经济数学建模题目
数学建模案例(下)
经济数学 模型一:血管分支模型 模型一: 5.模型求解 5.模型求解
,
由
∂E 2 −5 α −1 ∂r = −4kq r + αbr = 0 ∂E α −1 2 −5 = −kq r1 + αbr1 = 0 ∂r1
得
r =4 r1
1 α +4
第十二章
数学建模案例(下 数学建模案例 下)
x =0
n
+
此时问题可以转 化为什么数学问 题?
x = n +1
∑ (a − b)nf ( x)
a , b, c
f (x )
G (n)
∞
?
n
第十二章
数学建模案例(下 数学建模案例 下)
经济数学 模型二:报童策略模型 模型二: 3.模型建立 3.模型建立
需求量 都相当大, x 的取值和购进量 n 都相当大,将 x
(1)假设报童每天购进量为 (2)假设每天的需求量为
n
份报纸
x 份报纸的概率为
f ( x )( x = 0,1,2, L)
(3)报童每天购进
n 份报纸时平均收入为 G (n)
第十二章 数学建模案例(下 数学建模案例 下)
经济数学 模型二:报童策略模型 模型二: 3.模型建立 3.模型建立
G (n) = ∑ [(a − b) x − (b − c)(n − x)] f ( x)
r cos θ = 2 r 1
−4
=2
α −4 α +4
第十二章
数学建模案例(下 数学建模案例 下)
经济数学 模型一:血管分支模型 模型一: 6.模型应用 6.模型应用
取
,
数学建模案例精选
数学建模案例精选数学建模是指利用数学方法和技术解决实际问题的过程,它在工程、经济、管理、自然科学等领域都有着广泛的应用。
在数学建模中,数学模型是解决问题的核心,通过建立合适的数学模型,可以更好地理解问题的本质,并找到解决问题的方法。
下面我们将介绍几个数学建模案例,来看看数学在实际问题中是如何发挥作用的。
案例一,交通拥堵问题。
在城市交通管理中,交通拥堵一直是一个严重的问题。
如何合理规划道路和交通流量,是一个复杂的问题。
数学建模可以通过建立交通流模型,分析不同道路的交通流量,预测交通拥堵的可能发生区域和时间,从而指导交通管理部门制定相应的交通疏导措施。
案例二,股票价格预测。
股票市场的波动一直是投资者关注的焦点,而股票价格的预测是投资决策的重要依据。
数学建模可以通过分析历史股票价格数据,建立股票价格预测模型,利用数学统计方法和时间序列分析方法,预测股票价格的未来走势,帮助投资者做出更明智的投资决策。
案例三,物流配送优化。
在物流配送领域,如何合理规划配送路线和减少配送成本是企业关注的重点。
数学建模可以通过建立物流配送网络模型,分析不同配送方案的成本和效率,优化配送路线,降低物流成本,提高配送效率,从而提升企业的竞争力。
案例四,环境污染监测。
环境污染是一个严重的问题,如何有效监测和治理环境污染成为了各国政府和环保部门的重要任务。
数学建模可以通过建立环境污染监测模型,分析环境污染源的分布和扩散规律,预测污染物的扩散范围和影响,为环境污染治理提供科学依据。
通过以上几个案例的介绍,我们可以看到数学建模在实际问题中的重要作用。
数学建模不仅可以帮助我们更好地理解和解决实际问题,还可以推动科学技术的发展,促进社会经济的进步。
因此,加强数学建模的研究和应用,对于推动科学技术创新和社会发展具有重要意义。
希望通过今后更多的实际案例和研究,能够进一步挖掘数学建模的潜力,为解决更多实际问题提供更加有效的方法和工具。
数学建模线性规划上机题
