南京市2015届高三年级第三次模拟考试数学试卷(扫描版)
江苏省南京市2015届高考全真模拟数学试题
江苏省南京市2015届高考全真模拟数学试题注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。
本卷满分160分,考试时间为120分钟。
考试结束后,请将本卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。
作答必须用0.5毫米黑色墨水的签字笔。
请注意字体工整,笔迹清楚。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
6.请保持答题卡卡面清洁,不要折叠、破损。
一、填空题:本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.1、复数1i1i 2等于___ ★ ___ 2、函数sin(2)6π=-y x 的最小正周期为___ ★ ___ 3、已知集合⎭⎬⎫⎩⎨⎧-==24x x y x A ,(]a B ,∞-=,若A B ⊆,则实数a 的取值范围是___ ★ ___4、为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下: 明文 密文 密文 明文已知加密为2-=xa y (x 为明文、y 为密文),如果明文“3”通过加密后得到密文为“6”, 再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文 是___ ★ ___5、为了在运行下面的程序之后得到输出y =25,键盘输入x 应该是___ ★ ___ Input xIf x<0 theny=(x+1)*(x+1) Elsey=(x-1)*(x-1)End ifPrint y End6、已知向量 1),θ=a ,(1 cos ),θ=b ,则⋅a b 的最大值为___ ★ ___7、在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数22()2π=+-+f x x ax b 有零点的概率为___ ★ ___解密 加密 发送8、若函数123+++=mx x x y 是R 上的单调函数,则实数m 的取值范围是___ ★ ___ 9、设0)()(0,,),1(log )(223≥+≥++++=b f a f b a b a x x x x f 是则对任意实数的___ ★ ___条件。
江苏省南京市2015届高三第三次模拟考试数学试题 含解析
第Ⅰ卷(共160分)一、填空题:本大题共142个小题,每小题5分,共70分.1。
已知复数z =错误!-1,其中i 为虚数单位,则z 的模为 ▲ . 【答案】5【解析】 试题分析:222(1)11121(1)(1)i i i z i i i i i i +=-=-=+-=-+--+,25z i =-+= 考点:复数的运算.2。
经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:排队人数 0 1 2 3 4 ≥5概率0。
1 0.16 0.3 0。
3 0.1 0。
04则该营业窗口上午9点钟时,至少有2人排队的概率是 ▲ .【答案】0。
74 【解析】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.3。
若变量x ,y 满足约束条件错误!则z =2x +y 的最大值是 ▲ . 【答案】4l OxyCBA考点:线性规划.4.右图是一个算法流程图,则输出k 的值是 ▲【答案】6考点:循环结构,程序框图.5.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 ▲ .【答案】甲【解析】试题分析:甲成绩为87,89,90,91,93,其平均值为90,方差为2,乙成绩为78,88,89,96,99,其平均值为90,方差为53.2,故甲较稳定。
考点:茎叶图,方差.6。
记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B.若“x错误!A"是“x错误!B"的充分条件,则实数a的取值范围为▲.【答案】(-∞,-3]【解析】试题分析:由已知{|32}=>,由题意A B⊆,故3B x x aA x x=-<<,{|}a≤-.考点:充分必要条件,集合的关系。
7。
在平面直角坐标系xOy中,过双曲线C:x2-错误!=1的右焦点F 作x轴的垂线l,则l与双曲线C的两条渐近线所围成的三角形的面积是▲.【答案】43【解析】试题分析:双曲线的准线为3=±,右焦点为(2,0),学科网把2y xx=代入准线方程得23y=±因此所求面积为124343⨯⨯=2考点:双曲线的性质.8.已知正六棱锥P -ABCDEF 的底面边长为2,侧棱长为4,则此六棱锥的体积为 ▲ . 【答案】12 【解析】试题分析:由己知正六棱锥的高为224223h =-=,底面面积为2332632S =⨯=,所以1163231233V Sh ==⨯⨯=.考点:几何体的体积。
高三数学-2015届高三3月综合测试数学试题
2015届高三3月综合测试数学试题一、填空题:本大题共14个小题,每小题5分,共70分.1.设复数122i ,i z z m =-=+(m ∈R ,i 为虚数单位),若12z z ⋅为实数,则m 的值为 ▲ . 【答案】2 【解析】试题分析:12(2i )(i)=(2m+1)+(2-m)i z z m ⋅=-+为实数,所以20, 2.m m -== 考点:复数概念,复数运算2.已知集合{2}A a =+,{1,1,3}B =-,且A B ⊆,则实数a 的值是 ▲ . 【答案】1 【解析】试题分析:由题意得:2,21,32,23,1a a a a ===或,解得1a = 考点:集合包含关系3.某林场有树苗3000棵,其中松树苗400棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的棵数为 ▲ . 【答案】20 【解析】试题分析:松树苗的棵数为400150=203000⨯ 考点:分层抽样4.在ABC ∆的边AB 上随机取一点P , 记CAP ∆和CBP ∆的面积分别为1S 和2S ,则122S S >的概率是 ▲ . 【答案】13【解析】试题分析:当12=2S S 时,点P 为边AB 三等分点M (靠近B 点),所以122S S >的概率是13BM AB = 考点:几何概型概率5.已知双曲线22221x y a b-=的一条渐近线方程为20x y -=,则该双曲线的离心率为 ▲【解析】试题分析:双曲线22221x y a b -=的渐近线方程为22220x y by x a b a-==±,,所以2,,a b c e ===考点:双曲线的离心率,双曲线渐近线6.右图是一个算法流程图,则输出S 的值是 ▲ .【答案】25 【解析】试题分析:第一次循环: 1,3S n ==,第二次循环: 4,5S n ==,第三次循环: 9,7S n ==,第四次循环: 16,9S n ==,第五次循环: 25,1110S n ==>,结束循环,输出25S = 考点:循环结构流程图7.函数()lg(23)x x f x =-的定义域为 ▲ . 【答案】(,0)-∞ 【解析】试题分析:由题意得230,23,0x x x x x ->><,所以定义域为(,0)-∞ 考点:函数定义域8.1,则此三棱锥的体积为 ▲ . 【答案】16【解析】,体积为21136=考点:三棱锥的体积9.在△ABC 中,已知3AB =,o 120A =,且ABC ∆的面积为,则BC 边长为 ▲ . 【答案】7 【解析】1sin 153,52bc A bc c b =⨯⨯⇒=⇒==,由余弦定理得22212cos 25930()49,7.2a b c bc A a =+-=+-⨯-==考点:余弦定理,三角形面积10.已知函数()2f x x x =-,则不等式)(1)f x f ≤的解集为 ▲ . 【答案】[)1,-+∞ 【解析】试题分析:由题意得:()f x 在(,1)-∞上单调递增,在(1,2)上单调递减,在(2,)+∞上单调递增,且1)(1)1f f ==,所以)(1)11f x f x x -⇔-+⇔≥-≤,即解集为[)1,-+∞考点:利用函数性质解不等式11.已知函数()2sin(2)(0)4f x x ωωπ=->的最大值与最小正周期相同,则函数()f x 在[11]-,上的单调增区间为 ▲ .【答案】13[,]44-【解析】试题分析:由题意得:2222T ππωω==⇒=,所以22()242k x k k Z ππππππ-≤-≤+∈,即1322()44k x k k Z -≤≤+∈,又[11]x ∈-,,所以1344x -≤≤,即单调增区间为13[,]44- 考点:三角函数性质12.设等比数列{}n a 的前n 项和为n S ,若435a a a ,,成等差数列,且33k S =,163k S +=-,其中k *∈N ,则2k S +的值为 ▲ . 【答案】129【解析】试题分析:由题意得:23452=+21(),2a a a q q q q ⇒=+⇒==-舍,由33k S =,163k S +=-得112196192k k k k k a S S a a q ++++=-=-==,,所以263+192=129k S +=-考点:等比数列性质13.在平面四边形ABCD 中,已知3AB =,2DC =,点,E F 分别在边,AD BC 上,且3AD AE = ,3BC BF = .若向量AB 与DC 的夹角为60,则AB EF ⋅ 的值为 ▲ .【答案】7 【解析】试题分析:因为,EF EA AB BF EF ED DC CF =++=++ ,所以32EF AB DC =+,从而1293222733AB DC AB EF AB ⨯+⨯⨯+⋅=⋅== 考点:向量数量积14.在平面直角坐标系xOy 中,若动点(,)P a b 到两直线1l :y x =和2l :2y x =-+的距离之和为22a b +的最大值为 ▲ . 【答案】18 【解析】=|||2|4a b a b -++-=,其图像为一个正方形,四个顶点分别为(1,1),(1,3),(3,1),(3,3)A B C D ----, 而22a b +表示到原点距离的平方,所以22a b +的最大值为218OD = 考点:线性规划求最值二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)已知向量(cos ,sin )θθ=a ,(2,1)=-b . (1)若⊥a b ,求sin cos sin cos θθθθ-+的值;(2)若2-=a b ,(0,)2θπ∈,求sin()4θπ+的值.【答案】(1) 13【解析】试题分析:(1)先由向量垂直得到等量关系:sin 2cos θθ=,再代入式子化简即可:sin cos 2cos cos 1sin cos 2cos cos 3θθθθθθθθ--==++ (2)先由2-=a b得-ab 2=,化简得12cos sin 0θθ-+=,再根据平方关系22cos sin 1θθ+=解得3sin 54cos 5θθ⎧=⎪⎪⎨⎪=⎪⎩,所以34sin()cos )()455θθθπ+=+=+=试题解析:(2)由(cos 2,sin 1)θθ-=-+a b 可得,-ab 2=,即12cos sin 0θθ-+=, ① ………………………………………10分 又22cos sin 1θθ+=,且(0,)2θπ∈ ②,由① ②可解得,3sin 54cos 5θθ⎧=⎪⎪⎨⎪=⎪⎩,……12分所以34sin()cos )()455θθθπ+=+=+=. ……………………14分考点:向量垂直,同角三角函数关系16.(本小题满分14分)如图,在三棱锥P ABC -中,点,E F 分别是棱,PC AC 的中点.(1)求证:PA //平面BEF ;(2)若平面PAB ⊥平面ABC ,PB BC ⊥,求证:BC PA ⊥.【答案】(1) 详见解析(2)详见解析 【解析】试题分析:(1)证明线面平行,一般利用其判定定理,即从线线平行出发,利用中位线性质得到//PA EF ,再结合线面平行判定定理条件进行论证,(2)先将面面垂直条件转化为线面垂直,过点P 作PD AB ⊥,则PD ⊥平面ABC ,从而PD BC ⊥,又P B B C ⊥,从而BC ⊥平面PAB ,因此BC PA ⊥试题解析:(1)在PAC ∆中,E 、F 分别是PC 、AC 的中点,所以//PA EF , 又PA ⊄平面BEF ,EF ⊂平面BEF ,所以//PA 平面BEF .……………………………………6分 (2)在平面PAB 内过点P 作PD AB ⊥,垂足为D . 因为平面PAB ⊥平面ABC ,平面PAB 平面ABC AB =,PD ⊂平面PAB ,所以PD ⊥平面ABC ,………………8分又BC ⊂平面ABC ,所以PD BC ⊥,…………………………10分考点:线面平行判定定理,面面垂直性质定理17.(本小题满分14分)某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?【答案】(1) 10210xxθ+=+ (2) 1x = 【解析】试题分析:(1)将扇环面的两段弧长和直线段长分别用θ与x 表示后,利用其和为30列式,再解出θ即可;(2)将花坛的面积和装饰总费用分别用θ与x 表示,再利用第(1)问的结果消去x ,从而可得到y 关于x 函数,然后可利用导数或基本等式求其最小值,并确定y 取最小值时x 的值.试题解析:(1)设扇环的圆心角为 ,则()30102(10)x x θ=++-, 所以10210xxθ+=+,…………………………………4分 (2) 花坛的面积为2221(10)(5)(10)550,(010)2x x x x x x θ-=+-=-++<<.…………7分装饰总费用为()9108(10)17010x x x θ++-=+, ……………………9分 所以花坛的面积与装饰总费用的比22550550==1701010(17)x x x x y x x -++---++, …11分令17t x =+,则3913243()101010y t t =-+≤,当且仅当t=18时取等号,此时121,11x θ==.答:当1x =时,花坛的面积与装饰总费用的比最大.…………………14分 (注:对y 也可以通过求导,研究单调性求最值,同样给分) 考点:函数在实际问题中的应用,基本不等式的应用. 18.(本小题满分16分)已知ABC ∆的三个顶点(1,0)A -,(1,0)B ,(3,2)C ,其外接圆为H . (1)若直线l 过点C ,且被H 截得的弦长为2,求直线l 的方程;(2)对于线段BH 上的任意一点P ,若在以C 为圆心的圆上都存在不同的两点,M N ,使得点M 是线段PN 的中点,求C 的半径r 的取值范围.【答案】(1) 3x =或4360x y --=. (2) 【解析】试题分析:(1)求ABC ∆的外接圆方程可用待定系数法或利用两边垂直平分线的交点先求出圆心,再利用两点之间距离公式求出半径,求出圆的方程后再利用待定系数法求出直线的方程,此时要注意分直线斜率存在和不存在两种情况讨论;(2)可设出点,P N 的坐标,再把点M 的坐标用其表示,把点,M N 的坐标代入圆的方程,利用方程组恒有解去考察半径的取值范围,但要注意,,P N M 三点不能重合,即圆和线段BH 无公共点.试题解析:(1)线段AB 的垂直平分线方程为0x =,线段BC 的垂直平分线方程为30x y +-=,所以外接圆圆心(0,3)H,H 的方程为22(3)10x y +-=.………………4分设圆心H 到直线l 的距离为d ,因为直线l 被H 截得的弦长为2,所以3d =. 当直线l 垂直于x 轴时,显然符合题意,即3x =为所求;…………………………6分 当直线l 不垂直于x 轴时,设直线方程为2(3)y k x -=-3=,解得43k =, 综上,直线l 的方程为3x =或4360x y --=. ……………………………………8分 (2) 直线BH 的方程为330x y +-=,设(,)(01),(,)P m n m N x y ≤≤, 因为点M 是点P ,N 的中点,所以(,)22m x n yM ++,又,M N 都在半径为r 的C 上, 所以222222(3)(2),(3)(2).22x y r m x n y r ⎧-+-=⎪⎨++-+-=⎪⎩即222222(3)(2),(6)(4)4.x y r x m y n r ⎧-+-=⎪⎨+-++-=⎪⎩……………10分 因为该关于,x y 的方程组有解,即以(3,2)为圆心r 为半径的圆与以(6,4)m n --为圆心2r 为半径的圆有公共点,所以2222(2)(36)(24)(2)r r m n r r -≤-++-+≤+, …12分 又330m n +=-,所以2221012109r m m r +-≤≤对[01]m ∀∈,]成立. 而()2101210f m m m =+-在上的值域为[325,10],故2325r ≤且2r 10≤9. 15分又线段BH 与圆C 无公共点,所以222(3)(332)m m r -+-->对[01]m ∀∈,成立,即2325r <.故C 的半径r的取值范围为. ……………………………16分 考点:圆的方程,直线与圆的位置关系,圆与圆的位置关系.19.(本小题满分16分)已知函数325()2f x x x ax b =+++(,a b 为常数),其图象是曲线C .(1)当2a =-时,求函数()f x 的单调减区间;(2)设函数()f x 的导函数为()f x ',若存在唯一的实数0x ,使得00()f x x =与0()0f x ='同时成立,求实数b 的取值范围;(3)已知点A 为曲线C 上的动点,在点A 处作曲线C 的切线1l 与曲线C 交于另一点B ,在点B 处作曲线C 的切线2l ,设切线12,l l 的斜率分别为12,k k .问:是否存在常数λ,使得21k k λ=?若存在,求出λ的值;若不存在,请说明理由.【答案】 (1)1(2,)3-;(2)71(,)(,)548-∞--+∞ ;(3)当2512a =时,存在常数4λ=,使214k k =;当2512a ≠时,不存在常数λ,使21k k λ=. 【解析】(3) 设00(,())A x f x ,则点A 处切线方程为000()()()y f x f x x x '-=-,与曲线C :()y f x =联立方程组,得000()()()()f x f x f x x x '-=-,即2005()[(2)]02x x x x -++=,所以B 点的横坐标05(2)2B x x =-+. (12)分由题意知,21000()35k f x x x a '==++,22000525(2)122024k f x x x a '=--=+++,若存在常数λ,使得21k k λ=,则220000251220(35)4x x a x x a λ+++=++, 即常数λ,使得20025(4)(35)(1)4x x a λλ-+=--, 所以常数λ,使得40,25(1)0.4a λλ-=⎧⎪⎨--=⎪⎩解得常数λ,使得4λ=,2512a =. ………15分故当2512a =时,存在常数4λ=,使214k k =;当2512a ≠时,不存在常数λ,使21k k λ=.16分考点:函数与方程、导数的综合应用. 20.(本小题满分16分)已知数列{}n a 满足1a x =,23a x =,2*1132(2,)n n n S S S n n n +-++=+∈N ≥,n S 是数列{}n a 的前n 项和.(1)若数列{}n a 为等差数列. (ⅰ)求数列的通项n a ;(ⅱ)若数列{}n b 满足2n a n b =,数列{}n c 满足221n n n n c t b tb b ++=--,试比较数列{}n b 前n 项和n B 与{}n c 前n 项和n C 的大小;(2)若对任意*n ∈N ,1n n a a +<恒成立,求实数x 的取值范围. 【答案】(1)(ⅰ)21n a n =-;(ⅱ)详见解析;(2)137,156⎛⎫⎪⎝⎭.【解析】试题分析:(1)(ⅰ)由12,a a 可得12,S S ,在递推关系式2*1132(2,)n n n S S S n n n +-++=+∈N ≥中,由12,S S 可求3S ,进而求出3a ,于是可利用{}n a 是等差数列求出x 的值,最后可求出{}n a 的通项公式,(ⅱ)易知()21641n n C t t B =--,所以要比较n C 和n B 的大小,只需确定n B 的符号和21641t t --和1的大小关系问题,前者易知为正,后者作差后判断符号即可;(2)本题可由递推关系式21132n n n S S S n +-++=+通过变形得出36(2)n n a a n +-=≥,于是可以看出任意*n ∈N ,1n n a a +<恒成立,须且只需12345a a a a a <<<<,从而可以求出x 的取值范围. 试题解析:(1)(ⅰ)因为21132(2,*)n n n S S S n n n +-++=+∈N ≥,所以32114S S S ++=,即3212314a a a ++=,又12,3a x a x ==,所以3149a x =-, ……………………2分 又因为数列{}n a 成等差数列,所以2132a a a =+,即()6149x x x =+-,解得1x =, 所以()()()1111221*n a a n d n n n =+-=+-⨯=-∈N ; ……………………4分 (ⅱ)因为()21*n a n n =-∈N ,所以21220n a n n b -==>,其前n 项和0n B >,又因为()22211641n n n n n c t b tb b t t b ++=--=--, …………………………………5分 所以其前n 项和()21641n n C t t B =--,所以()22821n n n C B t t B -=--, ……7分当14t <-或12t >时,n n C B >;当14t =-或12t =时,n n C B =;当1142t -<<时,n n C B <.…………………………………………………………9分(2)由21132(2,*)n n n S S S n n n +-++=+∈N ≥知()221312(*)n n n S S S n n ++++=++∈N ,两式作差,得2163(2,*)n n n a a a n n n ++++=+∈N ≥, ……………………10分 所以()321613(*)n n n a a a n n +++++=++∈N ,再作差得36(2,*)n n a a n n +-=∈N ≥,………………………………………………11分 所以,当1n =时,.1n a a x ==;当31n k =-时,().31216366234n k a a a k x k n x -==+-⨯=+-=+-; 当3n k =时,().331614966298n k a a a k x k n x ==+-⨯=-+-=-+;当31n k =+时,().314161666267n k a a a k x k n x +==+-⨯=++-=+-;……14分 因为对任意*n ∈N ,1n n a a +<恒成立,所以12a a <且3133132k k k k a a a a -++<<<, 所以363669869866566563x xk x k x k x k x k x k x<⎧⎪+-<-+⎪⎨-+<+-⎪⎪+-<+⎩,解得,137156x <<,故实数x 的取值范围为137,156⎛⎫⎪⎝⎭.