正整数指数幂运算练习题(基础)
整数指数幂知识点及相关练习题
整数指数幂:①正整数指数幂a n (n 是正整数),表示n 个相同的因数a 相乘的积。
例如,43= 4×4×4= 。
①零指数幂,任何不等于0的数的零次幂都等于1,即a 0 =1(a ≠0)。
例如,60=1,(31)0= 。
①负整数指数幂p a -(p 是正整数),等于a 的p 次幂的倒数,即p a -=1p a 。
例如,3-2 =231= 。
答案:64 , 1 , 91 例题:一、选择题1、20160 = ( )。
A .0B .1C . -2017D .2017答案:B2、计算|-6| - (-31)0的值是( ) A .5 B .-5 C .532 D .7答案:A解析:原式= 6-1= 5。
3、计算:(-1)2009的结果是( )A .-1B .1C .-2009D .2009答案:A4、计算(-2)-3的结果等于( )A .-8B .8C .-81D .81 答案:C5、计算:(-31)2·3-1=( ) A .31 B .1 C .271 D .-271 答案:C解析:原式=91·31=2716、计算(-2)2 - (π-2016)0 + ( 21)-3的结果为( ) A .-1 B .5 C .8D .11 答案:D解析:原式 = 4-1+ 8 = 11二、填空题1、(23)0= 。
答案:12、23= ,2-2= 。
答案:8,41 3、(-21)-2 + (π-2)0 = 。
答案:5解析:原式 = 4+1=5。
4、计算(-41)-1 ×(1-π) 0 - |-15| = 。
答案:-19解析:原式 = -4×1-15 = -195、计算:20170 – (-1)2019+ (-31)-1 = 。
答案:-1解析:原式 = 1-(-1)+ (-3) = -1。
6、你见过拉面馆的师傅拉面吗?他们用一根粗的面条,第1次把两头捏在一起抻拉得到两根面条,再把两头捏在一起抻拉,反复数次,就能拉出许多根细面条,如下图,第3次捏合抻拉得到 根面条,第5次捏合抻拉得到 根面条,第n 次捏合抻拉得到 根面条,要想得到64根细面条,需 次捏合抻拉。
指数与指数幂的运算 习题(含答案)
【方法点晴】本题考查指数函数的变换,形如 的图象的作法:先做出 的图象,再将 轴下方的图象翻折到 轴上方. 的图象 的图象向下平移一个单位,再将 轴下方的图象翻折到 轴上方得到,由于底数 不确定,故应分 和 两种情况分别作图,结合图形可得最后结果.
23.4
【解析】原式 ,故答案为4.
试题解析:
(1) 原式=
(2)
.
27.(1) (2)
【解析】试题分析:
(1)根据分数指数幂的运算法则和对数的运算求解.(2)根据 求得 ,解方程组求出 后再求解.
试题解析:
(1)原式=3﹣3+(4﹣2)× = .
(2)∵sinα+cosα= ,①
∴ 1+2sinαcosα= ,
∴2sinαcosα=﹣ .
指数与指数幂的运算习题(含答案)
一、单选题
1.已知x,y为正实数,则
A.2lnx+lny=2lnx+2lnyB.2ln(x+y)=2lnx•2lny
C.2lnx•lny=2lnx+2lnyD.2ln(xy)=2lnx•2lny
2.化简 的结果为
A.−9B.7
C.−10D.9
3.若 ,且 , 为整数,则下列各式中正确的是
【解析】
【分析】
利用根式的运算法则运算即可.
【详解】
(1) ;
1) 中实数 的取值由 的奇偶性确定,只要 有意义,其值恒等于 ,即 ;
(2) 是一个恒有意义的式子,不受 的奇偶性限制, ,但 的值受 的奇偶性影响.
29.(1)89;(2) .
【解析】试题分析:指数幂运算要严格按照幂运算定义和法则运算,法则包括同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;积的乘方等于把积中每个因数乘方,再把所得的幂相乘;对数运算要注意利用对数运算法则,包括积、商、幂的对数运算法则,这些公式既要学会正用,还要学会反着用.
专题1-11 整数指数幂的运算法则(基础检测)(解析版)
专题1.11 整数指数幂的运算法则(基础检测)一、单选题1.下列运算正确的是( )A .32a a a ÷=B .()325a a =C .236a a a =D .()3326a a = 【答案】A【分析】根据同底数幂的乘除法,幂的乘方以及积的乘方的运算法则,逐一进行计算即可.【详解】A .根据同底数幂的除法法则:两数相除,底数不变,指数相减,可知32a a a ÷=正确,故A 正确;B .根据幂的乘方运算可知,底数不变,指数相乘,可知()326a a =,故B 错误;C .根据同底数幂的乘法法则:两数相乘,底数不变,指数相加,可知235a a a =,故C 错误;D .根据积的乘方运算,积的乘方,等于每一个因数乘方的积,可知()3328a a =,故D 错误.【点睛】本题考查了同底数幂的乘除法,幂的乘方以及积的乘方,熟练掌握运算方法是解题的关键. 2.下列各数中,为负数的是( )A .|﹣2|B .﹣(﹣2)C .2﹣1D .﹣22【答案】D【分析】本题通过化简绝对值判断A 选项;通过去括号法则判断B 选项;通过幂的运算判断C 、D 选项.【详解】A 、22-= ,不合题意;B 、(2)=2--,不合题意;C 、112=2-,不合题意;D 、224-=-,符合题意.故选:D .【点睛】本题考查负数的定义、绝对值以及幂的运算,难度较低,紧扣运算法则以及对应定义即可解答. 3.运算结果为1的是( )A .22-B .12-C .02D .22 【答案】C【分析】根据实数的正整指数幂、负整数指数幂以及零指数幂的运算法则进行计算即可得解.【详解】解:A. 2211224-==,故本选项不合题意; B. 1111222,故本选项不合题意;C. 021=,故本选项符合题意;D. 22224=⨯=,故本选项不合题意.故选:C【点睛】本题考查了实数的正整指数幂、负整数指数幂以及零指数幂的运算法则,熟练掌握运算法则是解题的关键.4.计算32()a b-的结果是( ) A .332a b- B .336a b - C .338a b - D .338a b【答案】C 【分析】根据负数的奇数次方还是负数,再把分子分母分别立方运算. 【详解】()33333228()a a a b b b -=-=- 故答案为C. 【点睛】本题考查了分式的次方运算,33na ab b ⎛⎫= ⎪⎝⎭ ,()33a a -=-. 5.若102y =25,则10﹣y 等于( )A .15B .1625C .﹣15或15D .125【答案】A 【分析】将102y 变形为(10y )2,求得10y 的值,再将10-y 变形为110y,代入即可得解. 【详解】∵102y =25,∴(10y )2=25,∴10y =5或10y =-5(舍),∴10-y =110y = 15. 故选A.【点睛】本题考查幂的乘方运算的逆运算和负指数幂的运算法则.幂的乘方运算法则:(a m )n =a mn (m ,n 都是正整数).负指数幂的运算法则:a -m =1ma (a≠0,m 为正整数) 6.过度包装既浪费又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,将数字3120000用科学计数法表示为( )A .70.31210⨯B .53.1210⨯C .431.210D .63.1210⨯【答案】D【分析】用科学记数法表示较大数时的形式为10n a ⨯ ,其中110a ≤< ,n 为正整数,确定a 的值时,把小数点放在原数从左起第一个不是0的数字后面即可,确定n 的值时,n 比这个数的整数位数小1.【详解】易知 3.12a =,3120000整数位数是7位,所以6n =63120000 3.1210∴=⨯ .故选:D .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.二、填空题7.把111()()()222-⨯-⨯-写成幂的形式是____________________. 【答案】3(12)- 【分析】根据整数指数幂进行变形即可. 【详解】解:111()()()222-⨯-⨯-=3(12)-, 故答案为:3(12)-. 【点睛】本题考查了整数指数幂,掌握指数幂的形式是解题关键.8.计算:20032004(2)(0.5)-⨯-=________;(-2)100+(-2)101=_________.【答案】-0.5, -2100.【分析】第一题用幂的运算法则来做,比较简便;第二题先提公因式,能使运算简便.【详解】解:()()2003200420.5-⨯- =()()()2003200320.50.5-⨯-⨯-=()()()2003[.5.]2005-⨯-⨯-=1×()0.5-=−0.5;()()()()10010110022212---⨯-+= =1002-.【点睛】第一题主要考查幂的运算,牢记公式:an•bn =(ab )n (n 为正整数);第二题考查了提取公因式法,使此题化繁为简.9.若3x =4,9y =6,则3x -2y 的值为______.【答案】23【分析】本题利用幂的运算法则直接进行计算.解:3x -2y =3x ÷32y =4÷6=23故答案为2310.已知a m =3,a n =2,则m n a a -- =_____. 【答案】16【分析】直接利用同底数幂的乘法法则,负整数指数幂的性质及整体代入的方法计算即可【详解】解:∵a m =3,a n =2,∴6m n a a ⋅= ,∴6m n a +=, ∴()116m n m n m n m n a a a a a -----++====, 故答案为:16【点睛】本题主要考查了同底数幂的乘法,负整数指数幂及整体代入思想,熟练掌握有关计算法则和性质是解题的关键.11.若a 、b 互为倒数,则(﹣ab )2021=_____.【答案】-1【分析】根据根据倒数定义可得答案.【详解】解:∵a 和b 互为倒数,∴ab =1,∴(−ab )2021=(−1)2021=−1,故答案为:−1.【点睛】此题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.12.已知a=255,b=333,c=522,则a 、b 、c 的大小关系是________(用“<”连接).【答案】a b c >>【分析】首先将各数转化为相同指数的幂,然后再比较大小,即可得解.【详解】根据题意,得()()()()()()1111111111115553332222232,3327,5525a b c =========()()()111111322725>> ∴a b c >>【点睛】此题主要考查幂的大小比较,关键是化为同指数幂,即可解题.13.将下列式子写成只含有正整数指数幂的形式: _______________. 【答案】 【分析】根据即可求解. 【详解】解: 故答案为:【点睛】本题考查了负指数幂,灵活的将负指数幂转化为正指数幂是解题的关键.14.若2550x y +-=,则432x y ⋅的值为______.【答案】32【分析】原式利用幂的乘方进行变形,然后将25x y +的值代入即可.【详解】解:432x y ⋅=22x ·25y =22x+5y , ∵2550x y +-=,∴255x y +=,∴原式=25=32,故答案为:32.【点睛】本题考查了幂的乘方,整数指数幂,将原式化简为22x+5y 是解题关键.三、解答题15.计算:(1)()()12021011π 3.144-⎛⎫-+-- ⎪⎝⎭ (2)()41022353x x x x x ÷-+⋅ 【答案】(1)2;(2)83x【分析】(1)根据有理数的乘方,负指数幂,零次幂,有理数的加减进行计算即可;(2)根据同底数幂的除法,幂的乘方,整式的乘方,合并同类项进行计算即可【详解】(1)()()12021011π 3.144-⎛⎫-+-- ⎪⎝⎭ 1412=-+-= (2)()41022353x x x x x ÷-+⋅ 888833x x x x =-+=【点睛】本题考查了有理数的乘方,负指数幂,零次幂,有理数的加减,同底数幂的除法,幂的乘方,整式的乘方,合并同类项,熟练掌握以上知识点是解题的关键.16.计算:(1)2013()(3.14)2π---+- (2)2222(3)(2)6m n m mn -⋅-÷(3)12()(2)()2x x y x y x y --+- (4)202020210.125810199⨯+⨯(用简便方法)【答案】(1)0;(2)53m -;(3)2222x xy y -+;(4)10007.【分析】(1)先计算每一部分的值,再算加减法即可.(2)先利用积的乘方运算法则计算22(3)m n -,然后根据同底数幂的乘除法运算法则计算即可. (3)利用单项式乘多项式、多项式乘多项式的运算法则即可.(4)灵活运用积的乘方运算法则及灵活运用平方差公式即可计算.【详解】解:(1)原始=3-4+1=0(2)原始=()422262259261863m n m mn m n mn m ⋅-÷=-÷=-(3)原始=222222222x xy x xy y x xy y ---+=-+(4)原始=()()()20200.1258810011001=8+9999=10007⋅⋅++-【点睛】本题考查了零次幂、负整数指数幂、单项式乘多项式、多项式乘多项式、平方差公式,熟练掌握运算法则是解题的关键.17.化简下列各式,使结果只含有正整数指数幂.(1)233123m n m n ----⋅;(2)()233123m n m n ----÷.【答案】(1)46mn -;(2)5223m n- 【分析】(1)根据负指数幂的运算法则即可求解;(2)根据负指数幂的运算法则即可求解.【详解】(1)()()23312331144623(23)6m n m n m m n n m n mn ---------⋅=-⨯⋅⋅⋅⋅=-=-. (2)()()()5233123315222223(23)33m m n m n m m n n m n n --------÷=-÷⋅÷⋅÷=-=-. 【点睛】此题主要考查幂的运算,解题的关键是熟知负指数幂的运算法则.18.(1)计算:()()()22332142x y xy x y ---⋅÷;(2)分解因式:324a ab -; 【答案】(1)238x y;(2)()()22a a b a b +- 【分析】(1)根据积的乘方、幂的乘方和分式的运算法则计算即可;(2)先提取公因式,然后利用平方差公式因式分解即可.【详解】解:(1)()()()22332142x y xy x y ---⋅÷ =()()()622621162x y x y x y ---⋅÷=()4421162x y x y --÷=238x y - =238x y(2)324a ab -=()224a a b -=()()22a a b a b +-【点睛】此题考查的是幂的运算性质、分式的运算和因式分解,掌握积的乘方、幂的乘方、分式的运算法则、利用提公因式法和公式法因式分解是解决此题的关键.19.月球体积约为102.210⨯立方米,月球体积是地球体积的2210-⨯倍,问地球的体积约为多少立方米?【答案】121.110⨯立方米【分析】根据题意得地球的体积等于月球的体积除以2210-⨯,列式计算即可.【详解】根据题意得地球的体积=102.210⨯÷(2210-⨯)=()102121.110 1.110--⨯=⨯(立方米). 【点睛】本题是对整数指数幂及其运算的考查,熟练掌握整数指数幂及其运算法则是解决本题的关键. 20.观察下面两行数:-3, 9,-27,81,-243,…;①0,12,-24,84,-240,…;②(1)第①行数按什么规律排列?(2)第②行数与第①行数有什么关系?(3)取每行数的第6个数,计算这两个数的和.【答案】(1) (-1)n×3n.(2) 第②行的数在第①行的数基础上加3(3) 这两个数的和为1461.【分析】(1)由题意知第①行第n个数为(-3)n;(2)第①行数的每一个相对应的数加上3即得到第②行数;(3)求出每行第6个数,相加可得.【详解】(1)-3=(-1)1×31,9=(-1)2×32,-27=(-1)3×33,81=(-1)4×34,…,第n(n为正整数)个数为(-1)n×3n.(2)第①行数的每一个相对应的数加上3即得到第②行数,即第②行数中的第n(n为正整数)个数为(-1)n×3n+3.(3)第①行数的第6个数为(-1)6×36=36=729,第②行数的第6个数为(-1)6×36+3=36+3=732,这两个数的和为729+732=1461.【点睛】本题考查数字的变化规律,根据题意得出第1行数的规律及第2行、第3行数与第1行数间的关系是解题的关键.。
