1.1.1.3回归分析的基本思想及其初步应用(三)

合集下载

回归分析的基本思想及其应用(三)

回归分析的基本思想及其应用(三)

第42课时 回归分析基本思想及其初步应用( 三)学习目标:1、掌握线性回归模型与线性回归方程的关系及其参数、变量的意义;2、了解将非线性回归问题转化为线性回归问题的方法; 教学重点;非线性回归问题转化为线性回归问题的方法 教学难点:非线性回归问题转化为线性回归问题 教学工具:Powerpoint 、Excel 教学过程:(一) 复习引入1、(1))(∧∧+-=-=a x b y y y e i i i i i (i =1,2,……,n )称为相应于点(x i ,y i )的残差(residual ),它是随机误差e i =y i -(bx i +a ) (i =1,2,……,n )的估计值. (2)回归模型拟合效果评价①残差分析法:残差点比较均均地落在水平的带状区域中,说明选用的模型比较适合. 这样的带状区域越窄,说明模型的拟合精度越高,回归方程的预报精度越高.②相关指数法:定义相关指数∑∑==∧---=ni i ni i i y y y y R 12122)()(1, 其表示解释变量对预报变量变化的贡献率,R 2越接近1,表示回归效果越好.(二) 推进新课例1为了研究某种细菌随时间x (天)变化繁殖的个数,收集数据如右:(1)用天数作解释变量,繁殖个数为预报变量,作出这些数据的散点图; (2)描述解释变量与预报变量之间的关系,试建立y 关于x 回归方程. 解:根据收集的数据作出散点图.在散点图中,样本点并没有分布在某个带状区域内,因此两个变量不呈线性相关关系,不能直接利用线性回归模型来刻画两个变量之间的关系.根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线xc ec y 21=的周围,其中21c c 和是待定参数.或者也可以认为样本点集中某二次曲线423c xc y +=的附近,其中43c c 和是待定参数.(方案一)若用xc ec y21=模型拟合,则令abx z c b c a y z+====时,21,ln ,ln 为线性直线的附近,因此可以且线性回归方程来拟合.由上表中的数据,用计算器或Excel 得到线性回归方程为:116.16902.0+=∧x z ,因此细菌繁殖个数关于天数的非线性回归方程为:116.16902.0+∧=x ey(方案二)若用423c xc y+=模型拟合,令2xt=,则43c t c y+=为线性回归模型,下面是布在一条直线的周围,因此不宜用线性回归方程来拟合它,即不宜用二次函数423c xc y +=来拟合y 和x 之间的关系.当然对于上表中的数据用计算器或Excel 也可以得到“线性回归”方程为:46.14096.5-='∧t y ,因此细菌繁殖个数关于天数的另一个非线性回归方程为:46.14096.52-='∧xy思考:怎样评价以上两个模型的拟合效果?其中∧e =116.16902.0+∧-=-x ey y y,)46.14096.5(2--='-='∧∧xy y y e从表中的残差∧e 、∧'e 可以看出,指数函数模型的|∧e |显然要比二次函数模型的|∧'e |小,因此指数函数模型拟合效果比二次函数模型的拟合效果好. 方法二:相关指数法下面给出两个回归模型的相关指数22,R R '计算由上面的残差分析法易知:54.6)(261612=-=∑∑=∧=∧i i i i i y y e ,73.1403)(261612='-='∑∑=∧=∧i i i i i y y e又因83.24642)(261=-∑=i i y y , 所以2R=9997.083.2464254.61=-,2R '=94304.083.2464273.14031=-显然22R R '>,因此指数函数模型拟合效果比二次函数模型的拟合效果好.知识形成:1、两个非线性相关回归模型确定 (1)画散点图;(2)观察图并根据经验判断适合何种模型; (3)恰当变换,转化成线性回归模型;(4)检验模型的拟合效果.(根据相关指数R 2越大,模型拟合精度越高来优选.)(三)典例分析1、对于下列非线性回归模型相应的回归方程,请做适当的变换,使成为线性回归方程;(1)y =cx 2+d ,令t =x 2,可得dct y+=∧;(2),c xk y +=令xt 1=,可得ckt y+=∧;(3),ln d x c y +=令x t ln =,可得dct y+=∧;(4))0(>=c ceydx,令ytln =,可得cdx tln +=∧;2、已知两个变量的非线性回归方程为xy22.1⨯=∧,则样本点(1,4)的残差为 1.6 .3、已知样本点(1,2.25)、(2,1.85)、(3,1.64)、(4,1.46)满足的回归模型,c xk y+=则通过变换变成线性回归模型后新的样本点的中心为( D )A (0.50,1.72)B (0.50,1.74)C (0.54,1.76)D (0.52,1.80) 4、如果用指数函数模型xc ec y 21=拟合原始模型,设yzln =,且(z x ,)为(165.25,3.99),则回归方程为( C )A 712.85849.0-=x e y B712.85849.0--=x ey C3295.10161.0+=x ey D3295.10161.0+-=x ey5、已知两相关变量 x ,y 的三组观测值如下表: 根据经验知y 对x 的回归模型为abxy+=2,试求出该回归方程.解:令t =x 2,则y 与t 的回归方程为y =bt +a . 相关数据为:则30431=∑=i i i y t ,338,667.7,667.8612===∑=i it y t所以有929.033261231≈-⨯-=∑∑==∧tt yt y t b i ii i ixb y a ∧∧-==-0.385,所以y 与t 的回归方程为385.0929.0-='∧t y ,由t =x 2得y 与x 的回归方程为385.0929.02-='∧x y(四)巩固练习P 导航66页T 1-4 (五)课时小结1非线性回归模型求解及拟合效果检验;2常见非线性回归模型变换为线性回归模型 (六)作业P 教材90页,T 2。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

回归分析的结果解读和评估
回归分析的结果应该经过详细的解读和评估。我们可以通过检验假设、计算回归系数的显著性、解释模 型的可解释性等来个领域都有广泛的应用,包括经济学、社会科学、医学、市场 营销等。它可以帮助我们理解变量之间的关系、预测未来的趋势,并支持决 策和策略制定。
回归分析的数据准备
在进行回归分析之前,需要准备好相关的数据。这包括收集和整理数据、处 理缺失值和异常值、选择合适的变量和转换方法等。良好的数据准备可以提 高回归分析的准确性和可靠性。
回归分析的基本思想及其 初步应用
回归分析是一种用来研究变量之间关系的统计方法。它的基本思想是通过建 立数学模型来描述变量之间的关系,并利用统计学方法来判断这种关系的显 著性和可靠性。
回归分析的定义与含义
回归分析是一种通过建立数学模型来描述两个或多个变量之间关系的统计学方法。它可以帮助我们理解 变量之间的因果关系,预测未来的变化趋势,并进行决策和策略制定。
回归分析的基本原理
回归分析的基本原理是通过最小化预测值与观察值之间的差异来确定最佳拟 合线。它使用最小二乘法来估计模型参数,并通过假设检验来评估模型的显 著性。
回归分析的常用模型
回归分析有多种常用模型,包括简单线性回归、多元线性回归、逻辑回归等。 每个模型都适用于不同的数据类型和研究问题,选择合适的模型可以提高分 析的准确性和可解释性。

回归分析的基本思想及其初步应用(用三课时)

回归分析的基本思想及其初步应用(用三课时)

