DF‖AC, ∴四边形EDFC为平行四边形, ∴DE=FC=5, 又∵DF‖AC, ∴ADBD=CFBF,即48 10.解:∵DE‖BC, ∴ADAB 又∵EF‖CD, ∴AFAD ∴ADAB ∴AD2=AB·AF=36, ∴AD=6 cm.3.3相似图形课前预习 1.(1)对应相等对应成比例(2)∽△ABC相似于△A'B'C' (3)相等成比例 2.(1)对应角成比例(2)相等等于相似比课堂探究【例1】探究答案:1.∠A'∠B'∠C' 2.180°-∠A-∠B解:∵△ABC∽△A'B'C', ∴∠B=∠B'=60°, 在△ABC中,∠C=180°-∠A-∠B=180°-50°-60°=70°. 变式训练1-1:50 变式训练1-2:1∶2【例2】探究答案:(1)CD CB(2)77°83°解:因为四边形ABCD∽四边形EFGH, ∴∠F=∠B=77°,∠G=∠C=83°, EFAB=GHCD= ∴∠H=360°-(∠E+∠F+∠G)=83°, BC=FG÷29=6×92=CD=GH÷29=7×92=31. 变式训练2-1:B 变式训练2-2:解:由四边形ABCD与四边形A'B'C'D'相似得, x21=12y= ∠A=∠A'=120°,∴x=21×1015=14 y=12÷1015=12×32=∠α=360°-(∠A+∠B+∠C)=80°.课堂训练 1.C 2.B 3.6 1.5 4.9或25 5.解:因为梯形AEFD∽梯形EBCF, 所以ADEF=E 又因为AD=4,BC=9, 所以EF2=AD·BC=4×9=36, 所以EF=6, 所以AEEB=ADE课后提升 1.B 2.D 3.D 4.D 5.D 6.230°7.60°140°18.5 9.解:∵四边形ABCD与四边形EFGH相似,∴∠E=∠A=70°,∠F=∠B=80°. ∴∠G=360°-70°-80°-150°=60°.∵ABEF ∴AB=EF·ADE ∵BCFG ∴BC=FG·ADEH= 10.解:∵△ABC∽△APQ, ∴ABAP 即4040+60 解得PQ=75. 答:PQ的长为75 cm.3.4相似三角形的判定与性质3.4.1相似三角形的判定第1课时两角对应相等或平行判定相似课前预习(1)相似(2)相等课堂探究【例1】探究答案:1.EDA 2.DFC 3.△EDA△DFC 解:∵四边形ABCD是平行四边形, ∴AB‖CD,AD‖BC,∴△BEF∽△CDF,△BEF∽△AED, ∴△BEF∽△CDF∽△AED. 当△BEF∽△CDF时,相似比k1=BECD 当△BEF∽△AED时,相似比k2=BEAE 当△CDF∽△AED时,相似比k3=CDAE 变式训练1-1:3 变式训练1-2:1∶2【例2】探究答案:1.∠DAE 2.∠D 解:△ABC∽△ADE,理由如下: ∵∠1=∠2, ∴∠1+∠DAC=∠2+∠DAC, 即∠BAC=∠DAE,又∵在△AOB与△COD中, ∠AOB=∠COD,∠1=∠3, ∴∠B=∠D, ∴△ABC∽△ADE. 变式训练2-1:C 变式训练2-2:证明:∵四边形ABCD是平行四边形, ∴AD‖BC,AB‖CD,∴∠ADF=∠CED,∠B+∠C=180°, ∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C, ∴△ADF∽△DEC.课堂训练 1.D 2.C 3.A 4.∠ADE=∠C(答案不唯一) 5.解:(1)在△ABC中, ∵∠A=90°,∠B=50°, ∴∠C=40°.∴∠A=∠A'=90°,∠C=∠C'=40°. ∴△ABC∽△A'B'C'(两角相等的两个三角形相似). (2)在△ABC中, ∵∠A=∠B=∠C,∴∠A=∠B=∠C=60°, ∴∠A=∠A',∠B=∠B', ∴△ABC∽△A'B'C'(两角相等的两个三角形相似).课后提升1.A 2.D 3.C 4.D 5.6 6.2.5 7.解:∵∠A=36°,AB=AC, ∴∠ABC=∠ACB=72°, ∵BD平分∠ABC,∴∠CBD=∠ABD=36°, ∠BDC=72°, ∴AD=BD,BC=BD,∴△ABC∽△BDC, ∴BDAB=CDBC ∴AD2=AC·CD, 设AD=x,则CD=1-x, ∴x2=1×(1-x), x2+x-1=0, x=-1±1 x1=-1+52,x2= ∴AD=5-∴AD的长是5- 8.解:(1)△ABC∽△FOA,理由如下: 在矩形ABCD 中,∠BAC+∠BCA=90°, ∵l垂直平分AC, ∴∠OFC+∠BCA=90°,∴∠BAC=∠OFC=∠OFA, 又∵∠ABC=∠FOA=90°,∴△ABC∽△FOA. (2)四边形AFCE是菱形,理由如下: ∵AE‖FC,∴∠AEO=∠OFC,∠EAO=∠OCF, ∴△AOE∽△COF,∵OC=OA,∴OE=OF, 即AC、EF互相垂直平分, ∴四边形AFCE是菱形.第2课时两边成比例夹角相等或三边成比例判定相似课前预习(1)成比例夹角(2)成比例课堂探究【例1】探究答案:1.45 2.△DCA 解:因为ABCD=45, 所以ABCD 又因为∠B=∠ACD, 所以△ABC∽△DCA, 所以ABDC 所以AD=DC·ACA 变式训练1-1:B 变式训练1-2:证明:∵四边形ABCD是正方形, ∴AD=DC=BC,∠D=∠C=90°, ∵M是CD的中点,∴AD∶DM=2∶1, ∵BP=3PC,∴CM∶PC=2∶1, 即ADDM=CMPC, ∴△ADM∽△MCP.【例2】探究答案:1.51052210 2.102102 解:相似.理由如下: AB=5,AC=10,BC=5, DE=2,DF=2,EF=10,∵ABDE=102,ACDF 即ABDE=A ∴△ABC∽△DEF. 变式训练2-1:A 变式训练2-2:证明:∵D、E、F分别为AB、AC、BC的中点, ∴DE、DF、EF分别为△ABC的中位线, ∴DE=12BC,DF=12AC,EF=1∴DECB=DFC ∴△DEF∽△CBA.课堂训练 1.A 2.C 3.B 4.3 5.解:由题知AC=2,BC=12+32=10 DF=22+22=22,EF=2 ED=8,∴ACDF=BCE∴△ABC∽△DEF.课后提升1.C 2.C 3.D 4.C 5.B 6.20°7.(4,0)或(3,2) 8.解:(1)△ABC∽△EBD,理由如下: ∵BD·AB=BE·BC,∴BDBC 又∵∠B 为公共角,∴△ABC∽△EBD. (2)ED⊥AB,理由如下: 由△ABC∽△EBD可得∠EDB=∠C, ∵∠C=90°,∴∠EDB=90°,即ED⊥AB. 9.解:△A'B'C'∽△ABC,理由如下: ∵OA'OA=OC'OC∴△AOC∽△A'OC', ∴A'C'AC 同理B'C'BC=3 ∴A'C'AC∴△A'B'C'∽△ABC.3.4.2相似三角形的性质课前预习1.相似比2.(1)相似比相似比的平方(2)相似比相似比的平方课堂探究【例1】探究答案:1.△ADE 2.DE 解:∵BC‖DE,∴∠ABC=∠ADE,∠ACB=∠AED, ∴△ABC∽△ADE, 所以MCNE 设DE高为x m,则0.630=0. 故旗杆大致高12 m. 变式训练1-1:C 变式训练1-2:1∶2【例2】探究答案:1.相似比的平方 2.9解:(1)∵△ABC∽△ADE,∴ABAD ∵AB=15,AC=9,BD=5,∴AD=20,∴AE=AD·ACA 即AE的长为12.(2)∵△ABC∽△ADE,∴S△ABCS ∴S△ADE=16×279 ∴S四边形BDEC=48-27=21. 变式训练2-1:A 变式训练2-2:D课堂训练 1.D 2.D 3.1∶2 4.1∶21∶4 5.解:因为DE‖BC, 所以∠ADE=∠ABC,∠AED=∠ACB, 所以△ADE∽△ABC. 又DEBC=13,△ADE的周长是所以△ABC的周长是30 cm, 所以梯形BCED的周长为30-8+2=24(cm).课后提升 1.D 2.A 3.B 4.A 5.1∶9 6.37.60378. 9.(1)证明:∵E是AB的中点, ∴AB=2EB, ∵AB=2CD,∴CD=EB, 又∵AB‖CD, ∴四边形CBED是平行四边形, ∴DE‖CB,∴∠EDM=∠MBF,∠DEM=∠MFB, ∴△EDM∽△FBM. (2)解:∵△EDM∽△FBM,∴DMBM 又∵F是BC的中点, ∴DE=2BF, ∴DM=2BM. ∴BM=13DB=3 S△EDMS△FB3.5相似三角形的应用课堂探究【例1】探究答案:1.△ABF△EFG 2.DFB 解:∵CD‖EF‖AB, ∴可以得到△CDF∽△ABF,△ABG∽△EFG, ∴CDAB=DFB 又∵CD=EF,∴DFBF∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7, ∴3DB+∴BD=9,BF=9+3=12,∴1.6AB=312,解得,AB=6 变式训练1-1:A 变式训练1-2:5.6【例2】探究答案:1.△EDC 2.△EDC B 解:(1)DE=AB,理由如下: ∵AB⊥BF,ED⊥BF, ∴∠ABC=∠EDC. ∵∠ACB=∠ECD,BC=CD, ∴△ABC≌△EDC(ASA), ∴AB=DE,即DE的长就是A、B的距离.