河南省洛阳名校2017-2018学年高一上学期第二次联考数学试题 Word版 含答案

合集下载

【推荐】2017-2018学年河南省洛阳市高一(上)期末数学试卷

【推荐】2017-2018学年河南省洛阳市高一(上)期末数学试卷

2017-2018 学年河南省洛阳市高一(上)期末数学试卷一、选择题:本大题共12 小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5 分)已知集合M={0 ,1,2,3,4} ,N={ x|x=2n﹣1,n∈N} ,P=M∩N ,则P 的子集共有()A .2 个B .3 个C.4 个D.5 个2 22.(5 分)方程x +y ﹣ax+by+c=0 表示圆心为(1,2),半径为 1 的圆,则a、b、c 的值依次为()A .﹣2,﹣4,4B .2,﹣4,4 C.2,﹣4,﹣4 D.﹣2,4,﹣4﹣33.(5 分)若a=2 ,b=π,c=e,则有()A .a>b>cB .c>a>b C.b>c>a D.b>a>c 4.(5 分)圆锥的轴截面是边长为 2 的正三角形,则圆锥的表面积为()A .B .3πC.4πD.5π5.(5 分)已知m、n 是两条不重合的直线,α、β是两个不重合的平面,下面四个结论中正确的是()A .若m?α,n?β,m⊥n,则α⊥βB.若m∥α,m⊥n,则n⊥αC.若m⊥α,m⊥β,则α∥βD.若m⊥α,m⊥n,α∥β,则n∥β2 6.(5 分)若M(x0,y0)为圆x2=r 2(r >0)上一点,则直线x0x+y0y=r 2 与该圆的位置+y关系为()A .相切B .相交C.相离D.相切或相交27.(5 分)已知y=f(x)是定义在R 上的偶函数,当x≥0 时,f(x)=x ﹣2x,若x?f(x)≥0,则x 的取值范围是()A .[一2,2] B.(﹣∞,﹣2]∪[2,+∞)C.(﹣∞,﹣2)∪[0,2] D.[ ﹣2,0] ∪[2,+∞)8.(5 分)一个几何体的三视图如图所示,则该几何体的体积为()第1 页(共20 页)A .2B .C.4 D.9.(5 分)数学家欧拉在1765 年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC 的顶点为A(0,0),B(4,0),C(3,),则该三角形的欧拉线方程为()A .x﹣y﹣2 =0B .x﹣y﹣2 =0 C.x﹣y﹣2=0 D.x﹣y﹣2=0 10.(5 分)已知函数f(x)=,若存在x1,x2∈R 且x1≠x2,使得f(x1)=f(x2)成立,则实数 a 的取值范围是()A .[3,+∞)B .(3,+∞)C.(一∞,3)D.(一∞,3]11.(5 分)直线kx﹣y﹣k=0 与曲线y=交于M、N 两点,O 为坐标原点,当△OMN 面积取最大值时,实数k 的值为()A .﹣B .﹣C.﹣1 D.1x12.(5 分)已知f(x)是定义在(0,+∞)上的单调函数,满足f(f(x)﹣e ﹣2lnx )=e+1 ,则函数f (x)的零点所在区间为()A .(,)B.(,)C.(,1)D.(1,e)二、填空题:本大题共 4 个小题,每小题 5 分,共20 分.x)=2x2﹣1,则f(1)=.13.(5 分)已知f(214.(5 分)P(1,1,﹣2)是空间直角坐标系中一点,点P 关于平面xOy 对称点为M,点P 关于Z 轴对称点为N,则线段|MN |=.第2 页(共20 页)15.(5 分)函数f(x)=ln(x+2)+ln(4﹣x)的单调递减区间是.16.(5 分)如图,正方形ABCD 边长为2,点M 在线段DC 上从点 D 运动到点C,若将△ADM 沿AM 折起,使得平面ADM ⊥平面ABC,则点D 在平面ABC 内射影所形成轨迹的长度为.三、解答题:本大题共 6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤17.(10 分)已知直线l1:3x+(m+1)y﹣6=0,l 2:mx+2y﹣(m+2)=0,分别求满足下列条件的m 的值(1)l1⊥l2;(2)l 1∥l218.(12 分)已知△ABC 的顶点A(1,2),AB 边上的中线CM 所在的直线方程为x+2y﹣1=0,∠ABC 的平分线BH 所在直线方程为y=x.求:(1)顶点B 的坐标;(2)直线BC 的方程19.(12 分)如图,直线PA 垂直圆O 所在的平面,AB 为圆O 的直径,PA=AB,C 是圆O 上除A、B 外一动点,点M、N 分别是线段PB、PC 的中点.(1)求证:AN⊥MN;(2)证明:异面直线PA 与CM 所成角为定值,并求其所成角的大小.20.(12 分)已知函数f(x)=lg ,其中 a 为常数,(1)若函数f(x)为奇函数,求 a 的值;(2)设函数f(x)的定义域为Ⅰ,若[2,5]? I ,求实数 a 的取值范围.21.(12 分)如图所示,四棱锥P﹣ABCD 的底面是边长为 2 的菱形,PA⊥平面ABCD ,E,第3 页(共20 页).F 分别为CD,PB 的中点,AP=2,AE=(1)求证:EF ∥平面PAD;(2)求证:平面AEF ⊥平面PAB;(3)求二面角P﹣AE﹣F 的大小.2 2 2为半径),圆C 被x 轴截得弦长为 2 ,直线22.(12 分)已知圆C:x +(y﹣1)=r (rl:y=x+m(m∈R),O 为坐标原点(1)求圆的方程;|PQ|最短时,(2)若m=﹣2,过直线l 上一点P 作圆C 的切线PQ,Q 为切点,求切线长点P 的坐标;(3)若直线l 与圆C 相交于M、N 两点,且OM ⊥ON,求实数m 的值.第4 页(共20 页)2017-2018 学年河南省洛阳市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12 小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的1.(5 分)已知集合M={0 ,1,2,3,4} ,N={ x|x=2n﹣1,n∈N} ,P=M∩N ,则P 的子集共有()A .2 个B .3 个C.4 个D.5 个【分析】容易求出M∩N={1 ,3} ,即得出P={1 ,3} ,从而可求出P 的所有子集,这样即可得出P 的子集个数.【解答】解:M∩N={1 ,3} ;∴P={1 ,3} ;∴P 的子集为:? ,{1} ,{3} ,{1 ,3} ,共四个.故选:C.【点评】考查列举法、描述法表示集合的概念,交集的运算,以及子集的定义.2 22.(5 分)方程x +y ﹣ax+by+c=0 表示圆心为(1,2),半径为 1 的圆,则a、b、c 的值依次为()A .﹣2,﹣4,4B .2,﹣4,4 C.2,﹣4,﹣4 D.﹣2,4,﹣4【分析】根据题意,由圆的一般方程分析可得,解可得a、b、c 的值,即可得答案.2 2【解答】解:根据题意,方程x +y ﹣ax+by+c=0 表示圆心为(1,2),半径为 1 的圆,则,解可得:a=2,b=﹣4,c=4,故选:B.第5 页(共20 页)【点评】本题考查圆的一般方程,注意由圆的一般方程求圆心坐标、半径的方法,属于基础题.﹣33.(5 分)若a=2 ,b=π,c=e,则有()A .a>b>cB .c>a>b C.b>c>a D.b>a>c【分析】分别利用有理指数幂的运算性质及对数的运算法则比较三个数与0 和1 的大小得答案.【解答】解:∵0<a=2﹣3<20=1,b=π>1,c=e<,∴b>a>c.故选:D .【点评】本题考查对数值的大小比较,考查有理指数幂的运算性质及对数的运算法则,是基础题.4.(5 分)圆锥的轴截面是边长为 2 的正三角形,则圆锥的表面积为()A .B .3πC.4πD.5π【分析】利用轴截面为正三角形,很容易得到底面半径,母线长,代入公式求得底面积和侧面积,得解.【解答】解:如图,圆锥的轴截面ABC 为正三角形,边长为2,故底面半径r=1,母线长l=2,S 底=πr 2=π,S 侧=πrl =2π,∴圆锥表面积为3π,故选:B.第6 页(共20 页)【点评】此题考查了圆锥表面积,属容易题.5.(5 分)已知m、n 是两条不重合的直线,α、β是两个不重合的平面,下面四个结论中正确的是()A .若m?α,n?β,m⊥n,则α⊥βB.若m∥α,m⊥n,则n⊥αC.若m⊥α,m⊥β,则α∥βD.若m⊥α,m⊥n,α∥β,则n∥β【分析】在A 中,α与β相交或平行;在 B 中,n 与α相交、平行或n?α;在C 中,由面面平行的判定定理得α∥β;在D 中,n 与β相交、平行或n?β.【解答】解:由m、n 是两条不重合的直线,α、β是两个不重合的平面,知:在A 中,若m?α,n?β,m⊥n,则α与β相交或平行,故A 错误;在B 中,若m∥α,m⊥n,则n 与α相交、平行或n?α,故B 错误;在C 中,若m⊥α,m⊥β,则由面面平行的判定定理得α∥β,故 C 正确;在D 中,若m⊥α,m⊥n,α∥β,则n 与β相交、平行或n?β,故D 错误.故选:C.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.2+y2=r 2(r >0)上一点,则直线x0x+y0y=r2 与该圆的位置6.(5 分)若M(x0,y0)为圆x关系为()A .相切B .相交C.相离D.相切或相交【分析】根据题意,求出圆的圆心与半径,由点到直线的距离公式分析可得圆心到直线的距离d==r ,由直线与圆的位置关系即可得答案.【解答】解:根据题意,若M(x0,y0)为圆x2+y2=r 2(r >0)上一点,2+y02=r 2,则x02 2 2圆x +y =r (r>0)的圆心为(0,0),半径为r,圆心到直线的距离d==r ,2 与该圆相切;直线x0x+y0y=r故选:A.【点评】本题考查直线与圆的位置关系,注意直线与圆位置关系的判断方法,属于基础题.第7 页(共20 页)27.(5 分)已知y=f(x)是定义在R 上的偶函数,当x≥0 时,f(x)=x ﹣2x ,若x?f(x)≥0,则x 的取值范围是()A .[一2,2] B.(﹣∞,﹣2]∪[2,+∞)C.(﹣∞,﹣2)∪[0,2] D.[ ﹣2,0] ∪[2,+∞)【分析】根据题意,由函数在x≥0 时的解析式分析可得在区间(0,2)上,f(x)≤0,在(2,+ ∞)上,f(x)≥0,结合函数的奇偶性可得在区间(﹣2,0)上,f(x)≤0,在(﹣∞,﹣2)上,f(x)≥0;又由x?f(x)≥0,可得或,解可得x 的取值范围,即可得答案.【解答】解:根据题意,当x≥0 时,f(x)=x2﹣2x,若f(x)≥0,即x2﹣2x≥0,解可得:x≥2,则在区间(0,2)上,f(x)≤0,在(2,+∞)上,f(x)≥0,又由f(x)为偶函数,则在区间(﹣2,0)上,f (x)≤0,在(﹣∞,﹣2)上,f(x)≥0 ,若x?f(x)≥0,即或,则有﹣2≤x≤0 或x≥2,即x?f(x)≥0 的解集为[﹣2,0]∪[2,+∞);故选:D .【点评】本题考查函数的奇偶性与单调性的综合应用,注意分析f(x)>0 和f(x)<0 的解集.8.(5 分)一个几何体的三视图如图所示,则该几何体的体积为()A .2B .C.4 D.第8 页(共20 页)【分析】由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥,计算出底面面积和高,代入锥体体积公式,可得答案.【解答】解:由已知的三视图可得:该几何体是一个以正视图为底面的四棱锥,棱锥的底面面积S=2×2=4,棱锥的高h=1故棱锥的体积V==,故选:D .【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.9.(5 分)数学家欧拉在1765 年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知△ABC 的顶点为A(0,0),B(4,0),C(3,),则该三角形的欧拉线方程为()A .x﹣y﹣2 =0B .x﹣y﹣2=0 C.x﹣y﹣2=0 D.x﹣y﹣2=0【分析】△ABC 的顶点为A(0,0),B(4,0),C(3,),利用重心定理可得重心G.设△ABC 的外心为W(2,a),可得|OW|=|WC|,解得a.利用点斜式即可得出欧拉线.【解答】解:△ABC 的顶点为A(0,0),B(4,0),C(3,),∴重心G .设△ABC 的外心为W(2,a),则|OW|=|WC|,即=,解得a=0.可得W(2,0).则该三角形的欧拉线方程为y﹣0=(x﹣2),化为:x﹣y﹣2 =0.故选:A.第9 页(共20 页)【点评】本题考查了直线方程、两点之间的距离公式、三角形的垂心外心重心的性质,考查了推理能力与计算能力,属于中档题.10.(5 分)已知函数f(x)=,若存在x1,x2∈R 且x1≠x2,使得f(x1)=f(x2)成立,则实数 a 的取值范围是()A .[3,+∞)B .(3,+∞)C.(一∞,3)D.(一∞,3]【分析】当<1,即a<2 时,由二次函数的图象和性质,可知存在x1,x2∈(﹣∞,1] 且x1≠x2,使得f(x1)=f(x2)成立;当≥1,即a≥2 时,若存在x1,x2∈R 且x1≠x2,使得f (x1)=f(x2)成立,则﹣1+a>3a﹣7,由此能求出实数 a 的取值范围.【解答】解:函数 f (x)=,存在x1,x2∈R 且x1≠x2,使得f (x1)=f(x2)成立,当<1,即a<2 时,由二次函数的图象和性质,可知:存在x1,x2∈(﹣∞,1]且x1≠x2,使得f(x1)=f(x2)成立,当≥1,即a≥2 时,若存在x1,x2∈R 且x1≠x2,使得f(x1)=f (x2)成立,则﹣1+a>3a﹣7,解得a<3,∴2≤a<3,综上所述:实数 a 的取值范围是(﹣∞,3).故选:C.【点评】本题考查函数的单调性和运用,注意二次函数的对称轴和区间的关系,考查分类讨论思想和运算求解能力,考查函数与方程思想,是中档题.11.(5 分)直线kx﹣y﹣k=0 与曲线y=交于M、N 两点,O 为坐标原点,当△OMN 面积取最大值时,实数k 的值为()A .﹣B .﹣C.﹣1 D.1【分析】根据∠MON 为直角时,△OMN 的面积取到最大值,于是得到△OMN 为等腰直角三角形,根据三角形的相关知识求出原点到直线的距离,再利用点到直线的距离公式列方程可解出k 的值,但需要结合图形,得出k<0,从而得出正解.【解答】解:由,知y≥0,将等式两边平方得y2=1﹣x2,即x2 +y2=1,2 2所以,曲线表示的图形是圆x +y =1 的上半部分,设∠MON =θ,则△OMN 的面积为,显然,当θ=90°时,△OMN 的面积取到最大值,此时,△OMN 是等腰直角三角形,设原点到直线的距离为d,则,另一方面,由点到直线的距离公式可得,解得,结合图象可知,k<0,因此,,故选:A.【点评】本题考查直线与圆的位置关系,将问题转化为圆心到直线的距离,是解本题的关键,属于中等题.x12.(5 分)已知f(x)是定义在(0,+∞)上的单调函数,满足f(f(x)﹣e ﹣2lnx )=e+1,则函数f (x)的零点所在区间为()A .(,)B.(,)C.(,1)D.(1,e)x x【分析】由题意可设t=f(x)﹣e ﹣2lnx,则f(x)=e+2lnx+t ,又由f(t)=e+1,即te +2lnt +t=e+1,解得t=1,可得f(x)的解析式,运用函数零点存在定理即可得到所求结论.【解答】解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣e x﹣2lnx] =e+1,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣e x﹣2lnx 为定值,设t=f(x)﹣e x﹣2lnx,则f(x)=e x+2 lnx+t,又由f(t)=e+1,t即e +2lnt +t=e+1,解得t=1,第11 页(共20 页)则f(x)=1+2lnx+e x,xf′(x)=+e >0,可得f(x)在x>0 递增,f()=﹣2+1>0,f()=﹣3<0,则f(x)在(,)有零点.故选:B.【点评】本题考查函数的解析式的求法,注意运用换元法,考查函数零点存在定理的运用,考查运算能力,属于中档题.二、填空题:本大题共 4 个小题,每小题 5 分,共20 分.13.(5 分)已知f(2x)=2x2﹣1,则f(1)=﹣1 .【分析】根据题意,在f(2x)=2x2﹣1 中,令x=0 可得:f(20)=0﹣1=﹣1,变形即可得答案.x 2 【解答】解:根据题意,f(2 )=2x﹣1,令x=0 可得:f(20)=0﹣1=﹣1,即f(1)=﹣1;故答案为:﹣ 1【点评】本题考查函数解析式的计算,注意用特殊值法分析,属于基础题.14.(5 分)P(1,1,﹣2)是空间直角坐标系中一点,点P 关于平面xOy 对称点为M,点P 关于Z 轴对称点为N,则线段|MN |= 2 .【分析】由点P 关于平面xOy 对称点为M,求出M(1,1,2),由点P 关于Z 轴对称点为N,求N(﹣1,﹣1,﹣2),由此能求出线段|MN |.【解答】解:∵P(1,1,﹣2)是空间直角坐标系中一点,点P 关于平面xOy 对称点为M,∴M(1,1,2),∵点P 关于Z 轴对称点为N,∴N(﹣1,﹣1,﹣2),∴线段|MN |==2 .第12 页(共20 页)故答案为: 2 .【点评】本题考查线段长的求法,考查空间直角坐标系中的对称问题、两点间的距离公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5 分)函数f(x)=ln(x+2)+ln(4﹣x)的单调递减区间是[1,4).【分析】根据题意,先由函数的解析式求出函数的定义域,令t=﹣x2 +2x+8,则y=lnt;2 由复合函数单调性的判定方法分析可得:若函数f(x)为减函数,则t=﹣x +2x+8 为减函数,由二次函数的性质分析t=﹣x2 +2x+8 的递减区间,即可得答案.【解答】解:根据题意,函数f(x)=ln(x+2)+ln(4﹣x),有,解可得﹣2<x<4,则f(x)=ln(x+2)+ln(4﹣x)=ln(﹣x2+2x+8),令t=﹣x2+2x+8 ,﹣2<x<4,则t>0,则y=lnt,为增函数,2若函数f (x)=ln(x+2 )+ln (4﹣x)=ln(﹣x +2x+8)为减函数,则t=﹣x2+2x+8 为减函数,其对称轴为x=1,则其递减区间为[1,4);则函数函数f(x)=ln(x+2)+ln(4﹣x)的单调递减区间是[1,4);故答案为:[1,4).【点评】本题考查复合函数的单调性,注意函数的定义域,属于基础题.16.(5 分)如图,正方形ABCD 边长为2,点M 在线段DC 上从点D 运动到点C,若将△ADM 沿AM 折起,使得平面ADM ⊥平面ABC,则点D 在平面ABC 内射影所形成轨迹的长度为.【分析】过D'作AM 的垂线,垂足为O,运用面面垂直的性质定理和平面几何圆的定义和弧长公式,计算可得所求值.【解答】解:过 D '作AM 的垂线,垂足为O,第13 页(共20 页)由平面AD 'M⊥平面ABC,可得 D 'O⊥平面ABC ,可得DO⊥OA,可得O 在以AD 为直径,的圆弧上运动,可得点D '在平面ABC 内射影O 所形成轨迹的长度为?2π=.故答案为:.【点评】本题考查空间面面垂直的性质定理的运用,以及平面几何圆的定义,考查运算能力,属于中档题.三、解答题:本大题共 6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤17.(10 分)已知直线l1:3x+(m+1)y﹣6=0,l 2:mx+2y﹣(m+2)=0,分别求满足下列条件的m 的值(1)l1⊥l2;(2)l 1∥l2【分析】(1)根据两直线垂直的关系可得3m+2(m+1 )=0,解得即可,(2)根据两直线平行的关系可得3×2﹣m(m﹣1)=0,解得并需要验证.【解答】解:(1)若l 1⊥l 2,则3m+2(m+1)=0,解得m=﹣,(2)若l 1∥l 2,则3×2﹣m(m﹣1)=0,解得m=﹣3 或m=2,当m=﹣3 时,l1∥l 2,当m=2 时,l 1 与l 2 重合,不符合题意,舍去,故m=﹣3【点评】本题考查两直线平行的性质,两直线垂直的性质,体现了分类讨论的数学思想,注意考虑斜率不存在的情况.18.(12 分)已知△ABC 的顶点A(1,2),AB 边上的中线CM 所在的直线方程为x+2y﹣1 =0,∠ABC 的平分线BH 所在直线方程为y=x.求:第14 页(共20 页)(1)顶点B 的坐标;(2)直线BC 的方程【分析】(1)设出B 的坐标,代入直线CM,求出m 的值,从而求出 B 的坐标即可;(2)设出A 的对称点,表示出A′B 的方程,即BC 的方程,整理即可.【解答】解:(1)由题意可知,点 B 在角平分线y=x 上,可设点B 的坐标是(m,m),则AB 的中点(,)在直线CM 上,∴+2 ?﹣1=0,解得:m=﹣1,故点B(﹣1,﹣1);(2)设A 关于y=x 的对称点为A′(x0,y0),则由,解得:,直线A′B 的方程为:=,直线A′B 的方程即直线BC 的方程,整理得BC 的方程是:2x﹣3y﹣1=0.【点评】本题考查了求直线方程问题,考查对称问题以及转化思想,是一道常规题.19.(12 分)如图,直线PA 垂直圆O 所在的平面,AB 为圆O 的直径,PA=AB,C 是圆O 上除A、B 外一动点,点M、N 分别是线段PB、PC 的中点.(1)求证:AN⊥MN;(2)证明:异面直线PA 与CM 所成角为定值,并求其所成角的大小.【分析】(1)推导出PA⊥BC,AC⊥BC,BC⊥平面PAC,求出BC⊥AN,MN ∥BC,由此能证明AN⊥MN .(2)连结OM ,在△ABC 中,M,O 分别是PB ,AB 的中点,从而OM ∥PA,进而OM ⊥平面ABC ,OM⊥OC,由此能证明异面直线PA 与CM 所成角为定值,其所成角的大小为45°.【解答】证明:(1)∵PA⊥圆O 所在的平面,点B、C 在圆O 上,∴PA⊥BC,∵AB 是圆O 的直径,C 是圆O 上除A,B 外一动点,∵AC⊥BC,∵PA∩AC=A,∴BC⊥平面PAC,∵AN? 平面PAC,∴BC ⊥AN,在△PBC 中,M,N 分别是线段PB,PC 的中点,∴MN ∥BC,∴AN⊥MN .(2)连结OM ,在△ABC 中,M,O 分别是PB,AB 的中点,∴OM ∥PA,且OM=PA,由题知PA⊥圆O 所在的平面ABC ,∴OM ⊥平面ABC ,∵OC? 平面ABC,∴OM ⊥OC,又∵OM =OC,∴△OCM 为等腰三角形,即OM 与MC 所成角为45°,∵OM ∥PA,∴异面直线PA 与CM 所成角为定值,其所成角的大小为45°.【点评】本题考查线线垂直的证明,考查异面直线所成角为定值的证明及其大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.(12 分)已知函数f(x)=lg ,其中 a 为常数,(1)若函数f(x)为奇函数,求 a 的值;(2)设函数f(x)的定义域为Ⅰ,若[2,5]? I ,求实数 a 的取值范围.【分析】(1)根据题意,由奇函数的定义可得f(﹣x)+f(x)=lg +lg =lg =0,解可得 a 的值,验证即可得答案;(2)根据题意,分析可得在区间[2,5]上,>0 恒成立,进而可得ax﹣3>0 在[2,5]上恒成立;设g(x)=ax﹣3,分析可得,接可得 a 的取值范围,即可得答案.【解答】解:(1)根据题意,函数f(x)=lg ,则f(﹣x)+f(x)=lg +lg =lg =0,即=1,分析可得a2=1,即a±1,当a=1 时,f(x)=lg ,符合题意;当a=﹣1 时,f(x)=lg ,无意义,不符合题意;故a=1;(2)若[2,5]? I,则在区间[2,5]上,>0 恒成立;又由x+3>0 在[2,5]上恒成立,则ax﹣3>0 在[2,5]上恒成立;设g(x)=ax﹣3,则有,解可得:a>;即a 的取值范围为(,+∞).【点评】本题考查函数奇偶性的性质以及应用,涉及对数函数的性质,属于综合题.21.(12 分)如图所示,四棱锥P﹣ABCD 的底面是边长为 2 的菱形,PA⊥平面ABCD ,E,F 分别为CD,PB 的中点,AP=2,AE=.(1)求证:EF ∥平面PAD;(2)求证:平面AEF ⊥平面PAB;(3)求二面角P﹣AE﹣F 的大小.【分析】(1)取PA 的中点M,连结FM ,DM ,推导出四边形DEFM 为平行四边形,EF ∥DM ,由此能证明EF∥平面PAD.(2)推导出AE⊥DE ,AE⊥AB,PA⊥AE,从而AE⊥平面PAB,由此能证明平面AEF ⊥平面PAB.(3)由AE ⊥平面PAB,得AE⊥PA,AE⊥AF ,从而∠PAF 是二面角P﹣AE﹣F 的平面角,由此能求出二面角P﹣AE﹣F 的大小.【解答】证明:(1)取PA 的中点M,连结FM ,DM ,∵F,M 分别是PB,PA 的中点,∴FM ∥AB,且FM =,又∵点E 是CD 的中点,四边形ABCD 为菱形,∴DE∥AB,且DE=,∴FM ∥DE,且FM =DE,∴四边形DEFM 为平行四边形,∴EF ∥DM ,∵EF? 平面PAD ,DM ? 平面PAD,∴EF∥平面PAD.(2)∵底面ABCD 是边长为 2 的菱形,AE=,∴AE2+DE 2=AD2,∴AE⊥DE ,∵DE ∥AB,∴AE⊥AB,∵PA⊥平面ABCD ,AE? 平面ABCD ,∴PA⊥AE,∵AB∩PA=A,∴AE⊥平面PAB,∵AE? 平面AEF ,∴平面AEF ⊥平面PAB.解:(3)由(2)可知:AE⊥平面PAB ,∴AE⊥PA,AE⊥AF ,∵AE 为二面角P﹣AE ﹣F 的棱,AF ? 平面AEF ,PA? 平面PAE,∴∠PAF 是二面角P﹣AE﹣F 的平面角,在Rt△PAB 中,∵AB=AP=2,且F 为PB 的中点,∴∠PAF =45°,∴二面角P﹣AE ﹣F 的大小为45°.【点评】本题考查线面平行、面面垂直的证明,考查二面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.2 2 222.(12 分)已知圆C:x +(y﹣1)=r (r 为半径),圆C 被x 轴截得弦长为 2 ,直线l:y=x+m(m∈R),O 为坐标原点(1)求圆的方程;(2)若m=﹣2,过直线l 上一点P 作圆C 的切线PQ,Q 为切点,求切线长|PQ|最短时,点P 的坐标;(3)若直线l 与圆C 相交于M、N 两点,且OM ⊥ON,求实数m 的值.【分析】(1)由题意可知,圆心 C 在y 轴上,OC⊥x 轴,设x 轴与圆 C 交于A,B,可得|OA|=,|OC|=1,|AC|=r,由勾股定理求解r,则圆的方程可求;(2)当m=﹣2 时,直线l 的方程为y=x﹣2,当|PC |最小时,切线长|PQ|最短,显然当PC⊥l 时,|PC|最小,求出直线PC 的方程,联立两直线方程可得P 的坐标;(3)设M(x1,y1),N(x2 ,y2),由题意可得:x1≠0,x2≠0,联立直线方程与圆的方程利用根与系数的关系结合OM ⊥ON 可得m 值.【解答】解:(1)由题意可知,圆心 C 在y 轴上,OC⊥x 轴,设x 轴与圆 C 交于A,B,|OA |=,|OC|=1,|AC|=r,2 2 2∵△AOC 为直角三角形,∴|OA| +|OC| =|AC| ,即,∴r=.2 2 ∴圆C的方程为x +(y﹣1)=3;第19 页(共20 页)(2)当m=﹣2 时,直线l 的方程为y=x﹣2,∵△PQC 为直角三角形,∴|PQ|2=|PC|2﹣|QC|2=|PC|2 ﹣3.当|PC|最小时,切线长|PQ|最短,显然当PC ⊥l 时,|PC|最小,∵k PC=﹣1,C(0,1),∴直线PC:y﹣1=﹣1×(x﹣0),即y=﹣x+1.由,解得,即P();(3)设M(x1,y1),N(x2,y2),由题意可得:x1≠0,x2≠0,2 2联立,得2x +2(m﹣1)x+m ﹣2m﹣2=0.∴△=4(m﹣1)2﹣8(m2﹣2m﹣2)>0..∵OM ⊥ON,∴,即x1x2+y1y2=0,∴.即.2整理得:m ﹣m﹣2=0,解得m=﹣1 或m=2.∴m=﹣1 或m=2.【点评】本题考查直线与圆位置关系的应用,考查了数学转化思想方法,考查计算能力,是中档题.第20 页(共20 页)。