对于一组具有线性相关关系的数据 (x1,y1),(x2,y2),...,(xn,yn),
其回归直线方程为 yˆ bˆx aˆ 此直线叫做回归直线。
其回归方程的截距和斜率的最小二乘估计公式分别为: 最
n
n
y bˆ
i1
(xi
n
x)(yi (xi x)2
y)
xi
i1
n
xi2
nxy
i
,
2
nx
吗?如果不是,你能解析一下原因吗?
答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认 为她的体重接近于60.316kg或在60.316kg 左右。即,用这个回归方程不 能给出每个身高为172cm的女大学生的体重的预测值,只能给出她们平 均体重的值。
从散点图看到,样本点散布在某一条直线的附近,而不是在一条直线上, 所以不能用一次函数y=bx+a描述它们关系。
注意:1)残差分析步骤:
1)计算每组数据的残差,即样本值减预测值 (yi y i )
2)画残差图。纵残差图的制作:
坐标纵轴为残差变量,横轴可以有不同的选择. 横轴为编号:可以考察残差与编号次序之间的关系,常用于调查
数据错误. 横轴为解释变量:可以考察残差与解释变量的关系,常用于研究
2)函数关系中的两个变量间是一种确定性关系 相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一般的情况
如:人的身高与年龄;产品的成本与生产数量 商品的销售额与广告费;家庭的支出与收入。等等
一.回顾复习
问题1:正方形的面积y与正方形的边长x之间
的函数关系是 y = x2
i=1
=
i=1 n

