2019-2020年高考数学一轮复习第三章三角函数解三角形第20讲三角函数的图象与性质课件理
2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练
2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练1.[xx·洛阳模拟]下列各数中与sinxx°的值最接近的是( ) A.12 B.32 C .-12D .-32答案 C解析 xx°=5×360°+180°+39°, ∴sinxx°=-sin39°和-sin30°接近.选C.2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3 答案 D解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.[xx·华师附中月考]已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝ ⎛⎭⎪⎫α+π2=( )A.45 B .-45C.35 D .-35答案 B解析 tan(α-π)=34⇒tan α=34.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-45. 4.已知f (α)=π-απ-α-π-αα,则f ⎝⎛⎭⎪⎫-31π3的值为( ) A.12 B .-13C .-12D.13答案 C解析 ∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫10π+π3=-cos π3=-12. 5.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为( )A.13 B .-13C .-223D.223答案 B解析 cos ⎝ ⎛⎭⎪⎫α+7π12=cos ⎝ ⎛⎭⎪⎫π2+α+π12=-sin ⎝ ⎛⎭⎪⎫α+π12=-13.选B. 6.已知tan x =2,则sin 2x +1的值为( ) A .0 B.95 C.43 D.53答案 B解析 sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.故选B. 7.[xx·福建泉州模拟]已知1+sin αcos α=-12,则cos αsin α-1的值是( )A.12 B .-12C .2D .-2答案 A解析 因为1-sin 2α=cos 2α,cos α≠0,1-sin α≠0,所以(1+sin α)(1-sin α)=cos αcos α,所以1+sin αcos α=cos α1-sin α,所以cos α1-sin α=-12,即cos αsin α-1=12.故选A.8.已知角α的终边上一点P (3a,4a )(a <0),则cos ()540°-α的值是________.答案 35解析 c os(540°-α)=cos(180°-α)=-cos α.因为a <0,所以r =-5a ,所以cos α=-35,所以cos(540°-α)=-cos α=35.9.[xx·北京东城模拟]已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.答案 -125解析 解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713,sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513或⎩⎪⎨⎪⎧sin θ=-513,cos θ=1213(舍).故tan θ=-125.10.[xx·淮北模拟]sin 4π3·cos 5π6·tan ⎝ ⎛⎭⎪⎫-4π3的值是________. 答案 -334解析 原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝⎛⎭⎪⎫π-π6·tan ( -π-π3 )= ⎝⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. 1.[xx·湖北荆州联考]若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π2-A >0,∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0,sin B -cos A >0, ∴点P 在第二象限.选B.2.[xx·新乡模拟]若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin θcos θ=3716,则sin θ=( )A.35 B.45 C.74D.34答案 D解析 ∵sin θcos θ=3716,∴(sin θ+cos θ)2=1+2sin θcos θ=8+378,(sin θ-cos θ)2=1-2sin θcos θ=8-378,∵θ∈⎣⎢⎡⎦⎥⎤π4,π2,∴sin θ+cos θ=3+74 ①,sin θ-cos θ=3-74 ②,联立①②得,sin θ=34.3.已知cos(75°+α)=513,α是第三象限角,则sin(195°-α)+cos(α-15°)的值为________.答案 -1713解析 因为cos(75°+α)=513>0,α是第三象限角,所以75°+α是第四象限角, sin(75°+α)=-1-cos2+α=-1213.所以sin(195°-α)+cos(α-15°) =sin[180°+(15°-α)]+cos(15°-α) =-sin(15°-α)+cos(15°-α)=-sin[90°-(75°+α)]+cos[90°-(75°+α)] =-cos(75°+α)+sin(75°+α) =-513-1213=-1713.4.求值:sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°. 解 原式=-sin1200°·cos1290°+cos1020°·(-sin1050°)+tan 945° =-sin120°·cos210°+cos300°·(-sin330°)+tan225° =(-sin60°)·(-cos30°)+cos60°·sin30°+tan45°=32×32+12×12+1=2. 5.[xx·南京检测]已知f (α)=π-απ-α⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-α-π-α.(1)化简f (α);(2)若α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值. 解 (1)f (α)=π-απ-α⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-α-π-α=sin αcos α-sin αsin αsin α=-cos α.(2)因为α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=-sin α=15,sin α=-15.所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-152=-265.所以f (α)=-cos α=265.2019年高考数学一轮复习第一章集合与常用逻辑用语 1.3 简单的逻辑联结词、全称量词与存在量词讲义分析解读江苏高考近五年没有考查本部分知识,在复习时主要要理解逻辑联结词“或”“且”“非”的含义,会写含有全称量词与存在量词的命题的否定.五年高考考点一简单的逻辑联结词(xx湖南改编,5,5分)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是(填序号).答案②③考点二全称量词与存在量词1.(xx课标Ⅰ改编,3,5分)设命题p:∃n∈N,n2>2n,则¬p为.答案∀n∈N,n2≤2n2.(xx山东,12,5分)若“∀x∈,tan x≤m”是真命题,则实数m的最小值为.答案 13.(xx重庆理改编,2,5分)命题“对任意x∈R,都有x2≥0”的否定为.答案存在x0∈R,使得<04.