∵∠ABC=∠EDC=90°,∠ACB=∠ECD, ∴△ABC∽△EDC,∴ABDE=BCCD,AB=DE·即A、B之间的距离为15米. 变式训练2-1:C 变式训练2-2:解:设AB=x米, 因为BC‖DE,所以∠ABC=∠D, 又∠A=∠A,所以△ABC∽△ADE, 则ABBC=ADDE 解得x=70.答:A、B两村相距70米. 课堂训练 1.A 2.B 3.874.1.55.解:由光的反射定律可知∠1=∠2,∴∠ABS=∠CBP.∵SA⊥AC,PC⊥AC,∴∠SAB=∠PCB=90°, ∴△ASB∽△CPB. ∴SAPC ∴SA=AB·PCCB=10 答:点光源S与平面镜的距离SA的长是12 cm.课后提升 1.C 2.A 3.A 4.D 5.22.5 6.8 m7.4.2 8.解:∵∠DEF=∠BCD=90°,∠D=∠D, ∴△DEF∽△DCB, ∴BCEF∵DE=40 cm=0.4 m,EF=20 cm=0.2 m,AC=1.5 m,CD=10 m. ∴BC0.∴BC=5(m), ∴AB=AC+BC=1.5+5=6.5(m),∴树高为6.5 m.3.6位似课前预习 1.同一个点O位似中心相似比 2.位似坐标原点课堂探究【例1】探究答案:1.1∶2 2.1∶4 解:(1)△ABC与△A'B'C'的周长之比为ABA'B' 设S△ABC周长为x cm,△A'B'C'周长为2x cm, 则2x-x=12,解得x=12, 所以△ABC的周长为12 cm. (2)△ABC与△A'B'C'的面积之比为ABAB2=1 设S△ABC=y cm2,则S△A'B'C'=4y cm2, 则y+4y=25,解得y=5, 所以△A'B'C'的面积为20 cm2. 变式训练1-1:B 变式训练1-2:解:(1)、(3)中的两个图形都是位似图形,位似中心分别为点A、O;(2)中的两个图形不是位似图形.【例2】探究答案:1.位似中心 2.位似中心解:(1)如图所示.(2)A'C'=22+22=22, ∴四边形AA'C'C的周长为AA'+A'C'+C'C+CA=2+22+2+42=4+62. 变式训练2-1:B 变式训练2-2:解:作法: (1)连接OA,并延长OA到A',使得AA'=OA; (2)连接OB,并延长OB到B',使得BB'=OB; (3)连接OC,并延长OC到C',使得CC'=OC;(4)连接OD,并延长OD到D',使得DD'=OD; (5)连接A'B',B'C',C'D',D'A'(如图所示),则四边形A'B'C'D'是四边形ABCD关于O点的位似图形, 且四边形A'B'C'D'与四边形ABCD的相似比为2.【例3】探究答案:1.位似中心 2.1∶(-2) 解:(1)延长BO到B',使B'O=2BO,延长CO到C',使C'O=2CO,连接B'C'.则△OB'C'即为△OBC的位似图形(如图所示). (2)观察图形可知,B'(-6,2)、C'(-4,-2).(3)M'(-2x,-2y). 变式训练3-1:C 变式训练3-2:6课堂训练 1.B 2.D 3.20 4.(-4,-4) 5.解:(1)OAE与△OBF相似.理由: ∵AC‖BD,∴OAOB 又CE‖DF,∴OEOF ∴OAOB ∴AE‖BF,∴△OAE∽△OBF. △OAE与△OBF位似.理由: 已证△OAE∽△OBF, 又△OAE和△OBF对应点的连线都经过点O,∴△OAE与△OBF位似. (2)△ACE与△BDF位似.理由: 由(1)得AE‖BF,∴AEBF 又AC‖BD,∴ACBD=O 又CE‖DF,∴CEDF ∴ACBD=C∴△ACE∽△BDF. 又△ACE和△BDF对应点的连线都经过点O, ∴△ACE与△BDF位似.课后提升 1.D 2.A 3.D 4.2,32或-2,-32 5.4 6.187.10 8.解:∵矩形ABCD与矩形AB'C'D'是位似图形,且点A为位似中心, ∴ABAB 即ABAB ∴2AB=4AD,即ABAD 又∵矩形ABCD的周长为24,即AB+AD=12, ∴AB=8,AD=4.第4章锐角三角函数 4.1正弦和余弦第1课时正弦课前预习 1.大小 2.对边斜边sin A∠A 3.1222课堂探究【例1】探究答案:1.直角 2.对斜角的大小无关解:∵BC2+AC2=62+82=102=AB2, ∴△ABC是直角三角形,∠C=90°, ∴sin A=BCAB=610=35,sin B=A 变式训练1-1:5 变式训练1-2:3 【例2】探究答案:1.1 1 2.倒数正311 3 3.3 解:原式=12+1-3-2×3 =23+1-3-3 =3-2. 变式训练2-1:45°变式训练2-2:2 课堂训练 1.C 2.D 3.4 4.4 5.解:(1)原式=2+3-2×1 =2+3-1 =4. (2)原式=3-1-4×32+2 =3-1-23+23 =2.课后提升 1.C 2.B 3.C 4.C 5.B 6.0.64217.538. 9.解:∵sin 30°=12 ∴∠A=30°, ∵sin 60°=32 ∴∠C=60°, 则∠B=180°-30°-60°=90°, ∴△ABC是直角三角形. 10.解:过点A作AD⊥BC于D, ∴sin ∠ABC=ADAB ∴AD=2114×AB=2114×10= 在Rt△ACD中,sin ∠ACB=ADAC第2课时余弦课前预习 1.邻边斜边 b 2.(90°-α)(90°-α) 3.3222课堂探究【例1】探究答案:1.BCAB AB2 2.ACAB解:∵sin A=BCAB 设BC=8x,AB=17x, ∴AC=AB2-B ∴cos A=ACAB=15 sin B=ACAB=cos cos B=BCAB=sin 变式训练1-1:D 变式训练1-2:27 变式训练1-3:0.5684【例2】探究答案:1.非负非负非负0 2.30°60° D 变式训练2-1:C 变式训练2-2:(1)6 (2)解:原式=22×22-32+2 =22-32+62 =2-62+ =2.课堂训练 1.B 2.B 3.513 4. 5.解:∵BC∶CA∶AB=5∶12∶13, 设BC=5k, 则CA=12k,AB=13k,∵(5k)2+(12k)2=(13k)2, 即BC2+CA2=AB2, ∴∠C=90°. 在Rt△ABC 中, sin A=BCAB=5 cos A=ACAB=12 sin B=cos A=1213 cos B=sinA=513课后提升 1.A 2.B 3.B 4.A 5.C 6.310107.18 9.解:(1)原式=2×22-1=1-1=0 (2)原式=-1-12+12+1= 10. 解:(1)过点B作BC⊥x轴于C, ∴sin ∠BOA=BCOB ∵OB=5, ∴BC=3, ∴OC=OB2- ∴点B的坐标为(4,3). (2)∵点A的坐标为(10,0), ∴AC=6. ∵BC=3,∴AB=62+32 ∴cos ∠BAO=ACAB=64.2正切课前预习 1.对边邻边ab 2.(2)正弦余弦正切 3.12 2232322212课堂探究【例1】探究答案:1.ACA 2.平行四边形ABED三角形ACD 三角形CDE B 变式训练1-1:C 变式训练1-2:A 【例2】探究答案:1.原式 2.2 解:(1)cos245°+tan 30°·sin 60° =222+33×3 =12+12= (2)cos 30°tan 30°+sin 60°tan 45°tan 60° =32×33+32× =12+ =2. 变式训练2-1:D变式训练2-2:1课堂训练 1.B 2.D 3.(1)0.3057(2)72.2° 4.3 5.解:(1)在Rt△ACD中,cos∠ADC=CDAD 设CD=3k,AD=5k, 由AD=BC得:5k=3k+4, ∴k=2.∴CD=3k=6. (2)∵BC=3k+4=10, AC=AD2-CD∴tan B=ACBC=8课后提升 1.A 2.C 3.B 4.C 5.A 6.337.58.②③④9. 10.解:11- ∴1-tan α=0,tan α=1, ∴α=45°, sin(α+15°)+cos(α-15°) =sin 60°+cos 30° =32+ =3.4.3解直角三角形课前预习 1.32未知 2.(1)a2+b2=c2(2)∠A+∠B=90°课堂探究【例1】探究答案:1.CD AB BD CD 2.BC BD BE D 解:(1)在△ABC中,AD是BC边上的高, ∴∠ADB=∠ADC=90°. 在△ADC中,∠ADC=90°,∠C=45°,AD=1, ∴DC=AD=1. 在△ADB中,∠ADB=90°,sin B=13,AD=1 ∴AB=ADsinB ∴BD=AB2-A∴BC=BD+DC=22+1. (2)∵AE是BC边上的中线, ∴BE=12BC=2+1∴DE=BD-BE=2-12 ∴tan∠DAE=DEAD=2 变式训练1-1:C 变式训练1-2:24【例2】探究答案:1.AB 2.AC·cos A AC·sin A CD 3.AD BD 解:过点C作CD⊥AB于D, ∵∠A=30°,AC=10 cm, sinA=CDAC,cos ∴CD=AC·sin A=10×sin 30°=5(cm), AD=AC·cos A=10×cos 30°=53(cm). ∵∠B=45°,∴BD=CD=5(cm).