北京中考数学几何综合题分类讲解
北京市中考数学专题突破九:几何综合(含答案)
北京市中考数学专题突破九:几何综合(含答案)专题突破(九)几何综合在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律.求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算.2011-2015年北京几何综合题考点对比年份20112012201320142015考点平行四边形的性质、从特殊到一般、构造图形(全等三角形或等边三角形或特殊平行四边形)旋转变换、对称变换、构造全等三角形全等三角形的判定与性质、等边三角形的性质,等腰直角三角形旋转的性质以轴对称和正方形为载体,考查了等腰三角形、全等三角形、勾股定理、圆及圆周角定理以正方形为载体,考查了平移作图,利用轴对称图形的性质证明线段相等及写出求线段长的过程1.[2015·北京]在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH.(1)若点P在线段CD上,如图Z9-1(a).①依题意补全图(a);②判断AH与PH的数量关系与位置关系,并加以证明.(2)若点P在线段CD的延长线上,且∠AHQ =152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果.........)图Z9-12.[2014·北京]在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图Z9-2①;(2)若∠PAB=20°,求∠ADF的度数;(3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.图Z9-23.[2013·北京]在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段B D.(1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图Z9-34.[2012·北京]在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ =DQ,请直接写出α的范围.图Z9-45.[2011·北京]在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC 于点F.(1)在图Z9-5①中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.图Z9-51.[2015·怀柔一模]在等边三角形ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图Z9-6①;(2)若∠PAB=30°,求∠ACE的度数;(3)如图②,若60°<∠PAB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.图Z9-62.[2015·朝阳一模]在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B,C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图Z9-7(a),点D在BC边上.①依题意补全图(a);②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长.(2)如图(b),点D在BC边的延长线上,用等式表示线段AB,BD,BE之间的数量关系(直接写出结论).图Z9-73.[2015·海淀一模]在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:________.图Z9-84.[2015·海淀二模]如图Z9-9①,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示).(2)以AB,AE为边作平行四边形ABFE.①如图②,若点F恰好落在DE上,求证:BD=CD;②如图③,若点F恰好落在BC上,求证:BD=CF.图Z9-95.[2015·西城一模]在△ABC中,AB=AC,取BC边的中点D,作DE⊥AC于点E,取DE 的中点F,连接BE,AF交于点H.(1)如图Z9-10①,如果∠BAC=90°,那么∠AHB=________°,AFBE=________;(2)如图②,如果∠BAC=60°,猜想∠AHB的度数和AFBE的值,并证明你的结论;(3)如果∠BAC=α,那么AFBE=________.(用含α的代数式表示)图Z9-106.[2015·丰台一模]在△ABC中,CA=CB,CD为AB边上的中线,点P是线段AC上任意一点(不与点C重合),过点P作PE交CD于点E,使∠CPE=12∠CAB,过点C作CF⊥PE交PE的延长线于点F,交AB于点G.(1)如果∠ACB=90°,①如图Z9-11(a),当点P与点A重合时,依题意补全图形,并指出与△CDG全等的一个三角形;②如图(b),当点P不与点A重合时,求CF PE的值.(2)如果∠CAB=a,如图(c),请直接写出CF PE的值.(用含a的式子表示)图Z9-117.[2015·海淀]将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图Z9-12(a),若α=80°,则∠BDC 的度数为________.②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图(b),以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED =90°,求α的值.图Z9-128.[2015·西城二模]正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图Z9-13①,若点E是DC的中点,CH与AB之间的数量关系是________.(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由.(3)如图③,当点E,F分别在射线DC,DA 上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.图Z9-13参考答案北京真题体验1.解:(1)①如图(a)所示.②AH=PH,AH⊥PH.证明:连接CH,由条件易得:△DHQ为等腰直角三角形,又∵DP=CQ,∴△HDP≌△HQC,∴PH=CH,∠HPC=∠HCP.∵BD为正方形ABCD的对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.(2)如图(b),过点H作HR⊥PC于点R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°,∴∠DCH=17°.设DP=x,则DR=HR=RQ=1-x 2.由tan17°=HRCR得1-x21+x2=tan17°,∴x=1-tan17°1+tan17°.2.解:(1)补全图形如图①所示:(2)如图①,连接AE,则∠PAB=∠PAE=20°,AE=AB.∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠EAD=130°,AE=AD.∴∠ADF=25°.(3)如图②,连接AE,BF,BD.由轴对称的性质可得EF =BF ,AE =AB =AD ,∠ABF =∠AEF =∠ADF ,∴∠BFD =∠BAD =90°.∴BF 2+FD 2=BD 2.∴EF 2+FD 2=2AB 2.3.解:(1)∵AB =AC ,∠A =α,∴∠ABC =∠ACB =12(180°-∠A )=90°-12α. ∵∠ABD =∠ABC -∠DBC ,∠DBC =60°,∴∠ABD =30°-12α. (2)△ABE 是等边三角形.证明:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60°得到线段BD ,则BC =BD ,∠DBC =60°.∴△BCD 为等边三角形.∴BD =CD.∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α. 在△ABD 与△ACD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD =12∠BAC =12α. ∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12α=∠BAD.在△ABD 和△EBC 中,⎩⎪⎨⎪⎧∠BEC =∠BAD ,∠EBC =∠ABD ,BC =BD ,∴△ABD ≌△EBC ,∴AB =BE .又∵∠ABE =60°,∴△ABE 是等边三角形.(3)∵∠BCD =60°,∠BCE =150°, ∴∠DCE =150°-60°=90°. ∵∠DEC =45°,∴△DEC 为等腰直角三角形,∴DC =CE =BC.∵∠BCE =150°.∴∠EBC =12(180°-150°)=15°. ∵∠EBC =30°-12α=15°, ∴α=30°.4.解:(1)如图①,∵BA =BC ,∠BAC =60°,M 是AC 的中点,∴BM ⊥AC ,AM =MC.∵将线段PA 绕点P 顺时针旋转2α得到线段PQ ,∴AM =MQ ,∠AMQ =120°, ∴CM =MQ ,∠ CMQ =60°, ∴△CMQ 是等边三角形,∴∠ACQ =60°,∴∠CDB =30°.(2)连接PC ,AD ,∵AB =BC ,M 是AC 的中点, ∴BM ⊥AC ,∴AD =CD ,AP =PC.在△APD 与△CPD 中,∵⎩⎪⎨⎪⎧AD =CD ,PD =PD ,PA =PC ,∴△APD ≌△CPD ,∴∠ADB =∠CDB ,∠PAD =∠PCD , ∴∠ADC =2∠CDB.又∵PQ =PA ,∴PQ =PC ,∴∠PQC =∠PCD =∠PAD , ∴∠PAD +∠PQD =∠PQC +∠PQD =180°,∴∠APQ+∠ADC=360°-(∠PAD+∠PQD)=180°,∴∠ADC=180°-∠APQ=180°-2α,∴2∠CDB=180°-2α,∴∠CDB=90°-α.(3)∵∠CDB=90°-α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°-2α.∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°-2α>α,∴45°<α<60°.5.解:(1)∵AF平分∠BAD,∴∠BAF=∠DAF.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F.∴∠CEF=∠F.∴CE=CF.(2)∠BDG=45°.(3)如图,分别连接GB,GE,GC,∵AD∥BC,AB∥CD,∠ABC=120°,∴∠ECF=∠ABC=120°.∵FG∥CE且FG=CE,∴四边形CEGF是平行四边形.由(1)得CE=CF.∴四边形CEGF是菱形,∴GE=EC,①∠GCF=∠GCE=12∠ECF=60°,∴△ECG与△FCG是等边三角形,∴∠GEC=∠FCG,∴∠BEG=∠DCG,②由AD∥BC及AF平分∠BAD可得∠BAE =∠AEB,∴AB=BE.在▱ABCD中,AB=DC,∴BE=D C.③由①②③得△BEG≌△DCG,∴BG=DG,∠1=∠2,∴∠BGD=∠1+∠3=∠2+∠3=∠EGC =60°,∴∠BDG=180°-∠BGD2=60°. 北京专题训练1.解:(1)补全图形,如图①所示.(2)连接AD,如图①.∵点D与点B关于直线AP对称,∴AD=AB,∠DAP=∠BAP=30°,∵AB=AC,∠BAC=60°,∴AD=AC,∠DAC=120°,∴2∠ACE+120°=180°.∴∠ACE=30°.(3)线段AB,CE,ED可以构成一个含有60°角的三角形.证明:连接AD,EB,如图②.∵点D与点B关于直线AP对称,∴AD=AB,DE=BE,可证得∠EDA=∠EB A.∵AB=AC,AB=AD,∴AD=AC,∴∠ADE=∠ACE,∴∠ABE=∠ACE.设AC,BE交于点F,∵∠AFB=∠CFE,∴∠BAC=∠BEC=60°,∴线段AB,CE,ED可以构成一个含有60°角的三角形.2.解:(1)①补全图形,如图(a)所示.②如图(b),由题意可知AD=DE,∠ADE =90°.∵DF⊥BC,∴∠FDB=90°.∴∠ADF=∠ED B.∵∠C=90°,AC=BC,∴∠ABC=∠DFB=45°.∴DB=DF.∴△ADF≌△EDB.∴AF=EB.在△ABC和△DFB中,∵AC=8,DF=3,∴AB=8 2,BF=3 2.AF=AB-BF=5 2,即BE=5 2,(2)2BD=BE+AB.3.解:(1)补全图形,如图①所示.(2)方法一:证明:连接BE,如图②. ∵四边形ABCD是菱形,∴AD∥BC.∵∠ADC=120°,∴∠DCB=60°.∵AC]是菱形ABCD的对角线,∴∠DCA=12∠DCB=30°.∴∠EDC=180°-∠DEC-∠DCA=100°.由菱形的对称性可知,∠BEC=∠DEC=50°,∠EBC=∠EDC=100°,∴∠GEB=∠DEC+∠BEC=100°.∴∠GEB=∠CBE.∵∠FBC=50°,∴∠EBG =∠EBC -∠FBC =50°. ∴∠EBG =∠BEC.在△GEB 与△CBE 中,⎩⎪⎨⎪⎧∠GEB =∠CBE ,BE =EB ,∠EBG =∠BEC ,∴△GEB ≌△CBE .∴EG =BC .方法二:证明:连接BE ,设BG 与EC 交于点H ,如图②.∵四边形ABCD 是菱形,∴AD ∥BC.∵∠ADC =120°,∴∠DCB =60°.∵AC 是菱形ABCD 的对角线,∴∠DCA =12∠DCB =30°. ∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°,∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°=∠BEC .∴BH =EH .在△GEH 与△CBH 中,⎩⎪⎨⎪⎧∠GEH =∠CBH ,EH =BH ,∠EHG =∠B HC ,∴△GEH ≌△CBH .∴EG =BC .(3)AE +BG =3EG .4.解:(1)∠ADE =90°-α.(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴∠EDC =∠ABC =α.由(1)知∠ADE =90°-α,∴∠ADC =∠ADE +∠EDC =90°. ∴AD ⊥BC.∵AB =AC ,∴BD =CD.②证明:∵AB =AC ,∠ABC =α, ∴∠C =α.∵四边形ABFE 是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α.由(1)知∠DAE=180°-2∠ADE=180°-2(90°-α)=2α,∴∠DAC=α.∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.5.解:(1)901 2(2)结论:∠AHB=90°,AFBE=32.证明:如图,连接AD.∵AB =AC ,∠BAC =60°, ∴△ABC 是等边三角形.∵D 为BC 的中点,∴AD ⊥BC.∴∠1+∠2=90°.又∵DE ⊥AC ,∴∠DEC =90°.∴∠2+∠C =90°.∴∠1=∠C =60°.