解析几何练习题2
第二章《平面解析几何初步》同步练习二(新人教B版必修2)[1]
第二章《平面解析几何初步》一、选择题(解析:选D.由3a (a -23)+(-1)×1=0,得a =-13或a =1.2.直线l 1:ax -y +b =0,l 2:bx -y +a =0(a ≠0,b ≠0,a ≠b )在同一坐标系中的图形大致是图中的( )解析:选C.直线l 1:ax -y +b =0,斜率为a ,在y 轴上的截距为b ,设k 1=a ,m 1=b .直线l 2:bx -y +a =0,斜率为b ,在y 轴上的截距为a , 设k 2=b ,m 2=a .由A 知:因为l 1∥l 2,k 1=k 2>0,m 1>m 2>0,即a =b >0,b >a >0,矛盾. 由B 知:k 1<0<k 2,m 1>m 2>0,即a <0<b ,b >a >0,矛盾. 由C 知:k 1>k 2>0,m 2>m 1>0,即a >b >0,可以成立. 由D 知:k 1>k 2>0,m 2>0>m 1,即a >b >0,a >0>b ,矛盾. 3.解析:选 B.点A 关于x 轴对称点A ′(-1,-1),A ′与圆心(5,7)的距离为5+12+7+12=10.∴所求最短路程为10-2=8.4.解析:选D.圆x 2+y 2=1的圆心为(0,0),半径为1,圆x 2+y 2=4的圆心为(0,0),半径为2,则圆心距0<2-1=1,所以两圆内含.5.解析:选B.圆心(a,2)到直线l :x -y +3=0的距离d =|a -2+3|2=|a +1|2,依题意⎝ ⎛⎭⎪⎫|a +1|22+⎝ ⎛⎭⎪⎫2322=4,解得a =2-1. 6.解析:选D.∵所求直线平行于直线2x +3y -6=0, ∴设所求直线方程为2x +3y +c =0, 由|2-3+c |22+32=|2-3-6|22+32,∴c =8,或c =-6(舍去),∴所求直线方程为2x +3y +8=0. 7.解析:选B.数形结合答案容易错选D ,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.解析:选C.直线y =ax +1过定点(0,1),而该点一定在圆内部. 9.解析:选B.∵圆C 的圆心为(1,1),半径为 5. ∴|PC |=5-12+4-12=5,∴|PA |=|PB |=52-52=25,∴S =12×25×5×2=10.10. 解析:选C.圆x 2+y 2-4x -2y -4=0可化为(x -2)2+(y -1)2=9,直线mx +2ny -4=0始终平分圆周,即直线过圆心(2,1),所以2m +2n -4=0,即m +n =2,mn =m (2-m )=-m2+2m =-(m -1)2+1≤1,当m =1时等号成立,此时n =1,与“m ≠n ”矛盾,所以mn <1.11解析:选C. 曲线y =1-x 2表示单位圆的上半部分,画出直线l 与曲线在同一坐标系中的图象,可观察出仅当直线l 在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l 与曲线有两个交点.当直线l 过点(-1,0)时,m =1;当直线l 为圆的上切线时,m =2(注:m =-2,直线l 为下切线). 12.解析:选A.∵点P 在圆上,∴切线l 的斜率k =-1k OP =-11-42+2=43∴直线l 的方程为y -4=43(x +2),即4x -3y +20=0. 又直线m 与l 平行,∴直线m 的方程为4x -3y =0.故两平行直线的距离为d =|0-20|42+-32=4.二、填空题13解析:易求得AB 的中点为(0,0),斜率为-1,从而其垂直平分线为直线y =x ,根据圆的几何性质,这条直线应该过圆心,将它与直线x +y -2=0联立得到圆心O (1,1),半径r =|OA |=2.答案:(x -1)2+(y -1)2=414.解析:过P 作圆的切线PC ,切点为C ,在Rt △POC 中,易求|PC |=3,由切割线定理,|PA |·|PB |=|PC |2=3.答案:3 15.解析:已知直线斜率k 1=-2,直线ax +2y +c =0的斜率为-a2.∵两直线垂直,∴(-2)·(-a 2)=-1,得a =-1.圆心到切线的距离为5,即|c |5=5,∴c =±5,故ac =±5.答案:±5 16..解析:将圆x 2+y 2-2x +4y +4=0化为标准方程,得(x -1)2+(y +2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d =|3×1+4×-2+m |32+42=|m -5|5>1,∴m <0或m >10.答案:(-∞,0)∪(10,+∞)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤) 17.解:AC 边上的高线2x -3y +1=0,所以k AC =-32.所以AC 的方程为y -2=-32(x -1),即3x +2y -7=0,同理可求直线AB 的方程为x -y +1=0. 下面求直线BC 的方程, 由⎩⎪⎨⎪⎧3x +2y -7=0,x +y =0,得顶点C (7,-7), 由⎩⎪⎨⎪⎧x -y +1=0,2x -3y +1=0,得顶点B (-2,-1).所以k BC =-23,直线BC :y +1=-23(x +2),即2x +3y +7=0.18.解:圆C 的方程可化为(x -2)2+(y -2)2=1.(1)圆心C 关于x 轴的对称点为C ′(2,-2),过点A ,C ′的直线的方程x +y =0即为光线l 所在直线的方程.(2)A 关于x 轴的对称点为A ′(-3,-3), 设过点A ′的直线为y +3=k (x +3).当该直线与圆C 相切时,有|2k -2+3k -3|1+k2=1,解得k =43或k =34,所以过点A ′的圆C 的两条切线分别为y +3=43(x +3),y +3=34(x +3).令y =0,得x 1=-34,x 2=1,所以在x 轴上反射点M 的横坐标的取值范围是[-34,1].19.解:(1)方程x 2+y 2-2x -4y +m =0,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0. 设M (x 1,y 1),N (x 2,y 2),则 ⎩⎪⎨⎪⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得16-8×165+5×m +85=0,解之得m =85.(3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125.∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45,∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |=⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165.20.解:(1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|PA |,所以|OP |2=|OQ |2+|PQ |2 =1+|PA |2,所以a 2+b 2=1+(a -2)2+(b -1)2, 故2a +b -3=0.(2)由(1)知,P 在直线l :2x +y -3=0上, 所以|PQ |min =|PA |min ,为A 到直线l 的距离,所以|PQ |min =|2×2+1-3|22+12=255.(或由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2-12a +8=5(a -1.2)2+0.8,得|PQ |min =255.)(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O 到直线l 的距离减去圆O 的半径,圆心P 为过原点与l 垂直的直线l ′与l 的交点P 0,所以r =322+12-1=355-1, 又l ′:x -2y =0,联立l :2x +y -3=0得P 0(65,35).所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.21.有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程.解:法一:由题意可设所求的方程为(x -3)2+(y -6)2+λ(4x -3y +6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得λ=-1,所以所求圆的方程为x 2+y 2-10x -9y +39=0.法二:设圆的方程为(x -a )2+(y -b )2=r 2, 则圆心为C (a ,b ),由|CA |=|CB |,CA ⊥l ,得⎩⎪⎨⎪⎧3-a 2+6-b 2=r 2,5-a 2+2-b 2=r 2,b -6a -3×43=-1,解得⎩⎨⎧a =5,b =92r 2=254.所以所求圆的方程为(x -5)2+(y -92)2=254.法三:设圆的方程为x 2+y 2+Dx +Ey +F =0,由CA ⊥l ,A (3,6),B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E 2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.所以所求圆的方程为x 2+y 2-10x -9y +39=0.法四:设圆心为C ,则CA ⊥l ,又设AC 与圆的另一交点为P ,则CA 的方程为y -6=-34(x -3),即3x +4y -33=0.又因为k AB =6-23-5=-2,所以k BP =12,所以直线BP 的方程为x -2y -1=0.解方程组⎩⎪⎨⎪⎧3x +4y -33=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =7,y =3.所以P (7,3).所以圆心为AP 的中点(5,92),半径为|AC |=52.所以所求圆的方程为(x -5)2+(y -92)2=254.22.如图在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被C 2截得的弦长相等.试求所有满足条件的点P 的坐标.解:(1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为圆C 1被直线l 截得的弦长为23,所以d =22-32=1.由点到直线的距离公式得d =|1-k -3-4|1+k2,从而k (24k +7)=0,即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ).因为圆C 1和C 2的半径相等,且圆C 1被直线l 1截得的弦长与圆C 2被直线l 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k -3-a -b |1+k2=|5+1k4-a -b |1+1k 2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5,因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧a +b -2=0,b -a +3=0,或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎪⎨⎪⎧a =52,b =-12,或⎩⎪⎨⎪⎧a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭-32,132.经检验点P 1和P 2满足题目条件.。
MBA联考数学-平面几何与解析几何(二)
MBA联考数学-平面几何与解析几何(二)一、问题求解(总题数:37,分数:111.00)1.三角形的周长为10,有一条边长为4,则它的面积的最大值为( ).A.B.C.D.E. √利用13题的结论.2.设A,B是两个圆(x-2)2+(y+3)2=5和(x-1)2+(y+1)2=3的交点.求过A,B的直线方程.填空项1:__________________ (正确答案:2x-4y-9=0.)见30题.3.两个半径都为r的圆盘的圆心间的距离也是r,则它们的公共部分的面积为( ).A.B.C.D. √E.见图6-87,所求面积=两个扇形面积-菱形面积.4.如图6-58中,△ABC的面积为1,且△AEC,△DEC,△BED的面积相等,则△AED与△ABC的面积之比是( ).A.B. √C.D.E.5.过点A(2,0)向圆x2+y2=1作两条切线AM和AN,(如图6-59),则两切线与圆所围成的图形面积(图中阴影部分)为( ).A.B.C.D.E. √6.球内接等边圆锥体积与球体积之比为( ).A.B.C.D. √E.7.在边长为1的正方形ABCD内画两条半径1的圆弧:以A为圆心的BD弧,以B为圆心的AC弧,它们的交点为E,如图6-66.则曲边三角形CDE的面积为( ).A.B.C. √D.E.如图6-93,连接BE,AE,△ABE是等边三角形,∠CBE=∠EAD=30°.S曲边△CDE=S正方形ABCD-2S扇形BCE-S△ABE8.过点A(-1,2),且在两个坐标轴上的截距相等的直线方程为( ).(A) x-y+3=0 (B) x+y-1=0 (C) x-y+3=0或y=-2x(D) x+y-1=0或y=-2x (E) x-y+1=0或y=2xA.B.C.D. √E.(1)直线过原点.y=kx,点A(-1,2)在直线上,k=-2,y=-2x.9.已知两点P1(3,-2),P2(-9,4),线段P1P2与25轴的交点Pλ,则有( ).A.B.C.D. √E.10.已知△ABC的两个顶点的坐标:A(1,0)和B(5,0),并且C在Y轴上,要使得△ABC的外接圆和Y轴相切,则C的坐标为( ).A.B. √C.D.E.11.直线ax-y+3=0与圆(x-1)2+(y-2)2=4a=( ).(A) -1 (B) 1 (C) 2 (D) O (E) 以上结论均不正确A.B.C.D. √E.12.已知点M1(6,2)和M2(1,7),直线y=mx-7与线段M1M2的交点M3:2,则m的值为( ).A.B.C.D.E. √13.球的表面积为S,则它的体积为( ).A.B.C. √D.E.14.等边圆柱轴截面的面积是32,那么它的侧面积是( ).(A) 8π (B) 16π (C) 32π (D) 48π (E) 64πA.B.C. √D.E.15.一个棱长为3 cm的正方体所有表面油成红漆,再切割成棱长为1 cm的小正方体,仅一面为红色的小正方体的个数为( ).(A) 4 (B) 6 (C) 8 (D) 10 (E) 12A.B. √C.D.E.16.平行四边形ABCD的边AB和BC所在直线分别为2x-y-5=0,3x+2y+6=0BD所在直线的方程.填空项1:__________________ (正确答案:17x+2y-2=0.)用直线束比较简单.17.如图6-70,直角△ABC中,AB为圆的直径,且AB=20,若面积Ⅰ比面积Ⅱ大7,那么△ABC的面积S△ABC 等于( ).(A) 70π (B) 50π (C) 50π+7 (D) 50π-7 (E) 70πA.B.C.D. √E.18.把一个半球削成底半径为球半径一半的圆柱,则球体积与圆柱体积之比为( ).A.B.C.D.E. √19.A,B是两个不同点,则一个圆到A和B距离相等的切线( ).(A) 有2条,3条或4条 (B) 一定有4条 (C) 有2条或4条(D) 一定有2条 (E) 一定有3条A. √B.C.D.E.到A和B距离相等的切线有两类,和AB平行或过AB的中点.前者有两条,后者的条数随AB的中点的位置而不同.20.直角三角形的一条直角边长度等于斜边长度的一半,则它的外接圆面积与内切圆面积的比值为( ).A.B.C.D.E. √21.实数x,y,满足(x-1)2+(y+2)2=5,求x-2y的最大值.填空项1:__________________ (正确答案:10.)最大值在平行于x-2y=0的切线(下面那条)上达到.22.两圆C1:x2+y2-2x+10y-24=0和C2:x2+y2+2x+2y-8=0公共弦所在的直线方程是( ).(A) x+2y+4=0 (B) x-2y-4=0 (C) x+2y-4=0(D) x-2y+4=0 (E) 以上结果均不正确A.B.C.D. √E.C2-C1:4x-8y+16=0,x-2y+4=0.23.如图6-71,直角梯形ABCD上底长5,下底长7,高为4,△ADE,△ABF与四边形AECF面积相等,则△AEF的面积是( ).A. √B.C.D.E.24.三角形的面积为60cm2,有一条边长为10cm,则它的周长的最小值为( )cm.(A) 32 (B) 33 (C) 34 (D) 35 (E) 36A.B.C.D.E. √见图6-89.设AB边长10 cm,则C在平行于AB,并且和AB的距离为12 cm的直线l上变动.设A'是A 关于直线l的对称点,则三角形的周长=10 cm+折线A'CB长,当A',C,B共线时最短.25.底半径为5的等边圆锥,它的侧面积为( ).(A) 15π (B) 20π (C) 25π (D) 40π (E) 50πA.B.C.D.E. √26.