圆锥曲线的应用

合集下载

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用圆锥曲线是平面几何中的重要概念,它具有许多独特的光学性质和应用。

在本文中,我们将探讨圆锥曲线的光学性质以及其在现实生活中的应用。

一、圆锥曲线的基本概念圆锥曲线是由平面上的一根直线和一个点所决定的曲线。

根据直线和点的位置关系,圆锥曲线可以分为椭圆、双曲线和抛物线三种类型。

椭圆是一种闭合曲线,它的定义是到两个定点的距离之和等于常数的点的集合。

双曲线是一种开放曲线,它的定义是到两个定点的距离之差等于常数的点的集合。

而抛物线是一种开放曲线,它的定义是到一个定点的距离等于到一条直线的距离的点的集合。

二、圆锥曲线的光学性质1.焦点和直径椭圆和双曲线都有焦点和直径的概念。

焦点是曲线上所有点到定点的距离之和等于常数的点的集合,而直径则是通过焦点的直线段。

焦点和直径是圆锥曲线的重要特征,它们在光学系统中有着重要的作用。

2.反射性质圆锥曲线具有良好的反射性质,它们可以将光线聚焦或者发散。

椭圆和双曲线可以将平行光线聚焦到焦点上,这种性质被应用在椭圆和双曲线反射镜中。

而抛物线则具有将入射光线聚焦到焦点上的性质,这种性质在抛物面反射镜中有着广泛的应用。

3.折射性质圆锥曲线也具有良好的折射性质,它们可以将光线聚焦或者发散。

这种性质被应用在折射镜和透镜中,可以用来调节光线的聚焦和散射。

4.散焦性质圆锥曲线还具有散焦性质,这种性质在光学系统中有着重要的应用。

椭圆和双曲线反射镜可以将平行光线聚焦到焦点上,这种性质被应用在望远镜和激光器中。

而抛物线反射镜可以将平行光线聚焦到焦点上,并使其散开成平行光线,这种性质被应用在卫星天线和抛物面反射镜中。

三、圆锥曲线在现实生活中的应用1.光学系统圆锥曲线在许多光学系统中有着重要的应用,例如望远镜、显微镜、相机镜头等。

这些光学系统都利用了圆锥曲线的焦距和聚焦性质,来实现光线的聚焦和成像。

2.通讯设备圆锥曲线也被广泛应用在通讯设备中,例如卫星天线和天线反射器。

这些设备利用了抛物线反射镜的散焦性质,来实现对信号的接收和发送。

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】圆锥曲线的光学性质及其应用尹建堂一、圆锥曲线的光学性质圆锥曲线的光学性质源于它的切线和法线的性质,因而为正确理解与掌握其光学性质,就要掌握其切线、法线方程的求法及性质。

设P()为圆锥曲线(A、B、C不同时为零)上一定点,则在该点处的切线方程为:。

(该方程与已知曲线方程本身相比,得到的规律就是通常所说的“替换法则”,可直接用此法则写出切线方程)。

该方程的推导,原则上用“△法”求出在点P处的切线斜率,进而用点斜式写出切线方程,则在点P处的法线方程为。

1、抛物线的切线、法线性质经过抛物线上一点作一条直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这一点的焦半径的夹角。

如图1中。

事实上,设为抛物线上一点,则切线MT的方程可由替换法则,得,即,斜率为,于是得在点M处的法线方程为令,得法线与x轴的交点N的坐标为,所以又焦半径所以,从而得即当点M与顶点O重合时,法线为x轴,结论仍成立。

所以过M的法线平分这条直线和这一点的焦半径的夹角。

也可以利用点M处的切线方程求出,则,又故,从而得也可以利用到角公式来证明抛物线的这个性质的光学意义是:“从焦点发出的光线,经过抛物线上的一点反射后,反射光线平行于抛物线的轴”。

2、椭圆的切线、法线性质经过椭圆上一点的法线,平分这一点的两条焦点半径的夹角。

如图2中证明也不难,分别求出,然后用到角公式即可获证。

椭圆的这个性质的光学意义是:“从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上”。

3、双曲线的切线、法线性质经过双曲线上一点的切线,平分这一点的两条焦点半径的夹角,如图3中。

仍可利用到角公式获证。

这个性质的光学意义是:“从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是散开的,它们就好像是从另一个焦点射出的一样”。

二、圆锥曲线光学性质的应用光学性质在生产和科学技术上有着广泛地应用。

高考数学圆锥曲线的定义及应用

高考数学圆锥曲线的定义及应用

圆锥曲线的定义及应用一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。

即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。

2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。

即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。

3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

二、圆锥曲线的方程。

1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质1.椭圆:+=1(a>b>0)(1)X围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±2.双曲线:-=1(a>0, b>0)(1)X围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x3.抛物线:y2=2px(p>0)(1)X围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-四、例题选讲:例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。

解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。

圆锥曲线知识点整理

圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是数学中的重要概念,它包括椭圆、双曲线和抛物线三种形式。