设AB =BC =k (k >0),则CE =12CD =k 4,DE =34k . ∵F 为DE 的中点,∴DF =12DE =38k ,AD =32AB =32k . ∴AD BC =32,DF CE =32. ∴AD BC =DF CE. 又∵∠1=∠C ,∴△ADF ∽△BCE .∴AF BE =AD BC =32,∠3=∠4.又∵∠4+∠5=90°,∠5=∠6, ∴∠3+∠6=90°.∴∠AHB =90°. (3)12tan(90°-α2).6.解:(1)①作图.△ADE (或△PDE ).②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,∴∠CPM =∠CAB.∵∠CPE =12∠CAB , ∴∠CPE =12∠CPN .∴∠CPE =∠FPN . ∵PF ⊥CG ,∴∠PFC =∠PFN =90°. ∵PF =PF ,∴△PFC ≌△PFN .∴CF =FN . 由①得:△PME ≌△CMN .∴PE =CN .∴CF PE =CF CN =12. (2)12tan α. 7.解:(1)①30°.②不改变,∠BDC 的度数为30°. 方法一:由题意知AB =AC =A D.∴点B ,C ,D 在以点A 为圆心,AB 为半径的圆上.∴∠BDC =12∠BAC =30°. 方法二:由题意知AB =AC =A D. ∵AC =AD ,∠CAD =α,∴∠ADC =∠ABD =180°-α2=90°-12α.∵AB =AD ,∠BAD =60°+α,∴∠ADB =∠ABD =180°-⎝⎛⎭⎫60°+α2=120°-α2=60°-12α. ∴∠BDC =∠ADC -∠ADB =(90°-12α)-(60°-12α)=30°. (2)过点A 作AM ⊥CD 于点M ,连接EM .∴∠AMC =90°.在△AEB 与△AMC 中,⎩⎪⎨⎪⎧∠AEB =∠AMC ,∠B =∠ACD ,AB =AC ,∴△AEB ≌△AMC.∴AE =AM ,∠BAE =∠CAM .∴∠EAM =∠EAC +∠CAM =∠EAC +∠BAE =∠BAC =60°.∴△AEM 是等边三角形.∴EM =AM =AE .∵AC =AD ,AM ⊥CD ,∴CM =DM .又∵∠DEC =90°,∴EM =CM =DM .∴AM=CM=DM.∴点A,C,D在以M为圆心,MC为半径的圆上.∴α=∠CAD=90°.8.解:(1)CH=AB(2)结论成立.证明:如图,连接BE.在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC =90°.∵DE=DF,∴AF=CE.在△ABF和△CBE中,⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCE ,AF =CE ,∴△ABF ≌△CBE .∴∠1=∠2.∵EH ⊥BF ,∠BCE =90°,∴H ,C 两点都在以BE 为直径的圆上. ∴∠3=∠2.∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC =90°, ∴∠4=∠HB C.∴CH =CB.∴CH =AB. (3)3 2+3.。
北京中考专题复习几何综合
北京中考专题复习几何综合几何综合题型一般以基本图形为载体,如正方形、特殊平行四边形、等边、等腰、直角三角形等。
这些题目考查的是运用图形变换(平移、旋转、轴对称)分析图形中基本量之间的数量关系的探究过程。
初中数学中,涉及到九大几何模型,包括中点类辅助线、角平分线、垂直平分线类辅助线、相似模型、旋转之手拉手模型、旋转之对角互补模型、旋转之半角模型、旋转之构造等边三角形、旋转之费马点模型和最短距离问题。
解题思路是从复杂的图形中抽出简单图形,在简单图形中进行逻辑推导,应用相关几何模型,找到解题思路。
中点类辅助线是一种重要的几何模型,其中倍长中线是常用的方法。
凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。
在△ABC中,AD是BC边中线,可以直接倍长,延长AD到E,使DE=AD,然后连接BE。
另外,也可以通过间接倍长的方法,即作CF⊥AD于F,作BE⊥AD 的延长线于E,然后连接BE。
还可以利用平行线间线段有中点的特点,如AD∥BE,F为DE中点,可构造8字全等△ADF≌△HEF。
在矩形ABCD中,BD=BE,F为DE中点,可以探究AF与CF之间的位置关系。
在平行四边形ABCD中,BC=2AB,M为AD中点,CE⊥AB,可以求证∠EMD=3∠___。
另一个常用的几何模型是构造中位线,其中已知三角形的两边有中点时,可以连接这两个中点构造中位线。
已知一边中点时,可以在另一边上取中点,连接构造中位线。
如果已知一边中点,过中点作平行线可构造相似三角形。
在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H,可以求证∠BGE=∠CHE。
此外,在直角三角形中,有斜边中点时常作斜边中线;有斜边的倍分关系线段时,也常常作斜边中线。
在三角形Rt△ABC中,点D是斜边AB的中点。
连接CD可以得到CD=AD=BD,从而构造出等腰三角形。
北京市2018年初三数学二模各区县试题归类评析之几何综合题分类讲解(无答案)
满足条件的角的序号);D初三数学二模各区县试题归类评析之几何综合题分类讲解关于二模几何综合题的分类区县西城房山丰台朝阳海淀昌平东城平谷石景山怀柔图形+变换操作等边三角形+旋转双直角正方形+旋转等腰直角+轴对称等边三角形+轴对称等腰三角形+轴对称等边三角形正方形等腰直角+平移等边三角形+旋转角度计算原理三角形内角和四边形外角;八字模型三点共圆三点共圆,飞镖模型三角形内角和三角形内角和三角形内角和旋转全等线段关系原理旋转全等;轴对称全等旋转全等+等腰直角旋转全等+倍长中线轴对称全等截长补短旋转全等倍长;中位线线段长度计算相似勾股定理+中位线特殊△R T相似+勾股定理顺义门头沟关于几何综合题的解题方法与技巧一、关注背景图形和变换操作1.点的轴对称垂直平分线等线段或等腰△2.点或线段的旋转等腰△3.共顶点的相似△旋转全等或相似二、关注特殊条件例如:中点等腰△三线合一;△R T斜边中线;倍长中线;中位线三、关注问题1.角度的计算或两角的关系:三角形或四边形内角和或外角;八字模型,飞镖模型;辅助圆2.线段的关系:两条线段的关系;三条线段的关系3.线段的计算:相似,勾股定理,三角函数,解斜△经典例题例1(17海淀期中).在Rt△ABC中,斜边AC的中点M关于BC的对称点为点△O,将ABC绕点O顺时针旋转至△DCE,连接BD,BE,如图所示.(1)在①∠BOE,②∠ACD,③∠COE中,等于旋转角的是________(填出AM (2)若∠A=α,求∠BEC的大小(用含α的式子表示);N(3)点N是BD的中点,连接MN,用等式表示线段MN与BE之间的数量关B C系,并证明.EO例2(18海淀二模).如图,在等边△ABC中,D,E分别是边AC,BC上的点,且CD=CE,∠DBC<30︒,点C与点F关于BD对称,连接AF,FE,A第1页FG DB E C针旋转 90°,得到 AF ,连接 EF ,交对角线 BD 于点 G ,连接 AG .(2)判定 AG 与 EF 的位置关系并证明; D CA ∠2 图 1;FE 交 BD 于 G .(1)连接 DE, DF ,则 DE, DF 之间的数量关系是;(2)若 ∠DBC = α ,求 ∠FEC 的大小;(用 α 的式子表示)(2)用等式表示线段 BG, G F 和 FA 之间的数量关系,并证明.例 3((18 朝阳二模△)如图,在 ABC 中,AB=AC ,∠BAC=90°,M 是 BC 的中点,延长 AM 到点 D ,AE= AD ,∠EAD=90°,CE 交 AB 于点 F ,CD=DF. (1)∠CAD=_________度; (2)求∠CDF 的度数;(3)用等式表示线段 C D 和 CE 之间的数量关系,并证明.例 4(房山二模)已知 AC =DC ,AC ⊥DC ,直线 MN 经过点 A ,作 DB ⊥MN ,垂足为 B ,连接 CB .(1)直接写出∠D 与∠MAC 之间的数量关系;(2)① 如图 1,猜想 AB ,BD 与 BC 之间的数量关系,并说明理由;② 如图 2,直接写出 AB ,BD 与 BC 之间的数量关系;(3)在 MN 绕点 A 旋转的过程中,当∠BCD =30°,BD= 2 时,直接写出 BC 的值.MAM例 5(丰台二模) 如图,正方形 ABCD 中,点 E 是 BC 边上的一个动点,连接 AE ,将线段 AE 绕点 A 逆时B(1)根据题意补全图形;NC D(3)当 AB =3,BE =2 时,求线段 BG 的长.BC DNE例 6(东城二模)如图所示,点 P 位于等边 △ABC 的内部,且图 ACP=∠CBP .(1) ∠BPC 的度数为________°;(2) 延长 BP 至点 D ,使得 PD =PC ,连接 AD ,CD .A B①依题意,补全图形;②证明:AD +CD =BD ;(3) 在(2)的条件下,若 BD 的长为 2,求四边形 ABCD 的面积.例 7(平谷二模)正方形 ABCD 的对角线 AC ,BD 交于点 O ,作∠CBD 的角平分线 BE ,分别交 CD ,OC 于点 E ,F .(1)依据题意,补全图形(用尺规作图,保留作图痕迹) AD第 2 页OB C(2)求证:CE=CF;第3页。
(完整版)北京中考压轴几何综合分类解析
二、几何综合题几何综合题是中考试卷中常见的题型,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键.常见的几何综合有六类:其中包括几何的三大变换,平移、旋转、对称。
还有特殊角,例如30°,45°,60°,120°,150°等。
另外还有特殊点问题,例如线段中点。
四点共圆在模拟考试中也略有涉及。
当然还有一些比较特殊的,需要具体分析题意得出结论。
一、几何三大变换几何变换一般解题思路根据变换性质,变换前后对应线段,对应角相等阶梯。
平移类:做辅助线方向,对应点连线,中(石景山)27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC ,平移线段BC ,使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.B旋转类:确定已知旋转线段,寻找与已知旋转线段相关的线段,进行旋转,构造全等三角形。
特殊角易(房山)27.已知:Rt△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D是BC边上一点(不与点B,C重合),连接AD,过点B作BE⊥AD,交AD的延长线于点E,连接CE.若∠BAD=α,求∠DBE的大小(用含α的式子表示) ;(2)如图2,点D在线段BC的延长线上时,连接AD,过点B作BE⊥AD,垂足E在线段AD上,连接CE.①依题意补全图2;②用等式表示线段EA,EB和EC之间的数量关系,并证明.B AA图1图2中(门头沟)27.如图,∠AOB = 90°,OC为∠AOB的平分线,点P为OC上一个动点,过点P作射线PE交OA于点E.以点P为旋转中心,将射线PE沿逆时针方向旋转90°,交OB于点F.(1)根据题意补全图1,并证明PE = PF;(2)如图1,如果点E在OA边上,用等式表示线段OE,OP和OF之间的数量关系,并证明;(3)如图2,如果点E在OA边的反向延长线上,直接写出线段OE,OP和OF之间的数量关系.PPEECCBBOOAA图 1 图2中(密云)27. 已知△ABC 为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60°得到线段CE .连结DE 、BE . (1)依题意补全图1并判断AD 与BE 的数量关系.(2)过点A 作AF EB 交EB 延长线于点F .用等式表示线段EB 、DB 与AF 之间的数量关系并证明.图2D CBA图1A B CD易(平谷)27.在△ABC 中,∠ABC =120°,线段AC 绕点A 逆时针旋转60°得到线段AD ,连接CD ,BD 交AC 于P .(1)若∠BAC =α,直接写出∠BCD 的度数 (用含α的代数式表示); (2)求AB ,BC ,BD 之间的数量关系; (3)当α=30°时,直接写出AC ,BD 的关系.对称:根据垂直平分线的性质,连接辅助线,构造全等三角形(通州)27.如图,在等边△ABC中,点D是线段BC上一点.作射线AD,点B关于射线AD的对称点为E.连接CE并延长,交射线AD于点F.(1)设∠BAF=α,用α表示∠BCF的度数;(2)用等式表示线段AF、CF、EF之间的数量关系,并证明.对称(大兴)27.在Rt△ABC中,∠ACB=90°,CA =CB.点D为线段BC上一个动点(点D不与点B,C重合),连接AD,点E在射线AB上,连接DE,使得DE=DA.作点E 关于直线BC(1)依题意补全图形;(2)求证:∠CAD =∠BDF ;(3)用等式表示线段AB ,BD ,BF 之间的数量关系,并证明.二、特殊角类:根据特殊角,以不破坏特殊角为原则,构造直角三角形。
北京中考几何综合题方法总结
北京中考几何综合题方法总结
几何综合题是中考数学中的重要内容之一,考查的是学生对几何概念和几何知识的掌握程度以及解题能力。
下面是一些解决几何综合题的方法总结:
1. 理清题意:阅读题目时要仔细理解题意,画出所给图形,并标记出已知条件和待求量。
2. 运用几何性质:根据已知条件运用几何性质进行推理,找到与待求量有关的几何关系。
3. 设辅助线:根据题目需要,可以设法引入一个或多个辅助线,从而将题目转化为更简单的几何问题。
4. 利用相似性质:通过观察图形的形状和条件,判断是否存在相似三角形,从而利用相似性质求解。
5. 利用比例关系:在相似三角形中,可以利用比例关系求解未知量。
6. 利用面积关系:根据题目中给出的面积关系和几何性质,利用面积关系求解未知量。
7. 利用三角关系:根据三角形内角和、外角和等关系,利用三角关系进行求解。
8. 利用平行线性质:根据平行线和交叉线的性质,利用平行线
性质进行推导和求解。
9. 利用余弦定理和正弦定理:如果题目中给出了三角形的三边、三角形的一个角和两边或者两个角和一边的关系,可以利用余弦定理和正弦定理进行求解。
10. 利用勾股定理:如果题目中给出了直角三角形的两个直角
边或者一个直角边和一个锐角边的关系,可以利用勾股定理求解。
总之,在解决几何综合题时,需要综合运用几何性质、相似性质、比例关系、面积关系、三角关系和平行线性质等知识,善于将题目进行转化和简化,注重思维的灵活运用。
此外,还需要进行合理的假设和辅助线的引入,以帮助解题。
最后,注意检查答案,查漏补缺,确保解题过程和结果的准确性。
2020年北京市中考数学专题复习 专题八 几何综合题
拓展2题解图
专题八 几何综合题
而∠DAH+∠BAH=90°,
∴∠BAG+∠BAH=90°,
即∠GAH=90°,
∴∠GAE=90°-∠EAF=45°, ∴∠GAE=∠HAE,
拓展2题解图
在△AEG和△AEH中,AG=AH ,∠EAG=∠EAH ,AE=AE ,
∴△AEG≌△AEH(SAS),
∴EG=EH,即BE+BG=EH,
专题八 几何综合题
证明:如解图,连接BD, ∵△ACB和△ECD都是等腰直角三角形, ∴∠ACB=∠ECD=90°,AC=BC,EC=DC, ∵∠ECA+∠ACD=90°,∠BCD+∠ACD=90°, ∴∠ACE=∠BCD, 在△ACE和△BCD中,CE=CD , ∠ACE=∠BCD ,AC=BC , ∴△ACE≌△BCD(SAS).