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

、回归分析的基本思想及其初步应用————————————————————————————————作者:————————————————————————————————日期:新课标数学选修1-21.1回归分析的基本思想及其初步应用(教师用书独具)●三维目标1.知识与技能通过典型案例的探究,了解回归分析的基本思想,会对两个变量进行回归分析,明确解决回归模型的基本步骤,并对具体问题进行回归分析以解决实际应用问题.了解最小二乘法的推导,解释残差变量的含义,了解偏差平方和分解的思想,了解判断刻画模型拟合效果的方法——相关指数和残差分析.掌握利用计算器求线性回归直线方程参数及相关系数的方法.2.过程与方法通过收集数据作散点图,分析散点图,求回归直线方程,分析回归效果,利用方程进行预报.3.情感、态度与价值观培养学生利用整体的观点和互相联系的观点来分析问题,进一步加强数学的应用意识,培养学生学好数学、用好数学的信心,加强与现实生活的联系,以科学的态度评价两个变量的相互关系.●重点难点重点:回归分析的基本方法、随机误差e的认识、残差图的概念、用残差及R2来刻画线性回归模型的拟合效果.难点:回归分析的基本方法、残差概念的理解及拟合效果的判定、非线性回归向线性回归的转化.教学时要以残差分析为重点,突出残差表和R2的计算,通过举例说明相关关系与确定性关系的区别,说明回归分析的必要性及其方法.借助例题使学生掌握作散点图、求回归直线方程的方法,通过作残差图、计算R2让学生掌握拟合效果的判断方法.对于非线性回归问题重点在如何转换,引导学生分析总结转化方法和技巧,从而化解难点.(教师用书独具)●教学建议本节课建议教师采取探究式教学,把“关注知识”转向“关注学生”,在教学过程中,把“给出知识”的过程转变为“引起活动,让学生探究知识的过程”,把“完成教学任务”转向“促进学生发展”,让学生成为课堂上的真正主人.在教学中,知识点可由学生通过探索“发现”,让学生充分经历探索与发现的过程,并引导学生积极解决探索过程中发现的问题.教学中不要以练习为主,而是定位在知识形成过程的探索,例题的解答也要由学生探讨、教师点拨,共同完成.要注重数学的思想性,如统计思想、随机观念、函数思想、数形结合的思想方法等,引导学生体验数学中的理性精神,加强数学形式下的思考和推理能力.●教学流程创设问题情境,引出问题,引导学生探讨,从而引出回归分析、线性回归模型、刻画回归效果的有关概念及解决方法.利用填一填的形式,使学生自主学习本节基础知识,并反馈了解,对理解有困难的概念加以讲解.引导学生在学习基础知识的基础上分析回答例题1的问题,并总结规律方法,完成变式训练.引导学生分析例题2,根据图中的数据计算系数,求出回归方程,列出残差表,求出R2并判断拟合效果,完成变式训练.完成当堂双基达标,巩固所学知识及应用方法,并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.通过老师启发引导,完成例题3,并要求学生借鉴例题3的解法完成变式训练.引导学生分析例题3,让学生作出散点图,观察相关性,引出问题,即如何使问题转化为相关关系并用线性回归分析二者关系.课标解读1.会用散点图分析两个变量是否存在相关关系.(重点) 2.会求回归方程,掌握建立回归模型的步骤,会选择回归模型.(重点、难点)线性回归模型【问题导思】一台机器由于使用时间较长,生产的零件有一些会有缺陷.按不同转速生产出有缺陷的零件的统计数据如下:转速x(转/秒)1614128每小时生产有缺陷的零件数y(件)119851.在平面直角坐标系中作出散点图.【提示】2.从散点图中判断x和y之间是否具有相关关系?【提示】有.3.若转速为10转/秒,能否预测机器每小时生产缺陷的零件件数?【提示】可以.根据散点图作出一条直线,求出直线方程后可预测.(1)回归直线方程:y^=b^x+a^,其中:b^=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2,a^=y-b^x,x=1n∑i=1nx i,y=1n∑i=1ny i.(2)变量样本点中心:(x,y),回归直线过样本点的中心.(3)线性回归模型:y=bx+a+e,其中e称为随机误差,a和b是模型的未知参数,自变量x称为解释变量,因变量y称为预报变量.刻画回归效果的方式残差对于样本点(x i,y i)(i=1,2,…,n)的随机误差的估计值e^i=y i-y^i,称为相应于点(x i,y i)的残差残差图利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图残差图法残差点比较均匀地落在水平的带状区域内,说明选用的模型比较适合,这样的带状区域的宽度越窄,说明模型拟合精度越高残差平方和残差平方和为∑i=1n(y i-y^i)2,残差平方和越小,模型拟合效果越好相关指数R2R2=1-∑i=1n(y i-y^i)2∑i=1n(y i-y)2,R2表示解释变量对预报变量变化的贡献率,R2越接近于1,表示回归的效果越好回归分析的有关概念有下列说法:①线性回归分析就是由样本点去寻找一条直线,使之贴近这些样本点的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系^=b^x+a^,可以估计和观测变量的取值和变化趋势;④因表示;③通过回归方程y为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.其中正确命题的个数是()A.1B.2C.3D.4【思路探究】可借助于线性相关概念及性质逐一作出判断.【自主解答】①反映的正是最小二乘法思想,故正确.②反映的是画散点图的作用,也正确.③解释的是回归方程y^=b^x+a^的作用,故也正确.④是不正确的,在求回归方程之前必须进行相关性检验,以体现两变量的关系.【答案】 C1.解答例1中④时,必须明确具有线性相关关系的两个变量间才能求得一个线性回归方程,否则求得的方程无实际意义.因此必须先进行线性相关性判断,后求线性回归方程.2.回归分析的过程:(1)随机抽取样本,确定数据,形成样本点;(2)由样本点形成散点图,判断是否具有线性相关关系;(3)由最小二乘法确定线性回归方程; (4)由回归方程观察变量的取值及变化趋势.关于变量y 与x 之间的回归直线方程叙述正确的是( ) A .表示y 与x 之间的一种确定性关系 B .表示y 与x 之间的相关关系 C .表示y 与x 之间的最真实的关系D .表示y 与x 之间真实关系的一种效果最好的拟合【解析】 回归直线方程能最大可能地反映y 与x 之间的真实关系,故选项D 正确.【答案】 D线性回归分析已知某种商品的价格x (元)与需求量y (件)之间的关系有如下一组数据:x 14 16 18 20 22 y1210753求y 关于x 的回归直线方程,并说明回归模型拟合效果的好坏.【思路探究】 回归模型拟合效果的好坏可以通过计算R 2来判断,其值越大,说明模型的拟合效果越好.【自主解答】 x =15(14+16+18+20+22)=18, y =15(12+10+7+5+3)=7.4,∑i =15x 2i =142+162+182+202+222=1 660,∑i =15x i y i =14×12+16×10+18×7+20×5+22×3=620,所以b^=∑i=15x i y i-5x y∑i=15x2i-5x2=620-5×18×7.41 660-5×182=-1.15,a^=7.4+1.15×18=28.1,所以所求回归直线方程是y^=-1.15x+28.1.列出残差表:y i-y^i00.3-0.4-0.10.2y i-y 4.6 2.6-0.4-2.4-4.4所以∑i=15(y i-y^i)2=0.3,∑i=15(y i-y)2=53.2,R2=1-∑i=15(y i-y^i)2∑i=15(y i-y)2≈0.994,所以回归模型的拟合效果很好.1.回归直线方程能定量地描述两个变量的关系,系数a^,b^刻画了两个变量之间的变化趋势,其中b^表示x变化一个单位时,y的平均变化量.利用回归直线可以对问题进行预测,由一个变量的变化去推测另一个变量的变化.2.线性回归分析中:(1)残差平方和越小,预报精确度越高.(2)相关指数R2取值越大,说明模型的拟合效果越好.某运动员训练次数与运动成绩之间的数据关系如下:次数(x)34650成绩(y)34851(1)作出散点图;(2)求出线性回归方程;(3)作出残差图,并说明模型的拟合效果;(4)计算R2,并说明其含义.【解】(1)作出该运动员训练次数(x)与成绩(y)之间的散点图,如图所示.(2)可求得x=39.25,y=40.875,∑i=18x2i=12 656,∑i=18y2i=13 731,∑i=18x i y i=13 180,∴b^=∑i=18(x i-x)(y i-y)∑i=18(x i-x)2=∑i=18x i y i-8x y∑i=18x2i-8x2≈1.041 5,a^=y-b^x=-0.003 875,∴线性回归方程为y^=1.041 5x-0.003 875.(3)作残差图如图所示,由图可知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适.(4)相关指数R2=0.985 5.说明了该运动员的成绩的差异有98.55%的可能性是由训练次数引起的.非线性回归分析下表为收集到的一组数据:x 21232527293235y 711212466115325(1)作出x与y的散点图,并猜测x与y之间的关系;(2)建立x与y的关系,预报回归模型并计算残差;(3)利用所得模型,预报x=40时y的值.【思路探究】(1)画出散点图或进行相关性检验,确定两变量x、y是否线性相关.由散点图得x、y之间的回归模型.(2)进行拟合,预报回归模型,求回归方程.【自主解答】(1)作出散点图如图,从散点图可以看出x与y不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线y=c1e c2x的周围,其中c1、c2为待定的参数.(2)对两边取对数把指数关系变为线性关系,令z=ln y,则有变换后的样本点应分布在直线z=bx+a,a=ln c1,b=c2的周围,这样就可以利用线性回归模型来建立y与x之间的非线性回归方程了,数据可以转化为:x 21232527293235z 1.946 2.398 3.045 3.178 4.190 4.745 5.784 求得回归直线方程为z^=0.272x-3.849,∴y^=e0.272x-3.849.残差如下表:y i711212466115325y^i 6.44311.10119.12532.95056.770128.381290.325 e^i0.557-0.101 1.875-8.9509.23-13.38134.675(3)当x=40时,y=e0.272x-3.849≈1 131.两个变量不具有线性关系,不能直接利用线性回归方程建立两个变量的关系,可以通过变换的方法转化为线性回归模型,如y=c1e c2x,我们可以通过对数变换把指数关系变为线性关系,令z=ln y,则变换后样本点应该分布在直线z =bx+a(a=ln c1,b=c2)的周围.有一个测量水流量的实验装置,测得试验数据如下表:i 1234567水高h(厘米)0.7 1.1 2.5 4.98.110.213.5 流量Q(升/分钟)0.0820.25 1.811.237.566.5134根据表中数据,建立Q与h之间的回归方程.【解】由表中测得的数据可以作出散点图,如图.观察散点图中样本点的分布规律,可以判断样本点分布在某一条曲线附近,表示该曲线的函数模型是Q=m·h n(m,n是正的常数).两边取常用对数,则lg Q=lg m+n·lg h.令y=lg Q,x=lg h,那么y=nx+lg m,即为线性函数模型y=bx+a的形式(其中b=n,a=lg m).由下面的数据表,用最小二乘法可求得b^≈2.509 7,a^=-0.707 7,所以n≈2.51,m≈0.196.i h i Q i x i=lg h i y i=lg Q i x2i x i y i10.70.082-0.154 9-1.086 20.0240.168 32 1.10.250.041 4-0.602 10.001 7-0.024 93 2.5 1.80.397 90.255 30.158 30.101 64 4.911.20.690 2 1.049 20.476 40.724 2 58.137.50.9085 1.574 00.825 4 1.430 0 610.266.5 1.0086 1.822 8 1.017 3 1.838 5 713.5134 1.130 3 2.127 1 1.277 6 2.404 3∑ 4.022 5.140 1 3.780 7 6.642 于是所求得的回归方程为Q=0.196·h2.51.没有理解相关指数R 2的意义而致误关于x 与y 有如下数据:x 2 4 5 6 8 y3040605070为了对x 、y 两个变量进行统计分析,现有以下两种线性模型:甲模型y ^=6.5x +17.5,乙模型y ^=7x +17,试比较哪一个模型拟合的效果更好.【错解】 ∵R 21=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2=1-1551 000=0.845.R 22=1-∑i =15(y i -y ^i )2∑i =15(y i -y )2=1-1801 000=0.82.又∵84.5%>82%,∴乙选用的模型拟合的效果更好.【错因分析】 没有理解R 2的意义是致错的根源,用相关指数R 2来比较模型的拟合效果,R 2越大,模型的拟合效果越好,并不是R 2越小拟合效果更好.【防范措施】 R 2=1-∑i =1n(y i -y ^i )2∑i =1n (y i -y )2,R 2越大,残差平方和越小,从而回归模型的拟合效果越好.在线性回归模型中,R 2表示解释变量对于预报变量变化的贡献率,R2越接近1,表示回归的效果越好(因为R2越接近1,表示解释变量和预报变量的线性相关性越强).