如图6-65,长方形ABCD中,AB=10 cm,BC=5 cm,以AB和AD的面积为( )cm2.A.B.C.D. √E.图中阴影部分的面积等于的面积减去曲边四边形ABCF的面积,而曲边四边形ABCF的面积又等于长方形ABCD的面积减去的面积.27.直角三角形ABC的斜边AB=13 cm,直角边AC=5cm,把AC对折到AB上去与斜边相重合,点C与点E重合,折痕为AD,如图6-63.则图中阴影部分的面积为( )cm2.A.B. √C.D.E.设DE=x,则CD=DE=x.28.z=5x+y的最大值为( ).(A) 2 (B) 3 (C) 4 (D) 5 (E) 以上结果均不正确A.B.C.D. √E.29.如图6-67,⊙O直径AB=10 cm,C是AB弧的中点,ABD是以AB为半径的扇形,则图中阴影部分的面积是( )cm2.A.B. √C.D.E.如图6-94,连接OC,△OBC是等腰直角三角形.注:如果我们连接AC,S弓形AC=S弓形BC,则可直接得到S阴影=S扇形ABD-S△ABC.30.梯形ABCD(AB∥DC)中,∠A=∠DBC(见图6-49),AB:DC=25:16,则AD:BC=( ).(A) 2 (B) 16:25 (C) 4:5 (D) 25:16 (E) 5:4A.B.C.D.E. √两个三角形相似.注意对应关系.31.如图6-62,已知BE平分∠ABC,∠CBF=∠CFB=65°,∠EDF=50°,则在下列四个结论中正确的是( ).①BC∥AE ②ABCD是平行四边形③∠C=65°④△EFD是正三角形(A) ①② (B) ①③ (C) ①②③ (D) ②③④ (E) ③④A. √B.C.D.E.∠C=180°-(∠CBF+∠CFB)=50°=∠EDF,有BC∥AE,①正确;③不正确.由BC∥AE得∠E=∠CBF=65°,④不正确.∠ABF=∠CBF=65°,∠A=180°-(∠E+∠ABF)=50°=∠EDF,AB∥DC,ABCD是平行四边形,②正确.32.梯形ABCD下底AB和上底CD的长度比为3:2,E是两腰延长线的交点,则△ABE面积和梯形面积比为( ).(A) 3:2 (B) 9:4 (C) 9:5 (D) 3:1 (E) 2:1A.B.C. √D.E.33.y=kx+(m+n)一定经过( ).(A) 第一、二、三象限 (B) 第一、二象限 (C) 第二、三象限(D) 第一、四象限 (E) 无法确定A.B. √C.D.E.34.若一个圆柱和圆锥的底的直径和高都与一个球的直径相等,则圆柱、圆锥与球的体积之比为( ).(A) 6:4:3 (B) 6:3:4 (C) 5:1:3 (D) 3:2:1 (E) 3:1:2A.B.C.D.E. √35.等腰直角三角形的外接圆的面积和内切圆的面积的比值为( ).A.B.C.D.E. √面积比即半径比的平方.36.从点P(5,4)作圆:(x-3)2+(y+2)2=4的切线PA,PB,则切点A,B间的距离为( ).A.B.C.D. √E.设圆的圆心为Q(3,-2).PQ交AB于R,切点B的坐标为(5,-2).BR是Rt△PBQ斜边PQ上的高,37.一个圆的半径为r,圆外点P到圆心O的距离h>r,过P的圆的两条切线的切点为A和B.(1)求AB的长度.(2)求O到AB的距离d.填空项1:__________________见图6-90.记M是OP和AB的交点.利用直角△AOP和直角△OMA相似求d.利用△AOP的面积求AB.二、条件充分性判断(总题数:1,分数:39.00)A.条件(1)充分,但条件(2)不充分.B.条件(2)充分,但条件(1)不充分.C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D.条件(1)充分,条件(2)也充分.E.条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.(分数:39.00)(1).梯形ABcD(AB∥DC)有外接圆.(1)∠A=∠B; (2)AB和DC中点的连线和AB垂直.__________________________________________________________________________________________ 正确答案:((D).)梯形有外接圆㈢它是等腰梯形.两个条件都可以推出是等腰梯形.(2).平面上两条不同直线l1,l2平行.(1)l1,l2都垂直于直线l;(2)l1上有两个点P,Q到l2距离相等.__________________________________________________________________________________________ 正确答案:((A).)由条件(2)不能得出平行,因为当相交时l1上也可找到两个点P,Q到l2距离相等.(3).凸四边形是正方形.(1)它的两条对角线的交点到4个顶点的距离相等;(2)它的两条对角线的交点到4条边的距离相等.__________________________________________________________________________________________正确答案:((C).)见7题.(4).△ABC是等边三角形.(1)它的内切圆和外接圆是同心圆;(2)它的重心和垂心(三条高的交点)重合.__________________________________________________________________________________________ 正确答案:((D).)(1)成立时,各边的中垂线和所对顶角的分角线都重合,推出3边等长.(2)成立时,各边的中线和高都重合,推出3边等长.(5).两个相外切的圆的公切线的长度为4.(1)这两个圆的半径为1和4;(2)这两个圆的半径的乘积为4.__________________________________________________________________________________________ 正确答案:((D).)设这两个相外切的圆的半径为r和R,则公切线长度的平方=(r+R)2+(r-R)2=4rR.(6).直线ax+by=3和圆x2+y2=3没有交点.(1)点P(a,b)在圆x2+y2=3的外面;(2)点P(a,b)在圆x2+y2=3上.__________________________________________________________________________________________ 正确答案:((E).)直线ax+by=3和圆x2+y2=3没有交点圆心(0,0)到ax+by=3(7).动点(x,y)的轨迹为圆周.(1)|x-1|+|y|=4; (2)3(x2+y2)+6x-9y+1=0.__________________________________________________________________________________________ 正确答案:((B).)(8).圆(x-1)2+(y-2)2=4和(x-4)2+(y+2)2=r2相切.(1)r=-3; (2)r=7.__________________________________________________________________________________________ 正确答案:((D).)=两半径和或两半径差的绝对值.(9).直线l和圆周(x-1)2+(y+2)2=5相切.(1)l的方程为x+2y-2=0;(2)l的方程为2x-y+1=0.__________________________________________________________________________________________ 正确答案:((D).)(10).直线l被圆周(x+1)2+(y-3)2=9(1)直线l的方程为x+7y-5=0;(2)直线l的方程为7x+y-11=0.填空项1:__________________ (正确答案:(D).)利用直线被圆截得的弦长度和圆心到直线距离的关系.(11).圆心分别为(0,1)和(3,5),半径分别为r1,r2的两个圆的公切线有3条.(1)r1=2,r2=3; (2)r1=4,r2=1.__________________________________________________________________________________________ 正确答案:((D).)两个圆的公切线有3条即它们外切.(12).(x-a)2+(y-b)2=9和x2+y2=1的公切线有2条.(1)a2+b2<16; (2)a2+b2>4.__________________________________________________________________________________________ 正确答案:((C).)两个圆的公切线有2条即它们相交.(13).直线Ax+By+C=0和圆(x-2)2+(y+3)2=5相切.(1)A=1,B=2,C=-1; (2)A=2,B=1,C=3.__________________________________________________________________________________________ 正确答案:((A).)直线和相切即圆心到直线的距离等于半径.。
解析几何2
[课堂练通考点]1. (2013·银川模拟)已知直线l 1:x +ay +6=0和l 2:(a -2)x +3y +2a =0,则l 1∥l 2的充要条件是a 等于( )A .3B .1C .-1D .3或-1解析:选C 由题意知,l 1∥l 2⇔1a -2=a 3≠62a, 即a =-1.2.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +a 2-1=0垂直,则实数a =( ) A.23B .-1C .2D .-1或2解析:选A 由a ×1+(a -1)×2=0∴a =23. 3.(2014·广州模拟)直线x -2y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0B .2x +y -1=0C .2x +y -3=0D .x +2y -3=0 解析:选D 由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0. 4. 已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5. 又|15-3a |5≤3, 即|15-3a |≤15,解之得,0≤a ≤10,所以a ∈[0,10].答案:[0,10]5.已知两条直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0,求分别满足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与l 2垂直;(2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等.解:(1)∵l 1⊥l 2,∴a (a -1)+(-b )·1=0,即a 2-a -b =0.①又点(-3,-1)在l 1上,∴-3a +b +4=0②由①②得a =2,b =2.(2)∵l 1∥l 2,∴a b =1-a ,b =a 1-a, 故l 1和l 2的方程可分别表示为:(a -1)x +y +4(a -1)a=0, (a -1)x +y +a 1-a=0, 又原点到l 1与l 2的距离相等.∴4⎪⎪⎪⎪a -1a =⎪⎪⎪⎪a 1-a ,∴a =2或a =23, ∴a =2,b =-2或a =23,b =2. [课下提升考能]第Ⅰ组:全员必做题1. (2014·成都模拟)若直线(a +1)x +2y =0与直线x -ay =1互相垂直,则实数a 的值等于( )A .-1B .0C .1D .2解析:选C 由⎝⎛⎭⎫-a +12×1a =-1,得a +1=2a ,故a =1. 2.已知平面内两点A (1,2),B (3,1)到直线l 的距离分别是2,5-2,则满足条件的直线l 的条数为( )A .1B .2C .3D .4解析:选C 由题知满足题意的直线l 在线段AB 两侧各有1条,又因为|AB |= 5,所以还有1条为过线段AB 上的一点且与AB 垂直的直线,故共3条.3. 已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为( ) A.12B .-12C .2D .-2解析:选A ∵l 2,l 1关于y =-x 对称,∴l 2的方程为-x =-2y +3.即y =12x +32. ∴l 2的斜率为12. 4. 已知点A (1,-2),B (m,2),且线段AB 垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1解析:选C 由已知k AB =2,即4m -1=2,解得m =3. 5. 设A ,B 是x 轴上的两点,点P 的横坐标为3,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .x +y -5=0B .2x -y -1=0C .x -2y +4=0D .x +y -7=0解析:选D 由|P A |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且P A 的方程为x -y +1=0,得P (3,4).直线P A ,PB 关于直线x =3对称,直线P A 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,∴直线PB 的方程为x +y -7=0.6. 在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴,y 轴的正半轴上,A 点与坐标原点重合,将矩形折叠,使A 点落在线段DC 上,若折痕所在直线的斜率为k (k ≠0),则折痕所在直线的方程为________.解析:设将矩形折叠后A 点落在线段CD 上对应的点为G (a,1)(0≤a ≤2),所以A 与G关于折痕所在的直线对称,设所求直线的斜率为k ,则有k AG ·k =-1,即1a·k =-1,得a =-k ,故G 点的坐标为(-k,1)(-2≤k <0),从而折痕所在的直线与OG 的交点坐标为⎝⎛⎭⎫-k 2,12 ,折痕所在直线的方程为y -12=k ⎝⎛⎭⎫x +k 2,即y =kx +k 22+12(-2≤k <0). 答案:y =kx +12k 2+12(-2≤k <0) 7.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79. 答案:-13或-798. (创新题)若实数x ,y 满足x |x |-y |y |=1,则点(x ,y )到直线y =x 的距离的取值范围是________.解析:①当x ≥0且y ≥0时,x |x |-y |y |=x 2-y 2=1;②当x >0且y <0时,x |x |-y |y |=x 2+y 2=1;③当x <0且y >0时,无意义;④当x <0且y <0时,x |x |-y |y |=y 2-x 2=1.作出图象如图所示,因为直线y =x 为两段等轴双曲线的渐近线,四分之一个单位圆上的点到直线y =x 的距离的最大值为1.∴取值范围为(0,1].答案:(0,1]9.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ).(1)若l 1∥l 2,求b 的取值范围;(2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎫a 2+122+14, 因为a 2≥0,所以b ≤0.又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0].(2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0,显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪a +1a ≥2, 当且仅当a =±1时等号成立,因此|ab |的最小值为2.10. 已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程.解:设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′).∵k PP ′·k l =-1,即y ′-y x ′-x×3=-1.① 又PP ′的中点在直线3x -y +3=0上, ∴3×x ′+x 2-y ′+y 2+3=0.②由①②得⎩⎨⎧x ′=-4x +3y -95, ③ y ′=3x +4y +35. ④(1)把x =4,y =5代入③④得x ′=-2,y ′=7,∴P (4,5)关于直线l 的对称点P ′的坐标为(-2,7). (2)用③④分别代换x -y -2=0中的x ,y ,得关于l 的对称直线方程为-4x +3y -95-3x +4y +35-2=0, 化简得7x +y +22=0.第Ⅱ组:重点选做题1. 已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 点A 关于直线y =2x 对称的点为(4,-2),且点A 关于y =2x 对称的点在BC 上,于是BC 所在的直线方程为3x +y -10=0,由⎩⎪⎨⎪⎧y =2x ,3x +y -10=0,得点C 的坐标为(2,4). 2.若点(1,1)到直线x cos α+y sin α=2的距离为d ,则d 的最大值是________. 解析:依题意有d =|cos α+sin α-2|=⎪⎪⎪⎪2sin ⎝⎛⎭⎫α+π4-2. 于是当sin ⎝⎛⎭⎫α+π4=-1时,d 取得最大值2+ 2. 答案:2+ 2。