…………………………………………………16分考点:等差数列、等比数列与函数、不等式的综合运用.附加题21.B (选修4—2:矩阵与变换)(本小题满分10分)设矩阵00a b ⎡⎤=⎢⎥⎣⎦M (其中00a b >,>),若曲线C :221x y +=在矩阵M 所对应的变换作用下得到曲线2214x C y '+=:,求a b +的值.【答案】3.【解析】试题分析:本题可先求出曲线C 在矩阵M 所对应的变换作用下得到曲线C '的方程再与方程2214x y +=加以比较得出a b ,的值,也可在曲线C 上取两特殊点经阵M 所对应的变换作用下得到点在曲线C '上,代入C '方程,求出a b ,的值. 试题解析:设曲线C :221x y +=上任意一点(,)P x y ,在矩阵M 所对应的变换作用下得到点111(,)P x y ,则1100x a x b y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即11ax x by y =⎧⎨=⎩. …………………………………………………………5分又点111(,)P x y 在曲线2214x C y '+=:上,所以221114x y +=,则2214ax by +=为曲线C 的方程. 又曲线C 的方程为221x y +=,故24a =,21b =,因为00a b >,>,所以3a b +=. …………………………………………………………10分考点:矩阵与变换.21.C (选修4—4:坐标系与参数方程)(本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程是x y ⎧⎪⎪⎨⎪+⎪⎩,(t 为参数);以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为2cos()4ρθπ=+.由直线l 上的点向圆C 引切线,求切线长的最小值. 【答案】62. 【解析】试题分析:先将圆C 的极坐标方程化为直角坐标方程,再把直线上的点的坐标(含参数)代入,化为求函数的最值问题,也可将直线l 的参数方程化为普通方程,根据勾股定理转化为求圆心到直线上最小值的问题试题解析:因为圆C 的极坐标方程为θθρsin 2cos 2-=,所以θρθρρsin 2cos 22-=,所以圆C 的直角坐标方程为02222=+-+y x y x ,圆心为⎪⎪⎭⎫⎝⎛-22,22,半径为1,…4分因为直线l的参数方程为,x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 所以直线l上的点P +⎝向圆C 引切线长是所以直线l 上的点向圆C 引的切线长的最小值是62. ……………………………………10分考点:直线的参数方程和圆的极坐标方程,圆的切线长. 22.(本小题满分10分)某品牌汽车4S 店经销,,A B C 三种排量的汽车,其中,,A B C 三种排量的汽车依次有5,4,3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能. (1)求该单位购买的3辆汽车均为B 种排量汽车的概率;(2)记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望. 【答案】(1)155;(2)详见解析. 【解析】试题分析:(1)这是一个古典概型问题,先求出从15款车型中任买3辆共有多少种可能,再求出购买3辆车都为B 种车有多少种可能,即可求出结果;(2)X 的所有可能取值为1,2,3,对每种情况要准确分类,求出各种情况下有多少种可能,就可求出X 各种取值的概率,然后再求数学期望.试题解析:(1)设该单位购买的3辆汽车均为B 种排量汽车为事件M ,则343121().55C P M C ==所以该单位购买的3辆汽车均为B 种排量汽车的概率为155. ………………………………4分 (2)随机变量X 的所有可能取值为1,2,3.则3335433123(1),44C C C P X C ++===1115433123(3)11C C C P X C ===, 29(2)1(1)(3)44P X P X P X ==-=-==. 所以X 的分布列为……………………………8分数学期望329397()12344441144E X =⨯+⨯+⨯=.………………………………………………10分 考点:随机变量的概率分布. 23.(本小题满分10分)已知点(1,0)A -,(1,0)F ,动点P 满足2||AP AF FP ⋅=. (1)求动点P 的轨迹C 的方程;(2)在直线l :22y x =+上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为,M N .问:是否存在点Q ,使得直线MN //l ?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)24y x =;(2)1(,1)2Q -.考点:曲线与方程.。
南京市高三三模数学试题及答案
人教新版七年级历史(下)三维同步训练第一单元第二课“贞观之治”【维度A】基础知识一、选择题:2.隋朝灭亡最根本的原因是:()A. 权臣当道B.隋炀帝的暴政C.土地兼并严重D. 隋末农民起义2.毛泽东在《沁园春雪》中写道“惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚”,这里“唐宗”指的是:( )A. 唐太宗B.唐高宗C.唐中宗D.唐玄宗3.如果你是唐太宗时期中央的一名官员,那么你可能遇到的情况有:()①有幸与魏征、杜如晦等名臣同朝为官。
②唐太宗常常告诫大臣“水能载舟,亦能覆舟”的道理。
③由于唐太宗善于纳谏,因此你提出一些有利于朝政的提议,得到唐太宗的赏识。
④见证了唐太宗死后,武则天登上皇位的一幕。
A. ①②③B. ②③④C. ①③④D. ①②④4.在唐太宗统治时期有一位大臣,前后向唐太宗进谏二百多次,是著名的谏臣。
以至于在他死后,唐太宗说“以铜为镜,可以正衣冠;以史为镜,可以鉴兴衰;以人为镜,可以知得失。
我现在失去一面好镜子啊。
”那么这位大臣是:()A. 长孙无忌B. 杜如晦C. 狄仁杰D.魏征5.“政启开元,治宏贞观”指的是谁的统治:()A.唐高祖B. 唐太宗C. 唐高宗D.武则天6.我们今天肯定武则天,主要是因为:()A.她是我国历史上唯一的女皇。
B.她替多病的高宗处理政事,显示了卓越的政治才能。
C.继承唐太宗的政策,重用人才,发展农业,为唐朝盛世的出现打下基础。
D. 创造了一个新字“曌”(Zhao)。
7.唐太宗和武则天统治的相似点有:()①都重视农业生产的发展②都实行选拔贤才的政策③都虚心采纳谏言④都注意戒奢从简A. ①②B.②③C.①④D.③④8.对“房谋杜断”中的“房”解释正确的是:()A. 帐篷B. 房间C. 内室D. 宰相房玄龄二、填空题:9.公元_________年,隋朝灭亡。
同年,在太原起兵的贵族__________,进入___________,建立___________。
10.唐太宗统治时期,政治比较清明,经济发展较快,国力逐步加强,历史上称为__________________。
江苏省南京市高三数学下学期期初试卷(含解析)
江苏省南京市2015届高三下学期期初数学试卷二、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={x|log2x≤2},B=(﹣∞,a),若A⊆B则实数a的取值范围是(c,+∞),其中c=.2.(5分)由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是.3.(5分)底面边长为2m,高为1m的正三棱锥的全面积为m2.4.(5分)已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值为.5.(5分)已知△ABC中,∠B=45°,AC=4,则△ABC面积的最大值为.(5分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.6.7.(5分)已知函数,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是.8.(5分)已知平面上四个互异的点A、B、C、D满足:(﹣)•(2﹣﹣)=0,则△ABC的形状是.9.(5分)设x,y均为正实数,且=1,则xy的最小值为.10.(5分)在矩形ABCD中,对角线AC与相邻两边所成的角为α,β,则有cos2α+cos2β=1.类比到空间中的一个正确命题是:在长方体ABCDA1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=.11.(5分)已知点P(m,4)是椭圆+=1(a>b>0)上的一点,F1,F2是椭圆的两个焦点,若△PF1F2的内切圆的半径为,则此椭圆的离心率为.12.(5分)若函数f(x)=﹣ln(x+1)不存在零点,则实数k的取值范围是.13.(5分)函数f(x)=x2e x在区间(a,a+1)上存在极值点,则实数a的取值范围为.14.(5分)设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则实数a=.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;并判定函数f(x)单调性(不必证明).(2)若对于任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.16.(14分)已知函数f(x)=2cos(x)(0≤x≤5),点A、B分别是函数y=f(x)图象上的最高点和最低点.(1)求点A、B的坐标以及•的值(2)设点A、B分别在角α、β(α、β∈[0,2π])的终边上,求sin(﹣2β)的值.17.(14分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG的体积.18.(16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获得,国家将给予补偿.(Ⅰ)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(Ⅱ)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?19.(16分)设A,B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于异于A的点M,证明:△MBP为钝角三角形.20.(16分)已知函数f(x)=x2+alnx.(1)若a=﹣1,求函数f(x)的极值,并指出极大值还是极小值;(2)若a=1,求函数f(x)在[1,e]上的最值;(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方.(理科选做)加试题(每题10分,共20分)选修4-2【矩阵与变换】21.设矩阵A=,矩阵A属于特征值λ1=﹣1的一个特征向量为α1=,属于特征值λ2=4的一个特征向量为α2=,求ad﹣bc的值.23.如图,将长为4,宽为1的长方形折叠成长方体ABCD﹣A1B1C1D1的四个侧面,记底面上一边AB=t(0<t<2),连接A1B,A1C,A1D1(1)当长方体ABCD﹣A1B1C1D1的体积最大时,求二面角B﹣A1C﹣D的值;(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由.24.设数列{a n}的前n项和为S n,已知2S n+1=S n+λ(n∈N*,λ为常数),a1=2,a2=1.(1)求数列{a n}的通项公式;(2)求所有满足等式=成立的正整数m,n.选修4-4:【坐标系与参数方程】22.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.江苏省南京市2015届高三下学期期初数学试卷参考答案与试题解析二、填空题:本大题共14小题,每小题5分,共70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={x|log2x≤2},B=(﹣∞,a),若A⊆B则实数a的取值范围是(c,+∞),其中c=4.考点:集合的包含关系判断及应用.专题:集合.分析:先化简集合A,然后根据子集的定义求出集合B的取值范围,总而求出所求.解答:解:A={x|log2x≤2}={x|0<x≤4}而B=(﹣∞,a),∵A⊆B∴a>4即实数a的取值范围是(4,+∞),故答案为:4点评:本题属于以对数不等式为依托,考查集合子集的基础题,也是2015届高考常会考的题型.2.(5分)由命题“存在x∈R,使x2+2x+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是1.考点:一元二次不等式的解法.专题:计算题.分析:由题意知“任意x∈R,使x2+2x+m>0”是真命题,由二次函数的性质得△<0,求出m的范围,结合题意求出a的值.解答:解:∵“存在x∈R,使x2+2x+m≤0”是假命题,∴“任意x∈R,使x2+2x+m>0”是真命题,∴△=4﹣4m<0,解得m>1,故a的值是1.故答案为:1.点评:本题考查了二次函数恒成立问题,即根据二次函数图象开口方向和判别式的符号,列出等价条件求出对应的参数的范围.3.(5分)底面边长为2m,高为1m的正三棱锥的全面积为m2.考点:棱柱、棱锥、棱台的侧面积和表面积.专题:计算题.分析:由已知中正三棱锥的底面边长为2m,高为1m,我们易出求棱锥的侧高,进而求出棱侧面积和底面面积即可求出棱锥的全面积.解答:解:如图所示,正三棱锥S﹣ABC,O为顶点S在底面BCD内的射影,则O为正△BCD的垂心,过C作CH⊥AB于H,连接SH.则SO⊥HC,且,在Rt△SHO中,.于是,,.所以.故答案为点评:本题主要考查基本运算,应强调考生回归课本、注重运算、留心单位、认真审题.4.(5分)已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值为﹣4.考点:直线与圆的位置关系.专题:直线与圆.分析:把圆的方程化为标准形式,求出弦心距,再由条件根据弦长公式求得a的值.解答:解:圆x2+y2+2x﹣2y+a=0 即(x+1)2+(y﹣1)2=2﹣a,故弦心距d=.再由弦长公式可得 2﹣a=2+4,∴a=﹣4;故答案为:﹣4.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题.5.(5分)已知△ABC中,∠B=45°,AC=4,则△ABC面积的最大值为4+4.考点:余弦定理;正弦定理.专题:计算题.分析:利用余弦定理表示出cosB,将B的度数,以及AC,即b的值代入,整理后再利用基本不等式求出ac的最大值,然后利用三角形的面积公式表示出三角形ABC的面积,将ac的最大值及sinB的值代入,即可求出三角形ABC面积的最大值.解答:解:∵∠B=45°,AC=b=4,∴由余弦定理cosB=得:=,∴ac=a2+c2﹣16≥2ac﹣16,即(2﹣)ac≤16(当且仅当a=c时取等号),∴ac≤=8(2+)=16+8,∴△ABC面积S=acsinB≤(16+8)×=4+4,则△ABC面积的最大值为4+4.故答案为:4+4点评:此题考查了余弦定理,基本不等式,三角形的面积公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.6.(5分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.考点:正弦函数的图象;两角和与差的正弦函数.专题:三角函数的图像与性质.分析:先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.解答:解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:点评:本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.7.(5分)已知函数,若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(0,1).考点:函数的零点.专题:作图题.分析:由题意在同一个坐标系中作出两个函数的图象,图象交点的个数即为方程根的个数,由图象可得答案.解答:解:由题意作出函数的图象,关于x的方程f(x)=k有两个不同的实根等价于函数,与y=k有两个不同的公共点,由图象可知当k∈(0,1)时,满足题意,故答案为:(0,1)点评:本题考查方程根的个数,数形结合是解决问题的关键,属基础题.8.(5分)已知平面上四个互异的点A、B、C、D满足:(﹣)•(2﹣﹣)=0,则△ABC的形状是等腰直角三角形.考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的三角形法则可得=0,因此以AB,AC为邻边的平行四边形是正方形,即可得出△ABC的形状.解答:解:∵=+=+,又(﹣)•(2﹣﹣)=0,∴=0,∴以AB,AC为邻边的平行四边形是正方形,因此△ABC是等腰直角三角形.故答案为:等腰直角三角形.点评:本题考查了向量的三角形法则、平行四边形与正方形的性质、△ABC的形状、数量积运算,考查了推理能力,属于基础题.9.(5分)设x,y均为正实数,且=1,则xy的最小值为16.考点:基本不等式.专题:不等式的解法及应用.分析:由=1,化为xy=x+y+8,使用基本不等式和利用一元二次不等式的解法即可得出.解答:解:由=1,化为3(2+y)+3(2+x)=(2+x)(2+y),整理为xy=x+y+8,∵x,y均为正实数,∴xy=x+y+8,∴,解得,即xy≥16,当且仅当x=y=4时取等号.∴xy的最小值为16.故答案为:16.点评:本题考查了基本不等式和一元二次不等式的解法,属于基础题.10.(5分)在矩形ABCD中,对角线AC与相邻两边所成的角为α,β,则有cos2α+cos2β=1.类比到空间中的一个正确命题是:在长方体ABCDA1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=2.考点:类比推理;棱柱的结构特征.专题:空间位置关系与距离.分析:由类比规则,点类比线,线类比面,可得出在长方体ABCDA1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则cos2α+cos2β+cos2γ=2,解直角三角形证明其为真命题即可.解答:解:我们将平面中的两维性质,类比推断到空间中的三维性质.由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们根据长方体性质可以类比推断出空间性质,∵长方体ABCD﹣A1B1C1D1中,如图对角线AC1与过A点的三个面ABCD,AA1B1B、AA1D1D所成的角分别为α,β,γ,∴cosα=,cosβ=,cosγ=,∴cos2α+cos2β+cos2γ=,令同一顶点出发的三个棱的长分别为a,b,c,则有cos2α+cos2β+cos2γ===2故答案为:cos2α+cos2β+cos2γ=2.点评:本题考查类比推理及棱柱的结构特征,线面角的定义,综合性强是一个常考的题型.11.(5分)已知点P(m,4)是椭圆+=1(a>b>0)上的一点,F1,F2是椭圆的两个焦点,若△PF1F2的内切圆的半径为,则此椭圆的离心率为.考点:椭圆的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:设|PF1|=m,|PF2|=n,|F1F2|=2c,由椭圆的定义可得m+n=2a,再由三角形的面积公式以及内切圆的圆心与三个顶点将三角形△PF1F2分成三个小三角形,分别求面积再求和,得到a,c的方程,由离心率公式计算即可得到.解答:解:设|PF1|=m,|PF2|=n,|F1F2|=2c,由椭圆的定义可得m+n=2a,由三角形的面积公式可得=×2c×4=4c,由△PF1F2的内切圆的半径为,则=×(m+n+2c)=(2a+2c)=(a+c),即有4c=(a+c),即为5c=3a,则离心率e==.故答案为:.点评:本题考查椭圆的定义和性质,考查三角形的面积公式和面积的分割法,考查离心率的求法,考查运算能力,属于中档题.12.(5分)若函数f(x)=﹣ln(x+1)不存在零点,则实数k的取值范围是(0,4).考点:函数零点的判定定理.专题:函数的性质及应用.分析:由题意可知可得x>﹣1且x≠0,k=x++2,(x>﹣1且x≠0),由“对号函数”的性质和集合的运算可得.解答:解:由题意可知,解得x>﹣1且x≠0,由对数的性质可得lnkx=2ln(x+1)=ln(x+1)2,可得kx=(x+1)2,变形可得k==x++2,(x>﹣1且x≠0)由“对号函数”的性质可知x+<﹣2,或x+≥2,∴x++2<0,或x++2≥4,要使函数f(x)=﹣ln(x+1)不存在零点,只需k取x++2取值集合的补集,即{k|0≤k<4},当k=0时,函数无意义,故k的取值范围应为:(0,4)故答案为:(0,4)点评:本题考查函数的零点,涉及“对号函数”的性质和集合的运算,属基础题.13.(5分)函数f(x)=x2e x在区间(a,a+1)上存在极值点,则实数a的取值范围为(﹣3,﹣2)∪(﹣1,0).考点:利用导数研究函数的极值.专题:计算题;导数的概念及应用.分析:求导函数,求出函数的极值点,利用函数f(x)=x2e x在区间(a,a+1)上存在极值点,建立不等式,即可求实数a的取值范围.解答:解:函数f(x)=x2e x的导数为y′=2xe x+x2e x =xe x(x+2),令y′=0,则x=0或﹣2,﹣2<x<0上单调递减,(﹣∞,﹣2),(0,+∞)上单调递增,∴0或﹣2是函数的极值点,∵函数f(x)=x2e x在区间(a,a+1)上存在极值点,∴a<﹣2<a+1或a<0<a+1,∴﹣3<a<﹣2或﹣1<a<0.故答案为:(﹣3,﹣2)∪(﹣1,0).点评:本题主要考查利用导数研究函数的单调性,考查函数的极值,考查学生的计算能力,属于中档题.14.(5分)设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则实数a=1.考点:导数的运算;对数函数图象与性质的综合应用.专题:导数的概念及应用.分析:由题意可得f(x)﹣log2x为定值,设为t,代入可得t=4,进而可得函数的解析式,化方程有解为函数F(x)=f(x)﹣f′(x)﹣4=log2x﹣有零点,易得F(1)<0,F(2)>0,由零点的判定可得答案.