2017-2018学年河南省洛阳市名校高一数学上第二次联考试题(含答案)

2017-2018学年河南省洛阳市名校高一数学上第二次联考试题(含答案)

洛阳名校2017-2018学年上期第二次联考高一数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集为R ,集合0}9-x |{x 2<=A ,}51|{≤<-=x x B ,则=)(B C A R ( ) A . )0,3(- B .)1,3(-- C . ]1,3(-- D .)3,3(-2.下列函数中,与函数||3x y -=的奇偶性相同,且在)0,(-∞上单调性也相同的是( ) A . xy 1-= B .||log 2x y = C . 21x y -= D .13-=x y 3.若c b a <<,则函数))(())(())(()(a x c x c x b x b x a x x f --+--+--=的两个零点分别位于区间( )A .),(b a 和),(c b 内B .),(a -∞和),(b a 内C .),(c b 和),(+∞c 内D .),(a -∞和 ),(+∞c 内4.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为( )A .1.2B .1.6 C. 1.8 D .2.45.已知b a ,是两条不同的直线,βα,是两个不同的平面,下列说法中正确的是( ) A .若b a //,α//a ,则α//b B .若b a ⊥,α⊥a ,β⊥b ,则βα⊥ C. 若βα⊥,β⊥a ,则α//a D .若βα⊥,α//a ,则β⊥a6.已知3log 3log 22+=a ,3log 9log 22-=b ,2log 3=c ,则c b a ,,的大小关系是( )A . c b a <=B .c b a >= C. c b a << D .c b a >> 7.在长方体1111DC B A ABCD -中,N M ,分别是棱1BB ,11C B 的中点,若090=∠CMN ,则异面直线1AD 与DM 所成的角为( )A . 030 B .045 C. 060 D .0908.在三棱锥ABC S -中,ABC ∆是边长为6的正三角形,15===SC SB SA ,平面DEFH分别与AB 、BC 、SC 、SA 交于H F E D ,,,分别是AB 、BC 、SC 、SA 的中点,如果直线//SB 平面DEFH ,那么四边形DEFH 的面积为( )A .245 B .2345 C. 45 D .345 9.已知函数f(x)的定义域为R ,且⎩⎨⎧>-≤-=-0),1(0,12)(x x f x x f x ,若方程a x x f +=)(有两个不同实根,则a 的取值范围为( )A . )1,(-∞B .]1,(-∞ C. )1,0( D .),(+∞-∞10.水池有两个相同的进水口和一个出水口,每个口进出水速度如图(甲)、(乙)所示,某天0点到6点该水池蓄水量如图(丙)所示(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到5点不进水也不出水. 则一定正确的论断是( )A .①B .①② C. ①③ D .①②③11.如图所示,在棱长为5的正方体1111D C B A ABCD -中,EF 是棱AB 上的一条线段,且2=EF ,点Q 是11D A 的中点,点P 是棱11D C 上的动点,则四面体PQEF 的体积( )A .是变量且有最大值B .是变量且有最小值 C.是变量有最大值和最小值 D .是常量12.在ABC ∆中,090=∠C ,030=∠B ,1=AC ,M 为AB 的中点,将ACM ∆沿CM 折起,使B A ,间的距离为2,则点M 到平面ABC 的距离为( )A .21 B .23 C. 1 D .32 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.函数xx y 1+=的定义域为 . 14.已知函数)4(log ax y a -=在]2,0[上是减函数,则实数a 的取值范围是 . 15.已知正三棱锥ABC P -,点C B A P ,,,都在半径为3的球面上,若PC PB PA ,,两两相互垂直,则球心到截面ABC 的距离为 .16.正方体1111D C B A ABCD -中,Q N M ,,分别是棱BC D A D C ,,1111的中点,点P 在对角线1BD 上,给出以下命题:①当P 在线段1BD 上运动时,恒有//MN 平面APC ; ②当P 在线段1BD 上运动时,恒有⊥1AB 平面BPC ;③过点P 且与直线1AB 和11C A 所成的角都为060的直线有且只有3条. 其中正确命题为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知集合}086|{2<+-=x x x A ,}0)3)((|{<--=a x a x x B . (1)若B B A = ,求实数a 的取值范围; (2)若}43|{<<=x x B A ,求实数a 的值.18. 已知函数⎪⎩⎪⎨⎧<+=>+-=0,0,00,2)(22x m x x x x x x x f 是奇函数.(1)求实数m 的值;(2)若函数)(x f 在区间]2,1[--a 上单调递增,求实数a 的取值范围.19. 如图,在四棱锥ABCD P -中,⊥PD 底面ABCD ,底面ABCD 为矩形,且AB AD PD 21==,E 为PC 的中点.(1)过点A 作一条射线AG ,使得BD AG //,求证:平面//PAG 平面BDE ; (2)求二面角C BD E --的正切值.20. 据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度)/(h km v 与时间)(h t 的函数图像如图所示,过线段OC 上一点)0,(t T 作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为)(h t 内沙尘暴所经过的路程)(km s.(1)当4=t 时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由. 21. 已知等腰梯形PDCB 中(如图1),3=PB ,1=DC ,2==BC PD ,A 为PB 边上一点,且1=PA ,将PAD ∆沿AD 折起,使平面⊥PAD 平面ABCD (如图2).(1)证明:平面⊥PAD 平面PCD ;(2)试在棱PB 上确定一点M ,使截面AMC 把几何体分成的两部分1:2:=--ABC M D CMA P V V .22. 已知幂函数Z k xx f k k ∈=+-,)()1)(2(,且)(x f 在),0(+∞上单调递增.(1)求实数k 的值,并写出相应的函数)(x f 的解析式;(2)若34)(2)(+-=x x f x F 在区间]1,2[+a a 上不单调,求实数a 的取值范围; (3)试判断是否存在正数q ,使函数x q x qf x g )12()(1)(-+-=在区间]2,1[-上的值域为]817,4[-,若存在,求出q 的值;若不存在,请说明理由.试卷答案一.选择题 1.C2.C .解析:选C 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求3.A 解析:本题考查函数的零点,意在考查考生数形结合的能力.由已知易得f (a )>0,f (b )<0,f (c )>0,故函数f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.答案:A4.B5.B【解答】解:A选项不正确,因为b⊂α是可能的;B选项正确,可由面面垂直的判定定理证明其是正确的;C选项不正确,因为α⊥β,a⊥β时,可能有a⊂α;D选项不正确,因为α⊥β,a∥α时,a∥β,a⊂β或一般相交都是可能的6.B由已知:,,,所以。

期中综合学业质量标准检测

期中综合学业质量标准检测

期中综合学业质量标准检测本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,时间90分钟。

第Ⅰ卷(选择题共40分)一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,第1~6小题只有一个选项符合题目要求,第7~10小题有多个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分)1.(河南省洛阳一中2016~2017学年高一上学期摸底)2010年1月4日,在中国海军护航编队“巢湖”舰、“千岛湖”舰护送下“河北锦绣”“银河”等13艘货轮顺利抵达亚丁湾西部预定海域。

运动轨迹如图中箭头所示,此次护航总航程4500海里。

若所有船只运动速度相同,则下列说法正确的是导学号1321411(B)A.“4500海里”指的是护航舰艇的位移B.研究舰队平均速度时可将“千岛湖”舰看作质点C.以“千岛湖”舰为参考系,“巢湖”舰一定是运动的D.根据图中数据可求出此次航行过程中的平均速度解析:“4500海里”指的是护航舰艇的路程,选项A错误;研究舰队平均速度时,舰船的大小和形状均可忽略不计,故可将“千岛湖”舰看作质点,选项B正确;因所有船只运动速度相同,故以“千岛湖”舰为参考系,“巢湖”舰一定是静止的,选项C错误;因舰队行驶的时间未知,故根据图中数据无法求出此次航行过程中的平均速度,选项D错误;故选B。

2.(辽宁大连十一中2016~2017学年高一上学期月考)如图所示是描述一个小球从水平桌面正上方的一点无初速度自由下落,与桌面经多次碰撞后,最终静止在桌面上的运动过程,则图线反映的是下列哪个物理量随时间的变化过程导学号1321411(A)A.位移B.路程C.速度D.速度的变化率解析:路程随时间是一直增加的,故B错,速度最终等于零,故C错,速度的变化率即为加速度,在空中运动时总等于g,故D错,只有A对。

3.(广东省实验中学2017~2018学年高一上学期期中)一辆警车在平直的公路上以40m/s的速度巡逻,突然接到报警,在前方不远处有歹徒抢劫,该警车要尽快赶到出事地点且到达出事地点时的速度也为40m/s,有三种行进方式:a一直匀速直线运动;b先减速再加速;c先加速再减速,则导学号1321411(C)A.a种方式先到达B.b种方式先到达C.c种方式先到达D.条件不足无法判定解析:作出v-t图象如图所示,从出发点到出事地点位移一定,根据v-t图象的意义,图线与坐标轴所围的面积相等,则只能t c<t a<t b,所以C选项正确。

高中数学压轴题题型名校模考题汇总

高中数学压轴题题型名校模考题汇总

专题10压轴题题型汇总压轴题型一、保值函数型“保值函数”,又称为“k 倍值函数”,“和谐函数”,“美好区间”等等。

1、现阶段主要是一元二次函数为主的。

核心思路是转化为“根的分布”。

2、函数单调性是解决问题的入口之一。

3、方程和函数思想。

特别是通过两个端点值构造对应的方程,再提炼出对应的方程的根的关系。

如第1题1.(江苏省连云港市市区三星普通高中2020-2021学年高一上学期期中联考)对于区间[,]a b 和函数()y f x =,若同时满足:①()f x 在[,]a b 上是单调函数;②函数(),[,]y f x x a b =∈的值域还是[,]a b ,则称区间[,]a b 为函数()f x 的“不变”区间.(1)求函数2(0)y x x =≥的所有“不变”区间;(2)函数2(0)y x m x =+≥是否存在“不变”区间?若存在,求出实数m 的取值范围;若不存在,请说明理由.2.(北京市昌平区2020-2021学年高一上学期期中质量抽测)已知函数2()f x x k =-.若存在实数,m n ,使得函数()f x 在区间上的值域为,则实数k 的取值范围为()A .(1,0]-B .(1,)-+∞C .2,0]D .(2,)-+∞3.(广东省广州市第一中学2020-2021学年高一上学期11月考试)已知函数221()x f x x-=.(1)判断函数()f x 的奇偶性并证明;(2)若不等式23()1x f x kx x +-≥在1,14x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数k 的取值范围;(3)当11,(0,0)x m n m n ⎡⎤∈>>⎢⎥⎣⎦时,函数()()1(0)g x tf x t =+>的值域为[23,23]m n --,求实数t 的取值范围.4.(江苏省盐城市实验高级中学2020-2021学年高一上学期期中)一般地,若()f x 的定义域为[],a b ,值域为[],ka kb ,则称[],a b 为()f x 的“k 倍跟随区间”;特别地,若()f x 的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”,(1)若[]1,b 为2()22f x x x =-+的跟随区间,则b =______;(2)若函数()f x m =m的取值范围是______.压轴题型二、方程根的个数1.一元二次型“根的分布”是期中考试的一个难点和热点。

