HIV V3 Loop 结构综述
艾滋病病的结构及复制过程
艾滋病病的结构及复制过程艾滋病的结构及复制过程艾滋病(Acquired Immunodeficiency Syndrome,简称AIDS)是由人类免疫缺陷病毒(Human Immunodeficiency Virus,简称HIV)引起的一种严重传染病。
理解艾滋病的结构及其复制过程对于防控和治疗该病具有重要意义。
一、艾滋病毒的结构艾滋病毒属于反转录病毒,其结构包括外壳、外包膜、糖蛋白和内壳四层结构。
1. 外壳层:由外膜蛋白gp120和gp41组成,外层具有许多突刺状的糖蛋白结构。
2. 外包膜层:由双层脂质组成,包裹着病毒颗粒。
3. 糖蛋白层:由三种糖蛋白(gp120、gp41和gp160)构成,其中gp120与人体细胞膜表面的CD4受体结合。
4. 内壳层:包含有病毒基因组、反转录酶等重要蛋白质。
二、艾滋病毒的复制过程艾滋病毒的复制过程可分为以下步骤:吸附、渗透、反转录、整合、复制、组装和释放。
1. 吸附:艾滋病毒通过外层的突刺糖蛋白结构与宿主细胞膜表面的CD4受体结合,进而与该细胞上的共受体(CCR5或CXCR4)结合,从而实现病毒与细胞的结合。
2. 渗透:艾滋病毒的外包膜与宿主细胞膜融合,使病毒核心(核酸和内壳层)进入宿主细胞质。
3. 反转录:艾滋病毒内壳层中的反转录酶酶解RNA,将其转录为DNA,形成病毒RNA-DNA复合体。
4. 整合:病毒DNA与宿主细胞的染色体DNA结合,被整合到宿主细胞基因组中,形成嵌合体。
5. 复制:由宿主细胞内的酶,如细胞内核酸酶、细胞核酸聚合酶等,催化病毒DNA的复制与转录,合成病毒RNA和蛋白质。
6. 组装:病毒基因组、蛋白质等在宿主细胞内组装成新的艾滋病毒颗粒。
7. 释放:新生的艾滋病毒颗粒通过细胞膜的脱落方式从宿主细胞释放出来,并寻找新的宿主细胞进行感染,继续循环复制。
总结:艾滋病毒的结构包括外壳、外包膜、糖蛋白和内壳四层结构。
其复制过程经过吸附、渗透、反转录、整合、复制、组装和释放等重要步骤。
第二章抗原第一节抗原的分类一定义免疫原性刺激生物体
* 半抗原与载体(Carrier)
半抗原本身不具有免疫原性,必须与某种载 体偶联才能表现免疫原性.如:青霉素,Dig. 在偶联的分子中,半抗原相当于一个抗原决 定簇,或者是一个免疫优势残基.它诱发的抗体 能与半抗原特异结合. 载体效应: -------不同载体引起产生针对同一种半抗原 的不同抗体.无交叉回忆反应.
15
佐剂(Adjuvant): 可使原来抗原性较差的物质变为较 强,刺激体内产生抗体。 佐剂内容:包括细菌,有机物,无机物。 如:卡介苗(分枝杆菌),纤维素,硬脂酸,明矾。
福氏佐剂(Freund’s Adjuvant): 石蜡油/羊毛脂/卡介苗 福氏完全佐剂( Complete~; CFA): (石蜡油7:3羊毛脂) :卡介苗=1:1 福氏不完全佐剂(Incomplete~;IFA): 无卡介苗 其作用是产生炎症吸引一些免疫反应细胞,延长抗 原与淋巴细胞接触时间。 16
17
载体效应:
BSA-DNP(二硝基苯):----- Ab1 OA-- DNP : -------------Ab2 都能与DNP结合 但无回忆反应
18
Ab量 时间
首次免疫 再次免疫
Fig.1 以载体a-交连的半抗原(Ca-A)免疫曲线
19
Ab量
时间
首次免疫 再次免疫
(Ca-A)
(Cb-A)
Fig.2 以不同载体交连的半抗原免疫曲线
免疫学多媒体教学系统 Immunology
复旦大学 生命科学学院 分子免疫学实验室
朱乃硕
2000年2月编
25
2
第一节 抗原的分类
一. 抗原的类别 1. 天然抗原: 指天然的生物,细胞及天然的生 物产物.主要来自动物,植物,微生物. (1).细胞,细菌和病毒抗原 (2).蛋白质类抗原 (3).糖类,脂类,核酸多为较弱的抗原及半 抗原.
HIV基因组及其编码蛋白
• 从pol和gag基因重叠区内起始的一段序列为 pro基因,它编码蛋白酶p22,p22在裂解上述 HIV蛋白前体形成终末成熟蛋白的过程中起着主 要作用。env基因先编码出一个 88 kD的蛋白质, 经糖基化后分子量增至 160kD,这就是HIV包膜 糖蛋白前体gP160。该前体蛋白在蛋白酶作用下 被切割成gp120和gp41。
LOGO
LOGO
HIV膜蛋白的主要功能区
1、主要功能区
HIV-l 的gp160由845~870个氨基酸组成,在511位被蛋
白酶裂解为gpl20和gp41。二者的氨基端以非共价键的其他分
子作用力结合在一起。gp120有24个糖基化位点,其糖基化是
gp120与CD4受体结合所必须的。经过重配和突变实验,现已
蝶
gap:结构蛋白编码区 Pol:具多种酶活性的蛋白编码区
pro:蛋白编码区 env:外膜蛋白
基因组由结构基因和调节基因等组成。
tat基因 rev基因 nef基因
调
结
节
构
基
基
因
因
基因组
gag基因 pol基因 env基因
LOGO
LOGO
还有4个基因: (1)vif基因(病毒感染因子)、在一些细胞 因子协同下,促进HIV在细胞内复制。 (2)vpr基因(R蛋白)、能使HIV在巨噬细 胞中增殖。
2021/6/4
gp120
基因组
CD4
gp41
LOGOห้องสมุดไป่ตู้
LOGO
部分资料从网络收集整 理而来,供大家参考,
感谢您的关注!
