1-Few-Layer MoS2,ACS Nano,2014

合集下载

拉曼光谱在类石墨烯二维材料上的表征

拉曼光谱在类石墨烯二维材料上的表征

拉曼光谱在类石墨烯二维材料上的表征摘要类石墨烯二维材料具有无限类似碳六环的二维原子晶体结构,因其独特的结构与性质引起了科学家们的广泛关注。

拉曼光谱是一种快速而又简洁的表征物质结构的方法。

本文结合了先前研究者的一些工作,总结了拉曼光谱技术在类石墨烯二维材料表征中的一些应用。

主要阐述了拉曼光谱在表征类石墨烯材料如MnS2层结构,以及对于缺陷态与掺杂类型表征上的应用。

一、前言类石墨烯二维材料是指一个维度上维持纳米尺度,一个或几个原子层厚度,而在二维平面内具有无限类似碳六环组成的二维(2D)周期蜂窝状点阵结构,具有许多独特的性质。

因为二维材料如石墨烯等具有很有非常优异的特性,比如吸收2.3%的白光光谱,高表面积比,高的杨氏模量,优异的导热导电性,故这类二维材料可以应用在光电学[1,2]、自旋电子学、催化剂、化学传感器[2,3]、大容量电容器、晶体管、太阳能电池、锂电子电池、DNA测序[4-6]等很多领域。

拉曼光谱是一种快速无损的表征材料晶体结构、电子能带结构、声子能量色散和电—声子耦合的重要技术手段[7,8],具有较高的分辨率,是富勒烯、二硫化钼、金刚石等研究中最受欢迎的表征技术之一,在类石墨烯材料的发展历程中起了至关重要的作用。

本文将通过先前出现有关类石墨烯二维材料研究中的拉曼光谱表征,分析拉曼光谱在类石墨烯二维材料研究中的作用。

二、拉曼光谱表征类石墨烯二维材料层状结构1. 从拉曼散射的演化分析MoS2材料块体结构到单层结构的变化[9]随着多种超薄MoS2为基础的装置的快速发展,研究MoS2薄层的独特性质以及单层简便的检测方法成为迫切的需求。

拉曼光谱是一种快速无损的表征工具,已经用于研究MoS2的不同晶体结构[10-14 ]。

非共振情况下,四个一阶的拉曼活性模式32cm-1(E2g),286cm-1(E1g),383cm-1(E2g)和408cm-1(A1g)在MoS2块材中可以看到。

共振条件下,由于强的电—声子相互作用在MoS2块材中可以看到更多的拉曼峰。

二维非线性光学材料

二维非线性光学材料

二维非线性光学材料项目简介光学信息处理是解决当前大数据处理系统在带宽、能耗、速度等瓶颈问题上的主要技术手段。

纳米尺度非线性光学材料是全光集成系统中高性能单元器件(光开关、光调制器、探测器等)的核心。

具有优异非线性光学特性,特别是非线性吸收和折射率的二维纳米半导体材料在物性、集成度、兼容性上独具优势,是构筑未来高性能全光信息系统的关键之一。

作为国际上最早开展二维材料非线性光学工作的研究者之一,在中组部、国家基金委、中科院、上海市科委等项目的资助下,我们团队在国际上率先揭示了石墨烯、过渡金属硫化物和黑磷等重要二维材料的超快非线性光学特性,验证了高性能二维半导体在强激光防护光限幅器和超短脉冲激光锁模器上的重要应用,取得如下主要成果:成果一:二维半导体非线性光学效应及物理在国际上首先揭示了过渡金属硫化物、石墨烯、黑磷等重要二维半导体的非线性光学特性;证实了钼硫族二维材料的宽带非线性吸收和折射率,以及禁带调控色散效应;实现了二维半导体的非线性特性调控工程;从单层MoS2中观测到暗态激子共振巨双光子吸收效应;观测到二维半导体中的自相位调制效应、非线性折射率色散、二维材料光学特征矩阵、光致透明效应、快/慢饱和吸收效应、全光开关调控和光限幅特性、双光子吸收饱和效应等;这些原创成果为理解二维半导体非线性光学物理机理,开发高性能非线性光学器件及全光计算等集成系统应用奠定了良好的实验和理论基础。

成果二:二维半导体非线性光学材料及应用基于石墨烯、MoS2及其改性衍生材料等优异的非线性特性,实现了超短激光脉冲锁模器和强激光防护光限幅器等重要应用;合成出酞菁修饰的石墨烯宽带强激光防护光限幅材料;合成出MoS2、MoSe2、WS2、WSe2等过渡金属硫化物宽波段强激光防护光限幅材料;在批量制备大尺寸、高性能二维半导体非线性光学材料和二维半导体强激光防护光限幅复合材料等方面进行了大量原创性基础研究工作。

特别是以非线性激光防护物理研究,结合高性能激光防护材料研制为基础,正在为中电53所、中航工业613所等单位的激光应用系统研制强激光防护装置,用于对某型号机载光电系统和激光雷达探测器进行防护,在宽波段、多时间尺度上对抗外部强激光的干扰和致盲,具有防护阈值低、消光比高、稳定性强等特点。

过渡金属掺杂单层MoS2的第一性原理计算

过渡金属掺杂单层MoS2的第一性原理计算

过渡金属掺杂单层MoS2的第一性原理计算牛兴平;张石定;窦立璇【摘要】利用基于密度泛函理论的第一性原理平面波赝势方法分别计算了本征及过渡金属掺杂单层MoS2的晶格参数、电子结构和光学性质.计算结果显示,过渡金属掺杂所引起的晶格畸变与杂质原子的共价半径有联系,但并不完全取决于共价半径的大小.分析能带结构可以看到,Co、Ni、Cu、Tc、Re和W掺杂使能带从直接带隙变成了间接带隙.除了Cr和W以外,其它掺杂体系的禁带区域都出现了数目不等的新能级,这些杂质能级主要由杂质的d、S的3p和Mo的4d轨道组成.掺杂对MoS2的光学性质也产生了相应的影响,使MoS2的静态介电常数、介电函数虚部峰值、折射率和光电导率峰值呈现不同程度的增加.【期刊名称】《功能材料》【年(卷),期】2018(049)007【总页数】5页(P7106-7110)【关键词】过渡金属掺杂;二硫化钼;电子结构;光学性质【作者】牛兴平;张石定;窦立璇【作者单位】安阳工学院数理学院,河南安阳 455000;安阳工学院数理学院,河南安阳 455000;安阳工学院数理学院,河南安阳 455000【正文语种】中文【中图分类】O471.50 引言单层MoS2是一种常见的二维半导体材料[1],每层MoS2的厚度约为0.65 nm,层与层的间距约为0.615 nm[2]。

每层MoS2由一层Mo原子和上下两层S原子组成,层内的原子以共价键结合,层间的原子以Van der Waals力结合。

由于单层MoS2结构的特殊性而拥有独特的电学和光学特性[3],使其在润滑剂[4]、催化剂[5]、光电子器件[6]、自旋电子器件[7]、能量存储[8]和场效应管[9]等方面有着潜在的应用价值。

掺杂是半导体器件和集成电路工艺中的一个重要环节,可以通过筛选杂质的种类和调节掺杂的水平来控制半导体的光电特性。

人们对过渡金属掺杂单层MoS2的相关研究已有少量报道,例如吴木生等[10]研究了Cr和W掺杂后电子结构的变化情况,发现W掺杂几乎没有影响,而Cr掺杂后所产生的应力对MoS2的能带结构影响很大。

二维二硫化钼纳米薄膜材料的研究进展

二维二硫化钼纳米薄膜材料的研究进展

二维二硫化钼纳米薄膜材料的研究进展李瑞东;张浩;潘志伟;白志英;孙俊杰;邓金祥;王建鹏【摘要】作为过渡金属硫族化合物,二硫化钼具有可调带隙的二维层状材料,其特有的性质引起科研工作者的广泛关注,在光电子领域有着广阔的应用前景.文章介绍了二硫化钼的结构及其性质,以及常见的制备二硫化钼纳米薄膜的方法.给出了表征二硫化钼纳米薄膜的常见手段.%As transition metal dichalcogenides , MoS2is two-dimensional layered material with tunable band gap .Its unique nature has attracted the attention of researchers and it has a wide application prospect in the field of optoe -lectronics.The structure and property of molybdenum disulfide were introduced , and the common methods for pre-paring molybdenum disulfide nano-films werepresented .Meanwhile,the common methods of characterizing molyb-denum disulfide nano-films were given.【期刊名称】《中国钼业》【年(卷),期】2018(042)003【总页数】5页(P6-10)【关键词】二硫化钼;结构和性质;材料制备;薄膜表征【作者】李瑞东;张浩;潘志伟;白志英;孙俊杰;邓金祥;王建鹏【作者单位】北京工业大学,北京100124;防灾科技学院,河北三河065201;北京工业大学,北京100124;北京工业大学,北京100124;北京工业大学,北京100124;北京工业大学,北京100124;北京工业大学,北京100124;河北省地矿局第七地质大队,河北三河065201【正文语种】中文【中图分类】TF125.2+410 引言二维材料是指由单原子层或少数原子层构成的晶体材料,其概念可以追溯到十九世纪初期。

MOSFET原理及应用

MOSFET原理及应用

N
P
10
MOSFET工作原理
VGS S G
VDS D ID
V DS 增加, V GD = V T 时, 靠近 D端的沟道被夹断, 称为予夹断。
N P
N
夹断后,即使 VDS 继续增加, ID仍呈恒流特 性。
11
MOSFET工作原理
特性曲线(N沟道增强型MOS管):
ID
UGS=5V 可变电 阻区 线性放 大区 4V 击穿区
3V 0
U DS
12
MOS2 MOSFET
近年来,MoS2 材料因其优越的电学、光学和催化性能及干 润滑的功能而受到人们的广泛关注和研究。MoS2薄膜与现在研 究最为广泛的纳米材料石墨烯同是层状结构,二者具有非常 相近的性质,但是由于石墨烯无禁带的特点难以应用于晶体
管,而以MoS2薄膜作为沟道材料的场效应晶体管则由于其高的
开关比和几乎接近理论值的亚阈值摆幅而受到广泛的研究 [4-8]。 B. Radisavljevic等人[9]研制出的以单层MoS2作为沟道材料的 MOSFET如图3所示。
13
MOS2 MOSFET
图3 MoS 作为沟道材料的MOSFET[9]
14
MOS2 MOSFET
图4 单层MoS2 晶体管剖视图[9]
于其在模拟电路与数字电路中的广泛应用而受到极大关注。
以MOSFET的命名来看,事实上会让人得到错误的印象。早 期金氧半场效晶体管栅极使用金属作为材料,但由于多晶硅 在制造工艺中更耐高温等特点,许多金氧半场效晶体管栅极 采用后者而非前者金属。然而,随着半导体特征尺寸的不断
缩小,金属作为栅极材料最近又再次得到了研究人员的关注
VG=0时,有导电沟道
3

双层MoS2

双层MoS2

斯异质结。 基于密度泛函理论的第一性原理计算结果表明,ML MoS2 / VS2 和 BL MoS2 / VS2 异质结均表现出 p
型肖特基势垒,但在由 BL MoS2 构成的异质结中,肖特基势垒高度显著降低,仅为 0. 08 eV,十分接近于欧姆
接触的形成。 此外,通过对两种异质结光吸收光谱的计算,发现 BL MoS2 / VS2 异质结的介电函数的实部和虚
膜材料 [9-11] 。 目前为止,基于二维 MoS2 纳米片的场效应晶体管和数字电路已被成功制造。 值得关注的是,
在纳米电子器件中引入二维 MoS2 纳米片不可避免地涉及到与金属的接触,而相应的接触性质将会显著影响
器件的性能 [12-14] 。 因此,如何在金属半导体界面有效地降低接触电阻,对设计高性能纳米电子器件具有重
Key words: density functional theory; MoS2 ; electronic structure; van der Waals heterojunction; Schottky barrier;
light absorption
0 引 言
近年来,以石墨烯为代表的二维纳米材料因其独特的机械和电子性能而得到了广泛的研究与应用 [1-5] 。
用于描述交换关联作用 [18] ,投影缀加平面波方法被用来考虑离子与电子间相互作用。 平面波展开的截断能
被设置为 500 eV,采用 11 × 11 × 1 的 K 点网格在布里渊区进行取样,能量和力的收敛标准分别为 10 - 5 eV、
0. 01 eV / Å。 为避免相邻晶格之间的相互作用,真空层被设定为 15 Å 以确保消除层间的相互影响。 在非对
that the heterojunction composed of bilayer MoS2 has higher absorption peaks. The research results provide a theoretical basis

天津大学彭文朝课题组--通过多孔工程和掺杂策略微调石墨烯上自由基非自由基途径

天津大学彭文朝课题组--通过多孔工程和掺杂策略微调石墨烯上自由基非自由基途径

天津大学彭文朝课题组--通过多孔工程和掺杂策略微调石墨烯上自由基非自由基途径使用ZnCl2,KOH和CO2活化了氮和硫共掺杂石墨烯(N,S-G),开发了不同种类的缺陷和功能性。

这里,改性的碳催化剂被用来活化过一硫酸盐(PMS),用于苯酚降解。

与掺氮石墨烯(N-G)相比,N,S-G表现出更好的催化活性,并且使用KOH活化会进一步增强氧化效率。

自由基淬火实验,电化学表征和电子顺磁共振表征揭示N-G通过非自由基途径激活了PMS。

二次硫掺杂剂将反应途径转变为自由基主导的氧化反应(SO4·和·OH)。

不同于局限于催化剂表面的非自由基物质,自由基氧化会在本体溶液中产生,并保护碳催化剂免受腐蚀,从而确保碳催化剂更好的结构完整性和稳定性。

基于结构-活性关系,该工作采用了一种简便的策略,设计了一种高性能的可扩展碳催化剂,即KOH活化和N,S共掺杂的石墨烯(N,S-G-rGO-KOH),有望用于实际应用。