例1 (任务安排)某厂计划在下月内生产4种产品B1,B2,B3,B4。
每种产品都可用三条流水作业线A1,A2,A3中旳任何一条加工出来.每条流水线(Ai)加工每件产品(Bj)所需旳工时数(i=1,2,3,j=1,2,3,4)、每条流水线在下月内可供运用旳工时数及多种产品旳需求均列表于4.1中.又A1,A2,A3三条流水线旳生产成本分别为每小时7,8,9元。
现应怎样安排各条流水线下月旳生产任务,才能使总旳生产成本至少?例2 (外购协议)某企业下月需要B1,B2,B3,B4四种型号旳钢板分别为1000,1200,1500,2023吨。
它准备向生产这些钢板旳A1,A2,A3三家工厂订货。
该企业掌握了这三家工厂生产多种钢板旳效率(吨/小时)及下月旳生产能力(小时),如表4.2所示。
而它们销售多种型号钢板旳价格如表4.3所示。
该企业当然但愿能以至少旳代价得到自己所需要旳多种钢板,那么,它应当向各钢厂订购每种钢板各多少吨?假设该企业订购时采用如下原则,要么不订购,要么至少订购100吨以上。
该怎样处理这个问题。
若至少订购50吨,怎样处理?例3 (广告方式旳选择) 中华家电企业近来生产了一种新型洗衣机.为了推销这种新产品,该企业销售部决定运用多种广告宣传形式来使顾客理解新洗衣机旳长处。
通过调查研究,销售部经理提出了五种可供选择旳宣传方式.销售部门并搜集了许多数据。
如每项广告旳费用,每种宣传方式在一种月内可运用旳最高次数以及每种广告宣传方式每进行一次所期望得到旳效果等.这种期望效果以一种特定旳相对价值来度量、是根据长期旳经验判断出来旳.上述有关数据见表4.8中华家电企业拨了20230元给销售部作为第一种月旳广告预算费、同步提出,月内至少得有8个电视商业节目,15条报纸广告,且整个电视广告费不得超过12023元,电台广播至少隔日有一次,现问该企业销售部应当采用怎样旳广告宣传计划,才能获得最佳旳效果?例4 长城家电企业近来研制了一种新型电视机.准备在三种类型旳商场即一家航空商场、一家铁路商场和一家水上商场进行销售.由于三家商场旳类型不同样,它们旳批发价和推销费都不同样。
大学《数学建模》考试题目汇总
答案:
解:设供应点 Ai 供应需求点 B j 的物资的数量为 xij (i 1,2,3; j 1,2,4) ,
则可建立运输问题的数学模型:
min Z x11 8x12 5x13 11x14 3x21 4x22 2x23 5x24 7x31 10x32 9x33 6x34
x11 x12 x13 x14 7 x11 x21 x31 3
3.2030 级新生入学后,大数据学院共有在校学生 600 人,其中数据分析及大数据 专业 320 人,人工智能专业 200 人,统计分析专业 80 人。要在全院推选 25 名学 生组成学生代表团,试用下面的方法分配各专业的学生代表: (1)按比例分配取整的方法,剩下的名额按惯例分配给小数部分较大者; (2)用 Q 值方法进行分配
9. 某厂生产甲、乙、丙三种产品,消耗两种主要原材料 A 与 B。每单位产品生 产过程中需要消耗两种资源 A 与 B 的数量、可供使用的原材料数量以及单位产 品利润如下表:
甲
乙
丙
原料数量
A
60
30
50 4500 公斤
B
30
40
50 3000 公斤
产品利润 400 元 300 元 500 元
甲、乙、丙三种产品各生产多少使总利润最大? (1)建立线性规划问题数学模型。 (2)写出用 LINGO 软件求解的程序。 答案:(数据乘 10)