解答:解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣log2x为定值,设t=f(x)﹣log2x,则f(x)=t+log2x,又由f(t)=6,可得t+log2t=6,可解得t=4,故f(x)=4+log2x,f′(x)=,又x0是方程f(x)﹣f′(x)=4的一个解,所以x0是函数F(x)=f(x)﹣f′(x)﹣4=log2x﹣的零点,分析易得F(1)=﹣<0,F(2)=1﹣=1﹣>0,故函数F(x)的零点介于(1,2)之间,故a=1,故答案为:1点评:本题考查函数的零点的判断,涉及导数的运算和性质,属中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知定义域为R的函数f(x)=是奇函数.(1)求a,b的值;并判定函数f(x)单调性(不必证明).(2)若对于任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.考点:函数恒成立问题;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)由题意知f(0)=0求出b,再由奇函数的定义求出b;(2)利用奇函数的性质转化为一元二次不等式,借助与一元二次函数的关系进行判断.解答:解:∵定义域为R的函数f(x)=是奇函数,∴,即化简,得解得,∴a的值是2,b的值是1.∴f(x)是R上的减函数;(3)由f(t2﹣2t)+f(2t2﹣k)<0,得f(t2﹣2t)<﹣f(2t2﹣k),∵f(x)是奇函数,∴f(t2﹣2t)<f(k﹣2t2),由(2)知,f(x)是减函数,∴原问题转化为t2﹣2t>k﹣2t2,即3t2﹣2t﹣k>0对任意t∈R恒成立,∴△=4+12k<0,解得k<﹣,所以实数k的取值范围是:k<﹣,点评:本题考查函数的奇偶性、单调性及不等式恒成立问题,定义是解决单调性问题的基本方法,而恒成立问题往往转化为函数最值问题解决.16.(14分)已知函数f(x)=2cos(x)(0≤x≤5),点A、B分别是函数y=f(x)图象上的最高点和最低点.(1)求点A、B的坐标以及•的值(2)设点A、B分别在角α、β(α、β∈[0,2π])的终边上,求sin(﹣2β)的值.考点:函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算.专题:三角函数的图像与性质.分析:(1)由x的范围求出x的范围,得到f(x)的最大值和最小值,从而求出A,B的坐标,则•的值可求;(2)由点A、B分别在角α、β(α、β∈[0,2π])的终边上求出角α的值和角β的正余弦值,由倍角公式求得2β的正余弦值,展开两角差的正弦公式求得sin(﹣2β)的值.解答:解:(1)∵0≤x≤5,∴,∴﹣1≤cos()≤.当,即x=0时,f(x)取得最大值1,当,即x=4时,f(x)取得最小值﹣2.因此,所求的坐标为A(0,1),B(4,﹣2).则.∴•=0﹣2=﹣2;(2)∵点A(0,1)、B(4,﹣2)分别在角α、β(α、β∈[0,2π])的终边上,则,,则sin2β=2sinβcosβ=2×=,cos2β=2cos2β﹣1=2×=.∴sin(﹣2β)=sin()===.点评:本题考查了三角函数最值的求法,考查了平面向量的数量积运算,训练了三角函数的倍角公式及和差化积公式,考查了任意角的三角函数的定义,是中档题.17.(14分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是AB的中点.(1)求证:DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B﹣DEG的体积.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:计算题;证明题;转化思想.分析:(1)取AC的中点P,连接DP,证明DP⊥AC,∠EDC=90°,ED⊥DC;利用平面与平面垂直的性质证明DE⊥平面BCD;(2)说明G为EC的中点,求出B到DC的距离h,说明到DC的距离h就是三棱锥B﹣DEG的高.利用,即可求三棱锥B﹣DEG的体积.解答:解:(1)取AC的中点P,连接DP,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,所以∠A=30°,△ADC是等腰三角形,所以DP⊥AC,DP=,∠DCP=30°,∠PDC=60°,又点E在线段AC上,CE=4.所以AE=2,EP=1,所以∠EDP=30°,∴∠EDC=90°,∴ED⊥DC;∵将△BCD沿CD折起,使得平面BCD⊥平面ACD,平面BDC∩平面EDC=DC∴DE⊥平面BCD;(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,G为EC的中点,此时AE=EG=GC=2,因为在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,所以BD=,DC=,所以B到DC的距离h===,因为平面BCD⊥平面ACD,平面BDC∩平面EDC=DC,所以B到DC的距离h就是三棱锥B﹣DEG的高.三棱锥B﹣DEG的体积:V====.点评:本题考查直线与平面垂直的判定,棱锥的体积的求法,直线与平面平行的判定,考查空间想象能力,计算能力.18.(16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y (元)与月处理量x(吨)之间的函数关系可近似的表示为:,且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获得,国家将给予补偿.(Ⅰ)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(Ⅱ)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?考点:函数模型的选择与应用;函数的最值及其几何意义.分析:(I)当x∈[200,300]时,该项目获利S=200x﹣<0,说明不获利;当x=300时,S取得最大值﹣5000,说明国家每月至少补贴5000元才能使该项目不亏损;(II)二氧化碳的每吨平均处理成本为:=;分段讨论,①当x∈[120,144)时,求出的最小值;②当x∈[144,500]时,求出的最小值;比较得每月处理量为多少吨时,能使每吨的平均处理成本最低.解答:解:(I)当x∈[200,300]时,设该项目获利为S,则S=200x﹣=﹣x2+400x﹣80000=﹣(x﹣400)2;当x∈[200,300]时,S<0,此时该项目不会获利;当x=300时,S取得最大值﹣5000,所以,国家每月至少补贴5000元才能使该项目不亏损.(II)由题意知,二氧化碳的每吨平均处理成本为:=,则:①当x∈[120,144)时,=x2﹣80x+5040=(x﹣120)2+240,∴当x=120时,取得最小值240;②当x∈[144,500]时,=x+﹣200≥2﹣200=200,当且仅当x=,即x=400时,取得最小值200;∵200<240,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低.点评:本题考查了分段函数模型的应用题目,并且考查了求二次函数的最值,利用基本不等式求函数的最值等问题,是中档题.19.(16分)设A,B分别为椭圆的左、右顶点,椭圆的长轴长为4,且点在该椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设P为直线x=4上不同于点(4,0)的任意一点,若直线AP与椭圆相交于异于A的点M,证明:△MBP为钝角三角形.考点:直线与圆锥曲线的关系;椭圆的简单性质.专题:计算题.分析:(Ⅰ)由椭圆的长轴长为4,得2a=4,即得a=2;又点在椭圆上,代入椭圆标准方程,可得b;从而得出方程.(Ⅱ)设P(4,t)其中t≠0,直线AP与椭圆交于点M(异于A),由直线方程与椭圆方程组成方程组,得出点M的坐标;由B,P,M三点坐标,得向量,,,由•<0,知∠MBP是钝角;从而得出证明.解答:解:(Ⅰ)由题意:2a=4,所以a=2,所求椭圆方程为;又点在椭圆上,∴=1,∴b2=1;故所求椭圆方程为:.(Ⅱ)证明:由(Ⅰ)知,A(﹣2,0),B(2,0),设P(4,t),M(x M,y M),则直线PA的方程为:,(t≠0);由得(9+t2)x2+4t2x+4t2﹣36=0;因为直线PA与椭圆相交于异于A的点M,所以,所以;由,得,所以;从而,;所以=.又M,B,P三点不共线,所以∠MBP为钝角;所以△MBP为钝角三角形.点评:本题(Ⅰ)考查了椭圆的基础知识,(Ⅱ)借助于求直线与椭圆相交时的交点,利用向量的数量积,来判断三角形的形状;要求有较高的计算能力,是中档题.20.(16分)已知函数f(x)=x2+alnx.(1)若a=﹣1,求函数f(x)的极值,并指出极大值还是极小值;(2)若a=1,求函数f(x)在[1,e]上的最值;(3)若a=1,求证:在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.专题:计算题;导数的综合应用.分析:(1)代入a=﹣1,从而化简f(x)并求其定义域,再求导判断函数的单调性及极值即可;(2)代入a=1,从而化简f(x)并求其定义域,再求导判断函数的单调性及求函数的最值;(3)代入a=1,令F(x)=g(x)﹣f(x)=x3﹣x2﹣lnx,从而化在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方为F(x)>0在[1,+∞)上恒成立,再化为函数的最值问题即可.解答:解:(1)当a=﹣1时,f(x)=x2﹣lnx的定义域为(0,+∞),f′(x)=x﹣=;故f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,故f(x)在x=1处取得极小值f(1)=;(2)当a=1时,f(x)=x2+lnx的定义域为(0,+∞),f′(x)=x+>0;故f(x)在[1,e]上是增函数,故f min(x)=f(1)=,f max(x)=f(e)=e2+1;(3)证明:令F(x)=g(x)﹣f(x)=x3﹣x2﹣lnx;则F′(x)=2x2﹣x﹣=,∵x∈[1,+∞),∴F′(x)=≥0,∴F(x)在[1,+∞)上是增函数,故F(x)≥F(1)=﹣=>0;故在区间[1,+∞)上,函数f(x)的图象在g(x)=x3的图象下方.点评:本题考查了导数的综合应用,同时考查了函数的图象与函数的性质的关系及恒成立问题,属于中档题.(理科选做)加试题(每题10分,共20分)选修4-2【矩阵与变换】21.设矩阵A=,矩阵A属于特征值λ1=﹣1的一个特征向量为α1=,属于特征值λ2=4的一个特征向量为α2=,求ad﹣bc的值.考点:特征值、特征向量的应用.专题:矩阵和变换.分析:根据特征值、特征向量的定义可知Aα=λα,利用待定系数法列出四个等式关系,解二元一次方程组即可求出a、b、c、d的值,进而求出ad﹣bc的值.解答:解:由特征值、特征向量定义可知,Aα1=λ1α1,即=,可得…①;同理可得,即…②;由①②,解得a=2,b=3,c=2,d=1,因此ad﹣bc=2﹣6=﹣4,即ad﹣bc的值为﹣4.点评:本题主要考查了二阶矩阵、矩阵的特征值与特征向量的计算等基础知识,属于基础题.23.如图,将长为4,宽为1的长方形折叠成长方体ABCD﹣A1B1C1D1的四个侧面,记底面上一边AB=t(0<t<2),连接A1B,A1C,A1D1(1)当长方体ABCD﹣A1B1C1D1的体积最大时,求二面角B﹣A1C﹣D的值;(2)线段A1C上是否存在一点P,使得A1C⊥平面BPD,若有,求出P点的位置,没有请说明理由.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角.分析:(1)首先根据最大值确定正方体,进一步根据法向量,及向量的数量积求出二面角.(2)与(1)一样建立空间直角坐标系,利用向量的数量积,向量共享的充要条件,进一步利用线面垂直的性质,求出分点坐标,进一步求出点P的位置.解答:解:将长为4,宽为1的长方形折叠成长方体ABCD﹣A1B1C1D1的四个侧面,记底面上一边AB=t(0<t<2),则求得:AD=2﹣t则:V=t(2﹣t)=﹣(t﹣1)2+1当t=1时,V max=1即:长方体ABCD﹣A1B1C1D1的体积最大时,长方体恰好是正方体.所以:建立空间直角坐标系A﹣xyz.正方体的棱长为1.由于AB1⊥A1B,BC⊥AB1所以:AB1⊥平面BA1C所以:可以看做是平面BA1C的法向量.所以:同理:利用线面垂直得到所以:进一步求得:=,所以根据图形知:二面角B﹣A1C﹣D的值为.(2)建立空间直角坐标系A﹣xyz,则:C(t,2﹣t,0),A1(0,0,1),B(t,0,0),D(0,2﹣t,0)所以:,假设在线段A1C上存在一点P,使得A1C⊥平面BPD,则设(λ>0)根据分点坐标公式:P(求得:,由于所以:﹣t2+λ(2﹣t)2﹣1=0①同理利用:解得:﹣t2+(2﹣t)2=0②所以:解得:(负值舍去)所以点P在的位置.点评:本题考查的知识要点:空间直角坐标系,法向量,向量的数量积,分点坐标公式,向量的共线问题,属于中等题型.24.设数列{a n}的前n项和为S n,已知2S n+1=S n+λ(n∈N*,λ为常数),a1=2,a2=1.(1)求数列{a n}的通项公式;(2)求所有满足等式=成立的正整数m,n.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(1)利用条件a1=2,a2=1建立方程组,即可求数列{a n}的通项公式;(2)求出S n,利用等式=成立,解方程即可得到结论.解答:解:(1)由题意,得2S2=S1+λ,求得λ=4.所以,2S n+1=S n+4①当n≥2时,2S n=S n﹣1+4②①﹣②,得(n≥2),又,所以数列{a n}是首项为2,公比为的等比数列.所以{a n}的通项公式为(n∈N*).(2)由(1),得,由,得,化简得,即(4﹣m)2n﹣4=2m﹣1,即(4﹣m)2n=4+2m﹣1.(*)因为2m﹣1+4>0,所以(4﹣m)•2n>0,所以m<4,因为m∈N*,所以m=1或2或3.当m=1时,由(*)得3×2n=5,所以无正整数解;当m=2时,由(*)得2×2n=6,所以无正整数解;当m=3时,由(*)得2n=8,所以n=3.综上可知,存在符合条件的正整数m=n=3.点评:本题主要考查数列通项公式的求解,考查学生的计算能力.选修4-4:【坐标系与参数方程】22.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.考点:点的极坐标和直角坐标的互化;两点间的距离公式.专题:计算题.分析:(1)将直线化成普通方程,可得它是经过原点且倾斜角为的直线,由此不难得到直线l的极坐标方程;(2)将直线l的极坐标方程代入曲线C极坐标方程,可得关于ρ的一元二次方程,然后可以用根与系数的关系结合配方法,可以得到AB的长度.解答:解:(1)直线l的参数方程是(t为参数),化为普通方程得:y=x∴在平面直角坐标系中,直线l经过坐标原点,倾斜角是,因此,直线l的极坐标方程是θ=,(ρ∈R);…(5分)(2)把θ=代入曲线C的极坐标方程ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0,得ρ2﹣ρ﹣3=0∴由一元二次方程根与系数的关系,得ρ1+ρ2=,ρ1ρ2=﹣3,∴|AB|=|ρ1﹣ρ2|==.…(10分)点评:本题以参数方程和极坐标方程为例,考查了两种方程的互化和直线与圆锥曲线的位置关系等知识点,属于基础题.。
江苏省南京市2015届高三9月调研考试数学精彩试题含问题详解
实用文档2015届高三年级学情调研文案大全南京市卷数学一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应.....位置..上.1.函数f(x)=cos2x-sin2x的最小正周期为▲2.已知复数z=11+i,其中i是虚数单位,则|z|=▲3.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80的样本,则应从高一年级抽取▲名学生.4.从甲、乙、丙、丁4位同学中随机选出2名代表参加学校会议,则甲被选中的概率是▲5.已知向量a=(2,1),b=(0,-1).若(a+λb)⊥a,则实数λ=▲6.右图是一个算法流程图,则输出S的值是▲7.已知双曲线x2a2-y2b2=1(a>0,b>0)的渐近线方程为y=±3x,则该双曲线的离心率为▲8.已知圆锥的侧面展开图是一个半径为2的半圆,则这个圆锥的高是▲9.设f(x)=x2-3x+a.若函数f(x)在区间(1,3)内有零点,则实数a的取值范围为▲10.在△ABC中,角A,B,C所对边的长分别为a,b,c.已知a+2c=2b,sinB =2sinC,则cosA=▲11.若f(x)= ax, x≥1,-x+3a,x<1是R上的单调函数,则实数a 的取值范围为▲12.记数列{a n}的前n项和为S n.若a1=1,S n=2(a1+a n)(n≥2,n∈N*),则S n =▲13.在平面直角坐标系xOy中,已知圆C:x2+y2-6x+5=0,点A,B在圆C上,且AB=23,则|OA→+OB→|的最大值是▲14.已知函数f(x)=x-1-(e-1)lnx,其中e为自然对数的底,则满足f(e x)<0的x的取值范围S←0S←S+k2开始输出S 结束 Y Nk>5(第6题图) k←1k←k+2实用文档文案大全为▲二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(π2,-2).(1)求φ的值;(2)若f(α2)=65,-π2<α<0,求sin(2α-π6)的值.16.(本小题满分14分)如图,三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点.(1)求证:MN∥平面AA1C1C;(2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB 平面CMN.17.(本小题满分14分)已知{a n}是等差数列,其前n项的和为S n, {b n}是等比数列,且a1=b1=2,a4+b4=21,S4+b4=30.(1)求数列{a n}和{b n}的通项公式;A1ABC B1C1M N(第16题图)实用文档文案大全(2)记c n=a n b n,n∈N*,求数列{c n}的前n项和.18.(本小题满分16分)给定椭圆C:x2a2+y2b2=1(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为32,且经过点(0,1).(1)求实数a,b的值;(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C 的伴随圆C1所截得的弦长为22,求实数m的值.19.(本小题满分16分)如图(示意),公路AM、AN围成的是一块顶角为α的角形耕地,其中tanα=-2.在该块土地中P处有一小型建筑,经测量,它到公路AM,AN的距离分别为3km,5km.现要过点P修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园.为尽量减少耕地占用,问如何确定B.实用文档文案大全点的位置,使得该工业园区的面积最小?并求最小面积.20.(本小题满分16分)已知函数f(x)=ax3+|x-a|,a∈R.(1)若a=-1,求函数y=f(x) (x∈[0,+∞))的图象在x=1处的切线方程;(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;(3)当a>0时,若对于任意的x1∈[a,a+2],都存在x2∈[a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.南京市2015届高三年级学情调研卷数学附加题2014.09注意事项:·AMNP(第19题图)α CB实用文档文案大全1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.A.选修4—1:几何证明选讲如图,PA是圆O的切线,A为切点,PO与圆O交于点B、C,AQ?OP,垂足为Q.若PA=4,PC=2,求AQ的长.B.选修4—2:矩阵与变换已知矩阵A=????2b13属于特征值?的一个特征向量为α=???? 1-1(1)求实数b,?的值;(2)若曲线C在矩阵A对应的变换作用下,得到的曲线为C?:x2+2y2=2,求曲线C 的方程.C.选修4—4:坐标系与参数方程在平面直角坐标系xOy中,已知直线l的参数方程为???x=3+32t,y=2+12t(t为参数 ),圆C的参数方程为???x=3+cosθ,y=sinθ(θ为参数).若点P是圆C上的动点,求点P到直线l的距离的最小值.D.选修4—5:不等式选讲已知a,b是正数,且a+b=1,求证:(ax+by)(bx+ay)≥xy..CAPOQ(第21题A图) B实用文档文案大全【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域.......内.作答.解答应写出文字说明、证明过程或演算步骤.22.如图,已知长方体ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端点的点,且CE→=λCC1→.(1)当∠BEA1为钝角时,求实数λ的取值范围;(2)若λ=25,记二面角B1-A1B-E的的大小为θ,求|cosθ|.23.某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有1个红球,1个白球,3个黑球的袋中一次随机的摸2个球,设计奖励方式如下表:结果 1红1白 11红1黑 5元2黑 1白1黑不获奖(1)某顾客在一次摸球中获得奖励X元,求X的概率分布表与数学期望;(2)某顾客参与两次摸球,求他能中奖的概率.(第22题图) ABCDEA1B1C1D1实用文档文案大全2015届高三年级学情调研卷数学参考答案及评分标准2014.09说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,共70分.1.π 2223.32 4.12 5.56.35 7.2 8.3 9.(0,94] 102411[12,+∞) 12.2-2n-1 13.8 14.(0,1)二、解答题:本大题共6小题,共计90分.15.(本小题满分14分)解:(1)因为函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(π2,-2),所以f(π2)=2sin(π+φ)=-2,即sinφ=1.................................................... 