完整版)幂的运算练习题及答案
完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299 B。
-2 C。
299 D。
22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。
4个 B。
3个 C。
2个 D。
1个3.下列运算正确的是()A。
2x+3y=5xy B。
(-3x^2y)^3=-9x^6y^3C。
D。
(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXX^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1) D。
a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。
0个 B。
1个 C。
2个 D。
3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
幂的运算综合专项练习题(有答案过程)ok
幂的运算专项练习50题(有答案)1.2 2 2 32.(4ab)×(﹣ab)3.(1);(2)(3x3)2(?﹣x);(3)m2?7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d的大小.2 3 77.计算:(﹣2m)+m÷m.2 ﹣33﹣2)﹣28.计算:(2mn) ?(﹣mn9.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x?32y的值.mn3m+2n 13.已知3×9m×27m=316,求m的值.5.已知3=x,3=y,用x,y表示3 .nm3915,求2 m+n 14.若(abb ) =ab 的值.2 3 2 615.计算:(x?x )÷x .2n 2 3n+2 216.计算:(a )÷a ?a .17.若a m =8,a n = ,试求a 2m ﹣3n的值.n+1 2n18.已知9 ﹣3=72,求n 的值.m n 2m+n19.已知x=3,x=5,求x 的值.20.已知3m =6,9n =2,求32m ﹣4n+1的值.21.(x ﹣y )5[(y ﹣x )4]3(用幂的形式表示)m m m m 3024.已知:3?9?27?81=3,求m 的值.6﹣b 2b+1 11 a ﹣1 4﹣b 525.已知x ?x =x ,且y ?y =y ,求a+b 的值.x ﹣1 y26.若2x+3y ﹣4=0,求9 ?27.2 43 3 6 227.计算:(3ax )﹣(2ax ).28.计算: .m2n ﹣2 n m+3 2010 的值. 29.已知16=4×2 ,27=9×3 ,求(n ﹣m )30.已知162×43×26=22m ﹣2,(102)n =1012.求m+n 的值.5 3 4 231.(﹣a )(?﹣a )÷(﹣a ).22.若x m+2n =16,x n =2,(x ≠0),求x m+n ,x m ﹣n的值. 32.(a ﹣2b ﹣1)﹣3(?2ab 2)﹣2.﹣3 4 2 2﹣2 a+b 2b ﹣a 9 b 323.计算:(5a b )(?ab ) . 33.已知x ?x =x ,求(﹣3)+(﹣3)的值.2/64 4 2 4 4234.a?a+(a)﹣(﹣3x )5m+n2m﹣n 3 6 15 m 35.已知(x y )=xy,求n的值.m n 3m+2n 2n﹣3m 36.已知a=2,a=7,求a ﹣a 的值.2n+2 n 3 3 2 n 37.计算:(﹣3x y)÷[(﹣xy)]2 6 n n 3n 23 2 n 42.计算:(ab)+5(﹣ab)﹣3[(﹣ab)].43..n﹣5 n+13m﹣2 2 n﹣1 m﹣2 33m+244.计算:a (a b )+(a b )(﹣b )45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.﹣2 ﹣3 ﹣1 2 ﹣3 238.计算:(x y )(?xy ).46.已知2a?27b?37c=1998,其中a,b,c为整数,2m 3n3m 2 2n 3 2m 3n求(a﹣b﹣c)1998的值.39.已知a=2,b =3,求(a)﹣(b)+a?b的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n47.﹣(﹣0.25)1998×(﹣4)1999.的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n2n+1 3?(2a+b)n ﹣448.(1)(2a+b)?(2a+b)的值.3/6(2)(x ﹣y )2?(y ﹣x )5. 50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a 2b 3(2a ﹣1b 3);22 ﹣1﹣2 ﹣232 49.(1)(3xyz ) ?(5xy z ).2 ﹣12 ) ﹣43 ﹣2 (2)(4xyz )?(2xyz ÷(yz ) .幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2 4 63 8 72.原式=16ab ×(﹣ ab )=﹣2ab3.解:(1)原式=(﹣5)×3=﹣15; (2)原式=9x 6(?﹣x )=﹣9x 7; 3 2 2(3)原式=7mp ÷(﹣7mp )=﹣mp ;2 2( 4)原式=6a+2a ﹣9a ﹣3=6a ﹣7a ﹣3.故答案为﹣15、﹣9x 7、﹣m 2p 、6a 2﹣7a ﹣34.解:a x+y=a x?a y =2×3=6; a 2x ﹣y =a 2x ÷a y =22÷3=3m 2n5.解:原式=3×3,=(3m )3×(3n )2, 3 2 =xy5 11 116.解:a=(2)=32;3 11 11 c=(4)=48; 2 11 11d=(5)=25; 可见,b >c >a >d2 3 77.解:(﹣2m )+m ÷m ,3 2 3 6=(﹣2)×(m )+m ,6 6 =﹣8m+m ,6 =﹣7m2﹣33 ﹣2 ﹣26 ﹣9 ﹣248.解:(2mn )?(﹣mn )=8mn ?mn=9.解:原式=(﹣4)+4×1=010.解:原式= ÷(﹣ )+2×1=﹣2+2 =0﹣2 ﹣3 ﹣1 3(2)(a )(bc );2﹣3 2 ﹣2 (3)2(2abc )÷(ab).11.解:∵2x=4y+1,x2y+2,∴2=2∴x=2y+2①y x﹣1又∵27=3 ,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x?32y=22x?25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,2m 3m=3×3×3,=31+5m,1+5m 16∴3=3,∴1+5m=16,解得m=3nm3n3m333n3m+3 14.解:∵(abb)=(a)(b)b=ab ,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2?a2=a4n÷a3n+2?a24n﹣3n﹣2 2=a ?an﹣22=a ?a=a n﹣2+2n=a17.解:a2m﹣3n=(a m)2÷(a n)3,m n∵a=8,a=,4/6∴原式=64÷ =512.故答案为 51218.解:∵9n+1﹣32n =9n+1﹣9n =9n (9﹣1)=9n×8,而72=9 ×8, ∴当9n+1﹣32n =72时,9n×8=9×8, ∴ 9n=9, ∴n =1 19.解:原式=(x m )2?x n2 =3×5 =9×5 =45 20.解:由题意得, 9n =32n =2,32m =62=36,故 32m ﹣4n+1=32m ×3÷34n=36×3÷4=275 4 3 5 4 321.解:(x ﹣y )[(y ﹣x )]=(x ﹣y )[(x ﹣y )]=( x ﹣y )5(?x ﹣y )12=(x ﹣y )1722.解:∵x m+2n=16,x n=2,m+2nn m+n ∴x ÷x=x =16÷2=8, x m+2n ÷x 3n =x m ﹣n =16÷23=223.解:( ﹣3 4 22﹣2 5a b )?(ab )﹣6 8 ﹣4 ﹣2 =25a b?a b =24.解:由题意知, 3m ?9m ?27m ?81m,m 2m3m 4m =3?3 ?3?3 , m+2m+3m+4m =3 , =330,∴ m +2m+3m+4m=30,整理,得10m=30, 解得m=325.解:∵x 6﹣b ?x 2b+1=x 11,且y a ﹣1?y 4﹣b =y 5, ∴ ,解得: ,则 a+b=1026.解:∵2x+3y ﹣4=0, ∴2x+3y=4, x ﹣1y 2x ﹣23y 2x+3y ﹣22∴9 ?27=3 ?3 =3=3=9 27.解:(3a 2x 4)3﹣(2a 3x 6)2=27a 6x 12﹣4a 6x 12=23a 6x 1228.解:原式= ? a 2b 3=29.解:∵16m =4×22n ﹣2,∴(24)m=22×22n ﹣2,∴24m =22n ﹣2+2,∴ 2n ﹣2+2=4m ,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,2010∴(n﹣m)=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5?a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣17 2 15a÷a=﹣a.32.解:(a ﹣2﹣1﹣3 2﹣2 b)?(2ab)=(a6b3)(? a﹣2b﹣4)= a4b﹣1=33.解:∵x a+b?x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,b 3 3 3 3∴(﹣3)+(﹣3)=(﹣3)+(﹣3) =2×(﹣3)=2 ×(﹣27)=﹣5434.解:原式88 8=a+a ﹣9x,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,5m+n2m﹣n 3 6 15∵(xy )=xy ,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,3m+2n 2n﹣3m m 3 n 2 n 2 m 3 ∴a ﹣a =(a)(?a)﹣(a)÷(a)=8×49﹣49÷8=2n+2 n 3 3 2 n37.解:(﹣3x y)÷[(﹣xy)],=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2?y﹣3)﹣1(?x2?y﹣3)2,5/6234﹣6=xy?xy ,=39.解:(a3m)2﹣(b2n)3+a2m?b3n,=(a2m)3﹣(b3n)2+a2m?b3n,3 2=2﹣3+2×3,=56n6n40.解:原式=27x﹣4x=23(x3n)2=23×7×7=11272n41.解:∵x=5,∴(3x3n)2﹣34(x2)3n6n6n=9x﹣34x2n3=﹣25(x )3=﹣25×5=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n =6a2n b6n﹣3a2n b6n=3a2n b6n50 50)50101543.解:原式=()x?(x =x44.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=0a b45.解:(1)∵x=2,x=6,∴x a﹣b=x a÷x b=2÷6=;(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a?33b?37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=4(2n+1)+3+(n﹣4)48.解:(1)原式=(2a+b)3n =(2a+b);WORD 格式专业资料整理( 2)原式=﹣(x ﹣y )2(?x ﹣y )5=﹣(x ﹣y )749.解:(1)原式=( )﹣2(? )2= ?= ;(2)原式= ? ÷= ?y 2z 6=150.解:(1)a 2b 3(2a ﹣1b 3)=2a 2﹣1b 3+3=2ab 6;( 2)(a ﹣2)﹣3(bc ﹣1)3,=a 6b 3c ﹣3,= ;( 3)2(2ab 2c ﹣3)2÷(ab )﹣2,=2(4a 2b 4c ﹣6)÷(a ﹣2b ﹣2),=8a 4b 6c ﹣6, =6/6。
《幂的运算》习题精选及答案
点评:主要考查同底数幂的乘法的性质,熟练掌握性质是解 题的关键. 9、若 1+2+3+…+n=a,求代数式(xny)(xn﹣1y2)(xn﹣2y3)…(x2yn ﹣1)(xyn)的值. 考点:同底数幂的乘法。 专题:计算题。 分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变, 指数相加,即 am• an=am+n 计算即可. 解答:解:原式=xny• xn﹣1y2• xn﹣2y3…x2yn﹣1• xyn =(xn• xn﹣1• xn﹣2• …• x2• x)• (y• y2• y3• …• yn﹣1• yn) =xaya.
