《高等数学》 各章知识点总结——第9章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 多元函数微分学及其应用总结
一、多元函数的极限与连续 1、n 维空间
2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三
维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。
n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y 间的距离:
||(n PQ y x =+
+-
邻域: 设0P 是n
R 的一个点,δ是某一正数,
与点0P 距离小于δ的点P 的全体称为点0P 的δ邻域,记为),(0δP U ,即00(,){R |||}n U P P PP δδ=∈<
空心邻域: 0P 的
δ
邻域去掉中心点0P 就成为0P 的
δ
空心邻域,记为
0(,)U P δ=0{0||}P PP δ<<。
内点与边界点:设E 为n 维空间中的点集,n P ∈R 是一个点。如果存在点P 的某个邻域
),(δP U ,使得E P U ⊂),(δ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有
属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界.
聚点:设E 为n 维空间中的点集,n
P ∈R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。
开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n
E ⊆R , 如果E 的补集
n E -R 是开集,则称E 为闭集。
区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域.
有界集与无界集: 对于点集E ,若存在0>M ,使得(,)E U O M ⊆,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域.
有界闭区域的直径:设D 是n R 中的有界闭区域,则称1212,()max{||}P P D
d D PP ∈=为D 的直径。
二、多元函数
n 元函数就是n R 的一个子集D 到R 的一个函数,即对任意的P D ∈,都存在唯一的
y ∈R ,使得()y f P =。习惯上,我们用()y f x =表示一元函数, 用),(y x f z =表示
二元函数,用(,,)w f x y z =表示三元函数. 一般用(),R n y f P P =∈或12(,,,)
n y f x x x =表示n 元函数. 三、多元函数的极限
设多元函数)(P f z =在D 有定义,0P 是D 的一个聚点,A 为常数。如果对任意给定的0ε>,都存在0δ>,当0
(,)P D P U δ∈⋂
时,有
()f P A ε-<
则称A 为P 趋于0P 时函数)(P f z =在D 上的极限,记为
P P lim (P)f A →= 或
0(P),(P P )f A →→。
四、多元函数的连续性
设多元函数)(P f z =在D 有定义,0P 是D 的一个聚点。如果0
0P P lim
(P)(P )f f →=,
则称)(P f z =在0P 点连续。如果)(P f z =在区域D 上各点都连续,就称)(P f z =在D 上连续.如果函数)(P f z =在 点0P 处不连续,则称函数)(P f z =在点0P 处间断, 也称0P 是函数),(y x f z =的间断点。 五、偏导数
设二元函数),(y x f z =,),(000y x P 为平面上一点。如果0(,)z f x y =在0x 的某一邻
域内有定义且在0x 存在, 则称),(y x f z =在点),(000y x P 处对x 可偏导,称此极限值为函数),(y x f z =在点
),(000y x P 处对x 的偏导数,记为
000000(,)
(,)
(,)
,
,x
x y x y x y z f z x
x
∂∂'∂∂或00(,)x f x y '
六、高阶偏导数
2222
xx z f f f x x x x ∂∂∂∂⎛⎫''=== ⎪∂∂∂∂⎝⎭,22xy z f f f x y x y y x ∂∂∂∂⎛⎫
''=== ⎪∂∂∂∂∂∂⎝⎭
,
22yx
z f f f y x y x x y ⎛⎫∂∂∂∂''=== ⎪∂∂∂∂∂∂⎝⎭, 2222yy z f f f y y y y ⎛⎫
∂∂∂∂''=== ⎪∂∂∂∂⎝⎭
如果函数),(y x f z =的两个二阶混合偏导数,xy yx f f ''''都在平面区域D 内连续,那么这两
个二阶混合偏导数在D 内相等。 七、全微分
设函数),(y x f z =在点000(,)P x y 的某一邻域内有定义,,A B 为常数。如果
()z A x B y o ρ∆=∆+∆+,其中ρ= 则称函数 ),(y x f z =在点000(,)P x y 可微分(简称可微),称A x B y ∆∆+为函数),(y x f z =在点000(,)P x y 的全微分,
记作dz ,即dz A x B y =∆+∆
可微的必要条件:函数),(y x f z =在点000(,)P x y 可微, 则(1) ),(y x f 在点000(,)P x y 处连续。(2) ),(y x f 在点000(,)P x y 处偏导数存在, 且=z d 00(,)d x f x y x '+00(,)d y f x y y '。 可微的充分条件:函数),(y x f z =在点000(,)P x y 的某个邻域内可偏导,且偏导数
(,),(,)x y f x y f x y ''在点000(,)P x y 连续,则),(y x f z =在点000(,)P x y 可微。
八、多元复合函数的求导法则
链式法则:),(v u f z =,),(),,(y x v v y x u u ==
一阶全微分的形式不变性:),(v u f z =,),(),,(y x v v y x u u ==
,z z z z dz dx dy dz du dv x y u v
∂∂∂∂=
+=+∂∂∂∂ 九、隐函数及其求导法
若),(y x F 满足:(1) ),(y x F 在),(00y x 某邻域内可偏导, 且(,),x F x y '(,)y F x y '连续,(2) 00(,)0F x y =,(3) 00(,)0y F x y '≠。则(1) 存在0x 的某个邻域,在此邻域内存在唯一确定的一元函数)(x f y =满足称函数)(x f y =称为由方程0),(=y x F 所确定的隐函数,且