(xx四川理改编,4,5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则¬p 为.答案∃x∈A,2x∉B三年模拟A组xx模拟·基础题组考点一简单的逻辑联结词1.(苏教选2—1,一,2,变式)若命题p:0是偶数,命题q:2是3的约数,则下列命题中为真的是.①p且q;②p或q;③ ;④p且q.答案②2.(苏教选2—1,一,2,变式)若p、q是两个命题,且“p或q”的否定是真命题,则p、q的真假性是. 答案p假q假3.(苏教选2—1,一,2,变式)对于命题p、q,若p且q为真命题,则下列四个命题:①p或q是真命题;②p且q是真命题;③p且q是假命题;④p或q是假命题.其中真命题是.答案①③考点二全称量词与存在量词4.(xx江苏南通中学测试)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是.答案(2,+∞)5.(xx江苏南京溧水中学质检,2)命题“∀x∈R,x2+2x+5>0”的否定是.答案∃x0∈R,+2x0+5≤06.(xx江苏苏州期中,2)若命题p:∃x∈R,使x2+ax+1<0,则p: .答案∀x∈R,x2+ax+1≥0B组xx模拟·提升题组(满分:30分时间:15分钟)一、填空题(每小题5分,共15分)1.(xx江苏南京师大附中期初调研,8)已知命题p:∃x∈R,x2+2x+a≤0是真命题,则实数a的取值范围是.答案(-∞,1]2.(xx江苏前黄中学第二次学情调研,8)已知下列四个命题,其中真命题的序号是(把所有真命题的序号都填上).(1)命题“∃x∈R,x2+x+1>0”的否定是“∀x∈R,x2+x+1<0”;(2)命题“在△ABC中,若A>B,则sin A>sin B”的逆命题为真命题;(3)“f '(x0)=0”是“函数f(x)在x=x0处取得极值”的充分不必要条件;(4)直线y=x+b不能作为函数f(x)=图象的切线.答案(2)(4)3.(xx江苏泰州一模,5)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是.答案(2,+∞)二、解答题(共15分)4.(xx江苏盐城期中,15)设p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足<0.(1)若a=1,且p∨q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.解析(1)由x2-4ax+3a2<0,得(x-3a)(x-a)<0,因为a>0,所以a<x<3a,当a=1时,1<x<3,即p为真时,实数x的取值范围是1<x<3.<0等价于(x-2)(x-3)<0,解得2<x<3,即q为真时,实数x的取值范围是2<x<3.若p∨q为真,则实数x的取值范围是1<x<3.(2)p是q的必要不充分条件等价于q⇒p且p⇒/ q,则有或所以实数a的取值范围是1≤a≤2.C组xx模拟·方法题组方法1 含有逻辑联结词的命题的真假判断1.若命题p:不等式4x+6>0的解集为,命题q:关于x的不等式(x-4)(x-6)<0的解集为{x|4<x<6},则“p且q”“p 或q”“ ”形式的命题中的真命题是.答案p或q,p且q2.分别指出下列各组命题构成的“p∧q”“p∨q”“ ”形式的命题的真假.(1)p:6<6,q:6=6;(2)p:梯形的对角线相等,q:梯形的对角线互相平分;(3)p:函数y=x2+x+2的图象与x轴没有公共点,q:不等式x2+x+2<0无解;(4)p:函数y=cos x是周期函数,q:函数y=cos x是奇函数.解析(1)∵p为假命题,q为真命题,∴p∧q为假命题,p∨q为真命题,p为真命题.(2)∵p为假命题,q为假命题,∴p∧q为假命题,p∨q为假命题,p为真命题.(3)∵p为真命题,q为真命题,∴p∧q为真命题,p∨q为真命题,p为假命题.(4)∵p为真命题,q为假命题,∴p∧q为假命题,p∨q为真命题,p为假命题.方法2 全称(存在性)命题真假的判定3.下列命题中的真命题的个数是.①∃x∈R,使得sin x+cos x=;②∃x∈(-∞,0),2x<3x;③∀x∈(0,π),sin x>cos x.答案04.已知命题p:∃x∈R,使tan x=1,命题q:∀x∈R,x2>0.下面结论正确的是.①命题“p∧q”是真命题;②命题“p∧ ”是假命题;③命题“ ∨q”是真命题;④命题“ ∧ ”是假命题.答案④方法3 全称(存在性)命题的否定5.(xx江苏姜堰中学高三期中)命题“∀x∈,sin x>0”的否定是.答案∃x∈,sin x≤06.命题“任意x∈R,|x-2|+|x-4|>3”的否定是.答案存在x∈R,使得|x-2|+|x-4|≤37.判断下列命题是全称命题还是存在性命题,并写出它们的否定:(1)p:对任意的x∈R,x2+x+1=0都成立;(2)p:∃x∈R,x2+2x+5>0.解析(1)由于命题中含有全称量词“任意的”,因而是全称命题;又由于“任意的”的否定为“存在一个”,因此,p:存在一个x∈R,使x2+x+1≠0成立.(2)由于“∃x∈R”表示存在一个实数x,即命题中含有存在量词“存在一个”,因而是存在性命题;又由于“存在一个”的否定为“任意一个”,因此,p:∀x∈R,x2+2x+5≤0.方法4 与逻辑联结词、全称(存在性)命题有关的参数问题8.(xx江苏盐城高三(上)期中)命题“∃x∈R,使x2-ax+1<0”是真命题,则a的取值范围是.答案(-∞,-2)∪(2,+∞)9.已知p:函数y=x2+mx+1在(-1,+∞)上单调递增,q:4x2+4(m-2)x+1>0恒成立.若p或q为真,p且q为假,求m的取值范围.解析若函数y=x2+mx+1在(-1,+∞)上单调递增,则-≤-1,∴m≥2,即p:m≥2;若4x2+4(m-2)x+1>0恒成立,则Δ=16(m-2)2-16<0,解得1<m<3,即q:1<m<3.因为p或q为真,p且q为假,所以p、q一真一假,当p真q假时,解得m≥3.当p假q真时,解得1<m<2.综上可知,m的取值范围是{m|m≥3或1<m<2}.。
2019版高考数学一轮复习第3章三角函数解三角形3.5两角和与差的正弦余弦与正切公式课件理
动态演示
结合动画演示,直观地呈现三角函数的计算过 程。
总结
1 重点内容概括
回顾本章重点内容,检 查概念与公式的掌握程 度。
2 解题方法总结
总结解题技巧和常用公 式,为下一步的练习做 好准备。
3 知识点巩固提示
练习做题、做笔记,多 次温习概念与公式,通 过追溯源头的方式加深 理解。
正弦、余弦、正切公式
正弦公式
三角形任意两边的比值相等,即a/sinA=b/sinB=c/sinC。
余弦公式
根据勾股定理和余弦函数,得到c²=a²+b²-2ab*cosC。
正切公式
将正弦公式与余弦公式相除得到tanA=a/b*tanC-b/a。
解题技巧
1
使用两角和/差公式
判断题中是否存在三角形两个角之和/
合理运用公式
2
差,使用对应的公式。
根据题目中所给的信息,选择合适的
公式,并化简,变形运用。
3注意化简Fra bibliotek将多个三角函数合并为一个统一的三 角函数,然后进行化简,避免表达式 过于复杂。
练习题
求第三个角度
已知三角形内两角的度数,求第三个角的度数。
求解三角形的边长
已知部分边长与角度,求解三角形剩余边长度。
复杂问题
数学一轮复习:三角函数 解三角形
本课件旨在帮助你理解三角形的两角和与差,掌握正弦、余弦、正切公式, 并运用解题技巧快速解决问题。
三角形的两角和与差
两角和公式
两个角的和为第三个角的补角,即A+B=180°-C, 其中C为第三个角的度数。
两角差公式
两个角的差的余角等于这两个角的余角之积,即 A-B=C-》sinA*sinB=sinC*sin(A+B)。
高考数学一轮复习 第三单元三角函数课件 理 新人教课标A
第16讲 角的概念及任意角的三角函数 第17讲 同角三角函数的关系和诱导公式 第18讲 三角函数的图象和性质 第19讲 函数y=Asin(ωx+φ)的图象和性质 第20讲 两角和与差的三角函数 第21讲 简单的三角恒等变换 第22讲 正弦定理和余弦定理 第23讲 解三角形的应用
第三单元 三角函数
3.课时安排 该部分共8节,其中第20讲设置双课时作业,一个滚动 基础训练卷和一个单元能力训练卷,建议11课时完成复习任 务.