高中数学竞赛专题讲座之五:解析几何_2_
高中数学竞赛专题讲座之五: 《解析几何》各类竞赛试题选讲一、选择题1.(04湖南)湖南)已知曲线已知曲线C :x x y 22--=与直线0:=-+m y x l 有两个交点,则m 的取值范围是(C) A .)2,12(-- B .)12,2(--C .)12,0[-D .)12,0(-2.(05全国)方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是表示的曲线是( )A .焦点在x 轴上的椭圆轴上的椭圆B .焦点在x 轴上的双曲线轴上的双曲线C .焦点在y 轴上的椭圆轴上的椭圆D .焦点在y 轴上的双曲线轴上的双曲线3.(06浙江)已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有(共有( C )条. A .1 B .2 C .3 D .4 解: 由,5=AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条共切线。
正确答案为C. 4.(06安徽)过原点O 引抛物线224y x ax a =++的切线,当a 变化时,两个切点分别在抛物线(线( )上)上A .2213,22y x y x == B .2235,22y x y x ==C .22,3y x y x ==D .223,5y x y x ==5.若在抛物线)0(2>=a ax y 的上方可作一个半径为r 的圆与抛物线相切于原点O ,且该圆与抛物线没有别的公共点,则r 的最大值是(A ) A .a 21 B .a1C .aD .a 26.(06江苏)已知抛物线y 2=2px ,o 是坐标原点,F 是焦点,P 是抛物线上的点,使得△POF 是直角三角形,则这样的点P 共有(B) A .0个B .2个C .4个D .6个7.(06全国)如图3,从双曲线22221(0,0)x y a b a b-=>>的左焦点F 引圆222x y a +=的切线,切点为T .延长FT 交双曲线右支于P 点.若M 为线段FP 的中点,O 为坐为坐 标原点,则||||MO MT -与b a -的大小关系为(的大小关系为( ) A .||||MO MT b a ->-B .||||MO MT b a -=-C .||||MO MT b a -<-D .不确定.不确定8.(05四川)双曲线12222=-b y a x 的左焦点为1F ,顶点为21,A A ,P 是该双曲线右支上任意一点,则分别以线段211,A A PF 为直径的两圆一定为直径的两圆一定 ( )A .相交.相交B .内切.内切C .外切.外切D .相离.相离解:设双曲线的另一个焦点为2F ,线段1PF 的中点为C ,在△PF F 21中,C 为1PF 的中点,O 为21F F 的中点,从而|)||(|21||212112A A PF PF OC -==,从而以线段211,A A PF 为直径的两圆一定内切. 9.点A 是直线x y l 3:=上一点,且在第一象限,点B 的坐标为(3,2),直线AB 交x 轴正半轴于点C ,那么三角形AOC 面积的最小值是(A )10.(02湖南)已知A (-7,0),B (7,0),C (2,-12)三点,若椭圆的一个焦点为C ,且过A 、B 两点,此椭圆的另一个焦点的轨迹为(两点,此椭圆的另一个焦点的轨迹为( )(奥析263) A .双曲线.双曲线 B .椭圆.椭圆 C .椭圆的一部分.椭圆的一部分 D .双曲线的一部分.双曲线的一部分11.(03全国)过抛物线)2(82+=x y 的焦点F 作倾斜角为60O的直线。
专题12平面解析几何(第二部分)
专题12平面解析几何(第二部分)一、单选题1.已知抛物线2:8C y x =的焦点为F ,点M 在C 上.若M 到直线3x =-的距离为5,则||MF =( )A .7B .6C .5D .42.设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP二、填空题3.抛物线216y x =的焦点坐标为.4.已知抛物线24y x =的焦点为F ,点M 在抛物线上,MN 垂直x 轴与于点N .若6MF =,则点M 的横坐标为; MNF V 的面积为.5.设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为. 6.已知直线l 过点(1,0)且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为.7.设0a >,函数2,,(),1,.x x a f x a x a x a +<-⎧=-≤≤>⎪⎩,给出下列四个结论:①()f x 在区间(1,)a -+∞上单调递减;②当1a ≥时,()f x 存在最大值;③设()()()()()()111222,,,M x f x x a N x f x x a ≤>,则||1MN >;④设()()()()()()333444,,,P x f x x a Q x f x x a <-≥-.若||PQ 存在最小值,则a 的取值范围是10,2⎛⎤ ⎥⎝⎦. 其中所有正确结论的序号是.三、解答题8.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A . (Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.9.已知椭圆C :()222210x y a b a b +=>>,点()01P ,和点()A m n ,()0m ≠ 都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠若存在,求点Q 的坐标;若不存在,说明理由.10.已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =. (Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值. 11.已知椭圆2222:1x y C a b+=过点()()2,0,0,1A B 两点. (Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.12.已知椭圆C :22221x y a b +=(0a b >>)(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.13.已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M .(Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.14.已知椭圆2222:1(0)x y E a b a b+=>>一个顶点(0,2)A -,以椭圆E 的四个顶点为顶点的四边形面积为(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交3y =-交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.15.已知椭圆2222:1(0)x y E a b a b +=>>A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,||4AC =.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线2y =-交于点N .求证://MN CD .16.已知椭圆2222:1(0)x y E a b a b+=>>的一个顶点为(0,1)A ,焦距为 (1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值.17.已知椭圆2222:1(0)x y M a b a b +=>>斜率为k 的直线l 与椭圆M 有两个不同的交点A 、B .(Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设()2,0P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C 、D 和点71,44Q ⎛⎫- ⎪⎝⎭共线,求k .18.已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x (Ⅰ)求椭圆C 的方程; (Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.19.已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.20.已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u v u u u v ,QN QO μ=u u u v u u u v ,求证:11λμ+为定值. 21.已知抛物线C :y 2=2px 过点P (1,1).过点10,2⎛⎫ ⎪⎝⎭作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程;(2)求证:A 为线段BM 的中点.。
解析几何练习题及答案
解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是()A.3B.-3C.33D.-33解析:斜率k =-1-33--3=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是()A.1B.-1C.-2或-1D.-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为()A.4B.21313C.51326D.71020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d =|1--6|62+22=71020.故选D.4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是()A.x +2y -1=0B.2x +y -1=0C.2x +y -5=0D.x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值围是()A.π6,D.π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l B.答案:B6.(2014一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为()A.x -2y +4=0B.2x +y -7=0C.x -2y +3=0D.x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为x a +yb =1,b =6,+1b=1,=3=3=4=2.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.+3=0,+3=0,=-3,=-3,所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二由l 1∥l 22α-1=0,α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一=k 1x +1,=k 2x -1解得交点P而2x 2+y 2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二交点P 的坐标(x ,y-1=k 1x ,+1=k 2x ,故知x ≠0.1=y -1x,2=y +1x.代入k 1k 2+2=0,得y -1x ·y +1x+2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.x 2+(y -2)2=1B.x 2+(y +2)2=1C.(x -1)2+(y -3)2=1D.x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则12+t -22=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A.答案:A2.(2014模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为()A.x 2+y 2=32B.x 2+y 2=16C.(x -1)2+y 2=16D.x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2x -22+y 2=x -82+y 2,化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则()A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考卷)将圆x 2+y 2-2x -4y +1=0平分的直线是()A.x +y -1=0B.x +y +3=0C.x -y +1=0D.x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C5.(2013年高考卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是()A.x +y -2=0B.x +y +1=0C.x +y -1=0D.x +y +2=0解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b |12+12=1,故b =± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于()A.25B.23C.3D.1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2,所以弦长|AB |=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2.答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x,代入x =m m 2+1,得+1=y -1x,化简得x 2=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,|=|4+2a |a 2+1,|2+|DA |2=22,|=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇第3节一、选择题1.设P 是椭圆x225+y216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于()A.4B.5C.8D.10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D2.(2014二模)P 为椭圆x24+y23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于()A.3B.3C.23D.2解析:由椭圆方程知a =2,b =3,c =1,1|+|PF 2|=4,1|2+|PF 2|2-4=2|PF 1||PF 2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考卷)椭圆x 2a 2+y2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为()A.14B.55C.12D.5-2解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e =c a =55.故应选B.答案:B4.(2013年高考卷)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos∠ABF =45,则C 的离心率为()A.35B.57C.45D.67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e =c a =57.故选B.答案:B5.已知椭圆E :x2m +y24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx+1被椭圆E 截得的弦长不可能相等的是()A.kx +y +k =0B.kx -y -1=0C.kx +y -k =0D.kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A、B、C,故选D.答案:D6.(2014省实验中学第二次诊断)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值围为()A.(0,2-1)D.