江苏高考数学复习函数概念与基本初等函数Ⅰ第6课函数的奇偶性与周期性课时分层训练
函数概念与基本初等函数Ⅰ6函数的奇偶性与周期性课时训练文-高考数学一轮复习资料
【课时训练】函数的奇偶性与周期性一、选择题1.(2018河南洛阳统考)下列函数为奇函数的是( ) A .f (x )=x B .f (x )=e xC .f (x )=cos xD .f (x )=e x-e -x【答案】D【解析】对于A ,定义域不关于原点对称,故不是;对于B, f (-x )=e -x =1e x ≠-f (x ),故不是;对于C ,f (-x )=cos(-x )=cos x ≠-f (x ),故不是;对于D ,f (-x )=e -x-e x=-(e x -e -x)=-f (x ),是奇函数,故选D.2.(2018江南十校联考)设函数f (x )=x +sin x (x ∈R ),则下列说法错误的是( ) A .f (x )是奇函数 B .f (x )在R 上单调递增 C .f (x )的值域为R D .f (x )是周期函数【答案】D【解析】因为f (-x )=-x +sin(-x )=-(x +sin x )=-f (x ),所以f (x )为奇函数,故A 正确;因为f ′(x )=1+cos x ≥0,所以函数f (x )在R 上单调递增,故B 正确;f (x )的值域为R ,故C 正确;f (x )不是周期函数,故D 错误.3.(2018兰州模拟)已知函数f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( )A .-13B .13 C .-12D .12【答案】B【解析】∵f (x )是偶函数,∴f (-x )=f (x ),∴b =0.又a -1=-2a ,∴a =13,∴a +b=13.故选B. 4.(2018四川遂宁一模)已知函数f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)=( )A .-2B .2C .-98D .98【答案】B【解析】由f (x +4)=f (x )知,函数f (x )的周期为4,则f (2 019)=f (504×4+3)=f (3), 又f (3)=f (-1),且f (-1)=2,∴f (2 019)=2.5.(2018湖南师范大学附属中学月考)已知函数y =f (x )满足y =f (-x )和y =f (x +2)都是偶函数,且f (1)=1,则f (-1)+f (7)=( )A .0B .1C .2D .3 【答案】C【解析】∵y =f (-x )为偶函数,∴f (-(-x ))=f (-x ),∴f (-x )=f (x ),∴y =f (x )为偶函数,∴当x =1时,有f (-1)=f (1)=1.又y =f (x +2)是偶函数,∴f (-x +2)=f (x +2),∴f (x -2)=f (x +2).则f (x )=f (x +4),∴函数y =f (x )为周期函数,且周期为4.∴f (7)=f (8-1)=f (-1)=1.故f (-1)+f (7)=2.故选C.6.(2019吉林东北师大附中第一次摸底)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11) 【答案】D【解析】因为奇函数f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上是增函数.又因为函数f (x )满足f (x -4)=-f (x ),所以f (x -8)=-f (x -4)=f (x ),所以函数f (x )为周期函数,且周期为8,因此f (-25)=f (-1)<f (0)=f (80)<f (11)=f (3)=-f (-1)=f (1).故选D.7.(2018安徽十大名校年联考)设e 是自然对数的底数,函数f (x )是周期为4的奇函数,且当0<x <2时,f (x )=-ln x ,则e f (73)的值为( )A .35B .34 C .43 D .53【答案】D【解析】因为函数以4为周期,所以f ⎝ ⎛⎭⎪⎫73=f ⎝ ⎛⎭⎪⎫73-4=f ⎝ ⎛⎭⎪⎫-53=-f ⎝ ⎛⎭⎪⎫53=ln 53,所以e f (73)=eln 53=53.故选D.8.(2018江西九江七校联考)已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( )A .0B .-4C .-8D .-16 【答案】B【解析】由题意可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f (x +12)=f [(x +6)+6]=-f (x +6)=f (x ),∴函数f (x )的周期T =12.把y =f (x -1)的图象向左平移1个单位得y =f (x -1+1)=f (x )的图象,关于点(0,0)对称,因此函数f (x )为奇函数,∴f (2 014)=f (167×12+10)=f (10)=f (10-12)=f (-2)=-f (2)=-4.故选B.二、填空题9.(2018山东菏泽模拟)已知函数f (x )是定义在R 上的周期为2的奇函数,且当0<x <1时,f (x )=9x,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.【答案】-3【解析】∵函数f (x )是定义在R 上的周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12-2=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12. 又当0<x <1时,f (x )=9x,∴f ⎝ ⎛⎭⎪⎫-52=-912=-3.又f (2)=f (0)=0,∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-3.10.(2018广东珠海二中、斗门一中联考)若函数f (x )=ax 2+bx +1是定义在[-1-a,2a ]上的偶函数,则f (2a -b )=________.【答案】5【解析】∵函数f (x )=ax 2+bx +1是定义在[-1-a,2a ]上的偶函数, ∴-1-a +2a =0,即a =1.∵f (x )=f (-x ),∴ax 2+bx +1=ax 2-bx +1,∴b =0,即f (x )=x 2+1. 则f (2a -b )=f (2)=5.11.(2018山东泰安模拟)已知函数f (x )在R 上为奇函数,且x >0时, f (x )=x +1,则当x <0时, f (x )=________.【答案】--x -1【解析】∵f (x )为奇函数,且x >0时, f (x )=x +1,∴当x <0时,即-x >0,有 f (x )=-f (-x )=-(-x +1),即x <0时, f (x )=-(-x +1)=--x -1.12.(2018山东烟台模拟)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x .若f (2-a 2)>f (a ),则实数a 的取值范围是________.【答案】(-2,1)【解析】∵f (x )是奇函数,∴当x <0时, f (x )=-x 2+2x .做出函数f (x )的大致图象如图所示,结合图象可知f (x )是R 上的增函数.由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.三、解答题13.(2018云南民族中学月考)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 【解】(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时, f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].14.(2018天津六校期中联考)已知函数f (x )的定义域为D ={x |x ≠0},且满足对任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2, 且f (x )在(0,+∞)上是增函数,求x 的取值范围. 【解】(1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1), ∴f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数. (3)依题意有f (4×4)=f (4)+f (4)=2, 又由(2)知, f (x )是偶函数, ∴f (x -1)<2⇔f (|x -1|)<f (16). ∵f (x )在(0,+∞)上是增函数, ∴0<|x -1|<16,解得-15<x <17且x ≠1. ∴x 的取值范围是(-15,1)∪(1,17).。
高考数学(文,江苏教育版)一轮复习课件第6讲 函数的奇偶性与周期性
0(x∈R).( )
返回目录
第6讲 函数的奇偶性与周期性
双
向
固 基
[答案] (1)√ (2)√ (3)×
础
[解析] (1)由题意得定义域必须关于原点对称,所以 a-1 +2a=0,即 a=13.
(2)例如指数函数的定义域为 R,关于原点对称,但它是 非奇非偶函数.
(3)定义域不一定是 R,可以是其关于原点对称的子集, 如(-1,1),{-1,1}.
返回目录
第6讲 函数的奇偶性与周期性
[思考流程]第一步,求解函数的定义域,判断是否关
点 于原点对称;第二步,如果定义域不对称,则函数为非奇非
面 偶函数;第三步,如果定义域对称,再判断 f(x)与 f(-x)的
讲 考
关系.
向
返回目录
第6讲 函数的奇偶性与周期性
解:(1)∵由1x2--x12≥≥00,,得 x=±1,
• 10、阅读一切好书如同和过去最杰出的人谈话。2021/7/312021/7/312021/7/317/31/2021 7:59:21 PM
• 11、一个好的教师,是一个懂得心理学和教育学的人。2021/7/312021/7/312021/7/31Jul-2131-Jul-21
• 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/7/312021/7/312021/7/31Saturday, July 31, 2021
返回目录
第6讲 函数的奇偶性与周期性
双
向
固
2.函数奇偶性的图像特征
基 础
(1)偶函数的图像一定与 y 轴相交.( )
(2)奇函数的图像一定通过原点.( )
[答案] (1)× (2)× [解析] 当 y=f(x)在 x=0 处无定义时,(1)(2)都不正确.
函数的概念与基本初等函数函数的奇偶性与周期性课件文ppt
典型例题
例5.已知对数函数y=log_a x的图 像经过点(2,1)和点(8,3),求该函 数的解析式。
THANKS
感谢观看
例4.已知指数函数y=a^x的图像经过 点(1,2)和点(2,4),求该函数的解析式 。
对数函数的典型例题解析
总结词
对数函数是一种特殊的函数形式 ,通常用于描述变量x的对数关 系。
详细描述
对数函数通常形式为y=log_a x ,其中a为底数,a>0且a≠1;x 为真数。函数的图像为上升曲线 。当a>1时,函数为增函数;当 0<a<1时,函数为减函数。
奇函数与偶函数的定义
奇函数
对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=-f(x)$ ,则$f(x)$称为奇函数。
偶函数
对于函数$f(x)$的定义域内任意一个$x$,都有$f(-x)=f(x)$, 则$f(x)$称为偶函数。
奇函数与偶函数的性质
奇函数的图像关于原点对称,即$f(x)$在$x$轴上的图像关于 原点对称。
函数的概念与基本初等函数 函数的奇偶性与周期性课件 文ppt
xx年xx月xx日
目录
• 函数的概念 • 基本初等函数 • 函数的奇偶性 • 函数的周期性 • 典型数的定义
函数是数学中的一种关系,它可以将输入值映 射到输出值。
函数定义通常包括定义域和值域,定义域是输 入值的集合,值域是输出值的集合。
函数可以是一一对应的,也就是每个输入值都 有唯一的输出值与之对应,也可以是多对一的 ,即多个输入值对应一个输出值。
函数的分类
1 2
有界函数和无界函数
有界函数的输出值在一个有限范围内,无界函 数的输出值可以无限增大或无限减小。
高中 高考理科数学专项复习 函数的概念、基本初等函数(Ⅰ)及函数的应用 函数的奇偶性与周期性
2 3 1 1 1 解:f2=f2-2=f-2=-4×-2 +2=1.故填 1.