拓展1题解图
专题八 几何综合题
∴BD=AE,∠BDC=∠E, ∵∠E+∠CDE=90°, ∴∠BDC+∠CDE=90°, 即∠ADB=90°, 在Rt△ADB中,BD2+AD2=AB2, ∵AB2=2AC2,BD=AE, ∴AE2+AD2=2AC2.
拓展1题解图
专题八 几何综合题
教材母题3
(人教八下P62习题18.2第15题)
拓展3题解图②
专题八 几何综合题
W
点击链接至综合训练
专题八 几何综合题
专题八 几何综合题
【专题解读】几何综合题通常结合“平移、对称、旋转”三种变换方式, 通过构造全等三角形及构造直角三角形证明线段之间的数量关系. 常见解题 思路如下: 两条线段之间的数量关系:当问题中出现45°角时,线段之间的数量关系 往往与 2 有关,当问题中出现30°或60°角时,线段之间的数量关系往往 与 3 有关.尤其是要证明的结论与 2 或 3 有关时,就要想方设法构造含 30°,45°或60°角的直角三角形,从而通过等量代换证明结论. 三条线段之间的数量关系:通常通过构造全等三角形将三条线段进行等量 转换得出结论,或者将三条线段通过等量代换放入同一个直角三角形通过 勾股定理得出结论.
2023北京市中考数学二模试卷分类汇编——几何综合
2023北京市中考数学二模试卷分类汇编——几何综合1.(2023•海淀区二模)如图,在△ABC中,AB=AC,∠BAC=2α(45°<α<90°)D是BC的中点,E是BD的中点,连接AE.将射线AE绕点A逆时针旋转α得到射线AM,过点E作EF⊥AE交射线AM于点F.(1)①依题意补全图形;②求证:∠B=∠AFE;(2)连接CF,DF,用等式表示线段CF,DF之间的数量关系,并证明.2.(2023•西城区二模)如图,在△ABC中,边AB绕点B顺时针旋转α(0°<α<180°)得到线段BD,边AC绕点C逆时针旋转180°﹣α得到线段CE,连接DE,点F是DE 的中点.(1)以点F为对称中心,作点C关于点F的对称点G,连接BG,DG.①依题意补全图形,并证明AC=DG;②求证:∠DGB=∠ACB;(2)若α=60°,且FH⊥BC于H,直接写出用等式表示的FH与BC的数量关系.3.(2023•东城区二模)如图,在菱形ABCD中,∠BAD=60°,E是AB边上一点(不与A,B重合),点F与点A关于直线DE对称,连接DF.作射线CF,交直线DE于点P,设∠ADP=α.(1)用含α的代数式表示∠DCP;(2)连接AP,AF.求证:△APF是等边三角形;(3)过点B作BG⊥DP于点G,过点G作CD的平行线,交CP于点H.补全图形,猜想线段CH与PH之间的数量关系,并加以证明.4.(2023•朝阳区二模)在△ABC中,AC=BC,∠ACB=90°,点D在BC边上(不与点B,C重合),将线段AD绕点A顺时针旋转90度,得到线段AE,连接DE.(1)根据题意补全图形,并证明:∠EAC=∠ADC;(2)过点C作AB的平行线,交DE于点F,用等式表示线段EF与DF之间的数量关系,并证明.5.(2023•丰台区二模)如图,在等边△ABC中,点D,E分别在CB,AC的延长线上,且BD=CE,EB的延长线交AD于点F.(1)求∠AFE的度数;(2)延长EF至点G,使FG=AF,连接CG交AD于点H.依题意补全图形,猜想线段CH与GH的数量关系,并证明.6.(2023•石景山区二模)如图,在△ABC中,AB=AC,∠ACB=2α,BD平分∠ABC交AC于点E,点F是ED上一点且∠EAF=α,(1)求∠AFB的大小(用含α的式子表示);(2)连接FC.用等式表示线段FC与FA的数量关系,并证明.7.(2023•大兴区二模)如图,在△ABC中,∠B=45°,将线段AC绕点A逆时针旋转得到线段AD,且点D落在BC的延长线上,过点D作DE⊥AC于点E,延长DE交AB于点F.(1)依题意补全图形,求证:∠BDF=∠CAD;(2)用等式表示线段CD与BF之间的数量关系,并证明.8.(2023•房山区二模)如图,∠BAC=90°,AB=AC,点D是BA延长线上一点,连接DC,点E和点B关于直线DC对称,连接BE交AC于点F,连接EC,ED,DF.(1)依题意补全图形,并求∠DEC的度数;(2)用等式表示线段EC,ED和CF之间的数量关系,并证明.9.(2023•门头沟区二模)如图,在△ABC中,∠ACB=90°,点D在BC延长线上,且DC =AC,将△ABC延BC方向平移,使点C移动到点D,点A移动到点E,点B移动到点F,得到△EFD,连接CE,过点F作FG⊥CE于G.(1)依题意补全图形;(2)求证:CG=FG;(3)连接BG,用等式表示线段BG,EF的数量关系,并证明.10.(2023•昌平区二模)在等边△ABC中,点D是AB中点,点E是线段BC上一点,连接DE,∠DEB=α(30°≤α<60°),将射线DA绕点D顺时针旋转α,得到射线DQ,点F是射线DQ上一点,且DF=DE,连接FE,FC.(1)补全图形;(2)求∠EDF度数;(3)用等式表示FE,FC的数量关系,并证明.11.(2023•平谷区二模)在△ABC中,∠ACB=90°,点D为BC边上一点,E为AC延长线上的一点,CE=CD,F为CB边上一点,EF⊥射线AD于点K,过点D作直线DG⊥AB于G,交EF于点H,作∠AGD的角平分线交AD于M,过点M作AB的平行线,交DG于点O,交BC于点Q,交EF于点N,MO=NO.(1)找出图中和∠DHK相等的一个角,并证明;(2)判断EH、FN、MD的数量关系,并证明.12.(2023•顺义区二模)已知:∠ABC=120°,D,E分别是射线BA,BC上的点,连接DE,以点D为旋转中心,将线段DE绕着点D逆时针旋转60°,得到线段DF,连接EF,BF.(1)如图1,当BD=BE时,求证:BF=2BD;(2)当BD≠BE时,依题意补全图2,用等式表示线段BD,BF,BE之间的数量关系,并证明.13.(2023•以上二模)△ABC中,∠ACB=90°,AC=BC,点D为边AB的中点,点E在线段CD上,连接AE,将线段AE绕点A逆时针旋转90°得到线段AF,连接CF.(1)如图1,当点E与点D重合时,求证:CF=AE;(2)当点E在线段CD上(与点C,D不重合)时,依题意补全图2;用等式表示线段CF,ED,AD之间的数量关系,并证明.。
【精品】北师大初中数学中考冲刺:几何综合问题--知识讲解(基础).doc
中考冲刺:几何综合问题—知识讲解(基础)【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过 添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经 验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用 数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD 中,AB=12cm ,BC=6cm ,点P 沿AB 边从点A 开始向点B 以2cm/s 的速度移动;点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动.如果P 、Q 同时出发,用t(s)表示移动的时间(0≤t ≤6),那么:⑴当t 为何值时,△QAP 为等腰直角三角形?⑵求四边形QAPC 的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?D ABC QP【思路点拨】⑴中应由△QAP为等腰直角三角形这一结论,需补充条件AQ=AP,由AQ=6-t,AP=2t,可求出t的值;⑵中四边形QAPC是一个不规则图形,其面积可由矩形面积减去△DQC与△PBC的面积求出;⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论.力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC的面积也可由△QAC与△CAP的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.(永春县校级月考)如图,在梯形ABCD中,AD∥BC,AD=3,CD=5,BC=10,梯形的高为4,动点M从点B出发沿线段BC以每秒2个单位长度向终点C运动;动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒(1)直接写出梯形ABCD的中位线长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,使得MC=MN.【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(2016秋•泗阳县期末)(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD 为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①题(2)的结论还成立吗?请说明理由;②连结BE,若BE=10,BC=6,求AE的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出AC=DC+CE;(2)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE2+CD2=DE2,即可得到BD2+CD2=DE2;(3)①运用(2)中的方法得出BD2+CD2=DE2;②根据Rt△BCE中,BE=10,BC=6,求得=8,进而得出CD=8﹣6=2,在Rt△DCE中,求得,最后根据△ADE是等腰直角三角形,即可得出AE的长.【答案与解析】解:(1)①如图1,∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵BD=CE,AC=BC,又∵BC=BD+CD,∴AC=CE+CD;(2)BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,∵△ADE是等腰直角三角形,==∴【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0︒<∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD= °;(2)当BP在∠ABC的内部时(如图2),求∠BPD的度数;(3)当BP在∠ABC的外部时,请你直接写出∠BPD的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD.∵点D在∠PBC的平分线上,∴∠1=∠2.∵△ABC是等边三角形,∴ BA=BC=AC,∠ACB= 60°.∵ BP=BA,∴ BP=BC.∵ BD= BD,∴△PBD≌△CBD.∴∠BPD=∠3.∵ DB=DA ,BC=AC ,CD=CD ,∴ △BCD ≌△ACD .∴ 134302ACB ∠=∠=∠=︒.∴ ∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题4.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .举一反三【变式】在边长为2的菱形ABCD 中,∠B=45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折得△AB ′E ,那么△AB ′E 与四边形AECD 重叠部分的面积是 .【答案】在Rt △ABE 中,∵∠B=45°,AB=2,∴AE=BE=2 ,∴S △ABE =1.由翻折的性质可知:△AB ′E ≌△ABE ,∴EB ′=EB=2∴B ′C=BB ′-BC=22-2,∵四边形ABCD 是菱形,∴CF ∥BA .∴∠ B ′FC=∠B ′AB=90°, ∠B ′CF=∠B=45°∴CF='2B C ∴S B FC △' =221CF =3-22 ∴S 阴=S B E ′△A -S B FC ′△=22-2.5.如图,在等腰梯形ABCD 中,AB∥DC,∠A=45°,AB=10 cm ,CD=4 cm ,等腰直角△PMN 的斜边MN=10 cm , A 点与N 点重合, MN 和AB 在一条直线上,设等腰梯形ABCD 不动,等腰直角△PMN 沿AB 所在直线以1 cm /s 的速度向右移动,直到点N 与点B 重合为止.(1)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN 移动x (s)时,等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积为y(cm 2),求y 与x 之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN ,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x ≤6时,重叠部分的形状为等腰直角△EAN ,AN=x (cm ),过点E 作EH ⊥AB 于点H ,则EH 平分AN ,求出EH ,根据三角形的面积公式求出即可;②当6<x ≤10时,重叠部分的形状是等腰梯形ANED ,求出AN=x (cm ),CE=BN=10-x ,DE=x-6,过点D 作DF ⊥AB 于F ,过点C 作CG ⊥AB 于G ,求出DF ,代入梯形面积公式求出即可.【答案与解析】(1)等腰直角三角形;等腰梯形.(2)等腰直角△PMN在整个移动过程中与等腰梯形ABCD重合部分图形的形状可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E作EH⊥AB于点H,则EH平分AN,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=. ∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.。
2019北京市中考数学专题突破九:几何综合(含答案)