(2-1,1)解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,所以由a sin∠PF 1F 2=csin∠PF 2F 1可得a|PF 2|=c |PF 1|,即|PF 1||PF 2|=c a =e ,所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=2a e +1.由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,1-e 1+e<2,1+e2,解得2-1<e .又0<e <1,∴2-1<e <1.故选D.答案:D 二、填空题7.设F 1、F 2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆x 2a 2+y2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1.∴e =ca=2- 3.答案:2-39.(2014模拟)过点(3,-5),且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y225-m+x29-m=1(m <9),代入点(3,-5),得525-m +39-m=1,解得m =5或m =21(舍去),∴椭圆的标准方程为y220+x24=1.答案:y220+x24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:1|+|PF 2|=2a ,1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3.答案:3三、解答题11.(2012年高考卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 12-b 2=1,=1,2=2,2=1.故椭圆C 1的方程为x22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2=kx +b ,2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1kx +b ,y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②=1,k 2=b 2-1,解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =2时,k =22,b =-2时,k =-22.即直线l 的方程为y =22x +2或y =-22x - 2.12.(2014海淀三模)已知椭圆C :x2a 2+y2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y2b2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.所以a =3,b =1,椭圆C 的方程为x23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3,所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,y 2=1,kx ,化简得(3k 2+1)x 2=3,所以|x 1|=33k 2+1,则|AO |=1+k233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),=-x +3,=-1k x ,0=3k k -1,0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形,所以应有|PO |=3|AO |,代入得9k 2+9k -12=33k 2+33k 2+1,解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇第4节一、选择题1.设P 是双曲线x216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于()A.1B.17C.1或17D.以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考卷)已知双曲线C :x 2a 2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x220-y25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于()A.14B.35C.34D.45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos∠F 1PF 2=422+222-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为x242-y232=1.故选A.答案:A6.(2014八中模拟)若双曲线x29-y216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16,则实数m 的取值围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考卷)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca=2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y23=1.答案:x 2-y23=19.(2014市第三次质检)已知点P 是双曲线x2a 2-y2b2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m ,该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考卷)设F 1,F 2是双曲线C :x2a 2-y2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt△F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=3c ,根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =ca =23-1=3+1.答案:3+1三、解答题11.已知双曲线x 2-y22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .=kx+1-k,2-y22=1,得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x=x1+x22=k1-k2-k2.由题意,得k1-k2-k2=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得x21-y212=1,x22-y222=1,两式相减得(x1+x2)(x1-x2)-y1+y2y1-y22=0,即2-y1-y2x1-x2=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,=2x-1,2-y22=1得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2014质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,-m =4,·13a=3·13m,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x249+y236=1,双曲线方程为x29-y24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇第5节一、选择题1.(2014模拟)抛物线y =2x 2的焦点坐标为()B.(1,0)解析:抛物线y =2x 2,即其标准方程为x 2=12y C.答案:C2.抛物线的焦点为椭圆x24+y29=1的下焦点,顶点在椭圆中心,则抛物线方程为()A.x 2=-45y B.y 2=-45x C.x 2=-413yD.y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为()A.53B.83C.103D.10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,1+1=3x 2+1,1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为()A.34B.1C.54D.74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值围是()A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,=3x +b ,2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y .答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为3,∴直线方程为y =3(x -1).联立方程y =3x -1,y 2=4x ,解得x 1=13,y 1=-233,或x 2=3,y 2=23,由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为12,0.求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,数m 的值.解:法一如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,=-x +n ,=2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n2由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14,y 0=-x 0+n =14+1=54,即点M -14,由点M 在直线l 上,得54=-14+m ,∴m =32.法二∵A 、B 两点在抛物线y =2x 2上.1=2x 21,2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0.又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上,∴y 0=x 0+m =m -14,即-14,m∴AB 的方程是y 即y =-x +m -12,代入y =2x 2,得2x 2+x x 1x 2=-m -122=-12,∴m =3212.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
解析几何(二)含答案
1.双曲线 的左右顶点分别为 ,曲线 上的一点 关于 轴的对称点为 ,若直线 的斜率为 ,直线 的斜率为 ,则当 取到最小值时,双曲线离心率为( )
A. B.2C.3D.6
2.已知直线 与椭圆 恒有公共点,则实数m的取值范围()
A. B.
C. D.
3.已知抛物线C: 的焦点为F,过点F且倾斜角 的直线l与C交于A,B两点,O为坐标原点,若 的面积 ,则线段AB的中点M到y轴的距离是()
【详解】设 ,由 ,得 ,
因为 ,则由余弦定理可得
,
解得 ,
则 ,即 ①,
又 经过点 ,
所以 ②
联立①②,解得 ,则
所以 的虚轴长为
故选:C
7.D
【分析】抛物线 的准线为 ,焦点为 ,当 , , 三点共线时, 到点 的距离 与点 到抛物线的焦点距离 之和最小,从而 的最小值为 .
【详解】解:如图所示,
17.已知 , 分别是双曲线C: 的左右焦点,双曲线C的右支上一点Q满足 ,O为坐标原点,直线 与该双曲线的左支交于P点,且 ,则双曲线C的渐近线方程为______.
18.已知椭圆 的离心率为 , 分别是椭圆 的左、右焦点,点 在椭圆 上且在以 为直径的圆上.线段 与 轴交于点 , ,则椭圆 的长轴长为_____.
(1)证明:直线 的斜率为定值;
(2)在 中,记 , ,求 最大值.
22.平面直角坐标系 中,已知椭圆 ,椭圆 .设点 为椭圆 上任意一点,过点 的直线 交椭圆 于 两点,射线 交椭圆 于点 .
(1)求 的值;
(2)求 面积的最大值.
23.平面直角坐标系 中,已知椭圆 ,椭圆 .设点 为椭圆 上任意一点,过点 的直线 交椭圆 于 两点,射线 交椭圆 于点 .
全国卷高考数学导数、解析几何大题专项训练含答案(二)
全国卷高考数学导数、解析几何解答题专项训练(二)一、解答题1.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l 。
(I ) 求a 、b 的值,并写出切线l 的方程;(II )若方程()()f x g x m x +=有三个互不相同的实根0、x 、x ,其中12x x <,且对任意的[]12,x x x ∈,()()(1)fxg x m x +<-恒成立,求实数m 的取值范围。
2.(本小题满分12分) 已知函数22()ln axf x x e=-,(a e R,∈为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0, )P t ()t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x ,222(,())P x f x 12()≠x x ,求证12x x +为定值,并求出该定值。
3.若函数()x f 满足:在定义域内存在实数0x,使()()()k f x f k x f +=+00(k 为常数),则称“f (x )关于k 可线性分解”.(Ⅰ)函数()22x x f x+=是否关于1可线性分解?请说明理由;(Ⅱ)已知函数()1ln +-=ax x x g ()0>a 关于a 可线性分解,求a 的取值范围;(Ⅲ)证明不等式:()()12e 321-≤⨯⨯⨯⨯n n n Λ()*∈N n . 4.已知x=1是()2ln bf x x x x =-+的一个极值点(1)求b 的值; (2)求函数()f x 的单调增区间;(3)设x x f x g 3)()(-=,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。
5.已知函数2()x f x e x ax =--,如果函数()f x 恰有两个不同的极值点1x ,2x ,且12x x <.(Ⅰ)证明:1ln 2x <;(Ⅱ)求1()f x 的最小值,并指出此时a 的值.6.设函数2()ln 4f x a x x =-,2()(0,0,,)g x bx a b a b R =≠≠∈.(Ⅰ)当32b =时,函数()()()h x f x g x =+在1x =处有极小值,求函数()h x 的单调递增区间;(Ⅱ)若函数()f x 和()g x 有相同的极大值,且函数()()()g x p x f x x =+在区间2[1,]e 上的最大值为8e -,求实数b 的值(其中e 是自然对数的底数) 7.(本小题满分12分)已知函数()ln f x x a x =-,1(), (R).ag x a x +=-∈(Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间; (Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.8.已知函数2()(0)f x ax kbx x =+>与函数()ln ,、、g x ax b x a b k =+为常数,它们的导函数分别为()y f x '=与()y g x '=(1)若()g x 图象上一点(2,(2))p g 处的切线方程为:22ln 220x y -+-=,求、a b 的值;(2)对于任意的实数k,且、a b 均不为0,证明:当0ab >时,()y f x '=与()y g x '=的图象有公共点;(3)在(1)的条件下,设112212(,),(,),()A x yB x y x x <是函数()y g x =的图象上两点,21021()y y g x x x -'=-,证明:102x x x <<9.(本小题满分13分)已知函数21()ln (,0).2f x x ax a R a =-∈≠(I )求函数()f x 的单调区间;(II )已知点1111(1,),(,)(1):()2A a x y x C y f x ->=设B 是曲线图角上的点,曲线C上是否存在点00(,)M x y 满足:①1012x x +=;②曲线C 在点M 处的切线平行于直线AB ?请说明理由。
南京邮电大学《线性代数与解析几何》期末试卷2
−1 −1 0 0 0 0
1
3 −1 −1 1 0 −1
1
当 = 4 时, E − A = −1 1 −1 → 0 1 2 2 = 2 ,
−1 −1 3 0 0 0
1
第2页共3页
《线性代数与解析几何》练习册参考解答——期末试卷二
1 1 1
−1
当 = 0 时, E − A = −A → 0 1 0 3 = 0 ,
《线性代数与解析几何》练习册参考解答——期末试卷二
期末试卷二
一、填空题:
A11 A12 A13 1. A21 A22 A23 = ( A* )T = A* = A 2 = 4 .
