2020年高考数学(理)之纠错笔记专题09 直线与圆的方程
直线与圆的方程知识点总结
直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-= ②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
高考数学二轮复习考点知识与解题方法讲解09 直线和圆的方程
故选:A.
4.(2023·山东潍坊·二模)已知直线 l1 : x 3y 0 , l2 : x ay 2 0 ,若 l1 l2 ,则 a ( )
A. 1
3
B. 1
3
C.3
D.-3
【答案】A
【分析】两直线斜率均存在时,两直线垂直,斜率相乘等于-1,据此即可列式求出 a
的值.
【详解】∵
项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共
弦长.
6.在解决直线与圆的位置关系时要充分考虑平面几何知识的运用,如在直线与圆相交的
有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放 在一起综合考虑,不要单纯依靠代数计算,这样既简单又不容易出错.
公切线条数
4
3
2
1
0
1.求倾斜角的取值范围的一般步骤 (1)求出斜率 k=tan α 的取值范围. (2)利用三角函数的单调性,借助图象,确定倾斜角 α 的取值范围.求倾斜角时要注意斜
率是否存在.
2.已知两直线的一般方程
两直线方程 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0 中系数 A1,B1,C1,A2,B2, C2 与垂直、平行的关系: A1A2+B1B2=0⇔l1⊥l2; A1B2-A2B1=0 且 A1C2-A2C1≠0⇔l1∥l2. 3.判断直线与圆的位置关系常见的方法:
ab c
,
因为
A2 M
与直线
y
b a
x
平行,
ab
所以
c a2
a
b a
,即
a
b
c
b a
,
c
所以 c 2a ,则 b2 c2 a2 3a2 ,
高三总复习直线与圆的方程知识点总结及典型例题
直线与圆的方程一、直线的方程 1、倾斜角:,范围0≤α<π,x l //轴或与x 轴重合时,α=00。
2、斜率: k=tan α α与κ的关系:α=0⇔κ=0已知L 上两点P 1(x 1,y 1) 0<α<02>⇔k πP 2(x 2,y 2) α=κπ⇔2不存在⇒k=1212x x y y -- 022<⇔<<κππ当1x =2x 时,α=900,κ不存在。
当0≥κ时,α=arctank ,κ<0时,α=π+arctank 3、截距(略)曲线过原点⇔横纵截距都为0。
几种特殊位置的直线 ①x 轴:y=0 ②y 轴:x=0 ③平行于x 轴:y=b④平行于y 轴:x=a ⑤过原点:y=kx②任何一个关于x 、y 的二元一次方程都表示一条直线。
5、直线系:(1)共点直线系方程:p 0(x 0,y 0)为定值,k 为参数y-y 0=k (x-x 0) 特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴) (2)平行直线系:①y=kx+b ,k 为定值,b 为参数。
②AX+BY+入=0表示与Ax+By+C=0 平行的直线系 ③BX-AY+入=0表示与AX+BY+C 垂直的直线系(3)过L 1,L 2交点的直线系A 1x+B 1y+C 1+入(A 2X+B 2Y+C 2)=0(不含L2) 6、三点共线的判定:①AC BC AB =+,②K AB =K BC ,③写出过其中两点的方程,再验证第三点在直线上。
二、两直线的位置关系2、L 1 到L 2的角为0,则12121tan k k k k •+-=θ(121-≠k k )3、夹角:12121tan k k k k +-=θ4、点到直线距离:2200BA c By Ax d +++=(已知点(p 0(x 0,y 0),L :AX+BY+C=0)①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0⇒2221B A c c d +-=②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022=+B Ad③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是0221=+++C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --' (2)点关于线的对称:设p(a 、b) 一般方法:如图:(思路1)设P 点关于L 的对称点为P 0(x 0,y 0) 则 Kpp 0﹡K L =-1P, P 0中点满足L 方程解出P 0(x 0,y 0)(思路2)写出过P ⊥L 的垂线方程,先求垂足,然后用中点坐标公式求出P 0(x 0,y 0)的坐标。
2020年高考北京版高考数学 9.1 直线方程与圆的方程
专题九平面解析几何【真题典例】9.1 直线方程与圆的方程挖命题【考情探究】分析解读从高考试题来看,本节主要考查基础知识和基本方法,一是考查直线的倾斜角与斜率的关系、斜率公式以及直线方程的求解;二是圆的标准方程和一般方程的互化以及利用待定系数法、数形结合法求圆的方程,考查形式以选择题和填空题为主.同时圆的方程作为由直线方程向曲线方程的过渡,蕴含着解析法的解题思路和解题方法,是解析法的基础,因此,以圆为载体考查解析法的基本思想是历年高考考查的重点.破考点【考点集训】考点一直线的倾斜角、斜率与方程1.已知直线l过定点(0,1),则“直线l与圆(x-2)2+y2=4相切”是“直线l的斜率为”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B2.过点M(1,2)的直线l将圆(x-2)2+y2=9分成两段弧,当其中的劣弧最短时,直线l的方程是. 答案x-2y+3=0考点二直线与直线的位置关系3.已知圆的方程为(x+1)2+y2=2,则圆心到直线y=x+3的距离为( )A.1B.C.2D.2答案B4.已知直线3x+(1-a)y+1=0与直线x-y+2=0平行,则a的值为( )A.4B.-4C.2D.-2答案A5.已知a∈R,则“直线y=ax-1与y=-4ax+2垂直”是“a=”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案B考点三圆的方程6.若直线x+y+a=0是圆x2+y2-2y=0的一条对称轴,则a的值为( )A.1B.-1C.2D.-2答案B7.(2015课标Ⅰ,14,5分)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案-+y2=炼技法【方法集训】方法1 直线方程的求法1.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是( )A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0答案D方法2 两直线平行与垂直问题的解决策略2.已知直线3x+4y+3=0与直线6x+my-14=0平行,则它们之间的距离是( )A.2B.8C.D.答案A3.已知直线l1:ax+y-1=0,直线l2:x-y-3=0,若直线l1的倾斜角为,则a= ;若l1⊥l2,则a= ;若l1∥l2,则两平行直线间的距离为.答案-1;1;2方法3 关于对称问题的求解策略4.若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为( )A.(x-1)2+y2=1B.x2+(y+1)2=1C.x2+(y-1)2=1D.(x+1)2+y2=1答案C方法4 圆的方程的求法5.(2018天津文,12,5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为.答案x2+y2-2x=06.(2016江苏改编,18,16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程.解析圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,于是圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.=2.(2)因为直线l∥OA,所以直线l的斜率为--设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d=-=.因为BC=OA==2,而MC2=d2+,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.评析本题主要考查直线方程、圆的方程、直线与直线、直线与圆的位置关系,考查分析问题、解决问题的能力及运算求解能力.过专题【五年高考】A组自主命题·北京卷题组1.(2018北京,7,5分)在平面直角坐标系中,记d为点P(cos θ,sinθ)到直线x-my-2=0的距离.当θ,m变化时,d 的最大值为( )A.1B.2C.3D.4答案C2.(2015北京文,2,5分)圆心为(1,1)且过原点的圆的方程是( )A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案D3.(2012北京,8,5分)某棵果树前n年的总产量S n与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高,m的值为( )A.5B.7C.9D.11答案C4.(2017北京,14,5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点B i的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Q i为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是;②记p i为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.答案①Q1②p2B组统一命题、省(区、市)卷题组1.(2015课标Ⅱ,7,5分)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M,N两点,则|MN|=( )A.2B.8C.4D.10答案C2.(2014江苏,11,5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b的值是.答案-33.(2018课标Ⅱ,19,12分)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.解析(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0),设A(x1,y1),B(x2,y2).由-得k2x2-(2k2+4)x+k2=0.Δ=16k2+16>0,故x1+x2=.所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=.由题设知=8,解得k=-1(舍去),或k=1,因此l的方程为y=x-1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x0,y0),则--解得或-因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.方法总结有关抛物线的焦点弦问题,常用抛物线的定义进行转化求解,在求解过程中应注重利用根与系数的关系进行整体运算.一般地,求直线和圆的方程时,利用待定系数法求解.4.(2017课标Ⅲ,20,12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解析(1)设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=,故x1x2==4.因此OA的斜率与OB的斜率之积为·=-=-1,所以OA⊥OB.故坐标原点O在圆M上.(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10. 当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为-,圆M的半径为,圆M的方程为-+ =.解后反思直线与圆锥曲线相交问题,常联立方程,消元得到一个一元二次方程,然后利用根与系数的关系处理.以某线段为直径的圆的方程,也可以用该线段的两端点坐标(x1,y1)、(x2,y2)表示:(x-x1)(x-x2)+(y-y1)(y-y2)=0.C组教师专用题组1.(2016四川,8,5分)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为( )A. B. C. D.1答案C2.(2014福建,6,5分)已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是( )A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0答案D3.(2017江苏,13,5分)在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若·≤20,则点P的横坐标的取值范围是.答案[-5,1]4.(2016天津文,12,5分)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为.答案(x-2)2+y2=95.(2015湖北文,16,5分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准..方程为;(2)圆C在点B处的切线在x轴上的截距为.答案(1)(x-1)2+(y-)2=2 (2)--16.(2014湖北,17,5分)已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则(1)b= ;(2)λ=.答案(1)-(2)7.(2015广东,20,14分)已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x-4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.解析(1)由已知得,圆C1的标准方程为(x-3)2+y2=4,所以圆C1的圆心坐标为(3,0).(2)由题意可知,直线l的斜率必存在,设直线l的方程为y=tx,A(x1,y1),B(x2,y2)(x1≠x2),线段AB的中点M(x0,y0)其中,将y=tx代入圆C1的方程,整理得(1+t2)x2-6x+5=0.则有x1+x2=,所以x0=,代入直线l的方程,得y0=.因为+=+===3x0,所以-+=.又因为方程(1+t2)x2-6x+5=0有两个不相等的实根,所以Δ=36-20(1+t2)>0,解得t2<,所以<x0≤3.所以线段AB的中点M的轨迹C的方程为-+y2=.(3)由(2)知,曲线C:-+y2=.如图,D,E-,F(3,0),直线L过定点G(4,0).-由得(1+k2)x2-(3+8k2)x+16k2=0.-当直线L与曲线C相切时,判别式Δ=0,解得k=±.结合图形可以判断,当直线L与曲线C只有一个交点时,有k DG≤k≤k EG或k=k GH或k=k GI,即k∈-∪-.评析本题考查了直线和圆的位置关系;考查了求解弦的中点问题的基本方法;考查了运算求解能力和数形结合思想,属偏难题.【三年模拟】一、选择题(每小题5分,共20分)1.(2017北京石景山一模,2)以(-1,1)为圆心且与直线x-y=0相切的圆的方程是( )A.(x+1)2+(y-1)2=2B.(x+1)2+(y-1)2=4C.(x-1)2+(y+1)2=2D.(x-1)2+(y+1)2=4答案A2.(2017北京朝阳二模,7)已知过定点P(2,0)的直线l与曲线y=-相交于A,B两点,O为坐标原点,当△AOB 的面积最大时,直线l的倾斜角为( )A.150°B.135°C.120°D.30°答案A3.(2019届北京八中10月月考,4)直线l与圆x2+y2+2x-4y+a=0(a<3)相交于A,B两点,若弦AB的中点为(-2,3),则直线l的方程为( )A.x+y-3=0B.x+y-1=0C.x-y+5=0D.x-y-5=0答案C4.(2019届北京潞河中学10月月考,9)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得==…=,则n的取值的集合为( )A.{2,3,4,5}B.{2,3,4}C.{3,4}D.{2,3}答案B二、填空题(每小题5分,共15分)5.(2018北京丰台一模,10)圆心为(1,0),且与直线y=x+1相切的圆的方程是.答案(x-1)2+y2=26.(2017北京海淀期末,11)已知圆C:x2+y2-2x=0,则圆心C的坐标为,圆C截直线y=x的弦长为.答案(1,0);7.(2018北京东城二模,13)直线x-y-1=0被圆C所截得的弦长为,则圆C的方程可以为.(写出一个即可)答案x2+y2=1(符合题意即可)。
高考数学直线与圆知识点总结
高考数学直线与圆知识点总结数学一直是高考重点科目之一,而其中的直线与圆是常见的考点之一。
在高考中,对于这部分知识点的掌握不仅仅是学生们考试取得好成绩的关键,更是对于综合能力的全面考核。
本篇文章将对高考数学直线与圆的知识点进行总结,帮助同学们更好地备考。
直线与圆的基本性质:直线和圆是平面几何中最基本也是最常见的两个图形。
直线无限延伸,没有端点,而圆是由一组平面上距离圆心相等的点组成的。
直线与圆之间有一些基本的性质需要掌握。
1. 直线在平面上可以有不同的位置关系,即相交、平行和重合。
相交的直线在交点处满足公共点的特性。
平行的直线在平面上永远不相交。
重合的直线完全重叠在一起,所有的点都相同。
2. 圆与直线的位置关系通常包括内外离散、相切和内含三种情况。
离散的情况是直线与圆没有交点。
相切的情况直线与圆恰好有一个交点。
内含的情况是直线与圆有两个交点。
直线的方程与性质:直线是最基本的图形之一,它常常需要考生们掌握准确的方程表达以及相应的性质。
1. 直线的一般方程是Ax + By + C = 0,其中A、B、C分别是实数,也称为直线的一般式方程。
一般式方程用于表示直线的位置关系。
2. 直线的斜率是非常重要的一个性质,它是直线上任意两点对应坐标差的比值。
斜率可以帮助我们判断直线的倾斜方向以及直线是否垂直。
3. 两条直线的位置关系可以通过它们的斜率进行判断。
如果两条直线的斜率相等,那么它们是平行的;如果两条直线的斜率的乘积为-1,那么它们是垂直的。
圆的方程与性质:圆是平面几何中的一个基本图形,它有特定的方程表达和一系列的性质需要考生们进行掌握。
1. 圆的标准方程是(x - a)^2 + (y - b)^2 = r^2,其中(a, b)是圆心的坐标,r是圆的半径;标准方程可以用于表示任意圆。
2. 圆的一般方程是x^2 + y^2 + Dx + Ey + F = 0,其中D、E、F是实数。
一般方程可以用于表示特定的圆。
高考数学复习《直线和圆的方程》知识点
直线和圆的方程考试内容:直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式. 两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.用二元一次不等式表示平面区域.简单的线性规划问题.曲线与方程的概念.由已知条件列出曲线方程.圆的标准方程和一般方程.圆的参数方程.考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域.(4)了解线性规划的意义,并会简单的应用.(5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程,了解参数方程的概念。
理解圆的参数方程.§07. 直线和圆的方程 知识要点一、直线方程.1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤.注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+by a x . 注:若232--=x y 是一直线的方程,则这条直线的方程是232--=x y ,但若)0(232≥--=x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线.3. ⑴两条直线平行:1l ∥212k k l =⇔两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =⇔,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条件,且21C C ≠) 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=⇔l . ⑵两条直线垂直:两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=⇔⊥k k l l 这里的前提是21,l l 的斜率都存在. ②0121=⇔⊥k l l ,且2l 的斜率不存在或02=k ,且1l 的斜率不存在. (即01221=+B A B A 是垂直的充要条件)4. 直线的交角:⑴直线1l 到2l 的角(方向角);直线1l 到2l 的角,是指直线1l 绕交点依逆时针方向旋转到与2l 重合时所转动的角θ,它的范围是),0(π,当 90≠θ时21121tan k k k k +-=θ. ⑵两条相交直线1l 与2l 的夹角:两条相交直线1l 与2l 的夹角,是指由1l 与2l 相交所成的四个角中最小的正角θ,又称为1l 和2l 所成的角,它的取值范围是 ⎝⎛⎥⎦⎤2,0π,当 90≠θ,则有21121tan k k k k +-=θ. 5. 过两直线⎩⎨⎧=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内)6. 点到直线的距离:⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A CBy Ax d +++=.注:1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=.特例:点P(x,y)到原点O 的距离:||OP =2. 定比分点坐标分式。
专题09 直线与圆的方程-备战2019年高考数学(文)之纠错笔记系列(解析版)