河南省中原名校(即豫南九校)2017-2018学年高一上学期期末联考数学试题 Word版含解析

河南省中原名校(即豫南九校)2017-2018学年高一上学期期末联考数学试题 Word版含解析

豫南九校2017-2018学年上期期末联考高一数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则集合中元素的个数为()A. 1B. 2C. 3D. 4【答案】D【解析】集合B中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D.2. 已知:直线与直线平行,则的值为()A. 1B. -1C. 0D. -1或1【答案】A【解析】由于直线l1:ax+y-1=0与直线l2:x+ay+=0平行所以,即-1或1,经检验成立.故选A.3. 函数,则()A. B. 4 C. D. 8【答案】D【解析】∵,∴.故选D4. 设是两个不同的平面,是直线且,,若使成立,则需增加条件()A. 是直线且,B. 是异面直线,C. 是相交直线且,D. 是平行直线且,【答案】C【解析】要使成立,需要其中一个面的两条相交直线与另一个面平行,是相交直线且,,,,由直线和平面平行的判定定理可得.故选C.5. 已知函数在区间上是单调增函数,则实数的取值范围为()A. B. C. D.【答案】B【解析】函数f(x)=x2-2ax-3的图象开口向上,对称轴为直线x=a,画出草图如图所示.由图象可知,函数在[a,+∞)上是单调增函数,因此要使函数f(x)在区间[1,2]上是单调增函数,,只需a≤1,从而a∈(-∞,1].故选B.6. 已知矩形,,,沿矩形的对角线将平面折起,若四点都在同一球面上,则该球面的面积为()A. B. C. D.【答案】C【解析】矩形ABCD,AB=6,BC=8,矩形的对角线AC=10为该球的直径,所以该球面的面积为. 故选C.7. 设是定义在实数集上的函数,且,若当时,,则有()A. B.C. D.【答案】B【解析】由f(2-x)=f(x)可知函数f(x)的图象关于x=1对称,所以,,又当x≥1时,f(x)=ln x单调递增,所以,故选B.8. 已知是定义在上的偶函数,那么的最大值是()A. 0B.C.D. 1【答案】C【解析】∵f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,∴a-1+2a=0,∴a=.又f(-x)=f(x),∴b=0,∴,所以.故选C.9. 某四面体的三视图如图,则该四面体的体积是()A. 1B.C.D. 2【答案】B【解析】在正方体ABCD­A1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1­BCB1,如图所示,该四面体的体积为. 故选B.点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.10. 已知实数满足方程,则的最小值和最大值分别为()A. -9,1B. -10,1C. -9,2D. -10,2【答案】A【解析】即为y-2x可看作是直线y=2x+b在y轴上的截距,.....................故选A.11. 已知函数,若对一切,都成立,则实数的取值范围为()A. B. C. D.【答案】C【解析】由题意得,对一切,f(x)>0都成立,即,而,则实数a的取值范围为.故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值) .12. 已知为圆的两条互相垂直的弦,且垂足为,则四边形面积的最大值为()A. 10B. 13C. 15D. 20【答案】B【解析】如图,作OP⊥AC于P,OQ⊥BD于Q,则|OP|2+|OQ|2=|OM|2=5,∴|AC|2+|BD|2=4(9-|OP|2)+4(9-|OQ|2)=52.则|AC|·|BD|=,当时,|AC|·|BD|有最大值26,此时S四边形ABCD=|AC|·|BD|=×26=13,∴四边形ABCD面积的最大值为13.故选B.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 函数的单调递增区间为__________.【答案】(-∞,-1)【解析】试题分析:因为,所以当时,而,所以函数的单调递增区间为.考点:复合函数单调性14. 已知集合,,则集合中子集个数是__________【答案】4【解析】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离,所以直线与圆相交.集合有两个元素.故集合中子集个数为4.故答案为:4.15. 如图,已知圆柱的轴截面是矩形,,是圆柱下底面弧的中点,是圆柱上底面弧的中点,那么异面直线与所成角的正切值为__________.【答案】【解析】取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成角等于异面直线AC1与BC所成角,因为C1是圆柱上底面弧A1B1的中点,所以C1D⊥圆柱下底面,所以C1D⊥AD,因为圆柱的轴截面ABB1A1是矩形, AA1=2AB所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.故答案为:2.点睛:求两条异面直线所成角的关键是作为这两条异面直线所成角,作两条异面直线所成角的方法是:将其中一条一条直线平移与另一条相交相交或是将两条异面直线同时平移到某个位置使他们相交,然后再同一平面内求相交直线所成角,值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.16. 已知函数,则函数的零点个数为__________.【答案】3【解析】由,得,作出y=f(x),的图象,由图象可知共有3个交点,故函数的零点个数为3.故答案为:3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知全集,集合,集合.(1)当时,求,;(2)若,求实数的取值范围.【答案】(1)A∪B={x|-2<x<3},;(2)(-∞,-2].【解析】试题分析:(1)求解集合A,B根据集合交并补的定义求解即可;(2)由A∩B=A,得A⊆B,从而得,解不等式求解即可.试题解析:(1)由题得集合A={x|0<<1}={x|1<<3}当m=-1时,B={x|-2<x<2},则A∪B={x|-2<x<3}.(2)由A∩B=A,得A⊆B..解得m≤-2,即实数m的取值范围为(-∞,-2].18. 已知直线及点.(1)证明直线过某定点,并求该定点的坐标;(2)当点到直线的距离最大时,求直线的方程.【答案】(1)证明见解析,定点坐标为;(2)15x+24y+2=0.【解析】试题分析:(1)直线l的方程可化为 a(2x+y+1)+b(-x+y-1)=0,由,即可解得定点;(2)由(1)知直线l恒过定点A,当直线l垂直于直线PA时,点P到直线l的距离最大,利用点斜式求直线方程即可.试题解析:(1)证明:直线l的方程可化为 a(2x+y+1)+b(-x+y-1)=0,由,得,所以直线l恒过定点.(2)由(1)知直线l恒过定点A,当直线l垂直于直线PA时,点P到直线l的距离最大.又直线PA的斜率,所以直线l的斜率k l=-.故直线l的方程为,即15x+24y+2=0.19. 设是定义在上的奇函数,当时,.(1)求的解析式;(2)解不等式.【答案】(1);(2)(-∞,-2)∪(0,2).【解析】试题分析:(1)奇函数有f(0)=0,再由x<0时,f(x)=-f(-x)即可求解;(2)由(1)分段求解不等式,最后取并集即可.试题解析:(1)因为f(x)是定义在上的奇函数,所以当x=0时,f(x)=0,当x<0时,f(x)=-f(-x),-x>0,又因为当x>0时,f(x)=,.所以当x<0时,f(x)=-f(-x)=-=..综上所述:此函数的解析式.(2)f(x)<-,当x=0时,f(x)<-不成立;当x>0时,即<-,所以<-,所以>,所以3x-1<8,解得x<2,当x<0时,即<-,所以>-,所以3-x>32,所以x<-2,综上所述解集是(-∞,-2)∪(0,2).20. 已知圆经过点,和直线相切.(1)求圆的方程;(2)若直线经过点,并且被圆截得的弦长为2,求直线的方程.【答案】(1)(x-1)2+(y+2)2=2;(2)x=2或3x-4y-6=0.【解析】试题分析:(1)先求线段AB的垂直平分线方程为,设圆心的坐标为C(a,-a-1),由圆心到点的距离和到切线的距离相等求解即可;(2)由题知圆心C到直线l的距离,进而讨论直线斜率存在不存在两种情况求解即可.试题解析:(1)由题知,线段AB的中点M(1,-2),,线段AB的垂直平分线方程为,即,设圆心的坐标为C(a,-a-1),则,化简,得a2-2a+1=0,解得a=1.∴C(1,-2),半径r=|AC|==.∴圆C的方程为(x-1)2+(y+2)2=2.(解二:可设原方程用待定系数法求解)(2)由题知圆心C到直线l的距离,①当直线l的斜率不存在时,直线l的方程为x=2,此时直线l被圆C截得的弦长为2,满足条件.②当直线l的斜率存在时,设直线l的方程为,由题意得,解得k=,∴直线l的方程为y=(x-2).综上所述,直线l的方程为x=2或3x-4y-6=0.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小.21. 如图,四面体中,平面,,,,.(1)求四面体的四个面的面积中,最大的面积是多少?(2)证明:在线段上存在点,使得,并求的值.【答案】(1);(2)证明见解析.【解析】试题分析:(1)易得,,,均为直角三角形,且的面积最大,进而求解即可;(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连接BM,可证得AC⊥平面MBN,从而使得AC⊥BM,利用相似和平行求解即可.试题解析:(1)由题设AB=1,AC=2,BC=,可得,所以,由PA⊥平面ABC,BC、AB⊂平面ABC,所以,,所以,又由于PA∩AB=A,故BC⊥平面PAB,PB⊂平面PAB,所以,所以,,,均为直角三角形,且的面积最大,.(2)证明:在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA 交PC于点M,连接BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.因为与相似,,从而NC=AC-AN=.由MN∥PA,得==.22. 已知函数,.(1)当时,求函数的值域;(2)如果对任意的,不等式恒成立,求实数的取值范围;(3)是否存在实数,使得函数的最大值为0,若存在,求出的值,若不存在,说明理由.【答案】(1)[0,2];(2)(-∞,);(3)答案见解析.【解析】试题分析:(1)由h(x)=-2(log3x-1)2+2,根据log3x∈[0,2],即可得值域;(3)由,假设最大值为0,因为,则有,求解即可.试题解析:(1)h(x)=(4-2log3x)·log3x=-2(log3x-1)2+2,因为x∈[1,9],所以log3x∈[0,2],故函数h(x)的值域为[0,2].(2)由,得(3-4log3x)(3-log3x)>k,令t=log3x,因为x∈[1,9],所以t=log3x∈[0,2],所以(3-4t)(3-t)>k对一切t∈[0,2]恒成立,令,其对称轴为,所以当时,的最小值为,综上,实数k的取值范围为(-∞,)..(3)假设存在实数,使得函数的最大值为0,由.因为,则有,解得,所以不存在实数,使得函数的最大值为0.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值) .。

河南省名校联盟2024-2025学年高三上学期开学摸底联考数学试题(含答案)

河南省名校联盟2024-2025学年高三上学期开学摸底联考数学试题(含答案)

2025届高三开学摸底联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

考试时间为120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,则( )A .B .C .D .2.若复数满足,则( )ABCD3.抛物线的焦点坐标为( )A .B .C .D .4.双曲线的离心率为( )ABCD .5.将正整数1,2,3,…按从小到大的顺序分组,第组含个数,分组如下:,则2025在第()组.A .9B .10C .11D .126.在中,内角的对边分别为,,,且的面积,若的平分线交于点,则( ){}{}03,2,1,0,1,2A x x B =<<=--A B =∩{}0,1,2{}1,2{}2,2-{}2,1,1,2--z 3i1iz +=+z =24y x =1,016⎛⎫⎪⎝⎭10,16⎛⎫⎪⎝⎭()0,1()1,0()22103x y t t t-=>n 12n -()()()1,2,3,(4,5,6,7),8,9,10,11,12,13,14,15, ABC △,,A B C ,,a b c 3a =4c =ABC △)222S a c b =+-ABC ∠AC D BD =ABC .D .7.已知面积为的正三角形的所有顶点都在球的球面上,若三棱锥的体积为,则球的表面积为()A .B .C.D .8.已知函数,将的图象向右平移个单位长度后得到的图象,若在上的值域为,则函数在上的零点个数为( )A .4B .6C .8D .10二、选择题:本题共3小题,每小题6分,共18分。

2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)

2017-2018学年河南省洛阳市高二上学期期中数学试题(解析版)