Figure 1. 通过不同策略合成碳催化剂的过程示意图。

Figure 2. (a-d)不同样品的扫描电子显微镜(SEM)图像。

(e-f)不同样品的投射电子显微镜(TEM)图像。

(g)N,S-G-CO2的HRTEM图像。

(h和i)N,S-G-KOH的TEM图像。

Figure 3(a)不同碳催化剂的X射线衍射(XRD)谱图,和(b)拉曼光谱。

Figure 4不同碳催化剂的(a)吸附和(b)降解曲线,以及(c)反应速率常数。

Figure 5(a)N,S-G,N,S-G-KOH和N,S-G-CO2的降解性能,以及(b)菲的化学结构。

反应条件:菲的浓度为1 ppm,催化剂的浓度为100 mg/L,PMS的浓度为3.2 mM,温度为25°C。

(c)DMPO-OH和DMPO-SO4,以及(d)TEMP-O2·−加合物的电子顺磁共振(EPR)谱。

该研究工作由天津大学Wenchao Peng课题组联合澳大利亚阿德莱德大学Xiaoguang Duan于2021年发表在ACS Catalysis期刊上。

韩国庆熙大学

韩国庆熙大学

The 5th China-Korea Joint Symposium on Chemistry(Nov. 22-23, 2012 Hebei University, China)Symposium PresentationsCurriculum vitaeSunmin Ryu Personal InformationAssistant Professor Department of Applied Chemistry Kyung Hee University1 Seocheon GiheungYongin, 446-701, Korea Email: sunryu@khu.ac.kr http://sunryu.khu.ac.kr Phone: (82)-31-201-2267Cell Phone: (82)-10-7268-1080 Fax: (82)-31-202-7337EDUCATIONPhD in Physical Chemistry, Seoul National University, Korea, 2005 (advisor: Seong Keun Kim)MS in Physical Chemistry, Seoul National University, Korea, 2000 (advisor: Seong Keun Kim)BS in Chemistry, Seoul National University, Korea, 1998PROFESSIONAL EXPERIENCEFaculty, Kyung Hee University, Mar 2009 to presentPostdoctoral researcher, Columbia University, Apr 2006 to Feb 2009 (Advisor: Louis E. Brus)Postdoctoral researcher, Korea Research Institute of Standards and Science (KRISS), Mar 2005to Apr 2006SELECTED PUBLICATIONS1. J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu,* “Optical Separation of Mechanical Strain from Charge Doping in Graphene”, Nature Commun. 3, 1024 (2012);2. J. Shim, C. H. Lui, T. Y. Ko, Y.-J. Yu, P. Kim, T. F. Heinz, and S. Ryu,* “Water-Gated Charge Doping of Graphene Induced by Mica Substrates”, Nano Lett. 12, 648 (2012)3. S. Ryu,* J. Maultzsch, M. Y. Han, P. Kim, and L. E. Brus, “Raman Spectroscopy o f Lithographically Patterned Graphene Nanoribbons”, ACS Nano, 5, 4123 (2011)4. S. Ryu, Li Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric Oxygen Binding and Hole Doping in Deformed Graphene on a SiO2Substrate”, Nano Lett. 10, 4944 (2010)5. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu,* “Anomalous Lattice Vibrations of Single- and Few-Layer MoS2”, ACS Nano, 4, 2695 (2010)6. H. Liu, S. Ryu, Z. Chen, M. L. Steigerwald, C. Nuckolls, and L. E. Brus, “Photochemical Reactivity of Graphene”, J. Am. Chem. Soc. 131, 17099 (2009)7. Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, “Tuning the Graphene Work Function by Electric Field Effect”, Nano Lett. 9, 3430 (2009)8. S. Berciaud, S. Ryu, L. E. Bru s, and T. F. Heinz, “Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers”, Nano Lett. 9, 346 (2009)9. S. Ryu, M. Y. Han, J. Maultzsch, M. L. Steigerwald, T. F. Heinz, P. Kim, and L. E. Brus, “Reversible Basal Plane Hydrogenation of Graphene”, Nano Lett. 8, 4597 (2008)10. L. Liu,† S. Ryu,† M. R. Tomasik, E. Stolyarova, N. J. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, “Graphene Oxidation: Thickness Dependent Etching and Strong C hemical Doping”, Nano Lett., 8, 1965 (2008) (†equal authorship)11. E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn, “High-resolution Scanning Tunneling Microscopy Imaging of Mesoscopic Grap hene Sheets on an Insulating Surface”, Proc. Natl. Acad. Sci. USA, 104, 9209 (2007)12. S. Ryu, J. Chang, H. Kwon, and S. K. Kim, “Dynamics of Solvated Electron Transfer in Thin Ice Film Leading to a Large Enhancement in Photodissociation of CFCl3”, J. Am. Chem. Soc., 128, 3500 (2006)MIN JAE LEEWORK: HOME: Department of Applied Chemistry Apt #105-1102 College of Applied Sciences Youngtong 1 dong Kyung Hee University Suwon, Korea 446-701 Yong-In, Korea (010) 3951-6051 (031) 201 – 377 1 email: mjlee@khu.ac.kr FAX : (031) 202 - 7337 PROFESSIONAL EXPERIENCE:2011 - present Assistant Professor, Department of Applied Chemistry, Kyung Hee UniversityResearch Projects:1. Understanding and characterizing regulatory mechanisms of proteasome-associated proteins2. Development of small molecule inhibitors/activators of the regulatoryproteins3. Application of the small molecules in various disease models includingcancer, cardiac diseases, and neurodegenerative diseases2011 Full-time Instructor , Department of Applied Chemistry, Kyung Hee University2007 –2011 Postdoctoral Research Fellow, Department of Cell Biology, Harvard Medical SchoolResearch Projects:1. Understanding Usp14 as an endogenous inhibitor of the mammalianproteasome2. Screening and characterizing small molecule inhibitors of Usp143. Applying the inhibitors on degradation of various neurodegenerative disease-related proteinsPrinciple Investigator: Daniel Finley, Ph.D.EDUCATION & TRAINING:2007 Ph.D., Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy Research Projects:1. Identification and characterization of RGS proteins as first in vivo N-end rulesubstrates2. Elucidation of the molecular circuits underlying cardiac phenotypes ofATE1-/- mice3. Development of in vivo small molecule inhibitors of the N-end rule pathwayDissertation title: Role of the N-end rule pathway in cardiovasculardevelopment, signaling and homeostasis (Advisor: Yong Tae Kwon, Ph.D.) 2002 M.S., Chemistry, Seoul National University, KoreaResearch Projects:1. Organic syntheses of non-viral gene carriers and their in vitro and in vivoapplications2. Development of a novel ovarian cancer mouse model for quantitative studyof gene deliveryThesis title: Intraperitoneal gene delivery mediated by a novel cationic liposome in a peritoneal disseminated ovarian cancer model (Advisor: Jong Sang Park, Ph.D.)2000 B.S., Chemistry, Seoul National University, KoreaPUBLICATION1. An, J. Y., Kim, E., Zakrzewska, A., Yoo, Y. D., Jang, J. M., Han, D. H., Lee, M. J. , Seo, J. W., Lee, Y. J., Kim, T.-Y., de Rooij, D. G., Kim, B. Y., & Kwon, Y. T. UBR2 of the N-end rule pathway is required for chromosome stability vis histone ubiquitylation in spermatocytes and somatic cells. PLoS One, 7, e37414. doi:10.1371/ journal.pone. 0037414 (2012)2. Son, J. Y., Jung, I., & Lee, M. J. Local crystallization of non-crystallized PbTiO3 thin film by a heated atomic force microscope tip. J Am Ceram Soc 95, 1511-1513 (2012)3. Lee, J. H., & Lee, M. J. , Emerging roles of the ubiquitin-proteasome system in the steroid receptor signaling. Arch Pharm Res 35, 397-407 (2012)4. Lee, S., Saito, K., Lee, H.-R., Lee, M. J. , Shibasaki, Y. Oishi, Y., & Kim., B.-S. Hyperbranched Double Hydrophilic Block Copolymer Micelles of Poly(ethylene oxide) and Polyglycerol for pH-sensitive Drug Delivery. Biomacromol 13, 1190-1196 (2012)5. Pang, S.-C., Hyun, H., Lee, S., Jang, D., Lee, M. J. ,* Kang, S. H.,* & Ahn, K. H.* Photoswitchable fluorescent diarylethene in a turn-on mode for live cell imaging. Chem Commun 48, 3745-3747 (2012) (*: co-corresponding authors)6. Lee, J. H., & Lee, M. J. Liposome-mediated cancer gene therapy: clinical trials and their lessons to stem cell therapy. Bull Kor Chem Soc 33, 433-442. (2012)7. Tian, G., Park, S., Lee, M. J. , Huck, B., McAllister, F., Hill, C. P., Gygi, S. P., & Finley, D. An asymmetric interface between the regulatory particle and core particle of the proteasome. Nat Struct Mol Biol 18, 1259-1267 (2011)8. Lee, B.-H.*, Lee, M. J. *, Park, S., Chen, P.-C., Gartner, C., Oh, D.-C., Dimova, N., Hanna, J., Gygi, S. P., Wilson, M. W., King, R. W., & Finley, D. Enhancement of proteasome activity by a small-molecule inhibitor of Usp14. Nature 467, 179-184. (2010) (*, equal contribution)9. Lee, M. J. , Lee, B.-H., Hanna, J., King, R. W., & Finley, D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol Cell Proteomics Epub. doi:10.1074/mcp.R110.003871 (2011)10.Lee, J. H., Wada, T., Febbraio, M., Matsubara, T., He, J., Lee, M. J. , He, J., Gonzalez, F. J., & Xie, W. A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology 139, 653-663. (2010)11.An, J. Y., Kim, E., Jiang, Y., Zakrzewska, A., Kim, D.E., Lee, M. J. , Mook-Jung,I., Zhang, Y., & Kwon., Y. T. UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc Natl Acad Sci USA 107, 1912-Junghoon LeeWork:Home:Kyung Hee University 150-1102, 955-1Department of Applied Chemistry Yongtong-dong, Yongtong-guYongin-si, Kyungi-do Suwon-si, Kyungi-doSouth Korea 446-701South Korea 443-740 Phone 82-31-201-2444Cell 82-10-3955-6051Fax 82-31-201-2340 email: jhlee7802@EDUCATIONS08/2004-04/2009: PhD, Pharmaceutical Sciences, University of Pittsburgh,Pittsburgh, PAMentor: Wen Xie, MD, PhDThesis title: The role of the aryl hydrocarbon receptor and theliver X receptor in gene regulation and metabolic homeostasis. 08/2001-06/2003: MS, Biochemistry, Seoul National University, Seoul, Korea.Mentor: Jong-sang Park, PhD.Thesis title: Polyplexes assembled with internally quaternizedPAMAM- OH dendrimer and plasmid DNA in gene deliveryand their potency.03/1996-02/2001: BS, Chemistry, Dongguk University, Seoul, Korea. PROFESSIONAL EXPERIENCES09/2012-present: Lecturer, Kyung Hee University Dept. of Chemical Engineering 01/2012-present: Research Fellow, Kyung Hee University Dept. of AppliedChemistry03/2012-06/2012: Lecturer, Eulji University Dept. of Environmental Health andSafety08/2012-12/2011: Lecturer, Kunkuk University Dept. of Bioengineering04/2009-07/2011: Postdoctoral Fellow, Harvard School of Public Health, Boston,MAPUBLICATIONSJ.H. Lee, M.J. Lee, Liposome-mediated cancer gene therapy, B. Kor. Chem. Soc. 2012, 33, 433-442J.H. Lee, M.J. Lee, Emerging roles of the ubiquitin-proteasome system in the steroid receptor signaling, Arch. Pharm. Res., 2012, 35, 397-409S. Saini, B. Zhang, Y. Niu, J. Gao, Y. Zhai, J. H. Lee, H. Uppal, H. Tian, M. Tortorici, S. Poloyac, W. Qin, R. Venkataramanan, W. Xie, Activation of LXR increases acetaminophen clearance and prevents its toxicity, Hepatology, 2011, 54, 2208-2217J. He, J. H. Lee, M. Febbraio, W. Xie, The emerging roles of fatty acid translocase (FAT)/CD36 and the aryl hydrocarbon receptor (AhR) in fatty liver disease. Exp. Biol. Med., 2011, 236, 1116-1121.J. H. Lee, P. Giannikopoulos, S. A. Duncan, J. Wang, Johansen, C. T., Brown, J. D., Plutzky, J., R. A. Hegele, L. H. Glimcher, and A. Lee, The transcription factor cyclic AMP response element-binding protein H regulates triglyceride metabolism. Nat. Med. 2011, 17, 812-815.B. Zhang, Q Cheng, Z Ou, J. H. Lee, M. Xu, U. Kochhar, S. Ren, M Huang, B.R. Pflug, W. Xie,. Pregnane X receptor as a therapeutic target to inhibit androgen activity, Endocrinology, 2010, 151, 5721-5719J. H. Lee, T. Wada, M. Febbraio, T. Matsubara, M.J. Lee, J. He, F.J. Gonzalez, W. Xie, A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology, 2010, 139, 653-663H. Gong, J. He, J.H. Lee, E. Mallick , X. Gao, S. Li, G.E. Homanics, W. Xie, Activation of the liver X receptor prevents lipopolysaccharide-induced lung injury. J. Biol. Chem. 2009, 284, 30113-30121J. H. Lee, H. Gong, S. Khadem, Y. Lu, X. Gao, S. Li, J. Zhang, and W. Xie, Androgen deprivation by activating the liver X receptor. Endocrinology, 2008, 149, 3778-3788H. Gong, M. J. Jarzynka, T. J. Cole, J. H. Lee, T. Wada, B. Zhang, J. Gao, W. Song, D. B. DeFranco, S.Cheng, and W. Xie, Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Research, 2008, 68, 7386-7393J. H. Lee, J. Zhou and W. Xie, PXR and LXR in hepatic steatosis: A new dog and an old dog with new tricks, Mol. Pharm., 2008, 5, 60-66 (featured as a most-accessed article of the 1st quarter of 2008)Min Hyung LeeDepartment of Applied Chemistry, Kyung Hee University1732 Deogyeong-daero, Yongin, Gyeonggi, KoreaTel.: +82-31-201-3881E-mail: minhlee@khu.ac.krEmployment HistoryAssistant Professor Mar 2012 - present Department of Applied Chemistry, Kyung Hee University, Yongin, South Korea. Post-doctoral Fellow Aug 2011 – Feb 2012 Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley present National Laboratory (LBNL), Berkeley, California, USAAdvisor: Dr. Joel AgerResearch Theme: Development of High-Efficiency Water Splitting CellsPost-doctoral Scholar July 2010 - Aug 2011 Department of EECS, University of California at Berkeley, Berkeley, CA Advisor: Professor Ali JaveyResearch Theme: Development of Large-area Nanoscale Electronic and Photovoltaic DevicesEducationPh. D., Chemistry June 2010 Department of Chemistry, Northwestern University, Evanston, ILAdvisor: Professor Teri W. OdomThesis Title: Soft Nanolithographic Approaches for Patterning Large-area Plasmonic StructuresM.S., Analytical Chemistry Feb 2003 Department of Chemistry, Kwangwoon University, Seoul, Republic of Korea Thesis Advisor: Professor Geun Sig ChaThesis Title: Development of Calcium Ion Sensor with Reduced Anionic Interference B.S., Chemistry Feb 2001 Department of Chemistry, Kwangwoon University, Seoul, Republic of Korea Advisor: Professor Geun Sig ChaResearch ProjectPost-doctoral Fellow, Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley National Laboratory (LBNL), Berkeley, California, USA 2011-present, Berkeley, CADevelop photoelectrochemical cells for high-efficiency water splittingPost-doctoral Scholar, EECS, University of California at Berkeley2010-2011, Berkeley, CADevelop photoelectrochemical cells for high-efficiency water splittingDevelop roll-to-roll nano-texturization methodsDevelop bench-top sub-50 nm nanopatterning methods for nanoelectronics Graduate Research Assistant, Chemistry, Northwestern University2004-Present, Evanston, IL Min Hyung Lee – Curriculum Vitae 3Publications (Paper)1. M. H. Lee, K. Takei, J. Zhang, R. Kapadia, M. Zheng, Y.-Z. Chen, J. Nah, T. S. Matthews, Y.-L. Chueh, J. W. Ager, A. Javey. "p-InP nanopillar photocathodes for highly efficient, solar-driven hydrogen production," Angew. Chem. Int. Ed., 2012, 51, 10760-10764. Hot Paper2. J. Nah, H. Fang, C. Wang, K Takei, M. H. Lee, E. Plis, S. Krishna, A. Javey. "III-V Complementary metal-oxide-semiconductor Electronics on Si Substrates," Nano Letters, 2012, 12, 3592-3595.3. M. H. Lee*, N. Lim*, D. J. Ruebusch*, A. Jamshidi, R. Kapadia, R. Lee, T. J. Seok, K. Takei, K. Y. Cho, Z. Fan, H. Jang, M. Wu, G. Cho, A. Javey, "Roll-to-Roll Anodization and Etching of Aluminum Foils for High-Throughput Surface Nano-Texturing," Nano Letters, 2011, 11, 3425-3430. *Equally contributed4. X. Zhang, C. L. Pint, C. L., M. H. Lee, B. E. Schubert, A. Jamshidi, K. Takei, H. Ko, A. Gillies, R. Bardhan, J. J. Urban, M. Wu, R. Fearing, A. Javey, "Optically- and Thermally-Responsive Programmable Materials Based on Carbon Nanotube-Hydrogel Polymer Composites," Nano Letters, 2011, 11, 3239-3244. (Highlighted in Nature, 2011, 475, 426; Highlighted in .)5. Madsen, M.; Takei, K.; Kapadia, R.; Fang, H.; Ko, H.; Takahashi, T.; Ford, A. C.; Lee, M. H.; Javey, A. "Nanoscale Semico nductor “X” on Substrate “Y” –Processes, Devices and Applications," Advanced Materials, 2011, 23, 3115-3127.6. Cho, K.; Ruebusch, D. J.; Lee, M. H.; Moon, J. H.; Ford, A. C.; Kapadia, R.; Takei, K.; Ergen, O.; Javey, A. "Molecular Monolayers for Conformal, Nanoscale Doping of InP Nanopillar Photovoltaics," Applied Physics Letters, 2011, 98, 203101.7. Lee, M. H.; Javey, A. "Power Surfing on Waves," Nature (News & Views), 2011, 472, 304-305.8. Lee, M. H.; Huntington, M. D.; Zhou, W.; Yang, J. -C.; Odom, T. W. "Programmable Soft Lithography: Solvent-assisted Nanoscale Embossing," Nano Letters, 2011, 11, 311-315 (Cover article). (Highlighted in Chemical & Engeneering News, 2010, 88, 41; Highlighted in , , and other sites.)9. Gao, H.; Hyun, J. K.; Lee, M. H.; Yang, J.-C.; Lauhon, L. J.; Odom, T. W. "Broadband Plasmonic Microlenses Based on Patches of Nanoholes," Nano Letters, 2010, 10, 4111-4116. (Highlighted in )10. Yang, J. -C.; Gao, H.; Suh, J. Y.; Zhou, W.; Lee, M. H.; Odom, T.W. "Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays." Nano Letters, 2010, 10, 3173-3178.11. Gao, H.; Yang, J.-C.; Lin, J. Y.; Stuparu, A. D.; Lee, M. H.; Mrksich, M.; Odom, T. W. "Using the Angle-Dependent Resonances of Molded Plasmonic Crystals to Improve the Sensitivities of Biosensors," Nano Letters, 2010, 10, 2549-2554.Xiaoliang LiName XiaoLiang LiNationality P. R. CHINATel. 82-10-9619-1980Email xiaoliangli@khu.ac.krAddress 443 room, Department of Applied Chemistry,Global Campus, Kyung Hee University,YongIn, 446-701, South Korea.Professional Experience:3.2011-present Postdoctor in nanoanalytic lab; Department of AppliedChemistry, Kyung Hee University. Advisor: Prof. SungIk YangEducation9. 2007~2.2011 Ph.D. candidate in nanoanalytic lab; Department of AppliedChemistry, Kyung Hee University. Advisor: Prof. SungIk Yang 9. 2004~7. 2007 M.Sc. Organic Chemistry, College of Chemistry and Environment Science, Hebei University. Advisor: Prof. JiTai Li9. 2000~7. 2004 B.S. Chemistry, College of Chemistry and Environment Science, Hebei UniversityResearch fieldOrganic synthesis under ultrasoundSynthesis of fluorescent sensors for heave metal ionsPUBLICATIONS1.Li, Ji-Tai; Li, Xiao-Liang; Li, Tong-Shuang Synthesis of oximes underultrasound irradiation, Ultrasonics Sonochemistry, 2006, 13, 200-202.2.Li, Ji-Tai; Li, Xiao-Liang; Li, Tong-Shuang Synthesis of Benzaldoximes inAqueous Media under Ultrasound Irradiation, Chin. J. Org. Chem. 2006, 26 (11), 1594-1596.3.Li, Ji-Tai; Li, Xiao-Liang An efficient and practical synthesis of methylenedioximes by combination of ultrasound and phase transfer catalyst, Ultrasonics Sonochemistry, 2007, 14, 677-679.4.Li, Xiao-Liang; Li, Ji-Tai Synthesis of ketoximes under ultrasound irradiation,Chemical Journal on Internet, 2006, 8(9), 57.5.Li, Ji-Tai; Liu, Xian-Feng; Li, Xiao-Liang Synthesis of2,3-Epoxy-1-phenyl-3-(un)substituted Phenyl-1- propanone in Aqueous Media under Ultrasound Irradiation,Chin. J. Org. Chem. 2007 27 (11), 1428-1431.6.Li, Ji-Tai; Chen, Yan-Xue; Li, Xiao-Liang; Deng, Hai-Jian. An efficientprocedure for synthesis of oximes by grinding, Asian Journal of Chemistry 2007, 19(3), 2236-2240.7.Li, Ji-Tai; Li, Xiao-Liang;Liu, Xian-Feng; MA, Jie-Jie Synthesis ofO-Benzyloximes by Combination of Phase Transfer Catalysis and Ultrasound Irradiation, Chin. J. Org. Chem. 2008, 28 (4), 628~631.8.Li, Xiao-Liang; He, Yong Wu; Yang, Sung Ik Synthesis and Characterization of aRapid and Highly Selective Fluorescent Hg2+Sensor in Aqueous Media, Bull.Korean Chem. Soc. 2011, 32, 338-340.。