从根本上理解R2的意义和作用,就可防止此类错误的出现.【正解】R21=1-∑i=15(y i-y^i)2∑i=15(y i-y)2=1-1551 000=0.845,R22=1-∑i=15(y i-y^i)2∑i=15(y i-y)2=1-1801 000=0.82,84.5%>82%,所以甲模型拟合效果更好.1.在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用线性回归模型来拟合数据.然后,可以通过残差e^1,e^2,…,e ^n 来判断模型拟合的效果,判断原始数据中是否存在可疑数据.这方面的分析工作称为残差分析.2.我们还可以用相关指数R 2来反映回归的效果,其计算公式是:R 2=1-∑i =1n(y i -y ^i )2∑i =1n (y i -y )2.显然,R 2取值越大,意味着残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R 2表示解释变量对于预报变量变化的贡献率.1.已知x 和y 之间的一组数据x 0 1 2 3 y1357则y 与x 的线性回归方程y ^=b ^x +a ^必过点( ) A .(2,2) B .(32,0) C .(1,2)D .(32,4)【解析】 ∵x =14(0+1+2+3)=32,y =14(1+3+5+7)=4, ∴回归方程y ^=b^x +a ^必过点(32,4).【答案】 D2.(2013·青岛高二检测)在下列各组量中:①正方体的体积与棱长;②一块农田的水稻产量与施肥量;③人的身高与年龄;④家庭的支出与收入;⑤某户家庭的用电量与电价.其中量与量之间的关系是相关关系的是( )A .①②B .②④C .③④D .②③④【解析】①是函数关系V=a3;⑤电价是统一规定的,与用电量有一定的关系,但这种关系是确定的关系.②③④中的两个量之间的关系都是相关关系,因为水稻的产量与施肥量在一定范围内是正比、反比或其他关系,并不确定;人的身高一开始随着年龄的增加而增大,之后则不变化或降低,在身高增大时,也不是均匀增大的;家庭的支出与收入有一定的关系,在一开始,会随着收入的增加而支出也增加,而当收入增大到一定的值后,家庭支出趋向于一个常数值,也不是确定关系.【答案】 D3.下列命题正确的有________.①在线性回归模型中,e是bx+a预报真实值y的随机误差,它是一个可观测的量;②残差平方和越小的模型,拟合的效果越好;③用R2来刻画回归方程,R2越小,拟合的效果越好;④在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,若带状区域宽度越窄,说明拟合精度越高,回归方程的预报精度越高.【解析】对于①随机误差e是一个不可观测的量,③R2越趋于1,拟合效果越好,故①③错误.对于②残差平方和越小,拟合效果越好,同理当残差点比较均匀地落在水平的带状区域时,拟合效果越好,故②④正确.【答案】②④4.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 345 6y 2.534 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测技改后生产100吨甲产品比技改前少消耗多少吨标准煤.(参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 【解】 (1)如下图.(2)∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑i =14x 2i =32+42+52+62=86.b ^=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7, a^=y -b ^x =3.5-0.7×4.5=0.35, 因此,所求的线性回归方程为y ^=0.7x +0.35.(3)根据回归方程预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35(吨),故耗能减少了90-70.35=19.65(吨标准煤).一、选择题1.在画两个变量的散点图时,下面叙述正确的是( ) A .预报变量在x 轴上,解释变量在y 轴上 B .解释变量在x 轴上,预报变量在y 轴上C .可以选择两个变量中任意一个变量在x 轴上D .可以选择两个变量中任意一个变量在y 轴上【解析】 结合线性回归模型y =bx +a +e 可知,解释变量在x 轴上,预报变量在y 轴上,故选B.【答案】 B2.(2013·泰安高二检测)在回归分析中,相关指数R 2的值越大,说明残差平方和( )A .越大B .越小C .可能大也可能小D .以上均错【解析】 ∵R 2=1-∑i =1n(y i -y ^i )2∑i =1n (y i -y )2,∴当R 2越大时,∑i =1n(y i -y ^i )2越小,即残差平方和越小. 【答案】 B3.设变量y 对x 的线性回归方程为y ^=2-2.5x ,则变量x 每增加一个单位时,y 平均( )A .增加2.5个单位B .增加2个单位C .减少2.5个单位D .减少2个单位【解析】 回归直线的斜率b ^=-2.5,表示x 每增加一个单位,y 平均减少2.5个单位.【答案】 C4.(2012·湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确...的是( ) A .y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg【解析】由于线性回归方程中x的系数为0.85,因此y与x具有正的线性相关关系,故A正确.又线性回归方程必过样本中心点(x,y),因此B正确.由线性回归方程中系数的意义知,x每增加1 cm,其体重约增加0.85 kg,故C正确.当某女生的身高为170 cm时,其体重估计值是58.79 kg,而不是具体值,因此D不正确.【答案】 D5.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数R2分别为:模型1的相关指数R2为0.98,模型2的相关指数R2为0.80,模型3的相关指数R2为0.50,模型4的相关指数R2为0.25.其中拟合效果最好的模型是()A.模型1 B.模型2C.模型3 D.模型4【解析】相关指数R2能够刻画用回归模型拟合数据的效果,相关指数R2的值越接近于1,说明回归模型拟合数据的效果越好.【答案】 A二、填空题6.在研究身高和体重的关系时,求得相关指数R2≈________,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”,所以身高对体重的效应比随机误差的效应大得多.【解析】结合相关指数的计算公式R2=1-∑i=1n(y i-y^i)2∑i=1n(y i-y)2可知,当R2=0.64时,身高解释了64%的体重变化.【答案】0.647.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y^=0.254x+0.321.由回归直线方程可知,家庭年收入每增对x的回归直线方程:y加1万元,年饮食支出平均增加________万元.^=0.254(x+1)+0.321,与y^=0.254x+0.321相【解析】以x+1代x,得y减可得,年饮食支出平均增加0.254万元.【答案】0.2548.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程是________.【解析】由斜率的估计值为1.23,且回归直线一定经过样本点的中心(4,5),可得y^-5=1.23(x-4),即y^=1.23x+0.08.^=1.23x+0.08【答案】y三、解答题9.某省2013年的阅卷现场有一位质检老师随机抽取5名学生的总成绩和数学成绩(单位:分)如下表所示:学生 A B C D E总成绩(x)482383421364362数学成绩(y)7865716461(1)作出散点图;(2)对x与y作回归分析;(3)求数学成绩y对总成绩x的回归直线方程;(4)如果一个学生的总成绩为500分,试预测这个学生的数学成绩.【解】(1)散点图如图所示:(2)x =2 0125,y =3395,∑5i =1x 2i =819 794,∑5i =1y 2i =23 167,∑5i =1x i y i =137 760. ∴r =错误! ·错误!)=错误!≈0.989.因此可以认为y 与x 有很强的线性相关关系. (3)回归系数b^=∑5i =1x i y i -5 x y ∑5i =1x 2i -5x2=0.132 452,a^=y -b ^x =14.501 315.∴回归方程为y ^=0.132 452x +14.501 315.(4)当x =500时,y ^≈81.即当一个学生的总成绩为500分时,他的数学成绩约为81分.10.(2012·福建高考)某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (件)9(1)求回归直线方程y ^=bx +a ,其中b =-20,a =y -b x ;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)【解】 (1)由于x =16(8+8.2+8.4+8.6+8.8+9)=8.5,y=16(90+84+83+80+75+68)=80,又b=-20,所以a=y-b x=80+20×8.5=250,从而回归直线方程为y^=-20x+250.(2)设工厂获得的利润为L元,依题意得L=x(-20x+250)-4(-20x+250)=-20x2+330x-1 000=-20(x-8.25)2+361.25.当且仅当x=8.25时,L取得最大值.故当单价定为8.25元时,工厂可获得最大利润.11.在关于人的脂肪含量(百分比)和年龄的关系的研究中,研究人员获得了一组数据如下表:年龄x23273945657586061脂肪含量y 9.517.821.225.927.526.328.229.630.231.430.833.535.234.6 (1)作出散点图,并判断y与x是否线性相关.若线性相关,求线性回归方程;(2)求相关指数R2,并说明其含义;(3)给出37岁时人的脂肪含量的预测值.【解】(1)散点图如图所示.由散点图可知样本点呈条状分布,脂肪含量与年龄有比较好的线性相关关系,因此可以用线性回归方程来刻画它们之间的关系.设线性回归方程为y ^=b^x +a ^,则由计算器算得b^≈0.576,a ^≈=-0.448, 所以线性回归方程为y ^=0.576x -0.448. (2)残差平方和: ∑i =114e ^2i =∑i =114(y i -y ^i )2≈37.78.总偏差平方和:∑i =114(y i -y -)2≈644.99.R 2=1-37.78644.99≈0.941.R 2≈0.941,表明年龄解释了94.1%的脂肪含量变化.(3)当x =37时,y ^=0.576×37-0.448≈20.9,故37岁时人的脂肪含量约为20.9%.(教师用书独具)为研究重量x (单位:克)对弹簧长度y (单位:厘米)的影响,对不同重量的6个物体进行测量,数据如下表所示:x 51015202530y 7.258.128.959.9010.911.8(1)作出散点图并求回归方程;(2)求出R2;(3)进行残差分析.【思路探究】(1)由表作出散点图,求出系数值,即可写出回归方程.(2)列出残差表,计算R2,由R2的值判断拟合效果.(3)由(2)中残差表中数值,进行回归分析.【自主解答】(1)散点图如图.x=16(5+10+15+20+25+30)=17.5,y=16(7.25+8.12+8.95+9.90+10.9+11.8)≈9.487,∑i=16x2i=2 275,∑i=16x i y i=1 076.2.计算得,b^≈0.183,a^≈6.285,所求线性回归方程为y^=6.285+0.183x.(2)列表如下:y i-y^i0.050.005-0.08-0.0450.040.025y i-y-2.24-1.37-0.540.41 1.41 2.31所以∑i =16 (y i -y ^i )2≈0.013 18,∑i =16(y i -y )2=14.678 4.所以,R 2=1-0.013 1814.678 4≈0.999 1,回归模型的拟合效果较好.(3)由残差表中的数值可以看出第3个样本点的残差比较大,需要确认在采集这个数据的时候是否有人为的错误,如果有的话,需要纠正数据,重新建立回归模型;由表中数据可以看出残差点比较均匀地落在不超过0.15的狭窄的水平带状区域中,说明选用的线性回归模型的精度较高,由以上分析可知,弹簧长度与拉力成线性关系.建立回归模型的基本步骤: (1)确定解释变量和预报变量;(2)画散点图,观察是否存在线性相关关系; (3)确定回归方程的类型,如y =bx +a ; (4)按最小二乘法估计回归方程中的参数;(5)得结果后分析残差图是否异常,若存在异常,则检查数据是否有误,或模型是否合适.假设关于某设备的使用年限x (年)和所支出的维修费用y (万元)有关的统计资料如下表所示.使用年限x 2 3 4 5 6 维修费用y2.23.85.56.57.0若由资料知y 对x 呈线性相关关系.试求: (1)线性回归方程y ^=b^x +a ^的回归系数a ^、b ^;(2)求相关指数R2;(3)估计使用年限为10年时,维修费用是多少?【解】(1)由已知数据制成下表.i 12345合计x i2345620y i 2.2 3.8 5.5 6.57.025 由此可得x=4,y=5,b^=∑i=15(x i-x)(y i-y)∑i=15(x i-x)2=1.23,a^=y-b^x=5-1.23×4=0.08,∴y^=1.23x+0.08.(2)R2=1-∑i=15(y i-y^i)2∑i=15(y i-y)2=1-0.65115.78≈0.958 7.(3)回归直线方程为y^=1.23x+0.08,当x=10(年)时,y^=1.23×10+0.08=12.38(万元),即估计使用10年时维修费用是12.38万元.。