专题突破(九) 几何综合在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律.求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算.1.[2019·北京] 在正方形ABCD 中,BD 是一条对角线,点P 在射线CD 上(与点C ,D 不重合),连接AP ,平移△ADP ,使点D 移动到点C ,得到△BCQ ,过点Q 作QH ⊥BD 于点H ,连接AH ,PH .(1)若点P 在线段CD 上,如图Z9-1(a ). ①依题意补全图(a );②判断AH 与PH 的数量关系与位置关系,并加以证明.(2)若点P 在线段CD 的延长线上,且∠AHQ =152°,正方形ABCD 的边长为1,请写出求DP 长的思路.(可以不写出计算结果.........)图Z9-12.[2019·北京]在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图Z9-2①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.图Z9-23.[2019·北京]在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D.(1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图Z9-34.[2019·北京]在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段P A绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围.图Z9-45.[2011·北京]在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图Z9-5①中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.图Z9-51.[2019·怀柔一模]在等边三角形ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图Z9-6①;(2)若∠P AB=30°,求∠ACE的度数;(3)如图②,若60°<∠P AB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.图Z9-62.[2019·朝阳一模]在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B,C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图Z9-7(a),点D在BC边上.①依题意补全图(a);②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长.(2)如图(b),点D在BC边的延长线上,用等式表示线段AB,BD,BE之间的数量关系(直接写出结论).图Z9-73.[2019·海淀一模]在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:________.图Z9-84.[2019·海淀二模]如图Z9-9①,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示).(2)以AB,AE为边作平行四边形ABFE.①如图②,若点F恰好落在DE上,求证:BD=CD;②如图③,若点F恰好落在BC上,求证:BD=CF.图Z9-95.[2019·西城一模] 在△ABC 中,AB =AC ,取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图Z9-10①,如果∠BAC =90°,那么∠AHB =________°,AFBE =________;(2)如图②,如果∠BAC =60°,猜想∠AHB 的度数和AFBE 的值,并证明你的结论;(3)如果∠BAC =α,那么AFBE=________.(用含α的代数式表示)图Z9-106.[2019·丰台一模] 在△ABC 中,CA =CB ,CD 为AB 边上的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G .(1)如果∠ACB =90°,①如图Z9-11(a),当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形;②如图(b),当点P 不与点A 重合时,求CFPE的值.(2)如果∠CAB =a ,如图(c ),请直接写出CFPE的值.(用含a 的式子表示)图Z9-117.[2019·海淀]将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图Z9-12(a),若α=80°,则∠BDC的度数为________.②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图(b),以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED =90°,求α的值.图Z9-128.[2019·西城二模]正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图Z9-13①,若点E是DC的中点,CH与AB之间的数量关系是________.(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由.(3)如图③,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.图Z9-13参考答案1.解:(1)①如图(a)所示.②AH =PH ,AH ⊥PH . 证明:连接CH ,由条件易得:△DHQ 为等腰直角三角形, 又∵DP =CQ ,∴△HDP ≌△HQC , ∴PH =CH ,∠HPC =∠HCP . ∵BD 为正方形ABCD 的对称轴, ∴AH =CH ,∠DAH =∠HCP , ∴AH =PH ,∠DAH =∠HPC , ∴∠AHP =180°-∠ADP =90°, ∴AH =PH 且AH ⊥PH.(2)如图(b),过点H 作HR ⊥PC 于点R , ∵∠AHQ =152°, ∴∠AHB =62°, ∴∠DAH =17°, ∴∠DCH =17°.设DP =x ,则DR =HR =RQ =1-x2.由tan17°=HRCR 得1-x 21+x2=tan17°,∴x =1-tan17°1+tan17°.2.解:(1)补全图形如图①所示:(2)如图①,连接AE ,则∠P AB =∠P AE =20°,AE =AB. ∵四边形ABCD 是正方形, ∴∠BAD =90°,AB =AD , ∴∠EAD =130°,AE =AD. ∴∠ADF =25°.(3)如图②,连接AE ,BF ,BD.由轴对称的性质可得EF =BF ,AE =AB =AD ,∠ABF =∠AEF =∠ADF , ∴∠BFD =∠BAD =90°. ∴BF 2+FD 2=BD 2. ∴EF 2+FD 2=2AB 2.3.解:(1)∵AB =AC ,∠A =α,∴∠ABC =∠ACB =12(180°-∠A )=90°-12α.∵∠ABD =∠ABC -∠DBC ,∠DBC =60°, ∴∠ABD =30°-12α.(2)△ABE 是等边三角形. 证明:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60°得到线段BD , 则BC =BD ,∠DBC =60°. ∴△BCD 为等边三角形. ∴BD =CD.∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 与△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD , ∴△ABD ≌△ACD ,∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12α=∠BAD.在△ABD 和△EBC 中, ⎩⎪⎨⎪⎧∠BEC =∠BAD ,∠EBC =∠ABD ,BC =BD ,∴△ABD ≌△EBC , ∴AB =BE .又∵∠ABE =60°,∴△ABE 是等边三角形.(3)∵∠BCD =60°,∠BCE =150°, ∴∠DCE =150°-60°=90°. ∵∠DEC =45°,∴△DEC 为等腰直角三角形, ∴DC =CE =BC. ∵∠BCE =150°.∴∠EBC =12(180°-150°)=15°.∵∠EBC =30°-12α=15°,∴α=30°.4.解:(1)如图①,∵BA =BC ,∠BAC =60°,M 是AC 的中点, ∴BM ⊥AC ,AM =MC.∵将线段P A 绕点P 顺时针旋转2α得到线段PQ , ∴AM =MQ ,∠AMQ =120°, ∴CM =MQ ,∠ CMQ =60°, ∴△CMQ 是等边三角形, ∴∠ACQ =60°, ∴∠CDB =30°. (2)连接PC ,AD ,∵AB =BC ,M 是AC 的中点, ∴BM ⊥AC ,∴AD =CD ,AP =PC. 在△APD 与△CPD 中, ∵⎩⎪⎨⎪⎧AD =CD ,PD =PD ,P A =PC , ∴△APD ≌△CPD ,∴∠ADB =∠CDB ,∠P AD =∠PCD , ∴∠ADC =2∠CDB. 又∵PQ =P A ,∴PQ =PC ,∴∠PQC =∠PCD =∠P AD , ∴∠P AD +∠PQD =∠PQC +∠PQD =180°,∴∠APQ +∠ADC =360°-(∠P AD +∠PQD )=180°, ∴∠ADC =180°-∠APQ =180°-2α, ∴2∠CDB =180°-2α, ∴∠CDB =90°-α.(3)∵∠CDB =90°-α,且PQ =QD ,∴∠P AD =∠PCQ =∠PQC =2∠CDB =180°-2α. ∵点P 不与点B ,M 重合, ∴∠BAD >∠P AD >∠MAD , ∴2α>180°-2α>α, ∴45°<α<60°.5.解:(1)∵AF 平分∠BAD , ∴∠BAF =∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAF =∠CEF ,∠BAF =∠F . ∴∠CEF =∠F . ∴CE =CF .(2)∠BDG =45°.(3)如图,分别连接GB ,GE ,GC ,∵AD ∥BC ,AB ∥CD ,∠ABC =120°, ∴∠ECF =∠ABC =120°. ∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF .∴四边形CEGF 是菱形, ∴GE =EC ,①∠GCF =∠GCE =12∠ECF =60°,∴△ECG 与△FCG 是等边三角形, ∴∠GEC =∠FCG ,∴∠BEG =∠DCG ,②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB , ∴AB =BE .在▱ABCD 中,AB =DC , ∴BE =D C.③由①②③得△BEG ≌△DCG , ∴BG =DG ,∠1=∠2,∴∠BGD =∠1+∠3=∠2+∠3=∠EGC =60°, ∴∠BDG =180°-∠BGD2=60°.1.解:(2)连接AD ,如图①.∵点D 与点B 关于直线AP 对称,∴AD =AB ,∠DAP =∠BAP =30°,∵AB =AC ,∠BAC =60°,∴AD =AC ,∠DAC =120°, ∴2∠ACE +120°=180°.∴∠ACE =30°.(3)线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 证明:连接AD ,EB ,如图②.∵点D 与点B 关于直线AP 对称, ∴AD =AB ,DE =BE , 可证得∠EDA =∠EB A. ∵AB =AC ,AB =AD ,∴AD =AC ,∴∠ADE =∠ACE , ∴∠ABE =∠ACE . 设AC ,BE 交于点F ,∵∠AFB =∠CFE ,∴∠BAC =∠BEC =60°,∴线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 2.解:(1)①补全图形,如图(a )所示.②如图(b ),由题意可知AD =DE ,∠ADE =90°. ∵DF ⊥BC ,∴∠FDB =90°. ∴∠ADF =∠ED B.∵∠C =90°,AC =BC , ∴∠ABC =∠DFB =45°. ∴DB =DF .∴△ADF ≌△EDB. ∴AF =EB.在△ABC 和△DFB 中,∵AC =8,DF =3,∴AB =8 2,BF =3 2. AF =AB -BF =5 2, 即BE =5 2, (2)2BD =BE +AB.3.解:(1)补全图形,如图①所示.(2)方法一:证明:连接BE ,如图②. ∵四边形ABCD 是菱形, ∴AD ∥BC.∵∠ADC =120°, ∴∠DCB =60°.∵AC ]是菱形ABCD 的对角线, ∴∠DCA =12∠DCB =30°.∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∴∠GEB =∠DEC +∠BEC =100°. ∴∠GEB =∠CBE . ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°. ∴∠EBG =∠BEC.在△GEB 与△CBE 中, ⎩⎪⎨⎪⎧∠GEB =∠CBE ,BE =EB ,∠EBG =∠BEC ,∴△GEB ≌△CBE . ∴EG =BC .方法二:证明:连接BE ,设BG 与EC 交于点H ,如图②. ∵四边形ABCD 是菱形, ∴AD ∥BC.∵∠ADC =120°, ∴∠DCB =60°.∵AC 是菱形ABCD 的对角线, ∴∠DCA =12∠DCB =30°.∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°=∠BEC . ∴BH =EH .在△GEH 与△CBH 中, ⎩⎪⎨⎪⎧∠GEH =∠CBH ,EH =BH ,∠EHG =∠B HC , ∴△GEH ≌△CBH . ∴EG =BC .(3)AE +BG =3EG .4.解:(1)∠ADE =90°-α.(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴∠EDC =∠ABC =α. 由(1)知∠ADE =90°-α,∴∠ADC =∠ADE +∠EDC =90°. ∴AD ⊥BC. ∵AB =AC , ∴BD =CD.②证明:∵AB =AC ,∠ABC =α, ∴∠C =α.∵四边形ABFE 是平行四边形, ∴AE ∥BF ,AE =BF . ∴∠EAC =∠C =α.由(1)知∠DAE =180°-2∠ADE =180°-2(90°-α)=2α, ∴∠DAC =α. ∴∠DAC =∠C. ∴AD =CD .∵AD =AE =BF , ∴BF =CD. ∴BD =CF .5.解:(1)90 12(2)结论:∠AHB =90°,AF BE =32.证明:如图,连接AD .∵AB =AC ,∠BAC =60°, ∴△ABC 是等边三角形. ∵D 为BC 的中点, ∴AD ⊥BC.∴∠1+∠2=90°. 又∵DE ⊥AC , ∴∠DEC =90°. ∴∠2+∠C =90°. ∴∠1=∠C =60°. 设AB =BC =k (k >0), 则CE =12CD =k 4,DE =34k .∵F 为DE 的中点,∴DF =12DE =38k ,AD =32AB =32k .∴AD BC =32,DF CE =32. ∴AD BC =DF CE. 又∵∠1=∠C , ∴△ADF ∽△BCE . ∴AF BE =AD BC =32, ∠3=∠4.又∵∠4+∠5=90°,∠5=∠6, ∴∠3+∠6=90°. ∴∠AHB =90°. (3)12tan(90°-α2). 6.解:(1)①作图.△ADE (或△PDE ).②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,∴∠CPM =∠CAB. ∵∠CPE =12∠CAB ,∴∠CPE =12∠CPN .∴∠CPE =∠FPN .∵PF ⊥CG ,∴∠PFC =∠PFN =90°. ∵PF =PF ,∴△PFC ≌△PFN .∴CF =FN . 由①得:△PME ≌△CMN . ∴PE =CN .∴CF PE =CF CN =12.(2)12tan α. 7.解:(1)①30°.②不改变,∠BDC 的度数为30°. 方法一:由题意知AB =AC =A D.∴点B ,C ,D 在以点A 为圆心,AB 为半径的圆上. ∴∠BDC =12∠BAC =30°.方法二:由题意知AB =AC =A D. ∵AC =AD ,∠CAD =α,∴∠ADC =∠ABD =180°-α2=90°-12α.∵AB =AD ,∠BAD =60°+α,∴∠ADB =∠ABD =180°-()60°+α2=120°-α2=60°-12α.∴∠BDC =∠ADC -∠ADB =(90°-12α)-(60°-12α)=30°.(2)过点A 作AM ⊥CD 于点M ,连接EM .∴∠AMC =90°.在△AEB 与△AMC 中, ⎩⎪⎨⎪⎧∠AEB =∠AMC ,∠B =∠ACD ,AB =AC ,∴△AEB ≌△AMC.∴AE =AM ,∠BAE =∠CAM .∴∠EAM =∠EAC +∠CAM =∠EAC +∠BAE =∠BAC =60°. ∴△AEM 是等边三角形. ∴EM =AM =AE .∵AC =AD ,AM ⊥CD , ∴CM =DM .又∵∠DEC =90°, ∴EM =CM =DM . ∴AM =CM =DM .∴点A ,C ,D 在以M 为圆心,MC 为半径的圆上. ∴α=∠CAD =90°. 8.解:(1)CH =AB (2)结论成立.证明:如图,连接BE .在正方形ABCD 中,AB =BC =CD =AD ,∠A =∠BCD =∠ABC =90°. ∵DE =DF , ∴AF =CE .在△ABF 和△CBE 中, ⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCE ,AF =CE ,∴△ABF ≌△CBE . ∴∠1=∠2.∵EH ⊥BF ,∠BCE =90°,∴H ,C 两点都在以BE 为直径的圆上. ∴∠3=∠2. ∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC =90°, ∴∠4=∠HB C. ∴CH =CB. ∴CH =AB. (3)3 2+3.。