A31 A32 A33
2. 消去 z 得投影柱面: x2 + 2y2 = 16, 投影曲线为 x2 + 2y2 = 16 z=0
5. A 与 B 相 似 , 故 它 们 具 有 相 同 特 征 值 , 从 而 矩 阵 B−1 − I 的 特 征 值 分 别 为
1
=
1 3
−1,
2
=
1 4
−1,
3
=
1 5
−1,
B−1 − I
=
123
=
−
2 5
.
二、填空题:
1. ( B )
2. ( D )
3. ( A)
4. ( A)
5. ( A)
阵.
第3页共3页
3
1 1 1 A = 4b
七、 解:二次型的矩阵 A = 1 3 1 ,令
a = 1, b = 0 .且矩阵 A 的特征值分别
1 1 a trA = 5 + b
是 1 = 1,2 = 4,3 = 0 .
专题37平面解析几何解答题(第二部分)
专题37平面解析几何解答题(第二部分)一、解答题1.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.2.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=u u u r u u u r u u u r r .证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.3.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P满足NP u u u v u u u v .(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u v u u u v .证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .4.已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :3y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l '平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P ,证明:存在常数λ,使得2||||||PT PA PB λ=⋅,并求λ的值.5.如图,椭圆()222210x y a b a b+=>>的左、右焦点分别为12,,F F 过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1)若1222PF PF ==(2)若1,PF PQ =求椭圆的离心率.e6.已知椭圆:E 22221x y a b+=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c . (Ⅰ)求椭圆E 的离心率;(Ⅱ)如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的方程.7.已知椭圆2222:1(0)x y E a b a b +=>>过点,且离心率e =.(1)求椭圆E 的方程;(2)设直:1()l x my m R =-∈交椭圆E 于,A B 两点,判断点9(,0)4G -与以线段AB 为直径的圆的位置关系,并说明理由.8.如图,椭圆E :2222+1(0)x y a b a b =>>,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PA QB PB =恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.9.设椭圆E 的方程为()222210x y a b a b +=>>,点O 为坐标原点,点A 的坐标为 ()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足 2BM MA =,直线OM (Ⅰ)求E 的离心率e ; (Ⅱ)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为 72,求E 的方程.10.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,0FM FN ⋅=u u u u r u u u r ,求MFN △面积的最小值.11.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB V 面积的最大值.12.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.13.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(Ⅱ)若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.14.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.15.在直角坐标系xoy 中,曲线C :y=24x 与直线(),0y kx a a =+>交与M,N 两点, (Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 16.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.17.已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =u u u v u u u v ,求|AB |.18.设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.19.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.。
解析几何(2)师
解析几何(2) 1.如图,把椭圆162522yx=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________. 解析:设椭圆右焦点为F ′,由椭圆的对称性知,|P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+ (|P 4F |+|P 4F ′|)=7a =35.答案:352.已知动圆P 过定点A (-3,0),并且在定圆B :(x -3)2+y 2=64的内部与其相内切,则动圆圆心P 的轨迹方程为__________. 解析:如图,设动圆P 和定圆B 内切于点M ,动圆圆心P 到两定点,即定点A (-3,0)和定圆圆心B (3,0)的距离之和恰好等于定圆半径,即|P A |+|PB |=|PM |+|PB |=|BM |=8.所以点P 的轨迹是以A 、B 为两焦点,长半轴长为4,短半轴长为b =42-32=7的椭圆,方程为:x 216+y 27=1.3. 曲线x 210-m +y 26-m =1 (m <6)与曲线x 25-n +y 29-n=1 (5<n <9)的( )A .焦距相等B .离心率相等C .焦点相同D .有两顶点相同解析:∵m <6,∴10-m >6-m >0,∴曲线x 210-m +y 26-m =1表示焦点在x 轴上的椭圆,其焦距为2(10-m )-(6-m )=4.∵5<n <9,∴5-n <0,9-n >0.∴曲线x 25-n +y 29-n =1,即y 29-n -x 2n -5=1,表示焦点在y 轴上的双曲线,其焦距为2(9-n )+(n -5)=4.故选A.4. 设F 是椭圆x 225+y 216=1的左焦点,且椭圆上有2011个不同的点P i (x i ,y i )(i =1,2,3,…,2011),且线段|FP 1|,|FP 2|,|FP 3|,…,|FP 2011|的长度成等差数列,若|FP 1|=2,|FP 2011|=8,则点P 2010的横坐标为 ( )A.20082011B.1005201C.1004201D.53667解析:∵椭圆x 225+y 216=1,∴F (-3,0),由|FP 1|=2=a -c ,|FP 2011|=8=a +c ,可知点P 1为椭圆的左顶点,P 2011为椭圆的右顶点,即x 1=-5,x 2011=5=-5+2010d ,∴d =1201,则数列{x i }是以-5为首项,1201为公差的等差数列,∴x 2010=-5+2009×1201=1004201. 5. 若以椭圆上一点和两个焦点为顶点的三角形面积的最大值为1,则椭圆长轴长的最小值为 ( )解析:设椭圆x 2a 2+y 2b 2=1(a >b >0),则使三角形面积最大时,三角形在椭圆上的顶点为椭圆短轴端点,∴S =12×2c ×b =bc =1≤b 2+c 22=a 22.∴a 2≥2.∴a ≥ 2.∴长轴长2a ≥22,故选D.6.椭圆25922yx+=1上的一点P 到两焦点的距离的乘积为m ,则当m 取最大值时,点P 的坐标是________解析:设椭圆上点P 到两焦点的距离分别为u 、v ,则u +v =10,u v =m ;设∠F 1PF 2=θ,由余弦定理可知cos θ=u 2+v 2-(2c )22u v ,即u 2+v 2-2u v cos θ=64⇒m =181+cos θ,显然,当P 与A 或B 重合时,m 最大.答案:(-3,0)或(3,0)7. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴、y轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM →=λAB →.(1)证明:λ=1-e 2;(2)确定λ的值,使得△PF 1F 2是等腰三角形.解析:(1)证明:因为A 、B 分别是直线l :y =ex +a 与x 轴、y 轴的交点,所以A 、B 的坐标分别是⎝⎛⎭⎫-ae ,0,(0,a ).由⎩⎪⎨⎪⎧ y =ex +a ,x 2a 2+y 2b 2=1得,⎩⎪⎨⎪⎧x =-c ,y =b 2a .这里c =a 2-b 2.所以点M 的坐标是⎝⎛⎭⎫-c ,b 2a .由AM →=λAB →得⎝⎛⎭⎫-c +a e ,b 2a =λ⎝⎛⎭⎫a e ,a .即⎩⎨⎧a e -c =λa eb2a =λa,解得λ=1-e 2.(2)解:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即12|PF 1|=c .设点F 1到l 的距离为d ,由12|PF 1|=d =|e (-c )+0+a |1+e 2=|a -ec |1+e 2=c ,得1-e 21+e 2=e ,所以e 2=13,于是λ=1-e 2=23.即当λ=23时,△PF 1F 2为等腰三角形.8.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为 ( ) A .2 B .3 C .6 D .8解析:由题易知F (-1,0),设P (x ,y ),其中-2≤x ≤2,则OP →·FP →=(x ,y )·(x +1,y )=x (x +1)+y 2=x 2+x +3-34x 2=14x 2+x +3=14(x +2)2+2当x =2时,(OP →·FP →)max =6.9. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P ,若AP →=2PB →,则椭圆的离心率是( )A.32B.22C.13D.12解析] 由题意知:F (-c,0),A (a,0).∵BF ⊥x 轴,∴AP PB =a c .又∵AP →=2PB →,∴a c =2,∴e =c a =12.故选D.10. 已知P 是以F 1、F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,若PF 1→·PF 2→=0,tan ∠PF 1F 2=12,则椭圆的离心率为 ( )A.12B.23C.13D.53[解析] 由PF 1→·PF 2→=0知∠F 1PF 2为直角,设|PF 1|=x ,由tan ∠PF 1F 2=12知,|PF 2|=2x ,∴a =32x ,由|PF 1|2+|PF 2|2=|F 1F 2|2得c =52x ,∴e =c a =53.11. 椭圆x 2100+y 264=1的焦点为F 1、F 2,椭圆上的点P 满足∠F 1PF 2=60°,则△F 1PF 2的面积是( )A.6433B.9133C.1633D.643[解析] 由余弦定理:|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=|F 1F 2|2.又|PF 1|+|PF 2|=20,代入化简得|PF 1|·|PF 2|=2563,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin60°=6433.12. 已知A (4,0),B (2,2)是椭圆92522yx+=1内的点,M 是椭圆上的动点,则|MA |+|MB |的最大值是________.[解析] 如图,直线BF 与椭圆交于M 1、M 2.任取椭圆上一点M ,则|MB |+|BF |+|MA |≥|MF |+|MA |=2a =|M 1A |+|M 1F |=|M 1A |+|M 1B |+|BF | ∴|MB |+|MA |≥|M 1B |+|M 1A |=2a -|BF |.同理可证|MB |+|MA |≤|M 2B |+|M 2A |=2a +|BF |,13. 已知实数k 使函数y =cos kx 的周期不小于2,则方程kyx223+=1表示椭圆的概率为________.[解析] 由条件2π|k |≥2,∴-π≤k ≤π,当0<k ≤π且k ≠3时,方程x 23+y 2k =1表示椭圆,∴概率P =12.14.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴的一个端点到右焦点的距离为 3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.[解析] (1)设椭圆的半焦距为c ,依题意⎩⎪⎨⎪⎧c a =63a =3,∴c =2,b =1,∴所求椭圆方程为x23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),①当AB ⊥x 轴时,|AB |=3,②当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m . 由已知|m |1+k 2=32,得m 2=34(k 2+1),把y =kx +m 代入椭圆方程,整理得(3k 2+1)x 2+6kmx +3m 2-3=0.∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1.∵k ≠0,∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)⎣⎢⎡⎦⎥⎤36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6≤3+122×3+6=4. 当且仅当9k 2=1k 2即k =±33时等号成立.当k =0时,|AB |=3,综上所述|AB |max =2.∴当|AB |最大时,△AOB 面积取最大值,S =12×|AB |max ×32=32.15. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1作倾斜角为30°的直线与椭圆的一个交点为P ,且PF 2⊥x 轴,则此椭圆的离心率e 为 ( )A.33B.32 C.22D.23[解析] 据已知可得|PF 2|=b 2a ,在直角三角形PF 1F 2中可得|PF 1|=2|PF 2|=2b 2a ,由椭圆定义可得|PF 1|+|PF 2|=3b 2a =2a ⇒b 2a 2=23,则椭圆离心率e =1-b 2a2=1-23=33. 16.一个圆形纸片的圆心为O ,F 是圆内一个定点,M 是圆上一个动点,把纸片折叠使得F 与M 重合,然后抹平纸片,折痕为CD ,设CD 与OM 的交点为P ,则P 点的轨迹是 ( ) A .圆 B .椭圆 C .双曲线 D .抛物线 [答案] B[解析] 由条件知,点P 在线段MF 的垂直平分线上,故|PM |=|PF |,∵|PM |+|PO |=|OM |,∴|PF |+|PO |=|OM |,∵点F 在⊙O 内,∴|OM |>|OF |, 又|OM |为⊙O 的半径为定值,故点P 的轨迹是以F ,O 为焦点的椭圆.17. 若点P 为共焦点的椭圆C 1和双曲线C 2的一个交点,F 1、F 2分别是它们的左、右焦点.