回归分析的基本思想及初步应用

回归分析的基本思想及初步应用

回归分析的基本思想及初步应用回归分析是一种用于研究变量之间关系的统计方法。

其基本思想是通过建立一个数学模型来描述自变量(独立变量)和因变量(依赖变量)之间的关系,并根据已有数据对模型进行拟合和估计,以了解两个变量之间的关系程度。

回归分析最早是由英国统计学家弗朗西斯·高尔顿在19世纪中叶提出的。

他注意到,人口增长与时间之间似乎存在其中一种关系,于是使用统计方法将时间作为自变量,人口数量作为因变量,建立了一个数学模型。

这个数学模型称为“回归方程”,后来成为了回归分析的基础。

在建模阶段,我们首先要确定自变量和因变量,并根据问题目标和已有数据选取适当的变量。

然后,我们需要选择一个适当的回归模型来描述自变量和因变量之间的关系。

常见的回归模型包括线性回归模型、多项式回归模型、指数回归模型等。

模型的选择通常基于对自变量和因变量之间关系的推测和理论的支持。

同时,还需要根据数据特点和拟合效果选择回归模型的阶数和形式。

在推断阶段,我们需要对模型进行估计和检验。

首先,我们使用已有数据对回归模型进行拟合,根据最小二乘法估计出回归系数的值,并计算出模型预测的因变量值。

然后,通过各种统计方法对模型的拟合程度进行评估。

常用的评估指标有残差分析、R平方和调整R平方等。

此外,还可以进行t检验和F检验来检验回归系数和模型整体的显著性。

这些检验能够帮助我们判断回归模型是否能够很好地描述自变量和因变量之间的关系,并对未来值进行预测和推断。

回归分析的应用非常广泛。

它在社会科学、经济学、医学、生态学等领域都有着重要的应用。

在经济学中,回归分析可以用于预测和解释宏观经济变量之间的关系,如GDP与就业率之间的关系。

在医学中,回归分析可以用于研究因素对疾病发生的影响,如吸烟与肺癌之间的关系。

此外,回归分析还可以用于分析市场需求、产品定价、销售预测等问题,为决策提供科学依据。

总而言之,回归分析是一种用于研究变量关系的重要统计方法。

通过建立数学模型,估计和检验回归系数,可以帮助我们了解变量之间的关系程度,并利用这种关系进行预测和推断。

1.1回归分析的基本思想及其初步应用

1.1回归分析的基本思想及其初步应用

ˆ y
160
(2)从散点图还可以看到,样本点散布在某一条 直线的附近,而不是一条直线上,所以不能用一次 函数y=bx+a来描述它们之间的关系。这时我 们用下面的线性回归模型来描述身高和体重的关系: y=bx+a+e其中a和b为模型的未知参数,e ˆ 是y与 y之间的误差,通常e称为随机误差。
图表标题 80 60 40 20 0 150 160 170 180
模 分 析 拟
y = f(x)
y = f(x)
1、定义: 自变量取值一定时,因变量的取值带有一定随
机性的两个变量之间的关系叫做相关关系。 1):相关关系是一种不确定性关系; 注 2):对具有相关关系的两个变量进行
统计分析的方法叫回归分析。 2、现实生活中存在着大量的相关关系。
如:人的身高与年龄;产品的成本与生产数量;
建立回归模型的基本步骤:
(1)确定研究对象,明确哪个变量是解释变量,哪个变 量是预报变量;
(2)画出确定好的解释变量和预报变量的散点图,观察 它们之间的关系(是否存在线性关系); 是否存在线性关系
(3)由经验确定回归方程的类型(如观察到数据呈线性关 系,则选用线性回归方程y=bx+a); (4)按一定规则估计回归方程中的参数(如最小二乘 法); (5)得出结果后分析残差图是否异常(个别数据对应残 差过大,或残差呈现不随机的规律性等),若存在异常, 则检查数据是否有误,或模型是否合适等.
n (xi -x)(yi -y) b= i=1 ˆ = n 2 (xi -x) i=1 ˆ a=y-bx. ˆ
x y
i=1 n
n
i i 2
- nxy - nx
2
x
i=1