若函数 f(x)=xln(x+ a+x2)为偶函数,则 实数 a=____________.
解:∵函数 f(x)是偶函数,∴f(x)=f(-x), 即 xln(x+ a+x2)=-xln(-x+ a+x2), 1 2 ∴x+ a+x = 2,得 a=1.故填 1. -x+ a+x
第二章
函数的概念、基本初等函数(Ⅰ)及函数的应用
§2.3
函数的奇偶性与周期性
1.奇、偶函数的概念 (1)偶函数 一 般 地 , 如 果 对 于 函 数 f(x) 的 定 义 域 内 任 意 一 个 x , 都 有 ,那么函数 f(x)就叫做偶函数. (2)奇函数 一 般 地 , 如 果 对 于 函 数 f(x) 的 定 义 域 内 任 意 一 个 x , 都 有 ,那么函数 f(x)就叫做奇函数. 2.奇、偶函数的图象特征 偶函数的图象关于 对称; 奇函数的图象关于 对称.
解法二(图象法):作出函数 f(x)的图象,由图象关于原 点对称的特征知函数 f(x)为奇函数.
2 4 - x ≥0, (3)∵ ∴-2≤x≤2 且 x≠0, x≠0,
3.具有奇偶性函数的定义域的特点 具有奇偶性函数的定义域关于 于 ”是“一个函数具有奇偶性”的 4.周期函数的概念 (1)周期、周期函数 对于函数 f(x),如果存在一个 域内 的值时,都有 T,使得当 x 取定义 ,那么函数 f(x)就叫 ,即“定义域关 条件.
做周期函数.T 叫做这个函数的周期. (2)最小正周期 如 果 在 周 期 函 数 f(x)的 所 有 周 期 中 存 在 一 个 正数,那么这个最小正数就叫做 f(x)的最小正周期. 的
【2022高考数学一轮复习(步步高)】目录
第一章集合、常用逻辑用语、不等式§1.1集合§1.2 充分条件与必要条件§1.3 全称量词与存在量词§1.4 不等关系与不等式§1.5 一元二次不等式及其解法§1.6 基本不等式强化训练1不等式中的综合问题第二章函数概念与基本初等函数Ⅰ§2.1 函数的概念及其表示第1课时函数的概念及其表示第2课时函数的定义域与值域§2.2 函数的基本性质第1课时单调性与最大(小)值第2课时奇偶性、对称性与周期性第3课时函数性质的综合问题§2.3 幂函数与二次函数§2.4 指数与指数函数§2.5 对数与对数函数§2.6 函数的图象§2.7 函数与方程强化训练2函数与方程中的综合问题§2.8 函数模型及其应用第三章导数及其应用§3.1 导数的概念及运算§3.2 导数与函数的单调性§3.3 导数与函数的极值、最值强化训练3导数中的综合问题高考专题突破一高考中的导数综合问题第1课时利用导数研究恒(能)成立问题第2课时利用导函数研究函数的零点第3课时利用导数证明不等式第四章三角函数、解三角形§4.1任意角和弧度制、三角函数的概念§4.2 同角三角函数基本关系式及诱导公式§4.3 简单的三角恒等变换第1课时两角和与差的正弦、余弦和正切公式第2课时简单的三角恒等变换§4.4 三角函数的图象与性质§4.5 函数y=A sin(ωx+φ)的图象及应用强化训练4三角函数中的综合问题§4.6 解三角形高考专题突破二高考中的解三角形问题第五章平面向量、复数§5.1 平面向量的概念及线性运算§5.2 平面向量基本定理及坐标表示§5.3 平面向量的数量积强化训练5平面向量中的综合问题§5.4 复数第六章数列§6.1 数列的概念与简单表示法§6.2 等差数列及其前n项和§6.3 等比数列及其前n项和强化训练6数列中的综合问题高考专题突破三高考中的数列问题第七章立体几何与空间向量§7.1空间几何体及其表面积、体积强化训练7空间几何体中的综合问题§7.2 空间点、直线、平面之间的位置关系§7.3 直线、平面平行的判定与性质§7.4 直线、平面垂直的判定与性质强化训练8空间位置关系中的综合问题§7.5 空间向量及其应用高考专题突破四高考中的立体几何问题第八章解析几何§8.1直线的方程§8.2 两条直线的位置关系§8.3 圆的方程§8.4 直线与圆、圆与圆的位置关系强化训练9直线与圆中的综合问题§8.5 椭圆第1课时椭圆及其性质第2课时直线与椭圆§8.6 双曲线§8.7 抛物线强化训练10圆锥曲线中的综合问题高考专题突破五高考中的圆锥曲线问题第1课时范围与最值问题第2课时定点与定值问题第3课时证明与探索性问题第九章统计与统计案例§9.1 随机抽样、用样本估计总体§9.2 变量间的相关关系、统计案例强化训练11统计中的综合问题第十章计数原理、概率、随机变量及其分布§10.1 分类加法计数原理与分步乘法计数原理§10.2 排列、组合§10.3 二项式定理§10.4 随机事件的概率与古典概型§10.5 离散型随机变量的分布列、均值与方差§10.6 二项分布与正态分布高考专题突破六高考中的概率与统计问题。
函数的概念及基本初等函数节函数的奇偶性及周期性课件理新ppt
周期函数不一定有最小正周期。
周期函数的定义
性质1
若f(x)的周期为T,则f(x+T) = f(x)。
性质3
若f(x+T1) = -f(x),则T1是f(x)的一个周期。
性质4
若f(x+T1) = ±f(x),则T1是f(x)的一个周期。
性质2
若f(x+T1) = f(x+T2),则T1和T2是f(x)的周期。
控制工程
数字信号处理
工程中的应用
总结与展望
06
本课程总结
更复杂的函数类型
01
除Hale Waihona Puke 基本初等函数,还有许多其他类型的函数,如超越函数、三角函数、指数函数等,这些函数的性质和应用将进一步拓展。
未来发展方向
函数的应用
02
函数在各个领域都有广泛的应用,如物理学、工程学、经济学等,未来可以进一步探索函数在这些领域中的应用。
函数的计算方法
03
函数的计算不仅是数学的重要内容之一,也是计算机科学的重要应用之一,未来可以进一步探索函数的计算方法和算法的设计。
加强基本概念和基础知识的掌握
培养应用和创新意识
学习计算机科学的相关知识
个人学习和实践建议
谢谢您的观看
THANKS
周期函数的性质
常见函数的周期性
对数函数
y=logax,最小正周期T=0。
幂函数
y=x^a,最小正周期T=0。
正切函数
y=tan(wx),最小正周期T=π/w。
常数函数
以任意非零常数为周期的函数,如y=2,T=1。
正弦函数和余弦函数
y=sin(wx)和y=cos(wx),最小正周期T=2π/w。
高三数学奇偶性及周期性知识点整理
高三数学奇偶性及周期性知识点整理高三数学函数的奇偶性、周期性知识点一函数的奇偶性和周期性函数的奇偶性定义:偶数函数:通常,如果函数FX的定义域中的任意X存在F-X=FX,那么函数FX称为偶数函数。
奇函数:一般地,如果对于函数fx的定义域内任意一个x,都有f-x=-fx,那么函数fx是奇函数。
功能周期:1定义:若t为非零常数,对于定义域内的任一x,使fx+t=fx恒成立,则fx叫做周期函数,t叫做这个函数的一个周期。
周期函数的定义域必须是无界的。
2若t是周期,则k·tk≠0,k∈z也是周期,所有周期中最小的正数叫最小正周期。
一般所说的周期是指函数的最小正周期。
并非所有周期函数都具有最小正周期,例如常数函数FX=C。
奇函数与偶函数性质:1奇偶函数映像的对称性:奇偶函数映像关于原点对称,偶偶函数映像关于y轴对称。
3在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积是偶函数;③一个奇函数,一个偶函数的积是奇函数。
注:定义字段关于数字轴原点的对称性是函数FX为奇数或偶数的必要但不充分的条件1、函数是奇函数或偶函数的前提定义域必须关于原点对称;定义域在数轴上关于原点对称是函数fx为奇函数或偶函数的必要但不充分条件.2.函数的周期性使a和B不为零,如果:1函数y=fx存在fx=fx+a==>函数最小正周期t=|a|2函数y=FX存在FA+x=FB+x=>函数最小正周期T=|b-a|3函数y=fx存在fx=-fx+a==>函数最小正周期t=|2a|4.函数y=FX有FX+a===>函数最小正周期t=|2a|5函数y=FX有FX+a===>函数最小正周期t=|4a|高三数学函数奇偶性和周期性的两个知识点一、函数的奇偶性二、周期性1、周期函数对于函数y=FX,如果有一个非零常数T,那么当x在定义字段中取任何值时,就有FX+T=FX,那么函数y=FX称为周期函数,T是函数的周期2、最小正周期如果在周期函数FX的所有周期中都有一个最小正数,那么这个最小正数称为FX的最小正周期三、奇、偶函数的有关性质:1.定义域关于原点对称,这是函数奇偶性的必要条件和不足条件;2奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反之亦然;3如果奇数函数FX定义为x=0,则F0=0;4利用奇函数的图象关于原点对称可知,奇函数在原点两侧的对称区间上的单调性相同;利用偶函数的图象关于y轴对称可知,偶函数在原点两侧的对称区间上的单调性相反.5如果函数满足FX+T=FX,从函数周期性的定义可以看出,T是函数的周期;需要注意的是,NTN∈ Z和N≠ 0也是函数的周期四、利用定义判断函数奇偶性的方法首先,找到函数的定义域。
高考数学一轮复习第二章函数概念与基本初等函数Ⅰ第6课函数的奇偶性与周期性课件
2.利用函数奇偶性可以解决以下问题 (1)求函数值;(2)求解析式;(3)求函数解析 式中参数的值;(4)画函数图象,确定函数单调 性. 3.在解决具体问题时,要注意结论“若 T 是函数的周期,则 kT(k∈Z 且 k≠0)也是函数的 周期”的应用.