中考数学专题复习:几何综合题
【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段
北京中考几何综合题方法总结(一)
北京中考几何综合题方法总结(一)前言近年来,随着中考内容的多样化和难度的提升,几何综合题成为考试中不可忽视的一部分。
如何有效解题,成为备战中考的关键。
本文将针对北京中考几何综合题的方法进行总结,以帮助考生在备考中更好地应对这一考点。
正文掌握基本概念1.几何综合题通常涉及到三角形、四边形和圆等几何图形,首先要熟悉它们的基本概念和性质。
2.熟练掌握三角形的周长、面积、角和边的关系等基本公式,能够准确计算各种三角形相关的数据。
图形分解法1.针对复杂的几何综合题,可以尝试将图形分解成一些简单的几何图形,再利用已学过的知识进行解题。
2.对于具有对称性的图形,可以利用对称性将图形分解成几个相同或相似的部分,便于计算。
利用相似性质1.根据相似三角形的性质,可以得到边长比例、面积比例等有用的信息。
2.利用相似三角形的性质,可以得到对应角的大小关系,辅助求解题目。
辅助线的运用1.在解决几何综合题时,可以尝试引入辅助线,通过构造一些辅助图形,来帮助我们分析、解决问题。
2.合理选择辅助线的位置和方向,能够使问题的解决更加简便和直观。
多角关系的应用1.在解析几何综合题时,往往需要利用多个角的关系来求解。
2.例如,利用平行线之间的交角和内错角的性质,可以求解角度的大小,进而解决题目。
结尾掌握北京中考几何综合题的解题方法,需要对几何图形的基本概念有深刻的理解,熟悉几何公式和性质,并善于利用图形分解、相似性质、辅助线和多角关系等思路。
通过不断练习和思考,相信同学们能够在中考中取得优异的成绩!。
北京中考几何知识点归纳
北京中考几何知识点归纳北京中考几何知识点归纳涵盖了初中阶段几何学的核心概念和定理,以下是对这一部分内容的详细总结:1. 几何基础知识:- 点、线、面、体的定义和特性。
- 平面几何与立体几何的区别。
2. 直线与角:- 直线、射线、线段的特点和性质。
- 角的分类(锐角、直角、钝角、平角、周角)和性质。
- 角度的度量和换算。
3. 三角形:- 三角形的分类(等边、等腰、直角、锐角、钝角三角形)。
- 三角形的内角和定理(内角和为180°)。
- 三角形的外角定理。
- 三角形的中线、高线、角平分线、中位线的性质。
4. 四边形:- 平行四边形、矩形、菱形、正方形的性质和判定。
- 梯形的分类和性质。
- 四边形的对角线性质。
5. 圆:- 圆的定义和圆周角定理。
- 弧、弦、直径、半径、圆心角的性质。
- 切线的性质和判定。
- 圆的面积和周长的计算。
6. 相似与全等:- 相似图形和全等图形的定义与性质。
- 相似比和全等比的计算。
- 相似三角形的判定定理(AA、SAS、SSS、HL)。
7. 几何变换:- 平移、旋转、反射等几何变换的性质。
- 几何变换在图形证明中的应用。
8. 面积与体积:- 不规则图形面积的近似计算方法。
- 规则图形(如三角形、四边形、圆形)的面积计算。
- 立体图形(如长方体、圆柱、圆锥、球)的体积和表面积计算。
9. 几何证明:- 证明的基本方法和步骤。
- 常见几何证明的类型(如证明全等、相似、平行、垂直等)。
10. 坐标几何:- 坐标系中点的坐标表示。
- 坐标几何中图形的性质和计算。
结束语:通过以上对北京中考几何知识点的归纳,我们可以看到几何学在中考中的重要性和广泛性。
掌握这些基础知识点,不仅有助于解决中考中的几何问题,也为高中阶段的数学学习打下坚实的基础。
希望同学们能够认真学习和理解这些知识点,提高自己的几何解题能力。
中考数学几何综合题技巧
中考数学几何综合题技巧一.添辅助线有二种情况1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(7)相似三角形:相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。
北京市2018年初三数学二模各区县试题归类评析之几何综合题分类讲解(无答案)-文档资料
第 1 页初三数学二模各区县试题归类评析之几何综合题分类讲解关于几何综合题的解题方法与技巧 1.点的轴对称 垂直平分线 等线段或等腰△ 2.点或线段的旋转 等腰△3.共顶点的相似△旋转 全等或相似 二、关注特殊条件例如:中点 等腰△三线合一;RT △斜边中线;倍长中线;中位线 三、关注问题1.角度的计算或两角的关系:三角形或四边形内角和或外角;八字模型,飞镖模型;辅助圆2.线段的关系:两条线段的关系;三条线段的关系3.线段的计算:相似,勾股定理,三角函数,解斜△ 经典例题例1(17海淀期中). 在Rt△ABC 中,斜边AC 的中点M 关于BC 的对称点为点O ,将△ABC 绕点O 顺时针旋转至△DCE ,连接BD ,BE ,如图所示.(1)在①∠BOE ,②∠ACD ,③∠COE 中,等于旋转角的是________(填出满足条件的角的序号);(2)若∠A =α,求∠BEC 的大小(用含α的式子表示);(3)点N 是BD 的中点,连接MN ,用等式表示线段MN 与BE 之间的数量关系,并证明.例2(18海淀二模). 如图,在等边ABC △中,,D E 分别是边,AC BC 上的点,且CD CE = ,30DBC ∠<︒,点C 与点F 关于BD 对称,连接,AF FE ,FE 交BD 于G .(1)连接,DE DF ,则,DE DF 之间的数量关系是;EDNMB CAOGFEDCBA第 2 页(2)若DBC α∠=,求FEC ∠的大小; (用α的式子表示) (2)用等式表示线段,BG GF 和FA 之间的数量关系,并证明.例3((18朝阳二模)如图,在△ABC 中,AB=AC ,∠BAC=90°,M 是BC 的中点,延长AM 到点D ,AE= AD ,∠EAD=90°,CE 交AB 于点F ,CD=DF. (1)∠CAD=_________度; (2)求∠CDF 的度数;(3)用等式表示线段CD 和CE 之间的数量关系,并证明. 例4(房山二模)已知AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连接CB . (1)直接写出∠D 与∠MAC 之间的数量关系;(2)① 如图1,猜想AB ,BD 与BC 之间的数量关系,并说明理由;② 如图2,直接写出AB ,BD 与BC 之间的数量关系;(3)在MN 绕点A 旋转的过程中,当∠BCD =30°,BC 的值.例5(是BCAE 绕点A 逆时BD(1(2(3例6(东城二模)如图所示,点P 位于等边ABC △(1) ∠BPC 的度数为________°; (2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .①依题意,补全图形; ②证明:AD +CD =BD ;(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积. 例7(平谷二模)正方形ABCD 的对角线AC ,BD 交于点O ,作∠CBD 的角平分线BE ,分别交CD ,OC 于点E ,F .(1)依据题意,补全图形(用尺规作图,保留作图痕迹);(2)求证:CE=CF ;(3)求证:DE =2OF .图1CD。
【北师大版2020中考数学专项复习】:几何综合题
【北师大版2020中考数学专项复习】:几何综合问题【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用 数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接.(1)直接写出线段与的数量关系;(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)【思路点拨】本题的核心条件就是G 是中点,中点往往暗示很多的全等关系,如何构建一对我们想要的全等三角形就成为了分析的关键所在.连接AG 之后,抛开其他条件,单看G 点所在的四边形ADFE ,我们会发现这是一个梯形,于是根据我们在第一讲专题中所讨论的方法,自然想到过G 点做AD,EF 的垂线.于是两个全等的三角形出现了.第三问在△BEF 的旋转过程中,始终不变的依然是G 点是FD 的中点.可以延长一倍EG 到H ,从而构造一个和EFG 全等的三角形,利用BE=EF 这一条件将全等过渡.要想办法证明三角形ECH 是一个等腰直角三角形,就需要证明三角形EBC 和三角形CGH 全等,利用角度变换关系就可以得证了.【答案与解析】ABCD E BD E EF BD ⊥BC F DF G DF EG CG ,EG CG BEF ∆B 45︒DF G EG CG ,BEF ∆B 图3图2 图1F EA B C D A B C D E FG GF E DC BA(1)(2)(1)中结论没有发生变化,即.证明:连接,过点作于,与的延长线交于点.在与中,∵,∴.∴.在与中,∵, ∴.∴在矩形中,在与中,∵, ∴.∴.∴(3)(1)中的结论仍然成立.CG EG =CG EG =AG G MN AD ⊥M EF N DAG ∆DCG ∆AD CD ADG CDG DG DG =∠=∠=,,DAG DCG ∆∆≌AG CG =DMG ∆FNG ∆DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,DMG FNG ∆∆≌MG NG =AENM AM EN =Rt AMG ∆Rt ENG ∆AM EN MG NG ==,AMG ENG ∆∆≌AG EG =EG CG =MN图2A BC D E F G【总结升华】本题是一道典型的从特殊到一般的图形旋转题.从旋转45°到旋转任意角度,要求讨论其中的不变关系.举一反三:【变式】已知:如图(1),射线射线,是它们的公垂线,点、分别在、 上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合), 在运动过程中始终保持,且.(1)求证:∽;(2)如图(2),当点为边的中点时,求证:;(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示 的周长;若无关,请说明理由.【答案】 (1)证明:∵,∴.∴.又∵,∴.∴.∴∽.(2)证明:如图,过点作,交于点,G图3F E ABCD//AM BN AB D C AM BN D A C B E AB E A B EC DE ⊥a AB DE AD ==+ADE ∆BEC ∆E AB CD BC AD =+m AE =BEC ∆m m BEC∆EC DE ⊥︒=∠90DEC ︒=∠+∠90BEC AED ︒=∠=∠90B A ︒=∠+∠90EDA AED EDA BEC ∠=∠ADE ∆BEC ∆E EF BC //CD F∵是的中点,容易证明. 在中,∵ ,∴ . ∴ . ∴ .(3)解:的周长,.设,则.∵ ,∴ .即.∴ . 由(1)知∽,∴ . ∴ 的周长的周长. ∴ 的周长与值无关.2.在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD为一E AB )(21BC AD EF +=DEC Rt ∆CF DF =CD EF 21=)(21BC AD +CD 21=CD BC AD =+AED ∆DE AD AE ++=m a +=m a BE -=x AD =x a DE -=︒=∠90A 222AD AE DE +=22222x m x ax a +=+-am a x 222-=ADE ∆BEC ∆的周长的周长BEC ∆∆ADE BEAD =m a a m a --=222a m a 2+=BEC ∆⋅+=m a a 2ADE ∆a 2=BEC ∆m边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,,CD=,求线段CP 的长.(用含的式子表示)【思路点拨】(1)由题干可以发现,正方形中四条边的垂直关系是不动的,于是利用角度的互余关系进行传递,就可以得解.(2)是典型的从特殊到一般的问法,那么思路很简单,就是从一般中构筑一个特殊的条件就行,和上题一样找AC 的垂线,就可以变成第一问的条件,然后一样求解.(3)D 在BC 之间运动和它在BC 延长线上运动时的位置是不一样的,所以已给的线段长度就需要分情况去考虑到底是4+X 还是4-X.分类讨论之后利用相似三角形的比例关系即可求出CP.【答案与解析】(1)结论:CF ⊥BD ;证明如下:AB=AC ,∠ACB =45º,∴∠ABC=45º.由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º,∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD .∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .(2)CF ⊥BD .(1)中结论仍成立.理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD3 BC xx(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q ,①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴DQ=4-x ,易证△AQD ∽△DCP ,∴ ,∴, .②点D 在线段BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x .