1.1回归分析的基本思想及其初步应用

1.1回归分析的基本思想及其初步应用

随机误差 e y y
e的估计量
ˆ y y ˆ e
( x1 , y1 ),( x2 , y2 ), ... ,( xn , yn ) 样本点: 相应的随机误差为:
ei yi yi yi bxi a, i 1,2,..., n
随机误差的估计值为: ˆ a ˆi yi y ˆ i yi bx ˆ , i 1, 2,..., n e i
因变量的取值带有一定随机性的两个变量之间的关系。
• 函数关系中的两个变量间是一种确定性关系 • 相关关系是一种非确定性关系
问题2:对于线性相关的两个变量用什么方法来 刻划之间的关系呢? 画散点图 求回归方程 预报、决策 这种方法称为回归分析.回归分析是对具有相关 关系的两个变量进行统计分析的一种常用方法.
当x=28时,y =19.87×28-463.73≈ 93
所以,二次函数模型中温度解释了74.64%的产卵数变化。
方案2解答
二元函数模型
平方变换:令t=x2,产卵数y和温度x之间二次函数模型y=bx2+a 就转化为产卵数y和温度的平方t之间线性回归模型y=bt+a
温度 温度的平方t 产卵数y/个 21 441 7 23 529 11 25 625 21 27 729 24 29 841 66 32 1024 115 35 1225 325
温度xoC 产卵数y/个 21 7 23 11 25 21 27 24 29 66 32 115 35 325
( 1 )试建立产卵数 y 与温度x 之间的回归方程;并 预测温度为28oC时产卵数目。 (2)你所建立的模型中温度在多大程度上解释了 产卵数的变化?
探索新知
选变量
一元线性模型

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用
t检验
t检验用于检验单个自变量对因变量的影响是否显著。如果t检验的P值小于显著性水平,则认为该自变 量对因变量的影响是显著的。
回归系数的解释
偏效应
回归系数表示在其他自变量保持不变 的情况下,某一自变量变化一个单位 时因变量的平均变化量。它反映了自 变量对因变量的偏效应。
标准化回归系数
为了消除自变量量纲的影响,可以对 回归系数进行标准化处理。标准化回 归系数表示自变量和因变量的标准化 值之间的相关系数,具有可比性。
03
回归分析的初步应用
一元线性回归分析
01
建立一元线性回归模型
通过收集样本数据,以自变量 和因变量的线性关系为基础, 建立一元线性回归模型。
02
参数估计
利用最小二乘法等估计方法, 对模型中的参数进行估计,得 到回归方程的系数。
03
假设检验
对回归方程进行显著性检验, 判断自变量和因变量之间是否 存在显著的线性关系。
通过调整模型参数或引入新的 变量等方式优化模型,提高模 型的拟合精度和预测能力。
逐步回归分析
1 引入变量
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
2 检验与调整
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。
3 逐步筛选
从所有自变量中逐步引入对因变量有显著影响的变量, 建立初始回归模型。

详细阐述了线性回归模型的构建 过程,包括模型的假设、参数的 估计和模型的检验等步骤。
回归分析的初步应

通过实例演示了回归分析在解决 实际问题中的应用,包括预测、 解释变量关系和控制变量等方面 的应用。
对未来学习的建议与展望
深入学习回归分析的理论知识

1.1回归分析的基本思想及其初步应用(3)

1.1回归分析的基本思想及其初步应用(3)

分析和预测
相关指数R2=r2≈0.8642=0.7464
当x=28时,y =19.87×28-463.73≈ 93
所以,二次函数模型中温度解释了74.64%的产卵数变化。
二次函数模型
选用y=bx2+a ,还是y=bx2+cx+a ? 如何求a、b ?
y=bx2+a 非线性关系 变换
t=x2
方案2
y=bt+a 线性关系
产卵数y/个 350 300 250 200 150 100 50 0 0 150 300 450 600 750 900 1050 1200 1350
t
指数函数模型
方案3
450 400 350 300 250 200 150 100 50 0 -5 -50 0
产卵数
气 温
-10
5
10
15
20
25
0.272x-3.849
2.8
.
2.4 2 1.6 1.2 0.8 0.4 0 0 3 6 9 12 15 18 21 24 27 30 33 36 39
当x=28oC 时,y ≈44 ,指数回归 模型中温度解释了98.5%的产卵数的 变化
x
最好的模型是哪个?
400 300
400 300 200 100 0
(2)画出确定好的解析变量和预报变量的散点图,观察 它们之间的关系(如是否存在线性关系等)。
(3)由经验确定回归方程的类型(如我们观察到数据呈线 性关系,则选用线性回归方程y=bx+a).
(4)按一定规则估计回归方程中的参数(如最小二乘法)。 (5)得出结果后分析残差图是否有异常(个别数据对应残差 过大,或残差呈现不随机的规律性,等等),过存在异常,则 检查数据是否有误,或模型是否合适等。

回归分析的基本思想及其初步应用方法规律总结

回归分析的基本思想及其初步应用方法规律总结

《回归分析的基本思想及其初步应用》方法规律总结1.线性回归分析的过程:(1)随机抽取样本,确定数据,形成样本点;(2)由样本点形成散点图,判定是否具有线性相关关系;(3)由最小二乘法求线性回归方程;(4)进行残差分析,分析模型的拟合效果,不合适时,分析错因,予以纠正;(5)依据回归方程作出预报.2.用散点图可粗略判断两个变量间有无线性相关关系,用相关指数R2可以描述两个变量之间的密切程度.3.随机误差及其产生的原因从散点图中我们可以看到,样本点散布在某一条直线附近,而不是在一条直线上,所以不能用一次函数y =bx +a 来描述它们之间的关系,而是用线性回归模型y =bx +a +e 来表示,其中e 称为随机误差.产生随机误差的主要原因有以下3个方面:(1)用线性回归模型近似真实模型所引起的误差.可能存在非线性的函数能更好地描述y 与x 之间的关系,但是现在却用线性函数来表述这种关系,结果会产生误差.这种由模型近似所引起的误差包含在e 中.(2)忽略了某些因素的影响.影响变量y 的因素不只变量x ,可能还包括其他许多因素(例如在描述身高和体重关系的模型中,体重不仅受身高的影响,还会受遗传基因、饮食习惯、生长环境等其他因素的影响),它们的影响都体现在e 中.(3)观测误差.由于测量工具等原因,导致y 的观测值产生误差(比如一个人的体重是确定的数,但由于测量工具的影响和测量人技术的影响可能会得到不同的观测值,与真实值之间存在误差),这样的误差也包含在e 中.4.正确理解预报变量的变化与解释变量和随机误差的关系预报变量的变化程度可以分解为解释变量引起的变化程度与随机误差e 的变化程度之和.为了衡量回归直线方程y ^=b ^x +a ^的拟合效果,作残差e ^i =yi -y ^i ,其中xi 、yi 为观测到的样本点,y ^i =b ^xi +a ^是由回归模型得到的值,残差图的带状区域越窄,模型的拟合精度就越高,由回归方程作出的预报精度就越高.模型的拟合效果通过相关指数R2来刻画.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率.R2越接近于1,表示解释变量和预报变量的线性相关性越强;反之,R2越小,说明随机误差对预报变量的效应越大。

1知识讲解 回归分析的基本思想及其初步应用(文、理)

1知识讲解 回归分析的基本思想及其初步应用(文、理)

回归分析的基本思想及其初步应用1. 通过对实际问题的分析,了解回归分析的必要性与回归分析的一般步骤。

2. 能作出散点图,能求其回归直线方程。

3. 会用所学的知识对简单的实际问题进行回归分析。

【要点梳理】要点一、变量间的相关关系1. 变量与变量间的两种关系:(1) 函数关系:这是一种确定性的关系,即一个变量能被另一个变量按照某种对应法则唯一确定.例如圆的面积.S 与半径r 之间的关系S=πr 2为函数关系.(2)相关关系:这是一种非确定性关系.当一个变量取值一定时,另一个变量的取值带有一定的随机性,这两个变量之间的关系叫做相关关系。