定位多个gpl60蛋白功能区。以HIV-1ⅢB株BH-10克隆的
gp160为例,其中最重要的是:
hiv生物知识点总结
hiv生物知识点总结引言人类免疫缺陷病毒(HIV)是一种影响免疫系统的病毒,它导致了艾滋病(AIDS)的发生。
HIV病毒是一种迄今为止全球范围内最为严重的传染病之一。
虽然现代医学在治疗和预防HIV感染方面取得了很大进展,但是对HIV的深入了解是我们更好地防治和管理疾病的基础。
本文将对HIV的生物学知识点进行总结,包括HIV的结构、感染机制、免疫应答以及治疗方法等方面。
一、HIV的结构HIV是一种病毒,其结构包括病毒外壳、贴膜、病毒包被、核糖核酸(RNA)和一些酶。
HIV的外壳蛋白是由gp120和gp41蛋白构成的,它们使病毒能够与宿主细胞相互作用,并进入细胞内部完成复制过程。
HIV的贴膜由磷脂和蛋白质组成,起到保护病毒和与宿主细胞结合的作用。
病毒的包被含有病毒的一些重要蛋白质,如p17和p24,它们在病毒的成熟和释放过程中发挥着重要作用。
HIV的RNA编码了病毒的遗传信息,并通过病毒逆转录酶转录为DNA,然后插入宿主细胞基因组中,完成病毒的复制和感染。
二、HIV的感染机制HIV主要通过血液、性传播以及母婴传播的方式进行感染。
在血液或体液接触的情况下,HIV的外壳蛋白gp120会与宿主细胞上的CD4受体结合,然后与细胞表面的共受体进行互作,进而使病毒融合到宿主细胞膜上完成感染。
在这个过程中,病毒逆转录酶将RNA转录为DNA并经由核酸内切酶集成到宿主细胞的DNA中。
这样一来,病毒就可以开始复制自身并在宿主细胞内产生新的病毒颗粒。
三、HIV的复制过程HIV感染宿主细胞后,依次进行逆转录、整合、转录、翻译和组装等过程,最终产生成熟的病毒颗粒。
首先,病毒逆转录酶将病毒RNA转录为DNA,并通过病毒整合酶将病毒DNA整合到宿主细胞的DNA中。
接下来,宿主细胞将病毒DNA转录为RNA,并翻译为病毒蛋白质。
这些蛋白质将组装成新的病毒颗粒,并经过成熟和释放,继续感染其他宿主细胞,完成整个复制过程。
四、HIV的免疫应答HIV感染后,人体的免疫系统会产生针对病毒的免疫应答。
艾滋病毒的病毒学特征与结构
艾滋病毒的病毒学特征与结构艾滋病毒(HIV)是一种引发艾滋病的病毒,它攻击人体的免疫系统,导致免疫功能受损,使患者容易受到各种感染和肿瘤的侵袭。
了解艾滋病毒的病毒学特征与结构对于疾病的预防、治疗和防控具有重要意义。
艾滋病毒属于反转录病毒,具有以下病毒学特征:1. RNA病毒:艾滋病毒的基因组是由一条单链的RNA组成,该RNA含有编码病毒结构蛋白、酶和调控蛋白的信息。
2. 反转录:艾滋病毒具有反转录酶,它能够将病毒RNA转录成DNA,并将其插入宿主细胞的基因组中。
3. 快速变异:艾滋病毒的反转录酶在复制过程中容易出错,导致病毒基因组的高度变异,这使得病毒在人体内不断演化,增加了治疗的难度。
艾滋病毒的结构由以下组成部分构成:1. 外膜包膜:艾滋病毒的外层由一层包膜包裹,该包膜由宿主细胞的膜融合而成,其中植入了一些病毒蛋白质。
2. 糖蛋白:艾滋病毒的包膜上富含糖蛋白,其中最重要的是gp120和gp41,它们参与了病毒进入宿主细胞的过程。
3. 病毒核心:艾滋病毒的核心由病毒基因组RNA和反转录酶、整合酶等细胞酶组成。
核心的主要功能是复制病毒基因组和转录整合过程。
艾滋病毒的入侵方式是通过以下步骤完成的:1. 识别与结合:艾滋病毒的gp120糖蛋白能够识别并与宿主细胞表面的CD4受体结合,这是病毒进入宿主细胞的第一步。
2. 融合与进入:gp120结合CD4后,艾滋病毒的gp41糖蛋白会发生构象变化,使得病毒与宿主细胞融合,病毒RNA和反转录酶被释放到细胞内。
3. 反转录与整合:一旦艾滋病毒进入宿主细胞,反转录酶开始将病毒RNA转录成DNA,然后整合到宿主细胞基因组中。
4. 复制与释放:整合的病毒基因组成为细胞的一部分,并通过细胞机制进行复制,产生新的病毒颗粒。
这些新的病毒颗粒最终从感染的细胞释放出来,继续感染其他细胞。
了解艾滋病毒的病毒学特征与结构对于开发治疗药物和疫苗具有重要意义。
通过研究艾滋病毒入侵宿主细胞的机制,可以研发针对特定靶点的药物,干扰病毒的入侵和复制过程。
了解艾滋病病的结构及其影响
了解艾滋病病的结构及其影响了解艾滋病的结构及其影响艾滋病(Acquired Immunodeficiency Syndrome,AIDS)是由人类免疫缺陷病毒(Human Immunodeficiency Virus,HIV)引起的一种免疫系统缺陷疾病。
自1980年代以来,艾滋病成为全球范围内的重大公共卫生问题,并对人类健康和社会经济发展产生了巨大影响。
本文将介绍艾滋病病毒的结构和其对个体、社区和全球的影响。
一、艾滋病病毒的结构艾滋病病毒是一种RNA病毒,属于逆转录病毒家族(Retroviridae)。
它具有以下特点的结构:1. 外包膜(Envelope):艾滋病病毒表面覆盖有一个由酸性蛋白质构成的外包膜,其中可以结合病毒受体CD4和共受体。
2. 糖蛋白(Glycoprotein):外包膜上存在有糖蛋白,也称为血凝素(gp120和gp41),它们参与病毒与宿主细胞结合的过程。
3. 病毒核心(Core):病毒内部含有两股相互补体的单链RNA,其上编码了艾滋病病毒的遗传信息和结构蛋白。
4. 反转录酶(Reverse Transcriptase):艾滋病病毒核心内部的反转录酶能够将病毒RNA转录成双链DNA,然后插入宿主细胞基因组。
二、艾滋病的影响1. 个体层面影响:艾滋病病毒感染,经过一段潜伏期后会进入艾滋病阶段,患者免疫系统逐渐受损,导致免疫力下降,容易发生各种感染和肿瘤。
艾滋病的临床表现包括长期发热、消瘦、慢性腹泻、呼吸道感染等症状。
病毒的传播主要通过性传播、母婴传播以及共用针具等途径,感染者需要长期接受抗病毒治疗,以控制病情发展和减少并发症。
2. 社区层面影响:艾滋病病毒主要通过性传播和注射毒品等高危行为传播,社区中具有高风险的人群如男性同性恋者、性工作者以及毒品滥用者等更易受到感染。
艾滋病的传播不仅对感染者本身造成巨大伤害,也会造成患者家庭的负担和社区的资源消耗。
此外,新生儿的母婴传播也是社区中一个重要的传播途径,需要加强预防和控制措施。
hiv env结构 -回复
hiv env结构-回复HIV env结构是指人类免疫缺陷病毒(Human Immunodeficiency Virus,HIV)的envelope蛋白质结构。
HIV是一种引起艾滋病的病毒,而其env 蛋白质在病毒感染过程中起到了关键作用。
通过分析HIV env结构,我们可以更好地了解HIV的传播机制、抗病毒治疗以及疫苗研发。
首先,让我们来了解一下HIV的基本特征和感染方式。
HIV属于逆转录病毒,其基因组由RNA构成,而非常见的DNA。
HIV主要通过血液、性接触以及母婴传播途径进行感染。
一旦进入人体,HIV会感染免疫系统中的特定细胞,具体来说就是CD4+T淋巴细胞。
HIV env编码的蛋白质是HIV进入宿主细胞的关键。
env是envelope的缩写,是由gp120和gp41两个亚单位组成的。
gp120是env蛋白的外围部分,负责与宿主细胞表面的CD4受体结合,从而将病毒引导到宿主细胞。
gp41则是env蛋白的膜内部分,与宿主细胞膜融合,使得病毒能够进入细胞内部。
HIV env结构是由X光晶体学和电子显微镜等技术手段来解析的。
通过这些手段,科研人员得以观察和分析HIV env蛋白的三维结构。
最早对HIV env结构的解析工作可以追溯到20世纪80年代末,此后我们对其有了更深入的认识。
HIV的env蛋白结构呈现出许多特点。
首先是其高度变异性。
由于HIV 的复制机制导致其基因组具有高度变异性,env蛋白作为其外壳蛋白,也因此显示出较大的变异。
这种变异性使得疫苗研发与抗病毒治疗变得更加困难。
其次是其高度糖基化。
env蛋白上存在大量糖基化位点,这些糖基化位点能够掩盖宿主免疫系统对其的识别,从而减弱免疫应答。
HIV env结构还提供了研发抗病毒药物的目标。
由于env蛋白的独特结构和功能,科研人员可以利用env蛋白作为药物激发点,设计和发现能够阻断env与CD4受体相互作用的抗病毒药物。
事实上,目前已经有一些抗HIV药物成功地利用env蛋白进行靶向治疗。
艾滋病病的结构与感染机制
艾滋病病的结构与感染机制艾滋病是一种由人类免疫缺陷病毒(HIV)感染引起的严重疾病。
本文将介绍艾滋病的结构与感染机制,帮助读者更加深入了解这一疾病。
一、HIV的结构HIV是一种病毒,其结构复杂而精确。
它由外层包膜、内含核心和内层蛋白组成,其中外层包膜含有糖蛋白,内含核心包含有病毒基因组。
二、HIV的感染机制1. 病毒进入宿主细胞HIV主要通过人体内的血液、精液、阴道液等含有病毒的体液传播。
当这些体液进入人体时,病毒会迅速进入宿主细胞。
2. 病毒与宿主细胞融合一旦HIV进入宿主细胞,它会与宿主细胞上的CD4受体结合,利用这个受体进入宿主细胞内部。
随后,HIV的外层包膜与宿主细胞膜融合,病毒的核心释放到宿主细胞内。
3. 病毒的基因组复制HIV进入宿主细胞后,它的基因组会被释放并转录成病毒的RNA。
HIV所携带的酶会将其RNA逆转录成DNA,这一过程称为逆转录。
逆转录完成后,HIV的DNA会进入宿主细胞的细胞核,并整合到宿主细胞的染色体上。
4. 病毒复制与感染HIV整合到宿主细胞的染色体后,宿主细胞会开始复制病毒的基因组,并生成新的病毒颗粒。
这些新的病毒颗粒最终会聚集在宿主细胞表面,并释放到体液中。
这样,新的病毒就能够感染其他健康的细胞,继续复制和感染过程。
5. 免疫系统与HIV的战斗当人体感染HIV后,免疫系统会启动抗病毒的应激反应。
免疫细胞会释放各种细胞因子和抗体,试图抑制病毒的复制。
然而,HIV的特点是能够迅速变异,使得免疫系统难以有效清除病毒。
6. 艾滋病的发展与后果艾滋病是HIV感染后的严重并发症。
由于免疫系统受损,人体无法应对其他常见病菌和病毒的侵袭,容易发生各种感染和恶性肿瘤。
最终,艾滋病会导致免疫系统的崩溃,严重影响患者的生活质量和预后。
总结:艾滋病的结构与感染机制是一个复杂而精细的过程。
HIV通过与宿主细胞融合进入宿主细胞内部,并在其中复制和感染其他细胞。
虽然人体免疫系统会对HIV产生应激反应,但病毒的高变异性使得抗病毒治疗变得困难。
hiv的结构及作用机理
人类免疫缺陷病毒(Human Immunodeficiency Virus;abbr:HIV),即艾滋病(AIDS,获得性免疫缺陷综合征)病毒,就是造成人类免疫系统缺陷的一种病毒。
1983年,人类免疫缺陷病毒在美国首次发现。
它就是一种感染人类免疫系统细胞的慢病毒(Lentivirus),属逆转录病毒的一种。
HIV通过破坏人体的T淋巴细胞,进而阻断细胞免疫与体液免疫过程,导致免疫系统瘫痪,从而致使各种疾病在人体内蔓延,最终导致艾滋病。
由于HIV的变异极其迅速,难以生产特异性疫苗,至今无有效治疗方法,对人类健康造成极大威胁。
2015年3月4日,多国科学家研究发现,艾滋病毒已知的4种病株,均来自喀麦隆的黑猩猩及大猩猩,就是人类首次完全确定艾滋病毒毒株的所有源头。
[1]来源编辑2015年3月4日,多国科学家研究发现,艾滋病毒已知的4种病株,均来自喀麦隆的黑猩猩及大猩猩,就是人类首次完全确定艾滋病毒毒株的所有源头。
已知艾滋病毒毒株共有4种,分别就是M、N、O、P,每种各有不同源头,其中传播最广的M与N早已证实来自黑猩猩,但较罕见的O与P则就是到后来才被证实O与P均就是来自喀麦隆西南部的大猩猩。
全球至今只有两宗P型病例,O型亦只有10万人,主要集中在中西非。
[1]形态特征编辑形态结构人类免疫缺陷病毒直径约120纳米,大致呈球形。
病毒外膜就是类脂包膜,来自宿主细胞,并嵌有病毒的蛋白gp120与gp41;gp41就是跨膜蛋白,gp120位于表面,并与gp41通过非共价作用结合。
向内就是由蛋白p17形成的球形基质(Matrix),以及蛋白p24形成的半锥形衣壳(Capsid),衣壳在电镜下呈高电子密度。
衣壳内含有病毒的RNA基因组、酶(逆转录酶、整合酶、蛋白酶)以及其她来自宿主细胞的成分(如tRNAlys3,作为逆转录的引物)。
编码基因病毒基因组就是两条相同的正链RNA,每条RNA长约9、2-9、8kb。
两端就是长末端重复序列(long terminal repeats, LTR),含顺式调控序列,控制前病毒的表达。
hiv env结构
HIV Env结构是一个复杂的病毒蛋白结构,它由三个部分组成:gp120、gp41和
gp160。
gp120是病毒的外表面糖蛋白,负责与宿主细胞表面的CD4受体和共受体CXCR4或CCR5结合,启动病毒进入细胞的过程。
gp41是病毒的跨膜蛋白,它与
gp120一起形成三聚体,并参与病毒进入细胞的过程。
gp160是病毒的完整糖蛋白,它由gp120和gp41组成,并覆盖在病毒的外表面。
HIV Env结构对于病毒的感染和致病机制非常重要,它能够与宿主细胞表面的受体和共受体结合,诱导病毒进入细胞内。
此外,HIV Env结构也是疫苗设计和抗体治疗的重要靶点,通过针对这个结构开发有效的疫苗和抗体药物,可以阻断病毒的感染和传播。