纳米二硫化钼(MoS2)在润滑材料中的研究进展

纳米二硫化钼(MoS2)在润滑材料中的研究进展

纳米二硫化钼(MoS2)在润滑材料中的研究进展摘要:本文介绍了MoS2的润滑性状、纳米MoS2的性能。

对纳米MoS2在轧制液、机械油、铜合金拉拔润滑脂和空间润滑材料中的摩擦学应用与研究现状进行了综述,并对比了微米级与纳米级MoS2在使用中的效果。

对未来纳米MoS2在润滑材料中的应用与研究进行了展望。

关键词:纳米MoS2;润滑材料;摩擦The research progress of molybdenum disulfidenanoparticles(MoS2) in lubrication materialsAbstract: This paper describes the lubricating properties of MoS2and the performance of nano-MoS2. Nano-MoS2on the rolling fluid, mechanical oil, copper alloy drawing grease and space lubrication materials’ tribology applications and research status are reviewed. The micron and nano-level effect of MoS2 in use is compared. Nano-MoS2 lubricating materials application and research in the future are discussed.Key words: nano-MoS2; lubrication materials; friction0 引言二硫化钼(MoS2)用作固体润滑剂已有50多年的历史,是应用最广泛的固体润滑剂。

在相同条件下,含MoS2的粘结固体润滑膜在真空中的摩擦系数约为大气中的1/3,而耐磨寿命比在大气中高几倍甚至几十倍。

Janus_二维双层MoSSe

Janus_二维双层MoSSe

第52卷第9期2023年9月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.52㊀No.9September,2023Janus 二维双层MoSSe /WSSe 异质结光电性质的第一性原理研究周春起1,张㊀会2,礼楷雨2(1.沈阳大学机械工程学院,沈阳㊀110044;2.沈阳大学师范学院,沈阳㊀110044)摘要:通过第一性原理计算研究了四种二维双层MoSSe /WSSe 范德瓦耳斯异质结的光电性质㊂声子谱表明四种结构具有可靠的热力学稳定性㊂根据堆垛方式的不同,双层MoSSe /WSSe 异质结可以是间接或直接半导体㊂而且,两种Janus 型MoSSe /WSSe 异质结具有1.22和1.88eV 的适中带隙㊁显著的可见光吸收系数㊁跨越了水氧化还原电位的带边位置㊂因此,Janus 型的MoSSe /WSSe 异质结构在光催化水分解领域具有一定的应用前景㊂关键词:第一性原理计算;Janus 二维异质结;光催化水分解;声子色散谱;电子结构;光吸收中图分类号:O482;G312㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2023)09-1668-06First-Principles Study on Photoelectric Properties of Janus Two-Dimensional Bilayer MoSSe /WSSe HeterostructuresZHOU Chunqi 1,ZHANG Hui 2,LI Kaiyu 2(1.College of Mechanical Engineering,Shenyang University,Shenyang 110044,China;2.Normal College,Shenyang University,Shenyang 110044,China)Abstract :The photoelectric properties of four two-dimensional bilayer MoSSe /WSSe van der Waals (vdW)heterostructures were investigated by the first-principles calculations.All four heterostructures have been conformed thermodynamic stable by the phonon spectra.Bilayer MoSSe /WSSe heterostructures can be indirect or direct semiconductor,depending on the stacking routes.Moreover,two Janus MoSSe /WSSe heterostructures show the suitable band gap of 1.22and 1.88eV,notable absorption index on the visible light,and band edge positions straddling the water redox potential.Therefore,Janus MoSSe /WSSe heterostructures are expected to have application prospects in the field of photocatalytic water decomposition.Key words :first-principle calculation;Janus two-dimensional heterostructure;photocatalytic water splitting;phonon dispersion spectrum;electronic structure;light absorption ㊀㊀收稿日期:2023-03-06㊀㊀基金项目:辽宁省自然科学基金(2020-MS-306)㊀㊀作者简介:周春起(1995 ),男,黑龙江省人,硕士研究生㊂E-mail:1620222420@ ㊀㊀通信作者:张㊀会,博士,教授㊂E-mail:huizhangsy@0㊀引㊀㊀言二维(two-dimensional,2D)材料(例如黑磷㊁氮化碳㊁过渡金属二卤化物等)因其超大比表面积㊁较好的载流子迁移率和良好的导电性能[1-3],在光催化水分解领域具有非常好的应用前景㊂但是,光催化水分解反应在半导体带隙大小㊁载流子迁移率㊁太阳光吸收效率等诸多方面对光催化剂有着苛刻的要求㊂因此,探索新型的二维光催化材料具有重要的意义㊂垂直堆垛两个相同或不同的材料构成二维双层材料,是设计电子产品的有效方式[4-7]㊂它打破了二维单层材料在器件应用中的局限性,扩展了单一材料体系的光吸收范围,加快了界面处载流子的传输和分离速率[8-10]㊂例如,Wang 等[11]构建了具有较强光吸收系数与光催化性能的范德瓦耳斯异质结MoSe 2/SnSe 2和WSe 2/SnSe 2㊂㊀㊀第9期周春起等:Janus 二维双层MoSSe /WSSe 异质结光电性质的第一性原理研究1669㊀最近,通过垂直堆垛两个Janus 型单层WSSe 而得到WSSe-WSSe 的三种二维双层材料被报道[12],其光吸收性能优异,同时带边电位可跨越水的氧化还原电位,具有出色的光催化水分解能力㊂本工作应用第一性原理计算方法在单层MoSSe 和WSSe 的基础上,通过不同的垂直堆垛方式构建了MoSSe-WSSe 的四种二维双层范德瓦耳斯异质结,并对它们的晶体结构㊁电子性质和光催化性质进行了研究,研究结果表明上述异质结具有可靠的结构稳定性和优越的光催化水分解性能㊂1㊀计算方法本研究基于第一性原理计算,在VASP 软件包中进行[13-14]㊂使用具有PBE 函数的广义梯度近似(GGA)[15]进行结构优化㊂利用HSE06杂化泛函[16]计算了材料的电子性质与光学性质㊂设定HF /DFT 杂化函数计算中的精确交换分数α为默认值0.25㊂用投影缀加波(PAW)[17]赝势处理电子-离子的相互作用㊂为消除层间相互作用,垂直方向设置不小于1.5nm 的真空空间㊂用vaspkit [18]代码处理计算结果㊂为保证总能量在10-5eV 的计算精度,将截止能量设置为600eV㊂用Monkhorst-Pack(MP)方案在布里渊区(BZ)[19]进行K 点取样,网格为14ˑ14ˑ1㊂晶体结构优化收敛标准设置为每个原子上的受力小于0.1eV /nm㊂采用Phonopy 软件包计算材料的声子色散曲线[20-21],并将原子扩胞至2ˑ2ˑ1㊂2㊀结果与讨论2.1㊀晶体结构与稳定性单层MoSSe 或WSSe 在二维空间中具有六边形晶格对称性,每个单元包含三个原子(一个Mo 或W 原子㊁一个S 原子和一个Se 原子)㊂结构优化后单层WSSe 的晶格常数为0.32nm,W S 键长为0.24nm,W Se 键长为0.25nm㊂单层MoSSe 和WSSe 的晶格参数接近㊂以上结果与已有报道非常接近[22-23],表明计算结果是可靠的㊂根据已有报道,与AA 堆垛方式相比,AB 堆垛的双层MoSSe-WSSe 能量更低[24]㊂如图1所示,二维双层材料MoSSe-WSSe 是由单层MoSSe 和WSSe 在垂直方向上通过AB 方式排列堆垛得到的㊂如表1所示,四种异质结构的层间距离为0.31~0.32nm,与双层WSSe 接近[25]㊂本研究通过层间吸附能来验证材料双层结构的稳定性,计算公式为E ad =(E MoSSe +E WSSe )-E BL ,式中E ad ㊁E MoSSe ㊁E WSSe 和E BL 分别代表双层MoSSe-WSSe 的层间吸附能,单层MoSSe㊁单层WSSe 和双层MoSSe-WSSe 的总能量㊂㊂不同堆垛方式构成的双层MoSSe-WSSe 异质结的层间吸附能差别很小,为0.22~0.29eV,而且与双层WSSe 的层间吸附能相当(0.27~0.31eV)[12]㊂层间距离和吸附能表明双层MoSSe-WSSe 异质结层间为范德瓦耳斯结合,而且能够以不同的堆垛方式存在㊂如图2所示,双层MoSSe-WSSe 异质结中,MoSSe 与WSSe 的原子振动没有相互关联,这是由于层间为范德瓦耳斯作用,未形成化学键㊂它们的声子谱中各有18条色散曲线,其中6条声学支与12条光学支皆在零以上分布,进一步表明上述材料具有良好的结构稳定性㊂图1㊀二维双层MoSSe-WSSe 异质结晶体结构侧视图Fig.1㊀Side views of 2D bilayer MoSSe-WSSe heterostructures1670㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷表1㊀二维双层MoSSe-WSSe 异质结的晶格常数㊁层间距(d int )和层间吸附能(E ad )Table 1㊀Lattice constant ,interlayer distance (d int )and interlayer adsorption energy E ad of 2D bilayer MoSSe-WSSe heterostructuresMaterial Lattice constant /nm d int /nm E ad /eV AB 10.3220.3190.22AB 20.3210.3150.26AB 30.3210.3100.29AB 40.3220.3180.23图2㊀二维双层MoSSe-WSSe 异质结的声子谱Fig.2㊀Phonon dispersion spectra of 2D bilayer MoSSe-WSSe heterostructures 2.2㊀电子能带结构与性能本研究利用杂化泛函(HSE06)计算了二维双层MoSSe-WSSe 异质结的电子能带结构㊂如图3所示,AB 2和AB 3的带隙大小分别为1.88和1.89eV,它们的价带顶(valence band maximum,VBM)处于K 点,导带底(conduction band minimum,CBM)则位于K 和Г点之间,因此为间接带隙半导体㊂AB 1和AB 4的带隙值分别为1.22和1.85eV,VBM 与CBM 都在K 点,所以是直接带隙半导体㊂2.3㊀光催化性质材料的带边位置跨越水的氧化还原电位是光催化水裂解反应的必要条件,即CBM 大于-4.44eV(氢H +/H 2的还原电位),而VBM 必须小于-5.67eV(水O 2/H 2O 的氧化电位)[26]㊂由于对称破缺,单层MoSSe 上下表面的静电势不同,可称为Janus 结构㊂如图4所示,AB 1和AB 2异质结上下表面不对称,静电势差(ΔΦ)分别为1.46和1.49eV;而AB 3和AB 4异质结上下表面对称,静电势相等㊂因此,四种MoSSe-WSSe 异质结中,只有AB 1和AB 2为Janus 材料㊂光催化剂带边位置与氧化还原电位的差值可用来描述材料的光催化能力㊂AB 3异质结带边位置与水的氧化还原电位大致相等,催化反应的驱动力较弱;AB 4异质结的VBM 高于水的氧化电位,不具备氧化能力;AB 2异质结由于上下表面静电势的不同,可分别在下表面(WSSe 侧)产生增强的还原反应驱动力,在上表面(MoSSe 侧)产生增强的氧化反应驱动力㊂AB 1可分别在上表面(MoSSe 侧)产生增强的还原反应驱动力,在㊀第9期周春起等:Janus 二维双层MoSSe /WSSe 异质结光电性质的第一性原理研究1671㊀下表面(WSSe 侧)产生较弱的氧化反应驱动力㊂图3㊀二维双层MoSSe-WSSe 异质结的能带结构Fig.3㊀Band structures of 2D bilayer MoSSe-WSSeheterostructures 图4㊀二维双层MoSSe-WSSe 异质结的静电势和带边位置Fig.4㊀Electrostatic potentials and the band edge positions of 2D bilayer MoSSe-WSSe heterostructures1672㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第52卷图5㊀二维双层MoSSe-WSSe 异质结的吸收光谱Fig.5㊀Optical absorption spectra of 2D bilayer MoSSe-WSSe heterostructures 最后,通过材料的光吸收谱探讨光催化材料对可见光的利用效率,光吸收系数通过频率相关的介电函数[27-28]计算㊂ε(ω)=ε1(ω)+i ε2(ω),α(ω)=2(ω)[(ε12(ω)+ε22(ω))-ε1(ω)](1)如图5所示,四种异质结在2.0eV 开始出现明显光吸收,与VBM-CBM 跃迁对应,而更高能量吸收与更高级别的跃迁对应㊂四种MoSSe-WSSe 异质结在可见光范围(1.6~3.2eV)和紫外光范围(>3.2eV)吸收系数能够达到105量级,表明上述四种异质结能够有效吸收太阳光能量㊂3㊀结㊀㊀论本工作在单层二维材料MoSSe 和WSSe 的基础上,构建了四种MoSSe-WSSe 异质结㊂层间吸附能和声子谱表明,MoSSe-WSSe 异质结层间通过范德瓦耳斯吸附,能够稳定存在㊂杂化泛函计算得到四种异质结构的带隙值分别为1.22㊁1.88㊁1.89和1.85eV㊂由于二维双层异质结AB 1和AB 2具有结构不对称性,在其结构内部会产生一个内建电场,在电场的作用下,它的上下表面真空能级之间产生了一个较大的静电势差㊂内建电场和静电势差的存在导致AB 1和AB 2分别在不同的表面跨越了水的氧化还原电位㊂吸收光谱表明,四种异质结具有较强的光吸收能力,因此它们在光催化领域有着较大的潜力㊂参考文献[1]㊀LU Q P,YU Y F,MA Q L,et al.2D transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogenevolution reactions[J].Advanced Materials,2016,28(10):1917-1933.[2]㊀NOVOSELOV K S,FALᶄKO V I,COLOMBO L,et al.A roadmap for graphene[J].Nature,2012,490(7419):192-200.[3]㊀RAN J R,ZHU B C,QIAO S Z.Phosphorene co-catalyst advancing highly efficient visible-light photocatalytic hydrogen production [J].Angewandte Chemie,2017,129(35):10509-10513.[4]㊀LOPEZ-SANCHEZ O,ALARCON LLADO E,KOMAN V,et al.Light generation and harvesting in a van der Waals heterostructure[J].ACSNano,2014,8(3):3042-3048.[5]㊀ROY T,TOSUN M,CAO X,et al.Dual-gated MoS 2/WSe 2van der Waals tunnel diodes and transistors [J].ACS Nano,2015,9(2):2071-2079.[6]㊀WANG Q X,ZHANG Q,LUO X,et al.Optoelectronic properties of a van der waals WS 2monolayer /2D perovskite vertical heterostructure[J].ACS Applied Materials &Interfaces,2020,12(40):45235-45242.[7]㊀YU Z H,PAN Y M,SHEN Y T,et al.Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering[J].Nature Communications,2014,5:5290.[8]㊀CHE W,CHENG W R,YAO T,et al.Fast photoelectron transfer in (C ring )-C 3N 4plane heterostructural nanosheets for overall water splitting[J].Journal of the American Chemical Society,2017,139(8):3021-3026.[9]㊀XU Q L,ZHANG L Y,YU J G,et al.Direct Z-scheme photocatalysts:principles,synthesis,and applications[J].Materials Today,2018,21(10):1042-1063.[10]㊀YANG S X,WU M H,WANG B,et al.Enhanced electrical and optoelectronic characteristics of few-layer type-ⅡSnSe /MoS 2van der waalsheterojunctions[J].ACS Applied Materials &Interfaces,2017,9(48):42149-42155.[11]㊀FAN Y C,WANG J R,ZHAO M W.Spontaneous full photocatalytic water splitting on 2D MoSe 2/SnSe 2and WSe 2/SnSe 2vdW heterostructures[J].Nanoscale,2019,11(31):14836-14843.[12]㊀JU L,QIN J Z,SHI L R,et al.Rolling the WSSe bilayer into double-walled nanotube for the enhanced photocatalytic water-splitting performance[J].Nanomaterials,2021,11(3):705.[13]㊀KRESSE G,FURTHMÜLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].PhysicalReview B,Condensed Matter,1996,54(16):11169-11186.[14]㊀KRESSE G,FURTHMÜLLER J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science,1996,6(1):15-50.㊀第9期周春起等:Janus二维双层MoSSe/WSSe异质结光电性质的第一性原理研究1673㊀[15]㊀PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-3868.[16]㊀MARSMAN M,PAIER J,STROPPA A,et al.Hybrid functionals applied to extended systems[J].Journal of Physics:Condensed Matter,2008,20(6):064201.[17]㊀KRESSE G,JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review B,1999,59(3):1758-1775.[18]㊀LU C,TANG C G,ZHANG J C,et al.Progressively discriminative transfer network for cross-corpus speech emotion recognition[J].Entropy,2022,24(8):1046.[19]㊀MONKHORST H J,PACK J D.Special points for brillouin-zone integrations[J].Physical Review B,1976,13(12):5188-5192.[20]㊀TOGO A,OBA F,TANAKA I.First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2at high pressures[J].Physical Review B,2008,78(13):134106.[21]㊀PARLINSKI K,LI Z Q,KAWAZOE Y.First-principles determination of the soft mode in cubic ZrO2[J].Physical Review Letters,1997,78(21):4063-4066.[22]㊀WEI D H,ZHOU E,ZHENG X,et al.Electric-controlled tunable thermal switch based on Janus monolayer MoSSe[J].NPJ ComputationalMaterials,2022,8:260.[23]㊀JU L,BIE M,TANG X A,et al.Janus WSSe monolayer:an excellent photocatalyst for overall water splitting[J].ACS Applied Materials&Interfaces,2020:acsami.0c06149.[24]㊀GUO W Y,GE X,SUN S T,et al.The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure:a first-principles study[J].Physical Chemistry Chemical Physics,2020,22(9):4946-4956.[25]㊀JU L,TANG X A,LI J A,et al.Breaking the out-of-plane symmetry of Janus WSSe bilayer with chalcogen substitution for enhancedphotocatalytic overall water-splitting[J].Applied Surface Science,2022,574:151692.[26]㊀YU Y D,ZHOU J A,GUO Z L,et al.Novel two-dimensional Janus MoSiGeN4and WSiGeN4as highly efficient photocatalysts for spontaneousoverall water splitting[J].ACS Applied Materials&Interfaces,2021,13(24):28090-28097.[27]㊀SAHA S,SINHA T P,MOOKERJEE A.Electronic structure,chemical bonding,and optical properties of paraelectric BaTiO3[J].PhysicalReview B,2000,62(13):8828-8834.[28]㊀PENG B,ZHANG H,SHAO H Z,et al.The electronic,optical,and thermodynamic properties of borophene from first-principles calculations[J].Journal of Materials Chemistry C,2016,4(16):3592-3598.。

单层二硫化钼的制备及其晶界的原位光学表征

单层二硫化钼的制备及其晶界的原位光学表征

单层二硫化钼的制备及其晶界的原位光学表征孙璐璐;刘保强;建方方【摘要】近年来, 新兴的二维过渡金属硫族化合物 (TMDs) 材料一直是研究的热点.其中, 二硫化钼 (MoS2) 的优异性能引起了人们的广泛关注.TMDs材料制备方法多样, 然而所制备的材料都不可避免地存在着晶界缺陷.晶界的存在会对材料的性能产生很大影响, 人们通过各种方法来研究它.传统的研究方法存在很多局限性如操作复杂、耗时、引入人为缺陷等.这里报道了一种通过光学显微镜直接观察MoS2晶界的方法:通过化学气相沉积法 (CVD) 成功制备了大面积单层MoS2, 将铜沉积在MoS2的表面在光学显微镜下可以直接观察到MoS2的晶界, 实现了对其晶界的原位光学显微观测.同时, 借助扫描电子显微镜 (SEM) 等进一步证实了该方法的简便可靠性.%In recent years, there is a hot topic of the emerging two-dimensional transition metal chalcogenides (TMDs) .Two dimensional molybdenum disulfide (MoS2) has attracted a lot of attentions.There are many ways to prepare this material but the grain boundaries are inevitable.The grain boundaries have a great influence on their properties and people have been studying this field through various means.In traditional, studying the grain boundaries has many disadvantages, such as complex operations, time consuming and artificial defects.Here we report a simple method for the visualization of large GBs in MoS2.Copper was deposited on the MoS2 grown by chemical vapor deposition (CVD), and then the GBs could be observed by optical microscope.At the same time, the simple reliability of the method was confirmed by scanning electron microscope.【期刊名称】《青岛科技大学学报(自然科学版)》【年(卷),期】2019(040)001【总页数】4页(P53-56)【关键词】化学气相沉积;二硫化钼;晶界;光学显微镜;原位观测【作者】孙璐璐;刘保强;建方方【作者单位】青岛科技大学材料科学与工程学院,山东青岛 266042;青岛科技大学材料科学与工程学院,山东青岛 266042;青岛科技大学材料科学与工程学院,山东青岛 266042【正文语种】中文【中图分类】O063以石墨烯为代表的二维材料,各方面性能优异。