设椭圆离心率为e 1,双曲线离心率为e 2,若PF 1→·PF 2→=0,则1e 21+1e 22=A .2B. 2C. 3D .3[解析] 设椭圆的长半轴长为a ,双曲线的实半轴长为a ′,焦距为2c ,则由条件知||PF 1|-|PF 2||=2a ′,|PF 1|+|PF 2|=2a ,将两式两边平方相加得:|PF 1|2+|PF 2|2=2(a 2+a ′2), 又|PF 1|2+|PF 2|2=4c 2,∴a 2+a ′2=2c 2,18.若在区间(-1,1)内任取实数a ,在区间(0,1)内任取实数b ,则直线ax -by =0与圆(x -1)2+(y -2)2=1相交的概率为 ( )A.38B.516C.58D.316[答案] B[解析] 由题意知,圆心C (1,2)到直线ax -by =0距离d <1,∴|a -2b |a 2+b 2<1,化简得3b -4a <0,如图,满足直线与圆相交的点(a ,b )落在图中阴影部分,E ⎝⎛⎭⎫34,1,∵S 矩形ABCD =2,S 梯形OABE =⎝⎛⎭⎫14+1×12=58,由几何概型知,所求概率P=582=516. 19.若动圆C 与圆C 1:(x +2)2+y 2=1外切,与圆C 2:(x -2)2+y 2=4内切,则动圆C 的圆心的轨迹是( )A .两个椭圆B .一个椭圆及双曲线的一支C .两双曲线的各一支D .双曲线的一支 [答案] D[解析] 设动圆C 的半径为r ,圆心为C ,依题意得|C 1C |=r +1,|C 2C |=r -2, ∴|C 1C |-|C 2C |=3,故C 点的轨迹为双曲线的一支.20.在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切. (1)求圆O 的方程;(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求P A →·PB →的取值范围. [解析] (1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =41+3=2,∴圆O 的方程为x 2+y 2=4.(2)由(1)知A (-2,0),B (2,0).设P (x ,y ),由|P A |、|PO |、|PB |成等比数列得,(x +2)2+y 2·(x -2)2+y 2=x 2+y 2,即x 2-y 2=2.P A →·PB →=(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=2(y 2-1).由于点P 在圆O 内,故⎩⎪⎨⎪⎧x 2+y 2<4x 2-y 2=2,由此得y 2<1.所以P A →·PB →的取值范围为[-2,0).21.分别过椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点F 1、F 2作两条互相垂直的直线l 1、l 2,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是 ( )A .(0,1)B.⎝⎛⎭⎫0,22 C.⎝⎛⎭⎫22,1D.⎝⎛⎦⎤0,22 [答案] B[解析] 依题意,结合图形可知以F 1F 2为直径的圆在椭圆的内部,∴c <b ,从而c 2<b 2=a2-c 2,a 2>2c 2,即e 2=c 2a 2<12,又∵e >0,∴0<e <22,故选B.。
解析几何(2) 双曲线(含答案)
第6课时 双曲线1.了解双曲线的定义、几何图形和标准方程及简单性质. 2.了解双曲线的实际背景及双曲线的简单应用. 3.理解数形结合的思想.【梳理自测】一、双曲线的概念已知点F 1(-4,0)和F 2(4,0),一曲线上的动点P 到F 1,F 2距离之差为6,该曲线方程是________.答案:x 29-y27=1(x≥3)◆此题主要考查了以下内容:平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫做焦距.集合P ={M||MF 1|-|MF 2||=2a},|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0; (1)当2a <2c 时,P 点的轨迹是双曲线; (2)当2a =2c 时,P 点的轨迹是两条射线; (3)当2a >2c 时,P 点不存在. 二、双曲线标准方程及性质1.(教材改编)双曲线x 210-y22=1的焦距为( )A .3 2B .4 2C .3 3D .4 32.双曲线y 2-x 2=2的渐近线方程是( )A .y =±xB .y =±2xC .y =±3xD .y =±2x3.已知双曲线x 2a 2-y25=1的右焦点为(3,0),则该双曲线的离心率等于( )A .31414 B .324 C .32D .434.双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=________.答案:1.D 2.A 3.C 4.-1 4◆此题主要考查了以下内容:考向一双曲线的定义及标准方程(1)(2014·陕西师大附中模拟)设过双曲线x2-y2=9左焦点F1的直线交双曲线的左支于点P,Q,F2为双曲线的右焦点.若|PQ|=7,则△F2PQ的周长为( ) A.19 B.26C.43 D.50(2)已知双曲线x2a2-y2b2=1(a>0,b>0)和椭圆x216+y29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________.【审题视点】(1)利用双曲线定义|PF2|-|QF2|=2a及三角形周长的计算求解.(2)已知双曲线的焦点及离心率求双曲线方程.【典例精讲】(1)如图,由双曲线的定义可得⎩⎪⎨⎪⎧|PF 2|-|PF 1|=2a ,|QF 2|-|QF 1|=2a ,将两式相加得|PF 2|+|QF 2|-|PQ|=4a , ∴△F 2PQ 的周长为|PF 2|+|QF 2|+|PQ| =4a +|PQ|+|PQ|=4×3+2×7=26.(2)椭圆x 216+y 29=1的焦点坐标为F 1(-7,0),F 2(7,0),离心率为e =74.由于双曲线x 2a 2-y 2b 2=1与椭圆x 216+y 29=1有相同的焦点,因此a 2+b 2=7.又双曲线的离心率e =a 2+b 2a =7a ,所以7a =274,所以a =2,b 2=c 2-a 2=3,故双曲线的方程为x 24-y23=1.【答案】 (1)B (2)x 24-y23=1【类题通法】 (1)涉及到双曲线上的点到焦点的距离问题时,经常考虑双曲线的定义. (2)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y2n =1(mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1(AB <0),这种形式在解题时更简便;(3)当已知双曲线的渐近线方程bx±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值;(4)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y2b 2=λ(λ≠0),据其他条件确定λ的值.1.根据下列条件,求双曲线方程:(1)与双曲线x 29-y216=1有共同的渐近线,且过点(-3,23);(2)与双曲线x 216-y24=1有公共焦点,且过点(32,2).解析:(1)设所求双曲线方程为x 29-y216=λ(λ≠0),将点(-3,23)代入得λ=14,∴所求双曲线方程为x 29-y 216=14,即x 294-y24=1. (2)设双曲线方程为x 216-k -y24+k =1,将点(32,2)代入得k =4(k =-14舍去). ∴所求双曲线方程为x 212-y28=1.考向二 双曲线的性质及应用(1)(2014·哈尔滨模拟)已知P 是双曲线x 2a 2-y2b2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是54,且PF 1→·PF 2→=0,若△PF 1F 2的面积为9,则a +b 的值为( )A .5B .6C .7D .8(2)F 1、F 2分别是双曲线x 2a 2-y2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为( )A .2B .7C .13D .15【审题视点】 (1)利用PF 1→ ·PF 2→=0及e =54转化为a ,b 的方程组.(2)利用双曲线定义及余弦定理求a 与c 的关系. 【典例精讲】 (1)由PF 1→·PF 2→=0,得PF 1→⊥PF 2→,设|PF 1→|=m ,|PF 2→|=n ,不妨设m >n ,则m 2+n 2=4c 2,m -n =2a ,12mn =9,c a =54,解得⎩⎪⎨⎪⎧a =4,c =5, ∴b =3,∴a +b =7,故选C . (2)如图,由双曲线定义得,|BF 1|-|BF 2|=|AF 2|-|AF 1|=2a ,因为△ABF 2是正三角形,所以|BF 2|=|AF 2|=|AB|,因此|AF 1|=2a ,|AF 2|=4a ,且∠F 1AF 2=120°,在△F 1AF 2中,4c 2=4a 2+16a 2+2×2a ×4a ×12=28a 2,所以e =7,故选B .【答案】 (1)C (2)B【类题通法】 (1)求双曲线的离心率,就是求c 与a 的比值,一般不需要具体求出a ,c 的值,只需列出关于a ,b ,c 的方程或不等式解决即可.(2)双曲线的离心率与渐近线方程之间有着密切的联系,二者之间可以互求.2.(2014·济南模拟)过双曲线x 2a 2-y2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF(O 为原点)的垂直平分线上,则双曲线的离心率为________.解析:如图所示,不妨设F 为右焦点,过F 作FP 垂直于一条渐近线,垂足为P ,过P 作PM⊥OF 于M.由已知得M 为OF 的中点,由射影定理知|PF|2=|FM||FO|,又F(c ,0),渐近线方程为bx -ay =0,∴|PF|=bcb 2+a2=b ,∴b 2=c 2·c ,即2b 2=c 2=a 2+b 2,∴a 2=b 2,∴e =c a = 1+b2a2= 2.答案: 2考向三 直线与双曲线的综合应用已知双曲线C :x 2a2-y 2=1(a >0)与l :x +y =1相交于两个不同的点A 、B ,l与y 轴交于点P ,若PA →=512PB →,则a =________.【审题视点】 联立方程组,利用P 、A 、B 坐标之间的关系,建立a 的方程. 【典例精讲】 因为双曲线C 与直线l 相交于两个不同的点,故知方程组⎩⎪⎨⎪⎧x 2a2-y 2=1,x +y =1有两组不同的实数解,消去y 并整理,得(1-a 2)x 2+2a 2x -2a 2=0,实数a 应满足⎩⎪⎨⎪⎧a >0,1-a 2≠0,4a 4+8a 2(1-a 2)>0, 解得0<a <2且a≠1. 设A(x 1,y 1)、B(x 2,y 2), 由一元二次方程根与系数的关系, 得x 1+x 2=2a2a 2-1,①x 1x 2=2a2a 2-1,②又P(0,1),由PA →=512PB →,得(x 1,y 1-1)=512(x 2,y 2-1),从而x 1=512x 2,③ 由①③,解得⎩⎪⎨⎪⎧x 1=517·2a 2a 2-1,x 2=1217·2a 2a 2-1代入②, 得517×1217×⎝ ⎛⎭⎪⎫2a 2a 2-12=2a 2a 2-1, 即2a 2a 2-1=28960,解得a =1713,⎝ ⎛⎭⎪⎫a =-1713舍去. 【答案】1713【类题通法】 (1)判断直线l 与双曲线E 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入双曲线E 的方程F(x ,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0F (x ,y )=0,消去y 后得ax 2+bx +c =0.由此转化为两点坐标的关系.(2)特殊情况考虑与渐近线平行的直线与双曲线的位置关系,数形结合求解.3.已知点A(-2,0),点B(2,0),且动点P 满足|PA|-|PB|=2,则动点P 的轨迹与直线y =k(x -2)有两个交点的充要条件为k∈________.解析:由已知得动点P 的轨迹为一双曲线的右支且2a =2,c =2,则b =c 2-a 2=1,∴P 点的轨迹方程为x 2-y 2=1(x >0),其一条渐近线方程为y =x.若P 点的轨迹与直线y =k(x -2)有两个交点,则需k∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪ (1,+∞)双曲线与渐近线的关系不清致误(2014·浙江温州适应性测试)已知F 1,F 2为双曲线Ax 2-By 2=1的焦点,其顶点是线段F 1F 2的三等分点,则其渐近线的方程为( )A .y =±22xB .y =±24xC .y =±xD .y =±22x 或y =±24x 【正解】 依题意c =3a ,∴c 2=9a 2.又c 2=a 2+b 2, ∴b 2a 2=8,b a =22,a b =24.故选D . 【答案】 D【易错点】 (1)默认为双曲线焦点在x 轴其渐近线为y =±ba x ,而错选为A .(2)把双曲线认为等轴双曲线而错选为C .(3)把a ,b ,c 的关系与椭圆c 2=a 2-b 2混淆致错.【警示】 (1)对于方程x 2a 2-y 2b 2=1来说,求渐近线方程就相当于求ba 的值,但要分焦点的位置是在x 轴还是在y 轴上,此题没有给出焦点的位置,其渐近线斜率有四种情况.(2)渐近线为y =±b a x 所对应的双曲线为x 2a 2-y2b 2=λ(λ≠0).当λ>0时,表示焦点在x 轴上,当λ<0时,焦点在y 轴上.1.(2013·高考福建卷)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25B .45C .255 D .455解析:选C .求出双曲线的顶点和渐近线,再利用距离公式求解.双曲线的渐近线为直线y =±12x ,即x±2y =0,顶点为(±2,0),∴所求距离为d =|±2±0|5=255. 2.(2013·高考广东卷)已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B .x 24-y25=1 C .x 22-y 25=1 D .x 22-y25=1 解析:选B .求双曲线的标准方程需要确定焦点位置及参数a ,b 的值.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为c a =32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,选B .3.(2013·高考北京卷)双曲线x 2-y2m=1的离心率大于2的充分必要条件是( )A .m >12B .m ≥1C .m >1D .m >2解析:选C .用m 表示出双曲线的离心率,并根据离心率大于2建立关于m 的不等式求解.∵双曲线x 2-y2m=1的离心率e =1+m ,又∵e >2,∴1+m >2,∴m >1.4.(2013·高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y2sin 2θ-x2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D .先根据θ的范围,确定双曲线方程的类型,判断焦点所在的坐标轴,然后分析双曲线C 1和C 2的实轴长、虚轴长、焦距、离心率是否相等.双曲线C 1的焦点在x 轴上,a =cos θ,b =sin θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =sin θ,b =sin θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ. 故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等。
解析几何1 (2)
学后反思 (1)对直线 的大致位置分析,界定了斜率的存在性及其范围,指 明了解题方向,这种分析是避免解题盲目性的重要技能. (2)本题将面积表示为k的函数,再用基本不等式求最小值,方程选择不同, 自然参数不同,但是求最值的方法首先考虑基本不等式,然后是函数单调性、 换元等方法.