为了更好地了解HIV Env结构的结构和功能,需要借助先进的生物技术和结构生物学方法,例如X射线晶体学、冷冻电镜和核磁共振等。
这些技术可以帮助科学家们揭示HIV Env结构的详细结构和动态变化,从而为疫苗和药物的设计提供更加精准的靶点和思路。
艾滋病病的结构和功能
艾滋病病的结构和功能艾滋病的结构和功能艾滋病,全称为获得性免疫缺陷综合征(Acquired Immunodeficiency Syndrome,简称AIDS),是由人类免疫缺陷病毒(Human Immunodeficiency Virus,简称HIV)感染所引起的慢性疾病。
本文将探讨艾滋病病毒的结构和功能。
一、病毒的结构艾滋病病毒是一种单股正链的RNA病毒,属于逆转录病毒的一种。
逆转录病毒是指能够把其RNA基因组转录成DNA,然后插入宿主细胞的基因组中。
艾滋病病毒有两种亚型,即HIV-1和HIV-2,其中HIV-1是最常见的一种。
艾滋病病毒的外层是由膜糖蛋白(envelope glycoprotein)组成的,这些蛋白质能够使病毒与宿主细胞相互作用,并进入宿主细胞内。
膜糖蛋白分为外膜蛋白(gp120)和内膜蛋白(gp41)。
艾滋病病毒的内核则由包裹着病毒RNA的蛋白质颗粒(capsid)组成。
二、病毒的功能艾滋病病毒通过其特殊的结构和功能,完成了感染宿主细胞的过程。
下面将依次介绍艾滋病病毒的各项功能:1. 侵入细胞艾滋病病毒首先利用外膜蛋白上的结合位点与宿主细胞表面的CD4受体相结合,然后结合宿主细胞表面的共受体CCR5或CXCR4,从而进一步加强与宿主细胞的结合。
这种结合使得病毒能够与宿主细胞融合,并进入宿主细胞内部。
2. 逆转录复制一旦进入宿主细胞内,艾滋病病毒的RNA基因组将被逆转录酶(reverse transcriptase)酶所转录成DNA。
逆转录酶能够将RNA模板上的核苷酸逆转录成DNA,形成病毒的DNA副本。
这个过程是艾滋病病毒独特的特点,也是逆转录病毒的特征之一。
3. 整合与复制逆转录酶继续作用,将病毒的DNA插入宿主细胞的基因组中,与宿主细胞DNA融合。
这一步骤被称为整合(integration),使得病毒DNA能够永久地留存在宿主细胞内,随后细胞将基于病毒DNA进行转录与翻译,合成病毒蛋白质和RNA。
HIV外膜蛋白的结构与功能研究进展
要的区域之一 。虽然 V3 环的变异程度较高 , 但其主要中和 位点的氨基酸残基相对保守 , 由其诱导产生的抗体能中和 大多数的毒株[4] 。此外 , 在 HIV22 C1 区的 C 端也存在抗原 决定簇 , 能与中和抗体发生反应 。在 V4 与 V5 区之间的 C4 区 , 是结合 CD4 分子的主要区域 , 这是外膜蛋白上另 1 个 重要的中和部位 , 由其诱导的抗体与大多数毒株具有交叉 中和作用 。其 它 保 守 区 ( 如 C2 、C3 甚 至 C1 区) 均 含 有 与 CD4 结合作用有关的区域 , 目前统称这些区域为 CD4 结合 区 。可见 , CD4 结合区具有构象依赖性 , 是由一级结构上 多个位点形成的 1 个特殊的结构域 。V4 与 V5 区是否含有 可诱导中和抗体产生的区域 , 目前还未得到证实 。研究表 明 , HIV21 与 HIV22 的外膜蛋白 , 均存在线性与构象决定 簇[5] 。
1 HIV 与受体的相互作用
人 CD4 + 细胞表面的 CD4 分子是 HIV 的天然受体 (现 称第一受体) , 因此 , CD4 + 细胞是 HIV 的主要靶细胞 , 包 括 CD4 + T 细胞和单核巨噬细胞等 。HIV 可附着在细胞表 面的 CD4 分子上 , 然后通过构象的改变 , 诱导膜的融合而 进入靶细胞 。通过单克隆抗体 ( mAb) 定位和基因点突变法 分析 , 以及 X 射线晶体分析证实 , CD4 分子的第一个结构 区域 ( D1) , 尤 其 是 其 中 的 第 二 互 补 决 定 区 ( CDR2) 上 的 Phe43 和 Arg59 ,是 HIV 外膜蛋白识别并结合的部位[3] 。
2 HIV 的细胞嗜性及与趋化因子受体的相互作用
HIV 外膜蛋白研究的最重要的进展之一 , 就是 1996 年发现 了 HIV 侵袭靶细胞时的辅助受体 (co2receptor) 趋化因子 受体 (chemokine receptor) [9220] 。现已证明 , HIV 外膜蛋白与 靶细胞表面的 CD4 分子结合后 , 可诱导外膜蛋白的构象发 生改变 , 暴露出与邻近的辅助受体的结合部位 , 这样外膜蛋 白便可与该受体相结合 。这第二步的结合才是 HIV 的真正 目的 , 因为 CD4 受体只能诱导外膜蛋白本身构象的改变 , 不能影响到跨膜蛋白 , 故 HIV 必须借助与辅助受体的结合 才能有效地进入靶细胞中 。
艾滋病疫苗研究进展
艾滋病疫苗研究进展随着医学的不断发展,艾滋病不再像过去那样被认为是一种绝症,人们对于艾滋病的治疗和预防也有了更加深入的了解。
然而,对于艾滋病疫苗的研究却仍在进行中,许多科学家们在努力寻找一种有效的艾滋病疫苗,以期望解决这个全球性的公共卫生问题。
艾滋病疫苗的研究历程这个研究历程可追溯到1980年代,当时人们才刚刚发现这种病,并确定了它是一种由体内的免疫细胞遭到艾滋病病毒感染而引起的疾病。
因此,疫苗研究的前提是要找出一种有效的免疫方法来保护人体免受病毒感染。
不过,由于这种病毒高度变异的特性,研发出一种只针对艾滋病病毒的疫苗实在是一项非常具有挑战性的任务。
从20世纪80年代到90年代初期,艾滋病的致病机制已逐渐被研究透彻。
科学家们发现了一些聚合酶酶链反应(PCR)技术和其他病毒学方法来研究艾滋病病毒。
同时,他们还不断探索着应对这个病毒的治疗手段,并开始进行一些基于对免疫系统影响的药物研究。
随着1994年美国国立卫生研究院(NIH)和梅里兰德生物工程公司的合作研究获得成功,首个艾滋病疫苗(VaxGen公司的AIDSVax)开始进行人体试验,但结果并不理想。
在经过多年努力之后,艾滋病疫苗的研究还没有取得令人满意的进展,这也让一些人失去了信心。
然而,近年来一些新的研究成果给了人类很大的希望。
研究者们发现了一种可能的解决方案,他们利用了 HIV 感染过程中免疫系统的一种基础反应——细胞捕获抗原(antigen)。
当免疫系统遇到致病的病原体时,会通过抗原呈递(antigen presentation)激活一些细胞,让它们产生针对这些入侵病原体的抗体。
而该研究者们则利用病毒表面膜蛋白上一个处于不断变化的位置的特殊区域(V3-loop)去激发这类细胞。
这种区域变化频繁,是 HIV 难以逃避免疫系统攻击的关键点。
研究者们认为,将这个区域制作成多肽或者其他加工品,并用手段激发免疫系统捕获这种物质,就能够在感染之前预先引导身体免疫系统制造这种病毒抗体,达到预防艾滋病的效果。
HIV-1gp120V3区的结构特征及其生物学功能
HIV-1gp120V3区的结构特征及其生物学功能田海军;蓝灿辉;姜世勃;陈应华【期刊名称】《自然科学进展》【年(卷),期】2003(013)001【摘要】研究表明HIV-1包膜蛋白gp120上的V3环在病毒结合到靶细胞的过程中起着重要的作用.这个区域中的几个氨基酸残基与gp120同辅受体的结合相关联.在HIV-1感染过程的早期,V3环在患者体内诱导针对HIV病毒的抗体应答,并被确定为主要中和决定簇.一些针对V3环的抗体具有广泛的中和活性.但是,V3环是HIV 包膜蛋白的一个高变区,发生着广泛的变异.综述了V3环的结构特征和变异以及生物学功能,并对V3环的免疫反应进行了探讨.【总页数】4页(P11-14)【作者】田海军;蓝灿辉;姜世勃;陈应华【作者单位】清华大学生物科学与技术系免疫学实验室,教育部蛋白质科学重点实验室,北京,100084;清华大学生物科学与技术系免疫学实验室,教育部蛋白质科学重点实验室,北京,100084;Lindsley F.Kimball Research Institute,New York Blood Center,USA;清华大学生物科学与技术系免疫学实验室,教育部蛋白质科学重点实验室,北京,100084【正文语种】中文【中图分类】R511【相关文献】1.GPR120的结构特征、生物学功能及作用机制 [J], 赵乃倩;荣青峰;张鑫;张策2.过氧化物酶体增殖剂激活受体γ的结构特征和生物学功能 [J], 张文旭;李文立3.衣原体包涵体膜蛋白的结构特征及生物学功能研究进展 [J], 肖健;王川;吴移谋4.ADAM家族的结构特征与生物学功能 [J], 蔡亮;朱鹏程;商瑛颖;徐人尔;赵寿元5.E3泛素连接酶Arkadia的结构特征、生物学功能及其在疾病发生发展中的作用[J], 侯斐;刘瑞霞;阴赪宏因版权原因,仅展示原文概要,查看原文内容请购买。
hiv蛋白结构 -回复
hiv蛋白结构-回复HIV蛋白结构是关于HIV (Human Immunodeficiency Virus)病毒的蛋白质组成和结构特征的研究。
HIV是一种致命的病毒,可以引起艾滋病。
对于理解HIV的病理生理过程以及开发新的抗病毒药物,了解其蛋白质组成的结构是非常重要的。
在本篇文章中,我们将按照步骤来讨论HIV蛋白的结构。
首先,我们需要了解HIV病毒的基本信息。
HIV是一种病毒,主要通过血液、性接触和母婴传播。
它攻击人体的免疫系统,导致免疫力下降。
HIV 病毒的RNA基因组可以通过反转录酶酶转录为DNA,并将其整合到宿主细胞的基因组中。
HIV蛋白主要由三个部分组成:外膜蛋白(Env)、核心蛋白(Gag)和酶蛋白(Pol)。
这些蛋白在病毒的复制和感染过程中起关键作用。
首先,让我们关注外膜蛋白(Env)。
Env蛋白是HIV病毒的结构上最突出的部分,它帮助病毒进入宿主细胞。
Env蛋白可进一步分为两个亚单位:外膜(gp41)和外层(gp120)。
外膜亚单位主要参与病毒与宿主细胞融合的过程,而外层亚单位则与宿主细胞上的CD4受体结合。
这种结合导致gp120亚单位发生构像变化,以使病毒能与宿主细胞相互作用并侵入宿主细胞。
其次,让我们讨论核心蛋白(Gag)。
Gag蛋白是HIV病毒内部的主要结构蛋白,它在病毒颗粒的形成和组装过程中发挥着重要作用。
Gag蛋白可以自组装成膜结构,形成病毒的核心。
此外,Gag蛋白也包含一些附属蛋白,如MA(matrix)、CA(capsid)、NC(nucleocapsid)和p6等。
这些附属蛋白在病毒复制和成熟过程中起着重要作用。
最后,在HIV蛋白结构中,我们还有酶蛋白(Pol)。
酶蛋白是HIV的反转录酶、脱氧核苷酸酶和整合酶等酶的总称。
这些酶在病毒复制过程中起着关键作用。
反转录酶能将病毒的RNA转录成DNA,并整合到宿主细胞基因组中。
脱氧核苷酸酶则负责合成DNA链,并为其提供所需的二次结构。
磺化多糖抑制人免疫缺点病毒的研究进展
磺化多糖抑制人免疫缺点病毒的研究进展摘要综述了近10年来磺化多糖抑制人免疫缺点病毒的研究进展,讨论了其抑制病毒活性的机理。
1 引言人免疫缺点病毒1型(HIV-1)是人类取得性免疫缺点综合征(即艾滋病,AIDS)及其相关并发症的病原体。
HIV是一种罕有的人类逆转录病毒。
由于该病毒可感染人体免疫细胞并摧毁免疫系统,令人丧失对疾病的抗击力,因此成为迄今为止显现的危害最大的疾病。
自1981年报导首例AIDS以来,人们已在发病缘故、发病进程及医治药物方面做了大量探讨。
大体认清了HIV的大体结构和感染细胞并复制自身的要紧环节,并在此基础上研制HIV-1抑制剂。
现已显现的HIV-1抑制剂包括:病毒逆转录酶活性抑制剂、蛋白酶抑制剂[1]和磺化多糖[2~11]。
前者通过抑制HIV的RNA转变成DNA达到抑制病毒活性的目的。
该类药物主若是核苷类衍生物(如二脱氧叠氮胸苷AZT等),对改善AIDS患者的生活质量及延长寿命具有较好作用,但毒副作用大,且易显现耐药性。
蛋白酶抑制剂那么是通过抑制病毒逆转录酶的形成及病毒成熟进程,达到抑制病毒活性的目的,但也会产生较强副作用和耐药性。
磺化多糖是指含有磺酸基团的天然及半合成的酸性多糖,为聚阴离子,常具有类肝素特性(如调脂、抗凝、改善血液流变特性等)。
自1987年发觉磺化葡聚糖具有抑制HIV活性以来[2],对此类多糖的研究十分活跃[3~10]。
通过10连年的研究,已开发出多种天然多糖的磺化衍生物,并对其构效关系进行了初步探讨,本文就此方面的研究进展进行综述。
2 磺化多糖抑制HIV的研究进展具有抑制HIV活性的磺化多糖研究说明,磺化多糖(如磺化葡聚糖、肝素)可在体外抑制HIV-1对CD4阳性细胞的感染,其完全抑制HIV活性的浓度在10 μg/ml的数量级上[2~4]。