二硫化钼场效应晶体管生物传感器的制备及其在医学检验中的应用

二硫化钼场效应晶体管生物传感器的制备及其在医学检验中的应用

二硫化钼场效应晶体管生物传感器的制备及其在医学检验中的应用谢晖;柏兵;沈瀚;孙忠月;张国军【摘要】实现疾病的早期诊断是目前临床亟待解决的问题,然而目前的检测技术操作繁琐、耗时,因此寻找一种简便、快速的诊断方法迫在眉睫.基于场效应晶体管(FET)的生物传感器因具有快速、便宜及无需标记的特点而备受瞩目.文章介绍了基于二硫化钼(MoS2)的FET生物传感器的构建及其在医学检验中的应用研究现状和发展趋势.%Realizing the early diagnosis of diseases is a great challenge,and most current technologies are tedious and time-consuming,so it is necessary to find a simple and rapid diagnostic method immediately. The field effect transistor(FET) biosensor has the characteristics ofrapid,inexpensive and label-free. This review introduces the method of constructing molybdenum disulfide(MoS2) FET biosensors and its research status and development trend in clinical laboratory medicine.【期刊名称】《检验医学》【年(卷),期】2018(033)004【总页数】5页(P365-369)【关键词】二硫化钼;场效应晶体管;生物传感器;医学检测【作者】谢晖;柏兵;沈瀚;孙忠月;张国军【作者单位】南京鼓楼医院检验科,江苏南京 210008;南京鼓楼医院检验科,江苏南京 210008;南京鼓楼医院检验科,江苏南京 210008;湖北中医药大学检验学院,湖北武汉 430065;湖北中医药大学检验学院,湖北武汉 430065【正文语种】中文【中图分类】R446.1随着新型二维纳米材料的发展,临床检验诊断学的发展日新月异,不断涌现出的新技术、新方法极大地提升了实验室的检验能力,为临床诊断提供了新一轮的助力。

S空位与Tc掺杂单层MoS2的电子结构和磁学性质模拟

S空位与Tc掺杂单层MoS2的电子结构和磁学性质模拟
结构模型。 由图 1 可知,Mo 原子被 Tc 原子取代的位
点分别标记为 0 ~ 5,V S 表示 S 空位。 同时,沿原子层
变化的方向创建 1. 5 nm 厚的真空层。 在几何优化的
基础上,研究各种掺杂体系的电学及磁学性质,并且
所有计算均使用自旋极化进行。 为了探索不同构型
的稳定性,引入了形成能 E f 计算公式,具体如式(1)
磁矩为 2. 048 μ B ,主要由两个 Tc 原子贡献。 通过自旋电荷密度分析表明,(Tc-4d)-(S-3p)-(Mo-4d)-(S-3p)-(Tc-4d)
耦合链的形成可能是 2Tc 掺杂体系发生铁磁耦合的原因。
关键词:Tc 掺杂单层 MoS2 ; 第一性原理; 电荷密度; 电子结构; 磁学性质
total magnetic moment of the ( Tc, V S ) co-doped system, and the magnetic moment of the doped system is mainly
contributed by the Tc atom. In the 2Tc-doped system, the most stable configuration was determined by formation energy
Fig. 2 Densities of states of ML-MoS2 , V S -doped ML-MoS2 , Tc-doped ML-MoS2 , ( Tc, V S )
co-doped ML-MoS2 and 2Tc-doped ML-MoS2
在( Tc, V S ) 掺杂 ML-MoS2 体系中( 见图 1) ,V S 被固定在 S 原子的最顶层,并且在标记的位置(1 ~ 5) 处,

石墨烯文献

石墨烯文献

1、Free-Sta nding Hierarchically San dwich-Type Tun gste n Disulfide Nano tubes/Graphe neAnode for Lithium-Io n Batteries (独立的分层三明治型WS2纳米管与石墨烯复合型锂离子电池阳极材料)Renjie Chen, Teng Zhao, Weiping Wu, Feng Wu, Li Li, Ji Qian, Rui Xu,Huiming Wu, Hassan M. Albishri, A.S. Al-Bogami, Deia Abd El-Hady, Jun Lu, and Khalil AmineNano Lett., 2014, 14 (10), pp 5899 -5904Publication Date (Web): August 27, 2014 (Letter)DOI: 10.1021/nl502848z2、Graphene Nanoribbon/V z O s Cathodes in Lithium-IonBatteries (石墨烯纳米带与V2O5复合锂离子电池阴极)Yang Yang, Lei Li, Huilong Fei, Zhiwei Peng, Gedeng Ruan, and James M.TourACS Appl. Mater. Interfaces, 2014, 6 (12), pp 9590 -9594Publication Date (Web): May 20, 2014 (Research Article)DOI: 10.1021/am501969m3、Ano malous In terfacial Lithium Storage in Graphe ne/TiO2for Lithium Ion Batteries (锂离子电池用石墨烯/TiO2复合材料的无定形界面中Li存储研究)Enzuo Liu, Jiamei Wang, Chunsheng Shi, Naiqin Zhao, Chunnian He, JiajunLi, and Jian-Zhong JiangACS Appl. Mater. Interfaces, 2014, 6 (20), pp 18147 -8151Publication Date (Web): September 23, 2014 (Research Article)DOI: 10.1021/am50504234、Carbon-Coated Mesoporous TQ2 Nano crystals Grow n on Graphe ne forLithium-Ion Batteries (在石墨烯上生长用于锂离子电池的碳包覆介孔TiO2纳米晶)Zehui Zhang, Ludan Zhang, Wei Li, Aishui Yu, and Peiyi WuACS Appl. Mater. Interfaces, 2015, 7 (19), pp 10395 -0400Publication Date (Web): April 30, 2015 (Research Article)DOI: 10.1021/acsami.5b014505、Tin Disulfide Nano plates on Graphe ne Nan oribb ons for Full Lithium Ion Batteries (在石墨烯纳米带上生长用于全锂离子电池的SnS2纳米盘)Caitian Gao, Lei Li, Abdul-Rahman O. Raji, Anton Kovalchuk, Zhiwei Peng,Huilong Fei, Yongmin He, NamDong Kim, Qifeng Zhong, Erqing Xie, andJames M. TourACS Appl. Mater. Interfaces, 2015, 7 (48), pp 26549 -26556Publication Date (Web): November 12, 2015 (Research Article)DOI: 10.1021/acsami.5b077686、Si ~Mn/Reduced Graphe ne Oxide Nano composite Ano des with Enhanced Capacity and Stability for Lithium-Io nBatteries (用于提高锂离子电池的容量和稳定性的Si-Mn/还原氧化石墨烯纳米复合阴极材料)A Reum Park, Jung Sub Kim, Kwang Su Kim, Kan Zhang, Juhyun Park, Jong Hyeok Park, Joong Kee Lee, and PilJ. YooACS Appl. Mater. Interfaces, 2014, 6 (3), pp 1702 -1708Publication Date (Web): January 20, 2014 (Research Article)DOI: 10.1021/am404608d7、Branched Graphene Nanocapsules for Anode Material ofl.ithium-lon Batteries (用于锂离子电池阴极材料的树枝状石墨烯纳米胶囊材料)Chuangang Hu, Lingxiao Lv, Jiangli Xue, Minghui Ye, Lixia Wang, andLiangti QuChem. Mater., 2015, 27 (15), pp 5253 -5260Publication Date (Web): July 14, 2015 (Article)DOI: 10.1021/acs.chemmater.5b01398& Three-Dimensional Macroporous Graphene -_i2FeSiO4Composite as Cathode Material for Lithium-lo n Batterieswith Superior Electrochemical Performa nces (用于锂离子电池、具有优异的电化学性能的三维多孔石墨烯-Li 2FeSiO4复合阳极材料)Hai Zhu, Xiaozhen Wu, Ling Zan, and Youxiang ZhangACS Appl. Mater. Interfaces, 2014, 6 (14), pp 11724 -1733Publication Date (Web): June 25, 2014 (Research Article)DOI: 10.1021/am502408m9、Fluorine-Doped SnO?@Graphene Porous Composite for HighCapacity Lithium-Ion Batteries (用于高容量锂离子电池的氟掺杂SnO2@石墨烯多孔复合材料)Jinhua Sun, Linhong Xiao, Shidong Jiang, Guoxing Li, Yong Huang, andJianxin GengChem. Mater., 2015, 27 (13), pp 4594 -4603Publication Date (Web): June 16, 2015 (Article)DOI: 10.1021/acs.chemmater.5b0088510、H ighly Conductive Freestanding Graphene Films as Anode Current Collectors for Flexible Lithium-lonBatteries (用于柔性锂离子电池集流体的具有高电导率独立石墨烯薄膜)Kuldeep Rana, Jyoti Singh, Jeong-Taik Lee, Jong Hyeok Park, and Jong-Hyun AhnACS Appl. Mater. Interfaces, 2014, 6 (14), pp 11158 -1166Publication Date (Web): April 23, 2014 (Research Article)DOI: 10.1021/am500996c11、G raphe ne as an In terfacial Layer for Improv ing Cycli ng Performa nee of Si Nano wiresin Lithium-Ion Batteries (石墨烯作为界面层提高锂离子电池用Si纳米线的循环性能)Fan Xia, Sunsang Kwon, Won Woo Lee, Zhiming Liu, Suhan Kim, TaeseupSong, Kyoung Jin Choi, Ungyu Paik, and Won Il ParkNano Lett., 2015, 15 (10), pp 6658 七664Publication Date (Web): September 11,2015 (Letter)DOI: 10.1021/acs.nanolett.5b0248212、F abrication of Graphene Embedded LiFePO4 Using a Catalyst Assisted Self AssemblyMethod as a Cathode Material for High Power Lithium-lo n Batteries (用催化辅助自组装法制备用于高能量型锂离子电池的嵌有石墨烯的LiFePO4的阳极材料)WonKeun Kim, WonHee Ryu, DongWook Han, SungJin Lim, JiYong Eom, and HyukSang KwonACS Appl. Mater. Interfaces, 2014, 6 (7), pp 4731 -4736Publication Date (Web): March 12, 2014 (Research Article)DOI: 10.1021/am405335k13、M esoporous Td Nanocrystals Grown in Situ onGraphene Aerogels for High Photocatalysis and Lithium-lon Batteries (在石墨烯上原位生长微孔TiO2纳米晶以用于高效光催化和锂离子电池)Bocheng Qiu, Mingyang Xing, and Jinlong ZhangJ. Am. Chem. Soc., 2014, 136 (16), pp 5852 -855Publication Date (Web): April 8, 2014 (Communication)DOI: 10.1021/ja500873u14、F abrication of Nitrogen-Doped Holey Graphene Hollow Microspheres and Their Use as an Active Electrode Material for Lithium Ion Batteries (在中空微米球上制备氮掺杂多孑L石墨烯机器用于锂离子电池的活性电极中)Zhong-Jie Jiang and Zhongqing JiangACS Appl. Mater. Interfaces, 2014, 6 (21), pp 19082 -9091Publication Date (Web): October 13, 2014 (Research Article)DOI: 10.1021/am505060415、E lastic a-Silic on Nano particle Backb oned Graphe neHybrid as a Self-Compact ing Anode for High-Rate Lithiumlon Batteries (用于高倍率锂离子电池的具有自密实的阴极材料:生长弹性a-Si纳米颗粒的石墨烯)Minseong Ko, Sujong Chae, Sookyung Jeong, Pilgun Oh, and Jaephil ChoACS Nano, 2014, 8 (8), pp 8591 七599Publication Date (Web): July 31,2014 (Article)DOI: 10.1021/nn503294z16、H igh-Rate, Ultralong Cycle-Life Lithium/Sulfur BatteriesEnabled byNitrogen-Doped Graphene (用于高倍率超长循环寿命Li-S电池的氮掺杂石墨烯)Yongcai Qiu, Wanfei Li, Wen Zhao, Guizhu Li, Yuan Hou, Meinan Liu, LishaZhou, Fangmin Ye, Hongfei Li, Zha nhua Wei, Shihe Yang, Wenhui Duan,Yifan Ye, Jinghua Guo, and Yuegang ZhangNano Lett., 2014, 14 (8), pp 4821 -4827Publication Date (Web): July 29, 2014 (Letter)DOI: 10.1021/nl502047518、P hosphorus and Nitrogen Dual-Doped