2017-2018学年河南省洛阳市高二(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.365.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.166.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.368.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.1811.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.15.(5分)如图所示,在圆内接四边形ABCD中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD的面积为.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.2017-2018学年河南省洛阳市高二(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2﹣x﹣6<0},B={x|x2+2x﹣8>0},则A∪B=()A.{x|2<x<3}B.{x|﹣2<x<3}C.{x|x>﹣4或x>2}D.{x|x<﹣4或x >﹣2}【分析】解不等式得出集合A、B,根据并集的定义写出A∪B.【解答】解:集合A={x|x2﹣x﹣6<0}={x|(x+2)(x﹣3)<0}={x|﹣2<x<3},B={x|x2+2x﹣8>0}={x|(x+4)(x﹣2)>0}={x|x<﹣4或x>2},则A∪B={x|x<﹣4或x>﹣2}.故选:D.【点评】本题考查了解不等式与集合的运算问题,是基础题.2.(5分)△ABC中,==,则△ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【分析】由,利用正弦定理可得tanA=tanB=tanC,再利用三角函数的单调性即可得出.【解答】解:由正弦定理可得:=,又,∴tanA=tanB=tanC,又A,B,C∈(0,π),∴A=B=C=,则△ABC是等边三角形.故选:D.【点评】本题考查了正弦定理、三角函数的单调性,考查了推理能力与计算能力,属于中档题.3.(5分)若a,b,c∈R,且a>b,则下列不等式一定成立的是()A.>0 B.(a﹣b)c2>0 C.ac>bc D.a+c≥b﹣c【分析】对于A,根据不等式的性质即可判断,举反例即可判断B,C,D【解答】解:A、∵a﹣b>0,c2>0,∴>0B、∵a﹣b>0,∴(a﹣b)2>0,又c2≥0,∴(a﹣b)2c≥0,本选项不一定成立,C、c=0时,ac=bc,本选项不一定成立;D、当a=﹣1,b=﹣2,c=﹣3时,a+c=﹣4,b﹣c=1,显然不成立,本选项不一定成立;故选A【点评】此题考查了不等式的性质,利用了反例的方法,是一道基本题型.4.(5分)在等比数列{a n}中,a n>0,已知a1=6,a1+a2+a3=78,则a2=()A.12 B.18 C.24 D.36【分析】先求出公比q,即可求出答案.【解答】解:设公比为q,由a1=6,a1+a2+a3=78,可得6+6q+6q2=78,解得q=3或q=﹣4(舍去),∴a2=6q=18,故选:B【点评】本题考查了等比数列的通项公式,属于基础题.5.(5分)设正实数a,b满足2a+3b=1,则的最小值是()A.25 B.24 C.22 D.16【分析】直接利用函数的关系式及均值不等式求出函数的最小值.【解答】解:正实数a,b满足2a+3b=1,则=(2a+3b)()=+9≥13+12=25,故的最小值为25.故选:D.【点评】本题考查的知识要点:函数的关系式的恒等变换,均值不等式的应用.6.(5分)海中有一小岛,海轮由西向东航行,望见这岛在北偏东75°,航行8n mile以后,望见这岛在北偏东60°,海轮不改变航向继续前进,直到望见小岛在正北方向停下来做测量工作,还需航行()n mile.A.8 B.4 C.D.【分析】作出示意图,根据等腰三角形锐角三角函数的定义即可求出继续航行的路程.【解答】解:设海岛位置为A,海伦开始位置为B,航行8n mile后到达C处,航行到D处时,海岛在正北方向,由题意可知BC=8,∠ABC=15°,∠BCA=150°,∠ADC=90°,∠ACD=30°,∴∠BAC=15°,∴AC=BC=8,∴CD=AC•cos∠ACD=4.故选C.【点评】本题考查了解三角形的应用,属于基础题.7.(5分)设等差数列{a n}的公差d≠0,且a2=﹣d,若a k是a6与a k+6等比中项,则k=()A.5 B.6 C.9 D.36【分析】运用等差数列的通项公式,以及等比数列的中项的性质,化简整理解方程即可得到k的值.【解答】解:等差数列{a n}的公差d≠0,且a2=﹣d,可得a1=a2﹣d=﹣2d,则a n=a1+(n﹣1)d=(n﹣3)d,若a k是a6与a k+6的等比中项,即有a k2=a6a k+6,即为(k﹣3)2d2=3d•(k+3)d,由d不为0,可得k2﹣9k=0,解得k=9(0舍去).故选:C.【点评】本题考查等差数列的通项公式和等比数列中项的性质,考查化简整理的运算能力,属于基础题.8.(5分)若函数f(x)=的定义域是R,则实数a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣∞,﹣2]∪[2,+∞)D.[﹣2,2]【分析】要使函数有意义,则2﹣1≥0,解得即可.【解答】解:要使函数有意义,则2﹣1≥0,即x2+ax+1≥0,∴△=a2﹣4≤0,解得﹣2≤a≤2,故选:D【点评】本题考查了函数的定义域和不等式的解法,属于基础题.9.(5分)已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.【分析】已知等式利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式化简,求出tanB的值,确定出B的度数,利用三角形面积公式求出ac的值,利用余弦定理,基本不等式可求b的最小值.【解答】解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.【点评】此题考查了正弦、余弦定理,基本不等式以及三角形的面积公式,熟练掌握定理及公式是解本题的关键,属于中档题.10.(5分)设等差数列{a n}的前n项和为S n,S15>0,a8+a9<0,则使<0成立的最小自然数n的值为()A.15 B.16 C.17 D.18【分析】由于S15==15a8>0,a8+a9<0,可得a8>0,a9<0,进而得出.【解答】解:∵S15==15a8>0,a8+a9<0,∴a8>0,a9<0,∴S16==8(a8+a9)<0,则使<0成立的最小自然数n的值为16.故选:B.【点评】本题考查了等差数列的通项公式与求和公式及其性质、不等式的性质,考查了推理能力与计算能力,属于中档题.11.(5分)在平而直角坐标系中,不等式组表示的平面区域面积为π,若x,y满足上述约束条件,则z=的最小值为()A.﹣1 B.C.D.【分析】由约束条件作出可行域,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.结合直线与圆的位置关系求得答案.【解答】解:∵不等式组(r为常数)表示的平面区域的面积为π,∴圆x2+y2=r2的面积为4π,则r=2.由约束条件作出可行域如图,由z==1+,而的几何意义为可行域内的动点与定点P(﹣3,2)连线的斜率.设过P的圆的切线的斜率为k,则切线方程为y﹣2=k(x+3),即kx﹣y+3k+2=0.由=2,解得k=0或k=﹣.∴z=的最小值为1﹣=﹣.故选:C.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.12.(5分)已知数列{a n}中,a1=2,若a n+1﹣a n=a n2,设T m=,若T m<2018,则正整数m的最大值为()A.2019 B.2018 C.2017 D.2016=a n2+a n=a n(a n+1)≥6,推导出=,从而【分析】a n+1,进而T m=m﹣(﹣)<m﹣,由此能求出正整数m的最大值.【解答】解:由a n﹣a n=a n2,得a n+1=a n2+a n=a n(a n+1)≥6,+1∴=,∴=﹣,∴++…+=(﹣)+(﹣)+…+(﹣)=﹣∈(0,),∵,∴T m==m﹣(﹣)=m﹣+<m﹣+=m﹣∵T m<2018,∴m﹣<2018,∴m<2018+∴正整数m的最大值为2018,故选:B【点评】本题考查了数列递推关系、放缩法,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4个小题,每小题5分,共20分.x<0|2<x<3}B.{x|-2<x<3}C.{x|x>13.(5分)不等式组表示的平面区域内的整点坐标是(﹣1,1).【分析】先根据不等式组画出可行域,再验证哪些当横坐标、纵坐标为整数的点是否在可行域内.【解答】解:根据不等式组画出可行域如图:由图象知,可行域内的点的横坐标为整数时x=﹣1,纵坐标可能为﹣1或﹣2即可行域中的整点可能有(﹣1,1)、(﹣1,2),经验证点(﹣1,1)满足不等式组,(﹣1,2)不满足不等式组,∴可行域中的整点为(﹣1,1),故答案为:(﹣1,1),【点评】本题考查一元二次不等式表示的区域,要会画可行域,同时要注意边界直线是否能够取到,还要会判断点是否在可行域内(点的坐标满足不等式组时,点在可行域内).属简单题.14.(5分)已知△ABC的内角A,B,C的对边分别为a,b,c,若a=2且sinA+cosA=2,则角C的大小为.【分析】利用三角恒等变换求出A,再利用正弦定理得出C.【解答】解:∵sinA+cosA=2,即2sin(A+)=2,∵0<A<π,∴A+=,即A=,由正弦定理得:,即,∴sinC=,∴C=或C=(舍).故答案为:.【点评】本题考查了正弦定理,属于基础题.15.(5分)如图所示,在圆内接四边形ABCD 中,AB=6,BC=3,CD=4,AD=5,则四边形ABCD 的面积为 6.【分析】利用余弦定理可求BD 2=5﹣4cosA=25+24cosA ,解得cosA=,结合范围0<A <π,利用同角三角函数基本关系式可求sinA ,利用三角形面积公式即可计算得解.【解答】解:∵四边形ABCD 圆内接四边形, ∴∠A +∠C=π,∵连接BD ,由余弦定理可得BD 2=AB 2+AD 2﹣2AB•AD•cosA=36+25﹣2×6×5cosA=61﹣60cosA , 且BD 2=CB 2+CD 2﹣2CB•CD•cos (π﹣A ) =9+16+2×3×4cosA=25+24cosA , ∴61﹣60cosA=25+24cosA , ∴cosA= 又0<A <π, ∴sinA=.∴S 四边形ABCD =S △ABD +S △CBD =AB•AD•sinA +CD•CB•sin (π﹣A )=×6×5×+×3×4×=6,故答案为:6【点评】本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式的应用,考查了转化思想和数形结合思想的应用,属于中档题.16.(5分)已知数列{a n}中,a1=l,S n为其前n项和,当n≥2时,2a n+S n2=a n S n成立,则S10=.S n=S n﹣1﹣S n,可得数列{}是首项为1,公差为的等【分析】由已知得S n﹣1差数列,从而能求【解答】解:∵2a n+S n2=a n S n,∴S n2=a n(S n﹣2),a n=S n﹣S n﹣1(n≥2),∴S n2=(S n﹣S n﹣1)(S n﹣2),S n=S n﹣1﹣S n,…①即S n﹣1•S n≠0,由题意S n﹣1•S n,得﹣=,将①式两边同除以S n﹣1∵a1=l,∴=1∴数列{}是首项为1,公差为的等差数列,∴=1+(n﹣1)=(n+1)∴S n=,∴S10=,故答案为:【点评】本题考查数列的递推公式和前n项和,属于中档题三、解答题:本大题共6个小题,共70分.解答应写出文字说明、证明过程或盐酸步骤.17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.(1)求B;(2)若,,求a,c.【分析】(1)直接利用关系式的恒等变换,转化为余弦定理的形式,进一步求出B的值.(2)利用正弦定理已知条件求出结果.【解答】解:(1)△ABC中,角A,B,C所对的边分别为a,b,c,已知a2+c2﹣b2=﹣ac.则:,由于:0<B<π,解得:B=.(2)由于,所以:a=2c,由及a2+c2﹣b2=﹣ac.得到:a2+c2+ac=7.解得:a=2,c=1.【点评】本题考查的知识要点:余弦定理的应用,正弦定理的应用.18.(12分)已知方程x2+2(a+2)x+a2﹣1=0.(1)当该方程有两个负根时,求实数a的取值范围;(2)当该方程有一个正根和一个负根时,求实数a的取值范围.【分析】(1)当方程有两个负根时,利用判别式△≥0和根与系数的关系求出a的取值范围;(2)根据方程有一个正根和一个负根时,对应二次函数满足f(0)<0,由此求出实数a的取值范围.【解答】解:方程x2+2(a+2)x+a2﹣1=0的判别式为△=4(a+2)2﹣4(a2﹣1)=16a+20,当△=16a+20≥0时,设方程x2+2(a+2)x+a2﹣1=0两个实数根为x1、x2,则x1+x2=﹣2(a+2),x1x2=a2﹣1;(1)∵方程x2+2(a+2)x+a2﹣1=0有两个负根,∴,解得,即a>1或﹣≤a<﹣1,∴实数a的取值范围是[﹣,﹣1)∪(1,+∞);(2)∵方程x2+2(a+2)x+a2﹣1=0有一个正根和一个负根,∴对应二次函数满足f(0)=a2﹣1<0,解得﹣1<a<1,∴实数a的取值范围是(﹣1,1).【点评】本题考查了一元二次方程根的分布情况以及判别式和根与系数的关系应用问题,是中档题.19.(12分)已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}的通项公式;(2){b n}为各项非零的等差数列,其前n项和S n=n2,求数列的前n项和T n.【分析】(1)设数列{a n}的公比为q,(q>0),由题意列方程组求得首项和公比,则数列{a n}的通项公式可求;(2)由{b n}的前n项和求得通项,代入,然后利用错位相减法求其前n项和T n.【解答】解:(1)设数列{a n}的公比为q,(q>0),由a1+a2=6,a1a2=a3,得,解得a1=q=2.∴;(2)当n=1时,b1=S1=1,当n≥2时,b n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1,∴,∴,,∴=,∴.【点评】本题考查数列递推式,考查了错位相减法求数列的前n项和,是中档题.20.(12分)某市园林局将一块三角形地块ABC的一个角AMN建设为小游园,已知A=120°,AB,AC的长度均大于400米,现要在边界AM,AN处建设装饰墙,沿MN建设宽1.5米的健康步道.(1)若装饰墙AM,AN的总长度为400米,AM,AN 的长度分别为多少时,所围成的三角形地块AMN的面积最大?(2)若AM段装饰墙墙髙1米,AN段装饰墙墙髙1.5米,AM段装饰墙造价为每平方米150元,AN段装饰墙造价为每平方米100元,建造装饰墙用了90000元.若建设健康步道每100米需5000元,AM,AN的长度分别为多少时,所用费用最少?(1)设AM=x米,AN=y米,则x+y=400,△AMN的面积S=xysin120°=xy,【分析】利用基本不等式,可得结论;(2)由题意得,即x+y=600,要使竹篱笆用料最省,只需MN最短,利用余弦定理求出MN,即可得出结论.【解答】解:设AM=x米,AN=y米,则(1)x+y=400,A=120°,△AMN的面积S=xysin120°=xy≤,当且仅当x=y=200时取等号;(2)由题意得150x+1.5y•100=90000,即x+y=600,要使竹篱笆用料最省,只需MN最短,所以MN2=x2+y2﹣2xycos120°=x2+y2+xy=(x+y)2+y2﹣xy=360000﹣xy所以x=y=300时,MN有最小值300.∴AM=AN=300米时,所用费用最少为3×5000=15000元.【点评】本题考查利用数学知识解决实际问题,考查三角形面积的计算,余弦定理的运用,属于中档题.21.(12分)已知△ABC为锐角三角形,角A,B,C的对边分别为a,b,c且(b2+c2﹣a2)tanA=bc.(1)求角A的大小;(2)若a=,求2b﹣c的取值范围.【分析】(1)利用余弦定理列出关系式,代入已知等式变形求出sinA的值,即可确定出角A的大小;(2),由(1)可得A,由正弦定理可得,从而利用三角函数恒等变换的应用可得2b﹣c=2sin(B﹣),结合B的范围B,可得2b﹣c 取值范围.【解答】解:(1)由(b2+c2﹣a2)tanA=bc.及余弦定理b2+c2﹣a2=2bccosA,得sinA=∵△ABC为锐角三角形,∴A=.(2)由正弦定理可得,∴2b﹣c=4sinB﹣2sinC=4sinB﹣2sin()=3sinB﹣cosB=2sin(B﹣).∵△ABC为锐角三角形,∴,∴∴,2∴2b﹣c的取值范围为(0,3)【点评】本题主要考查了三角函数恒等变换的应用,考查了正弦定理,正弦函数的图象和性质在解三角形中的应用,属于中档题.22.(12分)设数列{a n}的前n项和为S n,且S n=4﹣a n﹣.(1)令b n=2n﹣1•a n,证明数列{b n}为等差数列,并求{b n}的通项公式;(2)是否存在n∈N*,使得不等式成立,若存在,求出λ的取值范围,若不存在,请说明理由.【分析】(1)由已知可得2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,进而可得数列{b n}为等差数列,并得到{b n}的通项公式;(2)存在n=1,使得不等式成立,且9≤λ≤10,利用对勾函数和反比例函数的图象性质,可得答案.【解答】解:(1)∵数列{a n}的前n项和为S n,且S n=4﹣a n﹣.∴当n=1时,a1=S1=4﹣a1﹣,即a1=1,=4﹣a n﹣1﹣.当n≥2时,S n﹣1则a n=S n﹣S n﹣1=a n﹣1﹣a n﹣,即2a n=a n﹣1+,故2n﹣1•a n=2n﹣2•a n﹣1+1,即2n﹣1•a n﹣2n﹣2•a n﹣1=1,∵b n=2n﹣1•a n,即{b n}是以1为首项,以1为公差的等差数列;即b n=n;(2)由(1)知:⇔,根据对勾函数的性质,可得:在n=3时取最小值,由反比例函数的性质,可得:在n=1时取最大值10;当n=1时,9≤λ≤10;当n=2时,6≤λ≤5,不存在满足条件的λ值;当n=3时,≤λ≤,不存在满足条件的λ值;当n≥4时,不存在满足条件的λ值;综上可得:存在n=1,使不等式成立,9≤λ≤10.【点评】本题考查的知识点是数列与不等式及函数的综合应用,难度中档.。

高一数学易错题习题集

高一数学易错题习题集

一试题部分1 试题来源洛阳一中2017-2018学年高一上学期期中考试分值12得分率65%知识点奇偶性与单调性易错题19.设函数()Rxaxxxf∈+--=,322.(1)王鹏同学认为:无论a取何值,()xf都不可能是奇函数,你同意他的观点吗?请说明你的理由;(2)若()xf是偶函数,求a的值;(3)在(2)的情况下,画出y=f(x)的图象并指出其单调递增区间.推荐题1题目来源:福建省华安中学2017-2018学年高一上学期期末考试用时建议:8min 已知函数()()221xf x a a R=-∈+(1)判断函数()f x的单调性并给出证明;(2)若存在实数a使函数()f x是奇函数,求a;(3)对于(2)中的a,若()2xmf x≥,当[]2,3x∈时恒成立,求m的最大值.推荐题2题目来源:黑龙江省大庆中学2017-2018学年高一上学期期末考试用时建议:8min 设函数()y f x=的定义域为R,并且满足()()()f x y f x f y-=-,且()21f=,当0x>时,()0f x>.(1)求()0f的值;(2)判断函数()f x的奇偶性;(3)如果()()22f x f x++<,求x的取值范围.推荐题3题目来源:湖北省孝感市八校联考2017-2018学年高一上学期期中考试用时建议:8min 已知函数()f x是定义在R上的奇函数,且当0x≤时,()22f x x x=+.(1)求函数()()f x x R∈的解析式;(2)现已画出函数()f x在y轴左侧的图象,如图所示,请补全完整函数()f x的图象;(3)求使()0f x>的实数x的取值集合.2试题来源洛阳一中2017-2018学年高一上学期期中考试分值12得分率42%知识点实际应用,求函数的最值易错题20.某工厂今年前三个月生产某种产品的数量统计表格如下:月份1月2月3月数量(万件)1为了估测以后每个月的产量,以这三个月产品数量为依据,用一个函数模拟该产品的月产量y与月份x 的关系.模拟函数可选择二次函数y=px2+qx+r(p,q,r为常数,且p≠0)或函数y=ab x+c(a,b,c为常数).已知4月份该产品的产量为万件,请问用以上哪个函数作为模拟函数较好,并说明理由.推荐题1题目来源:2017-2018学年山东省潍坊市高一第一学期期中考试用时建议:12min 经市场调查,某商品在过去的100天内的销售量(单位:件)和价格(单位:元)均为时间t(单位:天)的函数,且销售量满足()()Ntttttxf∈⎪⎩⎪⎨⎧≤≤-≤≤+=,10061,21150601,60,价格满足()g t=题3(1)画出()f x图象;(2)求出()f x的解析式;(3)若函数()y f x=与函数y m=的图象有四个交点,求m的取值范围.4试题来源洛阳一中2017-2018学年高一上学期实验班测验分值5得分率33%知识点新概念题易错题12.对于函数()xf,若任给实数a、b、c R∈,f(a)、f(b)、f(c)为某一三角形三边长,则称f(x)为“可构造三角形函数”.已知函数()xf=1++xxete是“可构造三角形函数”,则实数t的取值范围是()A.?[21,2]B.?[0,1]C.?[1,2]D.?[0,+∞)推荐题1题目来源:浙江省91高中联盟2017-2018学年高一上学期期中联考用时建议:3min在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b≥时,a b a⊕=;当a b<时,2a b b⊕=,已知函数()()()[]()1222,2f x x x x x=⊕-⊕∈-,则满足()()13f m f m+≤的实数的取值范围是()1,2⎡⎫+∞⎪⎢⎣⎭1,22⎡⎤⎢⎥⎣⎦12,23⎡⎤⎢⎥⎣⎦21,3⎡⎤-⎢⎥⎣⎦推荐题2题目来源:江西省南昌二中2017-2018学年度高一上学期期中考试用时建议:3min 若函数满足对任意的[]()mnmnx<∈,,都有成立,则称函数在区间[]()mnmn<,上是“被约束的”.若函数()22aaxxxf+-=在区间()0,1>⎥⎦⎤⎢⎣⎡aaa上是“被约束的”,则实数的取值范围是(),3213⎛⎤⎥⎝⎦,](12,3223⎛⎤⎥⎝⎦,(]22,推荐题3题目来源:2017-2018学年江西省南昌二中高一上第三次考试用时建议:3min 在直角坐标系中,如果两点(,),(,)A a bB a b--在函数)(xfy=的图象上,那么称[,]A B为函数()f x的一组关于原点的中心对称点([,]A B与[,]B A看作一组).函数⎪⎩⎪⎨⎧>+≤=),1(log,0,2cos)(4xxxxxgπ关于原点的中心对称点的组数为()A.1B.2C.3D.45试题来源洛阳一中2017~2018学年第一学期高一月考分值5得分率35%知识点斜二测画法易错题2.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形推荐题1题目来源:2017-2018学年辽宁省大连市高一上学期期末考试用时建议:2min 已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A′B′C′D′(如图所示),其中A′D′=2,B′C′=4,A′B′=1,则直角梯形DC边的长度是()522523推荐题题目来源:重庆市第一中学2018届高一11月月考用时建议:2min 已知一个三棱柱高为3,其底面用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图所示),则此三棱柱的体积为()22621332推荐题3题目来源:辽宁省大连市2017-2018学年高一上学期期末考试用时建议:2min 如图,ABC∆水平放置的直观图为'''A B C∆,''A B,''B C分别与'y轴、'x轴平行,'D是''B C边中点,则关于ABC∆中的三条线段,,AB AD AC命题是真命题的是()A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD6试题来源洛阳一中2017~2018学年第一学期高一月考分值5得分率60%知识点三视图;求空间几何体的表面积和体积易错题5.一个几何体的三视图如图所示,则该几何体的表面积为()A.?B.?C.?D.?推荐题1题目来源:甘肃省张掖市2017-2018学年高一上学期期末质量检测联考用时建议:3min 某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()290cm2129cm2132cm2138cm推荐题2题目来源:河南省中原名校2017-2018学年高一上学期第二次联考用时建议:3min 已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()3108cm384cm392cm3100cm推荐题3题目来源:云南省玉溪第一中学2018届高一上学期第三次月考用时建议:3min 某三棱锥的三视图如图所示,则该三棱锥的表面积为()438219++.438419++838419++.838219++7试题来源洛阳一中2017~2018学年第一学期高一月考分值5得分率57%知识点棱锥的外接球问题易错题12.如图,已知四棱锥P-ABCD的底面为矩形,平面PAD⊥平面ABCD,22=AD,2===ABPDPA,则四棱锥P-ABCD的外接球的表面积为()ππππ推荐题1题目来源:辽宁省实验中学、大连八中等五校2017-2018学年高一上期末考试用时建议:3min 《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥P ABC-为鳖臑,PA⊥平面,3,4,5ABC PA AB AC===,三棱锥P ABC-的四个顶点都在球O的球面上,则球O的表面积为()17π25π34π50π推荐题2题目来源:2017届山西省高三3月高考考前适应性测试(一模)用时建议:3min 如图,在ABC∆中,AB BC==6,90ABC∠=︒,点D为AC的中点,将ABD∆沿BD折起到PBD∆的位置,使PC PD=,连接PC,得到三棱锥P BCD-,若该三棱锥的所有顶点都在同一球面,则该球的表面积是()π3π5π7π推荐题目来源:辽宁省葫芦岛市六校协作体2017-2018学年高一12月月考用时建议:3min 如图所示,在长方体1111ABCD A B C D-中,3AB=,4BC=,15AA=,E、F为线段11A C上的动题3点,且1EF=,P,Q为线段AC上的动点,且2PQ=,M为棱1BB上的动点,则四棱锥M EFQP-的体积()A.不是定值,最大为254B.不是定值,最小为6C.是定值,等于254D.是定值,等于68试题来源洛阳一中2017~2018学年第一学期高一月考分值5得分率38%知识点直线方程的问题易错题14.过点(1,2)且到点A(-1,1),B(3,-1)距离相等的直线的一般式方程是.推荐题1题目来源:辽宁省大连市2017-2018学年高一上学期期末考试用时建议:2min 已知直线l经过点()2,5P-,且与直线4320x y++=平行,则直线l的方程为.推荐题2题目来源:七天网络名校题库用时建议:2min 若直线2240x my m+-+=与直线220mx y m+-+=平行,则实数m=.推荐题3题目来源:七天网络名校试题库用时建议:2min 已知圆()()22:131C x y-+-=和两点()()0,,0,(0)A mB m m->,若圆C上存在点P,使得90APB∠=o,则实数m的取值范围为.9试题来源洛阳一中2017~2018学年第一学期高一月考分值5得分率38%知识点两点间距离公式的应用易错题16.()()()()22225133-+-+-++=xxxxy的最小值为.推荐题1题目来源:福建省闽侯第六中学2017-2018学年高一12月月考用时建议:3min 已知点()()()2,2,2,6,4,2A B C----,点P坐标满足224x y+≤,求222PA PB PC++的取值范围是.推荐题2题目来源:安徽省全椒中学2017-2018学年高一第一学期期中考试用时建议:2min 已知定点A(0,1),点B在直线x+y=0上运动,当线段AB最短时,点B的坐标是.推荐题3题目来源:七天网络名校试题库用时建议:2min m R∈,动直线110l x my+-=:过定点A,动直线2:230l mx y m--+=:过定点B,若1l与2l交于点P(异于点,A B),则PA PB+的最大值为()52510210试题来源洛阳一中2017~2018学年高一月考分值12得分率45%知识点直线方程;根据四边形性质求点的坐标易错题18.如图,面积为8的平行四边形ABCD,A为坐标原点,B坐标为(2,-1),C、D均在第一象限.?19.(1)求直线CD的方程;?20.(2)若13=BC,求点D的横坐标.二答案部分1知识点:奇偶性与单调性易错题【解析】19.(1)我同意王鹏同学的看法,理由如下f(a)=a2+3,f(?a)=a2?4|a|+3若f(x)为奇函数,则有f(a)+f(?a)=0∴a2?2|a|+3=0显然a2?2|a|+3=0无解,所以f(x)不可能是奇函数(2)若f(x)为偶函数,则有f(a)=f(?a)∴2|a|=0从而a=0,此时f(x)=x2?2|x|+3,是偶函数.(3)由(2)知f(x)=x2?2|x|+3,其图象如图所示其单调递增区间是(?1,0)和(1,+∞).推荐题1【分析】(1)根据单调性定义:先设再作差,变形化为因子形式,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性;(2)根据定义域为R且奇函数定义得f(0)=0,解得a=1,再根据奇函数定义进行验证;(3)先根据参变分离将不等式恒成立化为对应函数最值问题:()221321xxm≤++-+的最小值,再利用对勾函数性质得最小值,即得m的范围以及m的最大值.【解析】(1)不论a为何实数,f(x)在定义域上单调递增.证明:设x1,x2∈R,且x1<x2,则()()1212222121x xf x f x a a⎛⎫⎛⎫-=---=⎪ ⎪++⎝⎭⎝⎭()()()12122222121x xx x-++由12x x<可知12022x x<<,所以12220x x-<,12210,210x x+>+>所以()()120,f x f x-<()()12f x f x<所以由定义可知,不论a为何值,()f x在定义域上单调递增;(2)由f(0)=a-1=0得a=1,经验证,当a=1时,f(x)是奇函数.(3)由条件可得:m≤2x=(2x+1)+-3恒成立.m≤(2x+1)+-3的最小值,x∈[2, 3].设t=2x+1,则t∈[5,9],函数g(t)=t+-3在[5,9]上单调递增,所以g(t)的最小值是g(5)=,所以m≤,即m的最大值是.推荐题2【分析】(1)利用赋值法,求f(0)的值;(2)利用函数奇偶性的定义,判断函数f(x)的奇偶性;(3)利用函数的奇偶性和单调性将不等式进行转化,即可求解.【解析】(1)令0x y==,则()()()0000f f f-=-,∴()00f=;所以()f x =35,22x x +∈N ,由已知得⎩⎨⎧=+=+734b a b a ,解得⎪⎪⎩⎪⎪⎨⎧==2523b a .(2)2015年预计年产量为()357713,22f =⨯+=2015年实际年产量为13×(1-30%)=, 答:最适合的模型解析式为()f x =35,22x x +∈N ,2015年的实际产量为万件. 推 荐 题 3【分析】(1)对于A ,当0≤x ≤2时,因为图象过(2,)和原点,当x >2时,图象过(2,)和(3,1),可得函数的解析式;对于B ,易知y =2x (x ≥0).(2)设投入B 产品x 万元,则投入A 产品(18-x )万元,利润为y 万元.分16≤x ≤18时,0≤x <16时两种情况求出函数的最大值,比较后可得答案. 【解析】(1)对于A ,当02x ≤≤时,因为图象过()2,0.5,所以14y x =, 当2x >时,令y kx b =+,因图象过()2,0.5和()3,1,得⎪⎩⎪⎨⎧+=+=bk bk 31221,解得12k =,12b =-,故⎪⎪⎩⎪⎪⎨⎧>-≤≤=2,212120,41x x x x y ,对于B ,易知()20y x x =≥.(2)设投入B 产品x 万元,则投入A 产品()18x -万元,利润为y 万元. 若1618x ≤≤时,则0182x ≤-≤,则投入A 产品的利润为()1184x -,投入B 产品的利润为2x ,则()11824y x x =-+,令x t =,4,32t ⎡⎤∈⎣⎦, 则219242y t t =-++,此时当4t =,即16x =时,max 8.5y =万元;当016x ≤<时,21818x <-≤,则投入A 产品的利润为()111822x --,投入B 产品的利润为2x ,则()1118222y x x =-+-,令x t =,[)0,4t ∈,则2117222y t t =-++,当2t =时,即4x =时,max 10.5y =万元;由10.58.5>,综上,投入A 产品14万元,B 产品4万元时,总利润最大值为10.5万元.3 知识点:对称性的应用,单调性函数的零点综合 易 错 题22.【解析】(1)()1122)(-+-++-=x x e em x x x f 从而有()()x f x f -=+11,即f(x)关于x=1对称,因为()F x 有唯一的零点,所以()F x 的零点只能为1x =, 即()()2111111210F a ee --+=-⨯++=,解得12a =. 当12a =时,()()211122x x F x x x e e --+=-++,令121x x >≥,则121211212120,20,0,10x x x x x x x x e e e --+-->+->->->,从而()()()()121212112121221202x x x x x x e e e x x x x e --+-+---=-+-+>,即函数()F x 是[)1,+∞上的增函数,而()10F =,所以,函数()F x 只有唯一的零点,满足条件. 故实数a 的值为12. 推 荐 题 2【分析】(1)对任意(2x x ≠),都有()()22f x f x ++-=2m ,即可求出m 的值;(2)由题意()()22f x f x ++-=0,即()()4f x f x +-=()()022f x f x -++--;=2,即()()4f x f x +--=2,两式相减化简可得()f x =()82f x ++,则结论易得.【解析】 (1)()f x =212x x -+-的定义域为{|2}x x ≠,对任意(2x x ≠),都有()()22f x f x ++-=2m ,即()()2212212222x x x x -++--+++---=2m ,解得2m =-. (2)因为函数()y f x =的图象既关于点()2,0对称,所以()()22f x f x ++-=0,即()()40f x f x +-=;①,函数()y f x =的图象既关于点()2,1-对称,所以()()22f x f x -++--=2,即()()4f x f x +--=2,② 由①②得,()()442f x f x -=---,即()f x =()82f x ++, 所以()5f -=()3322332f +=+⨯+=19.推 荐 题 3【分析】(1)先画出0x ≥时,()24f x x x =-的图象,根据()f x 图象关于y 轴对称画图即可;(2)设0x <,则0x ->,根据偶函数的性质可得()()24f x x x f x -=+=,从而可得求出()f x 的解析式;(3)同一坐标系内画出函数()y f x =与函数y m =的图象,结合图象得到答案. 【解析】 (1)(2)当x<0时-x>0,,为偶函数,()()x x x f x f 42+=-=∴,()⎪⎩⎪⎨⎧<+≥-=∴0,40,422x x x x x x x f .易错题16.172推荐题1【答案】[]72,88【解析】设(),P a b∵点()()()2,2,2,6,4,2A B C----∴()()()()()()22222222222++22264233468 PA PB PC a b a b a b a b b=++++++-+-++=+-+∵点P坐标满足224x y+≤∴224a b+≤,即22b-≤≤把224a b=-代入到2222334681233468480a b b b b b b+-+=-+-+=-+∵22b-≤≤∴7248088b≤-+≤∴222++PA PB PC的取值范围是[]72,88故答案为[]72,88.推荐题2【答案】B(-12,12)【解析】定点A(0,1),点B在直线x+y=0上运动,当线段AB最短时,就是直线AB和直线x+y=0垂直,AB的方程为:y-1=x,它与x+y=0联立解得x=-12,y=12所以B的坐标是(-12,12)故答案为(-12,12).推荐题3【答案】B【解析】由题意可得:A(1,0),B(2,3),且两直线斜率之积等于﹣1,∴直线x+my﹣1=0和直线mx﹣y﹣2m+3=0垂直,则|PA|2+|PB|2=|AB|2=10≥()22PA PB+.即25PA PB+≤.故选B.10知识点:直线方程;根据四边形性质求点的坐标易错题【解析】(1)根据题意,21-==CDABkk,直线CD的方程为mxy+-=21,即022=-+myx,?58==ABS,Θ,?58412=+∴m,?4±=∴m,?由图可以知道m>0,直线CD的方程为mxy+-=21,即082=-+yx;? (2)设()baD,,若13=BC,则13=AD,?⎪⎩⎪⎨⎧=+=-+∴138222baba,点D的横坐标a=或2.推【分析】4402MNt l tx y ⎛⎫=+--= ⎪⎝⎭,即()4102y x t y ⎛⎫+-+= ⎪⎝⎭,由⎪⎩⎪⎨⎧=+=+0102y y x 可解得定点坐标. 【解析】(1)设点P 坐标为(),x y 由2PA PB =,得:()()2222421x y x y ++=++整理得:曲线的E 轨迹方程为224x y += (2)依题意圆心到直线l 的距离2421d k==+,7k ∴=±.(3)由题意可知:,,,O Q M N 四点共圆且在以OQ 为直径的圆上,设1,42Q t t ⎛⎫- ⎪⎝⎭, 其方程为()1402x x t y y t ⎛⎫-+-+= ⎪⎝⎭,即:22402t x tx y y ⎛⎫-+--= ⎪⎝⎭ 又,M N 在曲线22:4E x y +=上,4402MN t l tx y ⎛⎫=+--= ⎪⎝⎭,即()4102y x t y ⎛⎫+-+= ⎪⎝⎭,由⎪⎩⎪⎨⎧=+=+0102y y x 得⎪⎩⎪⎨⎧-==121y x ,∴直线MN 过定点1,12⎛⎫- ⎪⎝⎭.11知识点:直线的倾斜角与斜率;三角形的性质易 错 题19.【解析】(1)由已知直线的斜率,因为倾斜角οο6045≤≤α,且αtan =k ,所以31≤≤k ,即311≤-≤m ,解得031≤≤-m .?????(2)在直线l :y=(1-m )x+m 中,令,得,所以点;令y=0,得1-=m mx ,所以点⎪⎭⎫ ⎝⎛-0,1m m A . 由题意知,m>1,因此AOB ∆的面积()()()121121121212-+-+-=-⋅=⋅=m m m m m m OB OA S . 则()()22221211121=+≥⎥⎦⎤⎢⎣⎡+-+-=m m S .当且仅当()112=-m ,即m=2时S 取得最小值2,此时直线的方程为x+y-2=0.?????推 荐 题 1【分析】(1)设过两直线的交点的直线系方程,再根据点到直线的距离公式,求出λ的值,得出直线l 的方程;(2)先求出交点P 的坐标,由几何的方法求出距离的最大值。