[易错与防范] 1.判断函数的奇偶性,应首先判断函数定 义域是否关于原点对称.定义域关于原点对称 是函数具有奇偶性的一个必要条件. 2.f(0)=0 既不是 f(x)是奇函数的充分条件, 也不是必要条件.应用时要注意函数的定义域 并进行检验. 3.判断分段函数的奇偶性时,要以整体的 观点进行判断,不能用函数在定义域某一区间 上不是奇偶函数而否定函数在整个定义域上的 奇偶性.
[思想与方法] 1.函数奇偶性的三个常用性质 (1)若奇函数 f(x)在 x=0 处有定义,则 f(0) =0. (2)若 f(x)为偶函数,则 f(|x|)=f(x). (3)设 f(x),g(x)的定义域分别是 D1,D2,那 么在它们的公共定义域上:奇+奇=奇,奇× 奇=偶,偶+偶=偶,偶×偶=偶,奇×偶= 奇.
2.已知 f(x)=ax2+bx 是定义在[a-1,2a]上的偶函数,那么 a+b 的值是
________.
1 3
[依题意 b=0,且 2a=-(a-1),
∴b=0 且 a=13,则 a+b=13.] 3.(教材改编)已知函数 f(x)是定义在 R 上的奇函数,当 x≥0 时,f(x)=x(1
+x),则 x<0 时,f(x)=________.
[迁移探究 2] 若将本例中“f(x+2)=f(x)”改为“f(x+1)=f1x”,则结论如 何?
[解] ∵f(x+1)=f1x, ∴f(x+2)=f[(x+1)+1]=fx+1 1=f(x). 故函数 f(x)的周期为 2. 由本例可知,f(0)+f(1)+f(2)+…+f(2 017)=1 009.
高考复习数学(江苏版)第2章 第6课 函数的奇偶性与周期性
第6课函数的奇偶性与周期性[最新考纲]内容要求A B C函数的奇偶性√函数的周期性√1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数关于原点对称(1)周期函数:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作f(x)的最小正周期.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.()(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.()(3)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.( ) (4)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( )[答案] (1)× (2)√ (3)√ (4)√2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________.13 [依题意b =0,且2a =-(a -1), ∴b =0且a =13,则a +b =13.]3.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________.x (1-x ) [当x <0时,则-x >0,∴f (-x )=(-x )(1-x ). 又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).]4.下列函数中,①y =x ;②y =|sin x |;③y =cos x ;④y =e x -e -x 为奇函数的是________.(填函数序号)④ [①中函数的定义域为[0,+∞),其不关于原点对称,故①不是奇函数,②③是偶函数,④是奇函数.]5.(2016·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.-25 [因为函数f (x )的周期为2,结合在[-1,1)上f (x )的解析式,得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=-12+a , f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110.由f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,得-12+a =110,解得a =35.所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.]函数奇偶性的判断(1)f (x )=x 3-2x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎨⎧x 2+x ,x >0,x 2-x ,x <0.[解] (1)定义域为R ,关于原点对称,又f (-x )=(-x )3-2(-x )=-x 3+2x =-(x 3-2x )=-f (x ). ∴该函数为奇函数.(2)由1-x 1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x )=x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函数是偶函数.[规律方法] 1.利用定义判断函数奇偶性的步骤:2.判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性;也可以利用函数的图象进行判断.[变式训练1](1)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是________.(填序号)①f(x)g(x)是偶函数;②|f(x)|g(x)是奇函数;③f(x)|g(x)|是奇函数;④|f(x)g(x)|是奇函数.(2)判断函数f(x)=3-x2+x2-3的奇偶性.(1)③[①:令h(x)=f(x)·g(x),则h(-x)=f(-x)·g(-x)=-f(x)·g(x)=-h(x),∴h(x)是奇函数,①错.②:令h(x)=|f(x)|g(x),则h(-x)=|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x)=h(x),∴h(x)是偶函数,②错.③:令h(x)=f(x)|g(x)|,则h(-x)=f(-x)|g(-x)|=-f(x)|g(x)|=-h(x),∴h(x)是奇函数,③正确.④:令h(x)=|f(x)·g(x)|,则h(-x)=|f(-x)·g(-x)|=|-f(x)·g(x)|=|f(x)·g(x)|=h(x),∴h(x)是偶函数,④错.](2)由⎩⎨⎧3-x 2≥0,x 2-3≥0,得x 2=3,∴x =±3,即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 因此f (-x )=-f (x )且f (-x )=f (x ), ∴函数f (x )既是奇函数又是偶函数.函数奇偶性的应用(1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.【导学号:62172030】(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________.(1)1(2)⎩⎨⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0[(1)∵f (x )为偶函数,∴f (-x )-f (x )=0恒成立,∴-x ln(-x +a +x 2)-x ln(x +a +x 2)=0恒成立,∴x ln a =0恒成立,∴lna =0,即a =1.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0.又当x <0时,-x >0,∴f (-x )=x 2+4x .又f (x )为奇函数, ∴f (-x )=-f (x ), 即f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.][规律方法] 1.已知函数的奇偶性求参数,一般采用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;2.已知函数的奇偶性求函数值或解析式,将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性得出关于f (x )的方程(组),从而可得f (x )的值或解析式.[变式训练2] (2017·南通一模)若函数f (x )=⎩⎨⎧x (x -b ),x ≥0,ax (x +2),x <0,(a >0,b >0)为奇函数,则f (a +b )的值为________.-1 [∵f (x )为奇函数,∴⎩⎪⎨⎪⎧ f (2)=-f (-2),f (1)=-f (-1),即⎩⎪⎨⎪⎧2(2-b )=0,1-b =a (-1+2),解得a =-1,b =2. ∴f (a +b )=f (1)=1-b =-1.]函数的周期性及其应用时,f (x )=2x -x 2,则f (0)+f (1)+f (2)+…+f (2 017)=________. 【导学号:62172031】1 009 [∵f (x +2)=f (x ),∴函数f (x )的周期T =2.又当x ∈[0,2)时,f (x )=2x -x 2,∴f (0)=0,f (1)=1,f (0)+f (1)=1. ∴f (0)+f (1)=f (2)+f (3)=f (4)+f (5)=…=f (2 016)+f (2 017)=1, ∴f (0)+f (1)+f (2)+…+f (2 017)=1 009.][迁移探究1] 若将本例中“f (x +2)=f (x )”改为“f (x +1)=-f (x )”,则结论如何?[解] ∵f (x +1)=-f (x ),∴f (x +2)=f [(x +1)+1]=-f (x +1)=f (x ).故函数f(x)的周期为2.由本例可知,f(0)+f(1)+f(2)+…+f(2 017)=1 009.[迁移探究2]若将本例中“f(x+2)=f(x)”改为“f(x+1)=1f(x)”,则结论如何?[解]∵f(x+1)=1f(x),∴f(x+2)=f[(x+1)+1]=1f(x+1)=f(x).故函数f(x)的周期为2.由本例可知,f(0)+f(1)+f(2)+…+f(2 017)=1 009.[规律方法] 1.判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,根据函数的周期性,可以由函数局部的性质得到函数的整体性质.2.函数周期性的三个常用结论:(1)若f(x+a)=-f(x),则T=2a,(2)若f(x+a)=1f(x),则T=2a,(3)若f(x+a)=-1f(x),则T=2a(a>0).[变式训练3](2017·南通第一次学情检测)已知定义在R上的奇函数f(x)满足f(x+4)=f(x),且x∈(0,2)时f(x)=x2+1,则f(7)的值为________.-2[∵由f(x+4)=f(x)可知f(x)的周期T=4,∴f(7)=f(7-4×2)=f(-1).又f(x)为奇函数,故f(-1)=-f(1).又f(x)=x2+1,x∈(0,2),故f(1)=2.∴f(7)=f(-1)=-f(1)=-2.][思想与方法]1.函数奇偶性的三个常用性质(1)若奇函数f(x)在x=0处有定义,则f(0)=0.(2)若f(x)为偶函数,则f(|x|)=f(x).(3)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.2.利用函数奇偶性可以解决以下问题(1)求函数值;(2)求解析式;(3)求函数解析式中参数的值;(4)画函数图象,确定函数单调性.3.在解决具体问题时,要注意结论“若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期”的应用.[易错与防范]1.判断函数的奇偶性,应首先判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.3.判断分段函数的奇偶性时,要以整体的观点进行判断,不能用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性.课时分层训练(六)A 组 基础达标 (建议用时:30分钟)一、填空题1.在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是________.2 [y =x cos x 是奇函数,y =lg x 2-2和y =x sin x 是偶函数,y =e x +x 2是非奇非偶函数.]2.函数y =log 21+x1-x的图象关于________对称.(填序号) ①原点;②y 轴;③y =-x ;④y =x . ① [由1+x1-x >0得-1<x <1,即函数定义域为(-1,1),又f (-x )=log 21-x 1+x =-log 21+x1-x =-f (x ),∴函数y =log 21+x1-x为奇函数.]3.(2016·苏州期中)定义在R 上的奇函数f (x ),当x >0时,f (x )=2x -x 2,则f(-1)+f(0)+f(3)=________.-2[∵f(x)为奇函数,∴f(-1)=-f(1),f(0)=0.