4分因为0<φ<2π,所以φ=π2. (6)分(2)由(1)得,f(x)=2cos2x. (8)分因为f(α2)=65,所以cosα=35.又因为-π2<α<0,所以sinα=-45. (10)分所以sin2α=2sinαcosα=-2425,cos2α=2cos2α-1=-725.……………………12分从而sin(2α-π6)=sin2αcosπ6-cos2αsinπ6=7-24350.…………………… 14分实用文档文案大全16.(本小题满分14分)证明:(1)取A1C1的中点P,连接AP,NP.因为C1N=NB1,C1P=PA1,所以NP∥A1B1,NP=12A1B1.…………………… 2分在三棱柱ABC-A1B1C1中,A1B1∥AB,A1B1=AB.故NP∥AB,且NP=12AB.因为M为AB的中点,所以AM=12AB.所以NP=AM,且NP∥AM.所以四边形AMNP为平行四边形.所以MN∥AP.……………………………………… 4分因为AP?平面AA1C1C,MN?平面AA1C1C,所以MN∥平面AA1C1C....................................................... 6分(2)因为CA=CB,M为AB的中点,所以CM⊥AB. (8)分因为CC1=CB1,N为B1C1的中点,所以CN⊥B1C1.在三棱柱ABC-A1B1C1中,BC∥B1C1,所以CN?BC.因为平面CC1B1B⊥平面ABC,平面CC1B1B∩平面ABC=BC.CN?平面CC1B1B,所以CN⊥平面ABC.…………………………………… 10分因为AB?平面ABC,所以CN⊥AB.…………………………………… 12分因为CM?平面CMN,CN?平面CMN,CM∩CN=C,所以AB⊥平面CMN. (14)分17.(本小题满分14分)解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由a1=b1=2,得a4=2+3d,b4=2q3,S4=8+6d. (3)分由条件a4+b4=21,S4+b4=30,得方程组???2+3d+2q3=21,8+6d+2q3=30,解得???d=1,q=2.所以a n=n+1,b n=2n,n∈N*..……………………………… 7分(2)由题意知,c n=(n+1)×2n.记T n=c1+c2+c3+…+c n.则T n=c1+c2+c3+…+c n=2×2+3×22+4×23+…+n×2n-1+(n+1)×2n,A1AB C B1C1M N(第16题图) P实用文档文案大全2 T n= 2×22+3×23+...+(n-1)×2n-1+n×2n+ (n+1)2n+1,所以-T n=2×2+(22+23+...+2n )-(n+1)×2n+1, (11)分即T n=n·2n+1,n∈N*..……………………………… 14分18.(本小题满分16分)解:(1)记椭圆C的半焦距为c.由题意,得b=1,c a=32,c2=a2+b2,解得a=2,b=1. (4)分(2)由(1)知,椭圆C的方程为x24+y2=1,圆C1的方程为x2+y2=5.显然直线l的斜率存在.设直线l的方程为y=kx+m,即kx-y+m=0. (6)分因为直线l与椭圆C有且只有一个公共点,故方程组?????y=kx+m,x24+y2=1 (*)有且只有一组解.由(*)得(1+4k2)x2+8kmx+4m2-4=0.从而△=(8km)2-4(1+4k2)( 4m2-4)=0.化简,得m2=1+4k2.① (10)分因为直线l被圆x2+y2=5所截得的弦长为22,所以圆心到直线l的距离d=5-2=3.即|m|k2+1=3.②………………………………………14分由①②,解得k2=2,m2=9.因为m>0,所以m=3. (16)分19.(本小题满分16分)解:(方法一)如图1,以A为原点,AB为x轴,建立平面直角坐标系.因为tanα=-2,故直线AN的方程是y=-2x.设点P(x0,y0).因为点P到AM的距离为3,故y0=3.由P到直线AN的距离为5,)xNPyOBC(第19题图1)实用文档文案大全得∣2x0+y0∣5=5,解得x0=1或x0=-4(舍去),所以点P(1,3).……………………………… 4分显然直线BC的斜率存在.设直线BC的方程为y-3=k(x-1),k∈(-2,0).令y=0得x B=1-3k.……………………………… 6分由???y-3=k(x-1),y=-2x解得y C=6-2kk+2.……………………………… 8分设△ABC的面积为S,则S=12?x B?y C=-k2+6k-9k2+2k=-1+8k-9k2+2k.…………… 10分由S?=-2(4k+3)(k-3)(k2+2k)2=0得k=-34或k=3.当-2<k<-34时,S?<0,S单调递减;当-34<k<0时,S?>0,S单调递增.…13分所以当k=-34时,即AB=5时,S取极小值,也为最小值15.答:当AB=5km时,该工业园区的面积最小,最小面积为15km2. (16)分(方法二)如图1,以A为原点,AB为x轴,建立平面直角坐标系.因为tanα=-2,故直线AN的方程是y=-2x.设点P(x0,y0).因为点P到AM的距离为3,故y0=3.由P到直线AN的距离为5,得∣2x0+y0∣5=5,解得x0=1或x0=-4(舍去),所以点P(1,3).……………………………… 4分显然直线BC的斜率存在.设直线BC的方程为y-3=k(x-1),k∈(-2,0).令y=0得x B=1-3k.……………………………… 6分由???y-3=k(x-1),y=-2x解得y C=6-2kk+2.……………………………… 8分设△ABC的面积为S,则S=12?x B?y C=-k2+6k-9k2+2k=-1+8k-9k2+2k.…………… 10分令8k-9=t,则t∈(-25,-9),从而k=t+98.因此S=-1+t(t+98)2+2×t+98=-1+64tt2+34t+225=-1+6434+t+225t.………… 13分实用文档文案大全因为当t∈(-25,-9)时,t+225t∈(-34,-30],当且仅当t=-15时,此时AB=5,34+t+225t的最大值为4.从而S有最小值为15.答:当AB=5km时,该工业园区的面积最小,最小面积为15km2. (16)分(方法三)如图2,过点P作PE⊥AM,PF⊥AN,垂足为E、F,连接PA.设AB=x,AC=y.因为P到AM,AN的距离分别为3,5,即PE=3,PF=5.由S△ABC=S△ABP+S△APC=12?x?3+12?y? 5 =12(3x+5y).① (4)分因为tan?=-2,所以sin?=25.所以S△ABC=12?x?y? 25.② (8)分由①②可得12?x?y? 25=12(3x+5y).即35x+5y=2xy..③………………………………………10分因为35x+5y≥2155xy,所以 2xy≥2155xy..解得xy≥155.………………………………………13分当且仅当35x=5y取“=”,结合③解得x=5,y=35.所以S△ABC=12?x?y? 25有最小值15.答:当AB=5km时,该工业园区的面积最小,最小面积为15km2. (16)分20.(本小题满分16分)解:(1)当a=-1,x∈[0,+∞)时,f(x)=-x3+x+1,从而f ′(x)=-3x2+1.当x=1时,f(1)=1,f ′(1)=-2,所以函数y=f(x) (x∈[0,+∞))的图象在x=1处的切线方程为y-1=-2(x-1),即2x+y-3=0. (3)分(2)f(x)=g(x)即为ax3+|x-a|=x4.所以x4-ax3=|x-a|,从而x3(x-a)=|x-a|.此方程等价于x=a或???x>a,x=1或???x<a,x=-1.………………………………………… 6分所以当a≥1时,方程f(x)=g(x)有两个不同的解a,-1;·A MNP B C(第19题图2) E F实用文档文案大全当-1<a<1时,方程f(x)=g(x)有三个不同的解a,-1,1;当a≤-1时,方程f(x)=g(x)有两个不同的解a,1.……………………………9分(3)当a>0,x∈(a,+∞)时,f(x)=ax3+x-a,f ′(x)=3ax2+1>0,所以函数f(x)在(a,+∞)上是增函数,且f(x)>f(a)=a4>0.所以当x∈[a,a+2]时,f(x)∈[f(a),f(a+2)],1024f(x)∈[1024f(a +2),1024f(a)],当x∈[a+2,+∞)时,f(x)∈[ f(a+2),+∞).……………………………………11分因为对任意的x1∈[a,a+2],都存在x2∈[a+2,+∞),使得f(x1)f(x2)=1024,所以[1024f(a+2),1024f(a)]?[ f(a+2),+∞).………………………………………… 13分从而1024f(a+2)≥f(a+2).所以f 2(a+2)≤1024,即f(a+2)≤32,也即a(a+2)3+2≤32.因为a>0,显然a=1满足,而a≥2时,均不满足.所以满足条件的正整数a的取值的集合为{1}..……………………………………16分实用文档届高三年级学情调研卷文案大全2015数学附加题参考答案及评分标准2014.09说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.A.选修4—1:几何证明选讲证明:连接AO.设圆O的半径为r.因为PA是圆O的切线,PBC是圆O的割线,所以PA2=PC·PB.……………………………… 3分因为PA=4,PC=2,所以42=2×(2+2r),解得r=3.……………… 5分所以PO=PC+CO=2+3=5,AO=r=3.由PA是圆O的切线得PA⊥AO,故在Rt△APO中,因为AQ⊥PO,由面积法可知,12×AQ×PO=12×AP×AO,即AQ=AP×AO PO=4×35=125.…………………… 10分B.选修4—2:矩阵与变换解:(1)因为矩阵A=????2b13属于特征值?的一个特征向量为α=???? 1-1,所以????2b13???? 1-1=????? 1-1,即??????2-b-2=???????-?.……………………… 3分从而???2-b=?,-2=-?.解得b=0,?=2.…………………………5分(2)由(1)知,A=????2013.CAPOQ(第21题A图) B实用文档文案大全设曲线C上任一点M(x,y)在矩阵A对应的变换作用后变为曲线C?上一点P(x0,y0),则??????x0y0=????2013??????xy=??????2xx+3y,从而???x0=2x,y0=x+3y.……………………………7分因为点P在曲线C?上,所以x02+2y02=2,即(2x)2+2(x+3y)2=2,从而3x2+6xy+9y2=1.所以曲线C的方程为3x2+6xy+9y2=1.……………………………… 10分C.选修4—4:坐标系与参数方程解:(方法一)直线l的普通方程为x-3y+3=0.……………………………………3分因为点P在圆C上,故设P(3+cosθ,sinθ),从而点P到直线l的距离d=|3+cosθ-3sinθ+3|12+(-3)2=|23-2sin(θ-π6)|2.…………………… 7分所以d min=3-1.即点P到直线l的距离的最小值为3-1.………………………………10分(方法二)直线l的普通方程为x-3y+3=0. (3)分圆C的圆心坐标为(3,0),半径为1.从而圆心C到直线l的距离为d=|3-0+3|12+(-3)2=3.………………………… 6分所以点P到直线l的距离的最小值为3-1.………………………… 10分D.选修4—5:不等式选讲证明:因为a,b是正数,且a+b=1,所以(ax+by)(bx+ay)=abx2+(a2+b2)xy+aby2=ab(x2+y2)+(a2+b2)xy ……………………………≥ab?2xy+(a2+b2)xy ……………………………… 8分实用文档文案大全=(a+b)2xy =xy即(ax+by)(bx+ay)≥xy成立. (10)分【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立如图所示的空间直角坐标系.由题设,知B(2,3,0),A1(2,0,5),C(0,3,0),C1(0,3,5).因为CE→=λCC1→,所以E(0,3,5λ).从而EB→=(2,0,-5λ),EA1→=(2,-3,5-5λ).…… 2分当∠BEA1为钝角时,cos∠BEA1<0,所以EB→·EA1→<0,即2×2-5λ(5-5λ)<0,解得15<λ<45.即实数λ的取值范围是(15,45). (5)分(2)当λ=25时,EB→=(2,0,-2),EA1→=(2,-3,3).设平面BEA1的一个法向量为n1=(x,y,z),由?????n1·EB→=0,n1·EA1→=0 得???2x-2z=0,2x-3y+3z=0,取x=1,得y=53,z=1,所以平面BEA1的一个法向量为n1=(1,53,1). (7)分易知,平面BA1B1的一个法向量为n2=(1,0,0).因为cos< n1,n2>=n1·n2| n1|·| n2|=1439=34343,从而|cosθ34343.……………………………………10分23.解:(1)因为P(X=10)=1C25=110,P(X=5=C13C25=310,P(X=2)=C23C2=310,P(X=0) =C13C25=31,(第22题图) xyz ABCDEA1B1C1D1实用文档文案大全所以X的概率分布表为:X 10 5 2 0 P110 310 310 310…………………………… 4分从而E(X)=10?110+5?310+2?310+0?310=3.1元.…………………………… 6分(2)记该顾客一次摸球中奖为事件A,由(1)知,P(A)=710,从而他两次摸球中至少有一次中奖的概率P=1-[1-P(A)]2=91100.答:他两次摸球中至少有一次中奖的概率为 91100. (10)分.。
南京市2015届高三第三次模拟考试数学试题及答案
南京市2015届高三年级第三次模拟考试注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、班级、学校写在答题纸上.试题的答案写在答题纸...上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式样本数据x 1,x 2,…,x n 的方差s 2=1n i =1∑n (x i --x )2,其中-x =1n i =1∑n x i .锥体的体积公式:V =13Sh ,其中S 为锥体的底面积,h 为锥体的高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题纸相应位置.......上. 1.已知复数z =2i 1-i-1,其中i 为虚数单位,则z 的模为 ▲ .2.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是 ▲ .3.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤2,x ≥1,y ≥0,则z =2x +y 的最大值是 ▲ .4.下图是一个算法流程图,则输出k 的值是 ▲ .5.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是 ▲ .6.记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a )的定义域为集合B .若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为 ▲ .7.在平面直角坐标系xOy 中,过双曲线C :x 2-y 23=1的右焦点F 作x 轴的垂线l ,则l 与双曲线C 的两条渐近线所围成的三角形的面积是 ▲ .8.已知正六棱锥P -ABCDEF 的底面边长为2,侧棱长为4,则此六棱锥的体积为 ▲ . 9.在△ABC 中, ABC =,BA =2,BC =3,D ,E 是线段AC 的三等分点,则BD ·BE的值为 ▲ .10.记等差数列{a n }的前n 项和为S n .若S k -1=8,S k =0,S k +1=-10,则正整数k = ▲ . 11.若将函数f (x )=∣sin(-6)∣(>0)的图象向左平移9个单位后,所得图象对应的函数为偶函数 ,则实数的最小值是 ▲ . 12.已知x ,y 为正实数,则4x 4x +y +y x +y的最大值为 ▲ . 13.在平面直角坐标系xOy 中,圆C 的方程为(x -1)2+(y -1)2=9,直线l :y =kx +3与圆C 相交于A ,B 两点,M 为弦AB 上一动点,以M 为圆心,2为半径的圆与圆C 总有公共点,则实数k 的取值范围为 ▲ .14.已知a ,t 为正实数,函数f (x )=x 2-2x +a ,且对任意的x ∈[0,t ],都有f (x )∈[-a ,a ].若对每一个正实数a ,记t 的最大值为g (a ),则函数g (a )的值域为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题纸指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a cos C +c cos A =2b cos A .(1)求角A的值;(2)求sin B+sin C的取值范围.16.(本小题满分14分)在四棱锥P-ABCD中,BC∥AD,P A⊥PD,AD=2BC,AB=PB,E为P A的中点.(1)求证:BE∥平面PCD;(2)求证:平面P AB⊥平面PCD.17.(本小题满分16分)在平面直角坐标系xOy中,设中心在坐标原点的椭圆C的左、右焦点分别为F1、F2,右准线l:x=m+1与x轴的交点为B,BF2=m.(1)已知点(62,1)在椭圆C上,求实数m的值;(2)已知定点A(-2,0).①若椭圆C 上存在点T ,使得TATF 1=2,求椭圆C 的离心率的取值范围;②当m =1时,记M 为椭圆C 上的动点,直线AM ,BM 分别与椭圆C 交于另一点P ,Q ,若AM → =λAP →,BM →=BQ →,求证:λ+为定值.18.(本小题满分16分)已知函数f (x )=x 2-x +t ,t ≥0,g (x )=ln x . (1)令h (x )=f (x )+g (x ),求证:h (x )是增函数;(2)直线l 与函数f (x ),g (x )的图象都相切.对于确定的正实数t ,讨论直线l 的条数,并说明理由.19.(本小题满分16分)已知数列{a n }的各项均为正数,其前n 项的和为S n ,且对任意的m ,n ∈N*,都有(S m +n +S 1)2=4a 2m a 2n .(1)求a 2a 1的值;(2)求证:{a n }为等比数列;(3)已知数列{c n },{d n }满足|c n |=|d n |=a n ,p (p ≥3)是给定的正整数,数列{c n },{d n }的前p 项的和分别为T p ,R p ,且T p =R p ,求证:对任意正整数k (1≤k ≤p ),c k =d k .南京市2015届高三年级第三次模拟考试数学附加题注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、班级、学校写在答题纸上.试题的答案写在答题..纸.上对应题目的答案空格内.考试结束后,交回答题纸. 20.选做题:在A 、B 、C 、D 四小题中只要选做2题,每小题10分,共计20分.请在答.卷纸指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,AB ,AC 是⊙O 的切线,ADE 是⊙O 的割线,求证:BE · CD =BD · CE .B .选修4-2:矩阵与变换已知矩阵A =⎣⎡⎦⎤a 11a ,直线l :x -y +4=0在矩阵A 对应的变换作用下变为直线l :x -y +2a =0.(1)求实数a 的值; (2)求A 2.C . 选修4-5:不等式选讲已知实数x ,y 满足x >y ,求证:2x +1x 2-2xy +y 2≥2y +3.必做题:第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.21.(本小题满分10分)如图,四棱锥P -ABCD 中,P A 平面ABCD ,AD ∥BC ,AB AD ,BC =233,AB =1,BD =P A =2.(1)求异面直线BD 与PC 所成角的余弦值; (2)求二面角A -PD -C 的余弦值.23.(本小题满分10分)已知集合A 是集合P n ={1,2,3,…,n } (n ≥3,n ∈N*)的子集,且A 中恰有3个元素,同时这3个元素的和是3的倍数.记符合上述条件的集合A 的个数为f (n ). (1)求f (3),f (4);(2)求f (n )(用含n 的式子表示).南京市2015届高三第三次模拟考试数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题:本大题共14小题,每小题5分,共70分.1. 5 2.0.74 3.4 4.6 5.甲 6.(-∞,-3] 7.4 3 8.12 9.119 10.911.32 12. 43 13.[-34,+∞) 14.(0,1)∪{2}二、解答题:本大题共6小题,共90分.15.解:(1)因为a cos C +c cos A =2b cos A ,所以sin A cos C +sin C cos A =2sin B cos A ,即sin(A +C )=2sin B cos A .因为A +B +C =π,所以sin(A +C )=sin B .从而sin B =2sin B cos A . ………………………… 4分 因为sin B ≠0,所以cos A =12.因为0<A <π,所以A =π3. ………………………… 7分(2)sin B +sin C =sin B +sin(2π3-B )=sin B +sin 2π3cos B -cos 2π3sin B=32sin B +32cos B =3sin(B +π6). ………………………… 11分 因为0<B <2π3,所以π6<B +π6<5π6.所以sin B +sin C 的取值范围为(32,3]. ………………………… 14分16.证明:(1)取PD 的中点F ,连接EF ,CF .因为E 为P A 的中点,所以EF ∥AD ,EF =12AD .因为BC ∥AD ,BC =12AD ,所以EF ∥BC ,EF =BC . 所以四边形BCFE 为平行四边形.所以BE ∥CF . ………………………… 4分 因为BE 平面PCD ,CF 平面PCD ,所以BE ∥平面PCD . ………………………… 6分 (2)因为AB =PB ,E 为P A 的中点,所以P A ⊥BE .因为BE ∥CF ,所以P A ⊥CF . ………………………… 9分 因为P A ⊥PD ,PD 平面PCD ,CF 平面PCD ,PD ∩CF =F ,所以P A ⊥平面PCD . ………………………… 12分 因为P A 平面P AB ,所以平面P AB 平面PCD . ………………………… 14分17. 