∴AB=AD+BD=53+5=5(3+1)cm. 变式训练2-1:D 变式训练2-2:21 课堂训练1.A 2.B 3.6 4.6 5.解:(1)∵∠C=90°,∴∠B=90°-∠A=60°. ∵cos A=bc ∴c=bcosA=3cos ∴a=12c=1.即∠B=60°,a=1,c=2 (2)∵∠C=90°,∴c2=a2+b2, 即a2=c2-b2=42-(22)2=8, ∴a=22,sin A=ac=224 ∴∠A=45°,∴∠B=45°. 即a=22,∠A=∠B=45°.课后提升 1.A 2.B 3.D 4.A 5.A 6.107.0,528.2 9.解:在Rt△BDC中,∠C=90°,∠BDC=45°, BD=102, ∴BC=BD·sin∠BDC =102·sin 45° =10. 在Rt△ABC中,sin A=BCAB=10 ∴∠A=30°. 10.解:过点B作BE⊥AD于E, BF⊥CD于F, ∵∠A=30°,AB=10,∴DF=BE=AB·sin A =10·sin 30° =5, AE=AB·cos 30°=53,∵∠C=30°,BC=20, ∴DE=BF=BC·sin C=20·sin 30°=10, CF=BC·cosC=20·cos 30°=103, ∴AD=AE+DE=53+10, CD=CF+DF=103+5.4.4解直角三角形的应用第1课时利用仰角、俯角解直角三角形课前预习 2.仰角俯角课堂探究【例1】探究答案:1.AD 2.tan 36°BD 解:根据题意,有∠CAD=45°,∠CBD=54°,AB=112 m. 在Rt△ACD中,∠ACD=∠CAD=45°, 有AD=CD.又AD=AB+BD,∴BD=AD-AB=CD-112. 在Rt△BCD中,∠BCD=90°-∠CBD=36°,∴tan∠BCD=tan 36°=BD 得BD=CD·tan 36°. 于是,CD·tan36°=CD-112. ∴CD=1121-tan36°≈1121 答:天塔的高度CD约为415 m. 变式训练1-1:A 变式训练1-2:D【例2】探究答案:1.△CBD△CAD 2.x3x 解:过点C作CD⊥AB于点D, 设CD=x米, 在Rt△ACD中, ∠CAD=30°, 则AD=CDtan30°=3 在Rt△BCD中,∠CBD=45°, 则BD=CD=x, 由题意得,3x-x=4, 解得x=43-1=2(3+1)≈5 答:生命所在点C的深度约为5.5米. 变式训练2-1:B 变式训练2-2:解:(1)根据题意得∠E=∠ABD-∠D=127°-37°=90°. 在Rt△BDE中,∠E=90°,∠D=37°. ∴cos D=DE ∴DE=BD·cos 37°≈520×0.8=416(m). 答:施工点E离D 约416米时,正好使A、C、E在一条直线上. (2)∵sin D=BE∴BE=BD·sin D=520×sin 37°≈312(m), ∴CE=BE-BC≈312-80=232(m). 答:公路CE段的长约为232 m.课堂训练 1.B 2.B 3.3871 m 4.7502 5. 解:如图,作CD⊥AB,垂足为D. 在Rt△ACD中,∠A=30°, ∴CD=12AC=5∴AD=CDtan30°=5 ∵∠B=45°,∴BD=CD=5,BC=52.∴AC+BC-AB=10+52-(53+5) =(5+52-53)(千米). 答:汽车从A地到B 地比原来少走(5+52-53)千米.课后提升1.A 2.A 3.D 4.D 5.A 6.607.2.78.90.6 第2课时利用坡度、方位角解直角三角形课前预习 1.坡角课堂探究【例1】探究答案:1.ABsin 45° 2.2ADcos 30°解:(1)已知AB=2 m,∠ABC=45°, ∴AC=BC=AB·sin 45°=2×22=2(m 答:舞台的高为2米. (2)不会触到大树.理由如下: 已知∠ADC=30°,∴AD=2AC=22. CD=AD·cos 30°=22×32=6(m)<3(m 故修新楼梯AD时底端D不会触到大树. 变式训练1-1:A 变式训练1-2:。
一次函数与反比例函数综合应用教案
一次函数与反比例函数综合应用教案一、教学目标1. 让学生掌握一次函数和反比例函数的基本概念和性质。
2. 培养学生运用一次函数和反比例函数解决实际问题的能力。
3. 引导学生通过合作交流,提高解决问题的策略和思维能力。
二、教学内容1. 一次函数的基本概念和性质。
2. 反比例函数的基本概念和性质。
3. 一次函数和反比例函数的综合应用。
三、教学重点与难点1. 教学重点:一次函数和反比例函数的基本概念、性质和综合应用。
2. 教学难点:一次函数和反比例函数的综合应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一次函数和反比例函数的性质。
2. 利用案例分析法,让学生通过实际问题体会一次函数和反比例函数的应用价值。
3. 采用合作交流法,培养学生团队协作和沟通能力。
五、教学过程1. 导入新课:通过生活实例引入一次函数和反比例函数的概念。
2. 自主学习:让学生自主探究一次函数和反比例函数的性质。
3. 案例分析:分析实际问题,引导学生运用一次函数和反比例函数解决问题。
4. 合作交流:分组讨论,让学生分享解题策略和心得。
5. 总结提升:总结一次函数和反比例函数的性质及应用,提高学生解决问题的能力。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学活动设计1. 活动一:引入概念通过展示实际生活中的线性关系图片,如直线轨道上列车的运动,引导学生思考线性关系的表现形式。
引导学生提出一次函数的表达式,并解释其含义。
2. 活动二:探索性质学生通过绘制一次函数图像,观察并总结其在坐标系中的性质。
通过实际例子,让学生理解一次函数的斜率和截距对图像的影响。
3. 活动三:反比例函数的引入引导学生从比例关系出发,思考反比例函数的概念。
通过实际问题,如在固定面积内,距离与面积的关系,引入反比例函数。
七、教学评价设计1. 评价目标:学生能理解并应用一次函数和反比例函数解决实际问题。
通过设计具有挑战性的问题,如购物预算问题,让学生应用所学的函数知识。
9、2反比例函数的图象与应用(第三课时)
反比例函数的图象与性质(3)教学目标:使学生对反比例函数和反比例函数的图象意义加深理解。
教学重点:反比例函数的图象 教学难点:利用反比例函数的图象解题 教学过程:二、新授:例2、如图是反比例函数2m y x-=的图象的一支。
(1) 函数图象的另一支在第几象限?试求常数m 的取值范围; (2) 点13(3,))(2,)A y C y -2、B(-1,y 和都在这个反比例函数的图象上,比较1y 、2y 、3y 的大小。
例3、如图,正比例函数y=kx 的图象与反比例函数y=60k 的图象相交于A 、B 两点,其中点A 的坐标为( 3 ,2 3 )(1)分别写出这两个函数的表达式;(2)你能求出点B 的坐标吗?你是怎样求的?与同伴进行交流; 三、随堂练习: P86~87 1、2、o hr补1、若反比例函数xk y 3-=的图象位于一、三象限内,正比例函数x k y )92(-=过二、四象限,则k 的整数值是________。
2、在同一直角坐标系内,函数y=2x 与xy 8=的交点坐标为____________。
3、如果反比例函数k y x=在每个象限内,y 随x 的增大而减小,那么它的图象分布在( )A.第一、二象限B. 第一、三象限C. 第二、三象限D. 第二、四象限4.反比例函数y=3k x+ 的图象在每个象限内的函数值y 随自变量x 的增大而增大, 那么k 的取值范围是( )A 、k ≤-3B 、k ≥-3C 、k>-3D 、k<-35.下列函数中,当x>0时,y 随x 的增大而增大的是 ( ) A 、y=2-3x B 、y=2x C 、y=-2x-1 D 、y=-12x6、已知一次函数y=kx+b 的图象经过第二、三、四象限,则反比例函数kb y x=的图象在( )A.第一、二象限; B .第三、四象限; C .第一、三象限; D .第二、四象限. 7.若0<ab ,则函数ax y =与xb y =在同一平面直角坐标系中的图象大致是( ) 四、小结 五、作业: P86 5同步导学(随堂演练)第11题。
第32课时 反比例函数的图像和性质的综合运用(解析版)