本文将整理圆锥曲线的基本定义、性质和应用。

1. 圆锥曲线的定义圆锥曲线是由平面与一个圆锥相交而产生的曲线。

根据与圆锥相交的方式不同,可以分为三种类型:椭圆、双曲线和抛物线。

2. 椭圆的性质椭圆是圆锥曲线中最简单的一种形式。

它具有以下性质:- 椭圆是一个闭合曲线,其形状类似于拉伸的圆。

- 椭圆有两个焦点,对称轴为椭圆的长轴。

- 椭圆的离心率是一个小于1的正实数。

- 椭圆的周长和面积可以通过一系列公式计算得出。

3. 双曲线的性质双曲线与椭圆相似,但具有一些不同的性质:- 双曲线是一个非闭合曲线,其形状类似于拉伸的超越函数。

- 双曲线有两个焦点,对称轴为双曲线的长轴。

- 双曲线的离心率是一个大于1的正实数。

- 双曲线的性质使得它在几何光学和天体力学等领域中有广泛应用。

4. 抛物线的性质抛物线是另一种常见的圆锥曲线形式,具有以下性质:- 抛物线是一个非闭合曲线,其形状类似于开口向上或向下的碗。

- 抛物线只有一个焦点和一条对称轴。

- 抛物线的离心率为1。

- 抛物线的性质使得它在物理学和工程学等领域中有广泛应用,如抛物线天线和抛物线反射面。

5. 圆锥曲线的应用圆锥曲线在数学和实际应用中有广泛的应用,包括:- 电磁学中的电磁波传播和天线设计。

- 物理学中的天体力学和轨道计算。

- 工程学中的光学设计和结构建模。

总结:圆锥曲线是由平面与一个圆锥相交而产生的曲线,包括椭圆、双曲线和抛物线三种形式。

每种曲线都有其独特的性质和应用。

理解和掌握圆锥曲线的知识对于数学学习和实际应用都具有重要意义。

通过本文的整理,希望读者能够对圆锥曲线有更深入的了解,并能应用于相关领域的问题解决中。

圆锥曲线统一定义的应用

圆锥曲线统一定义的应用

圆锥曲线统一定义的应用一、圆锥曲线的统一定义椭圆、双曲线和抛物线统称为圆锥曲线,在解题过程中,我们经常用到它们的统一定义:平面内与一个定点F 和一条定直线l 的距离之比为常数e 的点的轨迹,当01e <<时,轨迹是椭圆;当1e >时,轨迹是双曲线;当1e =时,轨迹是抛物线.其中,点F 是曲线的焦点,直线l 是对应于焦点F 的曲线的准线,e 为离心率.圆锥曲线的统一定义把焦点、准线和离心率巧妙地联系起来,在解相关的题目时,巧妙运用统一定义,能起到化繁为简的作用,使问题简洁明快的得以解决.二、圆锥曲线统一定义的应用1.求距离问题例1 椭圆22110036x y +=上一点P 到左焦点的距离为6,则点P 到右准线的距离是多少?解:由第一定义,点P 到右焦点的距离为2614a -=,再由统一定义,得14810e d ==, ∴352d =,所以点P 到右准线的距离为352. 2.求最值问题例2 已知椭圆方程为2211612x y +=,右焦点为F ,(21)A ,为其内部一点,P 为椭圆上一动点,求P 点坐标,使2PA PF +最小.解:如图,由题意得4a =,b =,∴2c =,12c e a ==,由统一定义知2PF 即为P 到右准线的距离, 因此,要使2PA PF +最小,P 点除了应在y 轴的右侧外,还要使AP 与过P 点且与准线垂直的线共线即可,由22111612y x y =⎧⎪⎨+=⎪⎩,,,解得P 点坐标为13⎛⎫ ⎪ ⎪⎝⎭,. 3.求轨迹方程例3 点M 与点(02)F -,的距离比它到直线:30l y -=的距离小1,求点M 的轨迹方程.解:由题意可知,点M 与点(02)F -,的距离和它到直线2y =的距离相等,根据定义知,轨迹是抛物线.因此22p =,∴28p =,故点M 的轨迹方程是28x y =-.4.求参数范围问题例4 在平面直角坐标系中,若方程222(21)(23)m x y y x y +++=-+表示的曲线为椭圆,则m 的取值范围为( ). A.(01), B.(1)+∞,C.(05), D.(5)+∞,=,此式可看成点()x y ,到定点(01)-,的距离与到直线230x y -+=由统一定义<,所以51m>,故答案为D.。

圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型详解【高考必备】圆锥曲线的七种常见题型题型一:定义的应用圆锥曲线的定义包括椭圆、双曲线和抛物线。

在定义的应用中,可以寻找符合条件的等量关系,进行等价转换和数形结合。

适用条件需要注意。

例1:动圆M与圆C1:(x+1)+y=36内切,与圆C2:(x-1)+y=4外切,求圆心M的轨迹方程。

例2:方程表示的曲线是什么?题型二:圆锥曲线焦点位置的判断在判断圆锥曲线焦点位置时,需要将方程化成标准方程,然后判断。

对于椭圆,焦点在分母大的坐标轴上;对于双曲线,焦点在系数为正的坐标轴上;对于抛物线,焦点在一次项的坐标轴上,一次项的符号决定开口方向。

例1:已知方程表示焦点在y轴上的椭圆,则m的取值范围是什么?例2:当k为何值时,方程是椭圆或双曲线?题型三:圆锥曲线焦点三角形问题在圆锥曲线中,可以利用定义和正弦、余弦定理求解焦点三角形问题。

PF,PF2=n,m+n,m-n,mn,m+n四者的关系在圆锥曲线中有应用。

例1:椭圆上一点P与两个焦点F1,F2的张角为α,求△F1PF2的面积。

例2:已知双曲线的离心率为2,F1、F2是左右焦点,P 为双曲线上一点,且∠F1PF2=60,求该双曲线的标准方程。

题型四:圆锥曲线中离心率、渐近线的求法在圆锥曲线中,可以利用a、b、c三者的相等或不等关系式,求解离心率和渐近线的值、最值或范围。

在解题时需要注重数形结合思想和不等式解法。

例1:已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是多少?例2:双曲线的两个焦点为F1、F2,渐近线的斜率为±1/2,求双曲线的标准方程。

题型五:圆锥曲线的参数方程在圆锥曲线的参数方程中,需要注意参数的取值范围,可以通过消元或代数运算求解。

例1:求椭圆x^2/4+y^2/9=1的参数方程。

例2:求双曲线x^2/9-y^2/4=1的参数方程。

题型六:圆锥曲线的对称性圆锥曲线具有对称性,可以通过对称性求解问题。

圆锥曲线的性质在实际问题中的应用

圆锥曲线的性质在实际问题中的应用

圆锥曲线的性质在实际问题中的应用圆锥曲线是解析几何中的重要概念,由平面和圆锥交成的曲线形态多样,包括圆、椭圆、抛物线和双曲线。

这些曲线在数学和应用数学领域具有广泛的应用,尤其是在实际问题的建模与解决中。

本文将探讨圆锥曲线的性质以及它们在实际问题中的应用。

一、圆锥曲线的性质1. 圆的性质圆是其中最基本的圆锥曲线之一,它有以下重要性质:- 圆是由一个平面和一个与其垂直的圆锥面相交而形成的曲线。

- 圆上的所有点到圆心的距离相等,这个距离称为半径。

- 圆的直径是通过圆心的一条线段,它等于圆的半径的两倍。

2. 椭圆的性质椭圆是由一个平面与圆锥面的非垂直截面相交而形成的曲线,它具有以下性质:- 椭圆上的每一点到两个焦点的距离之和是一个常数,这个常数称为椭圆的长轴。

- 椭圆的长轴与短轴垂直,并通过椭圆的中心。

- 椭圆的离心率描述了椭圆形状的瘦胖程度,它是焦距与椭圆的长轴之比。

3. 抛物线的性质抛物线是由一个平面与圆锥面的平行截面相交而形成的曲线,它具有以下性质:- 抛物线上的每一点到焦点的距离等于该点到准线的距离。

- 抛物线是对称的,焦点和准线的垂线的交点称为抛物线的顶点。

- 抛物线的形状由焦点和准线的距离决定,距离越小,抛物线越瘦长。

4. 双曲线的性质双曲线是由一个平面与圆锥面的交线相交而形成的曲线,它具有以下性质:- 双曲线上的每一点到两个焦点的距离之差是一个常数,这个常数称为双曲线的焦距。