戊聚糖磺酸盐、蘑菇多糖磺酸盐、卡拉胶、甘草甜素、甘露聚糖磺酸盐、呋喃木糖和呋喃核糖的磺化衍生物、氨基多糖磺酸盐等也具有抗HIV活性,且无显著细胞毒性[5~9]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Current Protein and Peptide Science, 2005, 6, 413-4224131389-2037/05 $50.00+.00© 2005 Bentham Science Publishers Ltd.HIV-1 gp120 V3 Loop for Structure-Based Drug DesignSuzanne Sirois 1,2,4,*, Tobias Sing 3 and Kuo-Chen Chou 41Université du Québec à Montréal (UQAM), Chemistry Department, C.P. 8888 Succursale Centre-Ville, Montréal,Québec, Canada, H3C 3P8, 2Immune Deficiency Treatment Centre (IDTC), Montreal General Hospital, McGill Univer-sity Health Centre, 1650 Cedar Avenue, Montréal, Québec, H3G 1A4, Canada, 3Max-Planck-Institut für Informatik,Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany, 4Gordon Life Science Institute, 13784 Torrey Del Mar Drive,San Diego, California 92130, USAAbstract: HIV-1 cell entry is mediated by sequential interactions of the envelope protein gp120 with the receptor CD4and a coreceptor, usually CCR5 or CXCR4, depending on the individual virion. Considerable efforts on exploiting the HIV coreceptors as drug targets have led to the new class of coreceptor antagonists. While these antiretroviral drugs aim at preventing virus/coreceptor interaction by binding to host proteins, neutralizing antibodies directed against the core-ceptor-binding sites on gp120 have attracted attention as possible vaccine candidates. However, both approaches are com-plicated by the multiple protective mechanisms of gp120 which allow for rapid escape from selective pressures exerted by drugs or antibodies. Thus, advances in rational drug and vaccine design rely heavily on improved insights into the relation between genotype and phenotype, the evolution of coreceptor usage, and, ultimately the structural biology of coreceptor usage and inhibition. The third variable (V3) loop of gp120, crucially involved in all these aspects, will be a major focus of this review.Keywords : HIV-1, gp120, V3 loop, coreceptor, CCR5 , CXCR4, structure-based drug design.1. INTRODUCTIONMore than ten years after the discovery that HIV-1 could only infect cells with the CD4 receptor [1], it was found that,unlike other retroviruses, HIV was also dependent on a core-ceptor to enter a host cell [2-9] and that the chemokine re-ceptors CCR5 [10] and CXCR4 [11] were the preferred HIV coreceptors in vivo . First, Cocchi [12] observed that three chemokines, MIP1-α, MIP1-β and RANTES (nowadays also called CCL3 to CCL5) were potent repressors of strains with in vitro tropism for macrophages. Next, Feng et al. [13], dis-covered that strains infecting T-cells in vitro needed a chemokine receptor which we call CXCR4 today, as a core-ceptor, in addition to CD4. Due to these two observations, it was widely hypothesized in 1996 that CCL3 to CCL5 were the natural ligands of a receptor which is needed by macro-phage-tropic strains as a coreceptor. Indeed, in the same year, this receptor, today called CCR5, was identified by several groups [2-4,6,14]. At the very moment of their dis-covery, the idea of inhibiting the HIV coreceptors to prevent viral entry was born. Moreover, the discovery of differential coreceptor usage also replaced previous phenotype classifi-cation systems based on cell tropism, replication rate in pe-ripheral blood mononuclear cells (PBMCs), or the cytopa-thology in MT-2 cells [15]. Based on these “old” classifica-tion schemes, which are highly correlated but not identical to coreceptor usage, the third variable region of gp120 had al-ready been identified as a major determinant of phenotype [16]. The rough region being identified, interest grew in*Address correspondence to this author at the Université du Québec àMontréal (UQAM), Chemistry Department, C.P. 8888 Succursale Centre-Ville, Montréal, Québec, Canada, H3C 3P8;E-mail: suzanne.sirois@determining the relation between genotype and phenotype more exactly. Two pioneering papers appeared in 1992, im-plicating a net V3 charge of at least 5 [17] or the presence of a basic residue at V3 positions 11 or 25 [18] with usage of the CXCR4 receptor. At this time it was already known that a phenotype switch was associated with progression to AIDS. Thus, a direct link between the sequence evolution of V3 and disease progression was established. Reflecting the growing interest in this link, the first article on V3 evolution appeared in 1992 [18-19]. Long before the V3 region was implicated as a phenotype determinant, it had already been recognized as a major target for neutralizing antibodies. In an early bioinformatics paper by Modrow et al. [20], a re-gion within V3 was predicted as an epitope, along with other regions. This prediction was confirmed in the following year [21], and in 1989, the V3 region was termed the “principal neutralizing determinant” (PND), because its deletion stopped the activity of neutralizing antibodies. Thus, in 1996,all questions were there which have occupied HIV corecep-tor research until today, and will continue to do so. Conse-quently, our short historical survey will stop here (good overviews of the history of HIV research can be found in Tang [22].2. THE ENVELOPE PROTEIN gp120 AND ITS V3LOOPThe envelope protein gp120 initiates the process of cell entry by interacting with the main receptor CD4 and one of the chemokine receptors CCR5 or CXCR4. It is derived from the polyprotein gp160, which also contains the transmem-brane protein gp41. This polyprotein is encoded by the env gene, present in all retroviruses. To denote specific regions within the sequence coding for gp120, either a region name or a position number can be used. Inconsistent and inaccu-414Current Protein and Peptide Science, 2005, Vol. 6, No. 5Sirois et al.rate numbering, caused by frequent insertions and deletions, has been a serious problem in the literature on gp120. Trying to unify the language in the field Berger et al. [23] have pro-posed to number sequence positions