又x>0时,f(x)=2x-x2,∴f(-1)+f(0)+f(3)=-f(1)+0+f(3)=-2+1+0+8-9=-2.]4.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(2 019)=________.-2[∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2 019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2 019)=-2.]5.函数f(x)在R上为奇函数,且x>0时,f(x)=x+1,则当x<0时,f(x)=________. 【导学号:62172032】--x-1[∵f(x)为奇函数,x>0时,f(x)=x+1,∴当x<0时,-x>0,f(x)=-f(-x)=-(-x+1),即x<0时,f(x)=-(-x+1)=--x-1.]6.(2017·安徽蚌埠二模)函数f(x)=(x+2)(x+a)x是奇函数,则实数a=________. 【导学号:62172033】-2[由题意知,g(x)=(x+2)(x+a)为偶函数,∴a=-2.]7.(2016·山东高考改编)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>12时,f⎝⎛⎭⎪⎫x+12=f⎝⎛⎭⎪⎫x-12,则f(6)=________.2 [由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则当x >0时,f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.]8.(2016·四川高考)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.-2 [∵f (x )是周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2,f (2)=f (0)=0,∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-2+0=-2.]9.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是________. 【导学号:62172034】(-2,1) [∵f (x )=x 2+2x =(x +1)2-1在(0,+∞)上单调递增,又f (x )为R 上的奇函数,故f (x )在(-∞,0)上单调递增.∴f (x )在R 上是单调递增函数.又f (2-a 2)>f (a )可知2-a 2>a ,解得-2<a <1.] 10.(2017·泰州中学高三摸底考试)函数y =1-sin xx 4+x 2+1(x ∈R )的最大值与最小值之和为________.2 [因为y =sin xx 4+x 2+1为奇函数,其最大值与最小值之和为0,因此函数y=1-sin xx 4+x 2+1(x ∈R )的最大值与最小值之和为2.]二、解答题11.若f (x ),g (x )是定义在R 上的函数,f (x )是奇函数,g (x )是偶函数,且f (x )+g (x )=1x 2-x +1,求f (x )的表达式.[解] 在f (x )+g (x )=1x 2-x +1中用-x 代替x ,得f (-x )+g (-x )=1(-x )2-(-x )+1, 又f (x )是奇函数,g (x )是偶函数, 所以-f (x )+g (x )=1x 2+x +1,联立方程⎩⎨⎧f (x )+g (x )=1x 2-x +1,-f (x )+g (x )=1x 2+x +1,两式相减得f (x )=12⎝ ⎛⎭⎪⎫1x 2-x +1-1x 2+x +1=x x 4+x 2+1. 12.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1. (1)求f (1)和f (-1)的值;(2)求f (x )在[-1,1]上的解析式. 【导学号:62172035】 [解] (1)∵f (x )是周期为2的奇函数, ∴f (1)=f (2-1)=f (-1)=-f (1), ∴f (1)=0,f (-1)=0.(2)由题意知,f (0)=0.当x ∈(-1,0)时,-x ∈(0,1). 由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1,1]上,f (x )=⎩⎪⎨⎪⎧2x4x+1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.B 组 能力提升 (建议用时:15分钟)1.(2017·启东中学高三第一次月考)已知函数f (x )在定义域[2-a,3]上是偶函数,在[0,3]上单调递减,并且f ⎝ ⎛⎭⎪⎫-m 2-a 5>f (-m 2+2m -2),则m 的取值范围是________.⎣⎢⎡⎦⎥⎤1-2,12 [因为函数f (x )在定义域[2-a,3]上是偶函数,所以2-a +3=0,所以a =5.所以f ⎝ ⎛⎭⎪⎫-m 2-a 5>f ()-m 2+2m -2,即f (-m 2-1)>f (-m 2+2m -2),所以偶函数f (x )在[-3,0]上单调递增,而-m 2-1<0,-m 2+2m -2=-(m -1)2-1<0,所以由f (-m 2-1)>f (-m 2+2m -2)得,⎩⎪⎨⎪⎧-3≤-m 2-1≤0-3≤-m 2+2m -2≤0,-m 2-1>-m 2+2m -2解得1-2≤m ≤12.]2.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎨⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.-10 [因为f (x )是定义在R 上且周期为2的函数, 所以f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12,且f (-1)=f (1),故f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12,从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22, 即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.]3.已知函数f (x )=⎩⎨⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. [解] (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数, 所以f (-x )=-f (x ), 于是x <0时, f (x )=x 2+2x =x 2+mx , 所以m =2.(2)由(1)知f (x )在[-1,1]上是增函数, 要使f (x )在[-1,a -2]上单调递增. 结合f (x )的图象(略)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].4.(2017·南京模拟)已知f (x )是偶函数,定义x ≥0时,f (x )=⎩⎨⎧x (3-x ),0≤x ≤3,(x -3)(a -x ),x >3. (1)求f (-2);(2)当x <-3时,求f (x )的解析式;(3)设函数f (x )在区间[-5,5]上的最大值为g (a ),试求g (a )的表达式. [解] (1)由题意,得f (-2)=f (2)=2×(3-2)=2.(2)当x <-3时,-x >3,所以f (x )=f (-x )=(-x -3)(a +x )=-(x +3)(a +x ),所以当x <-3时,f (x )的解析式为f (x )=-(x +3)(a +x ).(3)因为f (x )是偶函数,所以它在区间[-5,5]上的最大值即为它在区间[0,5]上的最大值.当x ≥0时,f (x )=⎩⎪⎨⎪⎧-x 2+3x ,0≤x ≤3,-x 2+(a +3)x -3a ,x >3.①当a ≤3时,f (x )在⎣⎢⎡⎦⎥⎤0,32上单调递增,在⎣⎢⎡⎦⎥⎤32,5上单调递减,所以g (a )=f ⎝ ⎛⎭⎪⎫32=94. ②当3<a <7时 ,f (x )在⎣⎢⎡⎦⎥⎤0,32,⎣⎢⎡⎦⎥⎤3,3+a 2上单调递增,在⎣⎢⎡⎦⎥⎤32,3,⎣⎢⎡⎦⎥⎤3+a 2,5上单调递减,所以此时只需比较f ⎝ ⎛⎭⎪⎫32=94与f ⎝⎛⎭⎪⎫3+a 2=(a -3)24的大小. (ⅰ)当3<a ≤6时,94≥(a -3)24,所以g (a )=f ⎝ ⎛⎭⎪⎫32=94;(ⅱ)当6<a <7时,94<(a -3)24,所以g (a )=f ⎝ ⎛⎭⎪⎫3+a 2=(a -3)24.③当a ≥7时,f (x )在⎣⎢⎡⎦⎥⎤0,32,[3,5]上单调递增,在⎣⎢⎡⎦⎥⎤32,3上单调递减,且f ⎝ ⎛⎭⎪⎫32=94<f (5)=2(a -5),所以g (a )=f (5)=2(a -5).综上所述,g (a )=⎩⎪⎨⎪⎧94,a ≤6,(a -3)24,6<a <7,2(a -5),a ≥7.。
江苏2018版高考数学复习第二章函数概念与基本初等函数I2.3函数的奇偶性与周期性教师用书文苏教版
2.3 函数的奇偶性与周期性1.函数的奇偶性2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f (x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【知识拓展】1.函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f x,则T=2a(a>0).(3)若f(x+a)=-1f x,则T=2a(a>0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( ×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( √)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.( √)(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.( √)(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.( √)1.(教材改编)对于定义域是R的任意奇函数f(x),下列结论正确的有________.(填序号)①f(x)-f(-x)>0;②f(x)-f(-x)≤0;③f(x)·f(-x)≤0; ④f(x)·f(-x)>0.答案③解析①②显然不正确.对任意奇函数f(x),有f(-x)=-f(x),∴f(x)·f(-x)=-[f(x)]2≤0,故③正确,④不正确.2.(教材改编)函数y=f(x)为(-∞,+∞)上的偶函数,且f(|a|)=3,则f(-a)=________. 答案 3解析若a≥0,则f(-a)=f(a)=f(|a|)=3;若a<0,则f(-a)=f(|a|)=3.故对a∈R,总有f(-a)=3.3.(教材改编)若函数f(x)=(x+1)(x-a)为偶函数,则a=________.答案 1解析∵f(x)=(x+1)(x-a)=x2+(1-a)x-a为偶函数,∴f(-x)=f(x)对任意x∈R恒成立,∴(1-a)x=(a-1)x恒成立,∴1-a=0,∴a=1.4.(教材改编)设函数y=f(x)是偶函数,它在[0,1]上的图象如图所示,则它在[-1,0]上的解析式为________.答案f(x)=x+2解析由题意知f(x)在[-1,0]上为一条线段,且过(-1,1)、(0,2),设f(x)=kx+b,代入解得k=1,b=2.所以f(x)=x+2.5.(2016·四川)若函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)=4x,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.答案 -2解析 ∵f (x )为定义在R 上的奇函数,∴f (0)=0, 又0<x <1时,f (x )=4x,∴f (12)=124=2,∴f ⎝ ⎛⎭⎪⎫-52+f (2) =-f ⎝ ⎛⎭⎪⎫52+f (2) =-f ⎝ ⎛⎭⎪⎫12+f (0) =-2+0=-2.题型一 判断函数的奇偶性例1 (1)下列函数中,既不是奇函数,也不是偶函数的是________. ①y =1+x 2; ②y =x +1x;③y =2x+12x ;④y =x +e x.答案 ④解析 ①中的函数是偶函数;②中的函数是奇函数;③中的函数是偶函数;只有④中的函数既不是奇函数也不是偶函数.(2)判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0的奇偶性.解 当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞),均有f (-x )=-f (x ). ∴函数f (x )为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)(2016·北京海淀区模拟)下列函数中为偶函数的是________.