解:(1)设椭圆C 的方程为x 2a 2+y2b 2=1(a >b >0). 由题意,得⎩⎪⎨⎪⎧a 2c =m +1,(m +1)-c =m , 解得⎩⎪⎨⎪⎧a 2=m +1,b 2=m ,c =1.所以椭圆方程为x 2m +1+y 2m =1.因为椭圆C 过点(62,1),所以32(m +1)+1m=1, 解得m =2或m =-12(舍去).所以m =2. ………………………… 4分 (2)①设点T (x ,y ).由TATF 1=2,得(x +2)2+y 2=2[(x +1)2+y 2],即x 2+y 2=2. ………………… 6分 由⎩⎪⎨⎪⎧x 2+y 2=2,x 2m +1+y 2m=1, 得y 2=m 2-m .因此0≤m 2-m ≤m ,解得1≤m ≤2. 所以椭圆C 的离心率e =1m +1∈[33,22]. ………………………… 10分②(方法一)设M (x 0,y 0),P (x 1,y 1),Q (x 2,y 2). 则AM =(x 0+2,y 0),AP =(x 1+2,y 1). 由AM =AP , 得 ⎩⎨⎧x 0+2=(x 1+2),y 0=1.从而⎩⎨⎧x 0=1+2(-1),y 0=1.………………………… 12分因为x 022+y 02=1,所以[1+2(-1)]22+(1)2=1.即2(x 122+y 12)+2(-1)x 1+2(-1)2-1=0.因为 x 122+y 12=1,代入得2(-1)x 1+32-4+1=0.由题意知,≠1, 故x 1=-3-12,所以x 0=-32. 同理可得x 0=-+32. ………………………… 14分因此-32=-+32, 所以+=6. ………………………… 16分 (方法二)设M (x 0,y 0),P (x 1,y 1),Q (x 2,y 2). 直线AM 的方程为y =y 0x 0+2(x +2).将y =y 0x 0+2(x +2)代入x 22+y 2=1,得(12(x 0+2)2+y 20)x 2+4y 20x +4y 20-(x 0+2)2=0(*). 因为x 022+y 02=1,所以(*)可化为(2x 0+3)x 2+4y 20x -3x 20-4x 0=0. 因为x 0x 1=-3x 20+4x 02x 0+3,所以x 1=-3x 0+42x 0+3.同理x 2=3x 0-42x 0-3. ………………………… 14分因为AM =AP ,BM →=BQ →,所以+=x 0+2x 1+2+x 0-2x 1-2=x 0+2-3x 0+42x 0+3+2+x 0-23x 0-42x 0-3-2=(x 0+2)(2x 0+3)x 0+2+(x 0-2)(2x 0-3)-x 0+2=6.即λ+为定值6. ………………………… 16分 18.解:(1)由h (x )=f (x )+g (x )=x 2-x +t +ln x ,得h' (x )=2x -1+1x,x >0.因为2x +1x≥22x ·1x=22,所以h' (x )>0, 从而函数h (x )是增函数. ………………………… 3分 (2)记直线l 分别切f (x ),g (x )的图象于点(x 1,x 12-x 1+t ),(x 2,ln x 2),由f'(x )=2x -1,得l 的方程为y -(x 12-x 1+t )=(2x 1-1)(x -x 1),即y =(2x 1-1)x -x 12+t .由g'(x )=1x ,得l 的方程为y -ln x 2=1x 2(x -x 2),即y =1x 2· x +ln x 2-1.所以⎩⎪⎨⎪⎧ 2x 1-1=1x 2,-x 12+t =ln x 2-1.(*) 消去x 1得ln x 2+(1+x 2)24x 22-(t +1)=0 (**). ………………………… 7分令F (x )=ln x +(1+x )24x 2-(t +1),则F'(x )=1x -1+x 2x 3=2x 2-x -12x 3=(2x +1)(x -1)2x 3,x >0.由F'(x )=0,解得x =1.当0<x <1时,F'(x )<0,当x >1时,F'(x )>0, 所以F (x )在(0,1)上单调递减,在(1,+∞)上单调递增,从而F (x )min =F (1)=-t . ………………………… 9分 当t =0时,方程(**)只有唯一正数解,从而方程组(*)有唯一一组解,即存在唯一一条满足题意的直线; ………………………… 11分 当t >0时,F (1)<0,由于F (e t +1)>ln(e t +1)-(t +1)=0,故方程(**)在(1,+∞)上存在唯一解; ………………………… 13分 令k (x )=ln x +1x -1(x ≤1),由于k' (x )=1x -1x 2=x -1x 2≤0,故k (x )在(0,1]上单调递减,故当0<x <1时,k (x )>k (1)=0,即ln x >1-1x ,从而ln x +(1+x )24x 2 -(t +1)>(12x -12)2-t . 所以F (12(t +1))>(t +12)2-t =t +14>0,又0<12(t +1)<1,故方程(**)在(0,1)上存在唯一解.所以当t >0时,方程(**)有两个不同的正数解,方程组(*)有两组解. 即存在两条满足题意的直线.综上,当t =0时,与两个函数图象同时相切的直线的条数为1;当t >0时,与两个函数图象同时相切的直线的条数为2.………………………… 16分19.解:(1)由(S m +n +S 1)2=4a 2n a 2m ,得(S 2+S 1)2=4a 22,即(a 2+2a 1)2=4a 22.因为a 1>0,a 2>0,所以a 2+2a 1=a 2,即a 2a 1=2. ………………………… 3分证明:(2)(方法一)令m =1,n =2,得(S 3+S 1)2=4a 2a 4,即(2a 1+a 2+a 3)2=4a 2a 4, 令m =n =2,得S 4+S 1=2a 4,即2a 1+a 2+a 3=a 4. 所以a 4=4a 2=8a 1.又因为a 2a 1=2,所以a 3=4a 1. ………………………… 6分由(S m +n +S 1)2=4a 2n a 2m ,得(S n +1+S 1)2=4a 2n a 2,(S n +2+S 1)2=4a 2n a 4. 两式相除,得(S n +2+S 1)2(S n +1+S 1)2=a 4a 2,所以S n +2+S 1S n +1+S 1=a 4a 2=2. 即S n +2+S 1=2(S n +1+S 1), 从而S n +3+S 1=2(S n +2+S 1).所以a n +3=2a n +2,故当n ≥3时,{a n }是公比为2的等比数列. 又因为a 3=2a 2=4a 1,从而a n =a 1·2 n -1,n ∈N*.显然,a n =a 1·2 n-1满足题设,因此{a n }是首项为a 1,公比为2的等比数列. ………………………… 10分 (方法二)在(S m +n +S 1)2=4a 2n a 2m 中,令m =n ,得S 2n +S 1=2a 2n . ① 令m =n +1,得S 2n +1+S 1=2a 2n a 2n +2 , ② 在①中,用n +1代n 得,S 2n +2+S 1=2a 2n +2. ③ ②-①,得a 2n +1=2a 2n a 2n +2-2a 2n =2a 2n (a 2n +2-a 2n ), ④ ③-②,得a 2n +2=2a 2n +2-2a 2n a 2n +2=2a 2n +2(a 2n +2-a 2n ), ⑤ 由④⑤得a 2n +1=a 2n a 2n +2. ⑥………………………… 8分⑥代入④,得a 2n +1=2a 2n ;⑥代入⑤得a 2n +2=2a 2n +1, 所以a 2n +2a 2n +1=a 2n +1a 2n =2.又a 2a 1=2,从而a n =a 1·2 n -1,n ∈N*.显然,a n =a 1·2 n-1满足题设,因此{a n }是首项为a 1,公比为2的等比数列. ………………………… 10分 (3)由(2)知,a n =a 1·2 n -1.因为|c p |=|d p |=a 1·2p -1,所以c p =d p 或c p =-d p .若c p =-d p ,不妨设c p >0,d p <0,则T p ≥a 1·2p -1-(a 1·2p -2+a 1·2p -3+…+a 1)=a 1·2p -1-a 1·(2p -1-1)=a 1>0.R p ≤-a 1·2p -1+(a 1·2p -2+a 1·2p -3+…+a 1)=-a 1·2p -1+a 1·(2p -1-1)=-a 1<0.这与T p =R p 矛盾,所以c p =d p . 从而T p -1=R p -1.由上证明,同理可得c p -1=d p -1.如此下去,可得c p -2=d p -2,c p -3=d p -3.…,c 1=d 1. 即对任意正整数k (1≤k ≤p ),c k =d k . ………………………… 16分南京市2015届高三第三次模拟考试数学附加题参考答案及评分标准 2015.0520.选做题:在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分. A .选修4—1:几何证明选讲证明:因为AB 是⊙O 的切线,所以ABD =AEB .又因为BAD =EAB ,所以△BAD ∽△EAB .所以BD BE =ABAE . ………………………… 5分同理,CD CE =AC AE..因为AB ,AC 是⊙O 的切线,所以AB =AC .因此BD BE =CDCE ,即BE · CD =BD · CE . ………………………… 10分B .选修4—2:矩阵与变换解:(1)设直线l 上一点M 0(x 0,y 0)在矩阵A 对应的变换作用下变为l上点M (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎡⎦⎤a 11a ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤ax 0+y 0x 0+ay 0, 所以⎩⎨⎧x =ax 0+y 0,y =x 0+ay 0.………………………… 3分代入l 方程得(ax 0+y 0)-(x 0+ay 0)+2a =0, 即(a -1)x 0-(a -1)y 0+2a =0. 因为(x 0,y 0)满足x 0-y 0+4=0,所以2a a -1=4,解得a =2. ………………………… 6分(2)由A =⎣⎡⎦⎤2112,得A 2=⎣⎡⎦⎤2112⎣⎡⎦⎤2112=⎣⎡⎦⎤5445. ………………… 10分C .选修4—5:不等式选讲证明:因为x >y ,所以x -y >0,从而左边=(x -y )+(x -y )+1(x -y )2+2y≥33(x -y )(x -y )1(x -y )2+2y =2y +3 =右边.即原不等式成立. ………………………… 10分 21.解:(1)因为P A 平面ABCD ,AB 平面ABCD ,AD 平面ABCD ,所以P A AB ,P A AD . 又AD AB ,故分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系. 根据条件得AD =3.所以B (1,0,0),D (0,3,0),C (1,233,0),P (0,0,2).从而BD =(-1,3,0),PC =(1,233,-2).………………………… 3分设异面直线BD ,PC 所成角为x , 则cos x =|cos <→BD ,→PC >|=|BDPC ∣BD ∣∣PC ∣|=|(-1,3,0)·(1,233,-2)2×193|=5738.即异面直线BD 与PC 所成角的余弦值为5738. ………………………… 5分 (2)因为AB 平面P AD ,所以平面P AD 的一个法向量为 AB =(1,0,0).设平面PCD 的一个法向量为n =(x ,y ,z ), 由nPC ,nPD ,PC =(1,233,-2),PD =(0,3,-2),得⎩⎪⎨⎪⎧x +233y -2z =0,3y -2z =0, 解得⎩⎨⎧x =23z ,y =233z .不妨取z =3,则得n =(2,23,3). ………………………… 8分 设二面角A -PD -C 的大小为, 则cos =cos <AB ,n >=AB · n∣AB ∣×∣n ∣=(1,0,0)·(2,23,3)1×5=25.即二面角A -PD -C 的余弦值为25. ………………………… 10分22.解:(1)f (3)=1,f (4)=2; ………………………… 2分 (2)设A 0={m ∣m =3p ,p ∈N*,p ≤n 3},A 1={m ∣m =3p -1,p ∈N*,p ≤n +13}, A 2={m ∣m =3p -2,p ∈N*,p ≤n +23},它们所含元素的个数分别记为∣A 0∣,∣A 1∣,∣A 2∣.……………………… 4分 ①当n =3k 时,则∣A 0∣=∣A 1∣=∣A 2∣=k . k =1,2时,f (n )=(C 1k)3=k 3;k ≥3时,f (n )=3C 3k +(C 1k )3=32k 3-32k 2+k .从而 f (n )=118n 3-16n 2+13n ,n =3k ,k ∈N*. ………………………… 6分②当n =3k -1时,则∣A 0∣=k -1,∣A 1∣=∣A 2∣=k . k =2时,f (n )=f (5)=2×2×1=4; k =3时,f (n )=f (8)=1+1+3×3×2=20;k >3时,f (n )=C 3k -1+2C 3k +C 1k -1 (C 1k )2=32k 3-3k 2+52k -1;从而 f (n )=118n 3-16n 2+13n -49,n =3k -1,k ∈N*. ………………………… 8分③当n =3k -2时,∣A 0∣=k -1,∣A 1∣=k -1,∣A 2∣=k . k =2时,f (n )=f (4)=2×1×1=2; k =3时,f (n )=f (7)=1+3×2×2=13;k >3时,f (n )=2C 3k -1+C 3k +(C 1k -1)2 C 1k =32k 3-92k 2+5k -2;从而 f (n )=118n 3-16n 2+13n -29,n =3k -2,k ∈N*.所以f (n )=⎩⎨⎧118n 3-16n 2+13n ,n =3k ,k ∈N*,118n 3-16n 2+13n -49,n =3k -1,k ∈N*,118n 3-16n 2+13n -29,n =3k -2,k ∈N*. …………………… 10分。
江苏省南京市2015届高三数学考前综合题(定稿)
a2k-1 4 a1 a2k-1 4 a1 9 1 4 · )= (当且仅当 + =1,且 = , a1 a2k-1 2 a1 a2k-1 a1 a2k-1
3cos20-sin20+sin20 = 3. cos20
【说明】切化弦、 向特殊角转化、 向单一的角转化是三角恒等变换(求值)的一般思路. π 4 π 7.设 α 是锐角,且 cos(α+ )= ,则 sin(2α+ )的值为 6 5 12 17 2 【答案】 50 π π 2π π 4 π 3 【提示】因为 α 是锐角,所以 <α+ < ,因为 cos(α+ )= ,所以 sin(α+ )= . 6 6 3 6 5 6 5 π π π 24 π π 7 sin2(α+ )=2sin(α+ )cos(α+ )= ,cos2(α+ )=1-2sin2(α+ )= . 6 6 6 25 6 6 25 .
南京市 2015 届高三数学考前综合训练题
一、填空题 1.数列{an}为等比数列,其前 n 项的乘积为 Tn,若 T2=T8,则 T10= 【答案】1 【提示】法一:由 T2=T8 得 a3· a4· „· a8=1,则(a3· a8)3=1,a3· a8=1. 从而 T10=a1· a2· „· a10=(a1· a10)5=(a3· a8)5=1; 法二:(特殊化思想),取 an=1,则 T10=1. 【说明】本题考查等比数列的运算性质.可一般化:{an}为正项等比数列,其前 n 项的乘积为 Tn,若 Tm=Tn, 则 Tm+n=1; 可类比: {an}为等差数列, 其前 n 项的和为 Sn, 若 Sm=Sn, 则 Sm+n=0. (其 中 m,n∈N*,m≠n). 2.已知点 P 为圆 C:x2+y2-4x-4y+4=0 上的动点,点 P 到某直线 l 的最大距离为 5.若在直线 l 上任 取一点 A 作圆 C 的切线 AB,切点为 B,则 AB 的最小值是________. 【答案】 5. 【提示】由 P 到直线 l 的最大距离为 5,得圆心 C 到直线 l 的距离为 3,从而直线 l 与圆 C 相离. 过 A 引圆 C 的切线长 AB= AC2-r2= AC2-4≥ 32-4= 5. 【说明】点、 直线与圆的相关问题常转化为圆心与点、 直线问题. 3 3.已知直线 l:x-2y+m=0 上存在点 M 满足与两点 A(-2,0),B(2,0)连线的斜率 kMA 与 kMB 之积为- , 4 则实数 m 的值是___________. 【答案】[-4,4]. x2 y2 【提示】点 M 的轨迹为 + =1(x≠±2).把直线 l:x=2y-m 代入椭圆方程得, 4 3 16y2-12my+(3m2-12)=0.根据条件,上面方程有非零解,得△≥0,解得-4≤m≤4. 【说明】求曲线方程的直接法,研究直线与椭圆位置关系中基本方法是方程思想. 1 4 4.已知数列{an}为正项等差数列,满足 + ≤1(其中 k∈N*且 k≥2),则 ak 的最小值为_________. a1 a2k-1 9 【答案】 . 2 .
江苏省2015年高考数学模拟试卷(三)
江苏省2015年高考数学模拟试卷(三)作者:
来源:《中学课程辅导高考版·学生版》2015年第04期
一、填空题:本大题共14小题,每小题5分,共70分
1.已知全集U=R,集合A={x|x+1>0},则
瘙綂 UA=.
2.已知复数z=3-2ii(i是虚数单位),则复数z所对应的点位于复平面的第象限.
3.已知正四棱锥的底面边长是6,高为7,这个正四棱锥的侧面积是.
18.将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗.假定A,B两组同时开始种植.
(1)根据历年统计,每名志愿者种植一捆白杨树苗用时25小时,种植一捆沙棘树苗用时12小时.应如何分配A,B两组的人数,使植树活动持续时间最短?
(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨树苗用时仍为25小时,而每名志愿者种植一捆沙棘树苗实际用时23小时,于是从A组抽调6名志愿者加入B组继续种植,求植树活动所持续的时间.。
2015年江苏省大联考高考数学三模试卷(理科)
2015年江苏省大联考高考数学三模试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.把答案填在答题卷中的横线上.1.(★★★★)设集合 M={x|x 2+x-6<0},N={x|1≤x≤3},则M∩N= 1,2).2.(★★★★)已知数列{a n}为等差数列,其前9项和为S 9=54,则a 5= 6 .3.(★★★)用12米的绳子围成一个矩形,则这个矩形的面积最大值为 9 .4.(★★★)在等比数列{a n}中,a 1=2,若a 1,2a 2,a 3+6成等差数列,则a n= 2 n.n5.(★★★)若tanθ=1,则cos2θ= 0 .6.(★★★)已知在等比数列{a n}中,a 3+a 6=4,a 6+a 9= ,则a 10+a 13= .7.(★★★)若a>0,b>0,ab=4,当a+4b取得最小值时,= 4 .8.(★★★)已知平面向量、,| |=3,| |=2 且- 与垂直,则与的夹角为.9.(★★★)设变量x,y满足约束条件,则目标函数z=2x+3y的最小值与最大值的和为 30 .10.(★★★)若对于任意的x>0,不等式≤a恒成立,则实数a的取值范围为,+∞).11.(★★★)已知在各项为正的等比数列{a n}中,a 2与a 8的等比中项为8,则4a 3+a 7取最小值时首项a 1= 2 .12.(★★★)下面图形由小正方形组成,请观察图1至图4的规律,并依此规律,写出第16个图形中小正方形的个数是 136 .13.(★★)在数列{a n}中,若存在一个确定的正整数T,对任意n∈N *满足a n+T=a n,则称{a n}是周期数列,T叫做它的周期.已知数列{x n}满足x 1=1,x 2=a(a≤1),x n+2=|x n+1-x n|,若数列{x n}的周期为3,则{x n}的前100项的和为 67 .14.(★★)当x,y满足条件|x-1|+|y+1|<1时,变量u= 的取值范围是(-,).二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.15.(★★★★)已知函数f(x)=x 2+ax+6.(1)当a=5时,解不等式f(x)<0;(2)若不等式f(x)>0的解集为R,求实数a的取值范围.16.(★★★)已知等差数列{a n}满足a 2=3,a 4+a 5=16.(1)求{a n}的通项公式;(2)设b n= ,求数列{b n}的前n项和T n.17.(★★★)已知向量=(2cosx,sin2x),=(cosx,1),函数f(x)= •.①求f(x)的解析式和函数图象的对称轴方程;②在△ABC中,a、b、c分别为A、B、C的对边,满足a+c≥2b,求f(B)的范围.18.(★★★)某公司新研发了甲、乙两种型号的机器,已知生产一台甲种型号的机器需资金30万元,劳动力5人,可获利润6万元,生产一台乙种型号的机器需资金20万元,劳动力10人,可获利润8万元.若该公司每周有300万元的资金和110个劳动力可供生产这两种机器,那么每周这两种机器各生产多少台,才能使周利润达到最大,最大利润是多少?19.(★★)已知函数f(x)=(ax 2-1)•e x,a∈R.(Ⅰ)若函数f(x)在x=1时取得极值,求a的值;(Ⅱ)当a≤0时,求函数f(x)的单调区间.20.(★★)已知等差数列{a n}、等比数列{b n}满足a 1+a 2=a 3,b 1b 2=b 3,且a 3,a 2+b 1,a 1+b 2成等差数列,a 1,a 2,b 2成等比数列.(1)求数列{a n}和数列{b n}的通项公式;(2)按如下方法从数列{a n}和数列{b n}中取项:第1次从数列{a n}中取a 1,第2次从数列{b n}中取b 1,b 2,第3次从数列{a n}中取a 2,a 3,a 4,第4次从数列{b n}中取b 3,b 4,b 5,b 6,…第2n-1次从数列{a n}中继续依次取2n-1个项,第2n次从数列{b n}中继续依次取2n个项,…由此构造数列{c n}:a 1,b 1,b 2,a 2,a 3,a 4,b 3,b 4,b 5,b 6,a 5,a 6,a 7,a 8,a2014的最9,b 7,b 8,b 9,b 10,b 11,b 12,…,记数列{c n}的前n项和为S n,求满足S n<2大正整数n.。