4.某商店每天要订购一批牛奶零售,设购进价 c1 ,售出价 c2(c2 c1) ,当天销售不 出去则削价处理,处理价 c3(c3 c1) 并能处理完所有剩余的牛奶。如果该商店每 天销售牛奶的数量 r 是随机变量,其概率密度函数为 f (r) 。如果商店每天订购牛 奶的数量为 n , L 该商店销售牛奶每天所得利润,则 L 是 r 与 n 的函数 L g(r) (1)建立利润函数 L g(r) ; (2)确定每天的购进量 n ,使该商店每天的期望利润最大。
数学建模国赛题目
数学建模国赛题目一、关于校园生活类- 逻辑:同学们在食堂排队打饭的时候,总是希望能尽快拿到食物。
这里面涉及到食堂窗口的数量、每个窗口打饭的速度(比如打不同菜品的复杂程度、工作人员的熟练程度等)、同学们到达食堂的时间分布等因素。
可以通过建立数学模型,来分析怎样安排窗口的服务或者调整同学们的排队方式,能让整体的排队等待时间最短,就像指挥一场让大家都能快速填饱肚子的战斗。
- 逻辑:在宿舍里,每个舍友用电用水的习惯都不太一样。
有人喜欢长时间开着电脑,有人洗澡特别久,水电费总是一笔糊涂账。
通过收集每个舍友的电器使用时长、用水次数和时长等数据,建立数学模型,来找出到底谁在水电费上贡献最大,就像侦探破案一样,揭开隐藏在宿舍里的“耗能大户”的神秘面纱。
二、环境保护类- 逻辑:城市里种了很多小树苗来美化环境,但是有些树苗活不了多久就夭折了。
这可能和种植的土壤质量、浇水的频率和量、周围的空气污染程度、光照等因素有关。
我们要建立一个数学模型,就像给小树苗当医生一样,找出影响它们存活的关键因素,然后提出提高树苗存活率的最佳方案,让城市里能有更多茁壮成长的绿树。
- 逻辑:城市每天都会产生大量的垃圾,这些垃圾要从各个小区、街道收集起来,然后运到垃圾处理厂。
但是垃圾车的行驶路线、垃圾收集点的分布、不同区域垃圾产量的不同等因素都会影响垃圾处理的效率。
我们要像给垃圾规划一场旅行一样,建立数学模型找到垃圾从产生地到处理厂的最优路径,让垃圾能够高效地被处理,减少对城市环境的污染。
三、经济与商业类- 逻辑:校园小卖部里的商品琳琅满目,但是怎么给这些商品定价可是个大学问。
如果定价太高,同学们就不买了;定价太低,又赚不到钱。
这里面要考虑商品的进价、同学们的消费能力、不同商品的受欢迎程度等因素。
通过建立数学模型,就像寻找宝藏的密码一样,找到能让小卖部利润最大化的定价策略。
- 逻辑:现在有很多网红店,门口总是排着长长的队伍。
这背后可能是因为独特的营销策略、美味的食物或者时尚的装修。
经济数学建模(西安交通大学,戴雪峰)
C3r (T
T1)2
取每日平均费用作目标函数,记为C(T )
C(T ) C1 C2Q2 C3 (rT Q)2
T 2rT
2rT
(Q
T1
Q r
)
令
C(T ) 0, C(T ) 0
T
Q
得
T 2C1 C2 C3 , Q 2C1r C3
rC2 C3
C2 C2 C3
比较两种情况下的结果,可以看到: 在不允许缺货的情况下(即C3 ),后者公式变 为前者。 在允许缺货的情况下,订货周期应增大,而订货 批量应减小。 (相对于不允许缺货时的批量和周期而言)
数学建模
西安交通大学理学院 戴雪峰
E-mail: daixuefeng@
微分学模型(静态优化模型)、 经济学模型
一、存储模型
存储过多会占用资金多,仓储费高。 但存储量少会增加订货费,缺货还会 造成经营的损失。现只考虑订货费及 存储费,如何使总费用最少?