第32课时反比例函数的图像和性质的综合运用(解析版)核心考点:1.反比例函数的图像和性质的综合运用;2.反比例函数与一次函数的综合运用;3.反比例与一次函数的综合运用一、考点过关1.(2011•和平区校级自主招生)一次函数y=ax+12的图象过一、二、四象限,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数y=a−1x图象上的三点,则下列结论正确的是( )A.x1>x2>x3B.x1>x3>x2C.x3>x1>x2D.x2>x3>x1【答案】B【思路引领】根据一次函数y=ax+12的图象过一、二、四象限推知a<0,所以a﹣1<0,则反比例函数y=a−1x的图象位于第二、四象限,然后将点A、B、C在反比例函数图象上大致标出,根据图象直接判定x1>x3>x2【详解】∵一次函数y=ax+12的图象过一、二、四象限,∴a<0,∴a﹣1<0,∴反比例函数y=a−1x图象位于第二、四象限,其大致图象如图所示:,根据图象知,x1>x3>x2;故选:B.【总结提升】本题考查了反比例函数图象上点的坐标特征、一次函数图象与系数的关系.解答此题时,采用了“数形结合”的数学思想.2.(2022•成县校级模拟)如图,已知A为反比例函数y=kx(x<0)图象上的一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为 ﹣2 .【答案】﹣2.【思路引领】利用反比例函数比例系数k的几何意义得到12|k|=1,然后根据反比例函数的性质确定k的值.【详解】∵AB⊥y轴,∴S△OAB =12|k|=1,而k<0,∴k=﹣2.故答案为﹣2.【总结提升】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.3.(2020•潍坊)如图,函数y=kx+b(k≠0)与y=mx(m≠0)的图象相交于点A(﹣2,3),B(1,﹣6)两点,则不等式kx+b>mx的解集为( )A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<1【答案】D【思路引领】结合图象,求出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【详解】∵函数y =kx +b (k ≠0)与y =m x (m ≠0)的图象相交于点A (﹣2,3),B (1,﹣6)两点,∴不等式kx +b >m x 的解集为:x <﹣2或0<x <1,故选:D .【总结提升】本题考查了一次函数与反比例函数的交点问题,关键是注意掌握数形结合思想的应用.4.(2021•潜江模拟)如图,双曲线y =−32x(x <0)经过▱ABCO 的对角线交点D ,已知边OC 在y 轴上,且AC ⊥OC 于点C ,则▱OABC 的面积是( )A .32B .94C .3D .6【答案】C【思路引领】根据平行四边形的性质结合反比例函数系数k 的几何意义,即可得出S ▱ABCO =4S △COD =2|k |,代入k 值即可得出结论.【详解】∵点D 为▱ABCD 的对角线交点,双曲线y =−32x(x <0)经过点D ,AC ⊥y 轴,∴S ▱ABCO =4S △COD =4×12×|−32|=3.故选:C .【总结提升】本题考查了反比例函数系数k 的几何意义以及平行四边形的性质,根据平行四边形的性质结合反比例函数系数k 的几何意义,找出S ▱ABCO =4S △COD =2|k |是解题的关键.5.(2022春•靖江市期末)如图,在直角坐标系中,点A 在函数y =k x(x >0)的图象上,AB ⊥x 轴于点B ,AB 的垂直平分线与y 轴交于点C ,与函数y =k x(x >0)的图象交于点D ,连结AC ,CB ,BD ,DA ,若四边形ACBD 的面积等于k 的值为( )A .4B .C .4D 【答案】见试题解答内容【思路引领】设A (a ,k a ),可求出D (2a ,k 2a),由于对角线垂直,所以面积=对角线乘积的一半即可.【详解】设A (a ,k a ),可求出D (2a ,k 2a),∵AB ⊥CD ,∴S 四边形ACBD =12AB •CD =12×2a ×k a=解得k =故选:B .【总结提升】本题主要考查了反比例函数图象上点的坐标特征以及线段垂直平分线的性质,解题的关键是设出点A 和点D 的坐标.6.(2017•东营)如图,一次函数y =kx +b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =n x 的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB =3,OD =6,△AOB 的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x >0时,kx +b −n x <0的解集.【答案】见试题解答内容【思路引领】(1)根据三角形面积求出OA ,得出A 、B 的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.【详解】(1)∵S△AOB=3,OB=3,∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:0=3k+b −2=b,解得:k=23,b=﹣2,∴一次函数y=23x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=23×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=12 x;(2)当x>0时,kx+b−nx<0的解集是0<x<6.【总结提升】本题考查了用待定系数法求出函数的解析式,一次函数和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.二、能力提升训练7.(2019•澄江市模拟)如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为( )A.﹣6B.﹣5C.﹣4D.﹣3【答案】D【思路引领】将平行四边形面积转化为矩形BDOA面积,再得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.【详解】如图所示,过点P作PE⊥y轴于点E,∵四边形ABCD为平行四边形,∴AB=CD,又∵BD⊥x轴,∴ABDO为矩形,∴AB=DO,∴S矩形ABDO=S▱ABCD=6,∵P为对角线交点,PE⊥y轴,∴四边形PDOE为矩形面积为3,即DO•EO=3,∴设P点坐标为(x,y),k=xy=﹣3,故选:D.【总结提升】本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.(2016•长春)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积( )A.减小B.增大C.先减小后增大D.先增大后减小【答案】B【思路引领】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【详解】AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P(1,4)、Q(m,n)在函数y=kx(x>0)的图象上,∴mn=k=4(常数).∴S四边形ACQE=AC•CQ=4﹣n,∵当m>1时,n随m的增大而减小,∴S四边形ACQE=4﹣n随m的增大而增大.故选:B.【总结提升】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.9.(2013•内江)如图,反比例函数y=kx(x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )A.1B.2C.3D.4【答案】C【思路引领】本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC 的面积与|k|的关系,列出等式求出k值.【详解】由题意得:E、M、D位于反比例函数图象上,则S△OCE =|k|2,S△OAD=|k|2,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|,又∵M为矩形ABCO对角线的交点,∴S矩形ABCO =4S□ONMG=4|k|,由于函数图象在第一象限,k>0,则k2+k2+9=4k,解得:k=3.故选:C.【总结提升】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.10.(2017•南京)函数y1=x与y2=4x的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 ①③ .【答案】见试题解答内容【思路引领】结合图形判断各个选项是否正确即可.【详解】①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误;③y=x+4x=−2)2+4≥4,当且仅当x=2时取“=”.即在第一象限内,最低点的坐标为(2,4),故正确;∴正确的有①③.故答案为:①③.【总结提升】考查根据函数图象判断相应取值;理解图意是解决本题的关键.11.