南京市2015届高三第三次模拟考试
南京市2015届高三第三次模拟考试第一节:单项填空(共15小题;每小题l分,满分l5分)21. ---Your argument is _____. I won’t let you pass. ---- Are you kidding?A. soundB. rationalC. liberalD. plain22. The International Monetary Fund has received both criticism and _____for its efforts to promote financial stability, prevent crises, facilitate trade, and reduce poverty.A. worshipB. creditC. argumentD. privilege23. In this moviegoing(电影放映) season, women are driving ticket sales to a degree_____, if ever, seen before.A. reallyB. frequentlyC. rarelyD. never24. Acceptance is not about liking a situation. It is about acknowledging all that has been lost and _____To live with that loss.A. learningB. learnC. to learnD. having learned25. Some tourists visiting Tian’anmen Square during the holiday left a ________ of litter everywhere they went.A. trailB. dotC. chainD. track26. ----There won’t be anywhere to park. ----Oh, _______. Let’s try the subway.A. that’s a real bargainB. that’s a good pointC. that’s really somethingD. that’s all settled27. How did it come about ________ a quiet person should appear so wild today?A. whetherB. thatC. ifD. what28. You never really understand a person _______ you consider things from his point of view.A. ifB. onceC. asD. until29. ---Kingsman: The Secret Service is a spy action comedy film. Wants to come with me?---I’d love to, but my best friend is getting married, and I won’t _______ it for anything.A. overlookB. tradeC. missD. forget30. ---________ I say something to you? You were really, really something back there. Incredible!---Are you talking to ---me? Whoa!A. MustB. CanC. NeedD. Should31. The guide was enthusiastic and knowledgeable and we spent a lovely evening wandering into places which we ________ straight past otherwise.A. had walkedB. were walkingC. would have walkedD. must have walked32. Loneliness is a feeling _______ people experience a powerful rush of emptiness and solitude.A. whichB. whereC. thatD. how33. Halfway through the chapter _______ I hadn’t taken anything in.A. did I realizeB. had I realizedC. I realizedD. I would realize34. If Kate had known what was _______ for her, she would not have married Tom.A. in responseB. in returnC. in reactionD. in store35. He started school the same day as I did and ________ to it like a duck to water.A. appealedB. tookC. cateredD. saw第二节完形填空(共20小题;每小题1分,满分20分)The opening and closing of the doors are the most significant actions of man’s life. What a 36 lies in doors! No man knows what awaits him when he opens a door. 37 the most familiar room, where the clock ticks and the health glows red at dusk may harbor 38 . The worker may actually have called and 39 the leaking pipe. The cook may have been ill and demanded her passports.There are many kinds of doors. Revolving doors for hotels, shops and public buildings. There are40 the busy, bustling ways of modern life. Can you 41 William Shakespeare or Charles Dickens skipping through a 42 door? There are double doors, sliding doors, stage doors and glass doors. The 43 and mystery of a door lies in its quality of being hidden. A glass door is not a door at all, but a window. The meaning of a door is to 44 what lies inside; to keep the heart in suspense.Also, there are many ways of opening doors. There is the cheery 45 of elbow with which the waiter opens the kitchen door. There is the sympathetic and awful 46 of the dentist’s maid who opens the door into the operating room and, without speaking, 47 that the doctor is ready for you.The opening of doors has in it some flavor of the 48 , some sense of moving into a new moment. Even in 49 , the opening of a door may bring relief. But the closing of doors could be 50 , A door closed brings 51 to an end. And there are degrees of sadness in the closing of doors. A door slammed is a confession of weakness. A door 52 shut may often be the most tragic gesture in life.The opening and closing of doors is a part of the serious fluency of life. Life will not stay 53 and let us alone. We are 54 opening doors with hope, closing them with despair. Life 55 not much longer than a pipe of tobacco, and destiny knocks us out like the ashes.36. A. mystery B. relief C. scenery D. pleasure37. A. So B. Still C. Even D. Also38. A. wishes B. puzzles C. surprises D. changes39. A. checked B. fixed C. wrapped D. removed40. A. essential to B. different from C. consistent with D. typical of41. A. imagine B. suggest C. catch D. notice42. A. stage B. sliding C. glass D. revolving43. A. symbol B. miracle C. sign D. mark44. A. busy B. hide C. discover D. exhibit45. A. knock B. bump C. push D. touch46. A. silence B. noise C. voice D. peace47. A. announce B. admits C. implies D. expects48. A. darkness B. certainty C. possibility D. unknown49. A. vain B. hope C. sadness D. happiness50. A. easy B. terrible C. dull D. interesting51. A. nothing B. everything C. anything D. something52. A. heavily B. hurriedly C. gently D. firmly53. A. still B. calm C. silent D. simple54. A. naturally B. continually C. obviously D. possibly55. A. measures B. matches C. reaches D. lastsA. A---BB. C---BC. C---AD. B----C57. Chances for Duke University to change its admission decision in history were_______.A. noneB. bigC. slimD. hard to tell58. What makes it impossible for the applicant to resubmit an application next year?A. Tying the letter to an owl and send it to UCASB. Printing out grade sheetC. Applying for the Liberal Arts course as an optionD. Improving his scores59. What can we infer form the letter about college application?A. It is disappointing for sure.B. Rejection letters are better written than offers.C. It is no as fun as on imagines.D. There could be extra work beyond normal procedure.BDo I exist?Obviously!Until Descartes came along in the seventeenth century, everyone assumed that we exited. Obviously. The fact seemed so mind-blowingly obvious that it wasn’t really discussed. We could see ourselves in the mirror, we could feel pain and pleasure, we could think thoughts for ourselves and, more importantly, perhaps, all the world’s main reli gions assumed that we do exist. So we exist.No you don’t it!You don’t exist. That’s because it’s impossible to show once and for all that you do. There’s no proof. You might think you exist-that you are sitting at a table reading this book, for instance-but how could you show with 100 percent certainty that this is true? There’s no experiment that could prove it. Although Descartes said just you could prove your own existence by the fact that you are able to think, this isn’t actually, according to the Br itish philosopher A. J. Ayer. Just because we know that we are thinking, this doesn’t mean that there is a “you” doing the thinking. It just shows that the thoughts are happening, not that anyone is having them. Thoughts exists, “You” don’t._____________!What a waste of time this question is. Although you can argue until the end of time whether you exist or not, it doesn’t get you anywhere. Unless you forget about this unanswerable question, you’ll be stuck thinking about it forever, and that isn’t of any use to anyone. Move on. Think about something more important! This very roughly, is the view of almost all philosophers, who prefer to answer other, apparently more useful, questions.Yes, but…You exist, but not in the way you might think. According to th e great French philosopher Ren Descartes, you can’t show that anything exists—apart from your own self. The existence of the entire world can be doubted in one way or another, but the facts you’re having thoughts shows that there might be something (that’s you) having them. This let Descartes to write the famous philosophical phrase, “ I think before I am”.60. Which of the following can be the missing heading?A. Forget about itB. What a ridiculous pointC. Think about itD. What a pointless question61. This passage is anything but a(n)___________.A. commentB. discussionC. argumentD. debate62. The famous answer to the question “Do I exist?” is ___________.A. No, you don’t exist.B. I think, therefore, I am.C. Yes, you do exist.D. It won’t get you anywhereCKnots are the kind of stuff that even myths are made of.In the Greek legend of the Gordian knot, for example, Alexander the Great used his sword to slice through a knot that had failed all previous attempts to unite it. Knots, enjoy a long history of tales and fanciful names such as “Englishman’s tie, ” “and “cat’s paw. ” Knots became the subject of serious scientific investigation when in the 1860s the English physicist William Thomson (known today as Lord Kelvin) proposed that atoms were in fact knotted tubes of ether(醚). In order to be able to develop the equivalent of a periodic table of the elements, Thomson had to be able to classify knots — find out which different knots were possible. This sparked a great interest in the mathematical theory of knots.A mathematical knot looks very much like a familiar knot in a string, only with the string’s ends joined. In Thomson’s theory, knots could, in principle at least, model atoms of increasing complexity, such as the hydrogen, carbo n, and oxygen atoms, respectively. For knots to be truly useful in a mathematical theory, however, mathematicians searched for some precise way of proving that what appeared to be different knots were really different —the couldn’t be transformed one into the other by some simple manipulation(操作). Towards the end of the nineteenth century, the Scottish mathematician Peter Guthrie Tait and the University of Nebraska professor Charles Newton Little published complete tables of knots with up to ten crossings. Unfortunately, by the time that this heroic effort was completed, Kelvin’s theory had already been totally discarded as a model for atomic structure. Nevertheless, even without any other application in sight, the mathematical interest in knot theory continued at that point for its