其中订货费指每订一批货需付出的 费用,它与订货量的多少无关;存 储费与货物量、存储时间成正比。
dB
dt 随 t 的增加而增加;开始救火以后,即t1 t t2 , 如果消防队员救火能力足够强,火势会越来越小,
dB
即 dt 随 t 的增加而减小;且当
t
t2
dB
时, dt
0
。
模型假设:
(1)火灾损失与森林被烧面积 B(t2 ) 成正比,比例系 数 C1,即烧毁单位面积的损失费。
(2)从失火到开始救火这段时间(0 t t1 )内,火
问题分析:
(1)火灾损失通常正比于与森林被烧面积,而被 烧面积又与从起火到火灭的时间有关,而这时间又 与消防队员人数有关。
2023高教社数学建模b题
2023高教社数学建模b题
2023年高教社数学建模竞赛B题:
B题碳排放交易政策下,企业如何调整生产计划
题目说明:
随着全球气候变化问题日益严重,碳排放权交易政策作为一种重要的减排手段,正在被越来越多的国家和地区采用。
在该政策下,企业需要为其排放的二氧化碳支付费用。
为了降低成本,企业需要制定合理的生产计划,以最小化碳排放并最大化利润。
任务要求:
1. 建立数学模型,以确定在碳排放交易政策下,企业如何调整生产计划以最小化碳排放并最大化利润。
2. 分析不同碳排放价格、生产成本和市场需求下,企业的最优生产策略。
3. 基于所建立的模型和数据,为企业提供一个具体的生产计划建议。
所提供的附件包括:附件1-3(具体内容略)。
附件1为企业生产某产品的历史数据,包括年产量、年碳排放量、生产成本等;附件2为碳排放权交易市场的历史数据,包括碳排放价格、交易量等;附件3为市场需求预测数据,包括未来5年的预测值。
题目给出的初始条件:假设附件1中企业年生产能力为100单位产品,附件2中碳排放价格未来5年的预测值分别为100元/吨、110元/吨、120元/吨、130元/吨和140元/吨。
附件3中未来5年市场需求预测值分别为90单位、95单位、100单位、105单位和110单位产品。
经济数学建模作业及答案
2、如果连续复利时,以什么利率才能使本金在8年内变成3倍?1、在每半年复利一次的情况下,以8%的利率,需要经过多长时间才能使现值增到2.5倍?3、连续收益流量每年按80万元持续5年,若以年利率5%贴现,其现值应是多少?T=11.68年r=13.73%55%00S 80353.92t e dt -==⎰8003S S re =4、某汽车使用寿命为10年,若购买此车需35000元,若租用此车每年租金为7200元,若资金的年利率为14%,按连续复利计算,问买车与租车哪一种方式合算。
计算租车资金流量总值的现值,然后与购买费相比。
租车租金流量总值的现值为所以买车比租车合算。
002.5S S +=2T0.08(1)2101014141172003875635000i i i i i S e e -%-%==≈>=∑∑5、一商家销售某种商品的价格满足关系x p 2.07-=(万元/吨),x 为销售量(单位:吨);商品的成本函数是C =3x +1(万元)。
(1) 若每销售一吨商品,政府要征税t (万元),求该商家获最大利润时商品的销售量;(2) t 为何值时,政府税收总额最大。
6、已知某企业生产的商品的需求弹性为1.2,如果该企业准备明年将价格降低15%,问这种商品的销量预期会增长多少?总收益会增长多少?2'5(2) 10 0 22T tx t t T t ==-=⇒=R18%,3%R Q Q∆∆==令2(70.2)31(4)0.21Px C Tx x x tx t x x --=----=---'''5()0,()0102L x L x x t=<⇒=-(1)利润L(x)=7、某消费者打算购买两种商品q 1和q 2,他的预算约束是240元,两种商品的单价分别是10元和2元,其效用函数为U=q 1q 2,消费者的最优商品组合是什么?一元钱的边际效用是多少?8、效用函数U (q 1,q 2) 应满足的条件是以下的A,B 之一:A. U (q 1,q 2) =c 所确定的函数q 2=q 2(q 1)单调减、下凸;0,0,0,0,0.B 21222221221>∂∂∂<∂∂<∂∂>∂∂>∂∂q q Uq U q U q U q U AB ⇒证明:对U (q ,q 2) =c 两端求q 1的一阶导和二阶导12102240q q +=1212MU MU P P =1212,60q q ==解建立方程组得解出一元钱边际效用为610、在确定性存贮模型中,在费用中增加购买货物本身的费用,确定不允许缺货的最优订货周期和订货批量。