第三单元 │ 使用建议
推导出π±α的正弦、余弦、正切,及π2±α的正弦、余弦的
诱导公式”“会用向量的数量积推导出两角差的余弦公式”等; (4)正弦定理、余弦定理是考试大纲要求掌握的内容,是最高 级别的要求,在复习这两个定理时应该要求学生对照课本掌 握这两个定理的证明,然后通过例题,讲解和变式训练使学 生牢固掌握这两个定理并能利用其解有关三角形的题型. (5)正弦定理和余弦定理都能实现三角形中边角关系的互化, 在三角形的三角函数问题中边角互化是解决问题的基本思 想,教师在引导学生复习时,要注重引导学生寻求合理的边 角互化的方向.正弦定理、余弦定理本身就是一个方程,在 三角形问题中注意引导学生使用方程的思想解题.
第三单元 │ 考纲要求
3.解三角形 (1)正弦定理和余弦定理 掌握正弦定理、余弦定理,并能解决一些简单的三角 形度量问题. (2)应用 能够运用正弦定理、余弦定理等知识和方法解决一些 与测量和几何计算有关的实际问题.
第三单元 │ 命题趋势
命题趋势
三角函数、简单的三角恒等变换、解三角形是高中数学重要的基 础知识之一,又是高中数学的工具性知识之一,在高考中占有重要位 置.
第三单元 │ 使用建议
(6)解三角形的实际应用题经常出现在高考中.解三角形 的实际应用问题实际上就是在不同的三角形中测量出一些角 度和距离,通过在可解三角形中使用正弦定理和余弦定理, 把求解目标纳入到一个新的可解三角形中,再根据正弦定理 和余弦定理加以解决,教师在引导学生思路解三角形的实际 应用问题时要把这个基本思想教给学生,这是解三角形实际 应用问题的本质所在.
高考数学第一轮章节复习课件 第三章 三角函数 解三角形
【注意】 若角α的终边落在某条直线上,一般要分类讨论.
已知角α的终边在直线3x+4y=0上,求sinα, cosα,tanα的值.
.
解析:tan= 答案:
5.某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀 地绕点O旋转,当时间t=0时,点A与钟面上标12的点B
重
合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d
=
,其中t∈[0,60].
解析:∵经过t(s)秒针转了 弧度
d
5. t
, d
t
10 sin
.
2 60
)内的单调性.
知识点
考纲下载
考情上线
函数y= Asin(ωx +φ)的图 象
1.考查图象的变换和 1.了解函数y=Asin(ωx+φ)
解析式的确定,以 的
及通过图象描绘, 物理意义;能画出y=
观察讨论有关性质. Asin(ωx+φ)的图象,了解
2.以三角函数为载体, 参数A、ω、φ对函数图象
考查数形结合的思想. 变化的影响.
当且仅当α= ,即α=2时取等号, 此时 故当半径r=1 cm,圆心角为2弧度时,扇形面积最大, 其最大值为1 cm2.