河南省洛阳2017-2018学年高二上学期第二次联考数学(文)试卷 扫描版 含答案

河南省洛阳2017-2018学年高二上学期第二次联考数学(文)试卷 扫描版 含答案

洛阳名校2017—2018学年上期第二次联考高二数学(文)答案一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有 一项是符合题目要求的)1-5 CABDA 6-10 BADDC 11-12 DA二、填空题13.7+ 14.1522=+y x 15.[0,8] 16.),9[+∞-三、解答题17.【参考答案】(1)()()0,:230m p x x >+-≤,:11q m x m -≤≤+,∴:23p x -≤≤, :11q m x m -≤≤+,∵q ⌝是p ⌝的必要条件, 13,{ 12m q p m +≤⇒∴-≥-, 解得2m ≤,当2m =时, :13q x -≤≤,满足题意;综上:02m <≤;…………5分(2)若7m =,可得:68q x -≤≤,∵“p 或q ”为真命题,“p 且q ”为假命题,∴p 与q 有一个为真,一个为假, ∵:23p x -≤≤,若p 真q 假可得,x 为空集;若p 假q 真可得,62x -≤<-或38x <≤.………………………10分18.【参考答案】(1)由已知得: 2234133,3,33,312a q a q b d b d ===+=+,即23333312q d q d =+⎧⎨=+⎩, 解得 2031d d q q ==⎧⎧⎨⎨==⎩⎩或 (舍) ,所以2d =,所以3,21n n n a b n ==+.………6分 ()()122213,3353...213=+=++++ ()n n n n c n S n ()()()231123133353...213233233...3213++=++++-=++++-+ 两式相减得n n n n n S n S n .………9分112233++-=-∴= n n n n S n S n.………12分.19.【参考答案】(1)方法一:由题意得2222311a 4b a b 3⎧+=⎪⎨⎪-=⎩22a 4b 1∴== 方法二:由椭圆的定义得:1222a a =⇒= 又c =2221b ac =-=,∴椭圆E 的方程为: 2214x y +=.………………………4分 (2)过()F的直线方程为(12y x =,2AF =联立(2212{ 14y x x y =+=2810y ⇒--=, 设()()1122,,,M x y N x y,则121212{ 18y y y y y y +=⇒-==- ∴AMN ∆的面积(1211222AF y y =⋅-==……………12分 20.【参考答案】(1)∵()()cos 2cos b A c a B π=+-,∴()()cos 2cos b A c a B =+-,由正弦定理可得: ()sin cos 2sin sin cos B A C A B =--,∴()sin 2sin cos sin A B C B C +=-=.又角C 为ΔABC 内角, sin 0C >,∴1cos 2B =- 又()0,πB ∈,∴2π3B =………………6分 方法二:cos cos cos cos cos b A a B 2c Bc 2c B1B 22B 3π+=-∴=-∴=-∴= (2)有Δ1sin 2ABC S ac B ==4ac = 又()222216b a c ac a c ac =++=+-=,∴a c +=所以ΔABC的周长为4+ ………………12分21.参考答案】(1)由题意可得221112,2n n n n n n S a a S a a ---=+=+,两式相减得,,22n n n 1n n 12a a a a a --=-+-所以22110n n n n a a a a -----=,即()()1110n n n n a a a a --+--=,又因为数列{}n a 为正项数列,所以11n n a a --=.即数列{}n a 为等差数列,又1n =时,21112a a a =+, 所以111,1n a a a n n ==+-=.………………………6分(2)由(1)知1221n n n b n n ++=+++, 又因为121111112212112n n n b n n n n n n ++=+=-++=+-++++++,.………9分 所以()12111111...22...2...233412n n T b b b n n ⎡⎤⎛⎫⎛⎫⎛⎫=+++=++++-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦ 所以12111...22222n n T b b b n n n =+++=+-<++.………………………12分 22.【参考答案】(1)在12F MF ∆中,由0121||||sin 602MF MF =,得1216||||3MF MF =.由余弦定理,得2220121212||||||2||||cos60F F MF MF MF MF =+-201212(||||)2||||(1cos60)MF MF MF MF =+-+,从而122||||a MF MF =+=a =2b =, 故椭圆C 的方程为22184x y +=. ………………………… 6分 (2)当直线l 的斜率存在时,设其方程为2(1)y k x +=+,由221842(1)x y y k x ⎧+=⎪⎨⎪+=+⎩,得222(12)4(2)280k x k k x k k ++-+-=.………… 8分设11(,)A x y ,22(,)B x y ,1224(2)12k k x x k -+=-+,21222812k k x x k -=+. 从而1212121221212222(4)()4(2)2(4)428y y kx x k x x k k k k k k x x x x k k--+-+-+=+==--=-. ………10分当直线l的斜率不存在时,得((1,A B --,得124k k +=. 综上,恒有124k k +=. …………………………12分。

河南省洛阳市2017-2018学年高一上学期期中考试数学Word版含答案(打印版)

河南省洛阳市2017-2018学年高一上学期期中考试数学Word版含答案(打印版)

洛阳市2017—2018学年第一学期期中考试高一数学试卷第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}|31,1,0,1A x x B =-<<=-,则A B =A. {}2,1,0,1--B. {}2,1,0--C. {}1,0,1-D. {}1,0-2.已知()2214f x x +=,则()3f -= A. B. C. D.3.下列函数中,既是偶函数,又是上()0,+∞的减函数的是A. 1y x= B. x y e -= C. 21y x =-+ D.lg y x = 4.已知集合{}2|210M x R ax x =∈+-=,若M 中只有一个元素,则a 的值是A. 0B. -1C. 0或-1D.0或1 5.函数()()22log 32f x x x=++-的定义域是 A. ()3,2- B. [)3,2- C. (]3,2- D.[]3,2-6.方程3log 3x x +=的解是0x ,若()0,1,x n n n N ∈+∈,则n =A. 0B. 1C. 2D. 37.若函数()225f x x ax =-+在区间[)1,+∞上单调递增,则a 的取值范围是 A.(],2-∞ B. [)2,+∞ C. [)4,+∞ D. (],4-∞8.已知()()211log 2,12,1x x x f x x -⎧+-<⎪=⎨≥⎪⎩,则()()22f f -+=的值为 A. 6 B. 5 C. 4 D. 39.函数()2xx f x x⋅=的图象大致为10.已知23x y a ==,且112x y+=,则a 的值为 A. 36 B. 6 C. 66 11.已知4213332,4,25a b c ===,则,,a b c 的大小关系是A. b a c <<B. a b c <<C. b c a <<D.c a b <<12.若对任意(],1x ∈-∞-,都有()3121x m -<成立,则m 的范围是 A. 1,3⎛⎫-∞ ⎪⎝⎭ B. 1,3⎛⎤-∞ ⎥⎝⎦C.(),1-∞D.(],1-∞二、填空题:本大题共4小题,每小题5分,共20分.13.已知幂函数()f x 的图象过点()4,2,则18f ⎛⎫= ⎪⎝⎭.14.已知函数()()1log 23a f x x =+-(0a >且1a ≠)恒过定点(),m n ,则m n += .15.计算:711log 221lg lg 2510074-+⎛⎫-÷+= ⎪⎝⎭. 16.已知()f x 是R 上的奇函数,当0x >时,()24f x x x =-,若()f x 在区间[]4,t -上的值域为[]4,4-,则实数t 的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)设全集U R =,集合{}25371|24,|22x x A x x B x --⎧⎫⎪⎪⎛⎫=≤<=≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭, (1)求(),U A B C A B ;(2)若集合{}|20C x x a =+>,且BC C =,求a 的取值范围.18.(本题满分12分)如图所示,定义域为(],2-∞上的函数()y f x =是由一条射线及抛物线的一部分组成,利用该图提供的信息解决下面几个问题.(1)求()f x 的解析式;(2)若关于x 的方程()f x a =有三个不同解,求a 的取值范围;(3)若()98f x =,求x 的取值集合.19.(本题满分12分)设函数()223,.f x x x a x R =--+∈ (1)王鹏同学认为,无论a 为何值,()f x 都不可能是奇函数,你同意他的观点吗?请说明理由;(2)若()f x 是偶函数,求a 的值;(3)在(2)的条件下,画出()y f x =的图象并指出其单调递增区间.20.(本题满分12分)某工厂今年前三个月生产某种产品的数量统计表如下:为了估测以后每个月的产量,以这三个月的产量为依据,用一个函数模拟产品的月产量y 与月份x 的关系,模拟函数可选择二次函数2y px qx r =++(,,p q r 为常数且0p ≠),或函数x y a b c =⋅+(,,a b c 为常数).已知4月份的产量为1.37万件,请问用以上那个函数作为模拟函数较好,请说明理由.21.(本题满分12分)已知函数()21ax b f x x +=+是()1,1-上的奇函数,且12.25f ⎛⎫= ⎪⎝⎭ (1)求()f x 的解析式;(2)判断()f x 的单调性,并加以证明;(3)若实数t 满足()()10f t f t ++>,求t 的取值范围.22.(本题满分12分)对于函数()f x ,若存在一个实数a 使得()()f a x f a x +=-,我们就称()y f x =关于直线x a =对称,已知()()2112.x x f x x x m e e --=-++(1)证明()f x 关于1x =对称,并据此求()1291112191101010101010f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值; (2)若()f x 只有一个零点,求m 的值.。