例如人的身高不能确定体重,但一般来说“身高者,体重也重”,我们说身高与体重这两个变量具有相关关系. 2. 相关关系的分类:(1)在两个变量中,一个变量是可控制变量,另一个变量是随机变量,如施肥量与水稻产量; (2)两个变量均为随机变量,如某学生的语文成绩与化学成绩. 3. 散点图:将两个变量的各对数据在直角坐标系中描点而得到的图形叫做散点图.它直观地描述了两个变量之间有没有相关关系.这是我们判断的一种依据.4. 回归分析:与函数关系不同,相关关系是一种非确定性关系,对具有相关关系的两个变量进行统计分析的方法叫做回归分析。

要点二、线性回归方程:1.回归直线如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫作回归直线。

2.回归直线方程ˆˆˆybx a =+ 对于一组具有线性相关关系的数据11(,)x y ,22(,)x y ,……,(,)n n x y ,其回归直线ˆˆˆybx a =+的截距和斜率的最小二乘法估计公式分别为:121()()ˆ()niii nii x x y y bx x ==--=-∑∑,ˆˆay bx =- 其中x 表示数据x i (i=1,2,…,n )的均值,y 表示数据y i (i=1,2,…,n )的均值,xy 表示数据x i y i (i=1,2,…,n )的均值.a 、b 的意义是:以a 为基数,x 每增加一个单位,y 相应地平均变化b 个单位.要点诠释:①回归系数121()()ˆ()niii nii x x y y bx x ==--=-∑∑,也可以表示为1221ˆni ii nii x y nx ybxnx==-=-∑∑,这样更便于实际计算。

1-1-3回归分析的基本思想及初步应用

1-1-3回归分析的基本思想及初步应用

3.1.3回归分析的基本思想及其初步应用编辑:梁显振 校对:孙宜俊学习目标:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法.教学难点:了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数对不同的模型进行比较.教学过程:一、知识链接:1. 给出例3:一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,试建立y 与x 之间的回归方程.发现样本点并没有分布在某个 带状区域内,即两个变量不呈线 性相关关系,所以不能直接用线 性回归方程来建立两个变量之间 的关系.二、新课探究:1). 探究非线性回归方程的确定:① 如果散点图中的点分布在一个直线状带形区域,可以来建模;如果散点图中的点分布在一个 形区域,就需选择非线性回归模型来建模.② 根据已有的函数知识,可以发现样本点分布在某一条指数函数曲线y =2C 1e x C 的周围(其中12,c c 是待定的参数),故可用 来拟合这两个变量.③ 在上式两边取对数,得21ln ln y c x c =+,再令ln z y =,则21ln z c x c =+,分布在一条直线的附近,因此可以用线性回归方程来拟合.④ 利用计算器算得 3.843,0.272a b =-=,z 与x 间的线性回归方程为0.272 3.843zx =- ,因此红铃虫的产卵数对温度的非线性回归方程为 0.272 3.843x y e -=.⑤ 利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题. 2)命题规律:1、通过观察散点图,发现两个变量之间的关系可以用某个函数来拟合。

2、通过适当变形,将拟合的非线性函数转化成相应的线性方程。

3、求出线性回归方程中的参数,再转化为原函数式。

1.1回归分析的基本思想及其初步应用

1.1回归分析的基本思想及其初步应用
(1)在含有一个解释变量的线性模型中, R2恰 好等于相关系数r的平方. (2)对于已经获取的样本数据, R2表达式中的
2 (y y ) i 为确定的数. i1 n
因此R2越大,意味着残差平方和
2 (y y ) i i 1
n
越小,即模型的拟合效果越好;反之,越差.
用身高预报体重时,需要注意以下问题
从某大学中随机选取8名女大学生,其身 高和体重数据如下表所示: 编 号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 求根据一名女大学生的身高预报她的体重 的回归方程,并预报一名身高为172cm的女大 学生的体重.
ˆ = 3.5 - 0.7 4.5 = 0.35 ˆ = Y - bX a
故线性回归方程为y=0.7x+0.35. (3)根据回归方程的预测,现在生产100吨产品 消耗的标准煤的数量为0.7×100+0.35=70.35.
课堂练习
1.选择
(1)下列说法中正确的有:( C ) ①若r>0,则x增大时,y也相应增大; ②若r<0,则x增大时,y也相应增大; ③若r=1或r=-1,则x与y的关系完全对应(由 函数关系),在散点图上各个点均在一条直线上 A. ① ② B. ② ③ C. ① ③ D. ① ② ③
解析:
若r>0,表示两个相关变量正相关,x增大
时,y也相应增大,故①正确. r<0,表示两个变
量负相关,x增大时,y也相应减小,故②错误.
|r|越接近1,表示两个变量相关性越高,|r|=1表 示两个变量有确定的关系(即函数关系),故 ③正确.

3-1.1回归分析的基本思想及其初步应用(第3课时)-zyw

3-1.1回归分析的基本思想及其初步应用(第3课时)-zyw

1.1回归分析的基本思想及其初步应用(第三课时)课型:新授 执笔:张一为 时间:2007-3-3学号:__________ 姓名:_____________教学目标:1.由“散点图”选择适当的数据模型,以拟合两个相关变量。

虽然任何两个变量的观测数据都可以用线性回归模型来拟合,但不能保证这种拟合模型对数据的拟合效果最好。

为更好地刻画两个变量之间的关系,要根据观测数据的特点来选择回归模型。

2.通过探究使学生认识到:有些 线性模型非线性模型转换−−→− ,即借助于线性回归模型研究呈非线性关系的两个变量之间的关系:⎩⎨⎧⇒⇒归模型来拟合数据作变换,在利用线性回区域分布在一个曲线状带形合数据;选用线性回归模型来拟区域分布在一个直线状带形散点图 ①如模型为:12ln 1212lnc x c z lnc x c lny e c y z y x c +=−−−−→−+=−−−→−==转换:令取自然对数②如模型为:212212c t c y c x c y t x +=−−−−→−+==转换:令3.初步体会不同模型拟合数据的效果。

计算不同模型的相关指数,通过比较相关指数的大小来比较不同模型的拟合效果。

(这只是模型比较的一种方法,还有其他方法。

)教学重点:体会有些非线性模型通过变换可以转化为线性回归模型,了解在解决实际问题的过程中寻找更好的模型的方法。

教学难点:了解常用函数的图像特点,选择不同的模型建模,并通过比较相关指数(如“残差平方和”)对不同的模型进行比较优劣。

教学过程:1.回忆:建立模型的基本步骤;2.新课: (例2)①背景分析,画散点图;②观察散点图,分析解释变量与预报变量更可能是什么函数关系;③建立数学模型;④转换:将非线性模型通过变换转化成线性模型;⑤对数据进行变换后,对新数据建立线性模型,求出回归方程;⑥再转换:转化为原来变量的模型(方程),并计算相关指数(“残差平方和”或R 2),比较两个不同模型的拟合效果。

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用

i 1
结论:
R2 越大,模型的拟合越好;
R2 越小,模型的拟合越差.
建立回归模型的基本步骤为:
(1)确定研究对象,明确变量. (2)画出散点图,观察它们之间的关系.
(3)由经验确定回归方程的类型. (4)按一定规则估计回归方程中的参数.
(5)得出结果后分析是否有异常.(根据残差图或相 关指数估计)
设此曲线的方程为
y c1ec2x
——非线性回归方程
其中 c1 和 c2是待定参数.
令 z ln y 则
——对数变换
z bx a(a ln c1,b c2 )
对数变换后的样本数据为:
x
21
23
25 27
29
32
35
z 1.946 2.398 3.045 3.178 4.190 4.745 5.784
y 0.367x2 202.543
残差比较
x
21
23
25
27
29
32
35
y
7
11
21
24
66
115
325
e(1) 0.557 -0.101 1.875 -8.950 9.230 -13.381 34.675
(2)
e
47.696 19.400 -5.832 -41.000 -40.104 -58.265 77.968
例2 一只红铃虫的产卵数y和温度x有关.现
收集了7组观测数据列于表中:
温度x/oC 21 23 25 27 29 32 35 产卵数y/个 7 11 21 24 66 115 325
试建立产卵数y与温度x之间的回归方程.
例2 一只红铃虫的产卵数y和温度x有关……