(2018•连云港)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与反比例函数y=k2x的图象交于A(4,﹣2)、B(﹣2,n)两点,与x轴交于点C.(1)求k2,n的值;(2)请直接写出不等式k1x+b<k2x的解集;(3)将x轴下方的图象沿x轴翻折,点A落在点A′处,连接A′B,A′C,求△A′BC的面积.【答案】见试题解答内容【思路引领】(1)将A点坐标代入y=k2 x(2)用函数的观点将不等式问题转化为函数图象问题;(3)求出对称点坐标,求面积.【详解】(1)将A(4,﹣2)代入y=k2x,得k2=﹣8.∴y =−8x将(﹣2,n )代入y =−8xn =4.∴k 2=﹣8,n =4(2)根据函数图象可知:﹣2<x <0或x >4(3)将A (4,﹣2),B (﹣2,4)代入y =k 1x +b ,得k 1=﹣1,b =2∴一次函数的关系式为y =﹣x +2与x 轴交于点C (2,0)∴图象沿x 轴翻折后,得A ′(4,2),S △A 'BC =(4+2)×(4+2)×12−12×4×4−12×2×2=8∴△A 'BC 的面积为8.【总结提升】本题是一次函数和反比例函数综合题,使用的待定系数法,考查用函数的观点解决不等式问题.三、思维拓展训练12.(2022春•邹城市校级月考)点P ,Q ,R 在反比例函数y =k x(常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=30,则S 2的值为 275 .【答案】见试题解答内容【思路引领】设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a ,a ),推出CP =k 3a,DQ =k 2a ,ER =k a ,推出OG =AG ,OF =2FG ,OF =23GA ,推出S 1=23S 3=2S 2,根据S 1+S 3=30,求出S 1,S 3,S 2即可.【详解】∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (k 3a ,3a ),Q (k 2a ,2a ),R (k a,a ),∴CP =k 3a ,DQ =k 2a ,ER =k a,∴OG =AG ,OF =2FG ,OF =23GA ,∴S 1=23S 3=2S 2,∵S 1+S 3=30,∴S 3=18,S 1=12,S 2=6,故答案为:6.【总结提升】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.13.(2019秋•鼓楼区校级月考)已知一次函数y 1=kx +n (n <0)和反比例函数y 2=m x (m >0,x >0).(1)如图1,若n =﹣2,且函数y 1、y 2的图象都经过点A (3,4).①求m ,k 的值;②直接写出当y 1>y 2时x 的范围;(2)如图2,过点P (1,0)作y 轴的平行线l 与函数y 2的图象相交于点B ,与反比例函数y 3=n x (x >0)的图象相交于点 C .①若k =2,直线l 与函数y 1的图象相交点 D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m ﹣n 的值;②过点B 作x 轴的平行线与函数y 1的图象相交于点 E .当m ﹣n 的值取不大于1的任意实数时,点B 、C间的距离与点B、E间的距离之和d始终是一个定值.设直线y1交y轴于点F,求DE的最小值.【答案】见试题解答内容【思路引领】(1)①将点A的坐标代入一次函数表达式即可求解,将点A的坐标代入反比例函数表达式,即可求解;②由图象可以直接看出;(2)①BD=2+n﹣m,BC=m﹣n,DC=2+n﹣n=2,由BD=BC或BD=DC得:m﹣n=1或0或4,即可求解;②点E的坐标为(m−nk,m),d=BC+BE=m﹣n+(1−m−nk)=1+(m﹣n)(1−1k),根据点B、C间的距离与点B、E间的距离之和d始终是一个定值,求出k,d的值即可解决问题.【详解】(1)①n=﹣2将点A(3,4)代入一次函数y1=kx+n(n<0)得:3k﹣2=4,解得:k=2,将点A(3,4)代入反比例函数得:m=3×4=12;②由图象可以看出x>3时,y1>y2;故答案为:x>3;(2)①当x=1时,点D、B、C的坐标分别为(1,2+n)、(1,m)、(1,n),则BD=|2+n﹣m|,BC=m﹣n,DC=2+n﹣n=2则BD=BC或BD=DC或BC=CD,即:|2+n﹣m|=m﹣n或|2+n﹣m|=2或m=2+n,即:m﹣n=1或0或4或2,当m﹣n=0时,m=n与题意不符,故m﹣n=1或4或2;②点E的横坐标为:m−n k,当点E在点B左侧时,d =BC +BE =m ﹣n +(1−m−n k )=1+(m ﹣n )(1−1k),m ﹣n 的值取不大于1的任意数时,d 始终是一个定值,当1−1k=0时,此时k =1,从而d =1.当点E 在点B 右侧时,同理BC +BE =(m ﹣n )(1+1k)﹣1,当1+1k=0,k =﹣1时,(不合题意舍去)故k =1,d =1,此时D (1,1+n ),B (1,m ),C (1,n ),y 1=x +n ,∴∠DEB =45°,△DEB 是等腰直角三角形,∴DE =1+n ﹣m ),BC =m ﹣n∵m ﹣n ≤12,∴BC 的最大值为12,∵DE +BC =1,∴DE 的最小值为12.【总结提升】本题是反比例函数综合题目,考查了一次函数解析式的求法、反比例函数解析式的求法、一次函数和反比例函数的图形与性质、函数定值的求法等知识;关键是通过确定点的坐标,求出对应线段的长度,进而求解。
26.1.2 反比例函数的图象和性质(2)
A
B
C
D
上一页 主页 下一页
13.【高频】如图,在平面直角坐标系中,直线 y1=2x-2 与双 曲线 y2=kx交于 A、C 两点,AB⊥OA 交 x 轴于点 B,且 OA=AB.
(1)求双曲线的解析式; (2)求点 C 的坐标,并直接写出 y1<y2 时 x 的取值范围.
上一页 主页 下一页
解:(1)∵点 A 在直线 y1=2x-2 上, ∴设 A(x,2x-2). 如图,过点 A 作 AD⊥OB 于点 D. ∵AB⊥OA,且 OA=AB, ∴OD=BD, ∴AD=12OB=OD, ∴x=2x-2,∴x=2,
坐标原点为顶点所构成的三角形的面积为_2___.
上一页 主页 下一页
反比例函数 y=kx中 k 的几何意义
3.【高频】如图,点 A 是反比例函数 y=4x图象上一点,AB⊥y
轴于点 B,则△AOB 的面积是( B )
A.1
B.2
C.3
D.4
上一页 主页 下一页
4.【易错】如图,在平面直角坐标系中,点 P 是反比例函数 y
A.3
B.6
C.9
D.12
上一页 主页 下一页
反比例函数图象和性质的综合应用
6.【高频】如图,直线 y=k1x(k1≠0)与反比例函数 y=kx2(k2≠0)
的图象交于 M、N 两点.若点 M 的坐标是(1,2),则点 N 的坐
标是( A )
A.(-1,-2)
B.(-1,2)
C.(1,-2)
D.(-2,-1)
上一页 主页 下一页
7.【易错】如图,一次函数 y=kx-3 的图象与反比例函数 y
=mx 的图象交于 A、B 两点,其中 A 点坐标为(2,1),则 k、m 的
反比例函数的图像及性质
反比例函数的图像及性质人教版数学九年级下册《反比例函数的图象和性质》教学设计一.内容和内容解析1.内容反比例函数的图象和性质2.内容解析本节课是人教版数学九年级下册第二十六章第一节反比例函数的内容,本节分为三课时,这是第二课时的新授课.是在学生已经经历了一次函数、二次函数的研究过程的基础上,在得到反比例函数的概念之后,进一步研究反比例函数的图象,并通过图象的研究和分析,来确定反比例函数的性质.教学过程中首先引导学生用“描点法”画出反比例函数的图象,使反比例函数的解析式表示的函数关系直观化;然后分类观察图象,体现“分类”的思想,首先研究k>0的情况,从特殊k=4,k=6,k=8,k=12的图象观察,进而推广到一般,得出k>0时的反比例函数的图象的特征及反比例函数的特性,体现“从特殊到一般”的思想,然后教师再引导学生从解析式的角度分析图象特征,在整个教学过程中始终贯穿由“数”到“形”再由“形”到“数”的相互转化,让学生体会“数形结合”的数学思想和反比例函数的本质属性所在,对于k<0的研究,完全类比k>0的研究过程,体现“类比”的思想.反比例函数是初中阶段要求学习的三种函数中的最后一种,是继一次函数学习之后,知识的一次扩展,图象由“一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,是学习函数的一般方法和规律的再次强化,也是后续构建反比例函数模型的基础,起着承上启下的作用.本节课学生的学习重点是:用描点法画反比例函数的图象,并根据图象理解反比例函数的性质.学习难点是:对x≠0的理解及图象特征的分析.二.目标和目标解析1.