法二:设扇形的圆心角为α(0<α<2π),半径为r,面积为S,
则扇形的弧长为rα,由题意有:2r+rα=4⇒α=
×r2=2r-r2=-(r-1)2+1,
∴当r=1(cm)时,S有最大值1(cm2),
为余弦线
有向线段 AT 为正切线
高考数学一轮复习 第三章 三角函数、解三角形 第一节 任意角、弧度制及任意角的三角函数学案 文(含解
第一节 任意角、弧度制及任意角的三角函数2019考纲考题考情1.角的有关概念(1)从运动的角度看,角可分为正角、负角和零角。
(2)从终边位置来看,角可分为象限角与轴线角。
(3)若β与α是终边相同的角,则β用α表示为β=2k π+α,k ∈Z 。
2.弧度与角度的互化 (1)1弧度的角长度等于半径长的弧所对的圆心角叫做1弧度的角。
(2)角α的弧度数如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=l r。
(3)角度与弧度的换算①1°=π180rad ;②1 rad = ⎛⎪⎫180π°。
(4)弧长、扇形面积的公式设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,则l =|α|r ,扇形的面积为S =12lr =12|α|·r 2。
3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0)。
(2)几何表示:三角函数线可以看作是三角函数的几何表示。
正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是点(1,0)。
如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线,余弦线和正切线。
1.区分两个概念(1)第一象限角未必是锐角,但锐角一定是第一象限角。
(2)不相等的角未必终边不相同,终边相同的角也未必相等。
2.一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦。
3.三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r,cos α=x r ,tan α=y x。
一、走进教材1.(必修4P 10A 组T 7改编)角-225°=________弧度,这个角在第________象限。
答案 -5π4二2.(必修4P 15练习T 2改编)设角θ的终边经过点P (4,-3),那么2cos θ-sin θ=________。
2019版高考数学总复习第三章三角函数解三角形20两角和与差的正弦余弦和正切公式课时作业文75
课时作业20 两角和与差的正弦、余弦和正切公式一、选择题1.sin68°sin67°-sin23°cos68°=( ) A .-22 B.22C.32D .1 解析:sin68°sin67°-sin23°cos68°=sin68°cos23°-sin23°cos68°=sin(68°-23°)=sin45°=22. 答案:B2.(2018·四川自贡一诊)已知cos ⎝ ⎛⎭⎪⎫α+2π3=45,-π2<α<0,则sin ⎝ ⎛⎭⎪⎫α+π3+sin α=( )A .-435B .-335C.335 D.435解析:∵cos ⎝ ⎛⎭⎪⎫α+2π3=45,-π2<α<0,∴cos ⎝ ⎛⎭⎪⎫α+23π=cos αcos 23π-sin αsin 23π=-12cos α-32sin α=45,∴32sin α+12cos α=-45.∴sin ⎝ ⎛⎭⎪⎫α+π3+sin α=32sin α+32cos α=3⎝ ⎛⎭⎪⎫32sin α+12cos α=-435.故选A. 答案:A3.计算:cos350°-2sin160°sin -190°=( )A .- 3B .-32C.32D. 3 解析:原式=cos360°-10°-2sin 180°-20°-sin 180°+10°=cos10°-2sin 30°-10°--sin10°=cos10°-2⎝ ⎛⎭⎪⎫12cos10°-32sin10°sin10°= 3. 答案:D4.tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝ ⎛⎭⎪⎫α+π4=( ) A.1318 B.1322 C.322 D.16解析:tan ⎝⎛⎭⎪⎫α+π4=tan[(α+β)-(β-π4)]=tan α+β-tan β-π41+tan α+βtan β-π4=25-141+25×14=322. 答案:C5.(2018·湖北荆州一检)若sin ⎝ ⎛⎭⎪⎫π3-α=13,则cos π3+2α=( )A.79B.23 C .-23 D .-79解析:cos ⎝ ⎛⎭⎪⎫π3+2α=cos2⎝ ⎛⎭⎪⎫π6+α=cos2⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=cos ⎣⎢⎡⎦⎥⎤π-2⎝ ⎛⎭⎪⎫π3-α =-cos2⎝ ⎛⎭⎪⎫π3-α=-⎣⎢⎡⎦⎥⎤1-2sin 2⎝ ⎛⎭⎪⎫π3-α=-79.答案:D 二、填空题6.已知cos ⎝ ⎛⎭⎪⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎪⎫x -π3=________.解析:cos x +cos ⎝ ⎛⎭⎪⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3cos ⎝ ⎛⎭⎪⎫x -π6=3×⎝ ⎛⎭⎪⎫-33=-1. 答案:-17.(2018·湖南长沙一模)化简:2sin π-α+sin2αcos 2α2=________.解析:2sin π-α+sin2αcos2α2=2sin α+2sin α·cos α121+cos α=2sin α1+cos α121+cos α=4sin α.答案:4sin α8.(2018·广东湛江高三上学期期中调研,16)如图,角α的始边与x 轴的非负半轴重合,终边与单位圆交于点A (x 1,y 1),角β=α+2π3的终边与单位圆交于点B (x 2,y 2),记f (α)=y 1-y 2.若角α为锐角,则f (α)的取值范围是________.解析:由题意,得y 1=sin α,y 2=sin ⎝ ⎛⎭⎪⎫α+2π3,所以f (α)=sin α-sin ⎝ ⎛⎭⎪⎫2π3+α=sin α-32cos α+12sin α=3sin ⎝ ⎛⎭⎪⎫α-π6,因为α∈⎝⎛⎭⎪⎫0,π2,所以α-π6∈⎝ ⎛⎭⎪⎫-π6,π3,所以3sin ⎝ ⎛⎭⎪⎫α-π6∈⎝ ⎛⎭⎪⎫-32,32,所以f (α)的取值范围是⎝ ⎛⎭⎪⎫-32,32.答案:⎝ ⎛⎭⎪⎫-32,32 三、简答题9.(2018·广东六校联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π12,x ∈R . (1)求f ⎝ ⎛⎭⎪⎫-π4的值; (2)若cos θ=45,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝⎛⎭⎪⎫2θ-π3的值.∴tanα-1tanα=sinαcosα-cosαsinα=sin2α-cos2αsinαcosα=-2cos2αsin2α=-2×-3212=2 3.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
2019-2020年高中数学 第三章《三角恒等变换》教学设计 新人教A版必修4