/
(﹣a2)3+(﹣a3)2=﹣a6+a6=0. 点评:此题主要考查了同底数幂的乘法和幂的乘方法则,利 用两个法则容易求出结果. 7、若 2m=5,2n=6,则 2m+2n= 180 . 考点:幂的乘方与积的乘方。 分析:先逆用同底数幂的乘法法则把 2m+2n=化成 2m• 2n• 2n 的 形式,再把 2m=5,2n=6 代入计算即可.
#
分析:根据幂的乘方与积的乘方、合并同类项的运算法则进 行逐一计算即可. 解答:解:A、2x 与 3y 不是同类项,不能合并,故本选项错 误; B、应为(﹣3x2y)3=﹣27x6y3,故本选项错误;
C、
,正确;
D、应为(x﹣y)3=x3﹣3x2y+3xy2﹣y3,故本选项错误. 故选 C. 点评:(1)本题综合考查了整式运算的多个考点,包括合并 同类项,积的乘方、单项式的乘法,需要熟练掌握性质和法 则;
5=a20;④25+25=26. A、0 个 B、1 个
C、2 个
D、3 个
"
二、填空题 6 、 计 算 : x2• x3= _________ .
幂指数运算(中难150题)
幂指数运算(中难150题)一.解答题(解答应写出文字说明.证明过程或演算步骤)1. (本小题8.0分)已知4m+3⋅8m+1÷24m+7=16.求m 的值.2. (本小题8.0分)先化简.再求值:(2x −y)13÷[(2x −y)3]2÷[(y − 2x)2]3.其中x =2.y =−1. 3. (本小题8.0分)若3n =2.3m =5.求3m+2n−1的值.4. (本小题8.0分)已知a m =2.a n =4.a k =32(a ≠0).(1)求a 3m+2n−k 的值.(2)求k −3m −n 的值.5. (本小题8.0分)已知2m =6.4n =2.求22m−2n+2的解.6. (本小题8.0分)已知2m =3,2n =5.(1)求 2m+n 的值. (2)求 22m−n 的值.7. (本小题8.0分)若5x −3y −2=0.求105x ÷103y 的值. 8. (本小题8.0分)按要求解答下列问题.(1)已知10m =12.10n =3.求10m−n 的值.(2)已知8×2m ÷16m =26.求m 的值.9. (本小题8.0分)(1)已知2x =3.2y =5.求2x−2y+1的值.(2)x −2y −1=0.求2x ÷4y ×8的值. 10. (本小题8.0分)如果a ∗b =c .则a c =b .例如:2∗8=3.则.23=8. (1)根据上述规定.若3∗27= x .求x 的值. (2)记3∗5=a,3∗6=b,3∗2=c .求32a+b−c 的值.11. (本小题8.0分)已知a m =2.a n =5.求下列各式的值:(1)a m+n .(2)(2a m )2.(3)a 3m−2n . 12. (本小题8.0分)若a m =a n (a >0,a ≠1,m,n 都是正整数).则m =n .利用上面结论解决下面问题: (1)已知a 6÷a m =a 2.求m 的值. (2)已知2x +5y −3=0.求4x ⋅32y 的值.13. (本小题8.0分)已知5a =3.5b =8.5c =72.(1)求(5a )2的值.(2)求5a−b+c 的值.(3)直接写出字母a .b .c 之间的数量关系为 .14. (本小题8.0分)已知x a =3.x b =6.x c =12.x d =18.(1)求证: ①a +c =2b . ②a +b =d .(2)求x 2a−b+c 的值.15. (本小题8.0分)已知3y −5x +2=0.求(10x )5÷[(110)−3]y的值.16. (本小题8.0分)已知a m =3.a n =5.求a 3m−2n 的值. 17. (本小题8.0分)已知x m =3.x n =6.求x m−2n 的值. 18. (本小题8.0分)(1)若3x =4.3y =6.求92x−y +27x−y 的值。
北师大版七年级数学下册幂的运算基础达标专项练习题2(附答案详解)
北师大版七年级数学下册幂的运算基础达标专项练习题2(附答案详解) 1.计算:4333a b a b ÷的结果是A .aB .3aC .abD .2a b 2.(-5b )3等于( ) A .-125b 3B .125b 10C .15b 9D .125b 33.x 2+5 可以写成( )A .x 2.x 5B .x 2.x 5C .2x .x 5D .2x .5x 4.下列计算的结果是6a 的为( ) A .122a a ÷ B .7a a -C .24a a ⋅D .23(a )-5.a 2m+2÷a 等于( )A .a 3mB .2a 2m+2C .a 2m+1D .a m +a 2m 6.已知x a =3,x b =5,则x 2a -b =( ) A .35B .65C .95D .17.下列运算正确的是( )A .5a 2+3a 2=8a 4B .a 3·a 4=a 12C .a +2b =2abD .a 5÷a 2=a 3 8.下列等式错误的是( ) A .()22224mn m n = B .()22224mn m n -= C .()3226628m n m n =D .()3225528m n m n -=-9.下列计算:①a 2n •a n =a 3n ;②22•33=65;③32÷32=1;④a 3÷a 2=5a ;⑤(﹣a )2•(﹣a )3=a 5.其中正确的式子有( ) A .4 个B .3 个C .2 个D .1 个10.下列运算结果是a 5的是( )A .a 10÷a 2B .(a 2)3C .(﹣a )5D .a 3•a 2 11.化简(-x)5x 2x(-x 3)=__________12.一个三角形的面积为4a 3b 4.底边的长为2ab 2,则这个三角形的高为_____. 13.已知(x m )n =x 5,则mn (mn -1)的值为_______. 14.14.计算(ab)3=_____.15.如果3x a =,那么3x a 的值为______ . 16.计算(﹣a )3•a 2的结果等于_____.17.已知 x -y =m ,那么(2x -2y)3=____. 18.计算:42x x ⋅=_____________.19.已知2139108n n -+=,则代数式(22)n n -的值为__________. 20.若x m =3,x n =-2,则x m+2n =_____. 21.已知2,2x y a b ==,求3222x y x y +++的值22.在一次测验中有这样一道题:“12na =, 3nb =,求()2n ab 的值.”马小虎是这样解的:解:()()22219324nn nab a b ⎛⎫==⨯= ⎪⎝⎭.结果卷子发下来,马小虎这道题没得分,而答案确实是94,你知道这是为什么吗?请你作出正确的解答.23.计算:()031321223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭.24.先化简,再求值:(x+y )2+(2x+y )(2x ﹣y )﹣x (x+y ),其中x 、y 分别为的整数部分和小数部分.25.已知x 2m =2,求(2x 3m )2-(3x m )2的值.26.先化简,再求值:,其中。
幂的运算习题及答案
幂的运算提高练习题一、选择题1、计算﹣2100+﹣299所得的结果是A、﹣299B、﹣2C、299D、22、当m是正整数时;下列等式成立的有1a2m=a m2;2a2m=a2m;3a2m=﹣a m2;4a2m=﹣a2m.A、4个B、3个C、2个D、1个3、下列运算正确的是A、2x+3y=5xyB、﹣3x2y3=﹣9x6y3C 、D、x﹣y3=x3﹣y3 4、a与b互为相反数;且都不等于0;n为正整数;则下列各组中一定互为相反数的是A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是①a5+a5=a10;②﹣a6•﹣a3•a=a10;③﹣a4•﹣a5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3= _________ ;﹣a23+﹣a32= _________ .7、若2m=5;2n=6;则2m+2n= _________ .三、解答题8、已知3xx n+5=3x n+1+45;求x的值..9、若1+2+3+…+n=a;求代数式x n yx n﹣1y2x n﹣2y3…x2y n﹣1xy n的值.10、已知2x+5y=3;求4x•32y的值.11、已知25m•2•10n=57•24;求m、n.12、已知a x=5;a x+y=25;求a x+a y的值.13、若x m+2n=16;x n=2;求x m+n的值.14、比较下列一组数的大小.8131;2741;96115、如果a2+a=0a≠0;求a2005+a2004+12的值.16、已知9n+1﹣32n=72;求n的值.18、若a n b m b3=a9b15;求2m+n的值.19、计算:a n﹣5a n+1b3m﹣22+a n﹣1b m﹣23﹣b3m+220、若x=3a n;y=﹣;当a=2;n=3时;求a n x﹣ay的值.21、已知:2x=4y+1;27y=3x﹣1;求x﹣y的值.22、计算:a﹣b m+3•b﹣a2•a﹣b m•b﹣a523、若a m+1b n+2a2n﹣1b2n=a5b3;则求m+n的值.24、用简便方法计算:423×233 122×422﹣0.2512×41230.52×25×0.125答案与评分标准一、选择题共5小题;每小题4分;满分20分1、计算﹣2100+﹣299所得的结果是A、﹣299B、﹣2C、299D、2考点:有理数的乘方..分析:本题考查有理数的乘方运算;﹣2100表示100个﹣2的乘积;所以﹣2100=﹣299×﹣2.解答:解:﹣2100+﹣299=﹣299﹣2+1=299.故选C.点评:乘方是乘法的特例;乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数;负数的偶数次幂是正数;﹣1的奇数次幂是﹣1;﹣1的偶数次幂是1.2、当m是正整数时;下列等式成立的有1a2m=a m2;2a2m=a2m;3a2m=﹣a m2;4a2m=﹣a2m.A、4个B、3个C、2个D、1个考点:幂的乘方与积的乘方..分析:根据幂的乘方的运算法则计算即可;同时要注意m的奇偶性.解答:解:根据幂的乘方的运算法则可判断12都正确;因为负数的偶数次方是正数;所以3a2m=﹣a m2正确;4a2m=﹣a2m只有m为偶数时才正确;当m为奇数时不正确;所以123正确.故选B.点评:本题主要考查幂的乘方的性质;需要注意负数的奇数次幂是负数;偶数次幂是正数.3、下列运算正确的是A、2x+3y=5xyB、﹣3x2y3=﹣9x6y3C 、D、x﹣y3=x3﹣y3考点:单项式乘单项式;幂的乘方与积的乘方;多项式乘多项式..分析:根据幂的乘方与积的乘方、合并同类项的运算法则进行逐一计算即可.解答:解:A、2x与3y不是同类项;不能合并;故本选项错误;B、应为﹣3x2y3=﹣27x6y3;故本选项错误;C、;正确;D、应为x﹣y3=x3﹣3x2y+3xy2﹣y3;故本选项错误.故选C.