Few-Layered Porous Graphene: AHigh-Performa nee Anode Material for Lithium-I on Batteries (一种用于锂离子电池的具有高性能阴极材料:磷和氮双共掺杂少层多孔石墨烯)Xinlong Ma, Guoqing Ning, Chuanlei Qi, Chenggen Xu, and Jinsen GaoACS Appl. Mater. Interfaces, 2014, 6 (16), pp 14415 -4422Publication Date (Web): August 8, 2014 (Research Article)DOI: 10.1021/am503692g19、A n Advaneed Lithium-Ion Battery Based on a GrapheneAnode and a Lithium Iron Phosphate Cathode (一种基于石墨烯阴极和LiFePO4阳极的先进锂离子电池)Jusef Hassoun, Francesco Bonaccorso, Marco Agostini, Marco Angelucci,MariaGrazia Betti, Roberto Cingolani, Mauro Gemmi, Carlo Mariani,Stefania Panero, Vittorio Pellegrini, and Bruno Scrosati Nano Lett., 2014, 14 (8), pp 4901 -4906Publication Date (Web): July 15, 2014 (Letter)DOI: 10.1021/nl502429m20、U ltrasmall TiO 2 Nanoparticles in Situ Growth onGraphene Hybrid as Superior AnodeACS Appl. Mater. Interfaces, 2015, 7 (21), pp 11239 -1245Publication Date (Web): May 12, 2015 (Research Article)DOI: 10.1021/acsami.5b02724Material for Sodium/Lithium Ion Batteries (石墨烯上原位生长超小TiO2纳米颗粒复合材料用作钠/锂离子电池阴极材料)Huiqiao Liu, Kangzhe Cao, Xiaohong Xu, Lifang Jiao, Yijing Wang, andHuatang Yuan21、General Strategy for Fabricating Sandwich-likeGraphene-Based Hybrid Films for Highly ReversibleLithium Storage (用于高可逆Li存储的类三明治石墨烯基混合薄膜的常用制备方法)Xiongwu Zhong, Zhenzhong Yang, Xiaowu Liu, Jiaqing Wang, Lin Gu, andYan YuACS Appl. Mater. Interfaces, 2015, 7 (33), pp 18320 -8326Publication Date (Web): August 10, 2015 (Research Article)DOI: 10.1021/acsami.5b0394222、An ionic self-assembly approach towards sandwich-like graphene/SnOgraphene nano sheets for enhan ced lithium storage一种离子自组装法制备用于提高Li存储的类三明治型纳米片:石墨烯/SnO2/石墨烯)Jin zua n Wang, Ping Liu, Yan sha n Huang, Jia nzhong Jia ng, Sheng Han, Dongqing Wu andXin lia ng FengRSC Adv., 2014,4, 57869-57874DOI: 10.1039/C4RA10573G, Paper23、3D porous hybrids of defect-rich MoS2/graphe ne nano sheets with excelle nt electrochemical performa nee as anode materials for lithium ion batteries锂离子电池用具有优异的电化学性能的三维多孔复合阴极材料:具有大量缺陷的MoS2/石墨烯纳米片)Lon gshe ng Zhang, Wei Fan, Weng Weei Tjiu and Tianxi LiuRSC Adv., 2015,5, 34777-34787DOI: 10.1039/C5RA04391C, Paper24、Nb2O5/graphe ne nano composites for electrochemical en ergy storag 用于电化学能量存储的Nb2O5/石墨烯纳米复合材料)Paulraj Arun kumar, Ajithan G. Ashish, Bi nson Babu, Som Sara ng, Abhi n Suresh, Chithra H. Sharma, Madhu Thalakulam and Manikoth M. ShaijumonRSC Adv., 2015,5, 59997-60004DOI: 10.1039/C5RA07895D, Paper25、Green synthesis of 3D SnO2/graphene aerogels and their application in lithium-ion batteries (绿色合成3DSnO2/石墨烯气凝胶机器在锂离子电池中的应用)Chen Gong, Yon gqua n Zhang, Min ggua ng Yao, Yin gji n Wei, Quanjun Li, Bo Liu, Ran Liu, Zhen Yao, Tia n Cui, Bo Zou and Bingbing LiuRSC Adv., 2015,5, 39746-39751DOI: 10.1039/C5RA05711F, Paper26、Electrochemical lithium storage of a ZnF e2O4/graphe ne nano composite as an anode material for rechargeable lithium ion batterie (可充电锂离子电池阴极材料ZnFe2O4/ 石墨烯纳米复合材料的电化学Li存储)Alok Kumar Rai, Sungjin Kim, Jihyeon Gim, Muhammad Hilmy Alfaruqi, Vinod Mathew andJaekook KimRSC Adv., 2014,4, 47087-47095DOI: 10.1039/C4RA08414D, Paper27、TiO2 nano tubes grow n on graphe ne sheets as adva need anode materials for high rate lithium ion batteries (用于高倍率锂离子电池的在石墨烯片上生长TiO2纳米管的阴极材料)Yufeng Tang, Zhanqiang Liu, Xujie L , Baofe ngWa ng and Fuqia ng HuangRSC Adv., 2014,4, 36372-36376DOI: 10.1039/C4RA05027D, Paper28、N-doped TiO 2 nano tubes/N-doped graphe ne nano sheets composites as high performa nee anode materials in lithium-ion battery (氮掺杂TiO2纳米管/氮掺杂石墨烯纳米片复合材料用于高性能锂离子电池阴极材料)Yuem ing Li, Zhigua ng Wang and Xiao-Jun LvJ. Mater. Chem. A , 2014,2, 15473-15479DOI: 10.1039/C4TA02890B, Paper29、A highly nitrogen-doped porous graphene —an anode material for lithium ion batteries (高氮掺杂多孔石墨烯一一种用于锂离子电池的阴极材料)Zhu-Yin Sui, Caiy un Wang, Qua n-She ng Ya ng, Kewei Shu, Yu-Wen Liu, Bao-Ha ng Han and Gordo n G. WallaceJ. Mater. Chem. A , 2015,3, 18229-18237DOI: 10.1039/C5TA05759K, Paper30、The effect of titanium in Li 3V2(PO4)3/graphene composites as cathode material for high capacity Li-ion batteries (一种用于高容量锂离子电池阳极材料:Ti在Li3V2(PO4)3/石墨烯复合物中的作用)Man soo Choi, Kisuk Kang, Hyun-Soo Kim, Young Moo Lee and Bon g-Soo JinRSC Adv., 2015,5, 4872-4879DOI: 10.1039/C4RA09389E, Pap er31、Assess ing the improved performa nee of freesta nding, flexible graphe ne and carb on nano tube hybrid foams for lithium ion battery an odes (组装用于提高锂离子电池阴极性能的具有独立柔性的石墨烯和碳纳米管混合泡沫)Adam P. Coh n, La ndon Oakes, Rachel Carter, Shaha na Chatterjee, An drew S. Westover, Keith Share and Cary L. PintNan oscale, 2014,6, 4669-4675DOI: 10.1039/C4NR00390J, Pap er32、Con trolled Lithium Den drite Growth by a Syn ergistic Effect ofMultilayered Graphe ne Coati ng and an Electrolyte Additive (通过多层石墨烯包覆和电解液添力口剂的协同效应来控制锂枝晶的生长)Joo-Se ong Kim, Dae Woo Kim, Hee Tae Jung, and Jang Wook ChoiChem. Mater., 2015, 27 (8), pp 2780 T2787Publication Date (Web): March 26, 2015 (Article)DOI: 10.1021/cm503447u33、Self-assembled graphene and LiFePO4 composites with superior high rate capability forlithium ion batteries (自组装具有高倍率容量的石墨烯和LiFePO4复合材料用于锂离子电池)Wen-Bin Luo, Shu-Lei Chou, Yu-Chun Zhai and Hua-Kun LiuJ. Mater. Chem. A , 2014,2, 4927-4931DOI: 10.1039/C3TA14471B, Paper34、Graphe ne enhanced carb on-coated tin dioxide nano particles for lithium-i on sec on dary batteries (石墨烯增强碳包覆TiO2纳米颗粒用于锂离子电池)Zhon gtao Li, Guilia ng Wu, Dong Liu, Wen ti ng Wu, Bo Jia ng, Jin gta ng Zheng, Yanpeng Li,Jun hua Li and Min gbo WuJ. Mater. Chem. A , 2014,2, 7471-7477DOI: 10.1039/C4TA00361F, Paper35、Mild soluti on syn thesis of graphe ne loaded with LiFePO 4 -C nano platelets for highperformanee lithium ion batteries (温和溶液法在碳包覆LiFePO4上合成石墨烯用于提高锂离子电池性能)Much un Liu, Yan Zhao, Sen Gao, Yan Wang, Yuex in Duan, Xiao Han and Qi DongNew J. Chem., 2015,39, 1094-1100DOI: 10.1039/C4NJ01485E, Paper36、Flexible free-standing graphene paper with intereonneeted porous structure for energy storage (互联多孔结构的柔性独立石墨烯纸用于能量存储)Kewei Shu, Caiy un Wang, Sha Li, Chen Zhao, Yang Yang, Huak un Liu and Gordon WallaceJ. Mater. Chem. A , 2015,3, 4428-4434DOI: 10.1039/C4TA04324C, Paper37、Dual roles of iron powder on the syn thesis of LiFePO 4@C/graphe ne cathode a nano compositefor high-performanee lithium ion batteries (Fe粉在合成用于高性能锂离子电池阳极材料LiFePO4@C/石墨烯纳米复合材料中的双重作用)Tiefe ng Liu, Jin gxia Qiu, Bo Wang, Yazhou Wang, Dianlong Wang and Shanqing ZhangRSC Adv., 2015,5, 100018-100023DOI: 10.1039/C5RA20712F, Paper38、TiO2(B) -CNT -graphene ternary composite anode material for lithium ion batteries (用于锂离子电池的TiO2 (B)-碳纳米管-石墨烯三元复合阳极材料)Tao Shen, Xufe ng Zhou, Hailia ng Cao, Chao Zhe ng and Zhaop ing LiuRSC Adv., 2015,5, 22449-22454DOI: 10.1039/C5RA01337B, Pap er39、Desired crystal oriented LiFePO 4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage (用于快离子存储的在石墨烯上原位生长具有一定晶向方向的且互联导电LiFePO4纳米盘网络)Bo Wang, Anmin Liu, Wael Al Abdulla, Dia nlong Wang and X. S. ZhaoNanoscale, 2015,7, 8819-8828DOI: 10.1039/C5NR01831E, Paper40、Nitrogen and fluorine co-doped graphene as a high-performanee anode material forlithium-ion batteries (用于锂离子电池的高性能阴极材料:氮和氟共掺杂石墨烯)Shizhe ng Huang, Yu Li, Yiyu Feng, Haora n An, Peng Long, Chengqun Qin and Wei FengJ. Mater. Chem. A , 2015,3, 23095-23105DOI: 10.1039/C5TA06012E, Paper41、Ge -raphene -carbon nanotube composite anode for high performance lithium-ion ba卄eries (用于高性能锂离子电池的锗-石墨烯-碳纳米管复合材料)Shan Fang, Laifa Shen, Hao Zheng and Xiaoga ng ZhangJ. Mater. Chem. A , 2015,3, 1498-1503DOI: 10.1039/C4TA04350B, Paper42、Reduced Graphene Oxide in Cathode Formulations Based on LiNi0.5Mn 1.5O4 Batteries and Energy Storage(基于LiNi0.5Mn 1.5O4电池的还原氧化石墨烯在阳极中的构成)C. Arbizza ni, L. Da Col, F. De Giorgio, M. Mastragost ino, and F. SoaviJ. Electrochem. Soc. 2015 162:A2174-A2179; doi:10.1149/2.0921510jes。