2019-2020年高中数学第三章《三角恒等变换》教学设计新人教A版必修4【教学目标】进一步掌握三角恒等变换的方法,如何利用正、余弦、正切的和差公式与二倍角公式,对三角函数式进行化简、求值和证明:新授课阶段1. 11个三角恒等变换公式中,余弦的差角公式是其它公式的基础,由它出发,用-β代替β、±β代替β、α=β等换元法可以推导出其它公式.你能根据下图回顾推导过程吗?2.化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;3.求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围.4.证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等.5. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cos α= cos βcos (α-β)- sin βsin (α-β),1= sin 2α+cos 2α,==tan (450+300)等.例1 知),2(,61)4sin()4sin(ππ∈α=α-πα+π,求sin4α的值. 解:∵61)4sin()4sin(=α-πα+π ∴31)4cos()4sin(2=α+πα+π∴ ∴cos2α = 又∵ ∴2α∈ (π, 2π)∴sin2α = 322)31(12cos 122-=--=α-- ∴sin4α = 2sin2αcos2α =例2 已知θ是三角形中的一个最小的内角,且12sin 2cos 2sin 2cos 2222+=θ-θ-θ+θa a a ,求a 的取值范围. 解:原式变形:1)2sin 2(cos )2sin 2(cos 2222+=θ-θ-θ-θa a即,显然 (若,则 0 = 2) ∴ 又∵,∴ 即: 解之得:例3 求证:)6(sin )3cos(cos sin 22α-π-α+πα+α的值是与α无关的定值. 证:)3cos(cos )]23cos(1[21)2cos 1(21α+πα+α-π--α-=原式)sin 3sin cos 3(cos cos ]2cos )23[cos(21απ-απα+α-α-π=211(cos cos 2sin sin 2cos 2)cos sin 23322ππαααααα=+-+-1111cos 22cos 2(1cos 2)24244ααααα=+-++-= ∴)6(sin )3cos(cos sin 22α-π-α+πα+α的值与α无关 例4 已知331cos 2sin 2cos(), , 45221tan πππααααα-++=≤<-求的值.解:由得解方程组223sin 225sin cos 1αααα-=⎪⎨⎪+=⎩得sin 10cos 10αα⎧=-⎪⎪⎨⎪=-⎪⎩或sin 10cos 10αα⎧=⎪⎪⎨⎪=⎪⎩sin 310cos 0 22cos 10αππααα⎧=-⎪⎪≤<∴≤∴⎨⎪=-⎪⎩ 21cos 2sin22sin 2sin cos 1tan 1tan ααααααα-++∴=--22(2(281010101775⨯+⨯==--例5 求值:02210sin 21)140cos 1140sin 3(⋅-.解:原式=0020*******sin 21140cos 140sin 140sin 140cos 3⋅- 16160sin 200sin 1680cos 80sin 200sin 810sin 2180sin 41200sin 80sin 410sin 21)40cos 40sin ()140sin 140cos 3)(140sin 140cos 3(0000002000200000=-=-=⋅⋅-=⋅-+-=例6 .已知函数1)4()cos x f x xπ-=. (Ⅰ)求的定义域;(Ⅱ)设的第四象限的角,且,求的值. 解:(Ⅰ)由 得,故在定义域为(Ⅱ)因为,且是第四象限的角, 所以故1)4()cos f πααα-=12(sin 22)22cos ααα--=.例7 已知sin (-x )=,0<x <,求的值.分析:角之间的关系:(-x )+(+x )=及-2x =2(-x ),利用余角间的三角函数的关系便可求之.解:∵(-x )+(+x )=,∴cos(+x )=sin (-x ).又cos2x =sin (-2x )=sin2(-x )=2sin (-x )cos (-x ), ∴=2cos(-x )=2×=.例8 求证:(sin cos 1)(sin cos 1)tan sin 22x x x x x x +--+=解:原式=22(sin 12sin 1)(sin 12sin 1)22sin 2x xx x x+---++ =22(2sin cos 2sin )(2sin cos 2sin )2222224sin cos cos 22x x x x x x x xx-+ =(cos sin )(cos sin )sin 22222cos cos 2x x x x x x x-+⋅ =x x x x x cos 2cos 2sin 2sin 2cos 22⋅-)(=x x x x cos 2cos 2sincos ⋅⋅=tan.例9 已知,,都是锐角,求 的值. 解:由得3sin 2α=1-2sin 2β=cos2β.由得sin2β=sin2α.∴cos(α+2β)=cos αcos2β-sin αsin2β =3cos αsin 2α-sin α·sin2α=0.∵α、β∈(0,),∴α+2β∈(0,). ∴α+2β=. 课堂小结三角恒等式的证明方法有:从等式一边推导变形到另一边,一般是化繁为简. 等式两边同时变形成同一个式子.将式子变形后再证明. 作业 见同步练习 拓展提升 1.若,则等于 (A ) (B ) (C ) (D )2.函数y=sin2x+sinx,x 的值域是( ) (A)[-,] (B) [] (C) [-,] (D)[]3.已知x ∈(-,0),cos x =,则tan2x 等于 ( ) A.B.-C.D.-4.已知tan=,则的值为( ) A .B .-C .D .-5..,则 . 6.已知,若,则. 若 , 则.7.若,则的值为_______.8.已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A 求 的值.9. ()41,cos ,tan , cos .53αβααββ=-=-已知、为锐角求的值10.设函数()cos 2cos ()f x x x x x R =+∈的最大值为M ,最小正周期为T . (1) 求M ,T ;(2) 若有10个互不相等的正数满足M ,且(i=1,2,…10), 求…的值.参考答案 1.C2.B 提示:用二倍角公式及两角和与差的正弦或余弦公式3.D 4.A 提示:222sin 2sin cos1cos sin 222tan 1cos sin 22cos 2sin cos 222θθθθθθθθθθθ+-+==+++ 5.. 提示:由已知得,22sin 2cos 22sin cos cos sin αααααα+=+-2222222sin cos cos sin 2tan 1tan 7sin cos tan 15ααααααααα+-+-===-++ 6. 提示:2(sin cos )12sin cos θθθθ-=-= 当0,sin cos 4πθθθ⎛⎫∈< ⎪⎝⎭时,当,sin cos 42ππθθθ⎛⎫∈> ⎪⎝⎭时, 7. 提示:去分母后两边平方可得 8 解:,51)sin(,53)sin(=-=+B A B A .2tan tan 51sin cos ,52cos sin .51sin cos cos sin ,53sin cos cos sin =⇔⎪⎪⎩⎪⎪⎨⎧==⇔⎪⎪⎩⎪⎪⎨⎧=-=+∴B A B A B A B A B A B A B A 9 解:43,cos , sin .55ααα=∴=是锐角.,22 π<β-α<π-∴βα为锐角、又 ()可求出,31tan -=-βα ()(),1010sin ,10103cos -=-=-βαβα()cos cos βααβ∴=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-10 解:(1)()cos 222sin(2)6f x x x x π=+=+(2):,22,62i x k k Z πππ+=+∈故即 ,又是互不相等的正数且(i=1,2,…10), 故 0,1,…9.所以…。