原创精品资源学科网独家享有版权,侵权必究!1专题09 直线与圆的方程易错点1 忽略90°倾斜角的特殊情形求经过A (m ,3),B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围.【错解】由斜率公式可得直线AB 的斜率k =3-2m -1=1m -1. ①当m >1时,k =1m -1>0,所以直线的倾斜角α的取值范围是0°<α<90°; ②当m <1时,k =1m -1<0,所以直线的倾斜角α的取值范围是90°<α<180°. 【错因分析】当问题所给的对象不能进行统一研究时,就需要对研究对象进行分类讨论,然后对每一类分别研究,得出每一类结果,最终解决整个问题.本题的讨论分两个层次:第一个层次是讨论斜率是否存在;第二个层次是讨论斜率的正、负.也可以分为m =1,m >1,m <1三种情况进行讨论.【试题解析】当m =1时,直线斜率不存在,此时直线倾斜角α=90°.当m ≠1时,由斜率公式可得k =3-2m -1=1m -1. ①当m >1时,k =1m -1>0,所以直线倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0,所以直线倾斜角α的取值范围是90°<α<180°. 【参考答案】见试题解析.1.由斜率取值范围确定直线倾斜角的范围时要利用正切函数y =tan x 的图象,特别要注意倾斜角取值范围的限制.2.求解直线的倾斜角与斜率问题时要善于利用数形结合的思想,要注意直线的倾斜角由锐角变到直角及由直角变到钝角时,需依据正切函数y =tan x 的单调性求斜率k 的范围.3.直线的倾斜角与斜率的关系(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率.比如直线1x =的倾斜角为2π,但斜率不。
【冲刺必刷】人教A版 高中数学2020届 高考复习专题--直线与圆的方程(含解析)
直线与圆的方程一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。
直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。
二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。
三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。
但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。
四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。
既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。
2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析
2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析 【三年高考】 1.【xx 江苏高考,10】在平面直角坐标系中,以点为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】【考点定位】直线与圆位置关系2.【xx 江苏,理9】在平面直角坐标系中,直线被圆截得的弦长为 .【答案】【解析】圆的圆心为,半径为,点到直线的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=. 【考点】直线与圆相交的弦长问题.3.【xx 江苏,理12】在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是__________.【答案】4. 【xx 高考新课标2理数改编】圆的圆心到直线的距离为1,则a = .【答案】【解析】试题分析:圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:考点:圆的方程、点到直线的距离公式.【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d与半径长r的大小关系来判断.若d>r,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.5. 【xx高考新课标3理数】已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.6.【xx高考山东文数改编】已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是.【答案】相交【解析】由()得(),所以圆的圆心为,半径为,因为圆截直线所得线段的长度是,所以=MN ==,,因为,所以圆与圆相交. 考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.7.【xx 高考北京文数改编】圆的圆心到直线的距离为 .【答案】【解析】试题分析:圆心坐标为,由点到直线的距离公式可知.考点:直线与圆的位置关系【名师点睛】点到直线(即)的距离公式记忆容易,对于知求,很方便.8.【xx 高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则的距离________.【答案】 【解析】试题分析:利用两平行线间距离公式得d 5=== 考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.9.【xx 高考浙江文数】已知,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.【答案】;5.【解析】试题分析:由题意,,时方程为,即,圆心为,半径为5,时方程为224448100x y x y ++++=,不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得的方程,解得的值,一定要注意检验的值是否符合题意,否则很容易出现错误.10.【xx 高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点在圆C 上,且圆心到直线 的距离为,则圆C 的方程为__________.【答案】【解析】 试题分析:设,则2|2|452,25355a a r =⇒==+=,故圆C 的方程为 考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.11.【xx 高考新课标2,理7】过三点,,的圆交y 轴于M ,N 两点,则________.【答案】412.【xx 高考陕西,理15】设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为 .【答案】【解析】因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则,因为,所以,所以曲线在点处的切线的斜率,因为,所以,即,解得,因为,所以,所以,即的坐标是,所以答案应填:.13.【xx 高考湖北,理14】如图,圆与轴相切于点,与轴正半轴交于两点(在的上方), 且.(Ⅰ)圆的标准..方程为 ; (Ⅱ)过点任作一条直线与圆相交于两点,下列三个结论:①; ②; ③.其中正确结论的序号是 . (写出所有正确结论的序号)【答案】(Ⅰ);(Ⅱ)①②③【解析】(Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,,令直线的方程为,此时,,所以,,,,因为,,所以. 所以2221(21)22222NBMANA MB -==-=-+,222121222222NBMANA MB +=+=+=-+14.【xx 陕西高考理第12题】若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为.所以圆的标准方程为:,故答案为.【xx 年高考命题预测】纵观近几年各地高考试题,对直线方程和圆的方程这部分的考查,主要考查直线的方程、圆的方程,从题型来看,高考中一般以选择题和填空的形式考查,难度较低,部分省份会在解答题中,这部分内容作为一问,和作为进一步研究其他问题的基础出现,难度较高,虽然全国各地对这部分内容的教材不同,故对这部分内容的侧重点不同,但从直线方程和圆的方程的基础知识,解析几何的基本思想的考查角度来说,有共同之处,恰当地关注图形的几何特征,提高解题效率.对直线方程的考查.一般会和倾斜角、斜率、直线方向向量或者其他知识结合.平面内两条直线的位置关系的考查,属于简单题,主要以两条直线平行、垂直为主,以小题的形式出现.对圆的方程的考查,在高考中应一般在选择题、填空题中出现,关注确定圆的条件.预测xx年对这一部分考查不会有太大变化.【xx年高考考点定位】高考对直线的方程和圆的方程的考查有二种主要形式:一是考查直线的方程;二是考查平面内两条直线的位置关系;三是考查圆的方程.【考点1】直线的方程【备考知识梳理】1、直线的倾斜角和斜率(1)直线的的斜率为k,倾斜角为α,它们的关系为:k=tanα;(2)若A(x1,y1),B(x2,y2),则.2.直线的方程a.点斜式:;b.斜截式:;c.两点式:;d.截距式:;e.一般式:,其中A、B不同时为0.【规律方法技巧】1. 斜率的定义是,其中是切斜角,故可结合正切函数的图象研究切斜角的范围与斜率的取值范围以及斜率的变化趋势.2. 直线的方向向量也是体现直线倾斜程度的量,若是直线的方向向量,则().3.平行或者垂直的两条直线之间的斜率关系要倍加注意.3.直线的五种直线方程,应注意每个方程的适用范围,解答完后应检验不适合直线方程的情形是否也满足已知条件.【考点针对训练】1.已知直线过直线和的交点,且与直线垂直,则直线的方程为________【答案】【解析】由题意得:直线可设为,又过直线和的交点,所以直线的方程为2.过点引直线,使点,到它的距离相等,则这条直线的方程为.【答案】【解析】显然直符合题意,此直线过线段的中点,又,时方程为,化简为,因此所求直线方程为或.【考点2】两条直线的位置关系【备考知识梳理】(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2 k 1=k 2;②l 1l 2 k 1k 2=-1;③(2)若0:,0:22221111=++=++C y B x A l C y B x A l 当时,平行或重合,代入检验;当时,相交;当时,.【规律方法技巧】1.与已知直线垂直及平行的直线系的设法与直线22(00)Ax By C A B ≠++=+垂直和平行的直线方程可设为:(1)垂直:;(2)平行:.2.转化思想在对称问题中的应用对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法.【考点针对训练】1.若直线l 1:x +2y -4=0与l 2:mx +(2-m )y -3=0平行,则实数m 的值为 .【答案】【解析】由题意得:2.已知直线,直线()()2:2220l m x m y -+++=,且,则的值为____.【答案】-1或-2【解析】根据两直线平形当斜率存在时,需满足斜率相等,纵截距不等,所以当时,显然两直线平行,符合题意;当时,,,若平行需满足且,解得:,综上,答案为-1或-2.【考点3】几种距离【备考知识梳理】(1)两点间的距离:平面上的两点间的距离公式:(2)点到直线的距离:点到直线的距离.(3)两条平行线间的距离:两条平行线与间的距离.【规律方法技巧】1.点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式.2.动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.1.已知直线与直线平行,则它们之间的距离是 .【答案】2【解析】由题意,,所以直线方程为,即,.2.已知直线l 1:ax+2y+6=0,l 2:x+(a 1)y+a 21=0,若l 1⊥l 2,则a= ,若 l 1∥l 2,则a= ,此时l 1和l 2之间的距离为 .【答案】, 1,;【考点4】圆的方程【备考知识梳理】标准式:,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中为圆心为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程.【规律方法技巧】1.二元二次方程是圆方程的充要条件“A=C ≠0且B=0”是一个一般的二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件.二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件为“A=C ≠0、B=0且”,它可根据圆的一般方程推导而得.2.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法:是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.3.求圆的方程时,要注意应用圆的几何性质简化运算.(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.1.已知圆的圆心为抛物线的焦点,且与直线相切,则该圆的方程为_________________.【答案】【解析】抛物线的焦点为(1,0),所以圆的圆心为(1,0),圆心到直线的距离,所以所求圆的方程为.2.已知圆与直线及都相切,圆心在直线上,则圆的方程为______________________.【答案】【解析】直线与直线两条平行线的距离,圆的半径,由,得,由,得,直径的两个端点,,因此圆心坐标,圆的方程.【两年模拟详解析】1.【xx届江苏省如东高级中学高三2月摸底】在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】2.【xx届湖南省长沙市长郡中学高三下第六次月考理科】若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】试题分析:由题意得:圆心到两直线距离相等,且等于,因此或,即18考点:直线与圆位置关系3.【xx届江苏省扬州中学高三12月月考】已知动圆与直线相切于点,圆被轴所截得的弦长为,则满足条件的所有圆的半径之积是.【答案】【解析】试题分析:设圆心,半径为,根据圆被轴所截得的弦长为得:,又切点是,所以,且,所以解得或,从而或,,所以答案应填:.考点:1、直线与圆相切;2、直线与圆相交;3、圆的标准方程.4.【xx 届南京市、盐城市高三年级第二次模拟】在平面直角坐标系中,直线与直线相交于点,则当实数变化时,点到直线的距离的最大值为______.【答案】【解析】 由题意得,直线的斜率为,且经过点,直线的斜率为,且经过点,且直线所以点落在以为直径的圆上,其中圆心坐标,半径为,则圆心到直线的距离为,所以点到直线的最大距离为。
2020年高考数学(理)总复习:直线与圆、圆锥曲线的概念、方程与性质(解析版)
2020年高考数学(理)总复习: 直线与圆、圆锥曲线的概念、方程与性质题型一 直线与圆、圆与圆的位置关系 【题型要点】(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.研究直线与圆的位置关系主要通过圆心到直线的距离和半径的比较实现,两个圆的位置关系的判断依据是两圆心距离与两半径差与和的比较.(2)直线与圆相切时利用“切线与过切点的半径垂直,圆心到切线的距离等于半径”建立切线斜率的等式,所以求切线方程时主要选择点斜式.过圆外一点求解切线段长可转化为圆心到圆外点距离,利用勾股定理处理.【例1】直线l :kx +y +4=0()k ∈R 是圆C :x 2+y 2+4x -4y +6=0的一条对称轴,过点A ()0,k 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为( )A.22B. 2C. 6D .2 6【解析】 由l :kx +y +4=0()k ∈R 是圆C :x 2+y 2+4x -4y +6=0的一条对称轴知,直线l 必过圆心()-2,2,因此k =3.则过点A ()0,k ,斜率为1的直线m 的方程为y =x +3,圆心到直线的距离d =||-2-2+32=22,所以弦长等于2r 2-d 2=2 2-12=6,故选C.【答案】 C【例2】.若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.【解析】 由题意⊙O 1与⊙O 在A 处的切线互相垂直,则两切线分别过另一圆的圆心,所以O 1A ⊥OA .又∵|OA |=5,|O 1A |=25,∴|OO 1|=5,又A 、B 关于OO 1对称,所以AB 为Rt △OAO 1斜边上高的2倍,∴|AB |=2×5×255=4. 【答案】 4【例3】.过动点M 作圆()x -22+()y -22=1的切线MN ,其中N 为切点,若||MN =||MO (O 为坐标原点),则||MN 的最小值是____________.【解析】 由圆的方程可得圆心C 的坐标为(2,2),半径为1. 由M (a ,b ),可得|MN |2=(a -2)2+(b -2)2-12 =a 2+b 2-4a -4b +7,|MO |2=a 2+b 2.由|MN |=|MO |,得a 2+b 2-4a -4b +7=a 2+b 2,整理得4a +4b -7=0. ∴a ,b 满足的关系式为4a +4b -7=0. 求|MN |的最小值,就是求|MO |的最小值. 在直线4a +4b -7=0上取一点到原点距离最小, 由“垂线段最短”得直线OM 垂直于直线4a +4b -7=0,由点到直线的距离公式,得MN 的最小值为||742+42=728. 【答案】 728题组训练一 直线与圆、圆与圆的位置关系1.已知直线l :mx +y -2m -1=0,圆C :x 2+y 2-2x -4y =0,当直线l 被圆C 所截得的弦长最短时,实数m =________【解析】 由C :x 2+y 2-2x -4y =0得(x -1)2+(y -2)2=5,∴圆心坐标是C (1,2),半径是5,∵直线l :mx +y -2m -1=0过定点P (2,1),且在圆内,∴当l ⊥PC 时,直线l 被圆x 2+y 2-2x -4y =0截得的弦长最短,∴-m ·2-11-2=-1,∴m =-1.【答案】 -12.在平面直角坐标系xOy 中,圆C :(x +2)2+(y -m )2=3.若圆C 存在以G 为中点的弦AB ,且AB =2GO ,则实数m 的取值范围是______________.【解析】 由于圆C 存在以G 为中点的弦AB ,且AB =2GO ,所以OA ⊥OB ,如图,过点O 作圆C 的两条切线,切点分别为B ,D ,圆上要存在满足题意的点A ,只需∠BOD ≥90°,即∠COB ≥45°,连接CB ,∵CB ⊥OB ,由于C (-2,m ),|CO |=m 2+4,|CB |=3,由sin ∠COB =|CB ||CO |=3m 2+4≥sin 45°=22,解得-2≤m ≤ 2. 【答案】 [-2,2]3.过点M (1,2)的直线l 与圆C :(x -3)2+(y -4)2=25交于A ,B 两点,当∠ACB 最小时,直线l 的方程是________.【解析】 当AB 垂直于直线CM 时,∠ACB 最小(小边对小角原理,此时弦最短,故角最小),设直线l 的斜率为k ,则k ×4-23-1=-1,得k =-1,又直线l 过M (1,2),所以y -2=-(x -1),整理得x +y -3=0,故直线l 的方程为x +y -3=0.【答案】 x +y -3=0题型二 圆锥曲线的定义与方程 【题型要点】(1)圆锥曲线定义的应用①已知椭圆、双曲线上一点及焦点,首先要考虑使用椭圆、双曲线的定义求解. ②应用抛物线的定义,灵活将抛物线上的点到焦点的距离与到准线的距离相互转化使问题得解.(2)圆锥曲线方程的求法求解圆锥曲线标准方程的方法是“先定型,后计算”.①定型.就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程. ②计算.即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆常设为mx 2+ny 2=1(m >0,n >0),双曲线常设为mx 2-ny 2=1(mn >0).【例4】已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)【解析】 若双曲线的焦点在x 轴上,则⎩⎪⎨⎪⎧m 2+n >0,3m 2-n >0.又∵(m 2+n )+(3m 2-n )=4,∴m 2=1,∴⎩⎪⎨⎪⎧1+n >0,3-n >0,∴-1<n <3. 若双曲线的焦点在y 轴上,则双曲线的标准方程为y 2n -3m 2-x 2-m 2-n =1,即⎩⎪⎨⎪⎧n -3m 2>0,-m 2-n >0, 即n >3m 2且n <-m 2,此时n 不存在. 【答案】 A【例5】.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1【解析】 ∵x 2a 2-y 2b 2=1的焦距为10,∴c =5=a 2+b 2,①又双曲线的渐近线方程为y =±bax ,且P (2,1)在渐近线上,∴2ba =1,即a =2b ,②由①②得a =25,b =5,∴双曲线的方程为x 220-y 25=1,故选A.【答案】 A【例6】.如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x【解析】 如图分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设||BF =a ,则由已知得||BC =2a ,由抛物线定义,得||BD =a ,故∠BCD =30°,在Rt △ACE 中, ∵||AE =|AF |=3,||AC =3+3a ,∴2||AE =||AC ,即3+3a =6,从而得a =1,||FC =3a =3.∴p =||FG =12||FC =32,因此抛物线方程为y 2=3x ,故选C.【答案】 C题组训练二 圆锥曲线的定义与方程1.经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( ) A.x 2113-y 211=1 B.x 22-y 2=1C.y 2113-x 211=1 D.y 211-x 2113=1 【解析】 设双曲线的渐近线方程为y =kx ,即kx -y =0,由题意知|-2|k 2+1=1,解得k =±3,则双曲线的焦点在x 轴上,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),则有⎩⎨⎧22a 2-12b 2=1,ba =3,解得⎩⎪⎨⎪⎧a 2=113,b 2=11,【答案】 A2.设F 1,F 2分别为椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上,且|PF 1→+PF 2→|=23,则∠F 1PF 2等于( )A.π6B.π4 C.π3D.π2【解析】 设∠F 1PF 2=θ,根据余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos θ,即12=|PF 1|2+|PF 2|2=2|PF 1|·|PF 2|cos θ.由|PF 1→+PF 2→|=23,得12=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|cos θ.两式相减得4|PF 1|·|PF 2|·cos θ=0,cos θ=0,θ=π2.