own sake. In fact, mathematical became even more fascinated by knots. The only difference was that, as the British mathematician Sir Michael Atiyah has put it, “the study of knots became a special branch of pure mathematics. ”Two major breakthroughs in knot theory occurred in 1928 and in 1984. In 1928, the American mathematician James Waddell Alexander discovered an algebraic expression that uses the arrangement of crossings to label the knot. For example, t2-t+1 or t2-3t+1, or else. Decades of work in the theory of knots finally produced the second breakthrough in 1984. The New Zealander-American mathematician Vaughan Jones noticed an unexpected relation between knots and another abstract branch of mathematics, which led to the discovery of a more sensitive invariant known as the Jones polynomial.63. What is surprising about knots?A. They originated from ancient Greek legend.B. The study of knots is a branch of mathematics.C. Knots led to the discovery of atom structure.D. Alexander the Great made knots well known.64. What does the underlined word “that” in Paragraph 3 refer to?A. No other application found except tables of knots.B. The study of knots meeting a seemingly dead end.C. Few scientist showing interest in knots.D. The publication of complete tables of knots.65. According to the passage, ______ shows the most updated study about knots.A. t2-t+1B. t2-3t+1C. Alexander polynomialD. Jones polynomial66. Which one would be the best title for this passage?A. Mathematicians VS PhysiciansB. To be or Knot to beC. Knot or AtomD. Knot VS MathematicsDELMONT, N. Y. (AP)---Elmont High School senior Harold Ekeh had a plan—he would apply to 13 colleges ,including all eight Ivy League schools, figuring it would help his chances of getting into at least one great school.It worked, And then some, The teenager from Long Island was accepted at all 13 schools, and now faces his next big test: deciding where to go.“I was stunned, I was really shocked, ”Ekeh told The Associated Press during an interview Tuesday at his home near the Belmont Park racetrack, his four younger brothers running around.He found out last week he had been accepted to Princeton University. That made him eight for eight in the Ivy League—he had already been accepted to Yale University , Brown University, Columbia University , Cornell University , Dartmouth College, Harvard University and University of Pennsylvania. His other acceptances came from Johns Hopkins University, Massachusetts Institute of Technology, New York University, Stony Brook University and Vanderbilt University.“We are so proud of him, ” said his mother , Roseline Ekeh.“Hard work, dedication, prayer brought him to where he is today. ”Born in Nigeria, Harold was eight years old when his parents brought the family to the United States.“It was kind of difficult adjusting to the new environment and the new culture, ” he said. But he saw his parents working hard, “and I took their example and decides to apply myself”He re ferenced that effort in his college essay, writing, “Like a tree, uprooted and replanted, I could have withered in a new country surrounded by people and languages I did not understand. Yet, I witnessed my parents persevere despite the potential to give in. I faced my challenges with newfound zeal; I risked insults, spending my break talking to unfamiliar faces, ignoring their sarcastic remarks. ”Harold “is tremendously focused in everything he does.” said John Capozzi, the school’s principal, “He’s a grea t role model. All the students and faculty are so proud of him. ”Harold is the second Long Island student in as many years to get into all eight Ivies. Last year, William Floyd High School’s Kwasi Enim chose to go to Yale.Harold, who has a 100. 51 grade-point average and wants to be a neurosurgeon, said he was leaning toward Yale, and had heard from Enin, offering congratulations. Like Enin, he’s likely to announce his college choice at a press conference later this month. The deadline to decide is May 1.67. Which is closest in meaning to the underlined phrase“apply myself”?A. Word hard.B. Write to the college.C. Make a formal request.D. Make an adjustment.68. Which of the following is true about Harold?A. He was born into a Nigerian family in the US.B. He planted a tree once he moved to the US,C. He was always welcome and popular in his schools.D. He paid a lot to make his way to offeres from all Ivies.69. Harold is probably going toA. HarvardB. PrincetonC. YaleD. MIT70. What can we infer from this passage?A. Too many cooks spoil the soup.B. He who laughs last laughs best.C. One can kill two birds with one stone.D. Chance favors only the prepared mind.任务型阅读The emotional bond a child secures with its parents has a greater impact on its education than previously thought, a report suggests. The Sutton Trust study says children’s early attachment to parents has far-reaching consequences for their ability to speak, learn and think. Parents who are insecure themselves find it harder to provide children with security, it says. And the report calls for more help so parents can develop such crucial bonds. The study focuses on the application of the theory of attachment—a key theory in child development and psychology. This says the degree to which children are secure and resilient as they grow up depends on their own early experiences with their mothers and fathers and how they have bonded.The report from the Sutton Trust education charity, entitled Baby Bonds, makes the case that it has an important impact on children’s future educational chances as well as their emotional well-being. It is based on an analysis of more than 100 studies on the issue, including home visits and assessments and observations of children in a range of countries. The trust argues that although psychologists have been aware of attachment theory, it has not been seen by policy makersas a key influence on educational attainment. And it asks them to take this into account. The report says when babies and toddlers do not form these strong parental bonds—known as secure attachment—they are more likely to exhibit poor language and poor behavior before they reach school.And it cites international studies which suggest this continues late into life, with insecure children more likely to leave school early or duck out of employment or training. They are also more likely to suffer from aggression, defiance and hyperactivity later in life.The Sutton Trust says its analysis of the research suggests that about 40% of children in the UK lack a secure attachment with their parents. Lead author Sophie Moullin said that when her team looked at large scale representative studies in a number of countries they all found, from their observations, that between 38% and 42% of children suffered from poor attachment in all the different study locations. She added: “Secure attachment really helps children with emotional and social development and at school it really helps them to manage their behavior. Shouting, looking out of the window, hitting each other…These are the things that teachers will tell you that are stopping children from learning. It’s really only as we understand more about these behavior problems that we have decided that a lot of it goes back to thi s early bonding with parents. ”Research director at the trust Conor Ryan said: “Better bonding between parents and babies could lead to more social mobility, as there is such a clear link to education, behavior and future employment. The educational divide emerges early in life, with a 19—month school readiness gap between the most and least advantaged children by the age of five.This report clearly identifies the fundamental role secure attachment could have in narrowing that school readiness gap and imp roving children’s life chances. “More support from health visitors, children’s centers together with local authorities in helping parents improve how they bond with young children could play a role in narrowing the education第五部分:书面表达(满分25分)This is a picture of a ballet dancer whose left foot looks shockinglydifferent from the right one. Some even jokes that the left foot represents howelegant ballet dancers look. On the contrary, the right one reveals the nature ofthose dancers’ life. One can hardly imagine how much time and effort havebeen devoted to endless practice.【写作内容】请根据你对所示图片及文字的理解,写一篇150词左右的文章,要点如下:1.以约30个词简要描述图片的内容;2.以约120个词谈谈你的看法,内容包括:(1)图片给你的启示,并举例说明;(2)你最想对图片的芭蕾舞者说什么?为什么?【写作要求】1.可以参照阅读材料的内容,但不得直接引用原文的句子;2.作文中不能出现真实的姓名和学校的名称3. 不必写标题【评分标准】内容完整,语言规范,语篇连贯,词数适当南京市2015届高三第三次模拟考试第一部分听力理解1-5 ABBCB 6-10 BCBBC 11-15 AABCA 16-20 ACCCB第二部分英语知识运用21-25 DBCAA 26-30 BBDCB 31-35 CBCDB36-40 ACCBD 41-45 ADABC 46-50 ACDCB 51-55 DCABD第三部分阅读理解56-59 BCAD 60-62 DAB 63-66 BADB 67-70 ADCD第四部分任务型阅读71 largely / greatly 72 analyzed / analysed 73 observing 74 close75 attachment 76 lack 77 biggest 78 hiding / escaping79 status 80 combined / joint第五部分书面表达The dancer’s left foot is elegantly wrapped in her ballet shoe, tied to the ankle with a silk ribbon. The shoeless right foot, however, looks horribly different. Bruises and scars occupy every inch of her toes. (36 words)I can only imagine the untold hardship the dancer must have endured for the endless hours of practice to look so glamorous on the stage. Likewise, behind every seemingly stunning success, there can be failures, disappointments, and embarrassments. When the whole world is crazy for JK Rowling’s Harry Potter stories, rarely do people know it was after the books had been turned down 12 times by the publisher that they finally came out. Nothing is difficult to a willing heart. However, when we admire others’ success, we should remember it is not from nowhere.I have imagined the dancer to be my friend. I will, instead of telling her how awesome her dancing is, ask her to take good care of herself, for health is the real elegance of life. (130 words)。
2015届高三模拟考试试卷-南师三模数学.