高考数学一轮复习第三章三角函数解三角形考前增分微课2解三角形的综合应用课件理新人教A版 (2)
第六节 解三角形2019考纲考题考情1.正弦定理asin A=b sin B =csin C=2R 其中2R 为△ABC 外接圆直径。
变式:a =2R sin A ,b =2R sin B ,c =2R sin C 。
a ∶b ∶c =sin A ∶sin B ∶sin C 。
2.余弦定理a 2=b 2+c 2-2bc cos A ;b 2=a 2+c 2-2ac cos B ; c 2=a 2+b 2-2ab cos C 。
变式:cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab。
sin 2A =sin 2B +sin 2C -2sin B sin C cos A 。
3.解三角形(1)已知三边a,b ,c 。
运用余弦定理可求三角A ,B ,C 。
(2)已知两边a ,b 及夹角C 。
运用余弦定理可求第三边c 。
(3)已知两边a ,b 及一边对角A 。
先用正弦定理,求sin B ,sin B =b sin Aa。
①A 为锐角时,若a <b sin A ,无解;若a =b sin A ,一解;若b sin A <a <b ,两解;若a ≥b ,一解。
②A 为直角或钝角时,若a ≤b ,无解;若a >b ,一解。
(4)已知一边a 及两角A ,B (或B ,C )用正弦定理,先求出一边,后求另一边。
4.三角形常用面积公式(1)S =12a ·h a (h a 表示a 边上的高)。
(2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R 。
(3)S =12r (a +b +c )(r 为内切圆半径)。
在△ABC 中,常有以下结论: 1.∠A +∠B +∠C =π。
2.任意两边之和大于第三边,任意两边之差小于第三边。
3.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B2=cos C 2;cos A +B 2=sin C2。
高考数学大一轮复习 第三章 三角函数、解三角形 3.2 导数的应用 第2课时 导数与函数的极值、最值
(浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形3.2 导数的应用第2课时导数与函数的极值、最值教师用书编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形3.2 导数的应用第2课时导数与函数的极值、最值教师用书)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2018版高考数学大一轮复习第三章三角函数、解三角形3.2 导数的应用第2课时导数与函数的极值、最值教师用书的全部内容。
第2课时导数与函数的极值、最值题型一用导数解决函数极值问题命题点1 根据函数图象判断极值例1 (1)(2016·绍兴模拟)设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是()(2)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)答案(1)C (2)D解析(1)由f′(x)图象可知,x=0是函数f(x)的极大值点,x=2是f(x)的极小值点,故选C。
(2)由题图可知,当x〈-2时,f′(x)〉0;当-2〈x〈1时,f′(x)<0;当1<x〈2时,f′(x)〈0;当x〉2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.命题点2 求函数的极值例2 (2016·台州模拟)已知函数f(x)=x-1+错误!(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)由f(x)=x-1+错误!,得f′(x)=1-错误!。
高考数学一轮复习第三章三角函数解三角形考前增分微课2解三角形的综合应用课件理新人教A版
“=”,故cosC的最小值是
6- 4
2。
答案
6- 2 4
2.求边的最值 【例4】 (2019·石家庄市一模)如图,四边形ABCD的对角线交点位于 四边形的内部,AB=BC=1,AC=CD,AC⊥CD,当∠ABC变化时,BD的 最大值为________。
解析 设∠ACB=θ0<θ<2π,则∠ABC=π-2θ,∠DCB=θ+π2,由余 弦定理可知,AC2=AB2+BC2-2AB·BCcos∠ABC,即AC=DC=
考前增分微课(二) 三角函数与三角形中的最值问题
纵观近几年的高考试题和高考模拟试题,不难发现在三角函数和三角 形中求最值问题成为其中一个亮点,本文从求三角函数的最值、三角形中 的最值两个方面举例说明,希望对高考备考有所帮助。
类型一 三角函数的最值 1.可化为“y=Asin(ωx+φ)+B”型的最值问题 【例1】 (2018·北京高考)已知函数f(x)=sin2x+ 3sinxcosx。 (1)求f(x)的最小正周期; (2)若f(x)在区间-π3,m上的最大值为32,求m的最小值。
化为y=Asin(ωx+φ)+B的形式求最值时,特别注意自变量的取值范围 对最大值、最小值的影响,可通过比较闭区间端点的取值与最高点、最低 点的取值来确定函数的最值。
【变式训练】 函数f(x)=3sinx+4cosx,x∈[0,π]的值域为 ________。
解析 f(x)=3sinx+4cosx=5 35sinx+45cosx =5sin(x+φ),其中cosφ= 35,sinφ=45 ,0<φ<π2 。因为0≤x≤π,所以φ≤x+φ≤π+φ。所以当x+φ= π2 时,f(x)max=5;当x+φ=π+φ时,f(x)min=5sin(π+φ)=-5sinφ=-4。所 以f(x)的值域为[-4,5]。
高考数学一轮复习第3章三角函数解三角形热点探究课2三角函数与解三角形中的高考热点问题市赛课公开课一等
sin C=sin(180°-A-B)=sin(135°-B)=sin 135°cos B-cos 135°sin B= 22×45 -- 22×35=7102. (2)由正弦定理,得sBinCA=siAnBC,即102=7AB2,解得 AB=14,
2 10 则△ABC 的面积 S=12AB·BC·sin B=12×14×10×35=42.
5/27
[规范解答] x)
(1)f(x)=2 3sin2x+π4·cos2x+π4-sin(x+π)= 3sinx+π2-(-sin 3分
= 3cos x+sin x=2sinx+π3,
5分
于是 T=21π=2π.
6分
6/27
(2)由已知得 g(x)=fx-π6=2sinx+π6. ∵x∈[0,π],∴x+π6∈π6,76π, ∴sinx+π6∈-12,1, ∴g(x)=2sinx+π6∈[-1,2]. 故函数 g(x)在区间[0,π]上的最大值为 2,最小值为-1.
8分
10 分 11 分 12 分
7/27
[答题模板] 解决三角函数图像与性质的综合问题的一般步骤为:
第一步(化简):将 f(x)化为 asin x+bcos x 的形式.
第二步(用辅助角公式):构造 f(x)=
a2+b2·sin
x·
a2a+b2+cos
x·
b a2+b2.
第三步(求性质):利用 f(x)= a2+b2sin(x+φ)研究三角函数的性质.
17/27
[对点训练 2] 在△ABC 中,已知 A=45°,cos B=45. (1)求 sin C 的值; (2)若 BC=10,求△ABC 的面积. 【导学号:00090118】 [解] (1)因为 cos B=45,且 B=(0°,180°), 所以 sin B= 1-cos2B=35.