过A 作AQ ⊥BC ,∴∠Q=∠FQC=90°,∠ADQ=∠AFC ,则△AQD ∽△ACF .∴CF ⊥BD ,∴△AQD ∽△DCP ,∴, ∴, CP CD DQ AQ =44CP x x =-24x CP x ∴=-+CD DQ AQ 4+4x x =. 【总结升华】此题综合性强,需要综合运用全等、相似、正方形等知识点,属能力拔高性的题目.3.已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处.(1)当=1 时,CF=______cm , (2)当=2 时,求sin∠DAB′ 的值; (3)当= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).【思路点拨】动态问题未必只有点的平移、图形的旋转,翻折(即轴对称)也是一大热点.(1)给出比例为1,(2)比例为2,(3)比例任意,所以也是一道很明显的从一般到特殊的递进式题目.需要仔细把握翻折过程中哪些条件发生了变化,哪些条件没有发生变化.一般说来,翻折中,角,边都是不变的,所以轴对称图形也意味着大量全等或者相似关系,所以要利用这些来获得线段之间的比例关系.尤其要注意的是,本题中给定的比例都是有两种情况的,E 在BC 上和E 在延长线上都是可能的,所以需要分类讨论,不要遗漏.【答案与解析】(1)CF=6cm ;(2)① 如图1,当点E 在BC 上时,延长AB ′交DC 于点M ,24x CP x ∴=+CE BE CE BE CEBE 图1∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴ . ∵ =2, ∴ CF=3. ∵ AB ∥CF ,∴∠BAE=∠F .又∠BAE=∠B ′ AE , ∴ ∠B ′ AE=∠F .∴ MA=MF .设MA=MF=k ,则MC=k -3,DM=9-k .在Rt △ADM 中,由勾股定理得:k 2=(9-k)2+62, 解得 k=MA=. ∴ DM=. ∴ sin ∠DAB ′=; ②如图2,当点E 在BC 延长线上时,延长AD 交B ′ E 于点N ,FCAB CE BE =CE BE 13252135=AM DM图2同①可得NA=NE .设NA=NE=m ,则B ′ N=12-m .在Rt △AB ′ N 中,由勾股定理,得m 2=(12-m)2+62, 解得 m=AN=. ∴ B ′N=. ∴ sin ∠DAB ′=. (3)①当点E 在BC 上时,y=; ②当点E 在BC 延长线上时,y=. 【总结升华】动态几何问题当中有点动,线动,乃至整体图形动几种可能的方式,动态几何问题往往作为压轴题出现,所以难度不言而喻,但是拿到题后不要慌张,因为无论是题目以哪种形式出现,始终把握的都是在变化过程中那些不变的量.只要一个个将条件抽出来,将大问题化成若干个小问题去解决,就很轻松了.类型二、几何计算型问题4.已知如图,在梯形中,点是的中点,是等边三角形.(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变.设 求与的函数关系式;(3)在(2)中,当取最小值时,判断的形状,并说明理由.【思路点拨】(1)属于纯静态问题,只要证两边的三角形全等就可以了.(2)是双动点问题,所以就需要研究在P,Q 运动过程中什么东西是不变的.题目给定∠MPQ=60°,其实就1529253='AN N B 18x x 1+18x 18x -ABCD 24AD BC AD BC ==∥,,,M AD MBC △ABCD P Q BC MC 60MPQ =︒∠PC x MQ y ==,,y x y PQC△是将静态的那个等边三角形与动态条件联系了起来.因为最终求两条线段的关系,所以很自然想到要通过相似三角形找比例关系.(3)条件又回归了当动点静止时的问题,由第二问所得的二次函数,很轻易就可以求出当x 取对称轴的值时y 有最小值,接下来就变成了“给定PC=2,求△PQC 形状”的问题了,由已知的BC=4,自然看出P 是中点,于是问题轻松求解.【答案与解析】(1)证明:∵是等边三角形∴∵是中点∴∵∴∴∴∴梯形是等腰梯形.(2)解:在等边中, ∴ ∴∴∴ ∵ ∴∴ ∴MBC △60MB MC MBC MCB ===︒,∠∠M AD AM MD =AD BC ∥60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠AMB DMC △≌△AB DC =ABCD MBC △4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠120BMP BPM BPM QPC +=+=︒∠∠∠∠BMP QPC =∠∠BMP CQP △∽△PC CQ BM BP=PC x MQ y ==,44BP x QC y =-=-,444x y x -=-2144y x x =-+(3)解:为直角三角形,∵ ∴当取最小值时,∴是的中点,而∴∴∴为直角三角形.【总结升华】以上题目是动点问题,这一类问题的关键就在于当动点移动中出现特殊条件,例如某边相等,某角固定时,将动态问题化为静态问题去求解.如果没有特殊条件,那么就需要研究在动点移动中哪些条件是保持不变的.举一反三:【高清课堂:几何综合问题 例3】【变式】已知:如图,N 、M 是以O 为圆心,1为半径的圆上的两点,B 是上一动点(B 不与点M 、N 重合),∠MON=90°,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)四边形EPGQ (填“是”或者“不是”)平行四边形;(2)若四边形EPGQ 是矩形,求OA 的值.PQC △()21234y x =-+y 2x PC ==P BC MP BC ⊥,60MPQ =︒∠,30CPQ =︒∠,90PQC =︒∠PQC △MN【答案】(1)是.证明:连接OB,如图①,∵BA⊥OM,BC⊥ON,∴∠BAO=∠BCO=90°,∵∠AOC=90°,∴四边形OABC是矩形.∴AB∥OC,AB=OC,∵E、G分别是AB、CO的中点,∴AE∥GC,AE=GC,∴四边形AECG为平行四边形.∴CE∥AG,∵点D、E、F、G分别是线段OA、AB、BC、CO的中点,∴GF∥OB,DE∥OB,∴PG∥EQ,∴四边形EPGQ是平行四边形;(2)解:如图②,∵口EPGQ 是矩形. ∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE .∴△AED ∽△BCE ,∴, 设OA=x ,AB=y ,则 得y 2=2x 2,又∵OA 2+AB 2=OB 2, 即x 2+y 2=12.∴x 2+2x 2=1,解得:x=. 即当四边形EPGQ 是矩形时,OA 的长度为. 5.在中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转得到线段EF (如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.AD AE BE BC=::222x y y x =3333ABCD 909090(2)若AD=6,tanB=,AE=1,在①的条件下,设CP 1=,S =,求与之间的函数关系式,并写出自变量的取值范围.图1 备用图【思路点拨】(1)本题在于如何把握这个旋转90°的条件.旋转90°自然就是垂直关系,于是出现了一系列直角三角形,于是证角、证线就手到擒来了.(2)是利用平行关系建立函数式,但是不要忘记分类讨论.【答案与解析】(1)①直线与直线的位置关系为互相垂直.证明:如图1,设直线与直线的交点为.∵线段分别绕点逆时针旋转90°依次得到线段,∴.∵,, ∴. 43x 11P FC y y xx 1FG CD 1FG CD H 1EC EP 、E 1EF EG 、111190PEG CEF EG EP EF EC ∠=∠===°,,1190G EF PEF ∠=-∠°1190PEC PEF ∠=-∠°11G EF PEC ∠=∠FDC BAE 图1 G 2 G 1P 1 H P 2∴. ∴. ∵,∴, ∴.∴.∴.∴.②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直.(2)∵四边形是平行四边形,∴.∵, ∴. 可得.由(1)可得四边形为正方形.∴.①如图2,当点在线段的延长线上时,11G EF PEC △≌△11G FE PCE ∠=∠EC CD ⊥190PCE ∠=°190G FE ∠=°90EFH ∠=°90FHC ∠=°1FG CD ⊥12G G CD ABCD B ADC ∠=∠461tan 3AD AE B ===,,45tan tan 3DE EBC B =∠==,4CE =EFCH 4CH CE ==1P CH∵, ∴. ∴. ②如图3,当点在线段上(不与两点重合)时,∵, ∴. ∴. ③当点与点重合时,即时,不存在.1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯⨯=△212(4)2y x x x =->1P CH C H 、1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯=△212(04)2y x x x =-+<<1P H 4x =11PFG △综上所述,与之间的函数关系式及自变量的取值范围是或. 【总结升华】本题着重考查了二次函数的解析式、图形的旋转变换、三角形全等、探究垂直的构成情况等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法. 举一反三:【变式】已知,点P 是∠MON 的平分线上的一动点,射线PA 交射线OM 于点A ,将射线PA 绕点P 逆时针旋转交射线ON 于点B ,且使∠APB+∠MON=180°.(1)利用图1,求证:PA=PB ;(2)如图2,若点C 是AB 与OP 的交点,当S △POB =3S △PCB 时,求PB 与PC 的比值;(3)若∠MON=60°,OB=2,射线AP 交ON 于点D ,且满足且∠PBD=∠ABO ,请借助图3补全图形,并求OP 的长.【答案】(1)作PE ⊥OM,PF ⊥ON ,垂足为E 、F∵四边形OEPF 中,∠OEP=∠OFP=90°,∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB ,即∠EPA+∠APF=∠APF+∠FPB ,∴∠EPA=∠FPB ,由角平分线的性质,得PE=PF ,∴△EPA ≌△FPB ,即PA=PB ;y x x 212(4)2y x x x =->212(04)2y x x x =-+<<(2)∵S △POB =3S △PCB ,∴PO=3PC ,又∵∠BPC=∠OPB (公共角),∴△PBC ∽△POB ,即PB 2=PO •PC=3PC 2,(3)作BH ⊥OT ,垂足为H ,当∠MON=60°时,∠APB=120°,又∵∠PBD=∠ABO ,∠PBD+∠PBA+∠ABO=180°,在△OBP 中,∵∠BOP=30°,∴∠BPO=45°,在Rt △PBH 中,PH=BH=1,中考冲刺:几何综合问题—巩固练习(提高)【巩固练习】一、选择题1.如图,直角三角板ABC 的斜边AB=12cm ,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6cmB.4cmC.cmD.cm2.如图,△ABC 和△DEF 是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B 与点D 重合,点A ,B (D ),E 在同一条直线上,将△ABC 沿DE 方向平移,至点A 与点E 重合时停止.设点B ,D 之间的距离为x ,△ABC 与△DEF 重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( )A B C D二、填空题3.如图,将两块直角三角板的斜边重合,E 是两直角三角形公共斜边AC 的中点.D 、B 分别为直角顶点,连接DE 、BE 、DB ,∠DAC=60°,∠BAC=45°.则∠EDB 的度数为_______.4.如图,一块直角三角形木板△ABC ,将其在水平面上沿斜边AB 所在直线按顺时针方向翻滚,使它滚动(6-()6cm .三、解答题5.如图,在正方形ABCD 中,对角线AC 与BD 相交于点E ,AF 平分∠BAC ,交BD 于点F.(1)EF+AC =AB ; (2)点C 1从点C 出发,沿着线段CB 向点B 运动(不与点B 重合),同时点A 1从点A 出发,沿着BA 的延长线运动,点C 1与点A 1运动速度相同,当动点C 1停止运动时,另一动点A 1也随之停止运动.如图,AF 1平分∠B A 1 C 1,交BD 于F 1,过F 1作F 1E 1⊥A 1 C 1,垂足为E 1,试猜想F 1E 1,A 1 C 1与AB 之间的数量关系,并证明你的猜想.(3)在(2)的条件下,当A 1 E 1=3,C 1 E 1=2时,求BD 的长.21216.如图,等腰Rt△ABC 中,∠C=90°,AC=6,动点P 、Q 分别从A 、B 两点同时以每秒1个单位长的速度按顺时针方向沿△ABC 的边运动,当Q 运动到A 点时,P 、Q 停止运动.设Q 点运动时间为t 秒,点P 运动的轨迹与PQ 、AQ 围成图形的面积为S.求S 关于t 的函数解析式.7.正方形ABCD中,点F 为正方形ABCD 内的点,△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合.(1)如图1,若正方形ABCD 的边长为2,BE=1,FC=,求证:AE ∥BF ;(2)如图2,若点F 为正方形ABCD 对角线AC 上的点,且AF :FC=3:1,BC=2,求BF 的长.8.将正方形ABCD 和正方形BEFG 如图1摆放,连DF .3∠DMC=_____;∠DMC的值,并证明你的结论;∠DMC=_________.请画出图形,并直接写出你的结论(不用证明).9.已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接10.将正方形ABCD 和正方形CGEF 如图1摆放,使D 点在CF 边上,M 为AE 中点,(1)连接MD 、MF ,则容易发现MD 、MF 间的关系是______________(2)操作:把正方形CGEF 绕C 点旋转,使对角线CE 放在正方形ABCD 的边BC 的延长线上(CG >BC ),取线段AE 的中点M ,探究线段MD 、MF 的关系,并加以说明;(3)将正方形CGEF 绕点C 旋转任意角度后(如图3),其他条件不变,(2)中的结论是否仍成立?直接写出猜想,不需要证明.图3D E C F GM B A 图2CF MA B D E G 图1A B G MF ED C【答案与解析】一、选择题1.【答案】C.2.【答案】B.二、填空题3.【答案】15°.4.三、解答题5.