举一反三
3. 已知直线 L过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点, 如图所示,求△ABO的面积的最小值及此时直线 L 的方程.
k 1
所以
S (k )
1 2
1 2 k 2
1 k 2
l 1 4 4k
1 1 4 4 4 k 2
当且仅当
4k
1 k
,即k=- 时,等号成立.
2 1
1
故直线 l 的方程为y-1=- (x-2),即x+2y-4=0. 2 x y l 方法二:设过P(2,1)的直线为 a b 1 (a>0,b>0), 则
2 a 1 b 1
.
l
2 1 2 1 1 ,即ab≥8, a b a b 2 1 1 1 S O AB ab 4 ,当且仅当 ,即a=4,b=2时,等号成立. a b 2 2 x y 故直线方程为 1 ,即x+2y-4=0. 4 2
由基本不等式得 2
5 3
5x+2y+1=0, 5 , ∴ l的斜率k=- ,
3
3x+2y-1=0, 得 l1 , l 2 的交点P(-1,2).
∴l :y-2=- (x+1),即5x+3y-1=0. 方法二:由 l ⊥ l 3 ,可设l :5x+3y+C=0. ∵l1 ,l 2 的交点可以求得为P(-1,2). ∴5〓(-1)+3〓2+C=0,∴C=-1, ∴l :5x+3y-1=0.
高三数学专项训练:函数与导数,解析几何解答题(二)(理科)
(2)过右焦点 的直线与椭圆交于不同的两点 、 ,则 内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
35.某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中 、 是过抛物线 焦点 的两条弦,且其焦点 , ,点 为 轴上一点,记 ,其中 为锐角.
(3)求证: .
4.已知函数 .
(Ⅰ)若函数 的值域为 ,若关于 的不等式 的解集为 ,求 的值;
(Ⅱ)当 时, 为常数,且 , ,求 的取值范围.
5.已知函数 ,函数 .
(I)试求f(x)的单调区间。
(II)若f(x)在区间 上是单调递增函数,试求实数a的取值范围:
(III)设数列 是公差为1.首项为l的等差数列,数列 的前n项和为 ,求证:当 时, .
41.(13分) 已知椭圆C的中心在原点,离心率等于 ,它的一个短轴端点点恰好是抛物线 的焦点。
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为 ,求四边形APBQ面积的最大值;
②当A、B运动时,满足 = ,试问直线AB的斜率是否为定值,请说明理由。
(2)点Q(x0,y0)(-2<x0<2)是曲线C上的动点,曲线C在点Q处的切线为 ,点P的坐标是(0,-1), 与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.
27.已知两点 及 ,点 在以 、 为焦点的椭圆 上,且 、 、 构成等差数列.
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 与椭圆 有且仅有一个公共点,点 是直线 上的两点,且 ,
. 求四边形 面积 的最大值.
2013年MBA数学——解析几何2
41. ★直线10x +=的倾斜角是 ( ) A .6π B. 3π C. 23π D. 56π E.34π 答案:D,本题考查斜率的性质。
由题知直线的斜率是3-,故倾斜角是56π,选D 。
16842.(,)()55(1)2,4(2)4,2y ax b a b a b =+-====★★在平面直角坐标系中,以直线为轴与原点对称的点的坐标是答案:A,本题考查点关于直线对称的性质。
由题意知原点与对称点连线的中点在直线上,即8455a b -+=,将条件(1)和条件(2)代入可知,条件(1)符合,条件(2)不符合。
故选A 。
43.★直线22(252)(4)4m m x m y -+--+=0的倾斜角为4π,则实数m 的值为 ( )A .2 B. 3 C.2或3 D.-3 E.-2答案:B ,本题考查直线斜率的性质。
由题知,斜率为1,故222521,4m m m -+=-解得m=3,故选B 。
44.★★已知动点P(x,y)在圆22(2)1x y -+=上运动,y/x 的最大值为( )A.B.C.D. 2答案:C ,解析几何以及直线与圆的位置关系令y/x=k ,所求的最大值即为直线y=kx 的斜率,问题转化为直线与圆的位置关系,当直线与圆相切时k 可以取到最大值和最小值,利用作图法比较直观,可知k 的最大值为∂tan ,又1sin 30tan 23o∂=∂=⇒∂=故,选C。
45.★★圆22(3)(3)9x y -+-=上到直线3x+4y-11=0的距离等于1的点的个数有( ) A. 1 B. 2 C.. 3 D. 4 E. 5答案:选 C ,本题考查解析几何以及直线与圆的位置关系。
圆心()33,到直线的距离为243|114333|22=+-⨯+⨯=d由于圆心到直线的距离为2,半径为3,则有3个点满足条件。
故选C 。
46.★★a=-4(1)点A (1,0)关于直线L:x-y+1=0的对称点是'(,)42aa A - (2)直线1l :(2+a)x+5y=1与直线2l :ax+(2+a)y=2垂直 答案:选A ,本题考查解析几何以及直线与直线的位置关系(1)'(1,2)A - 1-='A A K 直线A A '与直线x-y+1=0垂直,又A 到直线L 的距离与'A 到直线的距离相等,故这两点关于直线L 对称。
线性代数与解析几何练习题(2007级秋)(2)
(2) 若AB = 0, 则B = 0
4、 设 n 阶方阵 A 不是单位方阵,且 A 2 = A ,试证明 (1) A 是不可逆矩阵,并求逆矩阵。
(2) A + I与A − 2 I 均为可逆矩阵,
6、 设同阶方阵 A, B ,其中 B 可逆,且满足 A 2 + AB + B 2 = 0 ,证明 A和A + B 可逆。
⎡1 0 1 ⎤ ⎥ ⎢ 1、设 A = 0 2 0 ,而 n ≥ 2 为正整数,求 An − 2 An −1 。 ⎥ ⎢ ⎢ ⎦ ⎣1 0 1 ⎥
⎛ 0 − 2 0⎞ ⎜ ⎟ 2、假设矩阵 A, B 满足 A − B = AB ,其中 A = ⎜ 1 − 2 0 ⎟ .求。 ⎜ − 1 2 0⎟ ⎝ ⎠
7、画出由半锥面 z = x 2 + y 2 与曲面 x 2 + y 2 = 2 − z 所围成空间图形的草图。
8、由与平面 z = −1 及点 M (0, 0,1) 等距离运动的动点 P ( x, y , z ) 所生成的曲面记为 π 1 ,将
yOz 平面上曲线 ⎨
⎩
1. π 1 的方程是:
⎧
y2 + z = 5 以 z 轴为旋转轴所生成的旋转曲面记为 π 2 。则: x=0
2002
⎛ ⎜ =⎜ ⎜ ⎜ ⎝
⎞ ⎟ ⎟ ⎟ ⎟ ⎠
5、设方阵 A 满足 A2 + A − 4 I = 0, 其中I 为单位矩阵, , 则(A − I )−1 = _____________ 。
(二)选择题
1、设 n 阶矩阵 A, B, C 满足ABC = I , I 为单位矩阵 ,则必有 (A) ACB = I (B) BCA = I (C) CBA = I (D) BAC = I ( )
解析几何大题精选四套(答案)
解析几何大题精选四套(答案)解析几何大题训练(一)1. (2011年高考江西卷) (本小题满分12分)已知过抛物线()022>=p px y 的焦点,斜率为22的直线交抛物线于()12,,A x y ()22,B x y (12x x <)两点,且9=AB .(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OB OA OC λ+=,求λ的值.2. (2011年高考福建卷)(本小题满分12分)如图,直线l :y=x+b 与抛物线C :x 2=4y 相切于点A 。
(1) 求实数b 的值;(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.3. (2011年高考天津卷)(本小题满分13分) 设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点(,)P a b 满足212||||PF F F =. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于A,B 两点.若直线2PF 与圆22(1)(16x y ++-=相交于M,N 两点,且|MN|=58|AB|,求椭圆的方程.4.(2010辽宁)(本小题满分12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.解析几何大题训练(二)1.(2010辽宁)(本小题满分12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I)求椭圆C 的离心率; (II)如果|AB|=154,求椭圆C 的方程.2.(2010北京)(本小题共14分)已知椭圆C 的左、右焦点坐标分别是(,y=t 椭圆C 交与不同的两点M ,N ,以线段为直径作圆P,圆心为P 。
空间解析几何练习2答案
空间解析几何练习2解答1. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0.2. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离.解 点(1, 2, 1)到平面x +2y +2z -10=0的距离为1221|1012221|222=++-⨯+⨯+=d . 3. 求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程. 解 所求平面的法线向量n 可取为直线⎩⎨⎧=+-+=-+-012530742z y x z y x 的方向向量, 即 k j i k j i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=. 所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0, 即16x -14y -11z -65=0.4. 证明直线⎩⎨⎧=++-=-+7272z y x z y x 与直线⎩⎨⎧=--=-+028363z y x z y x 平行. 解 直线⎩⎨⎧=++-=-+7272z y x z y x 与⎩⎨⎧=--=-+028363z y x z y x 的方向向量分别为 k j i k j i s 531121211++=--=, k j i k j i s 15391123632---=---=. 因为s 2=-3s 1, 所以这两个直线是平行的.5. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ⨯=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量→MN =s , 根据向量积的几何意义, 以→M M 0和→MN 为邻边的平行四边形的面积为 →→→||||00s ⨯=⨯M M MN M M ,又以→M M 0和→MN 为邻边的平行四边形的面积为→||||s ⋅=⋅d MN d . 因此→||||0s s ⨯=⋅M M d , →||||0s s ⨯=M M d . 6. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, -1, 2)的距离相等, 求点M 的轨迹方程. 解 根据题意, 有222)2()1()1(||-+++-=z y x z ,或 z 2=(x -1)2+(y +1)2+(z -2)2,化简得(x -1)2+(y +1)2=4(z -1),这就是点M 的轨迹方程.7. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使∆ABC 的面积最小.解 设所求的点为C (0, 0, z ), 则→) ,0 ,1(z AC -=, →)1 ,2 ,0(--=z BC .因为 →→k j i k j i 2)1(212001+-+=---=⨯z z z z BC AC , 所以∆ABC 的面积为→→4)1(421||2122+-+=⨯=z z BC AC S . 令04)1(4)1(284122=+-+-+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a -3b 为边的平行四边形的面积. 解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=⨯=-⨯+b a a b a b b a b a。