点评:1本题综合考查了整式运算的多个考点;包括合并同类项;积的乘方、单项式的乘法;需要熟练掌握性质和法则;2同类项的概念是所含字母相同;相同字母的指数也相同的项是同类项;不是同类项的一定不能合并.4、a与b互为相反数;且都不等于0;n为正整数;则下列各组中一定互为相反数的是A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣1考点:有理数的乘方;相反数..分析:两数互为相反数;和为0;所以a+b=0.本题只要把选项中的两个数相加;看和是否为0;若为0;则两数必定互为相反数.解答:解:依题意;得a+b=0;即a=﹣b.A中;n为奇数;a n+b n=0;n为偶数;a n+b n=2a n;错误;B中;a2n+b2n=2a2n;错误;C中;a2n+1+b2n+1=0;正确;D中;a2n﹣1﹣b2n﹣1=2a2n﹣1;错误.故选C.点评:本题考查了相反数的定义及乘方的运算性质.注意:一对相反数的偶次幂相等;奇次幂互为相反数.5、下列等式中正确的个数是①a5+a5=a10;②﹣a6•﹣a3•a=a10;③﹣a4•﹣a5=a20;④25+25=26.A、0个B、1个C、2个D、3个考点:幂的乘方与积的乘方;整式的加减;同底数幂的乘法.. 分析:①利用合并同类项来做;②③都是利用同底数幂的乘法公式做注意一个负数的偶次幂是正数;奇次幂是负数;④利用乘法分配律的逆运算.解答:解:①∵a5+a5=2a5;;故①的答案不正确;②∵﹣a6•﹣a3=﹣a9=﹣a9;故②的答案不正确;③∵﹣a4•﹣a5=a9;;故③的答案不正确;④25+25=2×25=26.所以正确的个数是1; 故选B.点评:本题主要利用了合并同类项、同底数幂的乘法、乘法分配律的知识;注意指数的变化.二、填空题共2小题;每小题5分;满分10分6、计算:x2•x3= x5;﹣a23+﹣a32= 0 .考点:幂的乘方与积的乘方;同底数幂的乘法..分析:第一小题根据同底数幂的乘法法则计算即可;第二小题利用幂的乘方公式即可解决问题.解答:解:x2•x3=x5;﹣a23+﹣a32=﹣a6+a6=0.点评:此题主要考查了同底数幂的乘法和幂的乘方法则;利用两个法则容易求出结果.7、若2m=5;2n=6;则2m+2n= 180 .考点:幂的乘方与积的乘方..分析:先逆用同底数幂的乘法法则把2m+2n=化成2m•2n•2n的形式;再把2m=5;2n=6代入计算即可.解答:解:∴2m=5;2n=6;∴2m+2n=2m•2n2=5×62=180.点评:本题考查的是同底数幂的乘法法则的逆运算;比较简单.三、解答题共17小题;满分0分8、已知3xx n+5=3x n+1+45;求x的值.考点:同底数幂的乘法..专题:计算题..分析:先化简;再按同底数幂的乘法法则;同底数幂相乘;底数不变;指数相加;即a m•a n=a m+n计算即可.解答:解:3x1+n+15x=3x n+1+45;∴15x=45;∴x=3.点评:主要考查同底数幂的乘法的性质;熟练掌握性质是解题的关键.9、若1+2+3+…+n=a;求代数式x n yx n﹣1y2x n﹣2y3…x2y n﹣1xy n的值.考点:同底数幂的乘法..专题:计算题..分析:根据同底数幂的乘法法则;同底数幂相乘;底数不变;指数相加;即a m•a n=a m+n计算即可.解答:解:原式=x n y•x n﹣1y2•x n﹣2y3…x2y n﹣1•xy n=x n•x n﹣1•x n﹣2•…•x2•x•y•y2•y3•…•y n﹣1•y n=x a y a.点评:主要考查同底数幂的乘法的性质;熟练掌握性质是解题的关键.10、已知2x+5y=3;求4x•32y的值.考点:幂的乘方与积的乘方;同底数幂的乘法..分析:根据同底数幂相乘和幂的乘方的逆运算计算.解答:解:∵2x+5y=3;∴4x•32y=22x•25y=22x+5y=23=8.点评:本题考查了同底数幂相乘;底数不变指数相加;幂的乘方;底数不变指数相乘的性质;整体代入求解也比较关键.11、已知25m•2•10n=57•24;求m、n.考点:幂的乘方与积的乘方;同底数幂的乘法..专题:计算题..分析:先把原式化简成5的指数幂和2的指数幂;然后利用等量关系列出方程组;在求解即可.解答:解:原式=52m•2•2n•5n=52m+n•21+n=57•24;∴;解得m=2;n=3.点评:本题考查了幂的乘方和积的乘方;熟练掌握运算性质和法则是解题的关键.12、已知a x=5;a x+y=25;求a x+a y的值.考点:同底数幂的乘法..专题:计算题..分析:由a x+y=25;得a x•a y=25;从而求得a y;相加即可.解答:解:∵a x+y=25;∴a x•a y=25;∵a x=5;∴a y;=5;∴a x+a y=5+5=10.点评:本题考查同底数幂的乘法的性质;熟练掌握性质的逆用是解题的关键.13、若x m+2n=16;x n=2;求x m+n的值.考点:同底数幂的除法..专题:计算题..分析:根据同底数幂的除法;底数不变指数相减得出x m+2n÷x n=x m+n=16÷2=8.解答:解:x m+2n÷x n=x m+n=16÷2=8;∴x m+n的值为8.点评:本题考查同底数幂的除法法则;底数不变指数相减;一定要记准法则才能做题.14、已知10a=3;10β=5;10γ=7;试把105写成底数是10的幂的形式10α+β+γ.考点:同底数幂的乘法..分析:把105进行分解因数;转化为3和5和7的积的形式;然后用10a、10β、10γ表示出来.解答:解:105=3×5×7;而3=10a;5=10β;7γ=10;∴105=10γ•10β•10α=10α+β+γ;故应填10α+β+γ.点评:正确利用分解因数;根据同底数的幂的乘法的运算性质的逆用是解题的关键.15、比较下列一组数的大小.8131;2741;961考点:幂的乘方与积的乘方..专题:计算题.. 分析:先对这三个数变形;都化成底数是3的幂的形式;再比较大小.解答:解:∵8131=3431=3124;2741=3341=3123;961=3261=3122;∴8131>2741>961.点评:本题利用了幂的乘方的计算;注意指数的变化.底数是正整数;指数越大幂就越大16、如果a2+a=0a≠0;求a2005+a2004+12的值.考点:因式分解的应用;代数式求值..专题:因式分解..分析:观察a2+a=0a≠0;求a2005+a2004+12的值.只要将a2005+a2004+12转化为因式中含有a2+a的形式;又因为a2005+a2004+12=a2003a2+a+12;因而将a2+a=0代入即可求出值.解答:解:原式=a2003a2+a+12=a2003×0+12=12点评:本题考查因式分解的应用、代数式的求值.解决本题的关键是a2005+a2004将提取公因式转化为a2003a2+a;至此问题的得解.17、已知9n+1﹣32n=72;求n的值.考点:幂的乘方与积的乘方..分析:由于72=9×8;而9n+1﹣32n=9n×8;所以9n=9;从而得出n 的值.解答:解:∵9n+1﹣32n=9n+1﹣9n=9n9﹣1=9n×8;而72=9×8;∴当9n+1﹣32n=72时;9n×8=9×8;∴9n=9;∴n=1.点评:主要考查了幂的乘方的性质以及代数式的恒等变形.本题能够根据已知条件;结合72=9×8;将9n+1﹣32n变形为9n×8;是解决问题的关键.18、若a n b m b3=a9b15;求2m+n的值.考点:幂的乘方与积的乘方.. 分析:根据a n b m b3=a9b15;比较相同字母的指数可知;3n=9;3m+3=15;先求m、n;再求2m+n的值.解答:解:∵a n b m b3=a n3b m3b3=a3n b3m+3;∴3n=9;3m+3=15;解得:m=4;n=3;∴2m+n=27=128.点评:本题考查了积的乘方的性质和幂的乘方的性质;根据相同字母的次数相同列式是解题的关键.19、计算:a n﹣5a n+1b3m﹣22+a n﹣1b m﹣23﹣b3m+2考点:幂的乘方与积的乘方;同底数幂的乘法..分析:先利用积的乘方;去掉括号;再利用同底数幂的乘法计算;最后合并同类项即可.解答:解:原式=a n﹣5a2n+2b6m﹣4+a3n﹣3b3m﹣6﹣b3m+2;=a3n﹣3b6m﹣4+a3n﹣3﹣b6m﹣4;=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4;=0.点评:本题考查了合并同类项;同底数幂的乘法;幂的乘方;积的乘方;理清指数的变化是解题的关键.20、若x=3a n;y=﹣;当a=2;n=3时;求a n x﹣ay的值.考点:同底数幂的乘法..分析:把x=3a n;y=﹣;代入a n x﹣ay;利用同底数幂的乘法法则;求出结果.解答:解:a n x﹣ay=a n×3a n﹣a×﹣=3a2n+a2n∵a=2;n=3;∴3a2n+a2n=3×26+×26=224.点评:本题主要考查同底数幂的乘法的性质;熟练掌握性质是解题的关键.21、已知:2x=4y+1;27y=3x﹣1;求x﹣y的值.考点:幂的乘方与积的乘方..分析:先都转化为同指数的幂;根据指数相等列出方程;解方程求出x、y的值;然后代入x﹣y计算即可.解答:解:∵2x=4y+1;∴2x=22y+2;∴x=2y+2 ①又∵27x=3x﹣1;∴33y=3x﹣1;∴3y=x﹣1②联立①②组成方程组并求解得;∴x﹣y=3.点评:本题主要考查幂的乘方的性质的逆用:a mn=a mn a≠0;m;n为正整数;根据指数相等列出方程是解题的关键.22、计算:a﹣b m+3•b﹣a2•a﹣b m•b﹣a5考点:同底数幂的乘法..分析:根据同底数幂的乘法法则;同底数幂相乘;底数不变;指数相加;即a m•a n=a m+n计算即可.解答:解:a﹣b m+3•b﹣a2•a﹣b m•b﹣a5;=a﹣b m+3•a﹣b2•a﹣b m•﹣a﹣b5;=﹣a﹣b2m+10.点评:主要考查同底数幂的乘法的性质;熟练掌握性质是解题的关键.23、若a m+1b n+2a2n﹣1b2n=a5b3;则求m+n的值.考点:同底数幂的乘法..专题:计算题.. 分析:首先合并同类项;根据同底数幂相乘;底数不变;指数相加的法则即可得出答案.解答:解:a m+1b n+2a2n﹣1b2n=a m+1×a2n﹣1×b n+2×b2n=a m+1+2n﹣1×b n+2+2n=a m+2n b3n+2=a5b3.∴m+2n=5;3n+2=3;解得:n=;m=;m+n=.点评:本题考查了同底数幂的乘法;难度不大;关键是掌握同底数幂相乘;底数不变;指数相加.24、用简便方法计算:122×422﹣0.2512×41230.52×25×0.125法则:把每一个因式分别乘方;再把所得的幂相乘.423×233考点:幂的乘方与积的乘方;同底数幂的乘法..专题:计算题..分析:根据幂的乘方法则:底数不变指数相乘;积的乘方法则:把每一个因式分别乘方;再把所得的幂相乘去做.解答:解:1原式=×42=92=81;2原式=﹣12×412=×412=1;3原式=2×25×=;4原式=3×83=×83=8.点评:本题考查幂的乘方;底数不变指数相乘;以及积的乘方。
八年级数学整数指数幂
n
n
( b≠0 ,n是正整数)
当a≠0时,a0=1。(0指数幂的运算) ( 6)
分
a5÷a3=a2
a3÷a5=a3-5=a-2 a3÷a5=
a3 a5 a3 1 = 3 2 2 a a a
析
a3÷a5=?