【答案】 D3.已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是________.【解析】 由椭圆的方程可知a =2,c =2,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2,所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =22,所以有|PF 1|2=|PF 2|2+|F 1F 2|2,即△PF 1F 2为直角三角形,且∠PF 2F 1为直角,所以S △PF 1F 2=12|F 1F 2||PF 2|=12×22×1= 2.【答案】2题型三 圆锥曲线的几何性质 【题型要点】 圆锥曲线性质的应用(1)分析圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)确定椭圆和双曲线的离心率的值及范围,其关键就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式.建立关于a ,b ,c 的方程(组)或不等式(组),要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.注: 求椭圆、双曲线的离心率,常利用方程思想及整体代入法,该思想及方法利用待定系数法求方程时经常用到.【例7】已知椭圆C :x 2a 2+y 2b 2=1,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13【解析】 以线段A 1A 2为直径的圆的圆心为坐标原点(0,0),半径为r =a ,圆的方程为x 2+y 2=a 2,直线bx -ay +2ab =0与圆相切,所以圆心到直线的距离等于半径,即:d =2aba 2+b 2=a ,整理可得a 2=3b 2,即a 2=3(a 2-c 2),2a 2=3c 2,从而e 2=c 2a 2=23,椭圆的离心率e =ca =23=63.故选A. 【答案】 A【例8】.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线分别交于A ,B 两点,O 为坐标原点,若S △AOB =23,则双曲线的离心率e =( )A.32B.72C .2D.13【解析】 ∵抛物线y 2=4x 的准线方程为x =-1,不妨设点A 在点B 的上方,则A ⎪⎭⎫ ⎝⎛-a b ,1,B ⎪⎭⎫ ⎝⎛--a b ,1.∴|AB |=2b a . 又S △AOB =12×1×2ba =23,∴b =23a ,则c =a 2+b 2=13a ,因此双曲线的离心率e=ca=13. 【答案】 D题组训练三 圆锥曲线的几何性质1.已知双曲线M :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,||F 1F 2=2c .若双曲线M 的右支上存在点P ,使a sin ∠PF 1F 2=3csin ∠PF 2F 1,则双曲线M 的离心率的取值范围为( )A.⎪⎪⎭⎫⎝⎛+372,1 B.⎥⎦⎤⎝⎛+372,1 C.()1,2D.(]1,2【解析】 根据正弦定理可知,sin ∠PF 1F 2sin ∠PF 2F 1=|PF 2||PF 1|,所以|PF 2||PF 1|=a 3c,即|PF 2|=a3c|PF 1|, ||PF 1||-PF 2=2a ,所以⎪⎭⎫ ⎝⎛-c a 31||PF 1=2a ,解得||PF 1=6ac3c -a , 而||PF 1>a +c ,即6ac3c -a>a +c ,整理得3e 2-4e -1<0 ,解得2-73<e <2+73. 又因为离心率e >1,所以1<e <2+73,故选A.【答案】 A2.过点(0,3b )的直线l 与双曲线C :x 2a 2-y 2b =1(a >0,b >0)的一条斜率为正的渐近线平行,若双曲线C 的右支上的点到直线l 的距离恒大于b ,则双曲线C 的离心率的最大值是________.【解析】 由题意得双曲线的斜率为正的渐近线方程为y =ba x ,即bx -ay =0,则直线l的方程为y =ba x +3b ,即bx -ay +3ab =0.因为双曲线的右支上的点到直线l 的距离恒大于b ,所以渐近线y =b a x 与直线l 的距离不小于b ,即3abb 2+(-a )2≥b ,结合c 2=a 2+b 2化简得9a 2≥c 2,所以1<e =ca≤3,即双曲线的离心率的最大值为3.【答案】 3题型四 圆锥曲线的定义在解题中的应用在历届的高考中圆锥曲线都是考查的重点,无论小题还是大题,都是考查的难点,不仅考查学生的计算能力,还特别强调学生解决问题的灵活性和技巧性.而恰当地利用定义解题,许多时候能达到以简驭繁,事半功倍的效果.应用一 求周长(弦长)、面积问题我们把以焦点为顶点或过焦点的三角形称为“焦点三角形”,该类与周长、面积有关的问题与圆锥曲线的定义浑然一体,应先考虑用定义来解题.【例10】 (1)已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1 D.x 24-y 212=1 (2)已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为双曲线C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.(3)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.【解析】 (1)由题意知双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,联立⎩⎪⎨⎪⎧x 2+y 2=4,y =b 2x ,解得⎩⎪⎨⎪⎧x =44+b 2,y =2b 4+b 2或⎩⎪⎨⎪⎧x =-44+b 2,y =-2b4+b 2,即第一象限的交点为⎪⎪⎭⎫⎝⎛++2242,44b bb由双曲线和圆的对称性,得四边形ABCD 为矩形,其相邻两边长为84+b 2,4b4+b 2,故8×4b 4+b2=2b ,得b 2=12. 故双曲线的方程为x 24-y 212=1.故选D.(2)由双曲线C :x 29-y 216=1,知a =3,b =4,则c =a 2+b 2=5,|PQ |=4b =16. ∴F (-5,0),点A (5,0)为右焦点.又右焦点A (5,0)在线段PQ 上,知点P ,Q 在双曲线的右支上. 根据双曲线定义,|PF |-|P A |=6,|QF |-|QA |=6. 相加,得|PF |+|QF |-(|P A |+|QA |)=12, 于是|PF |+|QF |=12+|PQ |=28.从而△PQF 的周长为|PF |+|QF |+|PQ |=44.(3)根据题设条件,作如图所示的几何图形,设线段MN 的中点为P ,点F 1,F 2为椭圆的焦点,连接PF 1,PF 2.又F 1是线段AM 的中点,∴PF 1为△MAN 的中位线,|AN |=2|PF 1|.同理|BN |=2|PF 2|,又因为点P 在椭圆C :x 29+y 24=1上,由椭圆定义,|PF 1|+|PF 2|=2a=2×3=6,所以|AN |+|BN |=2(|PF 1|+|PF 2|)=12. 【答案】 (1)D (2)44 (3)12 应用二 求最值最值问题是解析几何的重点和难点,有的具有相当的难度.通过数形结合,利用图形的定义和几何性质问题可迎刃而解.【例11】 已知A (3,0),B (-2,1)是椭圆x 225+y 216=1内的点,M 是椭圆上的一动点,则|MA |+|MB |的最大值与最小值之和等于________.【解析】 易知A 为椭圆的右焦点,设左焦点为F 1,如图,由a 2=25,知|MF 1|+|MA |=10,即|MA |=10-|MF 1|,因此,|MA |+|MB |=10+|MB |-|MF 1|,连接BF 1并延长交椭圆于两点,一个点使|MB |-|MF 1|最大,最大值为2;另一个点使|MB |-|MF 1|最小,最小值为-2,于是|MA |+|MB |的最大值与最小值之和为20.【答案】 20 应用三 求离心率利用圆锥曲线的定义求其离心率是椭圆中的另一个重点.凡涉及圆锥曲线焦半径与焦点弦的问题,一般均可考虑利用定义帮助求解.【例12】 (1)已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1为左焦点,A 为右顶点, B 1,B 2分别为上、下顶点,若F 1,A ,B 1,B 2四点在同一个圆上,则此椭圆的离心率为( )A.3-12B.5-12C.22D.32(2)设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|-|PF 2|)2=b 2-3ab ,则该双曲线的离心率为________.【解析】 (1)由题设圆的半径r =a +c 2,则b 2+22⎪⎭⎫ ⎝⎛+-c a a =22⎪⎭⎫⎝⎛+c a ,即a 2-c 2=ac ⇒e 2+e -1=0,解得e =-1+52,故选B. (2)由双曲线定义,得||PF 1|-|PF 2||=2a ,又因为(|PF 1|-|PF 2|)2=b 2-3ab , 所以4a 2=b 2-3ab ,即(a +b )(4a -b )=0. 由a +b ≠0,得b =4a ,从而c =a 2+b 2=17a , 因此双曲线的离心率e =ca =17.【答案】 (1)B (2)17 应用四 求动点的轨迹方程动点轨迹(或曲线方程)问题是解析几何的重点和难点,在求动点轨迹的诸多方法中,围绕圆锥曲线的定义设计的问题小巧灵活,综合性强,有的具有相当的难度.【例13】 (1)设圆C 与两圆(x +5)2+y 2=4,(x -5)2+y 2=4中的一个内切,另一个外切.则圆C 的圆心轨迹L 的方程为________.(2)已知两定点M (-1,0),N (1,0),若直线上存在点P ,使|PM |+|PN |=4,则该直线为“A 型直线”.给出下列直线,其中是“A 型直线”的是________(填序号).①y =x +1;②y =2;③y =-x +3;④y =-2x +3 【解析】 (1)设圆C 的圆心坐标为(x ,y ),半径为r . 圆(x +5)2+y 2=4的圆心为F 1(-5,0),半径为2, 圆(x -5)2+y 2=4的圆心为F 2(5,0),半径为2. 由题意得|CF 1|=r +2且|CF 2|=r -2或|CF 1|=r -2且|CF 2|=r +2 ∴||CF 1|-|CF 2||=4.∵|F 1F 2|=25>4,∴圆C 的圆心轨迹是以F 1(-5,0),F 2(5,0)为焦点的双曲线,其方程为x 24-y 2=1.(2)由|PM |+|PN |=4,结合椭圆的定义可知,点P 是以M ,N 为焦点,长轴长为4的椭圆上的点,椭圆的方程为x 24+y 23=1.则“A 型直线”和该椭圆有交点.容易验证直线①、④与椭圆有交点,故证直线①、④是“A 型直线”,直线②和椭圆没有交点,故证直线②不是“A 型直线”.对于直线③,由⎩⎪⎨⎪⎧y =-x +3,x 24+y 23=1得7x 2-24x +24=0,此方程无解,从而直线③和椭圆没有交点,故证不是“A 型直线”.【答案】 (1)x 24-y 2=1 (2)①④【专题训练】一、选择题1.设直线x -y -a =0与圆x 2+y 2=4相交于A ,B 两点,O 为坐标原点,若△AOB 为等边三角形,则实数a 的值为( )A .±3B .±6C .±3D .±9【解析】 由题意知,圆心坐标为(0,0),半径为2,则△AOB 的边长为2,所以△AOB 的高为3,即圆心到直线x -y -a =0的距离为3,所以|-a |2=3,解得a =±6,故选B.【答案】 B2.两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为( )A .1B .3 C.19D.49【解析】 x 2+y 2+2ax +a 2-4=0,即(x +a )2+y 2=4,x 2+y 2-4by -1+4b 2=0,即x 2+(y -2b )2=1,依题意可得,两圆外切,则两圆心距离等于两圆的半径之和,则a 2+(2b )2=1+2=3,即a 2+4b 2=9,所以1a 2+1b 2=⎪⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+94112222b a b a =19⎪⎪⎭⎫ ⎝⎛++222245a b b a ≥19⎪⎪⎭⎫ ⎝⎛⋅⋅+2222425a b b a =1,当且仅当a 2b 2=4b 2a 2即a =±2b 时取等号,故选A. 【答案】 A3.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴上的一个顶点,线段BF 与双曲线C 的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=1【解析】 设A (x ,y ),∵右焦点为F (c,0),点B (0,b ),线段BF 与双曲线C 的右支交于点A ,且BA →=2AF →,∴x =2c 3,y =b 3,代入双曲线方程,得4c 29a 2-19=1,且c 2=a 2+b 2,∴b=6a 2.∵|BF →|=4,∴c 2+b 2=16,∴a =2,b =6,∴双曲线C 的方程为x 24-y 26=1.【答案】 D4.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为12,点P 为椭圆上一点,且△PF 1F 2的周长为12,那么C 的方程为( ) A.x 225+y 2=1 B.x 216+y 24=1 C.x 225+y 224=1 D.x 216+y 212=1 【解析】 由题设可得c a =12⇒a =2c ,又椭圆的定义可得2a +2c =12⇒a +c =6,即3c=6⇒c =2,a =4,所以b 2=16-4=12,则椭圆方程为x 216+y 212=1,应选答案D.【答案】 D5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,它的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若△AOB 的面积为3,则抛物线的准线方程为( )A .x =-2B .x =2C .x =1D .x =-1【解析】 因为e =ca =2,所以c =2a ,b =3a ,双曲线的渐近线方程为y =±3x ,又抛物线的准线方程为x =-p2,联立双曲线的渐近线方程和抛物线的准线方程得A⎪⎪⎭⎫ ⎝⎛-23,2p p ,B ⎪⎪⎭⎫ ⎝⎛--23,2p p ,在△AOB 中,|AB |=3p ,点O 到AB 的距离为p 2,所以12·3p ·p2=3,所以p =2,所以抛物线的准线方程为x =-1,故选D. 【答案】 D6.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,对于左支上任意一点P 都有|PF 2|2=8a |PF 1|(a 为实半轴),则此双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(2,3]C .(1,3]D .(1,2]【解析】 由P 是双曲线左支上任意一点及双曲线的定义,得|PF 2|=2a +|PF 1|,所以|PF 2|2|PF 1|=|PF 1|+4a 2|PF 1|+4a =8a ,所以|PF 1|=2a ,|PF 2|=4a ,在△PF 1F 2中,|PF 1|+|PF 2|≥|F 1F 2|,即2a +4a ≥2c ,所以e =ca≤3.又e >1,所以1<e ≤3.故选C.【答案】 C7.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且AF 2→=13F 2B →,则该双曲线的离心率为( )A.62B.52C. 3 D .2【解析】 由F 2()c ,0到渐近线y =b a x 的距离为d =bc a 2+b2=b ,即||AF →2=b ,则||BF →2=3b .在△AF 2O 中, ||OA →=a ,||OF →2=c ,tan ∠F 2OA =b a , tan ∠AOB =4b a=212⎪⎭⎫ ⎝⎛-⨯a b a b,化简可得a 2=2b 2,即c 2=a 2+b 2=32a 2,即e =c a =62,故选A.【答案】 A8.已知直线x +y -k =0(k >0)与圆x 2+y 2=4交于不同的两点A ,B ,O 为坐标原点,且有|OA →+OB →|≥33|AB →|,则k 的取值范围是( )A .(3,+∞)B .[2,22)C .[2,+∞)D .[3,22)【解析】由已知得圆心到直线的距离小于半径, 即|k |2<2,由k >0,得0<k <2 2. ① 如图,又由|OA →+OB →|≥33|AB →|,得|OM |≥33|BM |⇒∠MBO ≥π6,因|OB |=2,所以|OM |≥1,故|k |1+1≥1⇒k ≥ 2. ② 综①②得2≤k <2 2. 【答案】 B9.如图, F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2的直线与双曲线C 交于A ,B 两点,若||AB ∶|BF 1|∶|AF 1|=3∶4∶5,则双曲线的离心率为( )A.13 B .3 C. 5D .2【解析】 设||AB =3x ,||BF 1=4x ,||AF 1=5x ,所以△ABF 1是直角三角形.因为||BF 2-||BF 1=2a ,所以||BF 2=||BF 1+2a =4x +2a ,||AF 2=x +2a .又||AF 1-||AF 2=2a ,即5x -x -2a=2a ,解得x =a ,又||BF 22+||BF 12=4c 2,即()4x +2a 2+()4x 2=4c 2,即()4a +2a 2+()4a 2=4c 2,解得c 2a2=13,即e =13,故选A.【答案】A10.在平面直角坐标系xOy 中,已知抛物线C :x 2=4y ,点P 是C 的准线l 上的动点,过点P 作C 的两条切线,切点分别为A ,B ,则△AOB 面积的最小值为( )A. 2 B .2 C .2 2D .4【解析】如图所示:抛物线C :x 2=4y ,准线l 的方程y =-1,设P (x 0,-1),A (x 1,y 1),B (x 2,y 2),由y =14x 2,求导y ′=12x ,切线P A 的方程为y -x 1=12x 1(x -x 1),即y =12x 1x -y 1,又切线P A 过点P (x 0,-1),-1=12x 1x 0-y 1,整理得:x 1x 0-2y 1+2=0,同理切线PB 的方程x 2x 0-2y 2+2=0, ∴直线AB 的方程为xx 0-2y +2=0, 直线AB 过定点F (0,1),∴△AOB 面积, S =12|OF ||x 1-x 2|=12|x 1-x 2|≥12×4=2, ∴当且仅当直线AB ⊥y 轴时取等号, ∴△AOB 面积的最小值2. 【答案】 B11.已知双曲线x 2a 2-y 2b 2=1的左、右焦点分别为F 1,F 2,过F 1作圆x 2+y 2=a 2的切线分别交双曲线的左、右两支于点B ,C ,且|BC |=|CF 2|,则双曲线的渐近线方程为( )A .y =±3xB .y =±22xC .y =±(3+1)xD .y =±(3-1)x【解析】 由题意作出示意图,易得直线BC 的斜率为a b,cos ∠CF1F 2=bc,又由双曲线的定义及|BC |=|CF 2|可得|CF 1|-|CF 2|=|BF 1|=2a ,|BF 2|-|BF 1|=2a ⇒|BF 2|=4a ,故cos ∠CF 1F 2=b c =4a 2+4c 2-16a22×2a ×2c⇒b 2-2ab -2a 2=0⇒2⎪⎭⎫⎝⎛a b -2⎪⎭⎫ ⎝⎛a b -2=0⇒b a =1+3,故双曲线的渐近线方程为y =±(3+1)x . 【答案】 C12.在平面直角坐标系xOy 中,点P 为椭圆C :y 2a 2+x 2b 2=1(a >b >0)的下顶点,M ,N 在椭圆上,若四边形OPMN 为平行四边形,α为直线ON 的倾斜角,若α∈⎥⎦⎤⎝⎛4,6ππ,则椭圆C 的离心率的取值范围为( )A.⎥⎦⎤ ⎝⎛36,0 B.⎥⎦⎤ ⎝⎛23,0 C.⎥⎦⎤⎢⎣⎡23,36 D.⎥⎦⎤⎢⎣⎡322,36 【解析】 因为OP 在y 轴上,在平行四边形OPMN 中,MN ∥OP ,所以M ,N 两点的横坐标相等,纵坐标互为相反数,即M ,N 两点关于x 轴对称,|MN |=|OP |=a ,可设M (x ,-y 0),N (x ,y 0),由k ON =k OM 可得y 0=a 2,把点N 的坐标代入椭圆方程得|x |=32b ,得N⎪⎪⎭⎫ ⎝⎛2,23a b .因为α为直线ON 的倾斜角,所以tan α=a 232b=a 3b ,因为α∈⎥⎦⎤⎝⎛4,6ππ,所以33<tan α≤1即33<a 3b≤1,33≤b a <1,13≤b 2a 2<1,又离心率e =1-b 2a 2,所以0<e ≤63.选A. 【答案】 A 二、填空题13.已知实数4,m,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的焦距为________.【解析】 根据题意,实数4,m,9构成一个等比数列,则有m 2=4×9=36,则m =±6,当m =6时,圆锥曲线的方程为x 26+y 2=1,为椭圆,其中a =6,b =1,则c =6-1=5,则其焦距2c =25,当m =-6时,圆锥曲线的方程为y 2-x 26=1,为双曲线,其中a =1,b=6,则c =6+1=7,则其焦距2c =27,综合可得:圆锥曲线x 2m +y 2=1的焦距为25或27;故答案为25或27.【答案】 25或2714.椭圆C :x 2a 2+y 2=1(a >1)的离心率为32, F 1,F 2是C 的两个焦点,过F 1的直线l与C 交于A ,B 两点,则||AF 2+||BF 2的最大值为________.【解析】 因为离心率为32,所以a 2-1a =32⇒a =2,由椭圆定义得||AF 2+||BF 2+||AB =4a =8,即||AF 2+||BF 2=8-||AB .而由焦点弦性质知,当AB ⊥x 轴时,||AB 取最小值2×b 2a =1,因此||AF 2+||BF 2的最大值为8-1=7.【答案】 715.如图,F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A .若△ABF 2为等边三角形,则双曲线的离心率为________.【解析】因为△ABF 2为等边三角形,由点A 是双曲线上的一点知,|F 1A |-|F 2A |=|F 1A |-|AB |=|F 1B |=2a ,由点B 是双曲线上一点知,|BF 2|-|BF 1|=2a ,从而|BF 2|=4a ,由∠ABF 2=60°得∠F 1BF 2=120°,在△F 1BF 2中应用余弦定理得4c 2=4a 2+16a 2-2·2a ·4a ·cos 120°,整理得c 2=7a 2,则e 2=7,从而e =7.【答案】716.已知抛物线y 2=2px 的准线方程为x =-1,焦点为F ,A ,B ,C 为该抛物线上不同的三点,|F A →|,|FB →|,|FC →|成等差数列,且点B 在x 轴下方,若F A →+FB →+FC →=0,则直线AC 的方程为________.【解析】 抛物线的准线方程是x =-p2=-1,21 ∴p =2,∴抛物线方程为y 2=4x ,F (1,0). 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3), 又|F A →|,|FB →|,|FC →|成等差数列,∴|F A →|+|FC →|=2|FB →|,即x 1+1+x 3+1=2(x 2+1),即x 1+x 3=2x 2.∵F A →+FB →+FC →=0,∴(x 1-1+x 2-1+x 3-1,y 1+y 2+y 3)=0, ∴x 1+x 2+x 3=3,y 1+y 2+y 3=0, 则x 1+x 3=2x 2,x 2=1.由y 22=4x 2=4,则y 2=-2或2(舍),则y 1+y 3=2, 则AC 的中点坐标为⎪⎭⎫ ⎝⎛++2,22121y y x x ,即(1,1), AC 的斜率k =y 1-y 3x 1-x 3=y 1-y 3y 214-y 234=4y 1+y 3=42=2, 则直线AC 的方程为y -1=2(x -1), 即2x -y -1=0.【答案】 2x -y -1=0。