①y =1x;②y =lg|x |;③y =(x -1)2; ④y =2x.(2)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)=________. 答案 (1)② (2)3解析 (1)②中,函数y =lg|x |的定义域为{x |x ≠0}且lg|-x |=lg|x |, ∴函数y =lg|x |是偶函数.(2)∵f (x )是奇函数,g (x )是偶函数,f (-1)+g (1)=2,f (1)+g (-1)=4,∴-f (1)+g (1)=2,f (1)+g (1)=4,得g (1)=3. 题型二 函数的周期性例2 (1)(2016·淮安模拟)已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 017)+f (2 019)=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f x,当2≤x ≤3时,f (x )=x ,则f (105.5)=______. 答案 (1)0 (2)2.5解析 (1)由题意,得g (-x )=f (-x -1),又∵f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数, ∴g (-x )=-g (x ),f (-x )=f (x ), ∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4), ∴f (x )的周期为4,∴f (2 017)=f (1),f (2 019)=f (3)=f (-1), 又∵f (1)=f (-1)=g (0)=0, ∴f (2 017)+f (2 019)=0.(2)由已知,可得f (x +4)=f [(x +2)+2] =-1fx +=-1-1f x=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5.∴f (105.5)=2.5. 引申探究例2(2)中,若将f (x +2)=-1f x改为f (x +2)=-f (x ),其他条件不变,则f (105.5)的值为________. 答案 2.5解析 f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴函数的周期为4(下同例题).思维升华 函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 018)=________. 答案 339解析 ∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1, f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+f (3)+…+f (2 015)+f (2 016) =1×2 0166=336.又f (2 017)=f (1)=1,f (2 018)=f (2)=2, ∴f (1)+f (2)+f (3)+…+f (2 018)=339. 题型三 函数性质的综合应用 命题点1 解不等式问题例3 (1)(2016·南通模拟)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是____________.(2)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为______.答案 (1)(13,23) (2)(-1,4)解析 (1)因为f (x )是偶函数,所以其图象关于y 轴对称,又f (x )在[0,+∞)上单调递增,f (2x -1)<f (13),所以|2x -1|<13,所以13<x <23.(2)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4. 命题点2 求参数问题 例4 (1)函数f (x )=lg(a +21+x)为奇函数,则实数a =________. (2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12 =f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.答案 (1)-1 (2)-10解析 (1)根据题意得,使得函数有意义的条件为a +21+x>0且1+x ≠0,由奇函数的性质可得f (0)=0.所以lg(a +2)=0,即a =-1,经检验a =-1满足函数的定义域. (2)因为f (x )是定义在R 上且周期为2的函数,所以f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12且f (-1)=f (1), 故f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12, 从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题. (2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________.(2)奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=________. 答案 (1)-32(2)1解析 (1)函数f (x )=ln(e 3x+1)+ax 是偶函数,故f (-x )=f (x ),即ln(e -3x+1)-ax =ln(e 3x+1)+ax ,化简得ln 1+e 3xe 3x +e6x =2ax =ln e 2ax,即1+e 3xe 3x +e 6x =e 2ax , 整理得e 3x+1=e 2ax +3x(e 3x+1),所以2ax +3x =0,解得a =-32.(2)由f (x +2)是偶函数可得f (-x +2)=f (x +2), 又由f (x )是奇函数得f (-x +2)=-f (x -2), 所以f (x +2)=-f (x -2),f (x +4)=-f (x ),f (x +8)=f (x ),故f (x )是以8为周期的周期函数, 所以f (9)=f (8+1)=f (1)=1, 又因为f (x )是定义在R 上的奇函数,所以f (0)=0,所以f (8)=f (0)=0,故f (8)+f (9)=1.2.抽象函数问题考点分析 抽象函数问题在高考中也时常遇到,常常涉及求函数的定义域,由函数的周期性求函数值或判断函数的奇偶性等.一般以填空题来呈现,有时在解答题中也有所体现.此类题目较为抽象,易失分,应引起足够重视. 一、抽象函数的定义域典例 1 已知函数y =f (x )的定义域是[0,8],则函数g (x )=f x 2-2-log 2x +的定义域为________.解析 要使函数有意义, 需使⎩⎪⎨⎪⎧0≤x 2-1≤8,x +1>0,2-log 2x +,即⎩⎪⎨⎪⎧1≤x 2≤9,x >-1,x ≠3,解得1≤x <3,所以函数g (x )的定义域为[1,3). 答案 [1,3)二、抽象函数的函数值典例2 若定义在实数集R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f x,对任意x ∈R 恒成立,则f (2 019)=________. 解析 因为f (x )>0,f (x +2)=1f x , 所以f (x +4)=f [(x +2)+2]=1fx +=11f x=f (x ),即函数f (x )的周期是4,所以f (2 019)=f (505×4-1)=f (-1). 因为函数f (x )为偶函数, 所以f (2 019)=f (-1)=f (1). 当x =-1时,f (-1+2)=1f-,得f (1)=1f.即f (1)=1,所以f (2 019)=f (1)=1. 答案 1三、抽象函数的单调性与不等式典例3 设函数f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ).若f (3)=1,且f (a )>f (a -1)+2,求实数a 的取值范围. 规范解答解 因为f (xy )=f (x )+f (y )且f (3)=1, 所以2=2f (3)=f (3)+f (3)=f (9).又f (a )>f (a -1)+2,所以f (a )>f (a -1)+f (9). 再由f (xy )=f (x )+f (y ),可知f (a )>f [9(a -1)],因为f (x )是定义在(0,+∞)上的增函数,从而有⎩⎪⎨⎪⎧a >0,a -,aa -,解得1<a <98.故所求实数a 的取值范围是(1,98).1.(教材改编)已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,则f (x )=____________. 答案 x 2-2解析 f (-x )+g (-x )=x 2-x -2, 由f (x )是偶函数,g (x )是奇函数, 得f (x )-g (x )=x 2-x -2, 又f (x )+g (x )=x 2+x -2, 两式联立得f (x )=x 2-2.2.(2016·苏州模拟)设f (x )是R 上的任意函数,则下列叙述正确的有________.(填序号) ①f (x )f (-x )是奇函数; ②f (x )|f (-x )|是奇函数; ③f (x )-f (-x )是奇函数; ④f (x )+f (-x )是偶函数. 答案 ③④解析 对于①,设g (x )=f (x )f (-x ),g (-x )=f (-x )f (x )=g (x ),∴f (-x )f (x )是偶函数;对于②,设g (x )=f (x )|f (-x )|,g (-x )=f (-x )|f (x )|≠g (x ),g (-x )≠-g (x ),∴f (x )|f (-x )|是非奇非偶函数; 对于③,设g (x )=f (x )-f (-x ),g (-x )=f (-x )-f (x )=-[f (x )-f (-x )]=-g (x ),∴f (x )-f (-x )是奇函数; 对于④,设g (x )=f (x )+f (-x ),g (-x )=f (-x )+f (x )=g (x ),∴f (x )+f (-x )是偶函数.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2019)=________. 答案 2解析 由f (x +4)=f (x )知,f (x )是周期为4的周期函数,f (2 019)=f (504×4+3)=f (3), 又f (x +4)=f (x ),∴f (3)=f (-1), 由-1∈(-2,0)得f (-1)=2, ∴f (2 019)=2.4.(2016·南京模拟)若函数f (x )=2x -k ·2-x2x +k ·2-x (k 为常数)在定义域内为奇函数,则k 的值为________. 答案 ±1解析 依题意,得f (-x )=2-x-k ·2x2-x +k ·2x=-2x-k ·2-x2x +k ·2-x ,整理得k 2=1,k =±1.5.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎩⎪⎨⎪⎧cos π6x <x ,log 2x x,则f (f (-16))=________.答案 12解析 由题意f (-16)=-f (16)=-log 216=-4, 故f (f (-16))=f (-4)=-f (4)=-cos 4π6=12.6.(2016·盐城模拟)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案 13解析 依题意得f (-x )=f (x ), ∴b =0,又a -1=-2a , ∴a =13,∴a +b =13.7.(2017·苏北四市联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g x ,x <0,若f (x )为奇函数,则g (-14)=________. 答案 2解析 g (-14)=f (-14)=-f (14) =-log 214=-log 22-2=2. 8.(2016·常州模拟)已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________.答案 0解析 由f (x +1)是偶函数得f (-x +1)=f (x +1),又f (x )是定义在R 上的奇函数,所以f (-x +1)=-f (x -1),即-f (x -1)=f (x +1),所以f (x +2)=-f (x ),即f (x )+f (x +2)=0,所以f (1)+f (3)=0,f (2)+f (4)=0,因此f (1)+f (2)+f (3)+f (4)=0.9.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1.10.(2016·南京模拟)若函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上是单调递增函数.如果实数t 满足f (ln t )+f (ln 1t)≤2f (1),那么t 的取值范围是________. 