【答案与解析】 (1)证明:如图1,过点F 作FM ⊥AB于点M ,在正方形ABCD 中,AC ⊥BD 于点E . ∴AE=AC ,∠ABD=∠CBD=45°, ∵AF 平分∠BAC ,∴EF=MF ,又∵AF=AF ,∴Rt △AMF ≌Rt △AEF ,∴AE=AM ,∵∠MFB=∠ABF=45°,∴MF=MB ,MB=EF ,∴EF+AC=MB+AE=MB+AM=AB .1212证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,∵A1F1平分∠BA1C1,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,又∵A1F1=A1F1,∴Rt△A1E1F1≌Rt△A1PF1,∴A1E1=A1P,同理Rt△QF1C1≌Rt△E1F1C1,∴C1Q=C1E1,由题意:A1A=C1C,∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB,∵PB=PF1=QF1=QB,∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,(3)解:设PB=x,则QB=x,∵A1E1=3,QC1=C1E1=2,Rt△A1BC1中,A1B2+BC12=A1C12,即(3+x)2+(2+x)2=52,∴x1=1,x2=-6(舍去),∴PB=1,∴E1F1=1,又∵A1C1=5,6.【答案与解析】当P运动到C点时:t=6当Q运动到A点:t=∴分两种情况讨论(1)当0≤t≤6时,如图:作PH⊥AB于H,则△APH为等腰直角三角形此时AP=t,BQ=t,则AQ=-tPH=APsin45°=t∴S△AQP=AQ·PH=·(-t)·t=t2+3t(2)当6<t≤时,如图:过P过PH⊥AB于H,此时△PBH为等腰直角三角形AC+CP=t,BQ=t∴BP=AC+CB-(AC+CP)=12-t∴PH=BPsin45°=(12-t)∴S四边形AQPC=S△ABC-S△BPQ=AC·BC-BQ·PH=·6·6-·t·(12-t)=18-t+t 2=t 2-t+18.综上,.7.【答案与解析】(1)证明:∵△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC在△BFC 中,BC2=22=4∴BF 2+FC 2=BC 2∴∠BFC=90°…(3分)∴∠AEB+∠EBF=180°∴AE ∥BF …(4分)(2)解:∵Rt △ABC 中,AB=BC=2,由勾股定理,得∵AF :FC=3:1,∵△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合∵四边形ABCD 是正方形∴∠ABC=90°∴∠BAC+∠ACB=90°∴∠EAB+∠BAC=90°即∠EAF=90°在Rt△EBF中,EF2=BE2+BF2∵BE=BF8.【答案与解析】(1)如图2,连接BF,∵四边形ABCD、四边形BEFG是正方形,∴∠FBC=∠CBD=45°,∴∠CBD=∠GBC=90°,而BF=BG,BD=BC,∴△BFD∽△BGC,∴∠BCG=∠BDF,=而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,∴=,∠DMC=45°;(2)如图3,∵将图1中的正方形BEFG绕B点顺时针旋转45°,DF的延长线交CG于M,∴B、E、D三点在同一条直线上,22DFCGBFBGDFCG2而四边形ABCD 、四边形BEFG 是正方形,∴△BFD ∽△BGC, 而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90° =45°,即∠DMC=45°;9.【答案与解析】(1)CE ⊥BD .(2)延长CE 交BD 于M ,设AB 与EM 交于点F .∵∠BAC=∠DAE=90°,∴∠CAE=∠BAD .又∵△ABC ≌△ADE ,∴AC=AE ,AB=AD ,∴∠ACE=,∠ABD=, ∴∠ACE=∠ABD .又∵∠AFC=∠BFM ,∠AFC+∠ACE=90°, ∴∠ABD+∠BFM=90°,∴∠BMC=90°,∴CE ⊥BD .(3)过C ′作C ′G ⊥AM 于G ,过D 作DH ⊥AM 交延长线于点H . 01802CAE -∠01802BAD -∠∵∠∠E ′NA=∠AGC ′=90°,∴∠NE ′A+∠NAE ′=90°,∠NAE ′+∠C ′AG=90°,∴∠NE ′A=∠C ′AG , ∵AE ′=AC ′∴△ANE ′≌△C ′GA (AAS ),∴AN=C ′G .同理可证△BNA ≌△AHD ,AN=DH .∴C ′G=DH .在△C ′GM 与△DHM 中,∠C ′GM=∠DHM=90°,∠C ′MG=∠DMH ,C ′G=DH ,∴△C ′GM ≌△DHM ,∴C ′M=DM ,∴. 10.【答案与解析】如图1,延长DM 交FE 于N ,图1∵正方形ABCD 、CGEF ,∴CF=EF ,AD=DC ,∠CFE=90°,AD ∥FE ,∴∠1=∠2,又∵MA=ME ,∠3=∠4,∴△AMD ≌△EMN ,∴MD=MN ,AD=EN .∵AD=DC ,12DM DC ='∴DC=NE.又∵FC=FE,∴FD=FN.又∵∠DFN=90°,∴FM⊥MD,MF=MD;(2)MD=MF,MD⊥MF.如图2,延长DM交CE于N,连接FD、FN.∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2.又∵AM=EM,∠3=∠4,∴△ADM≌△ENM,∴AD=EN,MD=MN.∵AD=DC,∴DC=NE.又∵正方形CGEF,∴∠FCE=∠NEF=45°,FC=FE,∠CFE=90°.又∵正方形ABCD,∴∠BCD=90°,∴∠DCF=∠NEF=45°,∴△FDC≌△FNE,∴FD=FN,∠5=∠6,∠DFN=∠5+∠CFN=∠6+∠CFN=90°,∴△DFN为等腰直角三角形,且FM为斜边DN上的中线,∴MD=MF,MD⊥MF;(3)FM⊥MD,MF=MD.如图3,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.∴∠ADC=∠H,AD∥EH,∴∠3=∠4.∵AM=ME,∠1=∠2,∴△AMD≌△EMN,∴DM=NM,AD=EN.∵正方形ABCD、CGEF,∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°.∴∠H=90°,∠5=∠NEF,DC=NE.∴∠DCF+∠7=∠5+∠7=90°,∴∠DCF=∠5=∠NEF.∵FC=FE,∴△DCF≌△NEF.∴FD=FN,∠DFC=∠NFE.∵∠CFE=90°,∴∠DFN=90°.∴FM⊥MD,MF=MD.。
2014-2023北京中考真题数学汇编:几何综合
2014-2023北京中考真题数学汇编几何综合 一、解答题1.(2023·北京·统考中考真题)在ABC 中、()045B C αα∠=∠=°<<°,AM BC ⊥于点M ,D 是线段MC 上的动点(不与点M ,C 重合),将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1,当点E 在线段AC 上时,求证:D 是MC 的中点;(2)如图2,若在线段BM 上存在点F (不与点B ,M 重合)满足DF DC =,连接AE ,EF ,直接写出AEF ∠的大小,并证明.2.(2022·北京·统考中考真题)在ABC 中,90ACB ∠= ,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC =(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.3.(2021·北京·统考中考真题)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明; (2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明. 4.(2020·北京·统考中考真题)在ABC 中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF ⊥DE ,交直线BC 于点F ,连接EF .7.(2017·北京·中考真题)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.8.(2016·北京·中考真题)在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有P A=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明P A=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明P A=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证P A=PM,只需证P A=CK,PM=CK.请你参考上面的想法,帮助小茹证明P A=PM(一种方法即可).9.(2015·北京·统考中考真题)在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)参考答案1.(1)见解析(2)90AEF ∠=°,证明见解析 【分析】(1)由旋转的性质得DM DE =,2MDE α∠=,利用三角形外角的性质求出C DEC α∠=∠=,可得DE DC =,等量代换得到DM DC =即可;(2)延长FE 到H 使FE EH =,连接CH ,AH ,可得DE 是FCH V 的中位线,然后求出B ACH ∠∠=,设DMDE m ==,CD n =,求出2BF m CH ==,证明()SAS ABF ACH ≅ ,得到AF AH =,再根据等腰三角形三线合一证明AE FH ⊥即可.【详解】(1)证明:由旋转的性质得:DM DE =,2MDE α∠=, ∵C α∠=, ∴D DEC M E C α∠−∠∠==, ∴C DEC ∠=∠, ∴DE DC =,∴DM DC =,即D 是MC 的中点;(2)90AEF ∠=°; 证明:如图2,延长FE 到H 使FE EH =,连接CH ,AH ,∵DF DC =,∴DE 是FCH V 的中位线,∴DE CH ∥,2CH DE =,由旋转的性质得:DM DE =,2MDE α∠=, ∴2FCH α∠=, ∵B C α∠=∠=, ∴ACH α∠=,ABC 是等腰三角形, ∴B ACH ∠∠=,AB AC =,设DMDE m ==,CD n =,则2CH m =,CM m n =+, ∴DFCD n ==, ∴FM DF DM n m =−=−, ∵AM BC ⊥,∴BM CM m n ==+,∴()2BF BM FM m n n m m =−=+−−=,∴CH BF =,在ABF △和ACH 中,AB AC B ACH BF CH = ∠=∠ =,∴()SAS ABF ACH ≅ ,∴AF AH=,∵FE EH =,∴AE FH ⊥,即90AEF ∠=°.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.2.(1)见解析(2)CD CH =;证明见解析【分析】(1)先利用已知条件证明()SAS FCE BCD ≅ ,得出CFE CBD ??,推出EF BD ∥,再由AF EF ⊥即可证明BD AF ⊥;(2)延长BC 到点M ,使CM =CB ,连接EM ,AM ,先证()SAS MEC BDC ≅ ,推出ME BD =,通过等量代换得到222AM AE ME =+,利用平行线的性质得出90BHE AEM ???,利用直角三角形斜边中线等于斜边一半即可得到CD CH =.【详解】(1)证明:在FCE △和BCD △中,CE CD FCE BCD CF CB = ∠=∠ =, ∴ ()SAS FCE BCD ≅ ,∴ CFE CBD ??,∴ EF BD ∥,∵AF EF ⊥,∴BD AF ⊥.(2)解:补全后的图形如图所示,CD CH =,证明如下:延长BC 到点M ,使CM =CB ,连接EM ,AM ,∵90ACB ∠= ,CM =CB ,【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.5.(1)如图所示见解析;(2)见解析;(3)OP=2.证明见解析.【分析】(1)根据题意画出图形即可.(2)由旋转可得∠MPN=150°,故∠OPN=150°-∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°-30°-∠OPM=150°-∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN ≌△QDP,所以OC=QD.再设DM=CP=x,所以OC=OP+PC=2+x,MH=MD+DH=x+1,由于点M、Q关于点H对称,得出DQ=DH+HQ=1+x+1=2+x,得出OC=DQ,再利用SAS得出△OCN≌△QDP即可【详解】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN-∠OPM=150°-α∵∠AOB=30°∴∠OMP=180°-∠AOB-∠OPM=180°-30°-α=150°-α∴∠OMP=∠OPN8.(1)80°;(2)①补图见解析;②证明见解析【分析】(1)根据等腰三角形的性质得到∠APQ考点:全等三角形的判定;解直角三角形;正方形的性质;四点共圆。
中考数学几何证明题分类讲解
中考数学几何证明题分类讲解一、【知识要点】1.几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2.掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
二、【分类讲解】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1.已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。
是AB 中点,可考虑连结CD,易得CD AD =,∠=︒DCF 45。
从而不难发现∆∆DCF DAE≅证明:连结CDAC BCA BACB AD DBCD BD AD DCB B AAE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
北师大初中数学中考冲刺:几何综合问题--知识讲解(基础)