am÷an=am-n (a≠0 m、n为正整数且m>n)
1 2 a a2
n是正整数时, a-n属于分式。并且
1 n a n (a≠0) a
a 5 1 a5
1 例如: a1 a
引入负整数指数幂后,指数的取值范围就扩大到全体整数。
am am=
(m是正整数)
(m=0) 1 (m是负整数) am
1
练
习
(1)32=_____, 30=___, 3-2=_____; (2)(-3)2=____,(-3)0=___,(-3)-2=_____; (3)b2=_____, b0=____, b-2=____(b≠0).
2
2.已知 b 2
(a b 1) 0,求a51÷a8的值
3.计算:xn+2· xn-2÷(x2)3n-3; 4.已知:10m=5,10n=4,求1ห้องสมุดไป่ตู้2m-3n.
兴趣探索
5.探索规律:31=3,个位数字是3;32=9,个位 数字式9;33=27,个位数字是7;34=81,个位 数字是1;35=243,个位数字是3;36=729,个 位数字是9;……那么,37的个位数字是 ______,320的个位数字是______。
对于一个小于1的正小数,如果小数 点后至第一个非0数字前有8个0,用科学 计数法表示这个数时,10的指数是多少? 如果有m个0呢?
幂的运算基础练习题
幂的运算基础练习题一、同底数幂相乘1.下列语句正确的是A.同底数的幂相加,底数不变,指数相乘;B.同底数的幂相乘,底数合并,指数相加;C.同底数的幂相乘,指数不变,底数相加;D.同底数的幂相乘,底数不变,指数相加2.a4·am·an=A.a4m B.a4 C.am+n+ D.am+n+43.·8·3=A.11B.24C.x1D.-x124.下列运算正确的是A.a2·a3=a B.a3+a3=2a C.a3a2=aD.a8-a4=a4 5.a·a3x可以写成A.x+1B.3+1C.a3x+1 D.2x+16.计算:100×100m-1×100m+17.计算:a5·2·38.计算:2·3-4·二、幂的乘方9.填空:7=________;m=_______;3=_______;5=_________;2·3=________.10.下列结论正确的是A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a的m次幂的n次方等于a的m+n次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是A.3=10 B.2=a C.2=am+212.下列计算正确的是A.3·2=a6·a6=2a6B.4·a7=a7·a2=a9C.3·2=·=a12D.-3·2=-·a4=a1313.计算:若642×83=2x,求x的值.三、积的乘方14.判断正误:积的乘方,等于把其中一个因式乘方,把幂相乘n=x·ynn=3nnm=ambnn=nanbncn15.4=A.ab1 B.a4b C.a5b7D.a4b12D.2=x2n )16.3=A.a6b9c3B.-a5b6c C.-a6b9c D.-a2b3c317.3=A.a3m+3b6nB.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m318.如果3=a9b15,那么m,n的值等于A.m=9,n=-4B.m=3,n=C.m=4,n=D.m=9,n=6一、综合测试19.计算:11· 10×102×1 000×10n-33312·[2]·32二、创新应用20.下列计算结果为m14的是A.m2·m B.m7+m C.m·m6·m D.m·m8·m621.若5m+n=56·5n-m,求m的值.22.已知2×8n×16n=222,求n的值.23.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想27.×4[2]×4212××13×95-82003×2002+17×417答案:1.D .D .C .C .C .1002m+1 .-a108.原式=5-4·[-]=259.a5 105m a3m b10m a1710.D 11.B 12.D13.左边=2×83=84×83=87=7=221而右边=2x,所以x=21.14.× × × × ∨15.D 16.C 17.C 18.C11 19.原式=×·xm+1·x2-m·y·yn-1311 =xm+1+2-m·y1+n-1=x3yn9原式=10×102×103×10n-3=101+2+3+n-3=103+n 原式=22·2·c2·2·2 =a2m·b2n·c2·a2m-2b2n+2c2n=a4m-2b4n+2c2n+212×4182933×3原式=··2=-·2=-8=-22220.C 解析:A应为m9,B应为2m7,D应为m15.21.由5m+n=56·5n-m=56+m-n得m+n=6+n-m,即2m=6,所以m=3.22.式子2×8n×16n可化简为:2×23n×24n=21+7n,而右边为222比较后发现1+7n=22,n=3.23.x6n+x4n·x5n=x6n+x9n=2+3把x3n=2代入可得答案为12.24.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2×6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.1111115.3222==9111,2333==8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533392)×42=8111 原式=6×29=6×23=23=227.原式=A.-2B.2C.-D.2.当n是正整数时,下列等式成立的有A.4个B.3个C.2个D.1个3.计算:=.4.若,,则=.5.下列运算正确的是A. B.C.D.6.若.7.10.11.计算:12.若13.用简便方法计算:,则求m+n的值.1.32.3..m=2,n=5.10 .87.8.9、1210.1 11. D2. B3. 04. 180.C.12.08.C.210.311. 12. 13. 1 1 14.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是 A.an与bnB.a2n与b2n C.a2n+1与b2n+1 D.a2n-1与-b2n-1 17.已知9n+1-32n=72,求n的值. 18.若3=a9b15,求2m+n的值.19.计算:an-52+20.若x=3an,y=-12n-1a,当a=2,n=3时,求anx-ay的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.2.计算:m+3?2?m?23.若=a5b3,则求m+n的值.平面图形的认识提高练习班级:________姓名:___________一、选择题:1、下列图形中,不能通过其中一个四边形平移得到的是:2、在下列各图的△ABCBDCD中,正确画出AC边上的高的图形是:BDACBCBDDAAC3、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为:A、600m2B、551m2C、550m2D、500m24、将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于:A、56°第3题图第4题图B、68°1C、62° D、66°5、a、b、c、d四根竹签的长分别为2cm、3cm、4cm、6cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有:A、1个、下列B、2个叙述中C、3个,正确D、4个的有:①三角形的一个外角等于两个内角的和;②一个五边形最多有3个内角是直角;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC 中,若∠A=2∠B=3∠C,则这个三角形ABC为直角三角形. A、0个、如图,B、1个,则下C、2个列各式中D、3个正确的是OP∥QR∥ST:A、∠1+∠2+∠3=180° C、∠1-∠2+∠3=90°B、∠1+∠2-∠3=90° D、∠2+∠3-∠1=180° ?9、如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是:A、88mmB、96mmC、80mmD、84mm10、一幅三角板如图所示叠放在一起,则图中∠α的度数为:A、75°B、60°C、65°D、55°二、填空题1、如图,面积为6cm的直角三角形ABC沿BC方向平移至三角形DEF的位置,平移距离是BC的2倍,则图中四边形ACED的面积为_______ cm.A l1第1题图l222第2第3题图2、如图,l1∥l2,AB⊥l2,垂足为O,BC交l2于点E,若∠ABC=140°,则∠1=_____°.、光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角。
《幂的运算》习题精选及答案解析
WORD资料下载可编辑《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。
9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,961 15、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n ,y=﹣,当a=2,n=3时,求a n x﹣ay 的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42(2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
指数运算复习练习题
指数运算复习练习题2.1.1 指数与指数幂的运算练题1、有理数指数幂的分类:1)正整数指数幂 $a^n=a \cdot a \cdot a \cdot。
\cdota$ $(n$ 个 $a)$;2)零指数幂 $a^0=1$ $(a \neq 0)$;3)负整数指数幂 $a^{-n}=\dfrac{1}{a^n}$ $(n \in N^*)$;4)正分数指数幂$a^{\frac{m}{n}}=\sqrt[n]{a^m}$ $(a>0,m,n \in Q)$,等于$0$ 的正分数指数幂为 $0$,$0$ 的负分数指数幂没有意义。
2、有理数指数幂的性质:1)$a^m \cdot a^n=a^{m+n}$ $(a>0,m,n \in Q)$;2)$(a^m)^n=a^{mn}$ $(a>0,m,n \in Q)$;3)$(ab)^m=a^m \cdot b^m$ $(a>0,b>0,m \in Q)$。
知能点2:无理数指数幂若 $a>0$,$P$ 是一个无理数,则 $a^P$ 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。
知能点3:根式1、根式的定义:一般地,如果 $x=\sqrt[n]{a}$,那么$x$ 叫做 $a$ 的 $n$ 次方根,其中 $n>1$,$n \in N$,$a$ 叫被开方数。
2、对于根式记号 $\sqrt[n]{a}$,要注意以下几点:1)$n \in N$,且 $n>1$;2)当$n$ 是奇数,则$\sqrt[n]{a^n}=a$;当$n$ 是偶数,则 $\sqrt[n]{a^n}=|a|$;3)负数没有偶次方根;4)零的任何次方根都是零。
3、我们规定:1)$\sqrt[n]{a^m}=a^{\frac{m}{n}}$ $(a>0,m,n \in N,n>1)$;2)$a^{-\frac{m}{n}}=\dfrac{1}{a^{\frac{m}{n}}}$ $ (a>0,m,n \inN^*,n>1)$。
八年级数学几何图形第19讲 整数指数幂的运算 及其运算法则专题训练(学生版)