答案 [1e,e] 解析 由于函数f (x )是定义在R 上的偶函数,所以f (ln t )=f (ln 1t), 由f (ln t )+f (ln 1t)≤2f (1), 得f (ln t )≤f (1).又函数f (x )在区间[0,+∞)上是单调递增函数,所以|ln t |≤1,即-1≤ln t ≤1,故1e≤t ≤e. 11.(2016·江苏苏北四市二调)定义在R 上的奇函数f (x )满足当x ≥0时,f (x )=log 2(x +2)+(a -1)x +b (a ,b 为常数),若f (2)=-1,则f (-6)的值为________.答案 4解析 由已知得f (0)=0=1+b ,∴b =-1,又f (2)=2+2(a -1)-1=-1,∴a =0,∴f (x )=log 2(x +2)-x -1(x ≥0),∴f (-6)=-f (6)=-3+6+1=4.12.(2016·江苏扬州中学开学考试)已知f (x )是定义在[-2,2]上的奇函数,且当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m ,如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是____________.答案 [-5,-2]解析 ∵f (x )是定义在[-2,2]上的奇函数,∴f (0)=0,当x ∈(0,2]时,f (x )=2x-1的值域为(0,3],∴当x ∈[-2,2]时,f (x )的值域为[-3,3],若∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则g (x )max ≥3且g (x )min ≤-3,∵g (x )=x 2-2x +m =(x -1)2+m -1,∴当x ∈[-2,2]时, g (x )max =g (-2)=8+m ,g (x )min =g (1)=m -1,故8+m ≥3且m -1≤-3,解得m ≥-5且m ≤-2,故-5≤m ≤-2.13.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.解 (1)由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),∴f (x )是以4为周期的周期函数.∴f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4.(2)由f (x )是奇函数与f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×(12×2×1)=4。
江苏专版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示学案理含解析050649.doc
第一节 函数及其表示1.函数的概念 (1)定义:设A ,B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数,记为y =f (x ),x ∈A .(2)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(5)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[小题体验]1.(2019·无锡一中期中测试)函数f (x )=ln(x 2-x )的定义域为________. 解析:由题意知,x 2-x >0,即x <0或x >1. 则函数的定义域为(-∞,0)∪(1,+∞). 答案:(-∞,0)∪(1,+∞)2.已知f (x )=x -1,则f (2)=________. 解析:令x =2,则x =4,所以f (2)=3. 答案:33.(2019·海头高级中学高三期中)若函数f (x )=⎩⎪⎨⎪⎧2+log 3x ,x >0,3-log 2-x ,x <0,则f (3)+f (-2)=________.答案:54.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,-x ,x >1.若f (x )=2,则x =________.解析:依题意得当x ≤1时,3x=2,所以x =log 32; 当x >1时,-x =2,x =-2(舍去).故x =log 32. 答案:log 321.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域.2.分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成”.求分段函数的函数值,如果自变量的范围不确定,要分类讨论.[小题纠偏]1.(2019·常州一中检测)若函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1,log 2x -,x >1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫52=________.解析:因为52>1,所以f ⎝ ⎛⎭⎪⎫52=log 232, 又因为log 232<1,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫52=223log 2-2=-12.答案:-122.(2018·苏州中学测试)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝ ⎛⎭⎪⎫1x =3x+1,则函数f (x )的解析式为________.解析:用1x代替3f (x )+5f ⎝ ⎛⎭⎪⎫1x =3x+1中的x ,得3f ⎝ ⎛⎭⎪⎫1x+5f (x )=3x +1, 所以⎩⎪⎨⎪⎧3f x +5f ⎝ ⎛⎭⎪⎫1x =3x +1, ①3f ⎝ ⎛⎭⎪⎫1x +5f x =3x +1, ②②×5-①×3得f (x )=1516x -916x +18(x ≠0).答案:f (x )=1516x -916x +18(x ≠0)考点一 函数的定义域基础送分型考点——自主练透[题组练透]1.(2018·常州期末)函数y =1-x +lg(x +2)的定义域为________.解析:由题意可得⎩⎪⎨⎪⎧1-x ≥0,x +2>0,解得-2<x ≤1,故所求函数的定义域为(-2,1].答案:(-2,1]2.(2018·南通中学高三测试)函数y =1-x22x 2-3x -2的定义域为________________.解析:由函数y =1-x22x 2-3x -2得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以所求函数的定义域为⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1. 答案:⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,13.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +x -1的定义域是________.解析:令t =x +1,由已知函数的定义域为[1,2 019],可知1≤t ≤2 019.要使函数f (x +1)有意义,则有1≤x +1≤2 019,解得0≤x ≤2 018,故函数f (x +1)的定义域为[0,2018].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 018,x -1≠0,解得0≤x <1或1<x ≤2 018.故函数g (x )的定义域为[0,1)∪(1,2 018].答案:[0,1)∪(1,2 018]4.(2018·南京师范大学附中模拟)函数f (x )=log 12x -的定义域是________.解析:由题意得log 12(2x -3)≥0⇒0<2x -3≤1⇒32<x ≤2,即函数f (x )的定义域是⎝ ⎛⎦⎥⎤32,2. 答案:⎝ ⎛⎦⎥⎤32,2[谨记通法]函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.考点二 求函数的解析式重点保分型考点——师生共研[典例引领](1)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(2)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(3)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(4)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x )的解析式;(5)已知f (0)=1,对任意的实数x ,y 都有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.解:(1)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(2)(配凑法)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.(3)(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1,x >1. (4)(解方程组法)由f (-x )+2f (x )=2x,① 得f (x )+2f (-x )=2-x,② ①×2-②,得,3f (x )=2x +1-2-x.即f (x )=2x +1-2-x3. 所以f (x )的解析式是f (x )=2x +1-2-x3. (5)(赋值法)令x =0,得f (-y )=f (0)-y (-y +1)=1+y 2-y , 所以f (y )=y 2+y +1,即f (x )=x 2+x +1.[由题悟法]求函数解析式的5种方法1.(2019·如皋测试)已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=________. 解析:设f (x )=kx +b ,由f (f (x ))=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2, 所以k 2=1,kb +b =2,解得k =1,b =1,即f (x )=x +1. 答案:x +12.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:(换元法)设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.法二:(配凑法)因为x +2x =(x )2+2x +1-1=(x +1)2-1, 所以f (x +1)=(x +1)2-1,x +1≥1,即f (x )=x 2-1,x ≥1. 考点三 分段函数 题点多变型考点——多角探明[锁定考向]分段函数作为考查函数知识的最佳载体,一直是高考命题的热点,解题过程中常渗透着分类讨论的数学思想,高考对分段函数的常见的命题角度有:(1)分段函数的求值问题; (2)求参数或自变量的值与范围; (3)分段函数与不等式问题.[题点全练]角度一:分段函数的求值问题1.设函数f (x )=⎩⎪⎨⎪⎧|log 3x +,-1<x ≤0,tan π2x ,0<x <1,则f ⎝ ⎛⎭⎪⎫f ⎝⎛⎭⎪⎫33-1=________. 解析:因为-1<33-1≤0,所以f ⎝ ⎛⎭⎪⎫33-1=⎪⎪⎪⎪⎪⎪log 333=12, 则f ⎝ ⎛⎭⎪⎫f ⎝⎛⎭⎪⎫33-1=f ⎝ ⎛⎭⎪⎫12=tan π4=1.答案:1角度二:求参数或自变量的值与范围2.已知f (x )=⎩⎨⎧x 12,x ∈[0,+,|sin x |,x ∈⎝ ⎛⎭⎪⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝ ⎛⎭⎪⎫-π2,0, 解得a =-π6.综上可知,a =14或-π6.答案:14或-π6角度三:分段函数与不等式问题3.(2018·如东期末)设函数f (x )=⎩⎪⎨⎪⎧x 2e x,x ≥0,x2ex ,x <0,则使得f (2x +1)>f (x -1)成立的x 的取值范围是________.解析:当x >0时,f (-x )=x 2e x=f (x ),且为增函数,同理当x <0时,f (-x )=x 2ex =f (x ),且为减函数,所以f (x )关于y 轴对称,且左减右增.要使f (2x +1)>f (x -1),则需|2x +1|>|x -1|,两边平方化简得x 2+2x >0,解得x <-2或x >0,故所求x 的取值范围是(-∞, -2)∪(0,+∞).答案:(-∞,-2)∪(0,+∞)[通法在握]1.分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.2.分段函数与不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.[演练冲关]1.(2019·姜堰中学测试)已知函数f (x )的定义域为实数集R ,∀x ∈R ,f (x -90)=⎩⎪⎨⎪⎧lg x ,x >0,-x ,x ≤0,则f (10)-f (-100)的值为________.