目标(1)能画出反比例函数的图象,探索并理解图象的变化情况.(2)在画出反比例函数的图象,并探究其性质的过程中,体会“类比”、“分类讨论”、“从特殊到一般”以及“数形结合”的数学思想.(3)通过观察反比例函数的图象、探究反比例函数的性质,发展探究、归纳及概括的能力.2.目标解析(1)首先运用描点法画出反比例函数的图象,然后根据图象,通过观察、分析、归纳得出反比例函数的性质,因此正确画出反比例函数图象是前提条件,虽然学生之前用描点法经历过画一次函数、二次函数图象的经验,但是由于反比例函数图象结构复杂,具有自身的特殊性,因此,能用“描点法”画出反比例函数图象并根据图象探究其性质仍是本节课的目标.(2)类比正比例函数的研究方法,通过分类讨论的方式首先研究k>0的情况,在研究过程中从图象和解析式两个角度分析,体现了数形结合的思想,通过类比研究k<0的情况,同样体现从特殊到一般的数学思想.(3)在探究反比例函数的性质的过程中,教师利用几何画板给出一系列函数图象,通过对图象的观察、分析,利用数形结合的数学思想,归纳概括反比例函数的图像和性质,所以整个性质的探索过程发展了分析概括的能力.三.教学问题诊断分析学生已经学习了一次函数、二次函数的图象和性质,反比例函数的解析式,已具有描点法画函数图象的初步经验,但是由于反比例函数的图象结构复杂,具有自身的特殊性,因此在画反比函数的图象这个环节,可能遇到的问题有:1.在列表时没注意到自变量的取值范围是x≠0,或者对自变量x的取值只取正或只取负.2.由于列表时只取了有限的几个点,因此在连线时学生容易只把这几点连线,只画出图象的一部分,有明显端点,没有画出双曲线的延伸趋势.3.学生在画双曲线的延伸趋势时可能出现错误,这是因为学生仅仅是通过描点得出图象,并没有深入从解析式的角度分析问题,教师可以引导学生尝试分析理解.在学习一次函数、二次函数的时候,学生已经历过观察、分析图象的特征,概括函数性质的过程,对研究函数性质所用的探究方法也有一定的了解,因此,通过类比,结合反比例函数的图象和表达式探索性质,从使用的方法上不会存在障碍,但是双曲线的特殊性使学生在探究反比例函数增减性时可能会出现问题,教学中教师应该强调从“数”、“形”两方面统一分析.四.教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,利用几何画板,快速、准确的绘制反比例函数图象,另外通过动态的演示,观察相关数值的变化,研究图象的变化趋势,进而探索反比例函数的性质.五.教学过程分析(一)创设情境多媒体课件展示华罗庚先生的关于“数形结合”的一首词.设计意图:采用名人名言欣赏的方式进行情景引入,不仅调动了学生的积极性,同时又紧扣主题,为本节课的学习进行了方法上的准备.(二)知识链接1.已经学习了哪些函数?2.正比例函数y=kx(k≠0)的图象和性质是什么?3.反比例函数的定义是什么?4.描点法画图象的步骤是什么?师:了解了反比例函数的解析式,也就是从“数”的角度了解了反比例函数,那么对应的反比例函数的“形”的方面,也就是图象是什么呢?函数性质又是怎样的呢?设计意图:通过复习正比例函数的知识,为学习画反比例函数的图象奠定基础,同时提出问题,明确本节课的学习任务.(三)探究图象分以下5个环节完成.1.试一试:学生独立画出6y=的图象.x2.议一议:小组讨论所画作品,选出他们认为画的最好的作品.3.看一看:展示学生选出的作品,进行问题分析.然后教师示范正确画图过程.4.说一说:同桌互说一遍画图像时的注意事项,并修订已画图象.5.练一练:画出反比例函数6y=-的图象.x设计意图:首先让学生独立画图,充分暴露学生存在问题,关注画图的基本步骤及每个细节的处理,培养学生画图象的能力,通过再次画图,使学生及时巩固已获得的作图经验,并且为后面归纳性质增加感性认识.(四)探究性质探究1. 探究反比例函数6y x =和6y x=-的图象有什么共同特征以及不同点?学生活动:主要由学生观察发现,教师适时引导.共同特征:(1 )它们都由两条曲线组成.反比例函数的图象属于双曲线.(2)随着x 的不断增大(或减小),曲线越来越接近坐标轴.不同特点:(1)位置不同(2)增减性不同教师追问:这些不同特点是由什么因素决定的?生:k 的正负.设计意图:培养学生的观察能力,让学生体会分类的必要性.探究2.利用几何画板再准确作出k =4, k =8, k =12时的三个反比例函数图象.观察这一系列函数图象,思考下列问题:(1)图象形状是什么?(2)图象位于哪几个象限?(3)在每个象限内,y 随x 的变化如何变化?学生活动:先由学生独立思考,然后小组讨论交流,小组代表发言,其他同学补充或质疑.教师板书:形状:双曲线位置:一三象限增减性:在每个象限内,y随x的增大而减小教师追问(1):哪位同学能从解析式的角度解释第二个和第三个问题?教师设问(2):第三个问题,如果去掉在每个象限内这个条件,y 随x的变化情况还一致吗?为什么?学生活动:学生尝试解释,教师及时点拨,并利用几何画板直观演示.师:把刚才所研究的问题推广到一般,就得到了k >0时的函数图象和性质.设计意图:使学生经历由特殊到一般的过程,体验知识的产生形成过程;教师的追问引导学生从“数”、“形”两方面解决问题,让学生体会数形结合的思想.探究3.观察下列函数图象特征,归纳k=(k<0)性质.yx学生活动:学生发言,教师板书.形状:双曲线位置:二四象限增减性:在每个象限内,y随x的增大而增大设计意图:让学生自己去观察、类比、发现的方式获得知识,培养学生积极参与的意识和自主探索的能力.归纳: 反比例函数y =k x(k 为常数,k ≠0)的图象和性质.(1)反比例函数y=k x (k 为常数,k ≠0)的图象是双曲线.(2)当k >0时,双曲线的两支分别位于第一、三象限,在每个象限内,y ?值随x 值的增大而减小.(3)当k <0时,双曲线的两支分别位于第二、四象限,在每个象限内,y ?值随x 值的增大而增大.设计意图:培养学生的分类讨论意识和归纳概括能力.探究4.在同一坐标系中反比例函数6y x =与6y x =-的图象之间在位置上有什么对称关系?学生活动:学生观察发现,教师动画演示.师:同学们能再从解析式上分析一下它的对称关系吗?结论:当k 互为相反数时,对应的反比例函数图象既关于x 轴对称,也关于y 轴对称.设计意图:培养学生的观察能力及让学生感知反比例函数图象的对称性和数学美.(五)目标检测1.下列图象中,可以是反比例函数的图象的().2.若反比例函数的图象经过(-3,4)则此函数的图象应在().A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限3.已知点A (-2,a )、B (-1,b ) 、C (3,c )都在反比例函数y =1x图象上,试比较a 、b 、c 的大小.解:把点A (-2,a )、B (-1,b )、C (3,c )分别带入1y x =中得:1a=-2,b =-1,13c = 所以b另解:因为k =1>0所以在每个象限内,y 随x 的增大而减小由图知,因为-2<-1<0,所以b 0所以b学生活动:前两题由学生讲解、第三题由学生板书展示.设计意图:通过三个题目巩固反比例函数图像和性质,渗透数形结合的思想方法.(六)课堂小结这节课你有什么收获?有什么疑惑?学生活动:学生发言交流自己的收获,其他同学补充.师:回顾反比例函数的学习过程,我们首先学习了反比例函数的解析式,以解析式为基础,运用数形结合的思想,画出了函数图象,进而研究函数的性质,体现了分类讨论的方法,这其实就是我们研究函数的一般方法.师:同学们,有关反比例函数的知识,经过我们的整理,形成了一颗知识树,像这样让知识体系化,是我们学习数学的一种很好的方法,如果对已每一个知识点,同学们都能进行这样的梳理,那么你就会收获一片知识的森林.设计意图:通过本环节,培养学生分类讨论的思想及归纳概括的能力,通过美丽的知识树,对学生进行了学习方法上的指导,给学生留下深刻印象. (七)分层作业A、习题26.1 第3题B、习题26.1 第8题课外延伸:探究反比例函数k=(k≠0)的图象关于直线y=x与y=-x的对yx称性.设计意图:根据分层教学和因材施教的原则,将作业分成A,B两类,让不同能力的学生在数学上都得到发展.课外延伸让学生带着问题走进课堂,再带着新的问题走出课堂.六、板书设计。
26.1.2反比例函数的图像和性质(第三课时)
解:设y=kx2,因为 x=3时y=4,所以 4 9k=4,所以k= 9 , 当x=1.5时, y= 9 ×(1.5)2=1
4
练习 2
5 ,四 1.函数 y = _____ 象限,在每个象 x的图象在第二 增大 . 限内,y 随 x 的增大而_____ y 1 1 2. 双曲线 y = 3x 经过点(-3,___ 9 ) m-2 x 3.函数 y = x 的图象在二、四象限,则m的取值 范围是m____ . <2 1 减小 4.对于函数 y = 2x,当 x<0时,y 随x的_____ 而增 三 大,这部分图象在第 ________ 象限. 5.函数 y =(2m+1)x 3 m= ____.