relative to the reference strain HXB2 (GenBank accession K03455). The position of insertions relative to HXB2 is denoted with the aid of post-fixed letters. For example, two insertions between HXB2 positions 465 and 466 would be referred to as 465a and 465b, respectively. While it is strongly advised to stick to this scheme when denoting positions relative to the whole genome or to gp120, position numbering within the third variable region of gp120 is frequently relative to a subtype B consensus strain, which has one insertion and two deletions relative to HXB2. Following these established traditions, position numbering will be relative to HXB2 in this review, except for the V3 region, where the subtype B consensus will be used as a reference.2.1. Coding Sequence of gp120In HXB2, the envelope protein is encoded by 483 amino acids within an env gene consisting of 856 residues, pre-ceded by a signal peptide of length 28, and followed by the transmembrane protein gp41. Though the leader peptide se-quence is cleaved concurrently with translation, it is included in the proposed numbering scheme for gp120. Thus, in this scheme, the actual gp120 positions are referred to by the numbers 29 to 511. The gene has been divided into five vari-able (V1-V5) and five constant (C1-C5) regions, although the constant regions exhibit a substantial variety as well. Most of this review will focus on the third variable region, due to its crucial relevance for coreceptor usage. This region, occupying the gp120 positions 296 to 331 relative to HXB2, is typically 34 to 36 residues in length. Table 1 shows the V3 regions of HXB2 and of the subtype B consensus sequence provided by the HIV Sequence Database at Los Alamos, () which is frequently used as a V3 reference. An important exploratory step that should precede any more specific analysis is to investigate the overall se-quence variability and site covariation. The literature on V3 sequence variability is abundant, mostly specific for a certain geographic region or risk group. Since most of these studies have focused on finding sequence signals predictive of genotype, they will be discussed below.Two classic analyses focused on site covariation within the V3 region. Korber et al. [24], determined the mutual in-formation between all pairs of positions in an alignment of 308 V3 sequences, and reported the strongest covariation among the pairs 24/25, 13/25, 13/19, 13/24, 20/25, 11/25, and 11/13. These results were later confirmed and extended by Bickel et al. [25], on a larger data set and using alterna-tive measures of covariation. Though covariation analysis can yield insights into the dependencies between different sequence positions, additional analyses are needed to deter-mine their evolutionary or phenotypic relevance. For exam-ple, while the reported covariation between 11/25, with a particularly strong correlation between 11S and 25E/D is a highly phenotype-associated dual of the “charge rule” [17] other covariation patterns might simply reflect general func-tional constraints. Another descriptive measure of sequence variability is to analyze the pairwise distances of a set of sequences or the distances to a consensus strain.Due to the relative abundance of data and the relevance for determining the phenotype, most studies of sequence variability and covariation have focused on the V3 region. However, since other regions than V3 have been implicated with coreceptor interaction as well, significant covariation between residues inside and outside of V3 is to be expected. Indeed, Hoffman et al. [26] report that a cluster containing HXB2 positions 190 to 200 (C3 region), and position 440 (C4) is linked to changes in V3. In a recent study focusing not on covariation but on phenotype-associated changes part of these observations were confirmed, particularly a strong association between HXB2 position 440 and V3 positions 11 and 25 [27-28]. Clearly, the major obstacle for a full-length covariation analysis of gp120 is lack of data.2.2. gp120 V3 LoopThe V3 region encodes a surface accessible loop formed by a disulfide bridge between two invariant cysteines at HXB2 positions 296 and 331 of gp120 (see the yellow resi-dues in Fig. 1 and Table 1 for numbering).Comparison of different isolates show that the N- and C-terminus are con-served, as well as the “crown” (or crest) of the loop, marked by a GPG motif. In contrast, the regions flanking the crown Fig. (1). 3D structure of the V3 loop obtained from NMR studies. The GPG (Gly15-Pro16-Gly17) sequence is shown at the crown of the loop in green, orange, and green, respectively. The disulfide bridge is represented by the two Cys residues in yellow (Cys1-Cys35). Position 25 is represented by both Arg (positively charged) and Glu (negatively charged) residues in red blue and red, respectively. Position 10 is represented by Lys (positively charged) in blue.HIV-1 V3 Loop Current Protein and Peptide Science, 2005, Vol. 6, No. 5 415show considerable variability. The GPG crest forms a betaturn, with the flanking regions as the two strands of an anti-parallel beta sheet [19,30,31,94,95]. V3 loop-derived pep-tides have been found to be structurally similar to distinctchemokines, the natural ligands of CCR5 and CXC4 [81].This suggests that alternative V3 conformations are respon-sible for selective interactions with the coreceptors. Otherstructural analyses on V3 peptides have predicted a C-terminal alpha helix [33]. As mentioned above, the majorityof difference between CCR5- and CXCR4-tropic strains liesin the region flanking the central GPG segment, encom-passsing residues 