- 双曲线的两个分支对称,焦点和两个分支的交点称为双曲线的顶点。

- 双曲线的形状由焦距和两个分支的夹角决定。

二、圆锥曲线在实际问题中的应用1. 轨迹分析圆锥曲线可以用来描述物体在运动过程中的轨迹,如行星绕太阳的椭圆轨道、炮弹的抛物线轨迹等。

通过对圆锥曲线的研究和分析,可以帮助我们理解和预测物体的运动轨迹,进而为工程设计、空间探索等领域提供参考。

2. 光学设计在光学设计中,圆锥曲线被广泛应用于透镜的设计和制造。

椭圆曲线透镜可以使光线经过折射后汇聚到焦点上,从而实现光的聚焦。

圆锥曲线方程及其应用

圆锥曲线方程及其应用

圆锥曲线方程及其应用1. 圆锥曲线的定义圆锥曲线是平面上点的集合,满足一个固定的距离比率的条件。

圆锥曲线分为三种类型:圆、椭圆和双曲线。

每种类型都具有不同的数学特性和应用领域。

2. 圆的方程圆是一种特殊的圆锥曲线,它是所有到圆心距离相等的点的集合。

圆的方程可以用两种形式表示:标准方程和一般方程。

2.1 标准方程圆的标准方程为 `(x - h)^2 + (y - k)^2 = r^2`,其中 `(h, k)` 为圆心的坐标,`r` 为半径的长度。

2.2 一般方程圆的一般方程为 `x^2 + y^2 + Dx + Ey + F = 0`,其中 `D`、`E`、`F` 分别为方程的系数。

3. 椭圆的方程椭圆是圆锥曲线中的一种,具有两个焦点和一个长轴和短轴的特点。

椭圆的方程可以用两种形式表示:标准方程和一般方程。

3.1 标准方程椭圆的标准方程为 `(x-h)^2/a^2 + (y-k)^2/b^2 = 1`,其中 `(h, k)` 为椭圆中心的坐标,`a` 和 `b` 分别为椭圆长轴和短轴的长度。

3.2 一般方程椭圆的一般方程为 `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`,其中 `A`、`B`、`C`、`D`、`E`、`F` 分别为方程的系数。

4. 双曲线的方程双曲线是圆锥曲线中的一种,具有两个焦点和两条渐近线的特点。

双曲线的方程可以用两种形式表示:标准方程和一般方程。

4.1 标准方程双曲线的标准方程为 `(x-h)^2/a^2 - (y-k)^2/b^2 = 1`,其中 `(h, k)` 为双曲线中心的坐标,`a` 和 `b` 分别为双曲线的参数。

4.2 一般方程双曲线的一般方程为 `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`,其中 `A`、`B`、`C`、`D`、`E`、`F` 分别为方程的系数。

5. 圆锥曲线的应用圆锥曲线在数学和工程领域中有广泛的应用。

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用圆锥曲线是代数几何学中的一个重要概念,它们是平面上的曲线,由圆锥和平面的交点所生成。

圆锥曲线包括椭圆、双曲线和抛物线。

这些曲线在光学性质和应用方面都具有重要意义。

本文将详细介绍圆锥曲线的光学性质以及它们在各个领域的应用。

椭圆是圆锥曲线中的一种,它具有许多有趣的光学性质。

首先,椭圆的焦点性质使得它能够聚焦光线。

具体来说,当一束平行光线射入椭圆内部时,它们将聚焦在椭圆的一个焦点上。

这一特性为望远镜、摄影机和激光器等光学设备提供了重要的设计基础。

此外,椭圆的反射性质也是其重要特点之一,例如,当一束光线垂直入射到椭圆内部时,它将被反射到椭圆的另一个焦点上。

这一性质被应用于望远镜和卫星通信系统中。

双曲线是另一种圆锥曲线,它也具有独特的光学性质。

与椭圆不同,双曲线在光学上具有发散和聚敛的特性。

具体来说,当一束平行光线射入双曲线内部时,它们将发散到双曲线的两个焦点处。

这一性质为望远镜和摄影机的设计提供了新的思路,例如,通过在焦点处放置接收器,可以实现信号的聚焦和收集。

此外,双曲线的反射性质也为激光器和光学测量系统的设计提供了重要的参考。

抛物线是圆锥曲线中的最后一种类型,它的光学性质也非常有趣。

与椭圆和双曲线不同,抛物线具有平行入射光线经反射后汇聚于焦点的特性。

这一性质为抛物面反射望远镜和卫星接收系统的设计提供了重要基础。

此外,抛物线还被广泛应用于抛物反射天线、雷达和卫星通信系统中。

除了以上介绍的三种圆锥曲线之外,椭圆、双曲线和抛物线在光学应用中还有一些共同的特性。

例如,它们都具有镜像对称性,即曲线的一侧的光学性质与另一侧的性质相同。

这一特性为光学系统的对称设计提供了便利。

此外,这些曲线还具有无限远焦点、直线直径和基准线平行等特性,这些特性为光学系统的设计和优化提供了重要的参考。

总的来说,圆锥曲线在光学领域具有重要的应用价值。

它们的光学性质为望远镜、激光器、摄影机、卫星通信系统等光学设备的设计和优化提供了重要的参考。

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用圆锥曲线是由一个圆锥和一个平面相交而产生的曲线,包括圆、椭圆、双曲线和抛物线。