回归分析的基本思想及其初步应用

回归分析的基本思想及其初步应用
问题1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。
编号 身高/cm 体重/kg
1
2
3
4
5
6
7
8
165 165 157 170 175 165 155 170
48 57 50 54 64 61 43 59
求根据女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重。
1.1回归分析的基本思想及其初步应用
我们知道,函数关系是一种确定性关系, 而相关关系是一种非确定性关系.回归分析 (regression analysis)是对具有相关关系的两个变量进 行统计分析的一种常用方法. 下面我们通过具体问题,进一步学习回归 分析的基本思想及其应用于
2021/3/11
1
问题一:结合例1得出线性回归模型及随机误差。并且区分函数模型和回归模型。
解:1、选取身高为自变量x,体重为因变量y,作散点图:
2021/3/11
2
2.回归方程:
yˆ 0.849x 85.172
身高172cm女大学生体重 yˆ = 0.849×172 - 85.712 = 60.316(kg)
探究:身高为172cm的女大学生的体重一定是60.316kg吗? 如果不是,你能解析一下原因吗?
答:用这个回归方程不能给出每个身高为172cm的女大学生的体重的预测值, 只能给出她们平均体重的估计值。
2021/3/11
3
由于所有的样本点不共线,而只是散布在某一直线的附近, 所以身高和体重的关系可以用线性回归模型来表示:
y bx a e
其中a和b为模型的未知参数,e称为随机 误差.
2021/3/11
b

高中数学1.1 回归分析的基本思想及其初步应用三

高中数学1.1 回归分析的基本思想及其初步应用三

郑平正 制作
回归分析与相关分析 的区别
1. 相关分析中,变量 x 变量 y 处于平等的地位;回归 分析中,变量 y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化
轴为心的带形区域; 模型拟合精度越高,回归方程的预报精度越高。
3、对于远离横轴的点,要特别注意。
身 高 与 体 重 残 差 图
2019/6/7
郑平正 制作
异 常 点
• 错误数据 • 模型问题
2019/6/7
例1 在一段时间内,某中商品的价格x元和需求量Y件之间
的一组数据为:
价格x 14 16
18
20
22
需求量Y 12 10
7
5
3
求出Y对的回归直线方程,并说明拟合效果的好坏。
5
5
5
解:x 18, y 7.4, xi2 1660, yi2 327, xi yi 620,
i 1
i 1
i 1
5

xi yi 5x y
i 1
5
xi2

2
5x

620 518 7.4 1.15. 1660 5182
2019/6/7
郑平正 制作
7、一般地,建立回归模型的基本步骤为:
(1)确定研究对象,明确哪个变量是解析变量,哪个变量是 预报变量。
(2)画出确定好的解析变量和预报变量的散点图,观察它们 之间的关系(如是否存在线性关系等)。
(3)由经验确定回归方程的类型(如我们观察到数据呈线性 关系,则选用线性回归方程y=bx+a).
就转换为z=bx+a
温度xoC
21
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学选修1-2--- §1.1.1.3回归分析的基本思想及其初步应用(三)
课型: 高二 班 姓名: 日期: 编号:NO. 2
主编: 修订: 审核:
一、【学习目标】1. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应
用;
2. 通过探究使学生体会有些非线性模型通过变换可以转化为线性回归模
型,了解在解决实际问题的过程中寻找更好的模型的方法.
3. 了解常用函数的图象特点,选择不同的模型建模,并通过比较相关指数
对不同的模型进行比较.
二、【学习考点】 1、 教学重难点:回归分析的基本思想、方法及初步应用;常用函数的图
象特点。

3、高考考纲考点:
从近几年高考来看,高考对该考点的考查有加强的趋势,高考中多以选择
题、填空题为主,也有解答题出现,以容易题为主。

三、【自主学习我专注】(课前预时20分钟) 1.求线性回归方程的步骤
2.作函数2x y =和20.25y x =+的图像
【课堂探究】
探究任务:如何建立非线性回归模型?
实例一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,
试建立y 与x 之间的回归方程.
y 个 (1)根据收集的数据,做散点图
上图中,样本点的分布没有在某个 区域,因此两变量之间不呈 关系,能直接用线性模型.由图,可以认为样本点分布在某一条指数函数曲线bx a y e +=为待定系数).
对上式两边去对数,得
ln y =
令ln ,z y =,则变换后样本点应该分布在直线 y 和x 的非线性回归方程.
i i
由上表中的数据得到回归直线方程
z =
因此红铃虫的产卵数y 和温度x 的非线性回归方程为
典型例题
例1一只红铃虫的产卵数y 和温度x 有关,现收集了7组观测数据列于下表中,
y 个 (散点图如由图,可以认为样本点集中于某二次曲线234y c x c =+的附近,其中12,c c 为待定
参数)试建立y 与x 之间的回归方程.
思考:评价这两个模型的拟合效果.
小结:利用线性回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三
个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.
【学习小结】
利用线性回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤
进行.
【知识拓展】
非线性回归问题的处理方法:
1、 指数函数型bx a y e +=
① 函数bx a y e +=的图像:
② 处理方法:两边取对数得ln ln()bx a
y e +=,即ln y bx a =+.令ln ,z y =把原始数据(x,y )
转化为(x,z ),再根据线性回归模型的方法求出,b a .
2、对数曲线型ln y b x a =+
① 函数ln y b x a =+的图像
② 处理方法:设ln x x '=,原方程可化为y bx a '=+
再根据线性回归模型的方法求出,a b .
3、2y bx a =+型
处理方法:设2x x '=,原方程可化为y bx a '=+,再根据线性回归模型的方法求出,a b
四、【合作探究我深入】(限时6分钟)
1.两人小对子:相互检查自研成果,指点纠错,并用红笔给对子评定等级。

2. 六人互助组:
在研究两个变量的相关关系时,观察散点图发现样本点集中于某一条指数曲线
bx a y e +=ln z y =,求得回归直线方程为0.25 2.58z x =-,则该模型的回
归方程为 .
五、展示单元一: 登高揽月 展示单元二:激情展演
分小组口头展示自主学习部分内容 书面展示合作探究及巩固提升相关内容
我来分析
七、【巩固提升试身手】(5分钟内完成展示和点评)
一、【基础题】
1. 两个变量 y 与x 的回归模型中,求得回归方程为0.232x y e -=,当预报变量10x =时( ).
A. 解释变量30y e -=
B. 解释变量y 大于30e -
C. 解释变量y 小于30e -
D. 解释变量y 在30e -左右
2. 在回归分析中,求得相关指数20.89R =,则( ).
A. 解释变量解对总效应的贡献是11%
B. 解释变量解对总效应的贡献是89%
C. 随机误差的贡献是89%
D. 随机误差的贡献是0.89%
3. 通过12,,,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分析
称为( ).
A .回归分析
B .独立性检验分析
C .残差分析 D. 散点图分析
二、【发展题】
4. 已知回归方程0.5ln ln 2y x =-,则100x =时,y 的估计值为 .
二、【腾飞题】
5.为了研究某种细菌随时间x 变化,繁殖的个数,收集数据如下:
(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图;
(2)试求出预报变量对解释变量的回归方程.
九、【课堂智慧我生成】
等级评定:干净度
高速度
准确度。

相关文档
最新文档