河南省洛阳市2017-2018学年高一上学期期末数学试卷Word版含解析

河南省洛阳市2017-2018学年高一上学期期末数学试卷Word版含解析

河南省洛阳市2017-2018学年上学期期末高一数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.集合A={x∈N+|﹣1<x<4},B={x|x2≤4},则A∩B=()A.{0,1,2} B.{1,2} C.{1,2,3} D.{0,1,2,3}2.设m,n是两条不同的直线,α,β是两个不同的平面,下列说法正确的是()A.若m∥α,α∩β=n,则 m∥n B.若m∥α,m⊥n,则n⊥αC.若m⊥α,n⊥α,则m∥n D.若m⊂α,n⊂β,α⊥β,则m⊥n3.若三条直线ax+y+1=0,y=3x,x+y=4,交于一点,则a的值为()A.4 B.﹣4 C.D.﹣4.在空间直角坐标系O﹣xyz中,若O(0,0,0),A(0,2,0),B(2,0,0),C(2,2,2),则二面角C﹣OA﹣B的大小为()A.30°B.45°C.60°D.90°5.已知倾斜角60°为的直线l平分圆:x2+y2+2x+4y﹣4=0,则直线l的方程为()A. x﹣y++2=0 B. x+y++2=0 C. x﹣y+﹣2=0 D. x﹣y﹣+2=0),b=f(2),c=f(3),则()6.已知函数f(x)=,若a=f(log3A.c>b>a B.c>a>b C.a>c>b D.a>b>c7.如果实数x,y满足(x﹣2)2+y2=2,则的范围是()A.(﹣1,1)B.[﹣1,1] C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1]∪[1,+∞)8.已知函数f(x)=(a∈A),若f(x)在区间(0,1]上是减函数,则集合A可以是()A.(﹣∞,0) B.[1,2)C.(﹣1,5] D.[4,6]9.圆柱被一个平面截去一部分后与一个四棱锥组成的几何体的三视图如图所示,则该几何体的体积为()A .4π+8B .8π+16C .16π+16D .16π+4810.由8个面围成的几何体,每个面都是正三角形,并且有四个顶点A ,B ,C ,D 在同一平面上,ABCD 是边长为15的正方形,则该几何体的外接球的体积为( )A .1125π B .3375π C .450π D .900π11.设函数f (x )是定义在R 上的函数,满足f (x )=f (4﹣x ),且对任意x 1,x 2∈(0,+∞),都有(x 1﹣x 2)[f (x 1+2)﹣f (x 2+2)]>0,则满足f (2﹣x )=f ()的所有x 的和为( )A .﹣3B .﹣5C .﹣8D .812.已知点P (t ,t ﹣1),t ∈R ,点E 是圆x 2+y 2=上的动点,点F 是圆(x ﹣3)2+(y+1)2=上的动点,则|PF|﹣|PE|的最大值为( )A .2B .C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.满足42x ﹣1>()﹣x ﹣4的实数x 的取值范围为 .14.已知直线l 1:ax+4y ﹣1=0,l 2:x+ay ﹣=0,若l 1∥l 2,则实数a= .15.若函数f (x )=,则f (﹣)+f (﹣)+f (﹣1)+f (0)+f (1)+f ()+f ()= .16.方程=ax+a 由两个不相等的实数根,则实数a 的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.在平面直角坐标系中,△ABC 三个顶点分别为A (2,4),B (1,﹣3),C (﹣2,1).(1)求BC边上的高所在的直线方程;(2)设AC中点为D,求△DBC的面积.18.已知函数f(x)=+.(1)求f(x)的定义域A;(2)若函数g(x)=x2+ax+b的零点为﹣1.5,当x∈A时,求函数g(x)的值域.19.在直三棱柱ABC﹣A1B1C1中,D,E分别是BC,A1B1的中点.(1)求证:DE∥平面ACC1A1;(2)设M为AB上一点,且AM=AB,若直三棱柱ABC﹣A1B1C1的所有棱长均相等,求直线DE与直线A1M所成角的正切值.20.已知f(x)=3x+m•3﹣x为奇函数.(1)求函数g(x)=f(x)﹣的零点;(2)若对任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,求实数a的取值范围.21.在四棱锥P﹣ABCD中,△ABC为正三角形,AB⊥AD,AC⊥CD,PA⊥平面ABCD,PC与平面ABCD所成角为45°(1)若E为PC的中点,求证:PD⊥平面ABE;(2)若CD=,求点B到平面PCD的距离.22.已知圆心在直线x+y﹣1=0上且过点A(2,2)的圆C1与直线3x﹣4y+5=0相切,其半径小于5.(1)若C2圆与圆C1关于直线x﹣y=0对称,求圆C2的方程;(2)过直线y=2x﹣6上一点P作圆C2的切线PC,PD,切点为C,D,当四边形PCC2D面积最小时,求直线CD的方程.河南省洛阳市2017-2018学年上学期期末高一数学试卷参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.集合A={x∈N+|﹣1<x<4},B={x|x2≤4},则A∩B=()A.{0,1,2} B.{1,2} C.{1,2,3} D.{0,1,2,3}【考点】交集及其运算.【分析】化简集合A、B,根据交集的定义写出运算结果即可.【解答】解:集合A={x∈N+|﹣1<x<4}={0,1,2,3},B={x|x2≤4}={x|﹣2≤x≤2},则A∩B={0,1,2}.故选:A.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列说法正确的是()A.若m∥α,α∩β=n,则 m∥n B.若m∥α,m⊥n,则n⊥αC.若m⊥α,n⊥α,则m∥n D.若m⊂α,n⊂β,α⊥β,则m⊥n【考点】空间中直线与平面之间的位置关系.【分析】对4个选项分别进行判断,即可得出结论.【解答】解:若m∥α,α∩β=n,则m与n平行或异面,故A错误;若m∥α,m⊥n,则n与α关系不确定,故B错误;根据线面垂直的性质定理,可得C正确;若m⊂α,n⊂β,α⊥β,则m与n关系不确定,故D错误.故选C.3.若三条直线ax+y+1=0,y=3x,x+y=4,交于一点,则a的值为()A.4 B.﹣4 C.D.﹣【考点】两条直线的交点坐标.【分析】联立y=3x,x+y=4,解得(x,y),由于三条直线ax+y+1=0,y=3x,x+y=4相交于一点,把点代入ax+y+1=0,即可解得a的值.【解答】解:联立y=3x,x+y=4,,解得,∵三条直线ax+y+1=0,y=3x,x+y=4相交于一点,∴把点(1,3)代入ax+y+1=0,可得a+3+1=0,解得a=﹣4.故选:B.4.在空间直角坐标系O﹣xyz中,若O(0,0,0),A(0,2,0),B(2,0,0),C(2,2,2),则二面角C﹣OA﹣B的大小为()A.30°B.45°C.60°D.90°【考点】二面角的平面角及求法.【分析】设C在平面xoy上的射影为D,则可得OA⊥平面ACD,故∠CAD为所求二面角的平面角.【解答】解:设C在平面xoy上的射影为D(2,2,0),连接AD,CD,BD,则CD=2,AD=OA=2,四边形OBDA是正方形,∴OA⊥平面ACD,∴∠CAD为二面角C﹣OA﹣B的平面角,∵tan∠CAD===,∴∠CAD=60°.故选C.5.已知倾斜角60°为的直线l 平分圆:x 2+y 2+2x+4y ﹣4=0,则直线l 的方程为( )A .x ﹣y++2=0B .x+y++2=0 C .x ﹣y+﹣2=0 D .x ﹣y ﹣+2=0【考点】直线与圆的位置关系.【分析】倾斜角60°的直线方程,设为y=x+b ,利用直线平分圆的方程,求出结果即可.【解答】解:倾斜角60°的直线方程,设为y=x+b .圆:x 2+y 2+2x+4y ﹣4=0化为(x+1)2+(y+2)2=9,圆心坐标(﹣1,﹣2).因为直线平分圆,圆心在直线y=x+b 上,所以﹣2=﹣+b ,解得b=﹣2,故所求直线方程为x ﹣y+﹣2=0.故选C .6.已知函数f (x )=,若a=f (log 3),b=f (2),c=f (3),则( )A .c >b >aB .c >a >bC .a >c >bD .a >b >c 【考点】分段函数的应用.【分析】由分段函数运用对数函数的单调性求出a >1,运用指数函数的单调性,判断0<c <b <1,进而得到a ,b ,c 的大小.【解答】解:函数f (x )=,则a=f (log 3)=1﹣log 3=1+log 32>1,b=f (2)=f ()=2∈(0,1),c=f (3)=2∈(0,1),由y=2x 在R 上递增,﹣<﹣,可得2<2,则c <b <a , 故选:D .7.如果实数x ,y 满足(x ﹣2)2+y 2=2,则的范围是( ) A .(﹣1,1) B .[﹣1,1]C .(﹣∞,﹣1)∪(1,+∞)D .(﹣∞,﹣1]∪[1,+∞)【考点】直线与圆的位置关系.【分析】设=k,求的范围就等价于求同时经过原点和圆上的点的直线中斜率的范围,由数形结合法,易得答案.【解答】解:设=k,则y=kx表示经过原点的直线,k为直线的斜率.所以求的范围就等价于求同时经过原点和圆上的点的直线中斜率的范围.从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,此时的斜率就是其倾斜角∠EOC的正切值.易得|OC|=2,|CE|=,可由勾股定理求得|OE|=,于是可得到k=1,即为的最大值.同理,的最小值为﹣1,故选B.8.已知函数f(x)=(a∈A),若f(x)在区间(0,1]上是减函数,则集合A可以是()A.(﹣∞,0) B.[1,2)C.(﹣1,5] D.[4,6]【考点】函数单调性的性质.【分析】根据f(x)在区间(0,1]上是减函数,对a进行讨论,依次考查各选项即可得结论.【解答】解:由题意,f(x)在区间(0,1]上是减函数.函数f(x)=(a∈A),当a=0时,函数f(x)不存在单调性性,故排除C.当a<0时,函数y=在(0,1]上是增函数,而分母是负数,可得f(x)在区间(0,1]上是减函数,故A对.当1≤a<2时,函数y=在(0,1]上是减函数,而分母是负数,可得f(x)在区间(0,1]上是增函数,故B不对.当4≤a≤6时,函数y=在(0,1]上可能没有意义.故D不对.故选A.9.圆柱被一个平面截去一部分后与一个四棱锥组成的几何体的三视图如图所示,则该几何体的体积为()A.4π+8 B.8π+16 C.16π+16 D.16π+48【考点】棱柱、棱锥、棱台的体积.【分析】由已知中的三视图,可得该几何体是一个半圆柱与四棱锥的组合体,分别计算体积可得答案.【解答】解:由已知中的三视图,可得该几何体是一个半圆柱与四棱锥的组合体,半圆柱的底面半径为2,高为4,故体积为: =8π,四棱锥的底面面积为:4×4=16,高为3,故体积为:16,故组合体的体积V=8π+16,故选:B10.由8个面围成的几何体,每个面都是正三角形,并且有四个顶点A,B,C,D在同一平面上,ABCD是边长为15的正方形,则该几何体的外接球的体积为()A.1125πB.3375πC.450πD.900π【考点】棱柱、棱锥、棱台的体积.【分析】该几何体是一个正八面体,假设另两个顶点为E,F,ABCD是正方形,边长为15,从而求出该几何体的外接球的半径R=,由此能求出该几何体的外接球的体积.【解答】解:该几何体的直观图如图所示,这个是一个正八面体,假设另两个顶点为E,F,ABCD 是正方形,边长为15,∴BO==,EO==,∴该几何体的外接球的半径R=,∴该几何体的外接球的体积:V==1125.故选:A .11.设函数f (x )是定义在R 上的函数,满足f (x )=f (4﹣x ),且对任意x 1,x 2∈(0,+∞),都有(x 1﹣x 2)[f (x 1+2)﹣f (x 2+2)]>0,则满足f (2﹣x )=f ()的所有x 的和为( )A .﹣3B .﹣5C .﹣8D .8【考点】根的存在性及根的个数判断.【分析】确定f (x )在(2,+∞)上递增,函数关于x=2对称,利用f (2﹣x )=f (),可得2﹣x=,或2﹣x+=4,即x 2+5x+3=0或x 2+3x ﹣3=0,利用韦达定理,即可得出结论.【解答】解:∵对任意x 1,x 2∈(0,+∞),都有(x 1﹣x 2)[f (x 1+2)﹣f (x 2+2)]>0, ∴f (x )在(2,+∞)上递增, 又∵f (x )=f (4﹣x ), ∴f (2﹣x )=f (2+x ), 即函数关于x=2对称,∵f (2﹣x )=f (),∴2﹣x=,或2﹣x+=4,∴x2+5x+3=0或x2+3x﹣3=0,∴满足f(2﹣x)=f()的所有x的和为﹣8,故选C.12.已知点P(t,t﹣1),t∈R,点E是圆x2+y2=上的动点,点F是圆(x﹣3)2+(y+1)2=上的动点,则|PF|﹣|PE|的最大值为()A.2 B.C.3 D.4【考点】圆与圆的位置关系及其判定.【分析】由题意,P在直线y=x﹣1上运动,E(0,0)关于直线的对称点的坐标为A(1,﹣1),由此可得|PF|﹣|PE|的最大值.【解答】解:由题意,P在直线y=x﹣1上运动,E(0,0)关于直线的对称点的坐标为A(1,﹣1),∵F(3,﹣1),∴|PF|﹣|PE|的最大值为|AF|=4,故选D.二、填空题:本大题共4小题,每小题5分,共20分.13.满足42x﹣1>()﹣x﹣4的实数x的取值范围为(2,+∞).【考点】指、对数不等式的解法.【分析】根据指数函数的定义和性质,把不等式化为2(2x﹣1)>x+4,求出解集即可.【解答】解:不等式42x﹣1>()﹣x﹣4可化为22(2x﹣1)>2x+4,即2(2x﹣1)>x+4,解得x>2,所以实数x的取值范围是(2,+∞).故选:(2,+∞).14.已知直线l 1:ax+4y ﹣1=0,l 2:x+ay ﹣=0,若l 1∥l 2,则实数a= ﹣2 . 【考点】直线的一般式方程与直线的平行关系. 【分析】利用直线平行的性质求解.【解答】解:∵直线l 1:ax+4y ﹣1=0,l 2:x+ay ﹣=0,∴,解得a=﹣2(a=2时,两条直线重合,舍去). 故答案为:﹣2.15.若函数f (x )=,则f (﹣)+f (﹣)+f (﹣1)+f (0)+f (1)+f ()+f ()= 7 .【考点】函数的值.【分析】先求出f (x )+f (﹣x )=2,由此能求出f (﹣)+f (﹣)+f (﹣1)+f (0)+f(1)+f ()+f ()的值.【解答】解:∵函数f (x )=,∴f (x )+f (﹣x )=+=+=2,∴f (﹣)+f (﹣)+f (﹣1)+f (0)+f (1)+f ()+f ()=2×3+=7.故答案为:7.16.方程=ax+a 由两个不相等的实数根,则实数a 的取值范围为 [0,) .【考点】根的存在性及根的个数判断.【分析】设f (x )=,如图所示,表示以(2,0)为圆心,1为半径的半圆,由圆心(2,0)到y=ax+a的距离=1,可得a=,结合图象可得结论.【解答】解:设f(x)=,如图所示,表示以(2,0)为圆心,1为半径的半圆,由圆心(2,0)到y=ax+a的距离=1,可得a=,∵方程=ax+a有两个不相等的实数根,∴实数a的取值范围为[0,).故答案为[0,).三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.在平面直角坐标系中,△ABC三个顶点分别为A(2,4),B(1,﹣3),C(﹣2,1).(1)求BC边上的高所在的直线方程;(2)设AC中点为D,求△DBC的面积.【考点】点到直线的距离公式.【分析】(1)k=﹣,可得BC边上的高所在的直线的斜率为.利用点斜式可得BC边上的BC高所在的直线方程.(2)BC边所在的直线方程为:y+3=﹣(x﹣1),化为:4x+3y+5=0.可得AC的中点D.利用点D到直线BC的距离d.又|BC|,可得S=.△DBC==﹣,∴BC边上的高所在的直线的斜率为.【解答】解:(1)kBC则BC边上的高所在的直线方程为:y﹣4=(x﹣2),化为:3x﹣4y+10=0.(2)BC边所在的直线方程为:y+3=﹣(x﹣1),化为:4x+3y+5=0.∵D是AC的中点,∴D.点D到直线BC的距离d==.又|BC|==5,∴S△DBC===.18.已知函数f(x)=+.(1)求f(x)的定义域A;(2)若函数g(x)=x2+ax+b的零点为﹣1.5,当x∈A时,求函数g(x)的值域.【考点】二次函数的性质;函数的定义域及其求法;函数零点的判定定理.【分析】(1)利用函数有意义,列出不等式组求解即可.(2)利用函数的零点求出a,通过函数的对称轴,求解函数的值域即可.【解答】解:(1)要使函数有意义,必须:,解得1≤x≤3,函数的定义域为:[1,3].(2)函数g(x)=x2+ax+b的零点为﹣1,5,可得a=﹣(﹣1+5)=﹣4,b=﹣1×5=﹣5,g(x)=x2﹣4x﹣5=(x﹣2)2﹣9,当x∈A时,即x∈[1,3]时,x=2函数取得最小值:y=﹣9,x=1或3时,函数取得最大值:﹣8.函数g(x)的值域[﹣9,﹣8].19.在直三棱柱ABC﹣A1B1C1中,D,E分别是BC,A1B1的中点.(1)求证:DE∥平面ACC1A1;(2)设M为AB上一点,且AM=AB,若直三棱柱ABC﹣A1B1C1的所有棱长均相等,求直线DE与直线A1M所成角的正切值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(1)取AB中点N,连结EN,DN,则DN∥AC,从而DN∥平面ACC1A1,再求出EN∥平面ACC1A1,从而平面DEN∥平面ACC1A1,由此能证明DE∥平面ACC1A1.(2)作DP⊥AB于P,推导出∠DEP是直线DE与直线A1M所成角,由此能求出直线DE与直线A1M所成角的正切值.【解答】证明:(1)取AB中点N,连结EN,DN,∵在△ABC中,N为AB中点,D为BC中点,∴DN∥AC,∵DN⊄平面ACC1A1,AC⊂平面ACC1A1,∴DN∥平面ACC1A1,∵在矩形ABB1A1中,N为AB中点,E为A1B1中点,∴EN∥平面ACC1A1,又DN⊂平面DEN,EN⊂平面DEN,DN∩EN=N,∴平面DEN∥平面ACC1A1,∵DE⊂平面DEN,∴DE∥平面ACC1A1.解:(2)作DP⊥AB于P,∵直三棱柱ABC﹣A1B1C1的所有棱长均相等,D为BC的中点,∴DP⊥平面ABB1A1的所有棱长相等,D为BC的中点,∴DP⊥平面ABB1A1,且PB=AB,又AM=AB,∴MP=AB,∵A1E=EP,A1M=EP,∴∠DEP是直线DE与直线A1M所成角,∴由DP⊥平面ABB1A1,EP⊂平面ABB1A1,得DP⊥EP,设直线三棱柱ABC﹣A1B1C1的棱长为a,则在Rt△DPE中,DP=,EP=A1M=a,∴tan∠DEP==.∴直线DE与直线AM所成角的正切值为.120.已知f(x)=3x+m•3﹣x为奇函数.(1)求函数g(x)=f(x)﹣的零点;(2)若对任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,求实数a的取值范围.【考点】函数恒成立问题.【分析】(1)根据函数的奇偶性得到f(0)=0,求出m的值,从而求出f(x)的解析式,令g(x)=0,求出函数的零点即可;(2)根据函数的奇偶性和单调性,问题转化为t2+2at+a2﹣a+1≥0对任意t∈R恒成立,根据二次函数的性质求出a的范围即可.【解答】解:(1)∵f(x)是奇函数,∴f(0)=0,解得:m=﹣1,∴f(x)=3x﹣3﹣x,令g(x)=0,即3x﹣3﹣x﹣=0,令t=3x,则t﹣﹣=0,即3t2﹣8t﹣3=0,解得:t=3或t=﹣,∵t=3x≥0,∴t=3即x=1,∴函数g(x)的零点是1;(2)∵对任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,∴f(t2+a2﹣a)≥﹣f(1+2at)对任意t∈R恒成立,∵f(x)在R是奇函数也是增函数,∴f(t2+a2﹣a)≥﹣f(﹣1﹣2at)对任意t∈R恒成立,即t2+a2﹣a≥﹣1﹣2at对任意t∈R恒成立,即t2+2at+a2﹣a+1≥0对任意t∈R恒成立,∴△=(2a)2﹣4(a2﹣a+1)≤0,∴a≤1,实数a的范围是(﹣∞,1].21.在四棱锥P﹣ABCD中,△ABC为正三角形,AB⊥AD,AC⊥CD,PA⊥平面ABCD,PC与平面ABCD所成角为45°(1)若E为PC的中点,求证:PD⊥平面ABE;(2)若CD=,求点B到平面PCD的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(1)利用线面垂直的判定与性质定理可得CD⊥平面PAC,CD⊥AE.利用等腰三角形的性质与线面垂直的判定定理可得:AE⊥平面PCD,可得AE⊥PD.利用面面垂直的性质定理与线面垂直的判定定理可得AB⊥PD,进而证明结论.(2)设点B的平面PCD的距离为d,利用VB﹣PCD =VP﹣BCD即可得出.【解答】(1)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,而AE⊂平面PAC,∴CD⊥AE.∵PC与平面ABCD所成角为45°∴AC=PA,∵E是PC的中点,∴AE⊥PC,又PC∩CD=C,∴AE⊥平面PCD,而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴平面PAD⊥平面ABCD,又AB⊥AD,由面面垂直的性质定理可得BA⊥平面PAD,AB⊥PD,又AB∩AE=A,∴PD⊥平面ABE.(2)解:CD=,可得AC=3,∵PA⊥平面ABCD,∴PA⊥AC,∴PC=3,由(1)的证明知,CD⊥平面PAC,∴CD⊥PC,∵AB⊥AD,△ABC为正三角形,∴∠CAD=30°,∵AC⊥CD,∴CD=ACtan30°=.设点B 的平面PCD 的距离为d ,则V B ﹣PCD =××3××d=d .在△BCD 中,∠BCD=150°,∴S △BCD =×3×sin150°=.∴V P ﹣BCD =××3=,∵V B ﹣PCD =V P ﹣BCD ,∴d=,解得d=,即点B 到平面PCD 的距离为.22.已知圆心在直线x+y ﹣1=0上且过点A (2,2)的圆C 1与直线3x ﹣4y+5=0相切,其半径小于5.(1)若C 2圆与圆C 1关于直线x ﹣y=0对称,求圆C 2的方程;(2)过直线y=2x ﹣6上一点P 作圆C 2的切线PC ,PD ,切点为C ,D ,当四边形PCC 2D 面积最小时,求直线CD 的方程. 【考点】直线与圆的位置关系.【分析】(1)利用过点A (2,2)的圆C 1与直线3x ﹣4y+5=0相切,=,求出圆心与半径,可得圆C 1的方程,利用C 2圆与圆C 1关于直线x ﹣y=0对称,即可求圆C 2的方程;(2)求出四边形PCC 2D 面积最小值,可得以PC 2为直径的圆的方程,即可求直线CD 的方程. 【解答】解:(1)由题意,设C 1(a ,1﹣a ),则 ∵过点A (2,2)的圆C 1与直线3x ﹣4y+5=0相切,∴=,∴(a ﹣2)(a ﹣62)=0 ∵半径小于5,∴a=2,此时圆C 1的方程为(x ﹣2)2+(y+1)2=9, ∵C 2圆与圆C 1关于直线x ﹣y=0对称, ∴圆C 2的方程为(x+1)2+(y ﹣2)2=9; (2)设P (a ,2a ﹣6),圆C 2的半径r=2,∴四边形PCC 2D 面积S=2==3|PD|,|PD|==,=,此时面积最小为3,P(3,0).∴a=3时,|PD|min为直径的圆上,∵C,D在以PC2∴方程为(x﹣1)2+(y﹣1)2=5,的方程为(x+1)2+(y﹣2)2=9,∵圆C2∴两个方程相减,可得CD的方程为4x﹣2y﹣1=0.。