2015届高三模拟考试试卷数 学(满分160分,考试时间120分钟)2015.5 参考公式:棱锥的体积公式V 棱锥=13Sh ,其中为S 棱锥的底面积,h 为棱锥的高.一、 填空题:本大题共14小题,每小题5分,共70分.1. 若A ={a},B ={0,a 2},A B ,则A =________.2. 设复数z =1+i ,若1,1z对应的向量分别为OA →和OB →,则|AB →|的值为________.3. P 是平面直角坐标系中的点,其横坐标与纵坐标都是集合A ={-1,0,1,2}中的元素,则此点正好落在抛物线y =x 2-1上的概率为________.4. 下图是某个容量为100的样本的频率分布直方图,则在区间[4,5)上的数据的频数为________.(第4题)(第5题)5. 上图是一个算法的流程图,则输出的n =________.6. 一块边长为10 cm 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点P 为顶点,加工成一个如图所示的正四棱锥形容器.当x =6 cm 时,该容器的容积为________cm 3.7. 若双曲线x 2-my 2=1的焦点到渐近线的距离为2,则实数m 的值是________.8. 不等式1x≤2的解集是________.9. 已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.(第10题)10. 已知函数f(x)=2sin (ωx+φ)(ω>0,0≤φ<2π)的部分图象如图所示,则f(π)=________.11. 设f(x)是定义在R 上的奇函数,且y =f(x)的图象关于直线x =12对称,则f(1)+f(2)+f(3)+f(4)+f(5)=________.12. 已知正三角形ABC 的边长为23,圆O 是该三角形的内切圆,P 是圆O 上的任意一点,则PA →·PB →的最大值为________.13. 非空集合G 关于运算满足:(1) 对任意a 、b∈G,都有a +b∈G;(2) 存在e∈G,使得对一切a∈G,都有a e =ea =a ,则称G 关于运算为“融洽集”.现给出下列集合和运算:① G ={非负整数},为整数的加法; ② G ={平面向量},为平面向量的加法; ③ G ={二次三项式},为多项式的加法;④ G ={虚数},为复数的乘法.其中G 关于运算为“融洽集”的是________.(写出所有“融洽集”的序号)14. 设曲线y =(ax -1)e x在点A(x 0,y 1)处的切线为l 1,曲线y =1-x ex 在点B(x 0,y 2)处的切线为l 2.若存在x 0∈⎣⎢⎡⎦⎥⎤0,32,使得l 1⊥l 2,则实数a 的取值范围是________. 二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在四边形ABEF 中,AF ⊥BF ,O 为AB 的中点,矩形ABCD 所在的平面和平面ABEF 互相垂直.(1) 求证:AF⊥平面CBF ;(2) 设FC 的中点为M ,求证:OM∥平面DAF.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知3cos2C -10cos(A +B)-1=0. (1) 求cosC 的值;(2) 若c =1,cosA +cosB =233,求边a 的值.17. (本小题满分14分) 某地方政府为鼓励全民创业,拟对本地年产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金y(单位:万元)随年产值x(单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%.(1) 若某企业年产值100万元,核定可得9万元奖金,试分析函数y =lgx +kx +5(k 为常数)是否为符合政府要求的奖励函数模型,并说明原因(已知lg2≈0.3,lg5≈0.7);(2) 若采用函数f(x)=15x -ax +8作为奖励函数模型,试确定最小的正整数a 的值.已知椭圆C :x 2a 2+y2b2=1(a>b>0)的左、右焦点为F 1、F 2,离心率为e.直线l :y =ex +a 与x 轴、y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM →=λAB →.(1) 证明:λ=1-e 2;(2) 若λ=34,△MF 1F 2的周长为6,写出椭圆C 的方程;(3) 确定λ的值,使得△PF 1F 2是等腰三角形.设函数f(x)=(x-1)e x-ax2,其中a∈R.(1) 当a=0时,求函数f(x)的单调区间;(2) 求函数f(x)的极值;(3) 当a∈(0,1]时,若函数f(x)在[0,a]上的最大值为M(a),求M(a).已知无穷数列{a n}满足a n+1=a·a n+ba n,且a1=5.(1) 若ab=0,求数列{a n}的前n项和S n;(2) 若a=b=1,是否存在整数a,使得0<a1 001-a<0.1成立?若存在,求出a的值;若不存在,说明理由.2015届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲) 如图,∠PAQ 是直角,圆O 与AP 相切于点T ,与AQ 相交于两点B ,C.求证:BT 平分∠OBA.B. (选修42:矩阵与变换)变换T 1是逆时针旋转π2角的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=⎣⎢⎡⎦⎥⎤1101.(1) 求点P(2,1)在T 1作用下的点P′的坐标;(2) 求曲线y =x 2依次在T 1,T 2变换的作用下所得曲线的方程.C. (选修44:坐标系与参数方程)极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴,曲线C 1的极坐标方程为ρ=2cos θ,曲线C 2的参数方程为⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数).(1) 当α=π4时,求曲线C 1与C 2公共点的直角坐标;(2) 若α≠π2,当α变化时,设曲线C 1与C 2的公共点为A ,B ,试求AB 中点M 轨迹的极坐标方程,并指出它表示什么曲线.D. (选修45:不等式选讲)已知x,y均为正数,且x>y,求证:2x+1x2-2xy+y2≥2y+3.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1.(1) 求直线DF与平面ACEF所成角的正弦值;(2) M为AB的中点,试在线段EF上找一点P,使平面PCD与平面PCM相互垂直.23. 设数列{a n},定义如下:a n表示小于等于n的正整数中完全平方数的个数,即当k2≤n≤k2+2k(k∈N*)时,a n=k,记S n=a1+a2+…+a n(n∈N*).(1) 分别求a88,S88的值;(2) 是否存在n使S n=880?若存在,求出n;若不存在,说明理由.2015届高三模拟考试试卷 数学参考答案及评分标准1. {1}2. 223. 3164. 30 解析:对于在区间[4,5)的频率/组距的数值为0.3,而总数为100,因此频数为30.5. 96. 487. 128. (-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞9. 3116 解析:显然q≠1,所以9(1-q 3)1-q =1-q 61-q 1+q 3=9q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和T 5=1-⎝ ⎛⎭⎪⎫1251-12=3116.10. 2 解析:由图象知最小正周期T =23⎝ ⎛⎭⎪⎫5π4-π4=2π3=2πω,故ω=3.又x =π4时,3·π4+φ=2k π(k∈Z ),可得φ=5π4,所以f(π)=2sin ⎝⎛⎭⎪⎫3π+5π4= 2. 11. 0 解析:f(-0)=-f(0)得f(0)=0,假设f(n)=0,因为点(-n ,0)和点(n +1,0)关于x =12对称,所以f(n +1)=f(-n)=-f(n)=0,因此,对一切正整数n 都有f(n)=0,从而f(1)+f(2)+f(3)+f(4)+f(5)=0.12. 6+ 5 13. ①② 14. ⎣⎢⎡⎦⎥⎤1,32 15. 证明:(1) 因为平面ABCD⊥平面ABEF ,CB ⊥AB ,平面ABCD∩平面ABEF =AB , 所以CB⊥平面ABEF.(2分)又AF平面ABEF ,则AF⊥CB,(4分)又AF⊥BF,且BF∩BC=B ,BF ,BC平面CBF ,所以AF⊥平面CBF.(7分)(2) 设DF 的中点为N ,则MN 綊12CD.又AO 綊12CD ,则MN 綊AO ,所以四边形MNAO 为平行四边形,所以OM∥AN.(12分)又AN 平面DAF ,OM 平面DAF , 所以OM∥平面DAF.(14分)16. 解:(1) 由3cos2C -10cos(A +B)-1=0,得3cos 2C +5cosC -2=0,(3分)即(cosC +2)(3cosC -1)=0,解得cosC =13或cosC =-2(舍去).(6分)(2) 由cosC =13得sinC =223,则cosB =-cos(A +C)=-13cosA +223sinA ,(9分)代入cosA +cosB =233,得cosA +2sinA =3,从而得sin(A +φ)=1,其中sin φ=33,cos φ=63,0<φ<π2. 则A +φ=π2,于是sinA =63.(12分)由正弦定理得a =csinA sinC =32.(14分)17. 解:(1) 对于函数模型f(x)=lgx +kx +5(k 为常数),x =100时,y =9,代入解得k =150,(3分) 所以f(x)=lgx +150x +5.当x∈[50,500]时,f(x)是增函数,但x =50时,f(50)=8-lg2>7.5,即f (x)≤320x不恒成立,故该函数模型不符合要求.(6分)(2) 对于函数模型f(x)=15x -a x +8,即f(x)=15-120+ax +8,a 为正整数,函数在[50,500]上递增;f(x)min =f(50)>7,解得a<344;(9分)要使f(x)≤3x20对x∈[50,500]恒成立,即15x -a x +8≤3x 20,3x 2-276x +20a≥0恒成立,(11分) 所以a≥315.综上所述,315≤a<344,所以满足条件的最小的正整数a 的值为315.(14分)18. (1) 证明:(证法1)因为A 、B 分别是直线l :y =ex +a 与x 轴、y 轴的交点,所以A 、B 的坐标分别是⎝ ⎛⎭⎪⎫-a e ,0,(0,a). 由⎩⎪⎨⎪⎧y =ex +a ,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x =-c ,y =b 2a.这里c =a 2+b 2,所以点M 的坐标是⎝ ⎛⎭⎪⎫-c ,b 2a .(2分)由AM →=λAB →得⎝ ⎛⎭⎪⎫-c +a e ,b 2a =λ⎝ ⎛⎭⎪⎫a e ,a . 即⎩⎪⎨⎪⎧a e -c =λa e ,b2a=λa,解得λ=1-e 2.(4分)(证法2)因为A 、B 分别是直线l :y =ex +a 与x 轴、y 轴的交点,所以A 、B 的坐标分别是⎝ ⎛⎭⎪⎫-a e ,0,(0,a). 设M 的坐标是(x 0,y 0).由AM →=λAB →,得⎝ ⎛⎭⎪⎫x 0+a e ,y 0=λ⎝ ⎛⎭⎪⎫a e ,a ,所以⎩⎪⎨⎪⎧x 0=a e (λ-1),y 0=λa.(2分)因为点M 在椭圆上,所以x 20a 2+y 2b2=1,即⎣⎢⎡⎦⎥⎤a e (λ-1)2a2+(λa)2b 2=1,所以(1-λ)2e2+λ21-e2=1. e 4-2(1-λ)e 2+(1-λ)2=0,解得e 2=1-λ,即λ=1-e 2.(4分)(2) 解:当λ=34时,c =12,所以a =2c.(6分)由△MF 1F 2的周长为6,得2a +2c =6.(8分)所以a =2,c =1,b 2=a 2-c 2=3.椭圆的方程为x 24+y 23=1.(10分)(3) 解:(解法1)因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△MF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即12|PF 1|=c.(12分)设点F 1到l 的距离为d ,由12|PF 1|=d =|e (-c )+0+a|1+e 2=|a -ec|1+e2=c ,(14分) 得1-e21+e2=e.所以e 2=13,于是λ=1-e 2=23. 即当λ=23时,△PF 1F 2为等腰三角形.(16分)(解法2)因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|.设点P 的坐标是(x 0,y 0),则⎩⎪⎨⎪⎧y 0-0x 0+c =-1e ,y 0+02=e x 0-c 2+a.解得⎩⎪⎨⎪⎧x 0=e 2-3e 2+1c ,y 0=2(1-e 2)ae 2+1.(10分) 由|PF 1|=|F 1F 2|得⎣⎢⎡⎦⎥⎤(e 2-3)c e 2+1+c 2+⎣⎢⎡⎦⎥⎤2(1-e 2)a e 2+12=4c 2, 两边同时除以4a 2,化简得(e 2-1)2e 2+1=e 2.从而e 2=13.(14分) 于是λ=1-e 2=23.即当λ=23时,△PF 1F 2为等腰三角形.(16分)19. 解:(1) 当a =0时,f(x)=(x -1)e x ,f ′(x)=xe x,(2分) x ∈(-∞,0)时,f ′(x)<0,函数单调递减;x ∈(0,+∞)时,f ′(x)>0,函数单调递增.(4分)(2) f′(x)=x(e x-2a),① a ≤0时,因为e x-2a>0,x ∈(-∞,0)时,f ′(x)<0,函数单调递减;x∈(0,+∞)时,f ′(x)>0,函数单调递增.x =0时,函数f(x)取极小值f(0)=-1.(6分)② a>0时,令f′(x)=x(e x-2a)=0,解出x 1=0或x 2=ln(2a).若ln(2a)=0,即a =12,f(x)=x(e x-1)≥0,x ∈R ,函数f(x)单调递增,没有极值; 若ln(2a)>0,即a>12,x ∈(-∞,0)和x∈(ln(2a),+∞)时,f ′(x)>0,函数单调递增;x∈(0,ln(2a))时,f ′(x)<0,函数单调递减;函数f(x)的极大值是f(0)=-1,极小值是f(ln(2a))=2a(ln(2a)-1)-a(ln(2a))2;若ln(2a)<0,即0<a<12,x ∈(-∞,ln(2a))和x∈(0,+∞)时,f ′(x)>0,函数单调递增;x∈(ln(2a),0)时,f ′(x)<0,函数单调递减;函数f(x)的极大值是f(ln(2a))=2a(ln(2a)-1)-a(ln(2a))2,极小值是f(0)=-1.综上,当a≤0时,f(x)有极小值-1,无极大值;当a>12时,f(x)有极大值-1,极小值2a(ln(2a)-1)-a(ln(2a))2;当0<a<12时,f(x)有极大值2a(ln(2a)-1)-a(ln(2a))2,极小值-1;当a =12时,没有极值.(10分)(3) f′(x)=x(e x -2a),f ′(x)=e x(x -2a)=0,解出x 1=0或x 2=ln(2a).① 若ln (2a)≤0,即0<a≤12时,x ∈[0,a],f ′(x)≥0,函数在[0,a]上单调递增,M(a)=f(a)=(a -1)e a -a 3.② 若ln(2a)>0,即12<a ≤1,令g(a)=ln(2a)-a ,g′(a)=1-a a >0,所以g(a)在⎝ ⎛⎦⎥⎤12,1上递增,所以g(a)≤g(1)=ln2-1=ln 2e<0,从而ln(2a)<a ,所以ln (2a)∈(0,a),所以x∈(0,ln(2a))时,f ′(x)<0,当x∈(ln(2a),+∞)时,f ′(x)>0,M(a)=max{f(a),f(0)}={(a -1)e a -a 3,-1}.令h(a)=(a -1)e a -a 3+1,h ′(a)=a(e a -3a),令k(a)=e a -3a ,则k′(a)=e a-3<e -3<0,所以k(a)在⎝ ⎛⎦⎥⎤12,1上递减,而k ⎝ ⎛⎭⎪⎫12k(1)=⎝⎛⎭⎪⎫e -32(e -3)<0, 所以存在唯一的零点x 0∈⎝ ⎛⎦⎥⎤12,1使得k(x 0)=0,且当a∈⎝ ⎛⎭⎪⎫12,x 0时,k(a)>0,则h′(a)>0;当a∈(x 0,1)时,k(a)<0,则h′(a)<0.所以h(a)在⎝ ⎛⎭⎪⎫12,x 0上单调递增,在(x 0,1)上单调递减.h ⎝ ⎛⎭⎪⎫12=-12e +78>0,h(1)=0,所以h(a)≥0在⎝ ⎛⎦⎥⎤12,1上恒成立,当a =1时,等号成立. 即f(a)≥f(0).综上,M(a)=f(a)=(a -1)e a -a 3.(16分)20. 解:(1) 若a =0,b ≠0,a n +1=b a n ,∴ a 1=5,a 2=b 5,a 3=5,a 4=b5,…所以当n 为奇数时,S n =5·n +12+b 5·n -12=25n +bn -b +2510;当n 为偶数时,S n =5·n 2+b 5·n 2=25n +bn10.(3分)若a≠0,b =0时,a n +1=a·a n ,所以S n =⎩⎪⎨⎪⎧5(a n-1)a -1,a ≠0,a ≠15n ,a =1;(6分)若a =0,b =0时,a n +1=0,不合题意.(2) n≥2时,∵ a n =a n -1+1a n -1,∴ a 2n =a 2n -1+1a 2n -1+2.∴ a 22=a 21+1a 21+2,a 23=a 22+1a 22+2,…,a 21 001=a 21 000+1a 21 000+2,∴ a 21 001=a 21+2 000+1a 21+1a 22+…+1a 21 000>2 025, ∴ a 1 001>45.(10分)下面证明a 1 001<45.1.∵ 45.12=(45+0.1)2=2 025+9+0.01,只要证a21 001<2 034.∵ {a n}是单调递增数列,a2101=a21+200+1a21+1a22+…+1a2100>225,∴ a21 001=2 025+1a21+1a22+…+1a2100+1a2101+…+1a21 000<2 025+100a21+900a2101<2 025+4+4=2033.∴ a1 001<45.1.综上所述,存在a=45.(16分)2015届高三模拟考试试卷 数学附加题参考答案及评分标准21. B. 解:(1) M 1=⎣⎢⎡⎦⎥⎤0-110,(2分) M 1⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-12,所以点P(2,1)在T 1作用下的点P′的坐标是P′(-1,2).(5分) (2) M =M 2·M 1=⎣⎢⎡⎦⎥⎤1-110,(7分)设⎣⎢⎡⎦⎥⎤x y 是变换后图象上任一点,与之对应的变换前的点是⎣⎢⎡⎦⎥⎤x 0y 0, 则M ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,也就是⎩⎪⎨⎪⎧x 0-y 0=x ,x 0=y ,即⎩⎪⎨⎪⎧x 0=y ,y 0=y -x , 所以,所求曲线的方程是y -x =y 2.(10分)C. 解:(1) 曲线C 1的直角坐标方程为x 2+y 2-2x =0.①当α=π4时,曲线C 2的普通为y =x.②由①,②得曲线C 1与C 2公共点的直角坐标方程为(0,0),(1,1).(4分) (2) C 1是过极点的圆,C 2是过极点的直线.设M(ρ,θ),不妨取A(0,θ),B (2ρ,θ),则2ρ=2cos θ.(7分)故点M 轨迹的极坐标方程为ρ=cos θ⎝⎛⎭⎪⎫θ≠π2. 它表示以⎝ ⎛⎭⎪⎫12,0为圆心,以12为半径的圆,去掉点(0,0).(10分) 22. 解:(1) 以C 为原点,CD ,CB ,CE 方向为轴建系, DF →=(0,2,1),平面ACEF 的法向量BD →=(2,-2,0),(2分)|cos 〈DF →,BD →〉|=105,所以直线DF 与平面ACEF 所成角的正弦值为105.(5分)(2) 设P(t ,t ,1)(0≤t≤2),平面PCD 的一个法向量为m =(0,1,-t), 平面PCM 的一个法向量为n =(-2,1,t),(7分)∵ 平面PCD⊥平面PCM ,∴ m ·n =0,解得t =1,即P 为EF 的中点.(10分) 23. 解:(1) ∵ 81<88<100,故a 88=9;(2分)S 88=(4分)(2i +1)i =k (k +1)(4k +5)6,(7分)从而可得S 120=S 102+2·10=∑i =110(2i +1)i =k (k +1)(4k +5)6=10×11×456=825,而880-82511=5,故S 125=S 120+5a 121=825+5×11=880.(10分)。