306-320 (V3 position 11-25).For example, the LAI V3 crown contains an RQ insertionbetween I309 and G310 and substitutions at Y316V, T3181,E320K. In the LAI C-terminus the I322 is absent. The crownand stem of V3 loop32 are two functionally distinct domains[32]. The V3 stem alone mediates soluble gp120 binding tothe N-terminus of CCR5, and the V3 crown alone determinescoreceptor usage. Based on this observation, it has been hy-pothesized that crown and stem interact with distinct CCR5regions in order to mediate viral entry [32] and a C-terminalα-helix [19, 30-31]. Residues 306-320 (11-25) were desig-nated V3 crown and residues 296 to 305 (1-10) as well as321 to 330 (26-35) were designated N and C-terminal strandsof the V3 stem [32]. The majority of differences between R5and X4-like virus lie in the crown (see Table 1). The LAI V3crown contains an RQ insertion between I309 and G310 andsubstitutions at Y316V, T318I, E320K. In the LAI C-terminus the I322 is absent. The crown and stem of V3loop32 are two functionally distinct domains. The V3 stemalone mediates soluble gp120 binding to CCR5 N-terminaland V3 crown alone determines coreceptor usage. Based onthis consensus sequence a neural network approach predictedan N-terminal β strand followed by a type II β-turn (GPRC),a second β-strand, and a C-terminal helix [33]. Thus, theGPG crown (crest) forms a β-turn and the variable regionsflanking the crest form the two strands of an anti-parallel β-sheet[30] [94-95].2.3. Net ChargeThe consensus V3 loop sequence derived from 245 V3 loop sequences [33] corresponds to existing macro-phagetropic strains. V3 loop is composed approximately of 35 residues and has a global positive charge that can vary from +2 to +10 [32]. A single amino acid (AA) change in V3 loop can switch coreceptor usage from R5-like to X4-like virus. This switch is also associated with an increased posi-tive charge.2.4. GPG MotifThe amino acid sequence of the V3 loop is highly vari-able among different isolates, especially in the regions flanking the highly conserved GPG central part [33]. The GPG(R/K/Q) crown (or crest) is situated in the center of the neutralizing domain [34-36].Sequence changes close to the GPG motif can alter the stability of the β-sheet and/or alter the surface accessibility, thereby influencing coreceptor us-age.2.5. Role of V3 Loop Residues in Co-Receptor BindingHighly conserved residues are at positions alanine 328 (33), arginine at position 3 for HIV-2 and SIV as well as the two cysteine residues at postion 296 (1) and 331 (35). Site-directed mutagenesis studies revealed that V3 Arg-298 [3] has an important role in CCR5 utilization. Other residues that are critical are Lysine 10, Isoleucine 12, Arginine 18, and Phenylalanine 20. Mutational studies of CCR5 have re-ported several acidic and aromatic residues in the extracel-lular (EC) domain of CCR5 as critical for CCR5 utilization. Critical V3 residues include both basic and hydrophobic residues, compatible with the interpretation that the interac-tion between V3 and CCR5 could involve electrostatic as well as hydrophobic interactions. Residues adjacent to the as well as can have a role in CCR5 utilization [37]. Interest-ingly 12 is conserved among all known R5 viruses of type B but not among subtypes A, C, and E.2.6. Binding Domain of V3 Loop with CCR5The V3 loop binds to the cell surface in a conformation dependent manner and its N-terminal domain is responsible for the interaction [38]. It has been observed that V3 loop can enhance the entry of its own HIV strains. Pre-treatment of the target cells with V3 peptides followed by removal of the peptides also enhanced infectivity, indicating that the binding of the peptides to the target cells also plays a role in this enhancement. The V3 stem is responsible for gp120 binding to the CCR5 N-terminus. Both the V3 crown and stem are required for soluble gp120 binding to cell surface CCR5 [32]. The V3 crown interacts with residues in the EC of CCR5, most likely ECL2. The V3 crown alone is neces-sary and sufficient to direct exclusive usage of CCR5 or CXCR4. The V3 stem, despite being able to mediate specific binding to CCR5 Nt sulfopeptides, is not the main determi-nant of coreceptor usage.Table 1.Alignment of HXB2 and Subtype B Consensus Strain (“B”). Position Numbering is Relative to the Consensus Strain123456789101112131414a14b1516B C T R P N N N T R K S I H I--G P HXB2C T R P N N N T R K R I R I Q R G P 17181920212223242526272829303132333435G R A F Y T T G E I I G D I R Q A H CG R A F V T I G K I-G N M R Q A H C416Current Protein and Peptide Science, 2005, Vol. 6, No. 5Sirois et al.3. gp120 V3 LOOP 3D STRUCTURESThe central GPG sequence of the V3 loop is recognized by most of HLA optimal epitopes and can serve as a basis for vaccine development. Especially, the GPG motif is found in the crown of gp120- V3 loop (see Fig. 1) which also de-termines HIV-1 coreceptor usage. HIV infects host cells via docking of its env gp120 to the CD4 receptor. Upon binding to CD4, gp120 undergoes conformational changes involving the V3 loop, which facilitate subsequent interactions with the coreceptors CCR5 and/or CXCR4. The V3 loop of gp120 interacts directly with the co-receptors CCR5 and CXCR4.3.1. gp120 X-Ray Structure and no V3 Loop!The only available gp120 three dimensional coordinate structures obtained from X-Ray crystallography (PDB 1G9M [39]) (see Fig. 4) have deglycosylated regions. The envelope proteins gp120’s were obtained from HXB2 and YU2 iso-lates where the V1, V2 and V3 loops have been deleted [39-40]. The study of the various type of conformations of V3 loop