河南省洛阳市2017-2018学年高一上学期期中考试数学试题 Word版含解析

河南省洛阳市2017-2018学年高一上学期期中考试数学试题 Word版含解析

洛阳市2017-2018学年第一学期期中考试高一数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】D【解析】由题意得。

选D。

2. 已知,则()A. B. C. D.【答案】B【解析】方法一:令,解得。

∴。

选B。

方法二:∵,∴。

∴。

选B。

3. 下列函数,既有偶函数,又是上的减函数的是()A. B. C. D.【答案】C【解析】选项A中,函数为奇函数,不合题意,故A不正确;选项B中,函数没有奇偶性,故B不正确;选项C中,函数为偶函数,且在上单调递减,符合题意;选项D中,函数为偶函数,但在上单调递增,不合题意,故D不正确。

选C。

4. 已知集合,若中只有一个元素,则的值是()A. B. C. 或 D. 或【答案】C【解析】当时,,满足题意。

当时,要使集合中只有一个元素,即方程有两个相等的实数根,则,解得。

综上可得或。

选C。

5. 函数的定义域是()A. B. C. D.【答案】A【解析】由,解得。

∴函数的定义域为。

选A。

6. 方程的解为,若,则()A. B. C. D.【答案】C【解析】令,∵,.∴函数在区间上有零点。

∴。

选C。

7. 若函数在区间上单调递增,则的取值范围是()A. B. C. D.【答案】D【解析】由题意得,函数图象的对称轴为,∵函数在区间上单调递增,∴,解得。

∴实数的取值范围是。

选D。

8. 已知,则的值为()A. B. C. D.【答案】B【解析】由题意得。

选B。

9. 函数的图象大致为()A. B. C. D.【答案】B【解析】函数的定义域为。

当时,;当时,。

∴,其图象如选项B所示。

选B。

10. 已知,则,则值为()A. B. C. D.【答案】D【解析】∵,∴,∴,∴,解得。

又,∴。

选D。

点睛:(1)对于形如的连等式,一般选择用表示x,y的方法求解,以减少变量的个数,给运算带来方便;(2)注意对数式和指数式的转化,即;另外在对数的运算中,还应注意这一结论的应用。

河南省洛阳名校2017-2018学年高一上学期第二次联考英语试题 Word版含解析

河南省洛阳名校2017-2018学年高一上学期第二次联考英语试题 Word版含解析

河南省洛阳名校2017-2018学年上期第二次联考高一英语试题(考试时间:120分钟满分:120分)第一部分:阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C、D)中,选出最佳选项,并在答题卡上将该项涂黑。

ASkillswise Delivery ServicesChristmas Job OpportunitiesAged between 16 and 65 years? Need some money for Christmas?Are you available to work at short notice?Can you work early in the morning or late at night? We are looking for careful and patient people to help to sort and deliver parcels in the Reading area from late November until the end of December.Pay for weekdays, including Saturdays and Sundays, will beAges 16 to 17-----£4.80 per hour.Age 18 and over----- £ 6.10 per hour.So if you have good communication skills and are able to work as part of a team, we would like to hear from you.To get an application form, please write to:Elaine Grey, Personnel Officer, Skillswise Delivery Services, Windsor Road.Reading, RGS 4BRTel:0118 932 814 (24 hr. answer phone)Closing date: 10th November1. Skillswise Delivery Services is looking for people who__________.A. are young adultsB. live in the Reading areaC. have good qualities and certain skillsD. can work full-time2. If you’re 16 and work 8 hours on Sunday, you’ll get_________.A. £48.80B. £19.20C. £24.40D. £38.403. To get the Christmas job, you must_________.A. phone Elaine GreyB. fill in a formC. get an application form before late NovemberD. go to the office of Skillswise Delivery Services4. What should he do if a teen, Tom wants to get this job?A. He must hand in his form before 10th October.B. He must be sixteen years old or older.C. He must work at noon.D. He must call 0118932824.【答案】1. C 2. D 3. B 4. B【解析】文章为广告。

河南省洛阳市2017-2018学年九年级上期末数学试卷(含答案解析)

河南省洛阳市2017-2018学年九年级上期末数学试卷(含答案解析)

2017-2018学年河南省洛阳市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣12.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥43.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣15.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.16.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.610.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为cm.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S.△ABC22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017-2018学年河南省洛阳市九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.方程x2=x的解是()A.x1=3,x2=﹣3B.x1=1,x2=0C.x1=1,x2=﹣1D.x1=3,x2=﹣1【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q 的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)【分析】根据二次函数的顶点式方程可地直接写出其顶点坐标.【解答】解:∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2),故选:D.【点评】本题主要考查二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.4.将抛物找y=2x2向左平移4个单位,再向下平移1个单位得到的抛物找解析式为()A.y=2(x﹣4)2+1B.y=2(x﹣4)2﹣1C.y=2(x+4)2+1D.y=2(x+4)2﹣1【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物找y=2x2向左平移4个单位所得直线解析式为:y=2(x+4)2;再向下平移1个单位为:y=2(x+4)2﹣1.故选:D.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.5.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4B.3C.2D.1【分析】根据中心对称图形的概念判断即可.【解答】解:矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形,故选:B.【点评】本题考查的是中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.6.如图,PA,PB分别与⊙O相切于A,B点,C为⊙O上一点,∠P=66°,则∠C=()A.57°B.60°C.63°D.66°【分析】连接OA,OB,根据切线的性质定理得到∠OAP=90°,∠OBP=90°,根据四边形的内角和等于360°求出∠AOB,根据圆周角定理解答.【解答】解:连接OA,OB,∵PA,PB分别与⊙O相切于A,B点,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣66°=114°,由圆周角定理得,∠C=∠AOB=57°,故选:A.【点评】本题考查的是切线的性质,圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.7.下列事件中,是随机事件的是()A.任意画一个三角形,其内角和为180°B.经过有交通信号的路口,遇到红灯C.太阳从东方升起D.任意一个五边形的外角和等于540°【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:A、任意画一个三角形,其内角和为180°是必然事件;B、经过有交通信号的路口,遇到红灯是随机事件;C、太阳从东方升起是必然事件;D、任意一个五边形的外角和等于540°是不可能事件;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是()A.B.C.D.【分析】利用黑色区域的面积除以游戏板的面积即可.【解答】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,所以击中黑色区域的概率==.故选:C.【点评】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.9.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.6【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选:D.【点评】本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.10.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2B.2πC.D.π【分析】根据勾股定理得到AC,然后根据扇形的面积公式即可得到结论.【解答】解:∵∠AB⊥OB,AB=2,OB=4,∴OA=2,∴边AB扫过的面积=﹣=π,故选:C.【点评】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(每小题3分,共15分)11.若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根为0,则另一个根为.【分析】先把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得到满足条件的m的值为﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,利用根与系数的关系得到0+t=,然后求出t即可.【解答】解:把x=2代入方程(m﹣2)x2+3x+m2﹣4=0得方程m2﹣4=0,解得m1=2,m2=﹣2,而m﹣2≠0,所以m=﹣2,此时方程化为4x2﹣3x=0,设方程的另一个根为t,则0+t=,解得t=,所以方程的另一个根为.故答案为.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2.【分析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离.【解答】解:∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣1),∴当y=0时,0=(x﹣3)(x﹣1),解得,x1=3,x2=1,∵3﹣1=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2,故答案为:2.【点评】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.13.在半径为40cm的⊙O中,弦AB=40cm,则点O到AB的距离为20cm.【分析】作OC⊥AB于C,连接OA,根据垂径定理求出AC,根据勾股定理计算即可.【解答】解:作OC⊥AB于C,连接OA,则AC=AB=20,在Rt△OAC中,OC==20(cm)故答案为:20.【点评】本题考查的是垂径定理和勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.14.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形,点D恰好在双曲线上,则k值为4.【分析】作DE⊥x轴于点E,易证△OAB≌△EDA,求得A、B的坐标,根据全等三角形的性质可以求得D的坐标,从而利用待定系数法求得反比例函数的解析式,即可求解.【解答】解:作DE⊥x轴于点E.在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAE=90°,又∵Rt△ABO中,∠BAO+∠OBA=90°,∴∠DAE=∠OBA,在△OAB和△EDA中,∵,∴△OAB≌△EDA(AAS),∴AE=OB=3,DE=OA=1,故D的坐标是(4,1),代入y=得:k=4,故答案为:4.【点评】本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的判定与性质,待定系数法求函数的解析式,正确求得D的坐标是关键.15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD 中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,=EC•AD=4.则S△AEC故答案为:4.【点评】此题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解本题的关键.四、解答题(8个小题,共75分)16.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.【分析】由切线的性质可知∠ODE=90°,纵坐标OD∥AE即可解决问题;【解答】证明:连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点评】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(8分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.【分析】如果设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x);那么根据题意即可得出方程.【解答】解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16﹣2x),(9﹣x).根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,解得x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点评】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键.18.(9分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到70元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.【分析】(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.【解答】解:(1)则该顾客至多可得到购物券:50+20=70(元);故答案为:70;(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.(9分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【解答】解:(1)由题意得,每件商品的销售利润为(x﹣30)元,那么m件的销售利润为y=m(x﹣30),又∵m=162﹣3x,∴y=(x﹣30)(162﹣3x),即y=﹣3x2+252x﹣4860,∵x﹣30≥0,∴x≥30.又∵m≥0,∴162﹣3x≥0,即x≤54.∴30≤x≤54.∴所求关系式为y=﹣3x2+252x﹣4860(30≤x≤54).(2)由(1)得y=﹣3x2+252x﹣4860=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点评】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.20.(10分)如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O 于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.【分析】(1)连接OD,根据角平分线的定义得到∠ACD=∠BCD,根据圆周角定理,等腰三角形的定义证明;(2)作AE⊥CD于E,根据等腰直角三角形的性质求出AD,根据勾股定理求出AE、CE,DE,结合图形计算,得到答案.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.【点评】本题考查的是圆周角定理,勾股定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.21.(10分)如图,一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B (﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;.(3)过点B作BC⊥x轴,垂足为C,求S△ABC【分析】(1)由一次函数y=kx+b与反比例函数y=的图象相交于A(2,3),B(﹣3,n)两点,首先求得反比例函数的解析式,则可求得B点的坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据图象,观察即可求得答案;(3)因为以BC为底,则BC边上的高为3+2=5,所以利用三角形面积的求解方法即可求得答案.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为:y=,∵B(﹣3,n)在反比例函数图象上,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,∴,解得:,∴一次函数的解析式为:y=x+1;(2)﹣3<x<0或x>2;(3)以BC为底,则BC边上的高AE为3+2=5,∴S=×2×5=5.△ABC【点评】此题考查了反比例函数与一次函数的交点问题.注意待定系数法的应用是解题的关键.22.(10分)如图1,在等腰Rt△ABC中,∠C=90°,O是AB的中点,AC=6,∠MON=90°,将∠MON绕点O旋转,OM、ON分别交边AC于点D,交边BC于点E(D、E不与A、B、C重合)(1)判断△ODE的形状,并说明理由;(2)在旋转过程中,四边形CDOE的面积是否发生变化?若不改变,直接写出这个值,若改变,请说明理由;(3)如图2,DE的中点为G,CG的延长线交AB于F,请直接写出四边形CDFE的面积S的取值范围.【分析】(1)连接OC,根据等腰三角形的性质得到OC⊥AB,OC平分∠ACB,求得∠AOD=∠COE,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到四边形CDOE的面积=△AOC的面积,根据三角形的面积公式即可得到结论;(3)当四边形CDFE是正方形时,其面积最大,根据正方形的面积公式即可得到结论.【解答】解:(1)△ODE是等腰直角三角形,理由:连接OC,在等腰Rt△ABC中,∵O是AB的中点,∴OC⊥AB,OC平分∠ACB,∴∠OCE=45°,OC=OA=OB,∠COA=90°,∵∠DOE=90°,∴∠AOD=∠COE,在△AOD与△COE中,,∴△AOD≌△COE,(ASA),∴OD=OE,∴△ODE是等腰直角三角形;(2)在旋转过程中,四边形CDOE的面积不发生变化,∵△AOD≌△COE,∴四边形CDOE的面积=△AOC的面积,∵AC=6,∴AB=6,∴AO=OC=AB=3,∴四边形CDOE的面积=△AOC的面积=×3×3=9;(3)当四边形CDFE是正方形时,其面积最大,四边形CDFE面积的最大值=9,故四边形CDFE的面积S的取值范围为:0<S≤9.【点评】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,连接OC构造全等三角形是解题的关键.23.(11分)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)求PE的长最大时m的值.(3)Q是平面直角坐标系内一点,在(2)的情况下,以P、Q、C、D为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)由点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用一次函数图象上点的坐标特征可得出点C ,D 的坐标,进而可得出0<m <4,由点P 的横坐标为m 可得出点P ,E 的坐标,进而可得出PE =﹣m 2+m +2,再利用二次函数的性质即可解决最值问题;(3)分PE 为对角线、PC 为对角线、CD 为对角线三种情况考虑,由平行四边形的性质(对角线互相平分)结合点P ,C ,D 的坐标可求出点Q 的坐标,此题得解. 【解答】解:(1)将A (﹣1,0),B (5,0)代入y =﹣x 2+bx +c ,得:,解得:,∴抛物线的解析式为y =﹣x 2+4x +5.(2)∵直线y =﹣x +3与y 轴交于点C ,与x 轴交于点D , ∴点C 的坐标为(0,3),点D 的坐标为(4,0), ∴0<m <4.∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+4m +5),点E 的坐标为(m ,﹣ m +3),∴PE =﹣m 2+4m +5﹣(﹣m +3)=﹣m 2+m +2=﹣(m ﹣)2+.∵﹣1<0,0<<4,∴当m =时,PE 最长.(3)由(2)可知,点P 的坐标为(,).以P 、Q 、C 、D 为顶点的四边形是平行四边形分三种情况(如图所示):①以PD 为对角线,∵点P 的坐标为(,),点D 的坐标为(4,0),点C 的坐标为(0,3),∴点Q的坐标为(+4﹣0,+0﹣3),即(,);②以PC为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(+0﹣4,+3﹣0),即(﹣,);③以CD为对角线,∵点P的坐标为(,),点D的坐标为(4,0),点C的坐标为(0,3),∴点Q的坐标为(0+4﹣,3+0﹣),即(,﹣).综上所述:在(2)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为(,)、(﹣,)或(,﹣).【点评】本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征以及平行四边形的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线的解析式;(2)利用二次函数的性质解决最值问题;(3)分PE为对角线、PC为对角线、CD为对角线三种情况,利用平行四边形的性质求出点Q的坐标.。

2017-2018学年度人教版高一第一学期期末质量检测语文试题含答案

2017-2018学年度人教版高一第一学期期末质量检测语文试题含答案

2017-2018学年度人教版高一第一学期期末质量检测语文试题含答案2017-2018学年高一第一学期期末质量检测语文科试卷考试时间:150分钟;满分:150分;共23小题友情提示:请将答案填涂在答题卡的相应位置上,答在本试卷上一律无效一、现代文阅读(每小题3分,共9分)读下面文字,完成1-3题。

很多人说:什么是意境?意境就是“情”“景”交融。

其实这种解释应该是从近代开始的。

XXX在《人间词话》中所使用的“意境”或“境界”,他的解释就是情景交融。

但是在中国传统美学中,情景交融所规定的是“意象”,而不是“意境”。

中国传统美学认为艺术的本体就是意象,任何艺术作品都要创造意象,都应该情景交融,而意境则不是任何艺术作品都具有的。

意境除了有意象的一般规定性之外,还有自己的特殊规定性,意境的内涵大于意象,意境的外延小于意象。

那么意境的特殊规定性是什么呢?唐代XXX有句话:“境生于象外。

”“境”是对于在时间和空间上有限的“象”的突破,只有这种象外之“境”才能体现作为宇宙的本体和生命的“道”。

从审美活动的角度看,所谓“意境”,就是超越具体的有限的物象、事件、场景,进入无限的时间和空间,从而对整个人生、历史、宇宙获得一种哲理性的感受和领悟。

西方古代艺术家,他们给自己提出的任务是要再现一个具体的物象,所以他们,比如古希腊雕塑家追求“美”,就把人体刻画得非常逼真、非常完美。

而中国艺术家不是局限于刻画单个的人体或物体,把这个有限的对象刻画得很逼真、很完美。

相反,他们追求一种“象外之象”、“景外之景”。

中国园林艺术在审美上的最大特点也是有意境。

中国古典园林中的楼、台、亭、阁,它们的审美价值主要不在于这些建筑本身,而是如同XXX《兰亭集序》所说,在于可使人“仰观宇宙之大,俯察品类之盛。

我们生活的世界是一个成心味的世界。

XXX有两句诗说得好:“此中有真意,欲辩已忘言。

”艺术就是要去寻找、发现、体验生活中的这种意味。

成心境的作品和普通的艺术作品在这一点的区别,就在于它不但揭示了生活中某一个具体事物或具体事件的意味,并且超出了具体的事物和事件,从一个角度揭示了整个人生的意味。

河南省名校联考2024-2025学年高一上学期第一次月考数学试题(含解析)

河南省名校联考2024-2025学年高一上学期第一次月考数学试题(含解析)