这些曲线在光学中具有重要的应用,因为它们的光学性质可以用于设计光学器件和进行光学测量。

本文将围绕圆锥曲线的光学性质及其应用展开阐述。

1.圆锥曲线的光学性质圆锥曲线在光学中具有许多重要的性质,其中包括反射、折射和像的形成等。

(1)圆锥曲线的反射性质当光线射到圆锥曲线上时,根据光的入射角等于反射角的规律,可以确定光线的反射方向。

圆锥曲线的反射性质在光学器件中有广泛的应用,比如反射镜和光学透镜等。

(2)圆锥曲线的折射性质当光线穿过圆锥曲线的介质边界时,会发生折射现象。

根据斯涅尔定律,可以确定光线的折射角和入射角之间的关系。

圆锥曲线的折射性质在光学器件设计中有着重要的应用,比如透镜、棱镜和光纤等。

(3)圆锥曲线的像的形成根据几何光学原理,当光线经过圆锥曲线反射或折射后,会形成特定位置和大小的像。

这种像的形成原理在光学成像系统中有广泛的应用,比如照相机、望远镜和显微镜等。

2.圆锥曲线的应用圆锥曲线在光学中有着广泛的应用,包括光学器件设计、光学测量和成像系统等。

(1)光学器件设计圆锥曲线的反射和折射性质可以用于设计各种光学器件,比如反射镜、透镜、棱镜、光纤和光栅等。

通过合理设计和加工圆锥曲线表面,可以实现对光线的精确控制和操纵,满足不同应用场景的需求。

(2)光学测量圆锥曲线的像的形成原理可以用于光学测量中。

比如在显微镜中,通过调整镜头的位置和焦距,可以获得清晰的放大像;在激光干涉仪中,利用圆锥曲线的反射和折射性质,可以实现对光程差的测量。

(3)成像系统圆锥曲线在成像系统中有着重要的应用。

通过合理设计和排列圆锥曲线表面,可以实现对光线的收敛和聚焦,从而获得清晰的成像效果。

比如在照相机和望远镜中,利用透镜的折射性质,可以实现对远处景物的清晰成像。

3.圆锥曲线的优化设计圆锥曲线的光学性质可以通过优化设计来满足特定的应用需求。

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用

圆锥曲线的光学性质及其应用圆锥曲线是一类由一个动点到一条定直线的距离与一个定点到定直线的距离的比例确定的几何图形。

圆锥曲线包括圆、椭圆、双曲线和抛物线等。

这些曲线在光学领域中有着重要的应用,其光学性质也是研究的重点之一。

1.圆锥曲线的光学性质在光学中,圆锥曲线具有各自独特的光学性质,其中圆、椭圆、双曲线和抛物线分别对应着不同的光学概念和应用。

(1)圆的光学性质从光学的角度来看,圆是最简单的圆锥曲线。

圆的特点是其每一点到圆心的距离都相等,因此圆对光的折射和反射没有其他圆锥曲线那么多的特殊性质。

然而,在光学元件设计中,圆形透镜和反射镜的使用非常广泛,因为圆形透镜和反射镜对光线的折射和反射都非常均匀,为光学系统的设计和制造提供了更多的便利。

(2)椭圆的光学性质椭圆是圆锥曲线中的一种,其特点是其两个焦点之间的距离之和与定直线到椭圆上任意一点的距离成比例。

在光学中,椭圆的焦距和长短轴的长度决定了椭圆镜的成像效果。

椭圆镜可以将入射到其一个焦点上的平行光线聚焦到另一个焦点上,因此在望远镜、激光器和摄影镜头等光学设备中得到了广泛应用。

(3)双曲线的光学性质双曲线是圆锥曲线中的一种,其特点是其两个焦点之间的距离之差与定直线到双曲线上任意一点的距离成比例。

在光学中,双曲线镜具有独特的成像特性,可以将入射到其一个焦点上的平行光线反射到另一个焦点上。

因此在卫星通信、望远镜和激光器等光学设备中也得到了广泛应用。

(4)抛物线的光学性质抛物线是圆锥曲线中的一种,其特点是其焦点到定直线的距离与定直线到抛物线上任意一点的距离相等。

在光学中,抛物线也具有独特的成像特性,可以将入射到其焦点上的平行光线聚焦到抛物线上的任意一点上。

因此在卫星天线、射电望远镜和摄影镜头等光学设备中也得到了广泛应用。

2.圆锥曲线在光学中的应用圆锥曲线在光学中有着广泛的应用,包括光学元件的设计、光学成像系统的构建和光学设备的制造等方面。

(1)椭圆镜的应用椭圆镜是一种具有椭圆形曲面的光学元件,其折射和反射特性使其在光学成像系统中得到了广泛的应用。

圆锥曲线光学性质在生活中的应用

圆锥曲线光学性质在生活中的应用

圆锥曲线光学性质在生活中的应用
圆锥曲线光学性质是物理学中的一个重要课题,它主要研究的是把光从物体的
一侧传送到另一侧的形式。

它主要是涉及到圆锥曲线的性质,比如光线的凹凸性和反射角度等。

圆锥曲线光学性质在日常生活中有很多具体的应用,它对人类行为或物理动作有着重大的影响。

圆锥曲线光学性质在照相机与凸镜中很常见,凸镜是改变圆锥曲线凹凸性的重
要器件。

改变它的反射角度,能够控制光线的变化,从而改变照相机与凸镜中的画面长宽比,起到放大或缩小作用。

照相机后镜也是受到圆锥曲线凹凸性影响的重要元件,改变镜面的反射角度,能够改变画面中物体的尺寸形状等。

圆锥曲线光学性质在显微镜上也有重要应用,高级显微镜中采用一系列圆锥曲
线来改变物体的反射角度,能够放大微细物体,帮助人们观测微观世界。

另外,圆锥曲线光学性质在光学媒介的传导方面也有重要作用,它在灯具、激光尾气发射器、声音系统中有广泛的应用,以达到更高效的传播和发射效果。

总而言之,圆锥曲线光学性质在日常生活中有着重要的应用作用,它可以改变
物体的凹凸性和反射角度,从而有效地控制光线的变化,从而影响人们行为、观测微观世界以及更高效地传播和发射等方面。

高中数学圆锥曲线的参数方程解析及应用实例

高中数学圆锥曲线的参数方程解析及应用实例

高中数学圆锥曲线的参数方程解析及应用实例圆锥曲线是高中数学中的重要内容,它包括椭圆、双曲线和抛物线三种类型。

在解析几何中,我们通常使用直角坐标系来描述这些曲线,但是在某些情况下,参数方程的使用会更加方便和有效。

本文将介绍圆锥曲线的参数方程解析方法,并举例说明其应用。

一、椭圆的参数方程解析椭圆是圆锥曲线中的一种,其参数方程的形式为:x = a*cosθy = b*sinθ其中,a和b分别为椭圆的长半轴和短半轴,θ为参数。

通过改变参数θ的取值范围,我们可以得到椭圆上的所有点。

例如,给定一个椭圆,长半轴为3,短半轴为2,我们可以通过参数方程来求解椭圆上的点。

当θ取值从0到2π时,我们可以得到以下一组点的坐标:(3, 0), (0, 2), (-3, 0), (0, -2)这些点恰好构成了一个椭圆。

椭圆的参数方程在实际问题中有着广泛的应用。

例如,在天文学中,行星的轨道通常可以近似为椭圆。

通过求解椭圆的参数方程,我们可以计算出行星在不同时间点的位置坐标,从而预测其轨道和运动状态。

二、双曲线的参数方程解析双曲线也是圆锥曲线中的一种,其参数方程的形式为:x = a*coshθy = b*sinhθ其中,a和b分别为双曲线的长半轴和短半轴,θ为参数。

与椭圆类似,通过改变参数θ的取值范围,我们可以得到双曲线上的所有点。

例如,给定一个双曲线,长半轴为3,短半轴为2,我们可以通过参数方程来求解双曲线上的点。

当θ取值从0到2π时,我们可以得到以下一组点的坐标:(3, 0), (3.6, 1.6), (3, 3.5), (2.4, 4.8)这些点恰好构成了一个双曲线。

双曲线的参数方程在物理学和工程学中有着重要的应用。

例如,在电磁学中,双曲线可以用来描述电场和磁场的分布。

通过求解双曲线的参数方程,我们可以计算出电场和磁场在空间中的分布情况,从而研究电磁场的性质和应用。

三、抛物线的参数方程解析抛物线是圆锥曲线中的一种,其参数方程的形式为:x = a*t^2y = 2*a*t其中,a为抛物线的参数,t为参数。

圆锥曲线在生活中的应用举例

圆锥曲线在生活中的应用举例

圆锥曲线在生活中的应用举例
圆锥曲线是一种非常值得推荐的几何曲线,它由圆周和一波束直线组成,表面完全平滑,广泛应用在多种行业,圆锥曲线在生活中的应用范围也很广,它不仅仅可以用在装饰艺术的创作,也会用来做设计者的微妙的心理和行动的营造,例如建筑外观风格、机械手绘图案、汽车设计、衣料流行趋势等,都属于圆锥曲线的应用场景。