2019年高考数学(文)一轮复习第3章三角函数、解三角形第2节同角三角函数的基本关系与诱导公式学案整理
[ 考纲传真 ] 1. 理解同角三角函数的基本关系式:
sin
2
2
sin
α + cos α = 1,cos
α α = tan
α .2.
能利用单位圆中的三角函数线推导出
π 2 ±α , π ± α 的正弦、余弦、正切的诱导公式.
( 对应学生用书第 41 页 )
[ 基础知识填充 ]
1 α cos α = 得 2sin
2 α cos α=- ,
3
3
所以 (cos
α - sin
α ) 2= 1-2sin
5 α cos α = ,
3
又 α 是第二象限角,所以 cos α - sin α < 0,
15 所以 cos α - sin α =- 3 ,
2
2
3
15
因此 cos 2 α = cos α- sin α = (cos α + sin α )(cos α - sin α ) = 3 × - 3 =
cos_ α
余弦 cos α
- cos α
cos α
- cos_ α
sin α
-sin α
正切
tan α
tan α
- tan α
- tan_ α
口诀
函数名不变,符号看象限
函数名改变符号看象限
[ 知识拓展 ]
同角三角函数的基本关系式的几种变形
(1)(sin α ±cos α ) 2=1±2s in α cos α .
( 1) A
5
3
2
cos2α + 4sin α cos α
(2) - 3 [(1) ∵ tan α =4,则 cos α + 2sin 2α = sin2 α +cos2 α =
第20讲 三角函数的图象和性质
D A
C
1.已知函数
f(x)=tan
ωx(ω>0)的图象的相邻两支截直线
y=π4所得线段长为π4,则
A.-2
B.-1
C.0
D.1
(2)当 x∈π6,76π时,函数 y=3-sin x-2cos2x 的值域为_________.
(3)函数 f(x)=sin x cos x+ 2sin x-π4的值域为______________.
(C)
1.已知函数 f(x)=cos x(sin x+ 3cos x)- 23x∈0,π2,则函数 f(x)的值域为( B )
4.函数f(x)=|sin 2x-cos 2x|的最小正周期为______.
B
C
A A
A
目标 2 三角函数的单调性
2 (1)函数 f(x)=23sin 2x-π3的单调递减区间为
(B )
A.2kπ+51π2,2kπ+1112π,k∈Z
B.kπ+51π2,kπ+111π2 ,k∈Z
C.kπ-1π2,kπ+51π2,k∈Z
C.y=tan x
D.y=cos
x 2
4.(人 A 必一 P200 练习 4)(多选)函数 f(x)=1+cos x,x∈π3,2π的图象与直线 y=
t(t 为常数)的交点可能有
(
)
A.0 个
B.1 个
C.2 个
D.3 个
正弦、余弦、正切函数的图象与性质(下表中k∈Z)
函数
y=sin x
y=cos x
__2_k_π_+__π2_,__2_k_π_+__32_π_
对称中心
__(_k_π_,__0_)___
对称轴方程
__x_=__k_π_+__π2____
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【例 2】 (1)函数 f(x)=2sin(ωx+φ)ω>0,-π2<φ<π2的部分图象如图所示,则 ω,φ
的值分别是( A )
A.2,-π3
B.2,-π6
C.4,-π6
D.4,π3
(2)如图是函数 y=Asin(ωx+φ)+2(A>0,ω>0)的图象的一部分,它的振幅、周期、 初相各是( C )
(2)五点法:确定 φ 值时,往往以寻找“五点法”中的某一个点为突破口,具体
如下:
“第一点”(即图象上升时与 x 轴的交点)时 ωx+φ=0;“第二点”(即图象的
“峰点”)时 ωx+φ=π2;“第三点”(即图象下降时与 x 轴的交点)时 ωx+φ=π;“第
四点”(即图象的“谷点”)时 ωx+φ=32π;“第五点”时 ωx+φ=2π.
3.了解函数 y=Asin(ωx+φ)的物理意义;能画 2016,天津卷,15T 3.高考中常以选择、填空题的形式考查三角
出 y=Asin(ωx+φ)的图象,了解参数 A,ω, 2015,湖北卷,17T 函数关系式、三角函数诱导公式、三角函数
φ 对函数图象变化的影响.
4.了解三角函数是描述周期变化现象的重要 函数模型,会用三角函数解决一些简单实际 问题.
分值:5~12 分
的奇偶性及对称性,属于中低档题.
4.以解答题的形式考查三角函数的单调性、 最值,常与平面向量、解三角形及三角恒等 变换相结合.
栏目导 航
板块一 板块二 板块三 板块四
• 1.“五点法”作图的原理
•(0在_,_0确_)_定__正、π2,弦_1_函__数__y_(=_π、,si_n_0x_)在__[_0_,232_π、π,]_上-__的1__图__象_(2_形_π.状,时0,) 起关键作用的五个点是______、
• (3)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后 平移”中平移的长度一致.( ×)
• (4)由图象求解析式时,振幅A的大小是由一个周期内的图象 中的最高点的值与最低点的值确定的.( √ )
解析:(1)错误.横坐标缩短,周期变小,ω 变大,故变换后,所得图象的解析式为 y=sin 2x.
(2)正确.由正弦函数 y=sin x 的图象易知. (3)错误.“先平移,后伸缩”的平移单位长度为 |φ|,而“先伸缩,后平移”的平 移单位长度为|ωφ|(ω>0).故当 ω≠1 时平移的长度不相等. (4)正确.振幅 A 的值是由最大值 M 与最小值 m 确定的, 其中 A=M-2 m.
2.y=2sin2x-π4的振幅、频率和初相分别为( A )
性质(如单调性、最大值和最小值以及与 x 轴
2016,全国卷Ⅱ,7T 2016,四川卷,3T
2.三角函数的性质是高考的必考内容,常与
的交点等),理解正切函数在区间-2π,π2内 的单调性.
2016,北京卷,7T 2016,全国卷Ⅲ,14T 2016,山东卷,7T
三角函数的图象结合,主要考查三角函数的 周期性、单调性、最值、奇偶性、对称性.