二维MoS2晶体介绍

二维MoS2晶体介绍

二维MoS2晶体介绍郑建民PB12203247由于二维MoS2具有独特的光特性、电特性,而且化学稳定性与热稳定性高,使得近几年来对其研究较多,所以借此机会讨论一下MoS2。

在这里主要介绍二维MoS2的结构、化学键、振动、能带、态密度和应用,同时将与块状MoS2、石墨烯等材料进行对比。

块状MoS2基本物理性质:黑灰色,有金属光泽,触之有滑腻感,不溶于水。

密度:4.8-5.0g/cm3; 硬度(莫式),摩擦系数:0.05-0.091~1.5,相对介电常数3.3,二硫化钼不导电,为间接带隙,禁带宽度小(1.2eV)。

MoS2晶体属于六方晶系而且具有层状结构,MoS2作为一种半导体在电子器件、光学器件、力学器件都有应用,另外MoS2毒性较小,作为荧光标记在生物医学也有巨大潜力。

随着MoS2的层数不断减小,MoS2有间接带隙逐渐过度到直接带隙,禁带宽度也由1.29eV增大到1.74eV(174eV对应光为可见光的波段)。

成为与多层MoS2性质不同的晶体。

一结构:多层(块状)MoS2结构:空间群:P63/mmc单层MoS2的结构:俯视图:类似于石墨烯的六角结构,但是原胞中的两个原子不同(而石墨烯中相同)侧视图:由此可以看出所有原子并不是在同一个平面,而是有三个原子层构成MoS2晶体侧视结构每个S原子与三个Mo原子成键,每个Mo原子与6个S原子成键,所以晶体中Mo:S=1:2原胞:如图所示,虽然晶体是二维,但是原胞并不是。

四个Mo原子处于平行四边形的四个角(较小内角为60度)。

原胞内部有两个S原子,处于三个Mo原子(正三角形)的正上方和正下方。

Mo-Mo最近距离:0.312nmMo-S键:0.2411nmMo-Mo-Mo(最小)角:60度S-Mo-S(最小)键角:46.21度晶格点阵:二维的简单六角结构,晶格常数a1=a2=a=0.312nm,夹角60度倒格子空间:结构与晶格点阵相同,只是基矢不同倒格失 长度:夹角120度布里渊区与高对称点:二维MoS 2的晶格点阵与graphene 相同,但是性质并不相同,石墨烯是导体,没有带隙,而二维MoS 2为直接带隙的半导体(Eg=1.8eV ),因此在半导体应用领域有较大潜力。