解析:因为f (10)=f (100-90)=lg 100=2,f (-100)=f (-10-90)=-(-10)=10, 所以f (10)-f (-100)=2-10=-8. 答案:-82.(2018·无锡高三第一学期期末)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1x 2,x ≤-12,log 121+x 2,x >-12,g (x )=-x 2-2x -2.若存在a ∈R ,使得f (a )+g (b )=0,则实数b 的取值范围是________.解析:当x ≤-12时,f (x )=1+2x -1x2<1,此时f (x )=1+2x -1x 2=1+2x -1x 2在⎝⎛⎦⎥⎤-∞,-12上单调递减,易求得f (x )∈[-7,1);当x >-12时,f (x )=log 121+x2,此时f (x )在⎝ ⎛⎭⎪⎫-12,+∞上单调递减,易求得f (x )∈(-∞,2), ∴f (x )的值域为(-∞,2).故存在a ∈R ,使得f (a )+g (b )=0⇒-g (b )=f (a )∈(-∞,2)⇒b 2+2b +2<2⇒b ∈(-2,0).答案:(-2,0)3.(2018·南通期末)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x >0,0,x =0,2x -1,x <0,则不等式f (x 2-2)+f (x )<0的解集为__________.解析:函数f (x )=⎩⎪⎨⎪⎧2x +1,x >0,0,x =0,2x -1,x <0的图象如图所示,所以f (x )是定义域为R 的奇函数也是增函数,所以不等式f (x 2-2)+f (x )<0⇔ f (x 2-2)<f (-x )⇔x 2-2<-x ,解得-2<x <1,所以原不等式的解集为(-2,1). 答案:(-2,1)一抓基础,多练小题做到眼疾手快 1.(2019·淮安调研)函数f (x )=-x2的定义域是________.解析:由lg(5-x 2)≥0,得5-x 2≥1, 即x 2≤4,解得-2≤x ≤2. ∴函数f (x )=-x2的定义域是[-2,2].答案:[-2,2]2.(2018·苏州高三期中调研)函数y =1x -的定义域为________.解析:由⎩⎪⎨⎪⎧x >1,x -,解得x >1,且x ≠2,所以函数的定义域为(1,2)∪(2,+∞).答案:(1,2)∪(2,+∞)3.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a =________. 解析:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a=74. 答案:744.已知f (x )是一次函数,满足3f (x +1)=6x +4,则f (x )=________. 解析:设f (x )=ax +b (a ≠0), 则f (x +1)=a (x +1)+b =ax +a +b , 依题设,3ax +3a +3b =6x +4,∴⎩⎪⎨⎪⎧3a =6,3a +3b =4,∴⎩⎪⎨⎪⎧a =2,b =-23,则f (x )=2x -23.答案:2x -235.(2019·盐城模考)已知函数f (x )=⎩⎪⎨⎪⎧a x +1-2,x ≤1,2x -1,x >1,若f (0)=3,则f (a )=________.解析:因为f (0)=3,所以a -2=3,即a =5,所以f (a )=f (5)=9. 答案:96.设函数f (x )=⎩⎪⎨⎪⎧1x, x >1,-x -2,x ≤1,则f (f (2))=________,函数f (x )的值域是________.解析:因为f (2)=12,所以f (f (2))=f ⎝ ⎛⎭⎪⎫12=-52. 当x >1时,f (x )∈(0,1),当x ≤1时,f (x )∈[-3,+∞), 所以f (x )∈[-3,+∞). 答案:-52[-3,+∞)二保高考,全练题型做到高考达标1.(2019·如东高级中学高三学情调研)设函数f (x )=⎩⎪⎨⎪⎧1+log 2-x ,x <1,2x -1,x ≥1,则f (-2)+f (log 212)=________.解析:因为f (-2)=1+log 24=3,f (log 212)=2log 212-1=6,所以f (-2)+f (log 212)=9.答案:92.(2018·苏州期末)函数f (x )=⎩⎪⎨⎪⎧2x, x ≤0,-x 2+1,x >0的值域为________.解析:画出f (x )的图象如图所示,可看出函数的值域为(-∞,1]. 答案:(-∞,1]3.(2018·南京名校联考)f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=________.解析:因为f ⎝ ⎛⎭⎪⎫19=log 319=-2,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.答案:94.(2019·南通调研)函数f (x )=11-x+lg(x +1)的定义域是________. 解析:由题意得⎩⎪⎨⎪⎧1-x ≠0,x +1>0⇒x >-1且x ≠1,所以函数f (x )的定义域是(-1,1)∪(1,+∞).答案:(-1,1)∪(1,+∞)5.(2018·启东中学检测)已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________.解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2]6.已知具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数的序号是________.解析:对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③. 答案:①③7.(2019·扬州一模)若函数f (x )=⎩⎪⎨⎪⎧2-x-2,x <0,g x ,x >0为奇函数,则f (g (2))=________.解析:因为函数f (x )=⎩⎪⎨⎪⎧2-x-2,x <0,g x ,x >0为奇函数,所以当x >0时,-x <0,则f (-x )=2x -2=-f (x ),所以f (x )=-2x +2,即g (x )=-2x +2.所以g (2)=-22+2=-2,f (g (2))=f (-2)=22-2=2.答案:28.已知函数f (x )=⎩⎪⎨⎪⎧a -x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝ ⎛⎭⎪⎫122=14.答案:149.(2019·泰州一调)设函数f (x )=⎩⎪⎨⎪⎧2x -3,x ≥2,x 2-3x -2,x <2,若f (x )>2,则x 的取值范围是________.解析:不等式f (x )>2可化为⎩⎪⎨⎪⎧x ≥2,2x -3>2或⎩⎪⎨⎪⎧x <2,x 2-3x -2>2,解得x >52或x <-1.答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫52,+∞10.(2019·无锡一中月考) 已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是________.解析:要使函数g (x )有意义,需f (x )>0,由f (x )的图象可知,当x ∈(2,8]时,f (x )>0.答案:(2,8]11.(2019·南京金陵中学月考)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上,函数y =f (x )的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围.解:(1)由f (0)=1,可设f (x )=ax 2+bx +1(a ≠0),故f (x +1)-f (x )=a (x +1)2+b (x+1)+1-(ax 2+bx +1)=2ax +a +b ,由题意得⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,故f (x )=x 2-x +1.(2)由题意,得x 2-x +1>2x +m ,即x 2-3x +1>m ,对x ∈[-1,1]恒成立.令g (x )=x 2-3x +1,则问题可转化为g (x )min >m ,又因为g (x )在[-1,1]上递减,所以g (x )min =g (1)=-1,故m <-1,即实数m 的取值范围为(-∞,-1).12.(2018·南京期末)已知二次函数f (x )满足f (1)=1,f (-1)=5,且图象过原点. (1)求二次函数f (x )的解析式; (2)已知集合U =[1,4],B =⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y =f xx 2,x ∈U ,求∁U B .解:(1)设f (x )=ax 2+bx +c (a ≠0), 因为f (1)=1,f (-1)=5,且图象过原点,所以⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得a =3,b =-2,所以f (x )=3x 2-2x . (2)y =f x x 2=3-2x, 当x ∈[1,4]时,函数y =3-2x是增函数,当x =1时,y 取得最小值1;当x =4时,y 取得最大值52,所以B =⎣⎢⎡⎦⎥⎤1,52,又集合U =[1,4],故∁U B =⎝ ⎛⎦⎥⎤52,4.三上台阶,自主选做志在冲刺名校1.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a =________.解析:当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a , 解得a =-34,所以a 的值为-34.答案:-342.定义在R 上的函数f (x )满足f (x +2)=2f (x ),若当0≤x ≤2时,f (x )=x (2-x ),则当 -4≤x ≤-2时,f (x )=________.解析:由题意知f (x +4)=2f (x +2)=4f (x ),当-4≤x ≤-2时,0≤x +4≤2,所以f (x )=14f (x +4)=14(x +4)[2-(x +4)]=-14(x +4)(x +2),所以当-4≤x ≤-2时,f (x )=-14(x +4)(x +2).答案:-14(x +4)(x +2)3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2, 得-72≤x ≤70.因为x ≥0,所以0≤x ≤70. 故行驶的最大速度是70千米/时.精美句子1、善思则能“从无字句处读书”。
(江苏专用)高考数学总复习 第二篇 函数与基本初等函数《第6讲 函数的奇偶性》课件 理 苏教版
(5)复合函数的奇偶性特点是:“内偶则偶,内奇同外”. (6)既奇又偶的函数有无穷多个(如f(x)=0,定义域是关于原点 对称的任意一个数集). 3.周期性 (1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使 得当x取定义域内的任何值时,都有f(x+T)= f(x) ,那么就称函 数y=f(x)为周期函数,称T为这个函数的周期. (2)最小正周期:如果在周期函数f(x)的所有周期 中 存在一个最小的正数,那么这个最小正数就叫做f(x)的最小 正周期.
2.函数奇偶性的性质 (1)奇函数在关于原点对称的区间上若有单调性,则其单调性 完全相同;偶函数在关于原点对称的区间上若有单调性,则其 单调性恰恰相反. (2)在公共定义域内 ①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积都是偶函数; ③一个奇函数,一个偶函数的积是奇函数. (3)若f(x)为偶函数,则f(-x)=f(x)=f(|x|). (4)若奇函数f(x)定义域中含有0,则必有f(0)=0. f(0)=0是f(x)为奇函数的既不充分也不必要条件.
函数奇偶性的判断 判断函数的奇偶性主要根据定义:一般地,如果对于函数f(x) 的定义域内任意一个x,都有f(-x)=f(x)(或f(-x)=-f(x)),那 么函数f(x)就叫做偶函数(或奇函数).其中包含两个必备条件: ①定义域关于原点对称,这是函数具有奇偶性的必要不充分条 件,所以首先考虑定义域有利于准确简捷地解决问题; ②判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算 中,可以转化为判断奇偶性的等价关系式(f(x)+f(-x)=0(奇函 数)或f(x)-f(-x)=0(偶函数)是否成立.
第6讲 函数的奇偶性
基础梳理 1.奇、偶函数的概念 一般地,设函数y=f(x)的定义域为A,如果对于任意的x∈A, 都有 f(-x)=f(x) ,那么称函数y=f(x)是偶函数. 如果对于任意的x∈A都有 f(-x)=-f(x) ,那么称函数y=f(x)是 奇函数. 奇函数的图象关于原点对称;偶函数的图象关于y轴对称.