2020年高考理科数学《直线与圆》题型归纳与训练
2020年高考理科数学《直线与圆》题型归纳与训练【题型归纳】题型一直线方程、两直线的位置关系例1已知两直线1:80l mx y n ++=和2:210l x my +-=.试确定m 、n 的值,使: (1)1l 与2l 相交于点(),1P m -; (2)1l ∥2l ;(3)1l ⊥2l ,且1l 在y 轴上的截距为-1. 【答案】(1)1m =,7n =.(2)4m =,2n ≠-时或4m =-,2n ≠时,1l ∥2l . (3)0m =,8n =【解析】(1)由题意得280210m n m n ⎧-+=⎨--=⎩,解得1m =,7n =.(2)当0m =时,显然1l 不平行于2l ;当0m ≠时,由821m nm =-≠-,得⎩⎨⎧-≠=⇒⎩⎨⎧≠--⨯=⨯-⋅240)1(8028n m nm m m 或⎩⎨⎧≠-=24n m . 即4m =,2n ≠-时或4m =-,2n ≠时,1l ∥2l .(3)当且仅当280m m +=,即0m =时,1l ⊥2l .又18n-=-,∴8n =.即0m =,8n =时,1l ⊥2l ,且1l 在y 轴上的截距为-1.【易错点】忽略对0m =的情况的讨论【思维点拨】遇到直线类题型,首先要注意特殊情况如斜率不存在时或0k =时,并且对于直线平行和垂直时与12A A 和12B B 间的关系要熟练记忆。
例2如图,设一直线过点(-1,1),它被两平行直线l 1:x +2y -1=0,l 2:x +2y -3=0所截的线段的中点在直线l 3:x -y -1=0上,求其方程.【答案】2750x y +-=.【解析】与1l 、2l 平行且距离相等的直线方程为220x y +-=.设所求直线方程为()()2210x y x y λ+-+--=,即()()1220x y λλλ++---=.又直线过()1,1A -,∴()()()112120λλλ+-+-⋅--=.解13λ=-.∴所求直线方程为2750x y +-=.2【易错点】求错与1l 、2l 平行且距离相等的直线方程【思维点拨】本题的关键在于求到1l 、2l 平行且距离相等的直线方程,再利用这条直线求出和第三条支线的交点,从而求解本题.题型二 圆的方程(对称问题、圆的几何性质运用) 例1已知实数x 、y 满足方程22410x y x +-+=.(1)求yx的最大值和最小值; (2)求y x -的最大值和最小值.【答案】(1)yx(2)y x -的最大值为2-+,最小值为2-.【解析】(1)原方程化为()2223x y -+=,表示以点()2,0为圆心,为半径的圆.设yk x=,即y k x =,当直线y kx =与圆相切时,斜率k=k =.故yx 的最大值(2)设y x b -=,即y x b =+,当y x b =+与圆相切时,纵截距b取得最大值和最小值,此时=2b =-.故y x -的最大值为2-,最小值为2--. 【易错点】理解错给定要求结果的含义【思维点拨】正确理解给定结果的含义,在利用题中的条件解决问题。
2020年高考数学 专题09 直线和圆的方程(含解析)
直线和圆的方程(含解析)【背一背重点知识】 1.两直线平行与垂直 (1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212l l k k ⇔=,特别地,当直线12,l l 的斜率都不存在时,1l 与2l 的关系为平行.(2)两条直线垂直①如果两条直线12,l l 的斜率存在,设为12,k k ,则12121l l k k ⊥⇔⋅=-.②如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,1l 与2l 的关系为垂直. 2.两直线的交点直线1111:0l A x B y C ++=和2222:0l A x B y C ++=的公共点的坐标与方程组1112220A xB yC A x B y C ++=⎧⎨++=⎩的解一一对应. 相交⇔方程组有一个解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数解. 3.距离公式(1)两点间的距离公式平面上任意两点111222(,),(,)P x y P x y间的距离公式为12PP =. 特别地,原点O (0,0)与任一点P (x,y)的距离OP =.(2)点到直线的距离公式平面上任意一点000(,)P x y 到直线:0l Ax By C ++=(A,B 不同时为0)的距离为d =.(3)两条平行线间的距离公式一般地,两条平行直线11:0l A x By C ++=,22:0l A x By C ++=(其中A,B 不同时为0,且12C C ≠)间的距离1222C C d A B-=+.【讲一讲提高技能】 1. 必备技能:1.解决两直线的位置关系问题要根据已知直线方程的形式灵活选用相应的条件,显然该题中直接利用一般式方程对应的条件更为简洁.另外利用直线的斜率和截距讨论时,不要忘记斜率不存在时的讨论.2.可将方程化成斜截式,利用斜率和截距进行分析;也可直接利用一般式套用两直线垂直与平行的条件求解.一般式方程化成斜截式方程时,要注意直线的斜率是否存在(即y 的系数是否为0).3.求两条平行线间的距离有两种思路:(1)利用“化归”法将两条平行线的距离转化为一条直线上任意一点到另一条直线的距离. (2)直接应用两平行直线之间的距离公式.4.涉及两直线的交点问题,往往需借助于图形,应用数形结合思想,探索解题思路,这也是解析几何中分析问题、解决问题的重要特征.例1若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于 . 分析:两直线垂直的充要条件,列出关系式,解出a 即可. 【答案】2a =-例2已知点A (1,3),B (3,1),C (-1,0),则三角形ABC 的面积为 .分析:由两点间距离公式求出AB 的长,并写出直线AB 的方程,由点到直线距离求出高,从而可得三角形的面积. 【答案】5【解析】设AB 边上的高为h ,则ABC S ∆12AB h =•.()()22311322AB =-+-=AB 边上的高h 就是点C 到AB 的距离.AB 边所在直线方程为:311331y x --=--即40x y +-=.设点C 到40x y +-=的距离为h ,则22104211h -+-==+ABCS ∆122522=⨯=.【练一练提升能力】1. 如果直线0)1(05)1(=--+=+-+b y x a y b ax 和同时平行于直线032=+-y x ,则b a ,的值为( )A .0,21=-=b a B .0,2==b a C .0,21==b a D .2,21=-=b a【答案】A 【解析】2. 设入射光线沿直线 y=2x+1 射向直线 y=x , 则被y=x 反射后,反射光线所在的直线方程是( )A .x+2y+3=0B .x-2y+1=0C .3x-2y+1=0D .x-2y-1=0 【答案】D 【解析】试题分析:入射光线和反射光线关于直线y=x 对称,所以设入射光线上的任意两个点(0,1),(1,3)其关于直线y=x 对称的两个点的坐标分别为(1,0),(3,1)且这两个点在反射光线上,由两点式可求出反射光线所在的直线方程为 x-2y-1=0.直线与圆的位置关系【背一背重点知识】 1.直线与圆的位置关系位置关系有三种:相离、相切、相交. 判断直线与圆的位置关系常见的有两种方法: (1)代数法:判别式24b ac ∆=-2120=1+00k x x⎧∆>⇔⇒-⎪⎪⇒∆=⇔⎨⎪∆<⇔⎪⎩相交弦长AB 相切相离.(2)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d r <⇔相交⇒弦长=222r d -,d r =⇔相切,d r >⇔相离. 【讲一讲提高技能】 必备技能:1.如下图所示,涉及直线与圆相交及弦长的题,都在Rt AOB ∆中,利用勾股定理,得半径弦长及弦心距之间的关系式.BA O2.弦长的计算:方法一、设圆的半径为R ,圆心到直线的距离为d ,则弦长222l R d =-. 方法二、设直线的斜率为k ,直线与圆的交点坐标为1122(,),(,)P x y Q x y ,则弦长212122111PQ x x k y y k =-+=-+. 例1 直线:340l x y +-=与圆22:4C x y +=的位置关系是( )A .相交B .相切C .相离D .无法确定 【答案】B 【解析】例2圆224460x y x y +-++=截直线50x y --=所得弦长为( ) A 6 B 52C 、1D 、5 分析:可利用圆的半径,弦心距,弦的一半满足勾股定理,利用点到直线距离求出弦心距,从而可解. 【答案】A【解析】将224460x y x y +-++=配方得:22(2)(2)2x y -++=,所以圆心到直线的距离为225211d +-==+,弦长为22122262l R d =-=-=,选A .【练一练提升能力】1. 已知圆C :4)2()(22=-+-y a x (0a >),有直线l :03=+-y x ,当直线l 被圆C截得弦长为32时,a 等于( )A.12-B.2-2C.2D.12+ 【答案】A2. 由直线1+=x y 上的点向圆()()12322=++-y x 引切线,则切线长的最小值为__________. 17 【解析】试题分析:圆心()3-2C ,,半径1r =,圆心到直线1y x =+的距离为322d ==直线1y x =+上的点P 向圆作的切中,切线长的表达式为222=1l PC r PC =--此,要使切线长最短,应有PC 最小,即直线上的点到圆心的距离最小,即PC 垂直于直线1y x =+时,min 32PC =()32117-=.(一) 选择题(12*5=60分)1. 已知直线()12:110,:20l ax a y l x ay +++=++=,则“2a =-”是“12l l ⊥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A2. 如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .33D .25 【答案】A【解析】由题意知点P 关于直线AB 的对称点为D(4,2),关于y 轴的对称点为C(-2,0),则光线所经过的路程为|CD|=210.故选A .3. 已知圆C 的标准方程为221x y +=,直线l 的方程为(2)y k x =-,若直线l 和圆C 有公共点,则实数k 的取值范围是( ) A .33[,]22-B .33[,]33-C .11[,]22- D .[1,1]- 【答案】B 【解析】4. 直线0=+-k y kx 与圆0222=-+x y x 有公共点,则实数k 的取值范围是A .]33,33[-B .),33[]33,(+∞⋃--∞ C .]3,3[- D .),3[]3,(+∞⋃--∞ 【答案】A 【解析】试题分析:根据数形结合,直线()1+=x k y 过点()0,1-,如图,当直线与圆有交点时,所有的直线夹在两条切线之间,x 轴上方的切线设为1l ,下方的设为2l ,设1l 的倾斜角为α,那么21sin =α,030=α,所有3330tan 01==l k ,显然332-=l k ,所有实数k 的取值范围是⎥⎦⎤⎢⎣⎡3333-,,故选A .5. 已知点(2,0)A ,(2,4)B -,(5,8)C ,若线段AB 和CD 有相同的垂直平分线,则点D 的坐标是( )(A )(6,7) (B )(7,6) (C )(5,4)-- (D )(4,5)-- 【答案】A6. 在平面直角坐标系中,点),(20与点)(0,4关于直线l 对称,则直线l 的方程为A .042=-+y xB .02=-y xC .032=--y xD .032=+-y x 【答案】C 【解析】 试题分析:214002-=--=k ,所以2=l k ,中点坐标是()1,2,直线方程是()221-=-x y ,整理为032=--y x ,故选C .7. 圆22220x y x y +--=上的点到直线20x y ++=的距离最大为( ) A .2 B .22 C .32 D .222+ 【答案】C8. 已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是 ( )A.20x y +-=B.20x y -+=C.30x y +-=D.30x y -+= 【答案】D【解析】由已知得,圆心为(0,3),所求直线的斜率为1,由直线方程的斜截式得,3y x =+,即30x y -+=,故选D.9. 已知直线210kx y k -+-=恒过定点A ,点A 也在直线10mx ny ++=上,其中m n 、均为正数,则12m n+的最小值为( ) A .2 B .4 C .6 D .8 【答案】D 【解析】试题分析:210kx y k -+-=变形为()21k x y +=+,所以过定点()2,1--,代入直线得21m n +=()12124244248n m m n mn m n m n ⎛⎫∴+=++=++≥+= ⎪⎝⎭,当且仅当4n m m n=时等号成立,取得最小值810. 已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为( ) A.7 B. 6 C.5 D.4 【答案】B【解析】由题意知,点P 在以原点(0,0)为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两圆有交点即可,所以15m -=,故选B.11. 设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C )2,2⎡⎤-⎣⎦ (D )22,22⎡⎤-⎢⎥⎣⎦【答案】AxyA11OMN12. 过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有( ) A .16条 B .17条 C .32条 D .34条 【答案】C【解析】试题分析:将22241640x y x y ++--=化为169)2()1(22=-++y x ,即该圆的圆心坐标为)2,1(-C ,半径为13=R ,且12||=AC ,且经过点)2,11(A 的弦的最大长度为262=R (当弦过圆心时),最小弦长为10||222=-AC R (当弦与直线AC 垂直时),所以其中弦长为整数的可能是10(一条),2511-(各两条,共30条),26(一条),一共32条;故选C .(二) 选择题(4*5=20分)13. 若直线x y k +=与曲线21y x =-恰有一个公共点,则k 的取值范围是 .【答案】112k k -≤<=或【解析】14. 已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且BC AC ⊥,则实数a 的值为_________.【答案】0或6【解析】圆C 的标准方程为:()()22129x y ++-=,所以圆C 的圆心在()-12,,半径3r = 又直线0x y a -+=与圆C 交于,A B 两点,且AC BC ⊥,所以圆心C 到直线0x y a -+=的距离322d=,所以,()221232211a--+=+-,整理得:33a-=解得:0a=或6a=所以答案应填:0或6.15. 已知12,l l是曲线1:C yx=的两条互相平行的切线,则1l与2l的距离的最大值为_____. 【答案】22【解析】因为21'yx=-,故21kx=-<,即xk=±-,从而得y k=±-,故切线方程为y k k xk⎛--=-⎪-⎝⎭,与y k k xk⎛+-=+⎪-⎝⎭,即20kx y k-+-=与20kx y k---=,由平行线间距离公式可得241kdk-=+,()()22161681112kdk kkk k-==≤=++-⋅---,故22d≤.16. 已知圆12:22=+yxC,直线2534:=+yxl.圆C上任意一点A到直线l的距离小于2的概率为_____.【答案】61【解析】。
【2020年】全国高考数学(理)总复习汇编-第九章《直线与圆的方程 》含解析
第九章 直线与圆的方程第一节 直线的方程与两条直线的位置关系1.(2017浙江11)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积6S ,6S = .1.解析 正六边形的面积为6个正三角形的面积和,所以61=611sin 602S 创创=o 题型102 倾斜角与斜率的计算——暂无 题型103 直线的方程——暂无题型104 两直线位置关系的判定——暂无 题型105 有关距离的计算第二节 圆的方程题型106 求圆的方程——暂无 题型107 与圆有关的轨迹问题——暂无第三节 直线与圆、圆与圆的位置关系题型108 直线与圆的位置关系 题型109 直线与圆的相交关系及其应用题型110 直线与圆相切、相离关系及其应用——暂无 题型111 直线与圆的综合2.(2017江苏13)在平面直角坐标系xOy 中,点()12,0A -,()0,6B ,点P 在圆22:50O x y +=上.若20PA PB ⋅u u u r u u u r…,则点P 的横坐标的取值范围是 .2.解析 不妨设()00,P x y ,则220050x y +=,且易知0x ⎡∈-⎣.因为PA PB AP BP =⋅⋅u u u r u u u r u u u r u u u r()()000012,,6x y x y =+⋅-=220000126x x y y ++-005012620x y =+-…,故00250x y -+….所以点()00,P x y 在圆22:50O x y +=上,且在直线250x y -+=的左上方(含直线).联立2250250x y x y ⎧+=⎨-+=⎩,得15x =-,21x =,如图所示,结合图形知0x ⎡⎤∈-⎣⎦.故填⎡⎤-⎣⎦.2评注 也可以理解为点P 在圆22000012620x y x y +=+-的内部来解决,与解析中的方法一致.3.(2107全国3卷理科20)已知抛物线22C y x =:,过点()20,的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)求证:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 与圆M 的方程. 3.解析 (1)显然当直线斜率为0时,直线与抛物线交于一点,不符合题意. 设:2l x my =+,11(,)A x y ,22(,)B x y ,联立222y xx my ⎧=⎨=+⎩,得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-.1212OA OB x x y y ⋅=+uu r uu u r1212(2)(2)my my y y =+++21212(1)2()4m y y m y y =++++=24(1)2240m m m -++⋅+=,所以OA OB ⊥uu r uu u r,即点O 在圆M 上.(2)若圆M 过点P ,则0AP BP ⋅=uu u r uu r,即1212(4)(4)(2)(2)0x x y y --+++=,即1212(2)(2)(2)(2)0my my y y --+++=,即21212(1)(22)()80m y y m y y +--++=,化简得2210m m --=,解得12m =-或1.①当12m =-时,:240l x y +-=,设圆心为00(,)Q x y ,则120122y y y +==-,0019224x y =-+=,半径||r OQ ==,则圆229185:4216M x y ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭. ②当1m =时,:20l x y --=,设圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径r OQ ==则圆22:(3)(1)10M x y -+-=.题型112 圆与圆的位置关系及其应用——暂无。
2020年高考文科数学易错题《直线与圆》题型归纳与训练
12020年高考文科数学《直线与圆》题型归纳与训练【题型归纳】题型一 倾斜角与斜率例1 直线l310y +-=,则直线l 的倾斜角为( )A. 0150B. 0120C. 060D. 030【答案】 A【解析】由直线l310y +-=,可得直线的斜率为33-=k ,设直线的倾斜角为[)πα,0∈,则33tan -=α,∴︒=150α. 故选:A .【易错点】基础求解问题注意不要算错【思维点拨】直线方程的基础问题(倾斜角,斜率与方程,注意倾斜角为α为2π,即斜率k 不存在的情况)应对相关知识点充分理解,熟悉熟练例2 已知三点()0,a A 、()7,3B 、()a C 9,2--在一条直线上,求实数a 的值. 【答案】2=a 或92=a 【解析】597,35ak a k CB AB +=-=∵A 、B 、C 三点在一条直线上,∴BC AB k k =,即59735a a +=-,解得2=a 或92=a .题型二 直线方程例1 经过点()1,1M 且在两坐标轴上截距相等的直线是( ).A. 2x y +=B. 1x y +=C. 1x =或1y =D. 2x y +=或x y = 【答案】D【解析】若直线过原点,则直线为y x =符合题意,若直线不过原点设直线为1x ym m+=, 代入点()1,1解得2m =,直线方程整理得20x y +-=,故选D . 【易错点】截距问题用截距式比较简单,但截距式1=+nym x 中要求m ,n 均非零。
故做题时应考虑此情形【思维点拨】求解基本直线方程问题通常比较简单,考虑时注意每种形式的适用范围即可。
不要漏解。
题型三 直线位置关系的判断例1 直线()1:3230l kx k y +--=和()()2:2220l k x k y -++-=互相垂直,则实数k 的值是( )A. 2-或1-B. 2或1-C. 2-或1D. 2或1 【答案】D【解析】根据直线垂直的充要条件得到: ()()()3*22*20k k k k -+-+= 化简为23201k k k -+=⇒= 或2 故选择D【易错点】本题若采用斜率之积为-1求解,则容易错误。