水热法制备不同形貌二硫化钼及其电化学电容性能

水热法制备不同形貌二硫化钼及其电化学电容性能

水热法制备不同形貌二硫化钼及其电化学电容性能武子茂;兰会林【摘要】以水热法制备不同形貌的二硫化钼电极材料,研究材料形貌对其电化学性能的影响.采用X射线衍射(XRD),扫描电子显微镜(SEM)和拉曼光谱(Raman)对制备的二硫化钼进行形貌、成分、结构表征,采用循环伏安法和恒电流充放电法测定纳米二硫化钼作为电极材料的电化学性能.结果表明:制备的不同形貌的二硫化钼中镂空网状二硫化钼的比电容高于三维花状二硫化钼以及空心球状二硫化钼和块状二硫化钼的比电容.三维花状二硫化钼和镂空状二硫化钼作为超级电容器的电极材料,具有较好的电化学电容性能,在电流密度为1 A/g、1 mol的Na2 SO4电解液中其比电容分别达到203、259 F/g.【期刊名称】《兰州理工大学学报》【年(卷),期】2016(042)005【总页数】5页(P18-22)【关键词】水热法;不同形貌的二硫化钼;超级电容器【作者】武子茂;兰会林【作者单位】兰州大学物理科学与技术学院,甘肃兰州 730000;兰州大学物理科学与技术学院,甘肃兰州 730000【正文语种】中文【中图分类】TB321近年来,能源问题越来越受到全球科学家的关注[1-2],超级电容器作为一种新型储能设备,它具有较传统电容器高的比电容和能量密度,较电池高的功率密度,而且绿色环保,所以其具有非常广阔的应用前景[3-4].因此开发低成本大功率高能量密度的超级电容器成为研究热点,其中电极材料是研究的重点.近年来石墨烯[5],金属氧化物[6-7],金属硫化物[8]及他们的复合物[9-10]已成为超级电容器和锂离子电池的电极材料,特别是一些过渡族金属硫化物因其独特的物理化学特性而引起了科学家们广泛关注.过渡金属二硫化物MS2 (M=Mo,W,Nb,Ta,Ti,Re)因其独特的电学、磁学、光学及热学等特性在电容器、催化、锂电池、储氢析氢、光电、半导体等领域[11-15]有着广泛的应用前景.其中作为最具代表性的二硫化钼(MoS2 )因其独特的原子结构在多个领域引起了广泛关注, MoS2具有六方晶体层状结构,层与层之间由范德华力结合与石墨烯类似,层内由S—Mo—S三原子以共价键结合形成正六边形结构,厚度约为0.7 nm.MoS2由于比氧化物高的内在离子电导率[16]和比石墨高的理论比电容[17],作为电容器的电极材料已经得到了人们深入的研究[11]. 采用热蒸发制备了MoS2薄膜,在1 mV/s扫描速度下获得了100 F/g的比电容.Hu等人[19]报道C/MoS2多孔管状纳米复合材料和纯块状MoS2在1 A/g的电流密度下的比电容分别为210、40 F/g.Huang等人[12]报道高分子聚苯胺与二维类石墨烯MoS2复合材料的比电容高达575 F/g,然而合成的纯二硫化钼在1 A/g电流密度下比电容只有98 F/g.Zhou等人[20]用水热法制备的花状二硫化钼纳米微球在1 A/g的电流密度下比电容达到122 F/g.然而这些二硫化钼电极材料的比电容性能并不令人十分满意,而且对于不同形貌MoS2的电容特性的研究也鲜有报道.因此本文通过水热法低成本合成了不同形貌的二硫化钼,并研究了它们的电化学电容性能的变化规律及各自的差异.1.1 MoO3的制备将1.05 g (NH4)6Mo7O24 分散在60 mL的去离子水中,强烈搅拌10 min,然后缓慢加入20 mL 2 mol 的HNO3.最后将混合溶液转入100 mL带有聚四氟乙烯衬底的不锈钢水热反应釜中密封,在180 ℃下水热反应24 h,然后使其自然冷却到室温,用去离子水、无水乙醇洗涤多次直到洗去多余的杂质,通过离心收集沉淀物.最终将产物在真空干燥箱中60 ℃干燥24 h.后面实验中用到的MoO3都是由此方法制备.1.2 不同形貌二硫化钼的制备块状二硫化钼的制备:将0.45 g MoO3 ,0.88 g KSCN分散在80 mL的去离子水中,磁力搅拌并缓慢加入1 mol的 HCl使溶液pH=3,搅拌1.5 h后将混合溶液转入100 mL带有聚四氟乙烯衬底的不锈钢水热反应釜中密封,在230 ℃下水热反应24 h,然后使其自然冷却到室温,用上面同样的方法洗涤干燥.空心球状二硫化钼的制备:将0.73 g Na2MoO4 ·2H2O ,0.88 g KSCN分散在80 mL的去离子水中,磁力搅拌溶液澄清时加入2.9 g C16H36BrN,然后再缓慢加入10 mol的HCl使溶液pH<1,搅拌1.5 h后将混合溶液转入100 mL带有聚四氟乙烯衬底的不锈钢水热反应釜中密封,在235 ℃下水热反应24 h,然后使其自然冷却到室温,用上面同样的方法洗涤干燥.花状二硫化钼的制备:将0.16 g 硫脲 CH4N2S 分散在60 mL去离子水中搅拌10 min,将0.16 g MoO3加入溶液中并超声10 min,磁力搅拌20 min.然后将混合溶液转入100 mL带有聚四氟乙烯衬底的不锈钢水热反应釜中密封,在180 ℃下水热反应48 h,然后使其自然冷却到室温,用上面同样的方法洗涤干燥.镂空网状二硫化钼的制备:将0.3 g MoO3和1.0 g硫代乙酰胺分散在80 mL的去离子水中,强烈搅拌20 min.然后将混合溶液转入100 mL带有聚四氟乙烯衬底的不锈钢水热反应釜中密封,在200 ℃下水热反应48 h,然后使其自然冷却到室温,用上面同样的方法洗涤干燥.1.3 材料的成分、结构、形貌及性能的表征利用场发射扫描电子显微镜(FE-SEM,Hitachi S-4800),X射线衍射仪(XRD,Philips),拉曼光谱仪(Horiba Jobin-Yvon LabRAM HR800),能谱仪(EDS)对制备的二硫化钼进行形貌、晶体结构及成分表征.将制得的二硫化钼与乙炔黑、PVDF分别以8∶1∶1的质量比混合均匀,再加入溶剂NMP(N,N-二甲基吡咯烷酮)在玛瑙研钵中研磨均匀后涂于1.0 cm×1.0 cm的泡沫镍上,在烘箱中60 ℃干燥12 h后制成工作电极,以铂电极为对电极,Ag/AgCl为参比电极,1 mol/L的Na2SO4为电解液组成三电极测试系统,采用CH1660E电化学工作站(上海辰华)评价样品的电化学性能.2.1 前驱体 MoO3的形貌及物象表征图1为合成的纳米棒状MoO3的XRD图谱和场发射扫描电镜照片,从图1a可以看出所有的衍射峰与MoO3标准卡片一致(JCPDS 47-1320),表明合成了结晶性很好的MoO3前驱体.从图1b可以看到,所有合成的MoO3是以纳米棒状的形貌存在,棒长4~6 μm、直径200 nm左右.2.2 不同形貌MoS2成分结构及形貌的表征图2为不同形貌二硫化钼的SEM照片.从图2a中可以看出一些块状的二硫化钼由一些薄的二硫化钼片连接起来,总体上合成的MoS2呈块状且比表面积较小,从图2b中可以看出,合成了空心球状二硫化钼球的表面有像毛绒状的二硫化钼纳米片,这增加了其比表面积,其详细的生长机理参见文献[21].从图2c中可以看出成功合成了花状二硫化钼,花瓣由大量片状的二硫化钼构成,花的直径约500 nm,其详细的生长机理参见文献[22].图2d中呈现的是由很多小的二硫化钼纳米片组成的镂空网状结构,这种结构增加了二硫化钼与电解液的接触面积.图3a为不同形貌MoS2的XRD图谱,可以看出,所有的衍射峰与MoS2标准卡片一致(JCPDS 37 -1492),得到了具有六方晶系的MoS2,图中的字母K、Q、H、L分别表示块状、空心球状、花状、镂空网状二硫化钼(后面图中这些字母代表同样的意义不再一一说明).但是(103)晶面的特征峰随着形貌的变化逐渐消失,这可能是MoS2在不同实验条件下由于取向生长造成的,其余特征峰的强度也在随着形貌的变化逐渐变弱,这说明花状结构和镂空网状结构的MoS2结晶性不是很好.图3b是不同形貌MoS2的Raman图谱,面外振动模式A1g的峰位位于406cm-1,面内振动模式E2g的峰位位于383 cm-1.图3c为镂空网状MoS2的EDS图谱,图中显示除Mo和S元素之外,没有检测到其他元素.另外,测量到样品中所含Mo与S元素的原子比约为1∶2,这与MoS2的化学计量比一样,进一步说明所得样品为MoS2,其他形貌MoS2的EDS图谱与之相似不再一一列出.2.3 不同形貌二硫化钼电化学性能表征图4为4种不同形貌电极材料-0.9~-0.2 V扫描电位下,以不同扫描速率5、10、25、50、80、100 mV/s的循环伏安曲线,电解液为1 mol/L的Na2SO4溶液.从图中可以看出,所有形貌的CV曲线都没有氧化还原峰,表明MoS2具有典型的电双层电容器特性,此特性与文献[10~12] 的结果是一致.CV曲线在大的扫速下比小的扫速下拥有更大的积分面积.根据电极比电容公式算得随着扫描速率的增加,电极比电容降低,这是由于当扫描速率增加时,电极与电解质溶液界面的离子浓度快速增加,电解质从固/液界面扩散到电极材料内部的速度不足以满足电极材料的电化学反应,使得在电流增大时,活性物质利用率降低,导致比电容下降[23]. Cs=∫I(V)dv/vΔVm式中:∫I(V)dv为CV曲线的积分面积,v为扫面速率,ΔV为电位窗口,m为电极活性物质的质量.图5a为4种不同形貌电极材料在1 A/g电流密度下的恒电流充放电曲线.可以看到在1 A/g的电流密度下镂空网状、花状、空心球状、块状二硫化钼的比电容分别为37、129、203、259 F/g,它们依次降低,这可能是由于不同的形貌造成比表面积不同而引起的.Cs=It/ΔVm式中:I 为负载电流,t为放电时间,ΔV为放电过程中的电势改变,m为电极活性物质的质量.电极材料的比电容计算根据式(2)可得.图5b是不同形貌电极材料在电流密度分别为1、2、4、5、10 A/g下根据公式(2)算得的比电容.可以看到镂空网状、花状、空心球状、块状二硫化钼的比电容依次降低,比电容最大镂空网状二硫化钼在1、2、4、5、10 A/g时对应的比电容分别为259、200、153、144、99 F/g.比电容随着电流密度的增加而降低,这是由于在高的电流密度时,充放电只能够在部分电极表面进行,来不及充分充放电导致活性物质利用率降低引起比电容的下降.1) 采用水热法低成本合成了不同形貌的二硫化钼,分别研究了其电化学电容性能的变化规律及各自的差异,镂空网状二硫化钼因为其独特的纳米结构增加了活性物质与电解液的接触面积,减少了电子和质子在充放电过程中的扩散时间,提高了活性物质利用率从而提高了二硫化钼的比电容,使其在1、2、4、5、10 A/g时对应的比电容分别达到259、200、153、144、99 F/g.2) 镂空网状、花状、空心球状、块状二硫化钼的比电容依次降低,这可能是由于不同的形貌造成比表面积不同而引起的,在1 A/g的电流密度下对应的比电容分别为259、203、129、71 F/g.【相关文献】[1] ZHANG Y,LI J,KANG F,et al.Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications[J].International Journal of Hydrogen Energy,2012,37(1):860-866.[2] ZHAO T,JIANG H,JAN M.Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors [J].Journal of Power Sources,2011,196(2):860-864.[3] WINTER M,BRODD R J.What are batteries,fuel cells,and supercapacitors[J].Cheminform,2004,35(50):4245-4269.[4] KOTZ R,CARLEN M.Principles and applications of electrochemical capacitors[J].Electrochimica Acta,2000,45(15/16):2483-2498.[5] SUMBOJA A,FOO C Y,WANG X,et rge areal mass,flexible and free standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device [J].Advanced Materials,2013,25(20):2809-2815.[6] ZHANG G,LOU X W.General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors [J].Advanced Materials,2013,25(7):976-979.[7] 冉奋,赵磊,张宣宣,等.纳米棒状锰氧化物的制备及其电化学电容性能 [J].兰州理工大学学报2013,39(4):23-27.[8] YANG J,DUAN X,QIN Q,et al.Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors [J].J MaterChem,2013,1(16):7880-7884.[9] 郭铁明,王力群,李小成,等.三维石墨烯/泡沫镍基底上制备Ni掺杂Co(OH)2复合材料及其超电容性能 [J].兰州理工大学学报,2015,41(2):12-16.[10] HUANG K J,WANG L,LIU Y J,et yered MoS2 -graphene composites for supercapacitor applications with enhanced capacitive performance [J].International Journal of Hydrogen Energy,2013,38(32):14027-14034.[11] MA G,PENG H,MU J,et al.In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor [J].Journal of Power Sources,2013,229(1):72-78.[12] HUANG K J,LAN W,LIU Y J,et al.Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor [J].Electrochimica Acta,2013,109(11):587-594.[13] ZHOU W,YIN Z,DU Y,et al.Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities [J].Small,2013,9(1):140-147.[14] YIN Z Y,CHEN B,BOSMAN M,et al.Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting [J].Small,2014,10(17):3537-3543.[15] SU D,DOU S,WANG G.WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances [J].Chemical Communications,2014,50(32):4192-4195.[16] HENG N F,BU X H,FENG PY.Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity [J].Nature,2003,426(6965):428-432.[17] XIAO J,CHOI D,COSIMBESCU L,et al.Exfoliated MoS2 nanocomposite as an anode material forlithium ion batteries [J].Chem Mater,2010,22(8):4522-4524.[18] JIA M S,LOH K P.Electrochemical double-layer capacitance of MoS2 nanowall films [J].Electrochemical and Solid-State Letters,2007,10(11):250-254.[19] HU B,QIN X,ASIRI A M,et al.Synthesis of porous tubular C/MoS2 nanocomposites and their application as a novel electrode material for supercapacitors with excellent cycling stability [J].Electrochimica Acta,2013,100(7):24-28.[20] ZHOU X,XU B,LIN Z,et al.Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors[J].Journal of Nanoscience &Nanotechnology,2014,14(9):7250-7254.[21] 杨依萍,李卓民,杨玉超,等.二硫化钼中空微球的制备、表征以及光催化性能 [J].无机化学学报,2012,28(7):1513-1519.[22] WANG X,DING J,YAO S,et al.High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures [J].J Mater Chem A,2014,2(38):15958-15963.[23] 王兰.层状二硫化钼纳米复合材料在超级电容器中的应用 [D].信阳:信阳师范学院,2014.。

基于类石墨烯二硫化钼的气敏传感器研究与进展

基于类石墨烯二硫化钼的气敏传感器研究与进展

基于类石墨烯二硫化钼的气敏传感器研究与进展姜传星;张冬至;孙延娥;曹洪尧;王光辉【摘要】Molybdenum disulfide (MoS2) as a new graphene-like two-dimensional nanomaterial was widely used for fabricating high-sensitive gas sensors due to its unique physical and chemical properties,such as similar layered structure with graphene,natural band gap,large specific surface areas.Domestic and foreign researchers have conducted research on MoS2-based gas sensors and their sensing properties.Metal oxide or noble metal-modified MoS2 nanocomposites were used as sensitive materials to construct high-performance gas sensors,and achieved remarkable results.The research achievements regarding to MoS2-based gas sensors were emerged in large numbers in last few years.This paper reviews the latest research progress,application and the future development trends of MoS2 gas sensor.%二硫化钼(MoS2)作为新兴的类石墨烯二维纳米材料,因其拥有与石墨烯类似的层状结构、天然的带隙、大比表面积等优异的物理化学特性,为制作新型高灵敏度气敏传感器提供了全新的材料.国内外研究学者相继开展基于MoS2的气敏性能研究工作,诸如采用金属氧化物或贵金属等掺杂修饰MoS2作为敏感材料制造高性能气敏传感器,并获得显著成果.本文综述了MoS2气敏传感器的最新研究进展及应用,并展望了其发展趋势.【期刊名称】《电子元件与材料》【年(卷),期】2017(036)008【总页数】6页(P19-24)【关键词】二硫化钼;类石墨烯;综述;掺杂;气敏传感器;层状结构【作者】姜传星;张冬至;孙延娥;曹洪尧;王光辉【作者单位】中国石油大学(华东)信息与控制工程学院,山东青岛266580;中国石油大学(华东)信息与控制工程学院,山东青岛266580;中国石油大学(华东)信息与控制工程学院,山东青岛266580;中国石油大学(华东)信息与控制工程学院,山东青岛266580;中国石油大学(华东)信息与控制工程学院,山东青岛266580【正文语种】中文【中图分类】TP212自从2004年,英国曼彻斯特大学A.K. Geim教授研究团队利用机械胶带剥离法从石墨中得到单层的石墨烯,证实了石墨烯的真实存在,掀起了人们对新型二维(2D)单层纳米材料的研究热潮。