( B)
A.x=k2π+56π,k∈Z
B.x=k2π+51π2,k∈Z
C.x=k2π-π6,k∈Z
D.x=kπ-1π2,k∈Z
解析:y=sin2x+π6的图象向右平移π4个单位长度,得 y=sin2x-π4+π6=sin2x-π3.
令 2x-π3=π2+kπ,k∈Z,得 x=51π2+k2π,k∈Z.
sin12x+π6的图象,所以
fπ6=sin12×π6+π6=sinπ4=
2 2.
•二 由图象确定y=Asin(ωx+φ)的解析
式
求 φ 常用的方法
(1)代入法:把图象上的一个已知点代入(此时 A,ω 已知)或代入图象与直线 y=b
的交点求解(此时要注意交点在上升区间上还是在下降区间上).
D.0,2
解析:由π2<x<π,ω>0 得,ω2π+π4<ωx+π4<ωπ+π4.又 y=sin x 在π2,32π上递减,
所以ωω2ππ++π4π4≥≤π232π,,
解得12≤ω≤54,故选 A.
【例 4】 已知函数 f(x)=4cos ωx·sinωx+π4(ω>0)的最小正周期为 π. (1)求 ω 的值; (2)讨论 f(x)在区间0,π2上的单调性. 解析:(1)f(x)=4cos ωxsinωx+π4 =2 2sin ωxcos ωx+2 2cos2ωx= 2(sin 2ωx+cos 2ωx)+ 2 =2sin2ωx+π4+ 2. 因为 f(x)的最小正周期为 π,且 ω>0,所以22ωπ=π,故 ω=1.
第三章 三角函数、解三角形
第20讲 三角函数的图象与性质
考纲要求
考情分析
命题趋势
1.能画出 y=sin x,y=cos x,y=tan x 的图象,
1.三角函数的图象,主要考查三角函数的图
了解三角函数的周期性.
象变换、三角函数解析式的求法及三角函数
2.理解正弦函数、余弦函数在区间[0,2π]上的
图象的应用.
单调减区间: 单调减区间:
单调增区间:
π2+2kπ,32π+
(2kπ,π+2kπ)
_____2_k_π_(_k_∈__Z_)___ __(_k_∈___Z_)__________
-π2+kπ,π2
+kπ
__(_k_∈__Z_)__________________
奇偶性
_奇___函__数
则 g(x)的解析式应为 g(x)=( A )
A.-sin x
B.sin x
C.-cos x
D.cos x
解析:y=cos x―向单―左位―平长移度―π2个→y=cosx+π2=-sin x.
4.将函数 y=sin2x+π6的图象向右平移π4个单位长度后得到的函数图象的对称轴是
___R_____
对称轴:
对称轴:
x_=__k_π_+__π2_(_k_∈__Z_)_; _x_=___k_π_(_k__∈__Z__)__;
对称性
对称中心:
对称中心:
_(_k_π_,___0_)_(_k_∈___Z__) __k_π_+__π2_,__0_(_k_∈__Z_)__
周期
__2_π_____
__2_π___
对称中心:_k2_π_,__0_(_k_∈__Z_)___ ___π___
函数 性质
y=sin x
y=cos x
y=tan x
单调增区间: 单调增区间:
-π2+2kπ,π2
(-π+2kπ,2kπ)
单调性 ____+__2_k_π_(_k_∈__Z_)_; _(_k__∈__Z__)_________ ;
3
• 5.已知函数f(x)=sin(ωx+φ)(ω>0)பைடு நூலகம்图象如2图所示, 则ω=___________.
解析:由图知,T4=23π-π3=π3,T=43π.即2ωπ=43π,故 ω=32.
•一 三角函数图象的变换
• 三角函数图象的几种变换 • (1)平移变换: • ①沿x轴平移:由y=f(x)变为y=f(x+φ)时,“左加右
减”,即φ>0,左移;φ<0,右移. • ②沿y轴平移:由y=f(x)变为y=f(x)+k时,“上加下
减”,即k>0,上移;k<0,下移.
(2)伸缩变换: ①沿 x 轴伸缩:由 y=f(x)变为 y=f(ωx)时,点的纵坐标不变,横坐标变为原来的|ω1| 倍. ②沿 y 轴伸缩:由 y=f(x)变为 y=Af(x)时,点的横坐标不变,纵坐标变为原来的|A| 倍.
•三 三角函数的单调性
• 三角函数单调性问题的常见类型及解题策略
• (1)已知三角函数的解析式求单调区间:
• ①求函数的单调区间应遵循简单化原则,将解析式先化简, 并注意复合函数单调性“同增异减”的规律;
• ②求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中ω>0)的单调 区间时,要视“ωx+φ”为一个整体,通过解不等式求 解.但如果ω<0,那么一定先借助诱导公式将ω化为正数, 防止把单调性弄错.
(2)将函数 f(x)=sin(ωx+φ)ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一 半,纵坐标不变,再向右平移π6个单位长度得到 y=sin x 的图象,则 fπ6=____2_2____.
解析:(1)该函数的周期为 π,将其图象向右平移π4个单位后,得到的图象对应的函
A.2,1π,-π4
B.2,21π,-π4
C.2,1π,-π8
D.2,21π,-π8
解析:由振幅、频率和初相的定义可知,函数 y=2sin2x-π4的振幅为 2,周期为 π,
频率为1π,初相为-π4.
3.函数 y=cos x(x∈R)的图象向左平移π2个单位长度后,得到函数 y=g(x)的图象,
(A>0,ω>0),x∈[0, +∞)
表示一个振动量时)
A
_____
周期
2π ω
T=______
频率
ω 2π
f=______
相位
ωx+φ
______
初相
Φ
______
1.思维辨析(在括号内打“√”或“×”). (1)把 y=sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的 函数解析式为 y=sin12x.( × ) (2)正弦函数 y=sin x 的图象在[0,2π]上的五个关键点是(0,0),π2,1,(π,0), 32π,-1,(2π,0).( √ )
数为 y=2sin2x-π4+π6=2sin2x-π3,故选 D.
(2)把函数 y=sin x 的图象向左平移π6个单位长度得到 y=sinx+π6的图象,再把函数