举例而言,在建筑外观设计方面,圆锥曲线可以塑造出建筑既科技又优雅的外观,使建筑容易产生一种张力感。

旅行携带物品如行李箱、旅行袋等装饰上也可以用圆锥曲线来装饰,不仅可以为商品添加美学价值,还可以赋予清新的生活气息。

再来看看汽车设计中圆锥曲线的应用,这种曲线能为汽车提供耐看的轮廓线,无论是豪华车还是跑车,都能拥有流畅而充满张力的外观,吸引众人眼球。

圆锥曲线对汽车设计者来讲,可以运用其拐弯性,从而让汽车外形更加优雅美观。

另外,衣料也属于圆锥曲线的用途之一,通过运用圆锥曲线,裁缝们可以设计出来极具特色的服装,使服装展现出优雅的调调。

衣衫的下摆、袖口的曲线以及一些小细节的装饰,这些都需要圆锥曲线这样柔美的营造才能体现出极具设计感的风格。

总而言之,圆锥曲线在现实生活中的应用无处不在。

它不仅成功地将科普的外观和时尚的流行趋势相结合,还能赋予一些产品一种经典而柔美的元素,它们在社会风尚上具备极强的代表性,完美诠释优雅中的神秘与性感,成为很多设计师最佳的灵感之选。

圆锥曲线在生活中的应用

圆锥曲线在生活中的应用

圆锥曲线在生活中的应用
圆锥曲线在生活中的应用
什么是圆锥曲线?
圆锥曲线实际上是一种曲面。

它的特征是它的曲面不断凸出,从原点出发,到达最高点再回到原点,形成一个弧形。

它又叫哈密尔顿曲线,以伦敦大学学院理论物理学家贝尔瓦绍哈密尔顿(1805-1900)为命名。

圆锥曲线能在生活中被广泛应用,比如它可以用于飞机机翼的设计,平衡速度与空气动力的关系,从而获得最佳的滑翔能力;可以用于波纹管,采用圆锥曲线的设计,可以使水流的声音减弱,减轻水的冲洗;也可以用于升降机的层压,使得货物的装卸便利快捷地完成。

它还可以用于声设计。

一些大型会议厅设计时会采用圆锥曲线,让声音反射来帮助提高声音品质。

在医学领域,电磁脉冲治疗时支架设计可以采用圆锥曲线,减轻对患者的刺激痛苦。

此外圆锥曲线还可以用于发动机的调整,通过更加合理的设计,克服发动机的摩擦,提高燃料经济性和机动稳定性,使发动机具有更长的使用寿命。

总而言之,圆锥曲线有着广泛而有效的应用,它能在以上不同领域实现较好的效果,是一种非常了不起的发明。

浅谈圆锥曲线在现实生活中的应用

浅谈圆锥曲线在现实生活中的应用

浅谈圆锥曲线在现实生活中的应用
圆锥曲线在现实生活中是无处不在的,它们不仅仅出现在数学上,也渗透到日常生活中,有着巨大的应用价值。

首先,圆锥曲线能够被广泛应用在建筑工程中,这可以归功于它弯曲的特性,它可以用来制作室内外的圆拱形墙壁,使空间的氛围更加温馨和舒适,给人以活力和轻松的感受,充实空间的美感。

其次,圆锥曲线在造船和航空制造工程中也有不可缺少的作用,因为它能有效应对船舶受到不利气压的情况而确保船舶的安全,同时也可以沿其特有的几何形状减少飞机的气动阻力,以提高飞机的速度和效率。

此外,圆锥曲线也可以被用于滑雪道的设计之中,其存在使滑雪者在滑行中能够感受到更大的激情,经过起伏的路面能够获得更多的滑行时间,使滑行的乐趣更加丰富。

圆锥曲线在电影音乐剧中也有巨大的应用价值,以其奇迹般的几何形状引发观众的情绪,可以让观众更深刻地欣赏剧中获得更多的情感色彩。

总而言之,圆锥曲线具有真正实际的价值,它们不仅仅是数学概念,也体现在我们生活中的各个方面。

它们既能赋予空间更多的美感,又能够提升船舶和飞机的安全性,它们也为滑雪者和演艺人员带来更加美妙的感受。

圆锥曲线的好处

圆锥曲线的好处

圆锥曲线在数学和科学中有许多重要的应用,以下是其中一些好处:
1. 描述天体运动:圆锥曲线可以用来描述天体的轨道,例如行星、卫星和彗星的运动。

这种描述可以帮助天文学家预测天体的位置和运动。

2. 设计工程结构:在工程中,圆锥曲线可以用来设计曲线形状的结构,例如拱形桥、拱门和穹顶。

这些结构可以提供更大的强度和稳定性。

3. 优化信号传输:圆锥曲线可以用来优化信号传输,例如在天线设计中。

通过使用圆锥曲线形状的天线,可以提高信号的强度和方向性。

4. 研究物理学:圆锥曲线在物理学中有许多应用,例如在研究电场和磁场的分布时。

圆锥曲线可以用来描述电场和磁场的形状和强度。

5. 数据可视化:圆锥曲线可以用来可视化数据,例如在统计和数据分析中。

通过使用圆锥曲线形状的图表,可以更好地展示数据的分布和趋势。

总之,圆锥曲线在数学和科学中有许多重要的应用,它们可以帮助我们更好地理解和解决各种问题。

圆锥曲线在现实生活中的运用

圆锥曲线在现实生活中的运用

圆锥曲线在现实生活中的运用
圆锥曲线的光学性质广泛应用于光照领域和能源领域等。

例如,探照灯往往设计成抛物面,将光源设在焦点处从而得到平行光,有效减少了光线的发散。

另一个例子是太阳灶,这次是反过来,接收平行光而将待加热物体放于焦点处。

类似的还有电视机天线的“大锅盖”也是利用这个圆锥曲线光学性质加强信号。

用以刻画客观世界中物质的运动宏观方面,天体运行的轨迹包含了三种圆锥曲线:微观方面,卢瑟福散射中的粒子沿双曲线运动:玻尔的“电子在核外绕核作圆周运动”的量子化轨道也被推广到椭圆轨道。