二硒化钒熔点

二硒化钒熔点

二硒化钒熔点简介二硒化钒(Vanadium Diselenide,简称VSe2)是一种层状过渡金属硒化物,由钒原子和硒原子组成。

VSe2具有多种特殊的物理和化学性质,因此在材料科学、电子学和能源领域引起了广泛的关注。

本文将重点介绍二硒化钒的熔点以及与其相关的性质和应用。

二硒化钒的熔点二硒化钒的熔点是指在一定压力下,固态的VSe2转变为液态的温度。

根据文献报道,二硒化钒的熔点约为1500摄氏度(℃)。

这个数值是在大气压力下测得的,在不同压力下可能会有所变化。

二硒化钒的结构二硒化钒具有层状结构,每一层由一个钒原子层和两个硒原子层交替排列而成。

这种结构类似于其他层状过渡金属硫族元素化合物(TMDs),如二硫化钼(MoS2)和二碲化铅(PbTe)。

每一层中的钒原子通过共价键与硒原子相连,形成了一个稳定的二维平面。

二硒化钒的性质电子结构二硒化钒是一种半导体材料,其能带结构决定了其电子输运性质。

理论计算表明,VSe2的导带和价带之间存在较大的能隙,使得其在室温下呈现出很好的绝缘性质。

这种特性使得VSe2在电子学领域中具有潜在的应用价值。

光学性质二硒化钒具有丰富的光学性质,包括吸收、反射和发射等。

实验研究发现,VSe2在可见光范围内具有较高的吸收率,并且其吸收谱随着厚度的减小而增强。

此外,VSe2还表现出较强的光致发光特性,在紫外光激发下能够产生可见光谱。

磁性二硒化钒具有非常特殊的磁性行为。

理论研究表明,在单层VSe2中存在着自旋极化效应,即在施加外部磁场时,电子自旋会发生偏转。

这种自旋极化效应使得VSe2在自旋电子学和磁存储器等领域具有潜在的应用。

二硒化钒的应用电子学由于二硒化钒具有优异的电子输运性质和光学性质,因此被广泛研究作为新型电子器件的材料。

例如,VSe2可以用于制备高性能的场效应晶体管(FET)和光电探测器。

此外,VSe2还可以与其他二维材料(如石墨烯、二硫化钼等)进行堆叠,形成异质结构,在能源转换和传感器等领域展现出潜在的应用价值。

MOSFET原理及应用解读

MOSFET原理及应用解读

VG=0时,有导电沟道
3
MOSFET基本结构及类型
MOSFET核心:
当一个电压施加在 MOS 电容的 两端时,半导体的电荷分布也会跟 着改变。考虑一个p型的半导体(空 穴浓度为 N A ) 形成的 MOS 电容, 当一个正的电压 VGB 施加在栅极与 基极端时,空穴的浓度会减少,电 子的浓度会增加。当VGB 够强时, 接近栅极端的电子浓度会超过空穴。 这个在 p-type 半导体中,电子浓 度(带负电荷)超过空穴(带正电 荷)浓度的区域,便是所谓的反型 层(inversion layer)。
MOSFET 原理及应用
姓名:张琰 学号:2014260646
内容
★ MOSFET简介 ★ MOSFET基本结构及类型 ★ MOSFET工作原理 ★ MoS2 MOSFET
1
MOSFET简介
在电力电子行业的发展过程中,半导体器件起到了关键性 作用。其中,金属氧化物半导体场效应晶体管(MOSFET) 由
6
MOSFET工作原理
工作原理(以N沟道增强型为例):
VGS=0时 VGS S G VDS D ID=0 对应截止区
N P
N D-S 间相当于两 个反接的PN结
7
MOSFET工作原理
VGS>0时 VGS S G VDS D
V G S 足 够 大 时 ( V GS > V T )感应 出足够多电子,这 里出现以电子导电 为主的 N 型导电沟 道。 N
如图4所示,单层MoS2(厚6.5 Å)被沉积于具有270nm厚
SiO2 的简并掺杂 Si基体上。基体作为背栅极,两个金电极
分别作源极和漏极。单层 MoS 2与栅极之间被厚 30nm 的以原 子层沉积法生长出的SiO2隔开,通过向栅极加电压Vtg,同时 保持基体接地,可以很好地控制局部电流密度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

are highlighted.transition metal dichalcogenides.2D.nanosheetsFigure1.Crystal structure of MoS2.(a)Top view of mono-layer hexagonal crystal structure of MoS2.(b)Trigonal prismatic(2H)and octahedral(1T)unit cell structures.Panel a reprinted by permission from Macmillan Publishers Ltd: Nature Photonics,ref53,copyright2012.Panel b reproducedFigure2.Raman and IR-active phonons.(a)Illustrations of the four Raman-active phonon modes(E1g,E2g1,A1g,and E2g2)and one IR-active phonon mode(E1u)and their interlayer interactions.(b)Illustrations of the interlayer breathing and shear modes.(c)E2g1and A1g Raman peaks in few-layerflakes.(d,e)Evolution of low-frequency spectra with increasing layer number of the interlayer breathing(B1and B2)and shear(S1and S2)modes using(d)the(xx)z polarization configuration and the(xy)z polarization configuration.Panels a and c reprinted from ref49.Copyright2010American Chemical Society. Panels b,d,and e reprinted from ref65.Copyright2013American Chemical Society.Figure3.Band structure of MoS2(a)showing the direct and indirect band gap,as well as the A and B excitons.(b)Transition of the band structure of MoS2from indirect to direct band gap(a f d).Panel a reprinted with permission from ref50.Copyright 2010American Physical Society.Panel b reprinted from ref80.Copyright2010American Chemical Society.Figure4.Variation of band structure properties with strain.(a,c,d)Shift of absorbance and photoluminescence peaks with application of uniaxial tensile strain.(b)Evolution of the band structure of monolayer MoS2under various values of biaxial strain and consequent lattice constants as measured using different calculation models(DFT-PBE,G0W0,SCGW0).Panels a,c, and d reprinted from ref128.Copyright2013American Chemical Society.Panel b reprinted with permission from ref124. Copyright2013American Physical Society.Carrier Physics.The effective mass for electrons almost charge-neutral pair and are less susceptible toFigure5.Optical characterization.(a)Photoluminescence spectra for monolayer and bilayer MoS2.(b)Normalized photo-luminescence spectra of MoS2with increasing number of layers,showing evolution of A and B excitons as well as the I peak of indirect transition.(c)Evolution of band gap with layer number of MoS2.Reproduced with permission from ref50.Copyright 2010American Physical Society.The photoluminescence spectra for MoS 2show two exciton peaks (see Figure 5b)called exciton A ∼1.92eV)and B (∼2.08eV)at the K point 50,80and polarization of incident light.140The ability to a ffect trion movement through the application of electric fields could be of great use in optoelectronics toward Figure 6.Trion behavior with gate-induced doping.(a)Absorbance and photoluminescence spectra of A excitons and Àtrions with variation of indicated gate voltages.(b)Threshold energies of the trions ωA À(black dots)and neutral exciton A (red dots)plotted against gate voltage (above)and Fermi energy (below).(c)Plot of di fference in energies between trions and excitons (ωA ÀωA À)as a function of Fermi energy.Reprinted by permission from Macmillan Publishers Ltd:Nature Materials,ref 140,copyright 2012.a smooth narrowing of band gap.This is a very appealing concept and requires extensive practical experimentation to realize.A recent strain-engineered experiment129did show signs of a funnelling effect of excitons in MoS2.Spintronics and Valleytronics.Traditionally,a flow spin degeneracy along theΓÀK line of the conduction as well the valence bands,resulting in a band splitting of148eV.156Spin relaxation length was predicted to be quite large at about0.4μm at room temperature.157 The band structure of monolayer MoS2displays two valleys,KþandÀK(or KÀ),at the extreme corners ofFigure7.Strain-induced optical funnel.(a,b)Illustrations of the possible physical setups of a varying strain system.(c)Spectra of the band transition peaks with varying strain.(d)Variation of band structure with applied strain.Reprinted by permission from Macmillan Publishers Ltd:Nature Photonics,ref152,copyright2012.Figure8.Valley polarization.(a)Illustration of the K(or Kþ,shown in red)andÀK(or KÀ,shown in teal)valleys in the bottomof the conduction band(purple)and the top of the valence band(blue);ηis the k-resolved degree of optical polarizationbetween the top of the valence bands and the bottom of the conduction bands.(b)Data points of observed out-of-plane right(black)or left(red)polarized luminescence from monolayer MoS2when incident with correspondingly polarized light,where Pσþis the degree of right-circular polarization and PσÀis the degree of left-circular polarization.Panel a reprinted by permission from Macmillan Publishers Ltd:Nature Communications,ref153,copyright2012.Panel b reproduced withpermission from ref53.Copyright2012Nature Publishing Group.Figure9.Spin and valley coupling.Illustration of the K(orK0(or KÀ)coupled with left-circular(blue)and right-circular(red)spin-polarization.Reprinted by permission fromMacmillan Publishers Ltd:Nature Nanotechnology,refThis causes ultrathin material layers to be left on the substrate.2has been known much earlier than mechanical exfoliation.40,181Chemical exfoliation has recently gainedFigure10.Exfoliation of MoS2.(a)Optical and(b)AFM height image of multilayer sections of a MoS2flake on a285nm silicon oxide substrate.(c)Height profile of a MoS2flake measured along the dotted line in(b).(d)Chemically exfoliated MoS2flakes, roughly segregated according toflake size at different rpm through centrifugation.(e)Illustration of controlled lithiation and subsequent exfoliation using an electrochemical setup.Panels aÀc reproduced with permission from ref71.Copyright2012 Wiley-VCH Verlag GmbH&Co.KGaA.Panel d reproduced from ref178.Copyright2012American Chemical Society.Panel e reproduced with permission from ref179.Copyright2011Wiley-VCH Verlag GmbH&Co.KGaA.into MoS2,S,H2S,and NH3gases,and MoS2was depos-ited onto the substrate.Sulfur in powder form could also graphene did influence the growth process.In sharp contrast,bare Cu did not show hexagonal MoS2islandFigure11.Growth techniques.MoS2growth using(a)ammonium thiomolybdate,(b)elemental molybdenum,and (c)molybdenum trioxide as the precursors.Panel a reproduced from ref108.Copyright2012American Chemical Society.Panel b reproduced with permission from ref111.Copyright2013AIP Publishing LLC.Panel c reproduced with permission from ref 116.Copyright2012The Royal Society of Chemistry.through layers to travel across layers.The simulation predicted the presence of a“hot spot”,that is,a particular layer or set of adjacent layers through which studies.82,100,109,110,112,113,119,121,201,205,207À211High-κgate dielectrics and dielectric engineering in general have been proposed105to suppress Coulomb scatter-Figure12.MoS2device and performance.(a)Illustration of a top-gate monolayer MoS2FET with a high-κHfO2gate dielectric.V g device characteristics measured using(b)top gate and(c)back gate.(d)I dsÀV ds characteristics plot.Reprinted permission from Macmillan Publishers Ltd:Nature Nanotechnology,ref82,copyright2011.Figure13.Currentflow in MoS2layers.(a)Movement of conduction“hot spot”in multilayer MoS2devices with variation of gate voltage.(b)Illustration of series-parallel resistor model for multilayer MoS2devices.Reproduced from ref206.Copyright 2013American Chemical Society.Figure14.Other device variants and applications.(a)Illustration of MoS2/grapheneflash memory cell.(b)Illustration of a flexible MoS2device fabricated on aflexible substrate.Panel a reproduced from(a)ref213.Copyrightª2013American Chemical Society.Panel b reproduced from ref210.Copyright2013American Chemical Society.Figure15.Optoelectronic devices.(a)Illustration and(b)optical image of a high-performance rugged metalÀsemiconductorÀmetal photodetector(MSM-PD)along with its on/offratio characteristics(c,d).(e)Illustration of a monolayer optoelectronic device with a high-κAl2O3gate dielectric and an ITO top gate.Panels a-d reproduced from ref134.Copyrightª2013American Chemical Society.Panel e reproduced from ref218.Copyright2012American Chemical Society.Figure16.GMG heterostructure and band diagrams.(a,b)Illustrations of the graphene/MoS2/graphene(GMG)structure.(c) CurrentÀvoltage characteristics of a GMG device in the dark(blue)and when illuminated(red).(dÀg)Evolution of the device's band alignment and photogenerated electrons and holes(in the case of laser illumination)for V BG=0(d),V BG<0(e),V BG>0(f), and V BG.0(g).Reprinted by permission from Macmillan Publishers Ltd:Nature Nanotechnology,ref222,copyright2013. spectrum range were achieved.Importantly,the devices of a few tens of nanometers.The source,drain,andnanoribbon(AGNR)as Gr T.The DOS of graphene nanoribbons had a one-dimensional dependence which manifested in the form of repetitive current peaks in the IÀV b curves corresponding with changes in the AGNR's DOS at E as V was varied.GMG variable control of the degree of photogenerated carrier separation and thus photogenerated current.A top-gated device allowed for greater electricfield within the structure and thus greater band bending for V.0causing photocurrent inversion due toFigure17.Photoresponsive memory heterostructure.(a)Illustration showing the change in carrier distribution with time. Illumination pulse is given at time t=0.(b)Photoresponse graph with gate pulses and applied negative back-gate voltages.(c)Illustration of carrierflow and Fermi level positions of graphene and MoS2with negative(left)and positive(right)gate voltages applied.Reprinted by permission from Macmillan Publishers Ltd:Nature Nanotechnology,ref227,copyright2013.T half-metal T magnetic metal)with stability,showing a wide range of tunability and magnetic properties.236The band gap MoS2sheets,albeit with a slight red shift as those seen in few-layer MoS2sheets due effects.242Lithium-doped MNTs were foundNanoribbons and nanotubes.Illustrations of(a)zigzag and(b)armchair MoS2nanoribbons.magnetic moments at the edges of a zigzag MoS2nanoribbon.Simulated diffraction patterns (middle),and c-axis(bottom)of(d)zigzag and(e)armchair MoS2nanotubes.Panels aÀc reproduced 2008American Chemical Society.Panels d and e reproduced from ref240.Copyright2000American。

相关文档
最新文档