2020年高考“直线和圆的方程”专题命题分析
高中数学解析几何中直线和圆的方程的主要内容包括直线方程、圆的方程、直线与圆的位置关系、圆与圆的位置关系等内容.直线和圆的方程是解析几何初步的主要内容,也是学生学习圆锥曲线的基础,同时又与平面几何、平面向量和三角函数等都有着内在联系.该部分内容的学习是学生运用平面直角坐标系将思维认识从一维到二维逐渐丰富的重要过程,同时也是将函数与方程两者融会贯通的过程.一、考点分析2020年高考数学试卷中直线和圆方程的试题注重考查主干知识,突出对学生能力和素养的考查,体现重思维、重应用、重创新的指导思想,除全国新高考试卷的题型有变化外,其他试卷题型基本稳定.直线和圆的方程的相关试题主要考查了圆的方程、直线与圆的位置关系判定、圆的切线方程、点到直线的距离、轨迹问题、利用圆求最值等内容.在考查中坚持基础与能力并重,保持几何与代数交会,突出运用坐标法研究图形几何性质的解析几何本色.基础题考查目标明确,立足于直线与圆的方程及其几何性质,考查解析几何的基本思想和方法;创新题立意新颖,聚焦轨迹问题、定值问题和最值问题等的动态变化研究.2020年高考数学试卷共13份,直线和圆的方程内容的考查情况如下表所示.卷别全国Ⅰ卷全国Ⅱ卷全国Ⅲ卷全国新高考Ⅰ卷全国新高考Ⅱ卷北京卷天津卷浙江卷上海卷江苏卷科别理文理文理文——————————————题型及题号分布选择题11,填空题15,解答题20选择题6,填空题15,解答题21选择题5,选择题8,解答题19选择题8,选择题9,解答题19选择题5,选择题10,解答题20选择题7,选择题8,解答题21填空题13,填空题15,解答题22填空题13,填空题15,解答题21选择题5,填空题12,解答题20选择题7,填空题12,解答题18填空题15,解答题21选择题10,解答题20填空题14,解答题18分值22222222222222222425212020统计表明,2020年直线和圆的方程的考查特点主要体现在以下四个方面.1.布局合理,分值稳定据统计,2020年高考数学试卷除选考内容外,所有试卷在考查直线和圆的方程这部分内容上分值大致相当,除浙江卷、上海卷、江苏卷外其余试卷均为两2020年高考“直线和圆的方程”专题命题分析收稿日期:2020-08-04作者简介:刘莉(1964—),女,副教授,主要从事高中数学课程、教学、评价研究.刘摘要:针对2020年高考数学试卷中直线和圆的方程相关试题,从考查内容、试题难度和思想方法等方面,总体概括考查特点.研究表明,2020年高考对直线和圆的方程的考查体现了解析几何数与形的基本关系,并在解决问题的方法使用上体现了数形结合思想的力量,利用一题多解,多层次、多角度考查了学生的必备知识、关键能力和核心素养.鉴于此,2021年高考要回归教材、突出思想、重视交会、提升素养.关键词:2020年高考;直线和圆;命题分析道选择题或填空题和一道解答题,且考点全面,重点突出,更侧重于对数学抽象、逻辑推理、数学运算等数学核心素养的考查.例如,全国新高考Ⅰ卷第15题,先考查学生对平面图形的读图、识图能力,即直观想象素养;然后考查逻辑推理素养;最后的计算过程考查数学运算素养.2.重视能力,简洁清晰2020年高考数学试题中解析几何部分语言表述简洁清晰,有些题目还辅助图形加以说明,让学生能够将更多的时间和精力投入到数学思考之中.这部分内容的考查突出了代数与几何、方程与函数的转化与化归思想,重点考查了学生的推理论证、运算求解等能力.3.总体难度稳定,突出通性、通法2020年高考数学各试卷对直线和圆的方程部分的考查总体难度不大,考查内容比较稳定,具有考查全面,梯度清晰,降低运算,突出基础知识、基本思想和关键能力等特点.例如,全国Ⅱ卷理科卷的解析几何解答题,位置提到了第19题,明显降低了难度;全国Ⅰ卷和全国Ⅲ卷的解析几何解答题也是常规题型,注重通性、通法,运算量不大,充分体现了在立足于课程标准的基础上,突出重点知识、重要能力,注重对数学思想方法和关键能力进行考查.4.文、理科趋同,逐渐过渡综观2020年高考数学试卷中的直线和圆的方程试题,不难发现,在难度和分值的设置上,对应的文、理科试题都基本相同,即使有些试题不同,背景及考查的知识点也是同根同源,为新一轮高考不分文、理科的改革打下了良好的基础.二、命题思路分析对2020年高考数学的13份试卷中的直线和圆的方程的试题进行分类整理后,不难发现这部分试题紧扣知识点,没有难题、偏题,降低了运算难度,延续了“立足基础,重视思想,坚持创新”的命题思想.试题最大的亮点是既侧重对学生知识技能掌握情况的考查,更关注数学学科核心素养的形成与发展.1.突出主干,考查必备基础直线和圆是解析几何中最简单、最直观的研究对象之一,是学生初步尝试和体验解析几何思想与方法的最佳载体.直线与圆的方程是高中数学知识的重要组成部分,也是高考数学的考点之一,该部分知识相对简单,但应用较为广泛,对今后解决其他几何问题起着重要的作用.综观2020年高考数学试题,发现其特点是重视对本专题必备基础知识的考查,难度稳定,题目常规,突出基础性.例1(全国Ⅰ卷·理11)已知⊙M:x2+y2-2x-2y-2=0,直线l:2x+y+2=0,P为l上的动点,过点P作⊙M的切线PA,PB,切点为A,B,当||PM·||AB最小时,直线AB的方程为().(A)2x-y-1=0(B)2x+y-1=0(C)2x-y+1=0(D)2x+y+1=0【评析】该题考查学生比较熟悉的圆上动点到定直线的最短距离问题,设计巧妙,在问题的处理过程中需要用到转化与化归思想,既考查直线与圆的位置关系,也考查两圆的公共弦所在直线的方程.学生在解决问题的过程中,既可以利用平面几何知识将||PM·||AB转化成关于||PM的函数,进而利用函数的性质求出最小值,也可以利用四边形的对角线相互垂直,以四边形的面积为桥梁,得出面积取最小值时的点P位置,最后由两圆的公共弦所在直线的方程得到结论.充分体现了以能力立意的命题思想.例2(全国Ⅰ卷·文6)已知圆x2+y2-6x=0,过点()1,2的直线被该圆所截得的弦的长度的最小值为().(A)1(B)2(C)3(D)4【评析】该题涉及最短弦长的问题,考查了直线恒过定点及圆弦长的最值等问题.需要学生根据直线恒过定点选择过这点和圆心垂直的弦,这样就可以求出答案.需要注意的是,在解决直线和圆的问题时,要充分利用数形结合思想.当然,该题也可以用函数思想直接求解,直接利用点到直线的距离公式,求出弦长,这样就将问题转化为函数最值问题,充分体现了试题设置的多元性和开放性.2.侧重转化与化归,突出能力立意数学学科的考试按照“考查基础知识的同时,注重考查能力”的原则,确定将知识、能力和素质融为一体,全面检测学生的数学素养.本专题对学生能力的考查重点是抽象概括能力、推理论证能力、运算求解能力、文字语言与符号语言及图形语言的相互转化能力,要求学生能够灵活应用.例3(北京卷·5)已知半径为1的圆经过点()3,4,则其圆心到原点的距离的最小值为().(A)4(B)5(C)6(D)7【评析】该题表面看起来平淡无奇,实则蕴含着命题者的巧妙设计,解决该题需要学生具备数形结合思想、代数与方程思想、转化与化归思想.学生可以直接在坐标系中作出图形,通过直观感受得出答案;也可以设出圆心,建立圆的方程,再利用方程的几何意义,确定圆上的点到定点距离的最小值,这样问题就迎刃而解了.该题能有效考查学生是否能够灵活使用数形结合思想、代数法和几何法来解决问题.例4(浙江卷·15)已知直线y=kx+b()k>0与圆x2+y2=1和圆()x-42+y2=1均相切,则k的值为,b的值为.【评析】该题考查直线与圆的位置关系.在解题时,学生首先想到的是利用圆的半径和圆心到直线的距离作为突破口,这样就需要通过求解二元二次方程组来求解直线的斜率和截距,进而求得直线方程.另外,由题目可知两圆半径相等,可以借助几何直观发现直线与x轴的交点,再利用点到直线的距离等于半径即可求解.同时,直线的斜率也可以通过构建直角三角形来求解.该题可以从多个角度,利用多种方法求解,体现了命题者的人文关怀.3.聚焦核心素养,注重理性思维例5(全国Ⅲ卷·理20)已知椭圆C:x 225+y2 m2=1()0<m<5的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且||BP=||BQ,BP⊥BQ,求△APQ的面积.【评析】该题考查直线和圆锥曲线的综合运用,解决第(2)小题,学生可以尝试作辅助线,然后从几何图形本身出发,利用三角形全等,求出点P和点Q的坐标,有效地考查了学生的平面几何功底.题目的设置也体现了平面解析几何中代数与几何的化归思想.该题还可以从代数角度出发来解决,因为已知||BP=||BQ,这就可以联想到圆,先运用三角函数和参数法,设出点Q的坐标,同理得出点P的坐标,再利用点P在椭圆上,求出点P的坐标.该题在命制时充分考虑到学生在数学关键能力上的个体差异,通过不同方法的选择和解题时间的长短来区分学生能力的差异,充分体现了让不同学生在数学上得到不同发展的教育目标.例6(江苏卷·14)在平面直角坐标系xOy中,已知Pèöø÷0,A,B是圆C:x2+æèöøy-122=36上的两个动点,满足PA=PB,则△PAB面积的最大值是.【评析】该题在2020年高考数学试题中可谓亮点突出,既体现了处理问题的不同思维模式,也体现了不同学生的认知差异,让所有学生都能从自身思维的最近发展区出发来作答.第一种思路,将面积表示成关于点到线距离的函数,再借助均值不等式或函数性质来求解,这种做法运算比较简单;第二种思路,由于对称性,将面积表示成关于角的函数,再利用导数求解最值;第三种思路,根据已知可以求出直线的斜率,设出直线方程,求出弦长及点到直线的距离,这样就构建了关于截距的函数,最后仍然要利用导数得出函数的增、减区间,进而求出函数的最值.4.坚持能力立意,突出选拔功能2020年高考直线和圆的方程内容从试题的立意、情境、设问三方面入手,确定能力考查目标,选择适宜的考查内容,设计恰当的设问方式,着重考查学生的运算求解能力、推理论证能力、阅读理解能力,以及应用意识和创新意识,以研究型、探究型、开放型、情境型问题形式呈现.例7(北京卷·20)已知椭圆C:x2a2+y2b2=1过点A()-2,-1,且a=2b.(1)求椭圆C的方程;(2)过点B()-4,0的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=-4于点P,Q.求||PB||BQ的值.【评析】该题考点涵盖直线方程、直线与直线的位置关系、直线与椭圆的位置关系,综合性很强,设计上充分考虑了各个层次的学生.第(1)小题是大部分学生都会解决的问题;第(2)小题是定值性问题,着重考查学生的运算求解能力及转化与化归思想,学生不难表示出两段线段的长度,但如果按题意直接处理,化简过程会很困难,因此应当先用特殊情况发现两点的纵坐标互为相反数,再利用解析思想,问题就迎刃而解了.该题具有较强的区分度,体现了高考对学生创新意识的考查,要求学生不仅能理解概念与定义,掌握定理与公式,更重要的是能够应用这些知识解决有一定深度和广度的问题.三、复习建议1.回归教材,夯实基础对基础知识的考查是高考的主体和核心,从历年的高考试题来看,高考试题源于教材而高于教材,如北京卷第5题、全国Ⅲ卷文科第8题等都是对教材上的习题稍作变形得到的,是比较常见的直线和圆的方程问题,考查了解析几何中非常基础且核心的动点的距离问题.但是从答题情况来看,学生对教材上的基础知识掌握不牢,不能灵活运用.因此,在日常教与学的过程中,师生一定要回归教材,重视对基础知识形成和发展过程的学习,重视对数学概念的理解、数学公式的变形及使用、数学定理与法则的推导,要善于挖掘教材例题和习题的价值.例如,点到直线的距离概念、直线与圆的位置关系判定、圆与圆的位置关系的推导过程等,高考中常考的最值问题等都源于这些知识的形成过程,复习时应该侧重思维,抓住其代数和几何的双重结构特点,优化解题方法.2.构建知识网络,完善认知结构在高三数学复习中,寻求知识网络的交会点,加大知识整合力度是提高复习效率的重要方法,也与高考试题的设计思路相吻合.历年高考对直线和圆的考查通常是围绕圆锥曲线来设计试题,因此在复习过程中,要以解析几何思想为主线,构建知识网络结构,进行专题突破,提高学生的解题能力.3.重视数学理解,提高运算技能解析几何题目总体来说运算量较大,对学生的运算素养要求较高.对学生而言,题目解法容易理解,但运算却不是很容易.因此,在直线和圆的方程的复习中也要把提高学生的运算求解能力作为主要的教学目标.事实上,运算是一种重要的数学素养,培养学生数学运算素养不能仅靠技能训练,不能脱离对数学概念、定理、法则的理解,以及对公式的灵活运用等,必须将数学理解和技能训练有机结合,通过解题来完成.如果教学中仅以运算和训练来代替数学理解,容易给学生造成记题型、套公式的错误认知.在解析几何复习阶段可以适当加强“一题多解”和“多题一解”训练,提升学生思维的灵活性,拓宽解题思路,促进学生对解析几何本质的理解,提高运算技能.4.落实教育本源,提升核心素养发展和落实学生的核心素养,提升学生的数学综合能力是当前教育改革的重要价值追求,也力求通过高考进行考查.高考对学生逻辑推理能力的考查,经常与数学运算进行结合,通过具体的运算推导或证明问题的结论,以及在运算中较多地糅合逻辑推理的成分,边推理边计算.也就是说学生解决问题的过程是综合运用各种素养的过程.因此,高考复习中要注重建立核心素养的整体意识,务必重视培养学生的数学学科核心素养.这就要求教师要引导学生理解数学概念,掌握数学的本质,不要就题论题,要关注高考试题与教材中例、习题的联系,并且要对高考试题进行适度引申和变式练习,关注数学思维方法的训练,使学生形成分析问题、解决问题的能力.另外,在复习中教师要创设有利于发展学生数学学科核心素养的教学情境,突出问题导向、突出内容主线、把握内容结构,让学生能够将生活实践和其他学科知识与数学问题结合在一起,在多种知识间建立联系,解决问题.四、模拟题欣赏1.已知圆C1:x2+y2-kx-y=0和圆C2:x2+y2-2ky-1=0的公共弦所在的直线恒过定点M,且点M 在直线mx+ny=2上,则m2+n2的最小值为().(A)15(B)(C)(D)45答案:C.2.如果圆()x-a2+()y-a2=1()a>0上总存在点到原点的距离为3,则实数a的取值范围为().(A)[]2,2(B)[]2,22(C )[]1,2(D )[]1,22答案:B.3.已知p :直线y =kx +2与圆O :x 2+y 2=1有交点;q :A ,B 为△ABC 的内角,若sin 2A =sin 2B ,则三角形为等腰三角形.若p 或q 为真,则实数k 的取值范围是().(A )-1<k <1(B )k ≤-1或k ≥1(C )-2<k <2(D )k ≥1答案:B.4.已知圆C 的标准方程是()x +22+y 2=4,直线l ′:ax +2y +1=0()a ∈R ,若直线l ′被圆C 所截得的弦长为,则直线l ′与直线l :x -y +2=0的位置关系为().(A )平行(B )垂直(C )平行或相交(D )相交答案:C.5.如图1,圆O :x 2+y 2=4,A ()2,0,B ()-2,0,D 为圆O 上任意一点,过点D 作圆O 的切线分别交直线x =2和x =-2于E ,F 两点,连接AF ,BE 交于点G ,若点G 形成的轨迹为曲线C.图1(1)记直线AF ,BE 的斜率分别为k 1,k 2,求k 1k 2的值,并求曲线C 的方程;(2)设直线l :y =x +m ()m ≠0与曲线C 有两个不同的交点P ,Q ,与直线x =2交于点S ,与直线y =-1交于点T ,求△OPQ 的面积与△OST 的面积的比值λ的最大值及取得最大值时m 的值.答案:(1)k 1k 2=-14,x 24+y 2=1()y ≠0;(2)m =-53时,λ取得最大值,最大值为.6.如图2,在平面直角坐标系xOy 中,已知椭圆C :x 24+y 22=1,A ,B 是椭圆上两点,且直线AB 的斜.图2(1)求证:OA 与OB 的斜率之积为定值;(2)设直线AB 交圆O :x 2+y 2=4于C ,D 两点,且||AB||CD =,求△COD 的面积.答案:(1)略;(2)S △COD =2.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M ].北京:人民教育出版社,2018.[2]陶兆龙.2019年高考“直线和圆的方程”专题命题分析[J ].中国数学教育(高中版),2019(7/8):120-125.。
高考直线与圆知识点
高考直线与圆知识点直线与圆是高中数学中重要的几何概念之一,也是高考中常考的知识点。
了解直线和圆的性质,能够灵活运用相关定理和公式,对解题和理解几何问题有很大帮助。
本文将介绍高考直线与圆的一些重要知识点,帮助同学们更好地掌握相关内容。
一、直线的斜率直线的斜率是指直线在平面直角坐标系中与$x$轴正方向夹角的正切值。
设直线L的斜率为$k$,则有斜率公式:\[k = \tan \theta = \dfrac{y_2 - y_1}{x_2 - x_1}\]其中$(x_1, y_1)$和$(x_2, y_2)$为直线上的两个点。
直线的斜率决定了其在平面直角坐标系中的倾斜程度。
二、直线的方程直线的方程可以由直线上的一点和其斜率求得。
直线的一般方程形式为$Ax + By + C = 0$,其中$A$、$B$、$C$为常数。
而直线的斜截式方程为$y = kx + b$,其中$k$为斜率,$b$为截距。
根据已知信息,可以通过这两种形式的方程来确定直线的位置和性质。
三、圆的方程圆的方程可以用不同的方式表示。
设圆的圆心坐标为$(a, b)$,半径为$r$,则有以下三种常见的圆的方程形式:标准方程、一般方程和截距方程。
1. 标准方程:$(x-a)^2 + (y-b)^2 = r^2$2. 一般方程:$x^2 + y^2 + Dx + Ey + F = 0$,其中$D$、$E$、$F$为常数。
3. 截距方程:$\left(\dfrac{x}{a}\right)^2 + \left(\dfrac{y}{b}\right)^2 = 1$,其中$a$、$b$分别是$x$轴和$y$轴上的截距。
四、直线与圆的位置关系1. 直线与圆的位置关系主要有以下三种情况:- 直线与圆相离,即直线不交圆。
- 直线与圆相切,即直线与圆只有一个交点。
- 直线与圆相交,即直线与圆有两个交点。
2. 判断直线和圆的位置关系的方法有很多,常用的是判别式法和距离关系法。
2020年高考数学学霸纠错笔记:直线与圆的方程
忽略90°倾斜角的特殊情形求经过A (m ,3),B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围.【错解】由斜率公式可得直线AB 的斜率k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线的倾斜角α的取值范围是0°<α<90°; ②当m <1时,k =1m -1<0,所以直线的倾斜角α的取值范围是90°<α<180°.【错因分析】当问题所给的对象不能进行统一研究时,就需要对研究对象进行分类讨论,然后对每一类分别研究,得出每一类结果,最终解决整个问题.本题的讨论分两个层次:第一个层次是讨论斜率是否存在;第二个层次是讨论斜率的正、负.也可以分为m =1,m >1,m <1三种情况进行讨论.【试题解析】当m =1时,直线斜率不存在,此时直线倾斜角α=90°. 当m ≠1时,由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0,所以直线倾斜角α的取值范围是90°<α<180°. 【参考答案】见试题解析.1.由斜率取值范围确定直线倾斜角的范围时要利用正切函数y =tan x 的图象,特别要注意倾斜角取值范围的限制.2.求解直线的倾斜角与斜率问题时要善于利用数形结合的思想,要注意直线的倾斜角由锐角变到直角及由直角变到钝角时,需依据正切函数y =tan x 的单调性求斜率k 的范围. 3.直线的倾斜角与斜率的关系(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率.比如直线1x =的倾斜角为2π,但斜率不存在.(2)直线的倾斜角α和斜率k 之间的对应关系:1.直线10x y -+=的倾斜角为 A .6π B .4π C .34πD .56π 【答案】B【解析】直线10x y -+=的斜率1k =,则tan 1k α==,所以直线10x y -+=的倾斜角=4απ.故选B.忽略斜率不存在的特殊情形已知直线l 1经过点A (3,a ),B (a −2,3),直线l 2经过点C (2,3),D (−1,a −2),若l 1⊥l 2,求a的值.【错解】由l 1⊥l 2⇔12·1k k =-,又k 1=3-a a -5,k 2=a -5-3,所以3-a a -5·a -5-3=−1,解得a =0. 【错因分析】只有在两条直线斜率都存在的情况下,才有l 1⊥l 2⇔12·1k k =-,还有一条直线斜率为0,另一条直线斜率不存在的情况也要考虑.【试题解析】由题意知l 2的斜率一定存在,则l 2的斜率可能为0,下面对a 进行讨论.当20k =时,a =5,此时k 1不存在,所以两直线垂直.当20k ≠时,由12·1k k =-,得a =0. 所以a 的值为0或5. 【参考答案】0或51.直线的斜率是否存在是解直线问题首先要考虑的问题,以防漏解. 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率tan k α=.(2)若P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =2121y y x x --.3.求直线方程的方法(1)直接法:根据已知条件,选择恰当形式的直线方程,直接求出方程中的系数,写出直线方程; (2)待定系数法:先根据已知条件恰当设出直线的方程,再根据已知条件构造关于待定系数的方程(组)解得系数,最后代入设出的直线方程.4.求直线方程时,如果没有特别要求,求出的直线方程应化为一般式Ax +By +C =0,且A ≥0.5.已知三点,,A B C ,若直线,AB AC 的斜率相同,则,,A B C 三点共线.因此三点共线问题可以转化为斜率相等问题,用于求证三点共线或由三点共线求参数.2.设直线l 的方程为(m 2−2m −3)x +(2m 2+m −1)y =2m −6,根据下列条件分别求m 的值. (1)在x 轴上的截距为1; (2)斜率为1;(3)经过定点P (−1,−1).【答案】(1)1;(2)43;(3)53或−2. 【解析】(1)∵直线过点P ′(1,0), ∴m 2-2m -3=2m -6.解得m =3或m =1.又∵m =3时,直线l 的方程为y =0,不符合题意, ∴m =1.(2)由斜率为1,得{−m 2−2m−32m +m−1=12m 2+m −1≠0解得m =43.(3)直线过定点P (-1,-1),则- (m 2-2m -3)-(2m 2+m -1)=2m -6, 解得m =53或m =-2.当用待定系数法确定直线的斜率时,一定要对斜率是否存在进行讨论,否则容易犯解析不全的错误.忽视两条直线平行的条件当a 为何值时,直线1l :y =−x +2a 与直线2l :()222y a x =-+平行?【错解】由题意,得22a -=−1,∴a =±1.【错因分析】该解法只注意到两直线平行时斜率相等,而忽视了斜率相等的两直线还可能重合.