现实生活中,我们知道,斜抛射物体在仅受地球引力作用、不计空气阻力下的运动轨迹是抛物线,而简谐振动与液体流动中也都含有圆锥曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目第八章圆锥曲线圆锥曲线的应用 高考要求1阅读理解数学应用题给出的方式是材料的陈述,而不是客体的展示也就是说,所考的应用题通常已进行过初步加工,并通过语言文字、符号或图形展现在考生面前,要求考生读懂题意,理解实际背景,领悟其数学实质2数学建模,即将应用题的材料陈述转化成数学问题这就要抽象、归纳其中的数量关系,并把这种关系用数学式子表示出来3数学求解根据所建立数学关系的知识系统,解出结果,从而得到实际问题的解答通过圆锥曲线在现实生活中的应用,培养学生解决应用问题的能力 知识点归纳解析几何在日常生活中应用广泛,如何把实际问题转化为数学问题是解决应用题的关键,而建立数学模型是实现应用问题向数学问题转化的常用方法本节主要通过圆锥曲线在实际问题中的应用,说明数学建模的方法,理解函数与方程、等价转化、分类讨论等数学思想 题型讲解例 1 设有一颗彗星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此彗星离地球相距m 万千米和34m 万千米时,经过地球和彗星的直线与椭圆的长轴夹角分别为2π和3π,求该彗星与地球的最近距离分析:本题的实际意义是求椭圆上一点到焦点的距离,一般的思路:由直线与椭圆的关系,列方程组解之;或利用定义法抓住椭圆的第二定义求解同时,还要注意结合椭圆的几何意义进行思考仔细分析题意,由椭圆的几何意义可知:只有当该彗星运行到椭圆的较近顶点处时,彗星与地球的距离才达到最小值即为a -c ,这样把问题就转化为求a ,c 或a -c解:建立如下图所示直角坐标系,设地球位于焦点F (-c ,0)处,椭圆的方程为22ax +22by =1,当过地球和彗星的直线与椭圆的长轴夹角为3π时,由椭圆的几何意义可知,彗星A 只能满足∠xF A =3π(或∠xF A ′=3π)作AB ⊥Ox 于B ,则|FB |=21|F A |=32m ,故由椭圆的第二定义可得m =ac (ca2-c )① 且34m =ac (ca2-c +32m )②两式相减得31m =ac ²32m ,∴a =2c代入①,得m =21(4c -c )=23c ,∴c =32m ∴a -c =c =32m答:彗星与地球的最近距离为32m 万千米点评: (1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个端点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是a -c ,另一个是a +c(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质例2 某工程要挖一个横断面为半圆的柱形的坑,挖出的土只能沿道路AP 、BP 运到P 处(如图所示)已知P A =100 m ,PB =150 m ,∠APB =60°,试说明怎样运土最省工分析:首先抽象为数学问题,半圆中的点可分为三类:(1)沿AP 到P 较近;(2)沿BP 到P 较近;(3)沿AP 、BP 到P 同样远 显然,第三类点是第一、二类的分界点,设M 是分界线上的任意一点则有|MA |+|P A |=|MB |+|PB |于是|MA |-|MB |=|PB |-|P A |=150-100=50 从而发现第三类点M 满足性质:点M 到点A 与点B 的距离之差等于常数50,由双曲线定义知,点M 在以A 、B 为焦点的双曲线的右支上,故问题转化为求此双曲线的方程解:以AB 所在直线为x 轴,线段AB 的中点为原点建立直角坐标系xOy ,设M (x ,y )是沿AP 、BP 运土同样远的点,则|MA |+|P A |=|MB |+|PB |,∴|MA |-|MB |=|PB |-|P A |=50 在△P AB 中,由余弦定理得|AB |2=|PA |2+|PB |2-2|PA ||PB |cos60°=17500, 且50<|AB |由双曲线定义知M 点在以A 、B 为焦点的双曲线右支上,设此双曲线方程为22ax -22by =1(a >0,b >0)∵2a =50,4c 2=17500,c 2=a 2+b 2, 解之得a 2=625,b 2=3750∴M 点轨迹是6252x-37502y=1(x ≥25)在半圆内的一段双曲线弧于是运土时将双曲线左侧的土沿AP 运到P 处,右侧的土沿BP 运到P 处最省工点评:(1)本题是不等量与等量关系问题,涉及到分类思想,通过建立直角坐标系,利用点的集合性质,构造圆锥曲线模型(即分界线)从而确定出最优化区域(2)应用分类思想解题的一般步骤:①确定分类的对象;②进行合理的分类;③逐类逐级讨论;④归纳各类结果例3 根据我国汽车制造的现实情况,一般卡车高3 m ,宽16 m 现要设计横断面为抛物线型的双向二车道的公路隧道,为保障双向行驶安全,交通管理规定汽车进入隧道后必须保持距中线04 m 的距离行驶已知拱口AB 宽恰好是拱高OC 的4倍,若拱宽为a m ,求能使卡车安全通过的a 的最小整数值分析:根据问题的实际意义,卡车通过隧道时应以卡车沿着距隧道中线04 m 到2 m 间的道路行驶为最佳路线,因此,卡车能否安全通过,取决于距隧道中线2 m (即在横断面上距拱口中点2 m )处隧道的高度是否够3 m ,据此可通过建立坐标系,确定出抛物线的方程后求得解:如图,以拱口AB 所在直线为x 轴,以拱高OC 所在直线为y 轴建立直角坐标系,由题意可得抛物线的方程为x 2=-2p (y -4a ),∵点A (-2a ,0)在抛物线上,∴(-2a )2=-2p (0-4a ),得p a∴抛物线方程为x 2=-a (y -4a )取x =16+04=2,代入抛物线方程,得22=-a (y -4a ),y 2由题意,令y >3,得aa4162->3,∵a >0,∴a 2-12a -16>0∴a >又∵a ∈Z ,∴a 应取14,15,16,…答:满足本题条件使卡车安全通过的a 的最小正整数为14 m点评: 本题的解题过程可归纳为两步:一是根据实际问题的意义,确定解题途径,得到距拱口中点2 m 处y 的值;二是由y >3通过解不等式,结合问题的实际意义和要求得到a 的值,值得注意的是这种思路在与最佳方案有关的应用题中是常用的例4 如图,某隧道设计为双向四车道,车道总宽22 m ,要求通行车辆限高45 m ,隧道全长25 km ,隧道的拱线近似地看成半个椭圆形状(1)若最大拱高h 为6 m ,则隧道设计的拱宽l 是多少? (2)若最大拱高h 不小于6 m ,则应如何设计拱高h 和拱宽l ,才能使半个椭圆形隧道的土方工程量最小?(半个椭圆的面积公式为S =4πlh ,柱体体积为底面积乘以高本题结果均精确到01 m )(1)解:如下图建立直角坐标系,则点P (11,45),椭圆方程为22ax +22by =1将b =h =6与点P 坐标代入椭圆方程,得 a =7744,此时l =2a =7788≈333因此隧道的拱宽约为333 m(2)解法一:由椭圆方程22ax +22by =1,得2211a+225.4b=1因为2211a+225.4b≥ab5.4112⨯⨯,即ab ≥99,且l =2a ,h =b ,所以S =4πlh =2πab π99当S 取最小值时,有2211a=225.4b=21,得a =112,b 此时l =2a =222≈311,h =b ≈64故当拱高约为64 m 、拱宽约为311 m 时,土方工程量最小解法二:由椭圆方程22ax +22by =1,得2211a+225.4b=1于是b 2=48122aa 2b 2=481(a 2-121+12112122-a+242)≥481(22121+242)=81³121,即ab ≥99,当S 取最小值时, 有a 2-2得a =112,b =229,以下同解法一例5 一摩托车手欲飞跃黄河,设计摩托车沿跑道飞出时前进方向与水平方向的仰角是12°,飞跃的水平距离是35 m ,为了安全,摩托车在最高点与落地点的垂直落差约10 m ,那么,骑手沿跑道飞出时的速度应为多少?