河南省名校联考2024-2025学年上期高一第一次月考数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.本试卷主要考试内容:人教A版必修第一册前两章。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符题目要求的.1.下列关系式正确的是A.3∈QB.—1∈NC. Z⊆ND. Q⊆R2.关于命题q:∀a<b,|a|≤|b|,下列结论正确的是A. q是存在量词命题,是真命题B. q是存在量词命题,是假命题C. q是全称量词命题,是假命题D. q是全称量词命题,是真命题3.已知集合A={x∈Z|3x―1∈Z},则用列举法表示A=A.{—2,0,2,4}B.{—2,0,1,2,4}C.{0,2,4}D.{2,4}4.已知a>0,b>0,c>0,则“a+b>c”是“a,b,c可以构成三角形的三条边”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知正数a,b满足1a +2b=1,则a+2b的最小值为A.9B.6C.4D.36.已知集合A={(x,y)|y=x²+ ax+1},B={(x,y)|y=2x-3},C=A∩B,若C恰有1|真子集,则实数a=A.2B.6C.2或6D.—2或67.某花卉店售卖一种多肉植物,若每株多肉植物的售价为30元,则每天可卖出25株;若每株肉植物的售价每降低1元,则日销售量增加5株.为了使这种多肉植物每天的总销售额不于1250元,则每株这种多肉植物的最低售价为A.25元B.20元C.15元D.10元【高一数学第1页(共4页)】 ·A18.学校统计某班45名学生参加音乐、科学、体育3个兴趣小组的情况,其中有20名学生参加了音乐小组,有21名学生参加了科学小组,有22名学生参加了体育小组,有24名学生只参加了1个兴趣小组,有12名学生只参加了2个兴趣小组,则3个兴趣小组都没参加的学生有A.5名B.4名C.3名D.2名二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列各组对象能构成集合的有A.郑州大学 2024 级大一新生B.我国第一位获得奥运会金牌的运动员C.体型庞大的海洋生物D.唐宋八大家10.已知a>b>0,则使得a+ca >b+cb成立的充分条件可以是A. c=-2B. c=-1C. c=1D. c=211.已知二次函数y=ax²+bx+c(a,b,c为常数,且a≠0)的部分图象如图所示,则A. a+b>0B. abc>0C.13a+b+2c>0D.不等式bx²―ax―c>0的解集为{x|-2<x<1}三、填空题:本题共3小题,每小题5分,共15分.12.已知a=10―6,b=6―2,则a ▲ b.(填“◯”或“<”)13.已知a∈R,b∈R,集合{,则(a―b)³=.14.已知m<n<0,则8nm+n ―2mm―n的最大值为▲ .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知全集U=R,集合A={x|-2<x<3},B={x|a-1<x<2a}.(1)若a=2,求A∪B,C∪B;(2)若B⊆A,求a 的取值范围.【高一数学第2页(共4页)】 A116.(15分)给出下列两个结论:①关于x的方程.x²+mx―m+3=0无实数根;②存在0≤x≤2,使(m+1)x―3=0.(1)若结论①正确,求m 的取值范围;(2)若结论①,②中恰有一个正确,求m的取值范围.17.(15分)已知正数a,b,c 满足 abc=1.(1)若c=1,求2a +3b的最小值;(2)求a2+b2+2c2+8ac+bc的最小值.A11918.(17分)已知a∈R,函数y=ax²+(3a+2)x+2a+3.(1)当a=1时,函数y=ax²+(3a+2)x+2a+3的图象与x轴交于A(x₁,0),B(x₂,0)两点,求x31+x32;(2)求关于x的不等式y≥1的解集.19.(17分)设A是由若干个正整数组成的集合,且存在3个不同的元素a,b,c∈A,使得a-b=b-c,则称A 为“等差集”.(1)若集合A=1,3,5,9,B⊆A,且B是“等差集”,用列举法表示所有满足条件的B;(2)若集合.A=1,m,m²―1是“等差集”,求m的值;(3)已知正整数n≥3,证明:{x,x²,x³,…,x"}不是“等差集”.【高一数学第4 页(共4 页)】 A1·数学参考答案1. D 3₃∉Q,-1∉N,N ⊆Z,Q ⊆R2. C 由-2<1,|-2|>|1|,知q 是假命题,且q 是全称量词命题.3. A 因为3=1×3=(--1)×(-3),所以A={-2,0,2,4}.4. B 取a=5,b=3,c=1,满足a+b>c,此时b+c<a,a,b,c 不可以构成三角形的三条边.由a,b,c 可以构成三角形的三条边,得a+b>c.故“a+b>c”是“a,b,c 可以构成三角形的三条边”的必要不充分条件.5. A 因为 1a +2b =1,所以 a +2b =(1a +2b)(a +2b )=5+2b a+2a b.又a>0,b>0,所以 2ba + 2ab ≥22b a⋅2ab =4,当且仅当a=b=3时,等号成立,故a+2b 的最小值为9.6. D 因为C 恰有1个真子集,所以C 中只有1个元素.联立方程组 {y =x 2+ax +1,y =2x ―3,整理得 x ²+(a ―2)x +4=0,则 (a ―2)²―16=0,解得a=-2或6.7. D 设每株多肉植物的售价降低x(x∈N)元,则这种多肉植物每天的总销售额为(30-x)(25+5x)元.由(30-x)(25+5x)≥1 250,得5≤x≤20,故每株这种多肉植物的最低售价为30-20=10元.8. B 如图,由题可知 {a +b +9m +x ―20,a +c +m +z ―21,b +c +m +s ―21,a +b +c +1>22,a +b +z ―12,x +9z +z =24,则 3m=63-2(a+b+c)-(x+y+z)=15,则m=5,从而3个兴趣小组都没参加的学生有45-(a+b+c)-(x+y+z)-m=4名.9. ABD 由题可知,A ,B ,D 中的对象具有确定性,可以构成集合,C 中的对象不具有确定性,不能构成集合.10. AB 由a +c a>b +c b,得 a +c a ―b +cb=b (a +c )―a (b +c )ab=c (b ―a )ab>0.因为a>b>0,所以c<0.11. BCD 由图可知a>0,二次函数 y =ax ²+bx +c 的图象与x 轴相交于(--1,0),(2,0)两点,则 {a ―b +c =0,4a +2b +c =0,整理得 {b =―a ,c =―2a ,则 a+b=0, abc>0,A 不正确,B 正确. 由【高一数学·参考答案 第 1页(共4 页)】 ·A1·{4a―2b+c>0,9a+3b+c>0,得13a+b+2c>0,C正确.因为{b=―a,c=―2a,所以bx²―ax―c=―ax²―ax+2a>0,即x²+x―2<0,,解得-2<x<1,D正确.12.<a―b=10+2―26,因为( 10+2)2=12+45,(26)2=24,45<12(所以(10+2)2<(26)2,则10+2<26,从而a<b.13.8 由a+b,a,2=a²,2,0,得a=0或a=a².若a=0,则a²=0,,不符合集合元素的互异性.若a=a²,则a=0(舍去)或a=1,所以a+b=0,即b=-1,从而((a―b)³=8.14.―18nm+n ―2mm―n―4(m+n)―4(m―n)m+n―(m+n)+(m―n)m―n=3―[4(m―n) m+n +m+nm―n].因为m<n<0,所以4(m―n)m+n >0,m+nm―n>0,则4(m―n)m+n+m+nm―n≥24(m―n)m+n⋅m+nm―n=4,当且仅当m=3n时,等号成立,故的最大值为-(1)由a=2,得B={x|1<x<4}, ... 1分 (1)则或x≥4}. ... 3分 (3)因为A={x|-2<x<3},所以A∪B={x|-2<x<4}................................................5分(2)若B=∅,则a-1≥2a,解得a≤-1,满足B⊆A (7)若B≠∅,则由B⊆A,得分 (9)解得 (11)综上所述,a的取值范围为 (13)16.解:(1)由结论①正确,得分 (3)解得-6<m<2 (5)故当结论①正确时,m的取值范围为{m|-6<m<2}....................................6分(2)若m=-1,则原方程转化为-3=0,恒不成立. ... 7分 (7)若m≠-1,则由(m+1)x-3=0,得分 (8)从而解得 (10)当结论①正确,结论②不正确时, (12)当结论②正确,结论①不正确时,m≥2 (14)综上所述,当结论①,②中恰有一个正确时,m的取值范围为或m≥2}..........15 17.解分 (1)则 (4)当且仅当时,等号成立,故的最小值为₆ (6)(2)因为, (8)当且仅当a=b=c=1时,等号成立,... 9分 (9)所以分 (10) (12)当且仅当 ac+ bc=2时,等号成立,此时a=b=c=1, ... 14分 (14)所以的最小值为8………………………………………………………………………………15分18.解:(1)当a=1时,y=x²+5x+5.由题可知x₁,x₂;是方程x²+5x+5=0的两个实数根, (2)由{x21+5x1+5=0, x22+5x2+5=0,得{x 31=―5x21―5x1,x32=―5x22―5x2, 4分则x i+x32=―5(x21+x22)―5(x1+x2)=―5[(x1+x2)2―2x1x2]+25=―75+25=―50.6分(2)由y≥1,得ax²+(3a+2)x+2a+2≥0.当a=0时,不等式整理为………………………………………………………………………………………………………………………………………………………………………7分当a≠0时,令ax²+(3a+2)x+2a+2=(x+1)( ax+2a+2)=0,得x=---1或x=...............................................................................................................9分当a>0时,则原不等式的解集为或3x≥-1} (11)当--2<a<0时,―1<―2a+2a,则原不等式的解集为{x|―1≤x≤―2a+2a};当a=-2时,则原不等式的解集为{-1};...............................................................15分当a<-2时,则原不等式的解集为 (17)【高一数学·参考答案第3页(共4页)】 ·A1·…13分1,3,5或1,5,9,………………………………………………………………………… (1)故满足条件的B可能是{1,3,5},{1,5,9},{1,3,5,9}...........................................4分(2)解:由A 是“等差集”,得, ... 5 分 (5)且m≥2,则 (6)(舍去)或m=2 (8)当m=2时,A={1,2,3}是“等差集”,故m=2 (9)(3)证明:假设{x,x²,x³, (10)则存在1≤i<j<k≤n,其中i,j,k∈N*,使得 (11)即则分 (12)因为1≤i<j<k≤n,所以k-i>j-i,从而k-i≥j-i+1,... 13分 (13)则2xʲ⁻ⁱ=1+xᵏ⁻ⁱ≥1+xʲ⁻ⁱ⁺¹, ……………………14分则分 (15)因为x≥2,所以从而2-x>0,即x<2, (16)不是“等差集” (17)【高一数学·参考答案第 4 页(共4页)】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

洛阳名校2017-2018学年上期第二次联考高一数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集为R ,集合0}9-x |{x 2<=A ,}51|{≤<-=x x B ,则=)(B C A R ( )A . )0,3(-B .)1,3(--C . ]1,3(--D .)3,3(-2.下列函数中,与函数||3x y -=的奇偶性相同,且在)0,(-∞上单调性也相同的是( )A . xy 1-= B .||log 2x y = C . 21x y -= D .13-=x y 3.若c b a <<,则函数))(())(())(()(a x c x c x b x b x a x x f --+--+--=的两个零点分别位于区间( )A .),(b a 和),(c b 内B .),(a -∞和),(b a 内C .),(c b 和),(+∞c 内D .),(a -∞和 ),(+∞c 内4.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为( )A .1.2B .1.6 C. 1.8 D .2.45.已知b a ,是两条不同的直线,βα,是两个不同的平面,下列说法中正确的是( )A .若b a //,α//a ,则α//bB .若b a ⊥,α⊥a ,β⊥b ,则βα⊥C. 若βα⊥,β⊥a ,则α//a D .若βα⊥,α//a ,则β⊥a6.已知3log 3log 22+=a ,3log 9log 22-=b ,2log 3=c ,则c b a ,,的大小关系是( ) A . c b a <= B .c b a >= C. c b a << D .c b a >>7.在长方体1111D C B A ABCD -中,N M ,分别是棱1BB ,11C B 的中点,若090=∠CMN ,则异面直线1AD 与DM 所成的角为( )A . 030B .045 C. 060 D .0908.在三棱锥ABC S -中,ABC ∆是边长为6的正三角形,15===SC SB SA ,平面DEFH 分别与AB 、BC 、SC 、SA 交于H F E D ,,,分别是AB 、BC 、SC 、SA 的中点,如果直线//SB 平面DEFH ,那么四边形DEFH 的面积为( )A . 245B .2345 C. 45 D .345 9.已知函数f(x)的定义域为R ,且⎩⎨⎧>-≤-=-0),1(0,12)(x x f x x f x ,若方程a x x f +=)(有两个不同实根,则a 的取值范围为( )A . )1,(-∞B .]1,(-∞ C. )1,0( D .),(+∞-∞10.水池有两个相同的进水口和一个出水口,每个口进出水速度如图(甲)、(乙)所示,某天0点到6点该水池蓄水量如图(丙)所示(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到5点不进水也不出水. 则一定正确的论断是( )A .①B .①② C. ①③ D .①②③11.如图所示,在棱长为5的正方体1111D C B A ABCD -中,EF 是棱AB 上的一条线段,且2=EF ,点Q 是11D A 的中点,点P 是棱11D C 上的动点,则四面体PQEF 的体积( )A .是变量且有最大值B .是变量且有最小值C.是变量有最大值和最小值 D .是常量12.在ABC ∆中,090=∠C ,030=∠B ,1=AC ,M 为AB 的中点,将ACM ∆沿CM 折起,使B A ,间的距离为2,则点M 到平面ABC 的距离为( )A . 21B .23 C. 1 D .32 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.函数xx y 1+=的定义域为 . 14.已知函数)4(log ax y a -=在]2,0[上是减函数,则实数a 的取值范围是 .15.已知正三棱锥ABC P -,点C B A P ,,,都在半径为3的球面上,若PC PB PA ,,两两相互垂直,则球心到截面ABC 的距离为 .16.正方体1111D C B A ABCD -中,Q N M ,,分别是棱BC D A D C ,,1111的中点,点P 在对角线1BD 上,给出以下命题:①当P 在线段1BD 上运动时,恒有//MN 平面APC ;②当P 在线段1BD 上运动时,恒有⊥1AB 平面BPC ;③过点P 且与直线1AB 和11C A 所成的角都为060的直线有且只有3条.其中正确命题为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知集合}086|{2<+-=x x x A ,}0)3)((|{<--=a x a x x B .(1)若B B A = ,求实数a 的取值范围;(2)若}43|{<<=x x B A ,求实数a 的值. 18. 已知函数⎪⎩⎪⎨⎧<+=>+-=0,0,00,2)(22x m x x x x x x x f 是奇函数.(1)求实数m 的值;(2)若函数)(x f 在区间]2,1[--a 上单调递增,求实数a 的取值范围.19. 如图,在四棱锥ABCD P -中,⊥PD 底面ABCD ,底面ABCD 为矩形,且AB AD PD 21==,E 为PC 的中点.(1)过点A 作一条射线AG ,使得BD AG //,求证:平面//PAG 平面BDE ;(2)求二面角C BD E --的正切值.20. 据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度)/(h km v 与时间)(h t 的函数图像如图所示,过线段OC 上一点)0,(t T 作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为)(h t 内沙尘暴所经过的路程)(km s.(1)当4=t 时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.21. 已知等腰梯形PDCB 中(如图1),3=PB ,1=DC ,2==BC PD ,A 为PB 边上一点,且1=PA ,将PAD ∆沿AD 折起,使平面⊥PAD 平面ABCD (如图2).(1)证明:平面⊥PAD 平面PCD ;(2)试在棱PB 上确定一点M ,使截面AMC 把几何体分成的两部分1:2:=--ABC M D CMA P V V .22. 已知幂函数Z k x x f k k ∈=+-,)()1)(2(,且)(x f 在),0(+∞上单调递增.(1)求实数k 的值,并写出相应的函数)(x f 的解析式;(2)若34)(2)(+-=x x f x F 在区间]1,2[+a a 上不单调,求实数a 的取值范围;(3)试判断是否存在正数q ,使函数x q x qf x g )12()(1)(-+-=在区间]2,1[-上的值域为]817,4[-,若存在,求出q 的值;若不存在,请说明理由. 试卷答案一.选择题1.C2.C .解析:选C 函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项B 的函数是偶函数,但其单调性不符合,只有选项C 符合要求3.A 解析:本题考查函数的零点,意在考查考生数形结合的能力.由已知易得f (a )>0,f (b )<0,f (c )>0,故函数f (x )的两个零点分别位于区间(a ,b )和(b ,c )内.答案:A4.B5.B【解答】解:A选项不正确,因为b⊂α是可能的;B选项正确,可由面面垂直的判定定理证明其是正确的;C选项不正确,因为α⊥β,a⊥β时,可能有a⊂α;D选项不正确,因为α⊥β,a∥α时,a∥β,a⊂β或一般相交都是可能的6.B由已知:,,,所以。

故本题正确答案为B。

7.D8.A9.A x≤0时,f(x)=2-x-1,0<x≤1时,-1<x-1≤0,f(x)=f(x-1)=2-(x-1)-1.故x>0时,f(x)是周期函数,如图所示.若方程f(x)=x+a有两个不同的实数根,则函数f(x)的图像与直线y=x+a有两个不同交点,故a<1,即a的取值范围是(-∞,1),故选A.10.A由甲,乙图得进水速度1,出水速度2,∴①0点到3点时斜率为2,蓄水量增加是2,只进水不出水,故①对;②不进水只出水时,减少应为2,②错;③二个进水一个出水时,蓄水量减少也是0,故③错;故答案为:A11.D 点Q到棱AB的距离为常数,所以△EFQ的面积为定值.由C1D1∥EF,可得棱C1D1∥平面EFQ,所以点P到平面EFQ的距离是常数.于是四面体PQEF的体积为常数.12.A由题意知MA=MB=MC=1,所以点M在底面的投影为底面三角形的外心,又AB=2,AC=1,BC=3,所以底面三角形的外心为斜边BC的中点,设BC的中点为D,连接MD,1则MD为M到平面ABC的距离,在△MBD中,∠MBC=30°,MD⊥BC,所以MD=2二、填空13.14.答案 (1,2)解析:令u=4-ax ,则a y=log u ,因为a 0>,所以u=ax 4-递减,由题意知a y=log u 在[]0.2递减,所以a 1>,又u=ax 4-在[]0.2恒大于0,所以42a 0->即a 2<综上1a 2<<15.答案 33解析 正三棱锥P -ABC 可看作由正方体PADC -BEFG 截得,如图所示,PF 为三棱锥P -ABC 的外接球的直径,且PF ⊥平面ABC .设正方体棱长为a ,则3a 2=12,a =2,AB =AC =BC =22. S △ABC =12×22×22×32=23. 由V P -ABC =V B -PAC ,得13·h ·S △ABC =13×12×2×2×2,所以h =233,因此球心到平面ABC 的距离为33. 16.②③解析 (1)当P 位于BD 1与平面MNAC 的交点处时,MN 在平面APC 内(2)因为AB 1垂直于BC 和BD 1,所以成立(3)AB 1和A 1C 1成60°角,过P 点与两直线成60°的直线有三条三、解答题17.解:, (1),, 时,,234a a ≤⎧∴⎨≥⎩,计算得出 时,,显然A ⊈B; 时,,显然不符合条件时,(2)要满足,由(1)知,且时成立.此时,, 故所求的a 值为318.解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f(x)的图像知⎩⎪⎨⎪⎧ a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].19. (1)在矩形ABCD 中,连接AC ,设其与BD 交于点O ,连接OE ,则O 是AC 的中点,又E 是PC 的中点,所以 OE ∥PA ,又OE ⊂平面BDE ,PA ⊄平面BDE ,所以PA ∥平面BDE同理AG∥平面BDE.因为PA ⋂AG=A ,所以平面PAG ∥平面BDE.;(2)取CD 的中点H ,连接EH ,则EH ∥PD ,因为PD ⊥底面ABCD ,所以EH ⊥底面ABCD ,过H 作MH ⊥BD ,垂足为M ,连接EM ,则∠EMH 就是二面角E-BD-C 的平面角令AD =1.则PD =1,AB =2,。

相关文档
最新文档