【试题解析】∵12l l ∥,∴22a -=−1且2a ≠2,解得a =−1.【方法点睛】要解决两直线平行的问题,一定要注意检验,看看两直线是否重合. 【参考答案】a =−1.1.两直线的位置关系问题中注意重合与平行的区别.2.由两直线平行或垂直求参数的值:在解这类问题时,一定要“前思后想”.“前思”就是在解题前考虑斜率不存在的可能性,是否需要分情况讨论;“后想”就是在解题后,检验答案的正确性,看是否出现增解或漏解. 3.两条直线的位置关系(1)当两条直线平行时,不要忘记它们的斜率不存在时的情况;(2)当两条直线垂直时,不要忘记一条直线的斜率不存在、另一条直线的斜率为零的情况.3.已知直线40x ay ++=与直线430ax y +-=互相平行,则实数a 的值为 A .2± B .2C .2-D .0【答案】A 【解析】直线40x ay ++=与直线430ax y +-=互相平行,;∴410a a ⨯-⋅=,即240a -=,解得:2a =±.当2a =时,直线分别为240x y ++=和2430x y +-=,平行,满足条件 当2a =-时,直线分别为240x y -+=和2430x y -+-=,平行,满足条件; 所以2a =±; 故选A.【名师点睛】本题考查两直线平行的性质,解题时注意平行不包括重合的情况,属于基础题.忽视截距为0的情形已知直线l 过点P (2,−1),且在两坐标轴上的截距相等,求直线l 的方程.【错解】由题意,设直线l 的方程为x a +y a=1, ∵直线l 过点(2,−1),∴2a +-1a=1,∴a =1,则直线l 的方程为x +y −1=0. 【错因分析】错解忽略了过原点时的情况. 【试题解析】设直线l 在两坐标轴上的截距为a . 若a =0,则直线l 过原点,其方程为x +2y =0; 若a ≠0,则直线l 的方程可设为x a +y a=1, ∵直线l 过点(2,−1),∴2a +-1a=1,∴a =1,则直线l 的方程为x +y −1=0.综上所述,直线l 的方程为20x y +=或x +y −1=0.【思路分析】截距式方程中a ≠0,b ≠0,即直线与坐标轴垂直或直线过原点时不能用截距式方程.注意在两坐标轴上存在截距的直线不一定有截距式方程,此时在x ,y 轴上的截距均为0,即过原点. 【参考答案】20x y +=或x +y −1=0.1.在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.2.在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点,常见的与截距问题有关的易错点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,应先考虑截距为0的情形,注意分类讨论思想的运用.4.经过点(1,3)P ,并且在两坐标轴上的截距相等的直线有 A .0条 B .1条C .2条D .3条【答案】C【解析】若直线过原点,则过()1,3P 的直线方程为3y x =,满足题意. 若直线不过原点,设直线为x y a +=,代入()1,3P ,解得:4a =,∴直线方程为:40x y +-=∴满足题意的直线有2条故选C.【名师点睛】本题考查在坐标轴截距相等的直线的求解,易错点是忽略直线过原点的情况.含参数的两条直线相交因考虑问题不全面而致误若三条直线123:10,:10,:0l ax y l x ay l x y a ++=++=++=共有三个不同的交点,则a 的取值范围为 A .1a ≠± B .a ≠1且a ≠−2 C .a ≠−2D .1a ≠±且a ≠−2【错解】选A 或选B【错因分析】在解题过程中,常错选B ,原因在于考虑问题不全面,只考虑三条直线相交于一点而忽视了任意两条平行或重合的情况.错选A 时,只考虑三条直线斜率不相等的条件而忽视了三条直线相交于一点的情况.【试题解析】因为三条直线有三个不同的交点,需三条直线两两相交且不共点,由条件不易直接求参数,可考虑从反面着手求解.①若三条直线交于一点,由⎩⎪⎨⎪⎧x +ay +1=0,x +y +a =0,解得⎩⎪⎨⎪⎧x =-a -1,y =1,将l 2,l 3的交点()1,1a --代入l 1的方程解得a =1或a =−2. ②若12l l ∥,则由a ×a −1×1=0,解得a =±1, 当a =1时,1l 与2l 重合.③若2l ∥3l ,则由1×1−a ×1=0,解得a =1, 当a =1,2l 与3l 重合.④若1l ∥3l ,则由a ×1−1×1=0,解得a =1, 当a =1时,1l 与3l 重合.综上,当a =1时,三条直线重合;当a =−1时,1l ∥2l ;当a =−2时,三条直线交于一点. 所以要使三条直线共有三个交点,需1a ≠±且a ≠−2. 【参考答案】D1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程组成的方程组,以方程组的解为点的坐标,即交点的坐标. 2.求过两直线交点的直线方程的求法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.5.设()()2,3,1,2A B -,若直线10ax y +-=与线段AB 相交,则a 的取值范围是 A .[]1,1- B .()1,1-C .(][),11,-∞-+∞D .()(),11,-∞-⋃+∞【答案】C【解析】由题意,直线10ax y +-=,即1y ax =-+,所以直线经过定点()0,1P , 又由斜率公式,可得31120PA k -==---,21110PB k -==-.∵直线10ax y +-=与线段AB 相交,∴1a -≥或1a -≤-,则a 的取值范围是(][),11,-∞-+∞.故选C .【名师点睛】本题考查了斜率计算公式及其应用,考查了推理能力与计算能力,属于基础题.忽视圆的方程需要满足的条件致错已知点O (0,0)在圆x 2+y 2+kx +2ky +2k 2+k −1=0外,求k 的取值范围.1.求圆的方程必须具备三个独立的条件.从圆的标准方程来看,关键在于求出圆心坐标和半径,从圆的一般方程来讲,能知道圆上的三个点即可求出圆的方程,因此,待定系数法是求圆的方程常用的方法. 2.用几何法求圆的方程,要充分运用圆的几何性质,如“圆心在圆的任一条弦的垂直平分线上”,“半径、弦心距、弦长的一半构成直角三角形”. 3.与圆有关的对称问题(1)圆的轴对称性:圆关于直径所在的直线对称.(2)圆关于点对称:①求已知圆关于某点对称的圆,只需确定所求圆的圆心位置; ②两圆关于点对称,则此点为两圆圆心连线的中点. (3)圆关于直线对称:①求已知圆关于某条直线对称的圆,只需确定所求圆的圆心位置; ②两圆关于直线对称,则此直线为两圆圆心连线的垂直平分线.4.对于圆中的最值问题,一般是根据条件列出关于所求目标的式子——函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法等,应用不等式的性质求出最值.特别地,要利用圆的几何性质,根据式子的几何意义求解,这正是数形结合思想的应用.6.若直线2y kx k =+与圆2240x y mx +++=至少有一个交点,则实数m 的取值范围为A .[0,+∞)B .[4,+∞)C .(4,+∞)D .[2,4]【答案】C【解析】由2y kx k =+可得(2)y k x =+,故直线2y kx k =+恒过定点(2,0)-,因此可得点(2,0)-必在圆内或圆上,故2220240)4(m m -+-+≤⇒≥.由方程表示圆的条件可得24404m m -⨯>⇒<-或4m >.综上可知4m >.故实数m 的取值范围为(4,+∞).故选C .【名师点睛】本题主要考查了直线过定点及直线与圆的位置关系,点与圆的位置关系,属于中档题.利用数形结合的解题误区方程1-x 2=kx +2有唯一解,则实数k 的取值范围是A .k =± 3B .k ∈(−2,2)C .k <−2或k >2D .k <−2或k >2或k =±3 【错解】选A 或选C【错因分析】因忽视y =1-x 2中的y ≥0而认为直线与圆相切而错选A .虽然注意到图形表示半圆但漏掉直线与圆相切的情形而错选C .【试题解析】由题意知,直线y =kx +2与半圆x 2+y 2=1(y ≥0)只有一个交点.结合图形易得k <−2或k >2或k =± 3.【参考答案】D1.判断直线与圆的位置关系时,通常用几何法,其步骤是:(1)明确圆心C 的坐标(a ,b )和半径长r ,将直线方程化为一般式; (2)利用点到直线的距离公式求出圆心到直线的距离d ; (3)比较d 与r 的大小,写出结论.判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法. 2.涉及直线被圆截得的弦长问题,一般有两种求解方法:一是利用半径长r 、弦心距d 、弦长l 的一半构成直角三角形,结合勾股定理222()2l d r +=求解;二是若斜率为k 的直线l 与圆C 交于1122,,()()A x y B x y ,两点,则12|||AB x x =-.7.若直线y =x +b 与曲线y =4-x 2有公共点,试求b 的取值范围. 【答案】−2≤b ≤2 2【解析】如图所示,在坐标系内作出曲线y =4-x 2(半圆),直线l 1:y =x −2,直线l 2:y =x +2 2.当直线l :y =x +b 夹在l 1与l 2之间(包含l 1,l 2)时,l 与曲线y =4-x 2有公共点,不理解两圆相切已知圆222210,x y x y ++++=圆226890x y x y +-++=,判断两圆的位置关系.【错解】由⎩⎪⎨⎪⎧x 2+y 2+2x +2y +1=0,x 2+y 2-6x +8y +9=0,得4x −3y −4=0,即y =4x -43.将其代入方程x 2+y 2+2x +2y +1=0,得22(44)8821093x x x x --++++=, 即9x 2+16x 2+16−32x +18x +3(8x −8)+9=0,25x 2+10x +1=0, 因为Δ=100−4×25=0.所以两圆只有一个公共点,两圆相切.【错因分析】将两圆方程联立,Δ=0说明两圆只有一个公共点,此时两圆有可能外切,也有可能内切. 【试题解析】把两圆方程分别配方,化为标准方程为:(x +1)2+(y +1)2=1,(x −3)2+(y +4)2=16, 所以C 1(−1,−1),C 2(3,−4),r 1=1,r 2=4.∵圆心距12|5|C C ==,r 1+r 2=1+4=5, ∴|C 1C 2|=r 1+r 2,故两圆外切. 【参考答案】外切.1.判断圆与圆的位置关系时,一般用几何法,其步骤是:(1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求1212||r r r r +-,; (3)比较1212,,||d r r r r +-的大小,写出结论. 2.求两圆公共弦长一般有两种方法:一是联立两圆的方程求出交点坐标,再利用两点间的距离公式求解; 二是求出两圆公共弦所在直线的方程,转化为直线被圆截得的弦长问题.8.已知两圆221x y +=和224)()25x y a ++-=(相切,求实数a 的值.【答案】±0【解析】题中所给两圆的圆心坐标分别为()()0,0,4,a -,半径分别为1,5,51=+,解得:a =±51=-,解得:0a =,综上可得,a 的值为±0.【名师点睛】判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法,两圆相切注意讨论内切外切两种情况.两圆外切和内切统称为相切,d =|r 1−r 2|⇔内切;d =r 1+r 2⇔外切.本题容易出现的错误是:只考虑外切的情况而把内切情况漏掉了.求切线时考虑不全致错过点P (2,4)引圆()()22111x y --=+的切线,则切线方程为__________.【错解】设切线方程为y −4=k (x −2),即kx −y +4−2k =0,因为直线与圆相切,所以圆心到直线的距离等于半径,即d1==,解得k =43,【错因分析】本题容易忽略切线斜率不存在的情况,从而导致漏解. 【试题解析】显然点P (2,4)不在圆上,当切线的斜率存在时,设切线方程为y −4=k (x −2),即420kx y k -+-=, 因为直线与圆相切,所以圆心到直线的距离等于半径, 即d1==,解得k =43,故所求切线方程为43x −y +4−2×43=0,即4x −3y +4=0; 当切线的斜率不存在时,切线方程为2x =,此时圆心到直线的距离等于半径,符合题意. 综上,切线方程为2x =或4x −3y +4=0. 【参考答案】2x =或4x −3y +4=0.求解此类问题时,应先判断点是在圆上还是在圆外,在圆上时切线方程唯一,在圆外时切线方程必有两条.1.求过圆上的一点00(,)x y 的切线方程:先求切点与圆心连线的斜率k ,若k 不存在,则由图形可写出切线方程为0y y =;若0k =,则由图形可写出切线方程为0x x =;若k 存在且k ≠0,则由垂直关系知切线的斜率为1k-,由点斜式方程可求出切线方程.2.求过圆外一点00(,)x y 的圆的切线方程: (1)几何方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径长,即可得出切线方程. (2)代数方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.3.在求过一定点的圆的切线方程时,应首先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外,切线有两条;若点在圆内,则切线不存在.9.已知圆:22(1)2x y +-=,则过点(1,2)作该圆的切线方程为A .440x y +-=B .250x y +-=C .2x =D .30x y +-=【答案】D【解析】根据题意,设圆:()2212x y +-=的圆心为M ,且M (0,1),点N (1,2), 有()221212+-=,则点N 在圆上,则过点N 的切线有且只有1条; 则21110MN k -==-, 则过点(1,2)作该圆的切线的斜率1k =-,切线的方程为2(1)y x -=--, 变形可得30x y +-=, 故选D .一、直线与方程 1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0︒.(2)范围:直线l 倾斜角的范围是[0,180)︒︒. 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率tan k α=.(2)若P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则直线l 的斜率k =2121y y x x --.3.直线方程的五种形式1.常见的直线系方程(1)过定点P (x 0,y 0)的直线系方程:()()220000()A x x B y y C A B -+-+=+≠还可以表示为()00y y k x x -=-,斜率不存在时可设为x =x 0.(2)平行于直线Ax +By +C =0的直线系方程:()110Ax By C C C ++=≠. (3)垂直于直线Ax +By +C =0的直线系方程:10Bx Ay C -+=.(4)过两条已知直线1112220,0A x B y C A x B y C ++=++=交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中不包括直线2220A x B y C ++=).2.求解含有参数的直线过定点问题,有两种方法:(1)任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)分项整理,含参数的并为一项,不含参数的并为一项,整理成等号右边为零的形式,然后令含参数的项和不含参数的项分别为零,解方程组所得的解即为所求定点. 二、直线的位置关系 1.两条直线的位置关系(1)当两条直线平行时,不要忘记它们的斜率不存在时的情况;(2)当两条直线垂直时,不要忘记一条直线的斜率不存在、另一条直线的斜率为零的情况. 2.两条直线的交点对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,1l 与2l 的交点坐标就是方程组1112220A xB yC A x B y C ++=⎧⎨++=⎩的解.(1)方程组有唯一解⇔1l 与2l 相交,交点坐标就是方程组的解; (2)方程组无解⇔1l ∥2l ;(3)方程组有无数解⇔1l 与2l 重合. 3.距离问题(1)平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离|P 1P 2 (2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(C 1≠C 2)间的距离d .1.求两点间的距离,关键是确定两点的坐标,然后代入公式即可,一般用来判断三角形的形状等. 2.解决点到直线的距离有关的问题,应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.3.求两条平行线间的距离,要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题.4.对称问题(1)中心对称:点(,)B x y 为点11(,)A x y 与22(,)C x y 的中点,中点坐标公式为121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩.(2)轴对称:若点P 关于直线l 的对称点为P',则PP'l P P'l ⊥⎧⎨⎩直线与的中点在上.解决对称问题要抓住以下两点:(1)已知点与对称点的连线与对称轴垂直;(2)以已知点和对称点为端点的线段的中点在对称轴上. 三、圆的方程1.圆的标准方程与一般方程2.点与圆的位置关系(1)圆的三个性质①圆心在过切点且垂直于切线的直线上; ②圆心在任一弦的中垂线上;③两圆相切时,切点与两圆心三点共线. (2)两个圆系方程具有某些共同性质的圆的集合称为圆系,它们的方程叫圆系方程.①同心圆系方程:2220()()()x a y b r r =->+-,其中a ,b 为定值,r 是参数;②半径相等的圆系方程:2220()()()x a y b r r -->+=,其中r 为定值,a ,b 为参数.四、直线与圆的位置关系 1.直线与圆的三种位置关系 (1)直线与圆相离,没有公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相交,有两个公共点. 2.直线与圆的位置关系的判断方法3.圆与圆的位置关系4.圆与圆位置关系的判断圆与圆的位置关系的判断方法有两种. (1)几何法:由两圆的圆心距d 与半径长R ,r 的关系来判断(如下图,其中R r >).(2)代数法:设圆221111:0C x y D x E y F ++++= ①,圆222222:0C x y D x E y F ++++= ②,联立①②,如果该方程组没有实数解,那么两圆相离;如果该方程组有两组相同的实数解,那么两圆相切;如果该方程组有两组不同的实数解,那么两圆相交.设圆221111:0C x y D x E y F ++++= ①,圆222222:0C x y D x E y F ++++= ②,若两圆相交,则有一条公共弦,由①−②,得121212()()0D D x E E y F F -+-+-=③. 方程③表示圆C 1与圆C 2的公共弦所在直线的方程.1.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是 A .[]26,B .[]48,C.D.⎡⎣【答案】A【解析】直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则AB =.点P 在圆22(2)2x y -+=上,∴圆心为(2,0),则圆心到直线的距离1d ==.故点P 到直线20x y ++=的距离2d的范围为,则[]2212,62ABP S AB d ==∈△. 故答案为A.【名师点睛】本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.先求出A ,B 两点坐标得到AB ,再计算圆心到直线的距离,得到点P 到直线距离的范围,由面积公式计算即可.2.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=A .43-B .34-CD .2【答案】A【解析】圆的方程可化为22(1)(4)4x y -+-=,所以圆心坐标为(1,4),由点到直线的距离公式得:1d ==,解得43a =-,故选A .3.不论m 为何值,直线()()21250m x m y -+++=恒过定点 A .()1,2-- B .()1,2-C .()1,2-D .()1,2【答案】B 【解析】()()21250m x m y -+++=恒过定点,∴()()2250x y m x y ++-++=恒过定点,由20,250,x y x y +=⎧⎨-++=⎩解得1,2,x y =⎧⎨=-⎩即直线()()21250m x m y -+++=恒过定点()1,2-. 4.已知直线1:20l mx y +-=与直线()2:240l m x my -+-=垂直,则m = A .0 B .1C .1-或0D .0或1【答案】D【解析】直线1:20l mx y +-=与直线()2:240l m x my -+-=垂直,()20m m m ∴-+=,解得0m =或1. 故选D.【名师点睛】对于直线1l :1110A x B y C ++=和直线2l :2220A x B y C ++=,122112211200//A B A B AC A C l l -=-≠⇔①,; 12120A A B B +=②12l l ⇔⊥.5.圆22(2)(1)1x y -+-=上的一点到直线:10l x y -+=的最大距离为A 1B .2CD 1【答案】D【解析】圆心(2,1)到直线:10l x y -+=的距离是1d ===>,所以圆上一点到直线:10l x y -+=1,故选D.【名师点睛】本题主要考查圆上一点到直线距离最值的求法,以及点到直线的距离公式. 6.已知圆()()221:24O x m y -+-=与圆()()222:229O x y m +++=有3条公切线,则m = A .1-B .1或175-C .175-D .1-或175【答案】B【解析】由题意,圆1O 与圆2O 外切,所以12235O O =+=,5=,解得1m =或175m =-. 7.已知点A ,B ,C 在圆221x y +=上运动,且90ABC ∠=,若点P 的坐标为(2,0),则PA PB PC++的最大值为 A .9 B .8C .7D .6【答案】C【解析】AC 为Rt ABC △的斜边,则AC 为圆221x y +=的一条直径,故AC 必经过原点,则2PA PC PO +=,即2PA PB PC PO PB ++=+,设点(),B x y , 所以()()()222,02,6,PO PB x y x y +=-+-=-, 所以,(PA PB PC x ++=()6,0M 到圆上的点B 的距离, 所以,(617PA PB PC x OM r ++=+=+=,故选C.