that are recognized by neutralizing antibodies alone with the understanding of sequence variabilities may bring forth a better understanding of the molecular virological properties of the virus and their associated immune re-sponses.In 1998, a 2.5 Å structure of a gp120 core of the laboratory-adapted HXBc2 strain in complex with a frag-ment of CD4 and the antigen binding fragment of an anti-body was reported [40]. This model was later refined to 2.2Å and additionally, the gp120 core of a clinical isolate, YU2, in the same complex, was determined at 2.9 Å [39]. To date, these are the only available structures of gp120, and an es-sential basis for all structural studies of gp120 and its inter-action with the receptors. Envelope proteins are not isolated on the surface of a virion; rather, they are organized into trimeric “spikes” [41]. The gp120 structure has an overall heart-shaped appearance. Two major domains are connected by an antiparallel, four-stranded “bridging sheet”. The “in-ner” domain (with respect to the termini) consists mainly of a two-helix, two-strand bundle, while the “outer” domain forms a stacked double barrel. The V1-V4 regions form sur-face-exposed loops which are held together by disulphide bonds at their bases. The whole protein is heavily glycosy-lated; this glycan shield is thought to yield additional protec-tion from the immune system. When using the published gp120 structures for molecular modeling, one has to be aware of certain limitations. First, the structure is in complex with CD4 and is thought to adopt different conformations alone or in additional complex with a coreceptor. Second, the protein was heavily deglycosylated for crystallization. Third, and most importantly, gp120 was not only heavily truncated at the N- and C-terminal ends, but also its V1, V2, and V3 loops [39,40]. However, a lot of structural information on the V3 loop is available from other sources. LaRosa [33] pre-dicted the secondary structure of a V3 consensus sequence as β strand-type II β turn-β strand-α helix. For 7 out of 20 iso-lates, no helical region was predicted. Vranken [42] have analyzed the consensus sequence constructed by LaRosa [33] using 2D-NMR spectroscopy in water and in a 20% trifluo-rethanol/water solution, and confirmed the predicted secon-dary structure. Furthermore, several crystal structures of V3 peptides in complex with the antigen-binding fragments of antibodies have been solved. Still, all molecular modeling studies related to coreceptor usage will have to provide a model for the V3 loop.3.2. V3 Loop Structures from NMR StudiesMany laboratories have carried out structural studies of V3 peptides from different HIV-1 isolates. For instance, PDB (Protein Data Bank) structure 1CE4 [42] is a confor-mational model of the consensus macrophagetropic V3 loop of the gp120 that was examined by proton 2D-NMR spec-troscopy in water and in a 20% trifluoroethanol/water solu-tion.In water, NOE data support a β-turn conformation for the central conservative GPG region and suggest partial for-mation of a helix in the C-terminal part. Upon addition of trifluoroethanol, a C-terminal helix is formed. The C-terminal helix is amphipathic and also occurs in other ex-amined strains. It could therefore be an important feature for the functioning of the V3 loop.3.3. V3 Loop Structures from X-Ray Studies in Complex with Neutralizing AntibodiesCrystal structures for V3 peptides in complex with neu-tralizing antibodies indicate that they recognize different types of conformations at the crown of the V3 loop. The type II β-turn predicted [33] for the GPG sequence GPG motif was observed in the 59.1 complex [43]. The unexpected one-residue shift and the type VI cis (trans) proline RGPG could possibly be attributed to the insertion of QR between posi-tions I309 and G310 (I14, G15), preceding the GPGR se-quence in the P1053 sequence (see Table 2). This insertion is a characteristic feature of the HIV-1IIIB strain and it is en-countered in approximately 10% of all HIV-1 isolates. Also, the half-turn in the QR insertion of P1053 may facilitate the observed conformational shift. In the PDB 1F58 structure, although the peptide conformations are very similar for the linear and cyclic forms, they differ from the ones seen for identical peptides bound to the Fab 59.1 neutralizing and also for a similar peptide bound to the MN-specific Fab 50.1 (see Table 2). The conformational difference in the peptide is localized around residues GPGR, which are highly con-served in different HIV-1 isolates and are predicted to adopt a type II beta turn (see Fig. 2). Type 2 β-turns are commonly Fig. (2). Nomenclature for residues in hairpin beta-turns. For the definition of beta turns and their types, the readers are referred to[105].HIV-1 V3 Loop Current Protein and Peptide Science, 2005, Vol. 6, No. 5 417 Table 2.X-Ray Crystal Structures and NMR Studies of Antibodies Targeting gp120 V3 LoopAntibody/Peptide Epitope V3 pep-tide Turn#AA StructureIDMethod447-52D/ V3MN type-II16X-Ray[79]447-52D/ V3MN KRKRIHI GPGRAF YTTKN18NMR[80] 447-52D/ V3MN KRIHI -- GPGRAF YTT Inverse γNMR[81] V3MN[82,83] 0.5β/ V3IIIB KSIRI QR GPGRAF VTI P1053[84]type VI β 181B03NMR[31,45]0.5β/ V3IIIB YNKRKKRIHI GPGRAF YTTKNIIGCRP13524NMR[85] 0.5β/ V3IIIB NMR[86] 0.5β/ V3IIIB RKSI-RI QR GPGRAF VT RP135a NMR[84] 0.5β/ V3IIIB NMR [87] 0.5β/ V3IIIB type VI βNMR [88] 50.1/ V3IIIB KRIHI-- GPG type II β59.1/ V3IIIB KRIHI -- GPGRAF YT Aib142RP142type II-type I β[89]58.2/ V3MN type II β1F58X-Ray[90]I GPGRAF AFYTTKN TypeI-typeII -typeIX-Ray[91]found to link two strands of anti-parallel β-sheet, forming