中考冲刺:几何综合问题—知识讲解(基础)【中考展望】几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力.这类题型在近几年全国各地中考试卷中占有相当的分量,不仅有选择题、填空题、几何推理计算题以及代数与几何的综合计算题,还有更注重考查学生分析问题和解决问题能力的探究性的问题、方案设计的问题等等.主要特点是图形较复杂,覆盖面广、涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.【方法点拨】一、几何计算型综合问题,常常涉及到以下各部分的知识:1、与三角形有关的知识;2、等腰三角形,等腰梯形的性质;3、直角三角形的性质与三角函数;4、平行四边形的性质;5、全等三角形,相似三角形的性质;6、垂径定理,切线的性质,与正多边形有关的计算;7、弧长公式与扇形面积公式.二、几何论证型综合题的解答过程,要注意以下几个方面:1、注意图形的直观提示,注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形;2、注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础,要由已知联想经验,由未知联想需要,不断转化条件和结论来探求思路,找到解决问题的突破点;3、要运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题,还要灵活运用数学思想方法如数形结合、分类讨论、转化、方程等思想来解决问题.【典型例题】类型一、动态几何型问题1.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6),那么:⑴当t为何值时,△QAP为等腰直角三角形?⑵求四边形QAPC的面积;提出一个与计算结果有关的结论;⑶当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?【思路点拨】⑴中应由△QAP 为等腰直角三角形这一结论,需补充条件AQ=AP ,由AQ=6-t ,AP=2t ,可求出t 的值;⑵中四边形QAPC 是一个不规则图形,其面积可由矩形面积减去△DQC 与△PBC 的面积求出;⑶中由于题目中未给出三角形的相似对应方式,因此需分类讨论.【答案与解析】 解:(1)对于任何时刻t ,AP=2t ,DQ=t ,QA=6-t .当QA=AP 时,△QAP 为等腰直角三角形,即6-t=2t ,解得:t=2(s ),所以,当t=2s 时,△QAP 为等腰直角三角形.【总结升华】本题是动态几何题,同时也是一道探究题.要求学生具有一定的发现、归纳和表达能力,这就要求我们通过计算分析,抓住其本质,揭示出变中不变的规律.四边形QAPC 的面积也可由△QAC 与△CAP 的面积求出,;⑶中考查了分类讨论的数学思想,结论具有一定的开放性.2.(永春县校级月考)如图,在梯形ABCD 中,AD∥BC,AD=3,CD=5,BC=10,梯形的高为4,动点M 从点B 出发沿线段BC 以每秒2个单位长度向终点C 运动;动点N 同时从点C 出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒(1)直接写出梯形ABCD 的中位线长;D AB C QP(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,使得MC=MN.【思路点拨】(1)直接利用梯形中位线的定理求出即可;(2)平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)利用MC=MN时,结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.【答案与解析】解:(1)∵AD=3,BC=10,∴梯形ABCD的中位线长为:(3+10)÷2=6.5;(2)如图1,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG,∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴△MNC∽△GDC.∴=,即=.解得,t=;(3)当MC=MN时,如图2,过M作MF⊥CN于F点,FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC,∴=,即=,解得:t=.综上所述,t=时,MC=MN.【总结升华】解决动点问题,首先就是要找谁在动,谁没动,通过分析动态条件和静态条件之间的关系求解,但是对于大多数题目来说,都有一个由动转静的拐点.3.(2016秋•泗阳县期末)(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②AC=CE+CD;聪明的小明做完上题后进行了进一步变式探究.(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD 为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想线段BD、CD、DE之间会有怎样的关系,请直接写出,不需论证;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①题(2)的结论还成立吗?请说明理由;②连结BE,若BE=10,BC=6,求AE的长.【思路点拨】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE,即可得出结论;②由△ABD≌△ACE,以及等边三角形的性质,就可以得出AC=DC+CE;(2)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根据勾股定理得出CE2+CD2=DE2,即可得到BD2+CD2=DE2;(3)①运用(2)中的方法得出BD2+CD2=DE2;②根据Rt△BCE中,BE=10,BC=6,求得=8,进而得出CD=8﹣6=2,在Rt△DCE中,求得,最后根据△ADE是等腰直角三角形,即可得出AE的长.【答案与解析】解:(1)①如图1,∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵BD=CE,AC=BC,又∵BC=BD+CD,∴AC=CE+CD;(2)BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:如图3,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,∵△ADE是等腰直角三角形,==∴【总结升华】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质以及勾股定理的综合应用.举一反三:【变式】△ABC是等边三角形,P为平面内的一个动点,BP=BA,若0︒<∠PBC<180°,且∠PBC平分线上的一点D满足DB=DA,(1)当BP与BA重合时(如图1),∠BPD= °;(2)当BP 在∠ABC 的内部时(如图2),求∠BPD 的度数;(3)当BP 在∠ABC 的外部时,请你直接写出∠BPD 的度数,并画出相应的图形.【答案】(1)∠BPD= 30°;(2)如图3,连结CD .∵ 点D 在∠PBC 的平分线上,∴ ∠1=∠2.∵ △ABC 是等边三角形,∴ BA=BC=AC ,∠ACB= 60°.∵ BP=BA ,∴ BP=BC .∵ BD= BD ,∴ △PBD ≌△CBD .∴ ∠BPD=∠3.∵ DB=DA ,BC=AC ,CD=CD ,∴ △BCD ≌△ACD .∴ 134302ACB ∠=∠=∠=︒.∴ ∠BPD =30°.(3)∠BPD= 30°或 150°.类型二、几何计算型问题4.如图,直角三角形纸片ABC 中,∠ACB=90°,AC=8,BC=6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E.(1) DE 的长为 ;(2) 将折叠后的图形沿直线AE剪开,原纸片被剪成三块,其中最小一块的面积等于.【答案与解析】举一反三【变式】在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,那么△AB′E与四边形AECD重叠部分的面积是 . 【答案】在Rt△ABE中,∵∠B=45°,AB=2,∴AE=BE=2,∴S△ABE=1.由翻折的性质可知:△AB ′E ≌△ABE ,∴EB ′=EB=2∴B ′C=BB ′-BC=22-2,∵四边形ABCD 是菱形,∴CF ∥BA .∴∠ B ′FC=∠B ′AB=90°, ∠B ′CF=∠B=45°∴CF='2B C ∴S B FC △' =221CF =3-22 ∴S 阴=S B E ′△A -S B FC′△=22-2.5.如图,在等腰梯形ABCD 中,AB∥DC,∠A=45°,AB=10 cm ,CD=4 cm ,等腰直角△PMN 的斜边MN=10 cm , A 点与N 点重合, MN 和AB 在一条直线上,设等腰梯形ABCD 不动,等腰直角△PMN 沿AB 所在直线以1 cm /s 的速度向右移动,直到点N 与点B 重合为止.(1)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重叠部分的形状由________形变化为________形;(2)设当等腰直角△PMN 移动x (s)时,等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积为y(cm 2),求y与x 之间的函数关系式;(3)当x=4 (s)时,求等腰直角△PMN 与等腰梯形ABCD 重叠部分的面积.【思路点拨】(1)根据已知求出∠PNM=∠DAB=45°,求出∠AEN ,根据等腰直角三角形的判定判断即可;推出∠DAB=∠PNM=45°,根据等腰梯形的判定判断即可;(2)可分为以下两种情况:①当0<x ≤6时,重叠部分的形状为等腰直角△EAN ,AN=x (cm ),过点E 作EH ⊥AB 于点H ,则EH 平分AN ,求出EH ,根据三角形的面积公式求出即可;②当6<x ≤10时,重叠部分的形状是等腰梯形ANED ,求出AN=x (cm ),CE=BN=10-x ,DE=x-6,过点D 作DF ⊥AB 于F ,过点C 作CG ⊥AB 于G ,求出DF ,代入梯形面积公式求出即可.【答案与解析】(1)等腰直角三角形;等腰梯形.(2)等腰直角△PMN 在整个移动过程中与等腰梯形ABCD 重合部分图形的形状可分为以下两种情况:①当0<x≤6时,重叠部分的形状为等腰直角△EAN(如图①).此时AN=x(cm),过点E 作EH ⊥AB 于点H ,则EH 平分AN ,∴EH=AN=x,∴y=S△ANE=AN·EH=x·x=.②当6<x≤10时,重叠部分的形状是等腰梯形ANED(如图②).此时,AN=x(cm),∵∠PNM=∠B=45°,∴EN∥BC,∵CE∥BN,∴四边形ENBC是平行四边形,CE=BN=10-x,DE=4-(10-x)=x-6,过点D作DF⊥AB于F,过点C作CG⊥AB于G,则AF=BG,DF=AF=(10-4)=3,∴y=S梯形ANED=(DE+AN)·DF=(x-6+x)×3=3x-9.综上,.(3)当等腰直角△PMN运动到PN边经过点D时,移动时间为6(s),∴当x=4 (s)时,y=x2=×42=4.∴当x=4 (s)时,等腰直角△PMN与等腰梯形ABCD重叠部分的面积是4cm2.【总结升华】本题主要考查对等腰梯形的性质和判定,等腰三角形的性质和判定,三角形的内角和定理,三角形的面积,平移的性质,等腰直角三角形等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.举一反三:【变式】如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30°.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围;(2)当五边形BCDNM面积最小时,请判断△AMN的形状.【答案】(1)过点N作BA的垂线NP,交BA的延长线于点P.则AM=x,AN=20-x.∵四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30°,∴∠PAN=∠D=30°.在Rt△APN中,PN=AN×sin∠PAN=(20-x),即N到AB距离为(20-x).∵点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,∴x取值范围是0≤x≤15.(2)∵S五边形BCDNM=S梯形-S△AMN且S梯形为定值,∴当S五边形BCDMN最小时,应使S△AMN最大据(1),S△AMN=AM·NP=.∵<0,∴当x=10时,S△AMN有最大值.∴当x=10时,S五边形BCDNM有最小值.当x=10时,即ND=AM=10,AN=AD-ND=10,即AM=AN.则当五边形BCDNM面积最小时,△AMN为等腰三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学二模各区县试题归类评析之几何综合题分类讲解
关于二模几何综合题的分类
关于几何综合题的解题方法与技巧
一、关注背景图形和变换操作
1.点的轴对称垂直平分线等线段或等腰△
2.点或线段的旋转等腰△
3.共顶点的相似△旋转全等或相似
二、关注特殊条件
例如:中点等腰△三线合一;RT△斜边中线;倍长中线;中位线
三、关注问题
1.角度的计算或两角的关系:三角形或四边形内角和或外角;八字模型,飞镖模型;辅助圆
2.线段的关系:两条线段的关系;三条线段的关系
3.线段的计算:相似,勾股定理,三角函数,解斜△
经典例题
例1(17海淀期中).在Rt△ABC中,斜边AC的中点M关于BC的对称点为
点O,将△ABC绕点O顺时针
旋转至△DCE,连接BD,BE,如图所示.
(1)在①∠BOE,②∠ACD,③∠COE中,等于旋转角的是________(填出
满足条件的角的序号);
(2)若∠A=α,求∠BEC的大小(用含α的式子表示);
(3)点N是BD的中点,连接MN,用等式表示线段MN与BE之间的数量关系,并证明.
E
D N
M B C A
O
例2(18海淀二模). 如图,在等边ABC △中,,D E 分别是边,AC BC 上的点,且
CD CE = ,30DBC ∠<︒,点C 与点F 关于BD 对称,连接,AF FE ,FE
交BD 于G .
(1)连接,DE DF ,则,DE DF 之间的数量关系是;
(2)若DBC α∠=,求FEC ∠的大小; (用α的式子表示) (2)用等式表示线段,BG GF 和FA 之间的数量关系,并证明.
例3((18朝阳二模)如图,在△ABC 中,AB=AC ,∠BAC=90°,M 是BC 的中点,延长AM 到点D ,AE= AD ,∠EAD=90°,CE 交AB 于点F ,CD=DF. (1)∠CAD=_________度; (2)求∠CDF 的度数;
(3)用等式表示线段CD 和CE 之间的数量关系,并证明.
例4(房山二模)已知AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连接CB . (1)直接写出∠D 与∠MAC 之间的数量关系;
(2)① 如图1,猜想AB ,BD 与BC 之间的数量关系,并说明理由;
② 如图2,直接写出AB ,BD 与BC 之间的数量关系;
(3)在MN 绕点A 旋转的过程中,当∠BCD =30°,BD= 2 时,直接写出BC 的值.
G
F
E
D
C
B
A
图1 C A
D
B
N
图2
C
A
D
B N
例5(丰台二模) 如图,正方形ABCD 中,点E 是BC 边上的一个动点,连接AE ,将线段AE 绕点A 逆时
针旋转90°,得到AF ,连接EF ,交对角线BD 于点G ,连接AG . (1)根据题意补全图形;
(2)判定AG 与EF 的位置关系并证明;
(3)当AB =3,BE =2时,求线段BG 的长.
例6(东城二模)如图所示,点P 位于等边ABC △的内部,且∠ACP =∠CBP . (1) ∠BPC 的度数为________°;
(2) 延长BP 至点D ,使得PD =PC ,连接AD ,CD .
①依题意,补全图形; ②证明:AD +CD =BD ;
(3) 在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.
例7(平谷二模)正方形ABCD 的对角线AC ,BD 交于点O ,作∠CBD 的角平分线BE ,分别交CD ,OC 于点E ,F . (1)依据题意,补全图形(用尺规作图,保留作图痕迹);
(2)求证:CE=CF ; (3)求证:DE =2OF .
A B C
E D O。