【名师点睛】本题考查向量模的最值问题,在解决这类问题时,可设动点的坐标为(),x y ,借助向量的坐标运算,将所求模转化为两点的距离,然后利用数形结合思想求解,考查运算求解能力,属于难题.8.已知直线10():ay a l x +-=∈R 是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则=ABA .2B .C .D .6【答案】D【解析】圆C 的标准方程为()()22214x y -+-=,圆心为()2,1C ,半径长为2r,易知,圆心C 在直线l 上,则210a +-=,得1a =-,()4,1A ∴--,AC ∴==因此,6AB ===.故选D.【名师点睛】本题考查直线与圆的位置关系,考查切线长的计算,在求解与圆有关的问题中,应将圆的方程表示成标准形式,确定圆心坐标和半径长,在计算切线长时,一般利用几何法,即勾股定理来进行计算,以点到圆心的距离为斜边、半径长和切线长为两直角边来计算,考查计算能力,属于中等题. 9.已知点()1,Q m -,P 是圆C :()()22244x a y a -+-+=上任意一点,若线段PQ 的中点M 的轨迹方程为()2211x y +-=,则m 的值为 A .1 B .2 C .3D .4【答案】D【解析】设(),P x y ,PQ 的中点为()00,M x y因为点()00,M x y 在圆()2211x y +-=上,所以2211122x y m -+⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭, 即()()22124x y m -++-=. 将此方程与方程()()22244x a y a -+-+=比较可得()1242a a m =⎧⎪⎨-=--⎪⎩,解得4m =.故选D. 10.过直线:1l y x =+上的点P 作圆C :()()22162x y -+-=的两条切线1l 、2l ,当直线1l 、2l 关于直线:1l y x =+对称时,PC =A .3B.C.1+D .2【答案】B【解析】由题设可知当CP l ⊥时,两条切线12,l l 关于直线:1l y x =+对称,此时CP 即为点()1,6C 到直线:1l y x =+的距离,即d === B. 【名师点睛】解答本题的难点是如何理解两条切线12,l l 关于直线:1l y x =+对称,从而将问题转化为CP l ⊥,最终求得点()1,6C 到直线:1l y x =+的距离,即d ===,从而使得问题获解.11.已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m=___________,r =___________.【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.12.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】x 2+y 2−2x =0【解析】设圆的方程为x 2+y 2+Dx +Ey +F =0,圆经过三点(0,0),(1,1),(2,0),则: {F =01+1+D +E +F =04+0+2D +F =0 ,解得:{D =−2E =0F =0 ,则圆的方程为x 2+y 2−2x =0. 【名师点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.13.直线y =x +1与圆x 2+y 2+2y −3=0交于A , B 两点,则|AB |=________.【答案】2√2【解析】根据题意,圆的方程可化为x 2+(y +1)2=4, 所以圆的圆心为(0,−1),且半径是2, 根据点到直线的距离公式可以求得d =√12+(−1)2=√2,结合圆中的特殊三角形,可知|AB |=2√4−2=2√2,故答案为2√2.【名师点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.14.若直线l 1:x −2y +m =0(m >0)与直线l 2:x +ny −3=0之间的距离是√5,则m +n =_________.【答案】0【解析】∵直线l 1:x −2y +m =0(m >0)与直线l 2:x +ny −3=0之间的距离是√5, ∴{n =−2√5=√5 ,解得n =−2,m =2(负值舍去)则m +n =2−2=0. 故答案为0.15.在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆22:50O x y +=上,若20PA PB ⋅≤,则点P的横坐标的取值范围是 . 【答案】[-【解析】设(,)P x y ,由20PA PB ⋅≤,易得250x y -+≤,由2225050x y x y -+=⎧⎨+=⎩,可得55x y =-⎧⎨=-⎩或17x y =⎧⎨=⎩,令(5,5),(1,7)C D --,则由250x y -+≤得P 点在圆左边弧CD上,结合限制条件x-≤可得点P 横坐标的取值范围为[-.【名师点睛】对于线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数的最值或取值范围.16.若双曲线22:154y x C -=的渐近线与圆()()22230x y r r -+=>相切,则r =_________.【解析】双曲线C 的渐近线方程为y x =20y ±=, 圆()2223x y r -+=,圆心坐标为()3,0,半径为r ,由于双曲线C的渐近线与圆相切,则r ==。
2020年高考数学(理)之纠错笔记专题09 直线与圆的方程
2020年高考数学(理)之纠错笔记专题09 直线与圆的方程易错点1 忽略90°倾斜角的特殊情形求经过A (m ,3),B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围.【错解】由斜率公式可得直线AB 的斜率k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线的倾斜角α的取值范围是0°<α<90°;②当m <1时,k =1m -1<0,所以直线的倾斜角α的取值范围是90°<α<180°.【错因分析】当问题所给的对象不能进行统一研究时,就需要对研究对象进行分类讨论,然后对每一类分别研究,得出每一类结果,最终解决整个问题.本题的讨论分两个层次:第一个层次是讨论斜率是否存在;第二个层次是讨论斜率的正、负.也可以分为m =1,m >1,m <1三种情况进行讨论.【试题解析】当m =1时,直线斜率不存在,此时直线倾斜角α=90°. 当m ≠1时,由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线倾斜角α的取值范围是0°<α<90°.②当m <1时,k =1m -1<0,所以直线倾斜角α的取值范围是90°<α<180°. 【参考答案】见试题解析.1.由斜率取值范围确定直线倾斜角的范围时要利用正切函数y =tan x 的图象,特别要注意倾斜角取值范围的限制.2.求解直线的倾斜角与斜率问题时要善于利用数形结合的思想,要注意直线的倾斜角由锐角变到直角及由直角变到钝角时,需依据正切函数y =tan x 的单调性求斜率k 的范围. 3.直线的倾斜角与斜率的关系(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率.比如直线1x =的倾斜角为2π,但斜率不存在.(2)直线的倾斜角α和斜率k 之间的对应关系:1.直线10x y -+=的倾斜角为A .6π B .4π C .34π D .56π 【答案】B【解析】直线10x y -+=的斜率1k =,则tan 1k α==,所以直线10x y -+=的倾斜角=4απ.故选B.易错点2 忽略斜率不存在的特殊情形已知直线l 1经过点A (3,a ),B (a −2,3),直线l 2经过点C (2,3),D (−1,a −2),若l 1⊥l 2,求a 的值.【错解】由l 1⊥l 2⇔12·1k k =-,又k 1=3-a a -5,k 2=a -5-3,所以3-a a -5·a -5-3=−1,解得a =0.【错因分析】只有在两条直线斜率都存在的情况下,才有l 1⊥l 2⇔12·1k k =-,还有一条直线斜率为0,另一条直线斜率不存在的情况也要考虑.【试题解析】由题意知l 2的斜率一定存在,则l 2的斜率可能为0,下面对a 进行讨论.当20k =时,a =5,此时k 1不存在,所以两直线垂直.当20k ≠时,由12·1k k =-,得a =0.所以a 的值为0或5. 【参考答案】0或51.直线的斜率是否存在是解直线问题首先要考虑的问题,以防漏解. 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率tan k α=.(2)若P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =2121y y x x --.3.求直线方程的方法(1)直接法:根据已知条件,选择恰当形式的直线方程,直接求出方程中的系数,写出直线方程; (2)待定系数法:先根据已知条件恰当设出直线的方程,再根据已知条件构造关于待定系数的方程(组)解得系数,最后代入设出的直线方程.4.求直线方程时,如果没有特别要求,求出的直线方程应化为一般式Ax +By +C =0,且A ≥0.5.已知三点,,A B C ,若直线,AB AC 的斜率相同,则,,A B C 三点共线.因此三点共线问题可以转化为斜率相等问题,用于求证三点共线或由三点共线求参数.2.设直线l 的方程为(m 2−2m −3)x +(2m 2+m −1)y =2m −6,根据下列条件分别求m 的值. (1)在x 轴上的截距为1; (2)斜率为1;(3)经过定点P (−1,−1). 【答案】(1)1;(2)43;(3)53或−2. 【解析】(1)∵直线过点P ′(1,0),∴m 2-2m -3=2m -6.解得m =3或m =1.又∵m =3时,直线l 的方程为y =0,不符合题意, ∴m =1.(2)由斜率为1,得{−m 2−2m−32m 2+m−1=12m 2+m −1≠0解得m =43.(3)直线过定点P (-1,-1),则- (m 2-2m -3)-(2m 2+m -1)=2m -6, 解得m =53或m =-2.当用待定系数法确定直线的斜率时,一定要对斜率是否存在进行讨论,否则容易犯解析不全的错误.易错点3 忽视两条直线平行的条件当a 为何值时,直线1l :y =−x +2a 与直线2l :()222y a x =-+平行?【错解】由题意,得22a -=−1,∴a =±1.【错因分析】该解法只注意到两直线平行时斜率相等,而忽视了斜率相等的两直线还可能重合. 【试题解析】∵12l l ∥,∴22a -=−1且2a ≠2,解得a =−1.【方法点睛】要解决两直线平行的问题,一定要注意检验,看看两直线是否重合. 【参考答案】a =−1.1.两直线的位置关系问题中注意重合与平行的区别.2.由两直线平行或垂直求参数的值:在解这类问题时,一定要“前思后想”.“前思”就是在解题前考虑斜率不存在的可能性,是否需要分情况讨论;“后想”就是在解题后,检验答案的正确性,看是否出现增解或漏解. 3.两条直线的位置关系3.已知直线40x ay++=与直线430ax y+-=互相平行,则实数a的值为A.2±B.2C.2-D.0【答案】A【解析】Q直线40x ay++=与直线430ax y+-=互相平行,;∴410a a⨯-⋅=,即240a-=,解得:2a=±.当2a=时,直线分别为240x y++=和2430x y+-=,平行,满足条件当2a=-时,直线分别为240x y-+=和2430x y-+-=,平行,满足条件;所以2a=±;故选A.【名师点睛】本题考查两直线平行的性质,解题时注意平行不包括重合的情况,属于基础题.易错点4 忽视截距为0的情形已知直线l 过点P (2,−1),且在两坐标轴上的截距相等,求直线l 的方程.【错解】由题意,设直线l 的方程为x a +ya =1,∵直线l 过点(2,−1),∴2a +-1a =1,∴a =1,则直线l 的方程为x +y −1=0. 【错因分析】错解忽略了过原点时的情况. 【试题解析】设直线l 在两坐标轴上的截距为a . 若a =0,则直线l 过原点,其方程为x +2y =0; 若a ≠0,则直线l 的方程可设为x a +ya =1,∵直线l 过点(2,−1),∴2a +-1a =1,∴a =1,则直线l 的方程为x +y −1=0.综上所述,直线l 的方程为20x y +=或x +y −1=0.【思路分析】截距式方程中a ≠0,b ≠0,即直线与坐标轴垂直或直线过原点时不能用截距式方程.注意在两坐标轴上存在截距的直线不一定有截距式方程,此时在x ,y 轴上的截距均为0,即过原点. 【参考答案】20x y +=或x +y −1=0.1.在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.2.在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.截距为一个实数,既可以为正数,也可以为负数,还可以为0,这是解题时容易忽略的一点,常见的与截距问题有关的易错点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,应先考虑截距为0的情形,注意分类讨论思想的运用.4.经过点(1,3)P ,并且在两坐标轴上的截距相等的直线有 A .0条 B .1条C .2条D .3条【答案】C【解析】若直线过原点,则过()1,3P 的直线方程为3y x =,满足题意. 若直线不过原点,设直线为x y a +=,代入()1,3P ,解得:4a =,∴直线方程为:40x y +-=∴满足题意的直线有2条故选C.【名师点睛】本题考查在坐标轴截距相等的直线的求解,易错点是忽略直线过原点的情况.易错点5 含参数的两条直线相交因考虑问题不全面而致误若三条直线123:10,:10,:0l ax y l x ay l x y a ++=++=++=共有三个不同的交点,则a 的取值范围为 A .1a ≠± B .a ≠1且a ≠−2 C .a ≠−2D .1a ≠±且a ≠−2【错解】选A 或选B【错因分析】在解题过程中,常错选B ,原因在于考虑问题不全面,只考虑三条直线相交于一点而忽视了任意两条平行或重合的情况.错选A 时,只考虑三条直线斜率不相等的条件而忽视了三条直线相交于一点的情况.【试题解析】因为三条直线有三个不同的交点,需三条直线两两相交且不共点,由条件不易直接求参数,可考虑从反面着手求解.①若三条直线交于一点,由⎩⎪⎨⎪⎧ x +ay +1=0,x +y +a =0,解得⎩⎪⎨⎪⎧x =-a -1,y =1,将l 2,l 3的交点()1,1a --代入l 1的方程解得a =1或a =−2. ②若12l l ∥,则由a ×a −1×1=0,解得a =±1, 当a =1时,1l 与2l 重合.③若2l ∥3l ,则由1×1−a ×1=0,解得a =1, 当a =1,2l 与3l 重合.④若1l ∥3l ,则由a ×1−1×1=0,解得a =1, 当a =1时,1l 与3l 重合.综上,当a =1时,三条直线重合;当a =−1时,1l ∥2l ;当a =−2时,三条直线交于一点. 所以要使三条直线共有三个交点,需1a ≠±且a ≠−2. 【参考答案】D1.两直线交点的求法求两直线的交点坐标,就是解由两直线方程组成的方程组,以方程组的解为点的坐标,即交点的坐标. 2.求过两直线交点的直线方程的求法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.也可借助直线系方程,利用待定系数法求出直线方程,这样能简化解题过程.5.设()()2,3,1,2A B -,若直线10ax y +-=与线段AB 相交,则a 的取值范围是 A .[]1,1-B .()1,1-C .(][),11,-∞-+∞UD .()(),11,-∞-⋃+∞【答案】C【解析】由题意,直线10ax y +-=,即1y ax =-+,所以直线经过定点()0,1P , 又由斜率公式,可得31120PA k -==---,21110PB k -==-.∵直线10ax y +-=与线段AB 相交,∴1a -≥或1a -≤-,则a 的取值范围是(][),11,-∞-+∞U . 故选C .【名师点睛】本题考查了斜率计算公式及其应用,考查了推理能力与计算能力,属于基础题.易错点6 忽视圆的方程需要满足的条件致错已知点O (0,0)在圆x 2+y 2+kx +2ky +2k 2+k −1=0外,求k 的取值范围.1.求圆的方程必须具备三个独立的条件.从圆的标准方程来看,关键在于求出圆心坐标和半径,从圆的一般方程来讲,能知道圆上的三个点即可求出圆的方程,因此,待定系数法是求圆的方程常用的方法. 2.用几何法求圆的方程,要充分运用圆的几何性质,如“圆心在圆的任一条弦的垂直平分线上”,“半径、弦心距、弦长的一半构成直角三角形”.3.与圆有关的对称问题(1)圆的轴对称性:圆关于直径所在的直线对称. (2)圆关于点对称:①求已知圆关于某点对称的圆,只需确定所求圆的圆心位置; ②两圆关于点对称,则此点为两圆圆心连线的中点. (3)圆关于直线对称:①求已知圆关于某条直线对称的圆,只需确定所求圆的圆心位置; ②两圆关于直线对称,则此直线为两圆圆心连线的垂直平分线.4.对于圆中的最值问题,一般是根据条件列出关于所求目标的式子——函数关系式,然后根据函数关系式的特征选用参数法、配方法、判别式法等,应用不等式的性质求出最值.特别地,要利用圆的几何性质,根据式子的几何意义求解,这正是数形结合思想的应用.6.若直线2y kx k =+与圆2240x y mx +++=至少有一个交点,则实数m 的取值范围为 A .[0,+∞) B .[4,+∞) C .(4,+∞) D .[2,4]【答案】C【解析】由2y kx k =+可得(2)y k x =+,故直线2y kx k =+恒过定点(2,0)-,因此可得点(2,0)-必在圆内或圆上,故2220240)4(m m -+-+≤⇒≥.由方程表示圆的条件可得24404m m -⨯>⇒<-或4m >.综上可知4m >.故实数m 的取值范围为(4,+∞).故选C .【名师点睛】本题主要考查了直线过定点及直线与圆的位置关系,点与圆的位置关系,属于中档题.易错点7 利用数形结合的解题误区方程1-x 2=kx +2有唯一解,则实数k 的取值范围是A .k =± 3B .k ∈(−2,2)C .k <−2或k >2D .k <−2或k >2或k =±3 【错解】选A 或选C线与圆相切的情形而错选C .【试题解析】由题意知,直线y =kx +2与半圆x 2+y 2=1(y ≥0)只有一个交点.结合图形易得k <−2或k >2或k =± 3.【参考答案】D1.判断直线与圆的位置关系时,通常用几何法,其步骤是:(1)明确圆心C 的坐标(a ,b )和半径长r ,将直线方程化为一般式; (2)利用点到直线的距离公式求出圆心到直线的距离d ; (3)比较d 与r 的大小,写出结论.判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.能用几何法,尽量不用代数法. 2.涉及直线被圆截得的弦长问题,一般有两种求解方法:一是利用半径长r 、弦心距d 、弦长l 的一半构成直角三角形,结合勾股定理222()2ld r +=求解;二是若斜率为k 的直线l 与圆C 交于1122,,()()A x y B x y ,两点,则12|||AB x x =-.7.若直线y =x +b 与曲线y =4-x 2有公共点,试求b 的取值范围. 【答案】−2≤b ≤22【解析】如图所示,在坐标系内作出曲线y =4-x 2(半圆),直线l 1:y =x −2,直线l 2:y =x +2 2.当直线l :y =x +b 夹在l 1与l 2之间(包含l 1,l 2)时,l 与曲线y =4-x 2有公共点,易错点8 不理解两圆相切已知圆222210,x y x y ++++=圆226890x y x y +-++=,判断两圆的位置关系.【错解】由⎩⎪⎨⎪⎧x 2+y 2+2x +2y +1=0,x 2+y 2-6x +8y +9=0,得4x −3y −4=0,即y =4x -43.将其代入方程x 2+y 2+2x +2y +1=0,得22(44)8821093x x x x --++++=,即9x 2+16x 2+16−32x +18x +3(8x −8)+9=0,25x 2+10x +1=0, 因为Δ=100−4×25=0.所以两圆只有一个公共点,两圆相切.【错因分析】将两圆方程联立,Δ=0说明两圆只有一个公共点,此时两圆有可能外切,也有可能内切. 【试题解析】把两圆方程分别配方,化为标准方程为:(x +1)2+(y +1)2=1,(x −3)2+(y +4)2=16, 所以C 1(−1,−1),C 2(3,−4),r 1=1,r 2=4.∵圆心距12|5|C C ==,r 1+r 2=1+4=5, ∴|C 1C 2|=r 1+r 2,故两圆外切. 【参考答案】外切.1.判断圆与圆的位置关系时,一般用几何法,其步骤是: (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求1212||r r r r +-,; (3)比较1212,,||d r r r r +-的大小,写出结论. 2.求两圆公共弦长一般有两种方法:一是联立两圆的方程求出交点坐标,再利用两点间的距离公式求解; 二是求出两圆公共弦所在直线的方程,转化为直线被圆截得的弦长问题.8.已知两圆221x y +=和224)()25x y a ++-=(相切,求实数a 的值.【答案】±0【解析】题中所给两圆的圆心坐标分别为()()0,0,4,a -,半径分别为1,5,51=+,解得:a =±51=-,解得:0a =,综上可得,a 的值为±0.【名师点睛】判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法,两圆相切注意讨论内切外切两种情况.两圆外切和内切统称为相切,d =|r 1−r 2|⇔内切;d =r 1+r 2⇔外切.本题容易出现的错误是:只考虑外切的情况而把内切情况漏掉了.易错点9 求切线时考虑不全致错过点P (2,4)引圆()()22111x y --=+的切线,则切线方程为__________.【错解】设切线方程为y −4=k (x −2),即kx −y +4−2k =0, 因为直线与圆相切,所以圆心到直线的距离等于半径,即d1==,解得k =43,【错因分析】本题容易忽略切线斜率不存在的情况,从而导致漏解. 【试题解析】显然点P (2,4)不在圆上,当切线的斜率存在时,设切线方程为y −4=k (x −2),即420kx y k -+-=, 因为直线与圆相切,所以圆心到直线的距离等于半径, 即d1==,解得k =43,故所求切线方程为43x −y +4−2×43=0,即4x −3y +4=0; 当切线的斜率不存在时,切线方程为2x =,此时圆心到直线的距离等于半径,符合题意. 综上,切线方程为2x =或4x −3y +4=0. 【参考答案】2x =或4x −3y +4=0.求解此类问题时,应先判断点是在圆上还是在圆外,在圆上时切线方程唯一,在圆外时切线方程必有两条.1.