a β-hairpin, and such secondary structure elements have been postulated as possible nucleation sites for the protein folding pathway [44]. A basic nomenclature for hairpin turns is shown in Fig. 2 where the loop residues are labelled L1, L2 and so on, and residues in the N-terminal strand are labelled -B1, -B2, etc. from the turn, and the C-terminal residues +B1, +B2, etc.3.4. Cis-Trans Isomerisation of V3 Loop Gly-Pro Peptide BondEnv gp120 adopts several conformational states [45] where the conformational changes include variation in V3 shape or exposure as shown by changes in V3 reactivity with conformation, dependant antibodies. Molecular interactions between V3 loop and its coreceptor induce further confor-mational changes in the envelope protein gp120, exposing the fusion domain of gp41, which ultimately mediates fusion of the cellular and viral membrane. Endrich and Gehring [46-47] have hypothesized that binding of cyclophilin A (CypA) to the V3 loop might catalyze, due to CypA confor-mase activity, the conformational changes in gp120, which in turn might enhance infectivity. The two glycine residues on each side of the proline residue (GPG, see Fig. 1) provide conformational flexibility and enable different HIV-1 strains to adopt different conformations. This conformational vari-ability can be explained by the cis-trans isomerisation (see Fig. 3) of the Gly-Pro and Pro-Gly peptide bonds during an early step in the HIV-1 infection process. Such isomerisation has already been suggested by computer modeling studies which demonstrated that the enhanced susceptibility of the V3 loop to proteolytic cleavage following CD4 binding can be explained by a type VI xGPG turn, not by a type II GPGR turn [48]. Further support for the CypA isomerase activity to V3 loop comes from more recent studies showing that V3 peptides have a high affinity to cyclophilins and FKBP [47] and that Cyp A is involved in an early stage of the infection process [49]. Hence, one property of HIV-1 that makes it unique among all retroviruses is the incorporation during its life cycle of the host protein cyclophilin A (CypA) into its virion [50-52]. There is a lot of evidence that points to the fact that CypA is required for HIV-1 replication [50-55]. It is also the first known cellular protein other than the cell sur-face receptors CD4, and coreceptors CCR5 and CXCR4 to be involved in viral replication during an early step and be-fore the initiation of reverse transcription [56-59]. These immunophilins are prolyl-peptidyl isomerases and could catalyse the postulated cis-trans isomerization. Alternatively, immunophilins could bind to the V3 loop, preventing inter-action of the V3 loop with co-receptors. It was also hypothe-sized that the CypA-V3 loop interaction during primary in-fection shields the immune system to recognize the principal neutralizing domain GPG of HIV-1. Further during infection, antibodies production against the principal neutralizing do-main share close similarity with amino acid sequences and structures of RANTES, MIP-1α and MIP-1β. The interac-tions of antibodies with chemokines that structurally resem-ble the V3 loop results in HIV-1 infection becoming an autoimmune418 Current Protein and Peptide Science, 2005, Vol. 6, No. 5Sirois et al.Fig. (3). Cis-trans peptidyl prolyl isomerisation.Fig. (4). The 3D structure of gp120 (1G9M [39]) obtained from PDB (Protein Data Bank), where white residues indicate the V3loop that was not present in the crystal structure but was con-structed here.disease. Thus, CypA is a major host molecule during HIV infection and life cycle and it becomes apparent that the de-sign of CypA peptidomimetics inhibitors is of major impor-tance. With recent clinical studies investigating the efficacy of chemokine receptor inhibitors, this reinforces the idea of targeting the immune system in order to control or even clear viral infection.3.5. Chemokine Receptors CCR5 and CXCR4Chemokine receptors are members of the family of G-protein-coupled receptors (GPCR) of proteins. GPCRs are characterized by the presence of seven transmembrane do-mains (TMs) [60-68]. Since at present there is no crystal structure available for CCR5 or CXCR4, the majority of ho-mology modeling studies has been performed using the 2.8Å resolution structure of bovine rhodopsin (PDB: 1HZX).Homology modeling of CCR5 [69-75] was based on the 3Dcrystal structures of bacteriorhodopsin (see, e.g., [96]) and bovine rhodopsin [76,77].3.6. Computational Studies of V3/CCR5 Interaction Structural models of CCR5 in complexes with gp120 and CD4 have been built with a combination of protein structure modeling, docking and molecular dynamics [71, 74]. Three models of the complexes gp120/CD4/CCR5 were made.These models can be found in the PDB as theoretical model 1OPN, 1OPW and 1OPT [74] (Fig. 5). Superposition of all atoms of the 3 models gives a RMS deviation of4.32 Å. The interaction between the high-resolution crystal structure of PDB ID 1G9M [39] and CCR5 homology model (PDB ID 1ND8) was investigated with molecular dynamics. However,1G9M [39] is a truncated structure without the AA composi-tion of the V3 loop. This preliminary study could be ex-tended by including the 35 V3 loop residues between Ala299and Gly329 of gp120 (IG9M).Fig. (5). Superposition of the 3 theoretical models for CCR5(1OPN, 1OPW and 1OPT) [74].Fig. (6). Complex CCR5-gp120 including the V3 loop. This model can serve as a structural frame for the design of novel CCR5 in-hibitors based on the interaction between CCR5 and the V3 loop.O HNC αC αcis O C αNC αC αtrans N C αOcis -prolylN C αO trans-prolyl。