12 (2)把点B、C和D的横坐标代入 y x
,可知点B、
点C,点D的纵坐标,点D的坐标不满足函数关系式,
12 所以点B、点C在函数 y 的图象上,点D不在这个 x
函数的图象上。
k 1、反比例函数 y 的图象经过(2, x
-1),则k的值为
-2
;
k 2、反比例函数 y 的图象经过点(2, x
k 2
k ;且
。
3.如图,点P是反比例函数图象上的一
点,过点P分别向x轴、y轴作垂线,若阴 影部分面积为3,则这个反比例函数的
3 y 关系式是 x .
p
y
N
o x
M
面积性质(一)
k 设P(m, n)是 双 曲 线 y (k 0)上 任 意 一 点 ,有 : x (1)过P作x轴 的 垂 线 ,垂 足 为 A, 则 1 1 1 SOAP OA AP | m | | n | | k | 2 2 2
∵图象过点A(2,6)
《反比例函数的图象和性质》教学设计
《反比例函数的图象和性质》教学设计反比例函数的图象和性质一、背景分析1.对教材的分析本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。
本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
本节课前一课时是在具体情境中领会反比例函数的意义和概念。
函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。
同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。
传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。
本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。
因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。
在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。
这也充分体现了重视获取知识过程体验的新课标的精神。
(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3)难点:探索并掌握反比例函数的主要性质。
2、对学情的分析九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用Z+Z智能教育平台进行教学,比较形象,便于学生接受。
第1课时 反比例函数的图象和性质
①列表:下表是 与 的几组对应值,其中 ___;
…
0
1
2
…
…
1
1
…
2
②描点:根据表中的数值描点 ,请补充描出点 ;
解:如图.
③连线:用平滑的曲线顺次连接各点,请画出函数图象.
[答案] 如图.
(2)探究函数性质请写出函数 的两条性质:
易错点2 求函数值的取值范围时漏解
10.对于函数 ,当 时, 的取值范围是________________.
或
11.二次函数 与反比例函数 在同一平面直角坐标系中的图象可能是( )
D
A. B. C. D.
, . .将 代入 ,得 . .
(2)若 , ,求 的取值范围.
[答案] , . , . .
15.【注重学习过程】探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数 的图象并探究该函数的性质.
5.(2022·成都)在平面直角坐标系 中,若反比例函数 的图象位于第二、四象限,则 的取值范围是_ ______.
6.(2023·成都)若点 , 都在反比例函数 的图象上,则 _ __ .(填“ ”或“ ”)
7.(本课时 变式)同一个象限 两个象限已知点 , 都在反比例函数 的图象上.若 ,则 _ ____ (填“ ”“ ”或“ ”)
8.已知反比例函数 为常数,且 .
(1)若在这个函数图象的每一个分支上, 随 的增大而减小,求 的取值范围.
解: 在函数 图象的每一个分支上, 随 的增大而减小, ,解得 .
(2)若 ,试判断点 , 是否在这个函数的图象上,并说明理由.
第3课时反比例函数
解:(1)∵点 A(1,4)在 y1=kx的图象上,∴k=1×4=4, ∴y1=4x.∵点 B 在 y1=4x的图象上,∴m=-2,∴点 B(-2, -2).又∵点 A,B 在一次函数 y2=ax+b 的图象上,
∴a-+2ba= +4b, =-2, 解得ab==22,, ∴y2=2x+ 2.∴这两
∴AD=
4
3
3.∴OA=
4-
AD=
12-4 3
3 ,∴S△POA
=12OA·PD=12×12-34 3×4=24-38 3.故选 D.
答案:D
考点三 一次函数与反比例函数的综合应用 (2013·兰州)如图,已知反比例函数 y1=kx的图
象与一次函数 y2=ax+b 的图象交于点 A(1,4)和点 B(m,-2).
解析:由题意,得 E,M,D 位于反比例函数图 象上,则 S△OCE=|2k|,S△OAD=|k2|,
如图,
过点 M 作 MG⊥y 轴于点 G,作 MN⊥x 轴于点 N, 则 S 矩形 ONMG=|k|,
又∵点 M 为矩形 OABC 对角线的交点,∴S 矩形 OABC =4S 矩形 ONMG=4|k|,由于函数图象在第一象限,k>0, 则k2+k2+9=4k,解得 k=3.故选 C.
DG=EG=FC=3a-3b,∴b-a=3a-3b,∴ab=3 ①. ∵AC=2 2,AF=DF=3a,∴FC=2 2-3a,∴2 2-3a=
b-a
ab=3,
②.由①②,得 2
2-3a=b-a,
a= 2, 解得b=3 22,
a=-3 2,
或 b=-
2 2
(舍去).∴E(3 2 2, 2).
10.(2013·衢州)如图,函数 y1=-x+4 的图象与 函数 y2=kx2(x>0)的图象交于 A(a,1),B(1,b)两点.
反比例函数的图像和性质 第三课时
课堂小结:
1、两个面积公式 2、反比例函数与一次函数的综合应用
综合应用:
4.已知点A(3,4),B(-2,m)在反比例函 数图象y 分xk别与的x图轴象、上y轴,交经于过点点CA、、DB。的一次函数的 ⑴ 求反比例函数的解析式;
⑵ 求经过点A、B的一次函数的解析式;
⑶ 求S△ABO;
5、换一个角度:如图,双曲线 y k 上任一点分别作x轴、y轴的垂线段,与x
x轴y轴围成矩形面积为12,求函数解析式。
2求AOB的面积
解法二:
y x 2,当x 0时, y 2, N(0,2). y
ON 2.
作AC y轴于C, BD y轴于D.
A
C
N
OM
AC 2, BD 4,
D
x
B
SONB
1 2
ON
BD
1 2
24
4,
1
1
SONA 2 ON AC 2 2 2 2.
第三课时
师生共同赏析:
1、已知反比例函数 y =
k x
的图象经过点A(1,4)
(1 )①求此反比例函数的解析式; ②画出图像;
③点B(-4,-1)是否在此函数图像上。 (2)根据图像得,
若y ﹥ 1, 则x的取值范围----------- B
y 4 A(1,4)
o1
x
若x ﹤ 1,则y的取值范围-----------
2
y QA
OP
x
y A
OP
x
课堂练习:
1.如图,点P是反比例函数 y 图4 象上的一点,PD⊥x轴于D.则 x
△POD的面积为 2 . 2.如图,点P是反比例函数图象上 的一点,过点P分别向x轴、y轴 作垂线,若阴影部分面积为3,则 这个反比例函数的关系式 是 y .3x
反比例函数的图像和性质的复习课(经典)
知识拓展
初中数学资源网
再见! 祝你成功!
初中数学资源网
初中数学资源网
y
y
y=-x
6 5 4 3 2 1
y=x
y= 6 x
y=-x
y =- 6 x
6 5 4 3 2 1
y=x
-6
-5
-4
-3
-2
-1 -1 -2 -3 -4 -5 -6
2 E 正
k y x
初中数学资源网
分类讨论 知识拓展 k 1.如图能表示 y k (1 x)和y (k 0) x D . 在同一坐标系中的大致 图象的是 ____
y
y
O
y
y x O
O
x
x
x
o
A
B
C
D
y k (1 x) y -kx k
初中数学资源网
1
是反比例函数,
y k x (k是常数,k 0)
m 2 1 m 1 0
2
得m=1
初中数学资源网
类型二确定反比例函数的关系式
1.近视眼镜的度数y度与镜片焦距x米成反比 例,已知500度近视眼镜片的焦距为0.2米, 则眼镜度数y度与镜片焦距x之间 的函数关系式是 . 2. 已知 y 与 x+2 成反比例,且当 x=2 时 ,y=3 , 当x=-1时y= 12 。 待定系数法
2.用待定系数法确定反比例函数关系式 反比例函数的三种表达形式:
k (1) y (k是常数,k 0) x (2) y k x 1 (k是常数,k 0) (3) xy k (k是常数,k 0)
初中数学资源网
知识点3
1.2_反比例函数的图像和性质(2)课件2
x B
x
O
x
o
A
C
D
想一想
议一议
1、如图1,一次函数与反比例函数的图像 相交于A、B两点, 则图中使反比例函数的 值小于一次函数的值的x的取值范围是( D ) (A)x<-1 (B)x>2 (C)-1<x<0,或x>2 (D)x<-1,或0<x<2
2.如图:一次函数y=ax+b的图象与反比例函数 k y= x 交于M (2,m) 、N (-1,-4)两点 (1)求反比例函数和一次函数的解析式;
反比例函数的图象及性质(3)
反比例函数的性质
1.当k>0时,图象的两个分支分别在第 一、三象限内; 2.当k<0时,图象的两个分支分别在第 二、四象限内。 3.图象的两个分支关于直角坐标系的 原点成中心对称。
双曲线的两个分支无限接近x轴和y 轴,但永远不会与x轴和y轴相交.