第19讲整数指数幂的运算及其运算法则专题训练(原卷版)第一部分典例剖析+针对训练类型一正用幂的运算法则典例1(2022•南京模拟)下列运算正确的是()A.3a+a=3a2B.3a3•2a=6a3C.(a2)3=a5D.(﹣3a)3=﹣27a3典例2(2022春•新邵县期中)计算:(﹣a)3•a4•(﹣a)﹣(a2)4+(﹣2a4)2.针对练习11.(2022春•娄底期中)如果a2n﹣1a n+5=a16,a≠1,那么n的值为()A.4B.5C.6D.72.(2022春•玄武区校级期中)化简:a2•(﹣a)4﹣(3a3)2+(﹣2a2)3.3.(2022春•诸城市期中)计算下列各题:(1)(−12)×(−12)2×(−12)3;(2)(4x4y)2•(﹣xy3)5;(3)(x﹣y)8÷(y﹣x)7•(x﹣y)(结果用幂的形式表示).4.(2022春•高青县期末)计算:(1)a•a2•a3+(a3)2﹣(2a2)3;(2)(2a)3•(﹣3a2b).类型二逆向运用幂的运算法则(一)逆用同底数幂的运算法则典例3(2022春•杭州期中)已知m x=2,m y=5,则m x+y值为()A.7B.10C.25D.m7针对训练25.(2021秋•海珠区期末)已知2x=5,则2x+3的值是()A.8B.15C.40D.125(二)逆用幂的乘方法则典例4(2022春•覃塘区期末)已知a m=3,a n=2,则a2m+3n的值为()A.72B.54C.17D.12针对训练36.(2022春•泗阳县期末)已知27a×9b=81,且a≥2b,则8a+4b的最小值为()A.9B.10C.11D.12 7.(2022春•江都区期末)若a m=3,a n=2,则a m+2n=.8.(2022春•仪征市期末)若3m=2,9n=10,则3m+2n=.9.(2022春•新都区期末)已知2a=32,4b=64,则a+b=.10.(2022春•镇江月考)若n为正整数,且x2n=7,求(3x3n)2﹣13(x2)2n的值.(三)逆用积的乘方法则典例5(2022春•赣榆区期末)950×(−13)101=.针对训练411.(2022春•荷塘区校级期中)计算:(513)2022×(−135)2021=.12.(2022春•六盘水期中)计算(﹣0.125)2020×26060×(﹣0.125)2021×26063的结果是.13.(2022春•江阴市期中)计算(﹣8)203×0.125202=.类型三灵活运用幂的运算法则典例6(2022春•上城区校级期中)已知x=3m+2,y=9m+3m+1,则用含x的代数式表示y为.典例7(2022春•萧山区)若a=255,b=344,c=433,d=522,则a,b,c,d的大小(用<号连接).典例8(2021秋•舞阳县期末)已知:3a=2,3b=6,3c=18,则a,b,c之间的数量关系为.针对训练514.(2022春•江宁区月考)(1)已知2×4m×8m=216,则m=;(2)(−12)2015×41007=.15.(2022春•拱墅区校级期中)已知a,b满足方程3a+2b=4,则8a•4b=.16.(2022春•镇江月考)若82+m=32m+1,则44m+42m的值是.17.已知x a﹣3=2,x b+4=5,x c+1=10,则a,b,c三者之间的数量关系是.第二部分专题提优训练1.(2022春•抚州期末)下列运算正确的是()A.x2+x3=x5B.(x2)2+x4=2x4C.(3x)2=6x2D.(x2)3=x52.(2022春•紫金县期末)下列各式计算正确的是()A.5a﹣3a=2B.a2•a5=a10C.a6÷a3=a2D.(a2)3=a63.(2022春•宁德期末)下列计算正确的是()A.a8÷a4=a2B.(a3)3=a6C.(﹣2a3)2=﹣4a6D.a5•a5=a104.(2022春•相城区期末)若2m=a,3m=b,则6m等于()A.a+b B.a﹣b C.ab D.a b5.(2022•贵阳模拟)下列代数式的运算结果为a12的是()A.a6+a6B.a2•a6C.a6•a6D.a12÷a6.(2022春•江阴市期中)已知a m=6,a n=2,则a m+n的值等于()A.8B.3C.64D.127.(2022春•文登区校级期中)a2019可以写成()A.a2010+a9B.a2010•a9C.a2010•a D.a2010•a20098.(2021秋•铜官区期末)已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10D.a2b2=c29.(2021秋•宜州区期末)已知10a=20,100b=50,则a+2b+2的值是()A.5B.6C.7D.1010.(2021秋•龙岩期末)下列算式中,结果一定等于a6的是()A.a3+a2B.a3•a2C.a8﹣a2D.(a2)311.(2021秋•忠县期末)若5x=a,5y=b,则53x+2y=()本号@资料皆来源于微信公众号:数学第六感A.3a+2b B.a3+b2C.6ab D.a3b212.(2022春•沛县月考)已知a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是()A.a<b<c<d B.d<a<c<b C.a<d<c<b D.b<c<a<d13.(2022春•平阴县期末)(23)2022×(32)2021=.14.(2022春•深圳期末)若2m=3,2n=2,则2m+2n=.15.(2022春•吴江区期末)若2x﹣3=1,则x=.16.(2022•普陀区二模)已知(a2)m=a6,那么m=.17.(2022春•嘉兴期中)若3n+3n+3n=35,则n=.18.(2022春•邗江区校级期中)计算:﹣0.1252021•(﹣8)2022=.19.(2021秋•船营区校级期末)如图,王老师把家里的WIFI密码设置成了数学问题.吴同学来王老师家做客,看到WIFI图片,思索了一会儿,输入密码,顺利地连接到了王老师家里的网络,那么她输入的密码是.20.(2021秋•濮阳期末)若3a=6,3b=2,则3a+b=.21.已知a x=2,a y=3,求a2x+y.。
高一数学指、对与幂基本运算练习题含答案
高一数学 指、对与幂基本运算练习题考试时间:90分钟 满分:100分A 组 基础巩固(60分)一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.(2022·山东·聊城颐中外国语学校高一期中)设集合{}12A x Z x =∈-≤≤,{}22B x x =<,则A B =( )A .{}1,0,1-B .{}0C .{}1,0-D .{}1,0,1,2-2.(2022·山东·聊城颐中外国语学校高一期中)函数231()x f x x-=的图象可能是( )A .B .C .D .3.(2020·山东聊城一中高一期中)已知421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则( ) A .a b c << B .c<a<b C .a b c >> D .b<c<a4.(2021·山西·太原市外国语学校高一期中)已知0.932,9,3a b c ===,则,,a b c 的大小关系是( ) A .c b a << B .a c b << C .c a b <<D .a b c <<5.(2022·湖南·溆浦县第一中学高一期中)已知命题:p “0x ∃>,使得220x x -->”,则命题p 的否定是( ) A .0x ∀≤,总有220x x -->B .0x ∀>,总有220x x --≤C .0x ∃>,使得220x x --≤D .0x ∃≤,使得220x x -->6.(2022·山东省淄博实验中学高一期中)已知函数()3log 1,022,0x x x f x x +>⎧=⎨+≤⎩,则()()0f f =( )A .1B .2C .3D .47.(2022·广东·汕头市潮阳区棉城中学高一期中)已知()2f x ax bx =+是定义在[]1,2a a -上的偶函数,那么b a a +的值是( )A .43B .13C .12D .12-8.(2022·广东·汕头市潮阳区棉城中学高一期中)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数()*N x x ∈为二次函数关系(如图所示),则每辆客车营运( )年时,其营运的年平均利润yx最大.A .3B .4C .5D .6二、多选题:本大题共2小题,每个小题5分,共10分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.(2020·山东聊城一中高一期中)下列四组函数中,表示同一函数的有( ) A .2111x y y x x -==+-,B .2,0()(),0x x f x g v v x x ≥⎧=⎨-<⎩,C .3()20)()20)f x x x g x x x x =-≤=--≤,D .0()()1f x x g x ==,10.(2022·江西·鹰潭市余江区城北学校高一期中)设0a >,m ,n 是正整数,且1n >,则下列各式中,正确的是( ) A .mn m n a a =B .01a = C .-=-mn m n a a D n n a a =三、填空题:本大题共2小题,每小题5分,共10分.把答案填在答题卡中的横线上.11.(2022·浙江·杭州四中高一期中)计算:1623415log log 9lg 2lg 2(2)22⎡⎤⨯+++-=⎣⎦____________. 12.(2022·四川·太平中学高一期中)计算:12031820222-⎛⎫++= ⎪⎝⎭_________.B 组 能力提升(40分)四、解答题:本大题共4小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤. 13.(2021·山西·太原市外国语学校高一期中)计算:(1)14116-⎛⎫ ⎪⎝⎭;(2)化简:(-0,0a b >>).14.(2022·江西·鹰潭市余江区城北学校高一期中)(1)计算:2021321168100481--⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭;(20)a ≥(用分数指数幂表示).15.(2022·山东·滨州高新高级中学有限公司高一期中)计算求值.(1)32log 70lg42lg5π3+++-(2)3log 169log log 273+ (3)1120370.02721)9-⎛⎫-- ⎪⎝⎭(4)232log 9log 42lne log 4⨯++16.(2022·黑龙江实验中学高一期中)计算(1)7111log 242238111()log 4[()]71643-+⋅+-+; (2)2215log 5log 4(lg5)lg 2(lg51)⨯++⨯+指、对与幂基本运算练习题参考答案考试时间:90分钟 满分:100分A 组 基础巩固(60分)一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.(2022·山东·聊城颐中外国语学校高一期中)设集合{}12A x Z x =∈-≤≤,{}22B x x =<,则A B =( )A .{}1,0,1-B .{}0C .{}1,0-D .{}1,0,1,2-【答案】A【分析】先解不等式化简集合,A B ,再由交集的概念,即可得出结果. 【详解】因为集合{}{}121,0,1,2A x Z x =∈-≤≤=-, {}{}2222B x x x x =<=-<<,因此{}1,0,1A B =-. 故选:A.2.(2022·山东·聊城颐中外国语学校高一期中)函数231()x f x x-=的图象可能是( )A .B .C .D .【答案】A3.(2020·山东聊城一中高一期中)已知421333111,,2325a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则( ) A .a b c << B .c<a<b C .a b c >> D .b<c<a4.(2021·山西·太原市外国语学校高一期中)已知0.92,3a b c ===,则,,a b c 的大小关系是( ) A .c b a << B .a c b << C .c a b << D .a b c <<故a b c <<. 故选:D5.(2022·湖南·溆浦县第一中学高一期中)已知命题:p “0x ∃>,使得220x x -->”,则命题p 的否定是( ) A .0x ∀≤,总有220x x --> B .0x ∀>,总有220x x --≤ C .0x ∃>,使得220x x --≤ D .0x ∃≤,使得220x x -->【答案】B【分析】考察特称命题的否定,先将存在量词改为全称量词,再否定结论即可【详解】因为命题p 为特称命题,所以命题p 的否定为全称命题,即命题p 的否定为:“0x ∀>,总有220x x --≤”,故选:B .6.