解析几何2
1. (本小题满分15分)如图,在ABC ∆中,7||||,||22AB AC BC ===,以B 、C 为焦点的椭圆恰好过AC 的中点P 。
(1)求椭圆的标准方程;(2)过椭圆的右顶点1A 作直线与圆22:(1)2E x y -+=相交于M 、N 两点,试探究点M 、N 能将圆E 分割成弧长比值为1:3的两段弧吗?若能,求出直线的方程;若不能,请说明理由. (本小题满分15分) 解:(1)∵7||||,||22AB AC BC ===∴||||1,BO OC ==||OA ===∴(1,0),(1,0),B C A -∴1(2P 依椭圆的定义有:2||||a PB PC =+=97444=+= ∴2a =,…………………………………………………………………………6分又1c =,∴2223b a c =-=………………………………………………………7分∴椭圆的标准方程为22143x y +=……………………………………………8分 (求出点p 的坐标后,直接设椭圆的标准方程,将P 点的坐标代入即可求出椭圆方程,也可以给满分。
)(2) 椭圆的右顶点1(2,0)A ,圆E 圆心为(1,0)E ,半径r =假设点M 、N 能将圆E 分割成弧长比值为1:3的两段弧,则90MEN ︒∠=,圆心(1,0)E 到直线的距离1d ==………………10分 当直线斜率不存在时,的方程为2x =,此时圆心(1,0)E 到直线的距离1d =(符合)……………………………11分当直线斜率存在时,设的方程为(2)y k x =-,即20kx y k --=, ∴圆心(1,0)E到直线的距离1d ==,无解……………………………13分综上:点M 、N 能将圆E 分割成弧长比值为1:3的两段弧,此时方程为2x =…15分。
2. 已知圆M :()2244x y +-=,直线l 的方程为20x y -=,点P 是直线l 上一动点,过点P 作圆的切线PA 、PB ,切点为A 、B .(Ⅰ)当P 的横坐标为165时,求∠APB 的大小; (Ⅱ)求证:经过A 、P 、M 三点的圆N 必过定点,并求出所以定点的坐标.(Ⅲ)求线段AB 长度的最小值.解:(Ⅰ)由题可知,圆M 的半径r =2,168(,)55P , 因为P A 是圆M 的一条切线,所以∠MAP =90°又因MP4==2r ,又∠MP A =30°,∠APB =60°; ……4分(Ⅱ)设P (2b ,b ),因为∠MAP =90°,所以经过A 、P 、M 三点的圆N 以MP 为直径,其方程为:()()222244424b b b x b y +-+⎛⎫-+-=⎪⎝⎭即()22(24)40x y b x y y +--+-=由2224040x y x y y +-=⎧⎨+-=⎩, ……7分 解得04x y =⎧⎨=⎩或8545x y ⎧=⎪⎪⎨⎪=⎪⎩,所以圆过定点84(0,4),,55⎛⎫ ⎪⎝⎭ ……9分(Ⅲ)因圆N 方程为()()222244424b b b x b y +-+⎛⎫-+-=⎪⎝⎭即 222(4)40x y bx b y b +--++= ……①圆M :()2244x y +-=即228120x y y +-+= ……②②-①得圆M方程与圆N相交弦所在直线m方程为2(4)124b x b y b+-+-=…11分点M到直线m的距离d=……13分相交弦长即AB==……15分当45b=时,AB……17分3. 河道上有一座圆拱桥,在正常水位时,拱圈最高点距水面9m,拱圈内水面宽22m.一条船在水面以上部分高6.5m,船顶部宽4m,故通行无阻.近日水位暴涨了2.7m,为此,必须加重舰载,降低船身,才能通过桥洞.试问船身至少应该降低多少?(精确到0.01,参考99.383≈)19.解:以正常水位时河道中央O为原点,过点O垂直于水面的直线为y轴,建立平面直角坐标系,如图所示。
解析几何(模拟2)
1.. 已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,1+2)2、已知极坐标系的极点O 与直角坐标系的原点重合,极轴与x 轴的正半轴重合,线1:cos()4C πρθ+=与线224:4x u C y u⎧=⎨=⎩(参数u R ∈)交于A 、B 两点.写出OAB ∆的外接圆的标准方程3、点K 是椭圆22221(0)x y a b a b+=>>上的任意一点,12,F F 分别是椭圆的左右焦点,若12KF KF ∙ 的最大值为3,最小值为2;(Ⅰ)求椭圆的方程;(Ⅱ)若M 、N 是直线2a x c=上两个动点,且120F M F N ⋅=,设C 是以MN 为直径的圆,试判断原点O 与圆C 的位置关系; (Ⅱ)试探究满足上述条件的MN 的取值范围。
1、已知抛物线22y px =(0p >)的焦点F 恰好是椭圆22221x y a b +=(0)a b >>的右焦点,且两条曲线的公共点的连线过F ,则该椭圆的离心率为()A B 1 C D2、(坐标系与参数方程选做题)P 是曲线sin cos 1sin 2x y θθθ=+⎧⎨=-⎩()2 , 0[πθ∈是参数)上一点,P 到点)2 , 0(Q 距离的最小值是 .3. 在平面直角坐标系中,已知两个定点A (1,-1),B (4,1),动点M 满足μλ+=(O 为坐标原点),其中22205μλ+=4.(I )求动点M 的轨迹方程;(II )设点M 的轨迹为曲线C ,点P 是射线32(2≥=x x y )上(非端点)任意一点, 由点P 向曲线C 引两条切线PQ 、PT (Q 、T 为切点).求证QT 的斜率为常数.1.椭圆22192x y +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则2||PF =_________; 12F PF ∠的小大为__________.2.(坐标系与参数方程选做题)若直线112,:2.x t l y kt =-⎧⎨=+⎩(t 为参数)与直线2,:12.x s l y s =⎧⎨=-⎩(s 为参数)垂直,则k = .3. 已知向量(2,0) , (0,1)OA OC AB ===,动点M 到定直线1y =的距离等于d ,并且满足2()OM AM k CM BM d ⋅=⋅-,其中O 是坐标原点,k 是参数.(Ⅰ) 求动点M 的轨迹方法,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e ≤,求k 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《解析几何 》练习题2
一、判断题(每题2分,共16分)
1.若→a ║→b ,则对任意→c ,有),,(→
→→c b a =0。
( )
2.)()(→
→→→→→•=•c b a c b a 。
( )
3.若)1,0,1(),1,0,1(-==b a 则b a ⊥ 。
( ) 4.b a b a -=+,则a 与b 同向。
( )
5.平面8723=+-z y x 与直线723z
y
x
=-=是平行的。
( )
6.点P(x,y,z)关于y 轴对称的点的坐标为),,(z y x --。
( )
7.在空间直角坐标系中,z x 42=表示抛物线。
( )
8.点(1,0,2)在球面3222222=---++z y x z y x 外。
( )
二、选择题(每题2分,共16分)
1.下列等式中正确的是 ( )
A. →→→→⨯=⨯a b b a B .→
→→→•=•a b b a
C. ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛→
→→→→→c a b c b a ,,,, D. 2
22→
→→→•=⎪⎭⎫
⎝⎛•b a b a
2. 在直角坐标系下,→a ={}1,0,1-,→b ={}2,1,0,则→a ⨯→
b = ( )
A 、}{1,2,1-
B 、 }{1,2,1
C 、 }{1,2,1--
D 、 }
{1,2,1- 3. 点)3,4,2(-M 到平面0322=++-z y x 的离差是 (
) A. 32
B. —31
C. 34
D. 31
4. 两平面3x +6y -2z -7=0,3x +6y -2z +14=0之间的距离为:( )
A .1
B .2
C .3
D .4
5 .已知:A(1,2,3),B (3,2,1),则AB 的中点P 的向径OP 的分量为:( )
A .{1,2,1}
B .{1,1,1}
C .{2,2,1}
D .{2,2,2}
6.直线12
011-=+=z y x 与平面01=-+y x 的夹角为( )
A 6π
B 3π
C 4π
D 6π 或6
5π 7.方程0)2)(1(32)3(23)2(11)1(11222=----+-+-y x z y x 表示的图形为:( )
A .锥面
B .柱面
C .球面
D .旋转曲面
8、曲线⎪⎩
⎪⎨⎧==+0122
22z b y a x ,(a>b )绕其短轴旋转所得旋转曲面方程为:(
) A .122
22=+b y a x B .122
2222=++a z b y a x
C .122
2222=++b z b y a x D .1222222=++c
z b y a x 三、填空题(每题3分,共18分)
1.已知:A(1,0,0)、B(0,2,0)、C(0,0,3),则ΔABC 的重心G 的坐标为_______。
2.平面x+y -1=0在坐标系中的特殊位置为: 。
3.直线⎩
⎨⎧=-+-=+-+014209385z y x z y x 对XOZ 面的射影平面的方程为______________。
4. 在y 轴上且到平面0222=--+z y x 的距离为4的点为: 。
5.二次曲线
01462322=+++-y x y x 奇异点的坐标是_____________. 6.方程14942
22=-+z y x 所表示的图形为
四、计算题(共36 分)
1(9分).已知空间三点A(1,2,3),B(2,-1,5),C(3,2,-5)试求
(1)ΔABC 的面积
(2)ΔABC 的AB 边上的高
2(7分 ).求二次曲线
013622=-++--y x y xy x 渐近线的一般方程. 3(9分 )求与平面0432=-+-z y x 平行且与原点距离为1的平面。
4(9分 )设动点与点(1,0,0) 的距离等于从这点到平面x=4 的距离的一半,试求此动点的
轨迹。
五.综合题(共14分)
已知两直线l 1:0111+=-=z y x , l 2:0
11111-=-=-z y x . (1)证明两直线l 1 ,l 2 异面
(2)求l 1 与l 2 之间的距离
(3)求l
1与l
2
的公垂线方程。