【名师推荐资料】高中数学 第二章 函数概念与基本初等函数I 2.6 函数的奇偶性和周期性学案 苏教版必修1
函数的奇偶性和周期性函数的奇偶性和周期性(一)一、考点突破1. 判断函数的奇偶性和周期性;2. 函数性质的综合应用。
二、重难点提示重点:结合函数图象理解函数的奇偶性、周期性;难点:函数性质的综合应用。
函数的奇偶性和周期性(二)一、考点突破1. 函数奇偶性、周期性的重要特征与性质;2. 函数性质的综合应用。
二、重难点提示重点:函数奇偶性、周期性的判断,及它们之间的关系;难点:利用数形结合思想解决函数的综合问题。
函数的奇偶性和周期性(一)思考:若函数)(x f 是奇函数,且在0=x 处有定义,则=)0(f ____,为什么? 解析:∵0与0互为相反数,又∵函数)(x f 为奇函数,∴)0()0(f f -=,∴0)0(2=f ,∴0)0(=f 。
◆ 函数的周期性1. 周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期。
2. 最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期。
函数的奇偶性和周期性(二)◆ 函数奇偶性的性质1. 若奇函数f (x )在x =0处有定义,则f (0)=0;若f (x )为偶函数,则()()()f x f x f x -==.2. 设f (x ),g (x示例 (重庆高考改编)设函数()f x 、()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数。
则: ()f x ()g x 是 奇 函数; |()|()f x g x 是 偶 函数;()|()|f x g x 是 奇 函数;|()()|f x g x 是 偶 函数.3. 奇函数在关于原点对称的区间上若有单调性,则其单调性在对称区间上完全相同; 偶函数在关于原点对称的区间上若有单调性,则其单调性在对称区间上恰恰相反。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 函数概念与基本初等函数(Ⅰ)第6课 函数的奇偶性与周期性课时分层训练A 组 基础达标 (建议用时:30分钟)一、填空题1.在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是________. 2 [y =x cos x 是奇函数,y =lg x 2-2和y =x sin x 是偶函数,y =e x +x 2是非奇非偶函数.]2.函数y =log 21+x1-x 的图象关于________对称.(填序号)①原点;②y 轴;③y =-x ;④y =x . ① [由1+x1-x >0得-1<x <1,即函数定义域为(-1,1),又f (-x )=log 21-x 1+x =-log 21+x1-x =-f (x ),∴函数y =log 21+x1-x为奇函数.]3.(2016·苏州期中)定义在R 上的奇函数f (x ),当x >0时,f (x )=2x -x 2,则f (-1)+f (0)+f (3)=________.-2 [∵f (x )为奇函数,∴f (-1)=-f (1),f (0)=0. 又x >0时,f (x )=2x -x 2,∴f (-1)+f (0)+f (3)=-f (1)+0+f (3)=-2+1+0+8-9=-2.]4.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=________.-2 [∵f (x +4)=f (x ), ∴f (x )是以4为周期的周期函数,∴f (2 019)=f (504×4+3)=f (3)=f (-1). 又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.]5.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 【导学号:62172032】--x -1 [∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1.]6.(2017·安徽蚌埠二模)函数f (x )= x +2 x +ax是奇函数,则实数a =________.【导学号:62172033】-2 [由题意知,g (x )=(x +2)(x +a )为偶函数, ∴a =-2.]7.(2016·山东高考改编)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=________.2 [由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则当x >0时,f (x +1)=f (x ). 又当-1≤x ≤1时,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1). 又当x <0时,f (x )=x 3-1, ∴f (-1)=-2,∴f (6)=2.]8.(2016·四川高考)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.-2 [∵f (x )是周期为2的奇函数,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2,f (2)=f (0)=0,∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-2+0=-2.]9.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是________. 【导学号:62172034】(-2,1) [∵f (x )=x 2+2x =(x +1)2-1在(0,+∞)上单调递增,又f (x )为R 上的奇函数,故f (x )在(-∞,0)上单调递增.∴f (x )在R 上是单调递增函数.又f (2-a 2)>f (a )可知2-a 2>a ,解得-2<a <1.] 10.(2017·泰州中学高三摸底考试)函数y =1-sin xx 4+x 2+1(x ∈R )的最大值与最小值之和为________.2 [因为y =sin x x 4+x 2+1为奇函数,其最大值与最小值之和为0,因此函数y =1-sin xx 4+x 2+1(x ∈R )的最大值与最小值之和为2.]二、解答题11.若f (x ),g (x )是定义在R 上的函数,f (x )是奇函数,g (x )是偶函数,且f (x )+g (x )=1x 2-x +1,求f (x )的表达式.[解] 在f (x )+g (x )=1x 2-x +1中用-x 代替x ,得f (-x )+g (-x )=1-x 2- -x +1,又f (x )是奇函数,g (x )是偶函数, 所以-f (x )+g (x )=1x 2+x +1,联立方程⎩⎪⎨⎪⎧f x +g x =1x 2-x +1,-f x +g x =1x 2+x +1,两式相减得f (x )=12⎝ ⎛⎭⎪⎫1x 2-x +1-1x 2+x +1=x x 4+x 2+1. 12.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值;(2)求f (x )在[-1,1]上的解析式. 【导学号:62172035】 [解] (1)∵f (x )是周期为2的奇函数, ∴f (1)=f (2-1)=f (-1)=-f (1), ∴f (1)=0,f (-1)=0.(2)由题意知,f (0)=0.当x ∈(-1,0)时,-x ∈(0,1). 由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1,1]上,f (x )=⎩⎪⎨⎪⎧2x4x+1,x ∈ 0,1 ,-2x 4x+1,x ∈ -1,0 ,0,x ∈{-1,0,1}.B 组 能力提升 (建议用时:15分钟)1.(2017·启东中学高三第一次月考)已知函数f (x )在定义域[2-a,3]上是偶函数,在[0,3]上单调递减,并且f ⎝⎛⎭⎪⎫-m 2-a 5>f (-m 2+2m -2),则m 的取值范围是________.⎣⎢⎡⎦⎥⎤1-2,12 [因为函数f (x )在定义域[2-a,3]上是偶函数,所以2-a +3=0,所以a=5.所以f ⎝⎛⎭⎪⎫-m 2-a 5>f ()-m 2+2m -2,即f (-m 2-1)>f (-m 2+2m -2),所以偶函数f (x )在[-3,0]上单调递增,而-m 2-1<0,-m 2+2m -2=-(m -1)2-1<0,所以由f (-m 2-1)>f (-m 2+2m -2)得,⎩⎪⎨⎪⎧-3≤-m 2-1≤0-3≤-m 2+2m -2≤0,-m 2-1>-m 2+2m -2解得1-2≤m ≤12.]2.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.-10 [因为f (x )是定义在R 上且周期为2的函数,所以f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12, 且f (-1)=f (1),故f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12, 从而12b +212+1=-12a +1,即3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.] 3.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. [解] (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)由(1)知f (x )在[-1,1]上是增函数, 要使f (x )在[-1,a -2]上单调递增.结合f (x )的图象(略)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].4.(2017·南京模拟)已知f (x )是偶函数,定义x ≥0时,f (x )=⎩⎪⎨⎪⎧x 3-x ,0≤x ≤3,x -3 a -x ,x >3.(1)求f (-2);(2)当x <-3时,求f (x )的解析式;(3)设函数f (x )在区间[-5,5]上的最大值为g (a ),试求g (a )的表达式. [解] (1)由题意,得f (-2)=f (2)=2×(3-2)=2.(2)当x <-3时,-x >3,所以f (x )=f (-x )=(-x -3)(a +x )=-(x +3)(a +x ),所以当x <-3时,f (x )的解析式为f (x )=-(x +3)(a +x ).(3)因为f (x )是偶函数,所以它在区间[-5,5]上的最大值即为它在区间[0,5]上的最大值.当x ≥0时,f (x )=⎩⎪⎨⎪⎧-x 2+3x ,0≤x ≤3,-x 2+ a +3 x -3a ,x >3.①当a ≤3时,f (x )在⎣⎢⎡⎦⎥⎤0,32上单调递增,在⎣⎢⎡⎦⎥⎤32,5上单调递减,所以g (a )=f ⎝ ⎛⎭⎪⎫32=94.②当3<a <7时 ,f (x )在⎣⎢⎡⎦⎥⎤0,32,⎣⎢⎡⎦⎥⎤3,3+a 2上单调递增,在⎣⎢⎡⎦⎥⎤32,3,⎣⎢⎡⎦⎥⎤3+a 2,5上单调递减,所以此时只需比较f ⎝ ⎛⎭⎪⎫32=94与f ⎝ ⎛⎭⎪⎫3+a 2= a -3 24的大小. (ⅰ)当3<a ≤6时,94≥ a -3 24,所以g (a )=f ⎝ ⎛⎭⎪⎫32=94;(ⅱ)当6<a <7时,94< a -324,所以g (a )=f ⎝ ⎛⎭⎪⎫3+a 2= a -3 24.③当a ≥7时,f (x )在⎣⎢⎡⎦⎥⎤0,32,[3,5]上单调递增,在⎣⎢⎡⎦⎥⎤32,3上单调递减,且f ⎝ ⎛⎭⎪⎫32=94<f (5)=2(a -5),所以g (a )=f (5)=2(a -5).综上所述,g (a )=⎩⎪⎨⎪⎧94,a ≤6, a -324,6<a <7,2 a -5 ,a ≥7.。