复习题:
2),那么这个反比例函数的解析式为
第 称.
k 2.反比例函数 y x ( k 0 ) 的图象与正比例函数 y 2 x
k 1.反比例函数 y x ( k 0 ) 的图象经过点(-1,
象限,它的图象关于 二、四
2 y ,图象在 x 成中心对 原点
的图象交于点A(1,m),则m= 2 ,反比例函数的解 2 y ,这两个图象的另一个交点坐标 析式为 是 . (-1,-2)
综合应用2/2
k y 18.已知点A(3,4),B(-2,m)在反比例函数 x 的图象上,经过点A、B的一次函数的图象分别与x轴、y 轴交于点C、D。 ⑴ 求反比例函数的解析式; ⑵ 求经过点A、B的一次函数的解析式; ⑸ 在y轴上找一点P,使PA+PC最短, 求点P的坐标;
反比例函数与一次函数的综合-完整版课件
为学生后续学习更复 杂的数学知识和解决 实际问题打下基础。
培养学生的数学思维 和解决问题的能力, 提高学生的数学素养 。
课件内容概述
01
02
03
04
反比例函数的基本概念、图像 和性质。
一次函数的基本概念、图像和 性质。
反比例函数与一次函数的综
通过实例和练习题,加深学生 对反比例函数和一次函数的理
下节课预习提示和作业布置
预习提示
下节课将学习反比例函数与二次函数的综合应用,请学生提前预习相关内容,了 解基本概念和性质
作业布置
布置与反比例函数与一次函数综合应用相关的练习题和思考题,要求学生认真完 成并提交作业
THANKS FOR WATCHING
感谢您的观看
反比例函数的图像关于原点对称,即 满足奇函数的性质 $f(-x) = -f(x)$。
反比例函数在其定义域内具有单调性 :在第一、三象限内单调递减,在第 二、四象限内单调递增。
反比例函数在其定义域内没有极值点 ,也没有拐点。
CHAPTER 03
一次函数基本概念与性质
一次函数定义及表达式
一次函数定义
可导性
一次函数的导数为常数 $k$, 即其斜率。
对称性
一次函数图像关于点 $(h, k)$ 中心对称,其中 $h = b/2a$,$k = f(h)$。
线性变换性质
一次函数具有线性变换性质, 即 $f(ax+b) = k(ax+b) + b
= akx + (ab+b)$。
CHAPTER 04
反比例函数与一次函数综合 应用
一次函数是形如 $y = kx + b$(其 中 $k neq 0$)的函数,它描述了两 个变量之间的线性关系。
《反比例函数的图像与性质》教学设计
《反比例函数的图像与性质》教学设计教学目标: 1. 知识与技能:会画反比例函数图象,理解反比例函数的图象和性质。
2. 过程与方法:感悟“数形结合”、“变化与对应”和“转化”的数学思想,并能应用数形结合和转化思想,根据反比例函数的图象探究其性质。
3.情感态度与价值观:在探索和交流的活动中,培养学生的观察、分析、探究、归纳及概括能力。
重点:经历画函数图像的过程,理解反比例函数的图象和性质。
难点:数形结合,灵活利用图像解决反比例函数问题。
教学过程:第一环节:创设情境,引入新知问题1 我们已经学习了正比例函数的哪些内容?是如何研究的? 以正比例函数y=4x 为例。
师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充,并将答案填写在黑板的表格中,强调是从形状、位置、变化趋势三个方面去研究。
【设计意图】通过复习正比例函数的图象和性质,以及研究函数的一般方法,为学习反比例函数的图象和性质做好铺垫。
第二环节:观察探究,形成新知问题2 反比例函数的图象是什么样的?以画出反比例函数xy 4的图象为例,教师引导学生经历列表、描点、连线的过程。
(1)列表(如表1):列表时,关注学生是否注意到自变量的取值应使函数有意义(即),同时,所取的点既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或是太小,以便于描点和全面反映图象的特征; (2)描点:一般情况下,所选的点越多图象越精确;(3)连线:引导学生用平滑的曲线,按照自变量从小到大的顺序连接各点,注意图象末端的延伸和延伸的趋势,得到反比例函数的图象。
师生活动:教师引导学生列表、描点、作图;展示学生作品;教师板书示范,并通过课件演示反比例函数图象的生成过程,给出双曲线的名称,并渗透它的形态特征.【设计意图】图象是直观地描述和研究函数的重要工具,通过经历用描点法画出反比例函数图象的基本步骤,可以使学生对反比例函数先有一个初步的感性认识。
反比例函数的图象和性质说课稿
《反比例函数的图象和性质》说课稿
双辽市第五中学翟晓刚
一、教材分析:
今天我说课的内容是人教版八年级下册第十七章第一节第二部分反比例函数图像和性质,本节分为二课时,这是第一课时《反比例函数的图象和性质》的新授课。
现实世界中充满了反比例函数的例子。
再一次进入函数范畴的学习,是一次函数的延续和二次函数的基础,在初中函数的学习中起着承上启下的作用。
同时又将以前所学的方程、不等式等知识有机地结合在一起。
二、教学目标分析:
依据数学课程标准的要求和教材内容,结合八年级学生的认知特点和实际情况,我确立以下教学目标:
1、知识技能:学会用描点法作反比例函数的图象。
能结合函数图象进行探索.理解并掌握反比例函数的性质。
2、过程与方法:在动手实践.合作交流中,通过利用函数图象探索反比例函数的性质,让学生体验到数学活动中充满了探索与创造,培养了学生的创新意识。
3、情感态度与价值观:培养学生的作图能力,观察.分析.归纳能力,渗透数形结合的数学思想方法。
三、教学重点,难点:
1、重点:画反比例函数图象,理解反比例函数性质。
2、难点:理解反比例函数性质,并能灵活应用。
四、教法与学法分析:
采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体验参与的乐趣,成功的喜悦。
教学准备:坐标纸,直尺,彩粉笔。
五.教学流程设计:
(1。
5函数y=-20/x的图象在第
七、归纳总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
第3课时反比例函数的图象与性质的综合应用
1.对于反比例函数y=1
x,下列说法正确的是()
A.图象经过点(1,-1)
B.图象位于第二、四象限
C.图象是中心对称图形
D.当x<0时,y随x的增大而增大
2.在函数y=10
x的图象上有三个点A(-2,y1),B(-1,y2),C(3,y3),则函数
值y1,y2,y3的大小关系是() A.y1<y2<y3B.y1<y3<y2
C.y3<y2<y1D.y2<y1<y3
3.如图1-2-9是三个反比例函数y=k1
x,y=
k2
x,y=
k3
x
在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为() A.k1>k2>k3
B.k3>k1>k2
C.k2>k3>k1
D.k3>k2>k1
4.若点A(4,y1),B(8,y2)是双曲线y=5
x上的点,则y1________y2.(填“>”,“<”
或“=”)
图1-2-9
5.[2015·郴州]如图1-2-10,已知点A(1,2)是正比例函数y1=kx(k≠0)与反比
例函数y2=m
x(m≠0)的一个交点.
(1)求正比例函数及反比例函数的表达式;
(2)根据图象直接回答:在第一象限内,当x取何值时,y1<y2?
图1-2-10
6.如图1-2-11,已知双曲线y=k
x和直线y=mx+n交于点A和B,B点的坐
标是(2,-3),AC垂直y轴于点C,AC=3 2.
(1)求双曲线和直线的解析式;
(2)求△AOB的面积.
图1-2-11
7.已知一次函数与反比例函数的图象交于点P(-3,m),Q(2,-3).
(1)求这两个函数的函数关系式;
(2)画出这两个函数的大致图象;
(3)当x为何值时,一次函数的值大于反比例函数的值?
参考答案1.C 2.D 3.D 4.>
5.(1)y1=2x,y2=2
x;(2)0<x<1
6.(1)双曲线解析式为y=-6
x,直线的解析式为y=-2x+1;(2)S△AOB=
7
4
7.(1)反比例函数的表达式为y=-6
x,一次函数的表达式为y=-x-1;(2)略;
(3)x<-3或0<x<2
关闭Word文档返回原板块。