(2022·山东省淄博实验中学高一期中)已知函数()3log 1,022,0x x x f x x +>⎧=⎨+≤⎩,则()()0f f =( )A .1B .2C .3D .4【答案】B【分析】根据题意,由函数的解析式求出()0f 的值,进而计算可得答案.【详解】根据题意,函数()3log 1,022,0x x x f x x +>⎧=⎨+≤⎩,则()00223f =+=,则()()()303log 312f f f ==+=,故选:B .7.(2022·广东·汕头市潮阳区棉城中学高一期中)已知()2f x ax bx =+是定义在[]1,2a a -上的偶函数,那么b a a +的值是( )A .43B .13C .12D .12-从而43ba a +=. 故选:A .8.(2022·广东·汕头市潮阳区棉城中学高一期中)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数()*N x x ∈为二次函数关系(如图所示),则每辆客车营运( )年时,其营运的年平均利润yx最大.A .3B .4C .5D .6【答案】C【分析】先根据题意求出总利润y (单位:10万元)与营运年数()*N x x ∈为二次函数关系式,从而可得y x,化简后利用基本不等式可求得其最大值.【详解】根据二次函数的图象设二次函数为2(6)11y a x =-+, 因为图象过(4,7),所以27(46)11a =-+,解得1a =-,所以22(6)111225y x x x =--+=-+-(*N x ∈), 所以212252512y x x x x x x -+-==--+ 2512x x ⎛⎫=-++ ⎪⎝⎭252122x x≤-⋅+=,当且仅当25x x =,即=5x 时取等号,所以每辆客车营运5年时,其营运的年平均利润yx最大,故选:C.二、多选题:本大题共2小题,每个小题5分,共10分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.(2020·山东聊城一中高一期中)下列四组函数中,表示同一函数的有( )A .2111x y y x x -==+-,B .,0()(),0x x f x g v x x ≥⎧=⎨-<⎩,C .()0)()0)f x x g x x =≤=-≤,D .0()()1f x x g x ==,10.(2022·江西·鹰潭市余江区城北学校高一期中)设0a >,m ,n 是正整数,且1n >,则下列各式中,正确的是( ) A .mn a =B .01a =C .-=mn a D a =三、填空题:本大题共2小题,每小题5分,共10分.把答案填在答题卡中的横线上.11.(2022·浙江·杭州四中高一期中)计算:1623415log log 9lg 2lg 2(2)22⎡⎤⨯+++-=⎣⎦____________. 【答案】812.(2022·四川·太平中学高一期中)计算:12031820222-⎛⎫++= ⎪⎝⎭_________.【答案】7【分析】根据指数的运算法则计算即可. 【详解】原式2417=++=. 故答案为:7.B 组 能力提升(40分)四、解答题:本大题共4小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤. 13.(2021·山西·太原市外国语学校高一期中)计算:(1)14116-⎛⎫ ⎪⎝⎭;(2)化简:(-0,0a b >>).14.(2022·江西·鹰潭市余江区城北学校高一期中)(1)计算:221321168100481--⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭;(20)a ≥(用分数指数幂表示).15.(2022·山东·滨州高新高级中学有限公司高一期中)计算求值.(1)32log 70lg42lg5π3+++-(2)3log 169log log 273+(3)112370.02721)9-⎛⎫-- ⎪⎝⎭ (4)232log 9log 42lne log 4⨯++16.(2022·黑龙江实验中学高一期中)计算(1)7log 242238111()log 4[()]71643-+⋅+-+; (2)2215log 5log 4(lg5)lg 2(lg51)⨯++⨯+。
整数指数幂
a a 1 a 归纳: 归纳: ÷ a = 5 = 3 2 = 2 a a ⋅a a ÷ - a m÷a n = a m-n 这条性质对于 、n是任 这条性质对于m 是任 1 3 5 3− 5 −2 意整数的情形仍然使用。 意整数的情形仍然使用。 = 2 a ÷a = a = a a
3 5
3
3
a
−n
[(x + 2y) (x − y) ] [(x + 2y) (x − y) ]
2 −1
−3 2 2 −2
用科学记数法表示下列各数: 用科学记数法表示下列各数: 1000000; 1201000000; 1000000; 1201000000; -32500
绝对值大于10的有理数的科学记数法的意义: 绝对值大于10的有理数的科学记数法的意义: 10的有理数的科学记数法的意义 把一个有理数表示成
b
n
a = n b
n
(上述性质中a、b都不为0,m、n都为整数) 上述性质中a 都不为0 都为整数)
计算: 计算:
x-5·x2; x ( 2 -2) 3;
x −3 ( 2) y
计算: 例 计算
(1)
(a
−1 2 3
b
)
(2)
a b ⋅ab
−2 2 −8 8 8
−2 2
(
2 − 2 −3
−6 6
a × 10 (1 ≤ a < 10, n是正整数 )
n
的形式
问题 已知一个冠状病毒的直径约为0 一个冠状病毒的直径约为 已知 一个 冠状病毒的直径约为 0 . 00000008 厘米,那么100个这种病毒连接起来, 100个这种病毒连接起来 厘米,那么100个这种病毒连接起来,最长是 多少厘米? 多少厘米?
高一数学指数与指数幂的运算1(新编201911)
平行 时加在辰少弱上 丞各一人 "先师尼父 增置少监一人 开府仪同三司 但无行参军员 长兼行参军等员 如初乃伏 月在丙上 朝请大夫张镇州击流求 佐
2.式
n
n
a
与
n
an含义相同吗?
【提示】 ①n∈N,且 n>1.
②当 n 为大于 1 的奇数时,n a对任意 a∈R
都有意义,它表示 a 在实数范围内唯一的一个 n
,完成化简.
【解析】
4 (1)
(-2)4=2
5 (2)
(2-π)5=2-π
4 (3)
(x+1)4=|x+1|=-x+x-1 1
(x≥-1) (x<-1)
3 (4)
(x-6)3=x-6
当 n 为奇数时,n an=a;当 n 为偶数时,n an =|a|,本题中要注意 n 的奇偶性对式子n an的值的 影响,做到理解,并能熟练应用.
次方根,n
an=a.
③当 n 为大于 1 的偶数时,n a只有当 a≥0 时有
意义,当 a<0 时无意义.n a(a≥0)表示 a 在实数范
幂的运算(基础30题专练)-2021-2022学年七年级数学下学期考试满分全攻略(苏科版)(解析版)
第8章幂的运算(基础30题专练)一.选择题(共10小题)1.(2021秋•崇川区期末)医用外科口罩的熔喷布厚度约为0.000136米,将0.000136用科学记数法表示应为()A.0.136×10﹣3B.1.36×10﹣3C.1.36×10﹣4D.13.6×10﹣5【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:0.000136=1.36×10﹣4.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.2.(2021秋•嵩明县期末)下列运算正确的是()A.a2+a2=a4B.(a2)3=a5C.(ab)2=a2b2D.a6÷a3=a2【分析】分别根据合并同类项法则,幂的乘方运算法则,积的乘方运算法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.a2+a2=2a2,故本选项不合题意;B.(a2)3=a6,故本选项不合题意;C.(ab)2=a2b2,故本选项符合题意;D.a6÷a3=a3,故本选项不合题意.故选:C.【点评】本题主要考查了合并同类项,同底数幂的除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2021秋•长春期末)计算a6÷a2的结果是()A.a2B.a3C.a4D.a5【分析】根据同底数幂的除法法则:底数不变,指数相减进行计算,然后即可作出判断.【解答】解:a6÷a2=a4,故选:C.【点评】本题考查同底数幂的除法,熟记其运算法则是解题的关键.4.(2019秋•崇川区校级期末)如果a m=3,a n=2,则a3m﹣2n等于()A.108B.36C.D.【分析】根据幂的乘方以及同底数幂的除法法则解答即可.【解答】解:∵a m=3,a n=2,∴a3m﹣2n=(a m)3÷(a n)2=33÷22=.故选:C.【点评】本题主要考查了同底数幂的除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.5.(2021秋•克东县期末)下列各式计算结果为a7的是()A.(﹣a)2•(﹣a)5B.(﹣a)2•(﹣a5)C.(﹣a2)•(﹣a)5D.(﹣a)•(﹣a)6【分析】直接利用积的乘方运算法则结合同底数幂的乘法运算法则分别计算得出答案.【解答】解:A、(﹣a)2•(﹣a)5=﹣a7,故此选项错误;B、(﹣a)2•(﹣a5)=﹣a7,故此选项错误;C、(﹣a2)•(﹣a)5=a7,故此选项正确;D、(﹣a)•(﹣a)6=﹣a7,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算,正确得出各项符号是解题关键.6.(2021秋•徐闻县期末)下列运算正确的是()A.(2x2)3=6x6B.x6÷x3=x2C.3x2﹣x2=3D.x•x4=x5【分析】根据幂的乘方和积的乘方,同底数幂的除法、乘法,合并同类项法则分别求出每个式子的值,再进行判断即可.【解答】解:A、结果是8x6,故本选项错误;B、结果是x3,故本选项错误;C、结果是2x2,故本选项错误;D、结果是x5,故本选项正确;故选:D.【点评】本题考查了幂的乘方和积的乘方,同底数幂的除法、乘法,合并同类项法则的应用,能正确根据法则求出每个式子的值是解此题的关键.7.(2021秋•恩施市期末)下列运算中正确的是()A.(a2)3=a5B.a2•a3=a5C.a6÷a2=a3D.a5+a5=2a10【分析】利用同底数幂的除法与乘方,幂的乘方与积的乘方及合并同类项的法则求解即可.【解答】解:A、(a2)3=a6,故本选项错误;B、a2•a3=a5,故本选项正确;C、a6÷a2=a4,故本选项错误;D、a5+a5=2a5,故本选项错误.故选:B.【点评】本题主要考查了同底数幂的除法与乘方,幂的乘方与积的乘方及合并同类项,解题的关键是熟记同底数幂的除法与乘方,幂的乘方与积的乘方及合并同类项的法则.8.(2021秋•上思县期末)用科学记数法表示为1.999×103的数是()A.1999B.199.9C.0.001999D.19990【分析】根据n是几,小数点向右移动几位,可得原数.【解答】解:1.999×103=1999,故选:A.【点评】用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向后移几位9.(2021•盐城一模)下列计算正确的是()A.x•x=2x B.(2x)2=2x2C.(x3)3=x6D.x+x=2x【分析】根据同底数幂的乘法、积的乘方、幂的乘方及合并同类项法则即可得到答案.【解答】解:x•x=x2,故A不符合题意;(2x)2=4x2,故B不符合题意;(x3)3=x9,故C不符合题意;x+x=2x,故D符合题意;故选:D.【点评】本题考查整式的运算,掌握同底数幂的乘法、积的乘方、幂的乘方及合并同类项法则是解题的关键.10.(2021•镇江一模)下面计算正确的是()A.3a+2b=5ab B.5a2b﹣2ba2=3a2bC.﹣(6x+2y)=﹣6x+2y D.(﹣2a)2=﹣4a2【分析】根据合并同类项、去括号及积的乘方法则即可得到答案.【解答】解:3a与2b不是同类项,故A不符合题意;5a2b﹣2ba2=3a2b,故B符合题意;﹣(6x+2y)=﹣6x﹣2y,故C不符合题意;(﹣2a)2=4a2,故D不符合题意;故选:B.【点评】本题考查整式的运算,掌握合并同类项、去括号及积的乘方法则是解题的关键.二.填空题(共10小题)11.