求过圆上的一点00(,)x y 的切线方程:先求切点与圆心连线的斜率k ,若k 不存在,则由图形可写出切线方程为0y y =;若0k =,则由图形可写出切线方程为0x x =;若k 存在且k ≠0,则由垂直关系知切线的斜率为1k-,由点斜式方程可求出切线方程.2.求过圆外一点00(,)x y 的圆的切线方程: (1)几何方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径长,即可得出切线方程. (2)代数方法当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.3.在求过一定点的圆的切线方程时,应首先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外,切线有两条;若点在圆内,则切线不存在.9.已知圆:22(1)2x y +-=,则过点(1,2)作该圆的切线方程为 A .440x y +-= B .250x y +-=C .2x =D .30x y +-=【答案】D【解析】根据题意,设圆:()2212x y +-=的圆心为M ,且M (0,1),点N (1,2), 有()221212+-=,则点N 在圆上,则过点N 的切线有且只有1条; 则21110MN k -==-, 则过点(1,2)作该圆的切线的斜率1k =-,切线的方程为2(1)y x -=--, 变形可得30x y +-=, 故选D .一、直线与方程 1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x 轴相交的直线,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0︒.(2)范围:直线l 倾斜角的范围是[0,180)︒︒. 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率tan k α=.(2)若P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则直线l 的斜率k =2121y y x x --.3.直线方程的五种形式()00y y k x x -=-,斜率不存在时可设为x =x 0.(2)平行于直线Ax +By +C =0的直线系方程:()110Ax By C C C ++=≠. (3)垂直于直线Ax +By +C =0的直线系方程:10Bx Ay C -+=.(4)过两条已知直线1112220,0A x B y C A x B y C ++=++=交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(其中不包括直线2220A x B y C ++=). 2.求解含有参数的直线过定点问题,有两种方法:(1)任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)分项整理,含参数的并为一项,不含参数的并为一项,整理成等号右边为零的形式,然后令含参数的项和不含参数的项分别为零,解方程组所得的解即为所求定点.二、直线的位置关系 1.两条直线的位置关系2.两条直线的交点对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,1l 与2l 的交点坐标就是方程组1112220A xB yC A x B y C ++=⎧⎨++=⎩的解.(1)方程组有唯一解⇔1l 与2l 相交,交点坐标就是方程组的解; (2)方程组无解⇔1l ∥2l ;(3)方程组有无数解⇔1l 与2l 重合. 3.距离问题(1)平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离|P 1P 2(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(C 1≠C 2)间的距离d.1.求两点间的距离,关键是确定两点的坐标,然后代入公式即可,一般用来判断三角形的形状等. 2.解决点到直线的距离有关的问题,应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.3.求两条平行线间的距离,要先将直线方程中x ,y 的对应项系数转化成相等的形式,再利用距离公式求解.也可以转化成点到直线的距离问题. 4.对称问题(1)中心对称:点(,)B x y 为点11(,)A x y 与22(,)C x y 的中点,中点坐标公式为121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩.(2)轴对称:若点P 关于直线l 的对称点为P',则PP'l P P'l ⊥⎧⎨⎩直线与的中点在上.解决对称问题要抓住以下两点:(1)已知点与对称点的连线与对称轴垂直;(2)以已知点和对称点为端点的线段的中点在对称轴上.三、圆的方程1.圆的标准方程与一般方程D E 2.点与圆的位置关系(1)圆的三个性质①圆心在过切点且垂直于切线的直线上; ②圆心在任一弦的中垂线上;③两圆相切时,切点与两圆心三点共线. (2)两个圆系方程具有某些共同性质的圆的集合称为圆系,它们的方程叫圆系方程.①同心圆系方程:2220()()()x a y b r r =->+-,其中a ,b 为定值,r 是参数; ②半径相等的圆系方程:2220()()()x a y b r r -->+=,其中r 为定值,a ,b 为参数.四、直线与圆的位置关系 1.直线与圆的三种位置关系 (1)直线与圆相离,没有公共点; (2)直线与圆相切,只有一个公共点; (3)直线与圆相交,有两个公共点. 2.直线与圆的位置关系的判断方法3.圆与圆的位置关系4.圆与圆位置关系的判断圆与圆的位置关系的判断方法有两种. (1)几何法:由两圆的圆心距d 与半径长R ,r 的关系来判断(如下图,其中R r >).(2)代数法:设圆221111:0C x y D x E y F ++++= ①,圆222222:0C x y D x E y F ++++= ②,联立①②,如果该方程组没有实数解,那么两圆相离;如果该方程组有两组相同的实数解,那么两圆相切;如果该方程组有两组不同的实数解,那么两圆相交.设圆221111:0C x y D x E y F ++++= ①,圆222222:0C x y D x E y F ++++= ②,若两圆相交,则有一条公共弦,由①−②,得121212()()0D D x E E y F F -+-+-=③. 方程③表示圆C 1与圆C 2的公共弦所在直线的方程.1.(2018新课标Ⅲ理)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x −2)2+y 2=2上,则ABP △面积的取值范围是A .[2 , 6]B .[4 , 8]C .[√2 , 3√2]D .[2√2 , 3√2]【答案】A【解析】∵直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,()()2,0,0,2A B ∴--,则AB =,∵点P 在圆(x −2)2+y 2=2上, ∴圆心为(2,0),则圆心到直线距离d 1=2=2√2,故点P 到直线20x y ++=的距离d 2的取值范围为[√2,3√2], 则S △ABP =12|AB |d 2=√2d 2∈[2,6], 故选A.2.(2016新课标II 理)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=A .43-B .34-CD .2【答案】A【解析】圆的方程可化为22(1)(4)4x y -+-=,所以圆心坐标为(1,4),由点到直线的距离公式得:1d ==,解得43a =-,故选A .3.不论m 为何值,直线()()21250m x m y -+++=恒过定点 A .()1,2-- B .()1,2-C .()1,2-D .()1,2【答案】B【解析】Q ()()21250m x m y -+++=恒过定点,∴()()2250x y m x y ++-++=恒过定点,由20,250,x y x y +=⎧⎨-++=⎩解得1,2,x y =⎧⎨=-⎩即直线()()21250m x m y -+++=恒过定点()1,2-. 4.已知直线1:20l mx y +-=与直线()2:240l m x my -+-=垂直,则m = A .0 B .1C .1-或0D .0或1【答案】D【解析】直线1:20l mx y +-=与直线()2:240l m x my -+-=垂直,()20m m m ∴-+=,解得0m =或1. 故选D.【名师点睛】对于直线1l :1110A x B y C ++=和直线2l :2220A x B y C ++=,122112211200//A B A B AC A C l l -=-≠⇔①,; 12120A A B B +=②12l l ⇔⊥.5.圆22(2)(1)1x y -+-=上的一点到直线:10l x y -+=的最大距离为A 1B .2CD 1【答案】D【解析】圆心(2,1)到直线:10l x y -+=的距离是1d ===>,所以圆上一点到直线:10l x y -+=1,故选D.【名师点睛】本题主要考查圆上一点到直线距离最值的求法,以及点到直线的距离公式. 6.已知圆()()221:24O x m y -+-=与圆()()222:229O x y m +++=有3条公切线,则m = A .1-B .1或175-C .175-D .1-或175【答案】B【解析】由题意,圆1O 与圆2O 外切,所以12235O O =+=,5=,解得1m =或175m =-. 7.已知点A ,B ,C 在圆221x y +=上运动,且90ABC ∠=o,若点P 的坐标为(2,0),则PA PB PC++u u u r u u u r u u u r的最大值为 A .9 B .8C .7D .6【答案】C【解析】AC 为Rt ABC △的斜边,则AC 为圆221x y +=的一条直径,故AC 必经过原点,则2PA PC PO +=u u u r u u u r u u u r,即2PA PB PC PO PB ++=+u u u r u u u r u u u r u u u r u u u r ,设点(),B x y , 所以()()()222,02,6,PO PB x y x y +=-+-=-uu u r uu r,所以,PA PB PC ++=uu r uu r uu u r ()6,0M 到圆上的点B 的距离,所以,617PA PB PC OM r ++=+=+=uu r uu r uu u r ,故选C.【名师点睛】本题考查向量模的最值问题,在解决这类问题时,可设动点的坐标为(),x y ,借助向量的坐标运算,将所求模转化为两点的距离,然后利用数形结合思想求解,考查运算求解能力,属于难题. 8.已知直线10():ay a l x +-=∈R 是圆22:4210C x y x y +--+=的对称轴.过点(4,)A a -作圆C 的一条切线,切点为B ,则=ABA .2B .C .D .6【答案】D【解析】圆C 的标准方程为()()22214x y -+-=,圆心为()2,1C ,半径长为2r =,易知,圆心C 在直线l 上,则210a +-=,得1a =-,()4,1A ∴--,AC ∴==因此,6AB ===.故选D.【名师点睛】本题考查直线与圆的位置关系,考查切线长的计算,在求解与圆有关的问题中,应将圆的方程表示成标准形式,确定圆心坐标和半径长,在计算切线长时,一般利用几何法,即勾股定理来进行计算,以点到圆心的距离为斜边、半径长和切线长为两直角边来计算,考查计算能力,属于中等题. 9.已知点()1,Q m -,P 是圆C :()()22244x a y a -+-+=上任意一点,若线段PQ 的中点M 的轨迹方程为()2211x y +-=,则m 的值为 A .1 B .2 C .3D .4【答案】D【解析】设(),P x y ,PQ 的中点为()00,M x y因为点()00,M x y 在圆()2211x y +-=上,所以2211122x y m -+⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭, 即()()22124x y m -++-=.将此方程与方程()()22244x a y a -+-+=比较可得()1242a a m =⎧⎪⎨-=--⎪⎩,解得4m =.故选D.10.过直线:1l y x =+上的点P 作圆C :()()22162x y -+-=的两条切线1l 、2l ,当直线1l 、2l 关于直线:1l y x =+对称时,PC =A .3B. C.1D .2【答案】B【解析】由题设可知当CP l ⊥时,两条切线12,l l 关于直线:1l y x =+对称,此时CP 即为点()1,6C 到直线:1l y x =+的距离,即d ===,应选B. 【名师点睛】解答本题的难点是如何理解两条切线12,l l 关于直线:1l y x =+对称,从而将问题转化为CP l ⊥,最终求得点()1,6C 到直线:1l y x =+的距离,即d ===获解.11.(2019年高考浙江卷)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________.【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.12.(2018天津卷)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】x 2+y 2−2x =0【解析】设圆的方程为x 2+y 2+Dx +Ey +F =0,圆经过三点(0,0),(1,1),(2,0),则: {F =01+1+D +E +F =04+0+2D +F =0 ,解得:{D =−2E =0F =0 ,则圆的方程为x 2+y 2−2x =0.【名师点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.13.(2018新课标I 卷)直线y =x +1与圆x 2+y 2+2y −3=0交于A , B 两点,则|AB |=________.【答案】2√2【解析】根据题意,圆的方程可化为x 2+(y +1)2=4, 所以圆的圆心为(0,−1),且半径是2, 根据点到直线的距离公式可以求得d =22=√2,结合圆中的特殊三角形,可知|AB |=2√4−2=2√2,故答案为2√2.【名师点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.14.若直线l 1:x −2y +m =0(m >0)与直线l 2:x +ny −3=0之间的距离是√5,则m +n =_________.【答案】0【解析】∵直线l 1:x −2y +m =0(m >0)与直线l 2:x +ny −3=0之间的距离是√5, ∴{n =−2√5=√5 ,解得n =−2,m =2(负值舍去)则m +n =2−2=0. 故答案为0.15.(2017江苏)在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆22:50O x y +=上,若20PA PB ⋅≤u u u r u u u r,则点P 的横坐标的取值范围是. 【答案】[-【解析】设(,)P x y ,由20PA PB ⋅≤u u u r u u u r ,易得250x y -+≤,由2225050x y x y -+=⎧⎨+=⎩,可得55x y =-⎧⎨=-⎩或17x y =⎧⎨=⎩,令(5,5),(1,7)C D --,则由250x y -+≤得P 点在圆左边弧»CD 上,结合限制条件x-≤可得点P 横坐标的取值范围为[-.【名师点睛】对于线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等,最后结合图形确定目标函数的最值或取值范围.16.若双曲线22:154y x C -=的渐近线与圆()()22230x y r r -+=>相切,则r =_________.【解析】双曲线C 的渐近线方程为y x =20y ±=, 圆()2223x y r -+=,圆心坐标为()3,0,半径为r ,由于双曲线C的渐近线与圆相切,则r ==【名师点睛】本题考查双曲线的渐近线,考查直线与圆的位置关系,在求解直线与圆相切的问题时,常有以下两种方法进行转化:(1)几何法:圆心到直线的距离等于半径;(2)代数法:将直线方程与圆的方程联立,利用判别式为零进行求解. 考查化归与转化思想,考查计算能力,属于中等题.17.(2018新课标II 理)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.【答案】(1)1y x =-;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【解析】(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->. 设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF kx +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+. 设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知直线 l1 经过点 A(3,a),B(a−2,3),直线 l2 经过点 C(2,3),D(−1,a−2),若 l1⊥l2,求 a 的值.
【错解】由
l1⊥l2⇔ k1·k2
1 ,又
k1=3-a,k2=a-5,所以3-a·a-5=−1,解得
a-5
-3
a-5 -3
a=0.
【错因分析】只有在两条直线斜率都存在的情况下,才有 l1⊥l2⇔ k1·k2 1 ,还有一条直线斜率为 0,另一
条直线斜率不存在的情况也要考虑.
【试题解析】由题意知 l2 的斜率一定存在,则 l2 的斜率可能为 0,下面对 a 进行讨论.
当 k2 0 时,a=5,此时 k1 不存在,所以两直线垂直.
2.求解直线的倾斜角与斜率问题时要善于利用数形结合的思想,要注意直线的倾斜角由锐角变到直角及由 直角变到钝角时,需依据正切函数 y=tan x 的单调性求斜率 k 的范围.
3.直线的倾斜角与斜率的关系
(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率.比如直线 x 1 的倾斜角为 ,但斜率不 2
“前思”就是在解题前考虑斜率不存在的可能性,是否需要分情况讨论;“后想”就是在解题后,检验答案 的正确性,看是否出现增解或漏解. 3.两条直线的位置关系
斜截式 l1 : y k1x b1 l2 : y k2 x b2
l1 与 l2 相交
k1 k2
l1 与 l2 垂直
k1k2 1
l1 与 l2 平行
m-1 m-1 ①当 m>1 时,k= 1 >0,所以直线倾斜角α的取值范围是 0°<α<90°.
m-1 ②当 m<1 时,k= 1 <0,所以直线倾斜角α的取值范围是 90°<α<180°.
m-1 【参考答案】见试题解析.
1.由斜率取值范围确定直线倾斜角的范围时要利用正切函数 y=tan x 的图象,特别要注意倾斜角取值范围的 限制.
【解析】(1)∵直线过点 P′(1,0), ∴m2-2m-3=2m-6.解得 m=3 或 m=1. 又∵m=3 时,直线 l 的方程为 y=0,不符合题意, ∴m=1.
¢,根据下列条件分别求 的值.
(2)由斜率为 1,得
⺁ ⺁ 解得 m= . ⺁
(3)直线过定点 P(-1,-1),
则- (m2-2m-3)-(2m2+m-1)=2m-6, 解得 m= 或 m=-2.
存在.
(2)直线的倾斜角α和斜率 k 之间的对应关系:
α
0° 0°<α<90° 90° 90°<α<180°
k
0
k>0 不存在
k<0
1.直线 x y 1 0 的倾斜角为
A.
6
B.
4
3
C.
4
5
D.
6
【答案】B
【解析】直线 x y 1 0 的斜率 k 1,则 tan k 1,所以直线 x y 1 0 的倾斜角 = .故选 4
l
上,且
x1≠x2,则
l
的斜率
k=
y2 x2
y1 x1
.
3.求直线方程的方法
(1)直接法:根据已知条件,选择恰当形式的直线方程,直接求出方程中的系数,写出直线方程;
(2)待定系数法:先根据已知条件恰当设出直线的方程,再根据已知条件构造关于待定系数的方程(组)
解得系数,最后代入设出的直线方程.
4.求直线方程时,如果没有特别要求,求出的直线方程应化为一般式 Ax+By+C=0,且 A≥0.
专题 09 直线与圆的方程
易错点 1 忽略 90°倾斜角的特殊情形
求经过 A(m,3),B(1,2)两点的直线的斜率,并指出倾斜角α的取值范围. 【错解】由斜率公式可得直线 AB 的斜率 k= 3-2 = 1 .
m-1 m-1 ①当 m>1 时,k= 1 >0,所以直线的倾斜角α的取值范围是 0°<α<90°;
m-1 ②当 m<1 时,k= 1 <0,所以直线的倾斜角α的取值范围是 90°<α<180°.
m-1 【错因分析】当问题所给的对象不能进行统一研究时,就需要对研究对象进行分类讨论,然后对每一类分别 研究,得出每一类结果,最终解决整个问题. 本题的讨论分两个层次:第一个层次是讨论斜率是否存在;第二个层次是讨论斜率的正、负.也可以分为 m=1,m>1,m<1 三种情况进行讨论. 【试题解析】当 m=1 时,直线斜率不存在,此时直线倾斜角α=90°. 当 m≠1 时,由斜率公式可得 k= 3-2 = 1 .
【试题解析】∵ l1∥l2 ,∴ a2 2 =−1 且 2a≠2,解得 a=−1.
【方法点睛】要解决两直线平行的问题,一定要注意检验,看看两直线是否重合. 【参考答案】a=−1.
1.两直线的位置关系问题中注意重合与平行的区别. 2.由两直线平行或垂直求参数的值:在解这类问题时,一定要“前思后想”.
当用待定系数法确定直线的斜率时,一定要对斜率是否存在进行讨论,否则容易犯解析不全的错误.
易错点 3 忽视两条直线平行的条件
当 a 为何值时,直线 l1 :y=−x+2a 与直线 l2 : y a2 2 x 2 平行?
【错解】由题意,得 a2 2 =−1,∴a=±1.
【错因分析】该解法只注意到两直线平行时斜率相等,而忽视了斜率相等的两直线还可能重合.
k1 k2 且 b1 b2
一般式 l1 : A1x B1 y C1 0 l2 : A2 x B2 y C2 0
A1B2 A2B1 0
A1A2 B1B2 0
A1B2
B1C2
A2 B1 B2C1
0 0
或
5.已知三点 A, B, C,若直线 AB, AC 的斜率相同,则 A, B, C 三点共线.因此三点共线问题可以转化为斜率相
等问题,用于求证三点共线或由三点共线求参数.
2.设直线 的方程为 (1)在 轴上的截距为 1; (2)斜率为 1; (3)经过定点 ⺁ ⺁ .
⺁
【答案】(1)1;(2) ;(3) 或 .
当 k2 0 时,由 k1·k2 1 ,得 a=0.
所以 a 的值为 0 或 5. 【参考答案】0 或 5
1.直线的斜率是否存在是解直线问题首先要考虑的问题,以防漏解.
2.斜率公式
(1)若直线 l 的倾斜角 90°,则斜率 k tan .
(2)若
P1(x1,y1),P2(x2,y2)在直线