(单位是 km/h ,精确到个位)(参考数据:sin12°=02079,cos12°=09781,t an12°=02125) 分析:本题的背景是物理中的运动学规律,摩托车离开跑道后的运动轨迹为抛物线,它是由水平方向的匀速直线运动与竖直方向上的上抛运动合成的,它们运行的位移都是时间t 的函数,故应引入时间t ,通过速度v 的矢量分解来寻找解决问题的途径解: 摩托车飞离跑道后,不考虑空气阻力,其运动轨迹是抛物线,轨迹方程是x =vt cos12°,y =vt sin12°-21³98t 2其中v 是摩托车飞离跑道时的速度,t 是飞行时间,x 是水平飞行距离,y 是相对于起始点的垂直高度,将轨迹方程改写为y =-212)12(cos 1v ⋅︒³98x 2+t an12°²x ,即y =-5121922vx +02125x当x ≈00207v 2时,取得y max ≈00022v 2当x =35时,y 落=-6274327521v+74375∵y max -y 落=10, 00022v 2+6274327521v-174375=0,解得v ≈1944 m/s 或v ≈8688 m/s若v ≈8688 m/s ,则x =156246 m ,与题目不符, 而v ≈1944 m/s ,符合题意,为所求解 故v ≈1944 m/s=69984 km/h ≈70 km/h答:骑手沿跑道飞出时的速度应为70 km/h 点评:本题直接构造y 是x 的函数解析式很困难,应引入适当的参数(时间t )作媒介,再研究x 与y 是怎样随参数变化而变化的,问题往往就容易解决了这种辅助变量的引入要具体问题具体分析,以解题的简捷为原则例6 A 、B 、C 是我方三个炮兵阵地,A 在B 正东6 km ,C 在B 正北偏西30°,相距4 km ,P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B 、C 两地比A 距P 地远,因此4 s 后,B 、C 才同时发现这一信号,此信号的传播速度为1 km/s ,A 若炮击P 地,求炮击的方位角解:如下图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则B (-3,0)、A (3,0)、C (-5,23)因为|PB |=|PC |,所以点P 在线段BC 的垂直平分线上因为k BC =-3,BC 中点D (-4,3), 所以直线PD 的方程为y -3=31(x +4) ①又|PB |-|P A |=4,故P 在以A 、B 为焦点的双曲线右支上设P (x ,y ),则双曲线方程为42x-52y=1(x ≥0) ②联立①②,得x =8,y =53,所以P (8,53)因此k P A =3835-=故炮击的方位角为北偏东30° 小结:解决圆锥曲线应用问题时,要善于抓住问题的实质,通过建立数学模型,实现应用性问题向数学问题的顺利转化;要注意认真分析数量间的关系,紧扣圆锥曲线概念,充分利用曲线的几何性质,确定正确的问题解决途径,灵活运用解析几何的常用数学方法,求得最终完整的解答 学生练习1一抛物线型拱桥,当水面离桥顶2 m 时,水面宽4 m ,若水面下降1 m 时,则水面宽为m B 26m C 45 m D 9 m解析:建立适当的直角坐标系,设抛物线方程为x 2=-2Py (P >0),由题意知,抛物线过点(2,-2),∴4=2p ³2∴p =1∴x 2=-2y 当y 0=-3时,得x 02=6∴水面宽为2|x 0|=26答案:B2某抛物线形拱桥的跨度是20 m ,拱高是4 m ,在建桥时每隔4 m 需用一柱支撑,其中最长的支柱是A 4 mB 384 mC 148 mD 292 m解析:建立适当坐标系,设抛物线方程为x 2=-2py (p >0),由题意知其过定点(10,-4),代入x 2=-2py ,得p =225∴x 2=-25y 当x 0=2时,y 0=254-,∴最长支柱长为4-|y 0|=4-254=384(m )答案:B3天安门广场,旗杆比华表高,在地面上,观察它们顶端的仰角都相等的各点所在的曲线是A 椭圆B 圆C 双曲线的一支D 抛物线解析:设旗杆高为m ,华表高为n ,m >n 旗杆与华表的距离为2a ,以旗杆与地面的交点和华表与地面的交点的连线段所在直线为x 轴、垂直平分线为y 轴建立直角坐标系设曲线上任一点M (x ,y ),由题意2222)()(ya x y a x +-++=nm ,即(m 2-n 2)x 2+(m 2-n 2)y 2-2a (m 2-n 2)x + (m 2-n 2)a 2=0答案:B41998年12月19日,太原卫星发射中心为摩托罗拉公司(美国)发射了两颗“铱星”系统通信卫星卫星运行的轨道是以地球中心为一个焦点的椭圆,近地点为m km ,远地点为 n km ,地球的半径为R km ,则通信卫星运行轨道的短轴长等于A 2))((R n R m ++ B))((R n R m ++ C 2mn D mn解析:由题意22Rn m ++-c =m +R , ①22Rn m +++c =n +R , ②∴c =2m n -,2b =222)2()22(m n Rn m --++答案:A5如图,花坛水池中央有一喷泉,水管OP =1 m ,水从喷头P 喷出后呈抛物线状先向上至最高点后落下,若最高点距水面2 m ,P 距抛物线对称轴1 m ,则在水池直径的下列可选值中,最合算的是A 25 mB 4 mC 5 mD 6 m解析:以O 为原点,OP 所在直线为y 轴建立直角坐标系(如下图),则抛物线方程可设为y =a (x -1)2+2,P 点坐标为(0,1),∴1=a +2∴a =-1 ∴y =-(x -1)2+2令y =0,得(x -1)2=2,∴x =1∴水池半径OM =2+1≈2414(m )因此水池直径约为2³|OM |=4828(m ) 答案:C6探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点,已知灯口直径是 60 cm ,灯深40 cm ,则光源到反射镜顶点的距离是____ cm解析:设抛物线方程为y 2=2px (p >0),点(40,30)在抛物线y 2=2px上,∴900=2p ³40∴p =445∴2p =845因此,光源到反射镜顶点的距离为845cm 答案:8457在相距1400 m 的A 、B 两哨所,听到炮弹爆炸声音的时间相差3 s,已知声速340 m/s 炮弹爆炸点所在曲线的方程为________________解析:设M (x ,y )为曲线上任一点, 则|MA |-|MB |=340³3=1020<1400∴M 点轨迹为双曲线,且a =21020=510,c =21400=700∴b 2=c 2-a 2=(c +a )(c -a )=1210³190∴M 点轨迹方程为22510x-19012102⨯y=1答案:22510x-19012102⨯y=18一个酒杯的轴截面是抛物线的一部分,它的方程是x 2=2y (0≤y ≤20)在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的范围为________解析:玻璃球的轴截面的方程为x 2+(y -r )2=r 2由x 2=2y ,x 2+(y -r )2=r 2,得y 2+2(1-r )y =0,由Δ=4(1-r )2=0,得r =1答案:0<r ≤19河上有一抛物线型拱桥,当水面距拱顶5 m 时,水面宽为8 m ,一小船宽4 m ,高2 m ,载货后船露出水面上的部分高43 m ,问水面上涨到与抛物线拱顶相距____________m 时,小船不能通航解析:建立直角坐标系,设抛物线方程为x 2=-2py (p >0)将点(4,-5)代入求得p∴x 2=-516y将点(2,y 1)代入方程求得y 1=5∴43+|y 1|=43+45=2(m )答案:210下图是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛水和食物的容器放在抛物线的焦点处,容器由若干根等长的铁筋焊接在一起的架子支撑已知镜口圆的直径为12 m ,镜深2 m ,(1)建立适当的坐标系,求抛物线的方程和焦点的位置; (2)若把盛水和食物的容器近似地看作点,试求每根铁筋的长度解:(1)如下图,在反光镜的轴截面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x 轴垂直于镜口直径由已知,得A 点坐标是(2,6), 设抛物线方程为y 2=2px (p >0), 则36=2p ³2,p =9所以所求抛物线的标准方程是y 2=18x ,焦点坐标是F (29,0)(2)∵盛水的容器在焦点处,∴A 、F 两点间的距离即为每根铁筋长|AF |=226)292(+-=213(或|AF |=29+2=213)故每根铁筋的长度是65 m11有一种电影放映机的放映灯泡的玻璃上镀铝,只留有一个透明窗用作通光孔,它的反射面是一种曲线旋转而成的曲面的一部分,灯丝定在某个地方发出光线反射到卡门上,并且这两物体间距离为45 cm ,灯丝距顶面距离为28 cm ,为使卡门处获得最强烈的光线,在加工这种灯泡时,应使用何种曲线可使效果最佳?试求这个曲线方程分析:由于光线从灯丝发出,反射到卡门上光线应交于一点,这就是光线聚焦,只要把灯丝、卡门安在椭圆的2个焦点上,反射面采用旋转椭球面就可以使光线经反射后聚焦于卡门处,因而可获得强光解:采用椭圆旋转而成的曲面,如下图建立直角坐标系,中心截口BAC 是椭圆的一部分,设其方程为22ax +22by =1,灯丝距顶面距离为p ,由于△BF 1F 2为直角三角形,因而,|F 2B |2=|F 1B |2+|F 1F 2|2=p 2+4c 2,由椭圆性质有|F 1B |+|F 2B |=2a ,所以a =21(p +224cp+),a =21(28+225.48.2+)≈405 cm ,b =22c a -≈337 m ∴所求方程为2205.4x+2237.3y=112某大桥在涨水时有最大跨度的中央桥孔如图所示,已知上部呈抛物线形,跨度为20 m ,拱顶距水面6 m ,桥墩高出水面4 m ,现有一货船欲过此孔,该货船水下宽度不超过18 m ,目前吃水线上部分中央船体高5 m ,宽16 m ,且该货船在现在状况下还可多装1000 t 货物,但每多装150 t 货物,船体吃水线就要上升004 m ,若不考虑水下深度,该货船在现在状况下能否直接或设法通过该桥孔?为什么?解:如下图,建立直角坐标系,设抛物线方程为y =ax 2,则A (10,-2)在抛物线上,∴-2=ax 2,a =-501,方程即为y =-501x 2让货船沿正中央航行∵船宽16 m ,而当x =8时,y =-501²82=128 m ,∴船体在x =±8之间通过由B (8,-128), ∴B 点离水面高度为6+(-128)=472(m ),而船体水面高度为5 m , ∴无法直接通过又5-472=028(m ),028÷004=7,而150³7=1050(t ),∴要用多装货物的方法也无法通过,只好等待水位下降 13 2003年10月15日9时,“神舟”五号载人飞船发射升空,于9时9分50秒准确进入预定轨道,开始巡天飞行该轨道是以地球的中心F 2为一个焦点的椭圆选取坐标系如图所示,椭圆中心在原点近地点A 距地面200 km ,远地点B 距地面350 km 已知地球半径R =6371 km (如图)(1)求飞船飞行的椭圆轨道的方程;(2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推进舱分离,结束巡天飞行,飞船共巡天飞行了约6³105 km ,问飞船巡天飞行的平均速度是多少?(结果精确到1 km/s )(注:km/s 即千米/秒)解:(1)设椭圆的方程为22ax +22by =1由题设条件得a -c =|OA |-|OF 2|=|F 2A |=6371+200=6571, a +c =|OB |+|OF 2|=|F 2B |=6371+350=6721 解得a =6646,c =75,所以a 2=44169316,b 2=a 2-c 2=(a +c )(a -c )=6721³6571=44163691∴所求椭圆的方程为441693162x+441636912y=1(注:由44163691≈66455768得椭圆的方程为226646x+226.6645y=1,也是正确的)(2)从15日9时到16日6时共21个小时,即21³3600 s 减去开始的9分50 s ,即9³60+50=590(s ),再减去最后多计的1分钟,共减去590+60= 650(s ),得飞船巡天飞行的时间是21³3600-650=74950(s ),平均速度是74950600000≈8(km/s )所以飞船巡天飞行的平均速度是8 km/s14中国跳水运动员进行10 m 跳台跳水训练时,身体(看成一点)在空中的运动路线为如下图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件)在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面1032 m ,入水处距池边的距离为4m ,同时,运动员在距水面高度为5 m 或5 m 以上时,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误(1)求这条抛物线的解析式 (2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为353m ,问此次跳水会不会失误?并通过计算说明理由(3)要使此次跳水不至于失误,该运动员按(1)中抛物线运行,且运动员在空中调整好入水姿势时,距池边的水平距离至多应为多少?解:(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y =ax 2+bx +c由题意知,O 、B 两点的坐标依次为(0,0)、(2,-10),且顶点A 的纵坐标为32,所以有c =0,ab ac 442=32,4a +2b +c =-10解之得a =-625, b =310,c =0或a =-23,b =-2,c =0∵抛物线对称轴在y 轴右侧,∴-ab 2>0又∵抛物线开口向下,∴a <0 ∴b >0,后一组解舍去∴a =-625,b =310,c =0∴抛物线的解析式为y =-625x 2+310x(2)当运动员在空中距池边的水平距离为353m 时,即x =353-2=58时,y =(-625)³(58)2+310³58=-316,∴此时运动员距水面的高为 10-316=314<5因此,此次跳水会出现失误(3)当运动员在x 轴上方,即y >0的区域内完成动作并做好入水姿势时,当然不会失误,但很难做到∴当y <0时,要使跳水不出现失误, 则应有|y |≤10-5,即-y ≤5∴有625x 2-310x ≤5,解得2-34≤x ≤∴运动员此时距池边的距离至多为2+2+34=4+34m课前后备注。

相关文档
最新文档