(2021秋•海门市期末)将数0.0002022用科学记数法表示为 2.022×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数0.0002022用科学记数法表示为2.022×10﹣4.故答案为:2.022×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(2021秋•双辽市期末)计算:(﹣0.25)2021×42022=﹣4.【分析】积的乘方,把每一个因式分别乘方,再把所得的幂相乘,据此计算即可.【解答】解:(﹣0.25)2021×42022=(﹣)2021×42021×4=﹣(×4)2021×4=﹣1×4=﹣4.故答案为:﹣4.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.13.(2021秋•泗水县期末)若2x=3,2y=5,则23x﹣2y=.【分析】根据幂的乘方以及同底数幂的除法法则计算即可.【解答】解:∵2x=3,2y=5,∴23x﹣2y=23x÷22y=(2x)3÷(2y)2=33÷52=.故答案为:.【点评】本题主要考查了同底数幂的除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.14.(2021春•睢宁县月考)计算:(a5)2=a10.【分析】利用幂的乘方的运算法则进行运算即可.【解答】解:(a5)2=a5×2=a10.故答案为:a10.【点评】本题主要考查幂的乘方,解答的关键是熟记幂的乘方的法则并灵活运用.15.(2021秋•鼓楼区校级月考)一个数用科学记数法表示为2.18×105,则这个数是218000.【分析】根据用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向后移几位,可得答案.【解答】解:2.18×105=218000.故答案是:218000.【点评】本题考查了科学记数法,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向后移几位.16.(2021秋•浦东新区期中)已知3x﹣3•9x=272,则x的值是3.【分析】根据幂的乘方,底数不变指数相乘,同底数幂相乘,底数不变指数相加,计算后再根据指数相等列式求解即可.【解答】解:∵3x﹣3•9x=3x﹣3•32x=3x﹣3+2x=36,∴x﹣3+2x=6,解得x=3.故答案为:3.【点评】此题考查同底数幂的乘法以及幂的乘方与积的乘方,关键是等式两边均化为底数均为3的幂进行计算.17.(2021春•江都区期中)已知2a÷4b=8,则a﹣2b的值是3.【分析】根据幂的乘方运算法则可得4b=22b,再逆向应用同底数幂的除法法则解答即可.同底数幂的除法法则:底数不变,指数相减.【解答】解:∵2a÷4b=2a÷22b=2a﹣2b=8=23,∴a﹣2b=3.故答案为:3.【点评】本题考查了同底数幂的除法以及幂的乘方,掌握幂的运算法则是解答本题的关键.18.(2021春•江都区期中)若2m=4,2m+2n=32,则4n=8.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,可得2m+2n=2m •22n=32,再计算即可.【解答】解:∵2m+2n=2m•22n=32,∵2m=4,∴22n=4n=8.故答案为:8.【点评】此题主要考查了同底数幂的乘法,幂的乘方与积的乘方,解答此题的关键是判断出:2m+2n=2m•22n=32.19.(2021春•宝应县月考)已知(x+3)2﹣x=1,则x的值可能是﹣2或﹣4或2.【分析】直接利用当x+3=1时以及当x+3=﹣1时、当2﹣x=0时,分别得出x的值求出答案.【解答】解:当x+3=1时,解得:x=﹣2,故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时,解得:x=﹣4,故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时,解得:x=2,故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.【点评】此题主要考查了零指数幂的性质以及有理数的乘法运算,正确分情况讨论是解题关键.20.(2021春•高邮市期中)若(x﹣1)x+2=1,则x=2或﹣2或0.【分析】直接利用当x﹣1=1时以及当x﹣1=﹣1时、当x+2=0时,分别分析得出答案.【解答】解:当x﹣1=1时,解得:x=2,则(x﹣1)x+2=12=1,当x﹣1=﹣1时,解得:x=0,则(x﹣1)x+2=02=1,当x+2=0时,解得:x=﹣2,则(x﹣1)x+2=(﹣3)0=1,综上所述:x的值为2或﹣2或0.故答案为:2或﹣2或0.【点评】此题主要考查了零指数幂以及有理数的乘方,正确分类讨论是解题关键.三.解答题(共10小题)21.(2021春•鼓楼区期中)已知a m=2,a n=3.(1)求a m+2n的值;(2)求a2m﹣3n的值.【分析】(1)逆向运用同底数幂的乘法法则以及幂的乘方运算法则计算即可;(2)逆向运算同底数幂的除法法则以及幂的乘方运算法则计算即可.【解答】解:(1)∵a m=2,a n=3,∴a m+2n=a m•a2n=a m•(a n)2=2×32=2×9=18;(2)∵a m=2,a n=3,∴a2m﹣3n=a2m÷a3n=(a m)2÷(a n)3=22÷33=.【点评】本题考查了同底数幂的乘除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.22.(2021春•工业园区校级月考)已知33×9m=311,求m的值.【分析】根据幂的乘方运算法则以及同底数幂的乘法法则可得33×9m=33×32m=33+2m=311,据此可得3+2m=11,再解方程即可.【解答】解:∵33×9m=33×32m=33+2m=311,∴3+2m=11,解得m=4.【点评】本题主要考查了同底数幂的乘法与幂的乘方,熟记相关运算法则是解答本题的关键.23.(2021春•大丰区月考)对数运算是高中常用的一种重要运算,它的定义为:如果a x=N (a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(1)解方程:log x4=2.(2)log48=.(3)计算:lg2+1g5﹣2021.【分析】(1)根据题中的新定义化简为:x2=4,解方程即可得到结果;(2)利用对数的公式:log a(M•N)=log a M+log a N,把8=4×2代入公式,即可得到结果;(3)知道lg2+1g5=1g10=1,利用已知的新定义化简即可得到结果.【解答】解:(I)log x4=2;∴x2=4,∴x=2或﹣2(负数舍去),故x=2;(2)解法一:log48=log4(4×2)=log44+log42=1+=;解法二:设log48=x,则4x=8,∴(22)x=23,∴2x=3,∴x=,即log48=,故答案为:;(3)lg2+1g5﹣2021=1g10﹣2021=1﹣2021=﹣2020.【点评】此题考查了新定义:对数,弄清题中的新定义是解本题的关键.24.(2021春•宜兴市月考)计算:(1)(2×103)4;(2)3n﹣1×(﹣27)×3n+2;(3)2(a4)3﹣(a7)2÷a2;(4)(p﹣q)4÷(p﹣q)3•(q﹣p)5.【分析】(1)根据积的乘方运算法则以及科学记数法计算即可;(2)根据同底数幂的乘法法则以及幂的乘方运算法则计算即可;(3)根据幂的乘方以及同底数幂的除法法则计算即可;(4)根据同底数幂的乘除法法则计算即可.【解答】解:(1)(2×103)4=16×1012=1.6×1013;(2)3n﹣1×(﹣27)×3n+2=﹣3n﹣1×33×3n+2=﹣3n﹣1+3+n+2=﹣32n+4;(3)2(a4)3﹣(a7)2÷a2=2a12﹣a14÷a2=2a12﹣a12=a12;(4)(p﹣q)4÷(p﹣q)3•(q﹣p)5=﹣(p﹣q)4÷(p﹣q)3•(p﹣q)5=﹣(p﹣q)4﹣3+5=﹣(p﹣q)6.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.25.(2021春•张家港市月考)(1)已知a m=2,a n=3,求a3m﹣2n的值;(2)已知2×8x×16=223,求x的值.【分析】(1)根据同底数幂的除法法则以及幂的乘方运算法则计算即可,同底数幂的除法法则:同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.(2)根据同底数幂的乘法法则以及幂的乘方运算法则求解即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.【解答】解:(1)∵a m=2,a n=3,∴a3m﹣2n=a3m÷a2n=(a m)3÷(a n)2=23÷32=;(2)∵2×8x×16=2×23x×24=223,∴1+3x+4=23,解得x=6.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.26.(2021春•南京月考)用两种方法计算(a m•a n)2.【分析】(1)先根据同底数幂的乘法法则化简后,再根据幂的乘方运算法则计算即可;(2)先根据积的乘方运算法则计算,再根据同底数幂的乘法法则化简.【解答】解:(a m•a n)2=(a m+n)2=a2m+2n.(a m•a n)2=a2m•a2n=a2m+2n.【点评】本题主要考查了同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.27.(2021春•江都区月考)根据要求求值:(1)已知x3•x a•x2a+1=x31,求a的值;(2)已知(2a﹣1)a+2=1,求a的值.【分析】(1)先对等式左边进行同底数幂的乘法运算,再根据底数相同,指数相等得方程,求解即可;(2)分三种情况,当a+2=0时;2a﹣1=1时;a+2为偶数,2a﹣1=﹣1时,求解即可.【解答】解:(1)∵x3•x a•x2a+1=x3+a+2a+1=x3a+4=x31,∴3a+4=31,∴a=9.(2)∵(2a﹣1)a+2=1,∴当a+2=0时,a=﹣2;当2a﹣1=1时,a=1;当a+2为偶数,2a﹣1=﹣1时,a=0,∴(2a﹣1)a+2=1,a的值为﹣2或1或a+2为偶数,2a﹣1=﹣1时,a=0,故a的值为:﹣2或1或0.【点评】此题考查的是同底数幂的乘法,掌握其法则是解决此题的关键.28.(2020秋•南关区校级期末)已知a x=2,a y=3.求:(1)a x﹣y的值;(2)a3x的值;(3)a3x+y的值.【分析】(1)同底数幂的除法法则:底数不变,指数相减,据此计算即可;(2)幂的乘方法则:底数不变,指数相乘,据此计算即可;(3)根据幂的乘方以及同底数幂的乘法法则计算即可.【解答】解:(1)∵a x=2,a y=3,∴a x﹣y=;(2)∵a x=2,∴a3x=(a x)3=23=8;(3)∵a x=2,a y=3,∴a3x+y=(a x)3•a y=8×3=24.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方,熟记幂的运算法则是解答本题的关键.29.(2021春•邗江区月考)(1)若4a+3b=3,求92a•27b.(2)已知3×9m×27m=321,求m的值【分析】(1)根据幂的乘方以及同底数幂的乘法法则解答即可;(2)根据幂的乘方以及同底数幂的乘法法则解答即可.【解答】解:(1)∵4a+3b=3,∴92a•27b=34a•33b=33=27;(2)∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,解得m=4.【点评】本题主要考查了同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.30.(2021春•江宁区校级月考)规定a※b=2a×2b(1)求2※3的值;(2)若2※(x+1)=16,求x的值.【分析】(1)根据规定a※b=2a×2b可以求得题目中所求式子的值,本题得以解决;(2)根据规定a※b=2a×2b和同底数幂的乘法的法则即可得到结论.【解答】解:(1)2※3=22×23=4×8=32,(2)2※(x+1)=16,22×2(x+1)=2x+3=16=24,∴x+3=4,∴x=1.【点评】本题考查了同底数幂的乘法,解答本题的关键是明确同底数幂的乘法的计算方法.。