1998年数学建模a题
1998年数学建模a题
1998年A题数学建模题目为:研究与投资有关的经济发展问题。
该题要求研究者对影响投资环境的各种因素进行分析,并进行投
资经济学的建模。
研究的内容包括:投资回报、投资项目的净现值、
投资风险、投资成本、投资价值、投资结构、投资综合评价等。
首先,研究者应该对影响投资环境的各种因素进行全面分析,包
括民族国家的政治环境、经济环境、金融环境、法律环境以及社会文
化环境等,以确定背景和方向。
其次,研究者应采用投资回报模型,分析投资市场的现状,如投
资回报率、投资成本、投资风险等,进而判断投资环境的优劣。
此外,研究还可以运用净现值模型,根据投资价值的不同,以及
价格水平的变化,来判断投资项目的合理性。
最后,研究者还可以使用投资结构分析技术来进行投资综合评价,以了解投资环境中的优势和劣势,并给出相应的经济发展建议。
综上所述,1998年A题数学建模题目主要是要求研究者对影响投
资环境的各种因素进行全面分析,并运用投资回报模型、净现值模型
以及投资结构分析技术等,对投资市场进行分析,以便给出相应的经
济发展建议。
数学建模作业题目
数学建模作业题目1、深圳杯数学建模夏令营题目(3)A题计划生育政策调整对人口数量、结构及其影响的研究B题基因组组装C题垃圾焚烧厂的经济补偿问题2、吉林省第五届数学建模竞赛试题(2)E题汽车租赁调度问题F题:阶梯电价的效用分析3、西北工业大学校数模竞赛试题(2)A题西安市经开区公共自行车服务系统设计B题食品价格变动分析4、浙江大学城市学院第八届数学建模竞赛题目(2)A题:外汇交易策略算法设计B题:雾霾时空分布研究5、井冈山大学第七届“井冈杯”数学建模竞赛试题(2)A题:课表编排问题B题:客房预定的价格和数量问题6、第十一届五一数学建模联赛(原苏北) (1)B题:能源总量控制问题7、第七届华中数学建模邀请赛赛题发布(2)A题:加速度检测仪数据校正B题:互联网搜索引擎的排名与设计8、第十六届华东杯大学生数学建模邀请赛试题(3)A电力网络出租车打车模式的现状和未来污水排放问题9、南京信息工程大学第八届数学建模竞赛赛题(2)A 污染气体的传播扩散B 乳腺癌病因分析10、北京交通大学数学建模校赛赛题(1)电梯运输策略问题11、武汉科技大学(2)A题:装配线平衡问题的随机算例生成B题:研究生研究水平的成因分析12、广州六校数学建模联赛题目(2)A题:中国GDP是否超过美国B题:反服贸团体游行的人数13、同济大学数学建模竞赛本科组赛题(2)A题经济金三角C题基因重排14、甘肃农业大学第十届数学建模竞赛试题(1)B题石油资源的开发与储备15江西理工大学数学建模竞赛题目(1)高层建筑火灾中的烟雾扩散建模与仿真以上为2014年各校试题。
从以上题目或者自行收集2014各高校的数学建模比赛试题(与我院数学建模选拔赛相同的不算,自己收集以上题目的信息)中选一作一篇不少于15页的论文。
论文格式如下●论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从上面装订。
●论文第一页为搜索的高校姓名与学号、班级。
●论文题目和摘要写在论文第二页上,从第三页开始是论文题目内容与论文正文。
历年数学建模国赛预测类题目
历年数学建模国赛预测类题目
历年数学建模国赛的预测类题目涉及到多个领域,包括但不限
于经济、环境、社会等方面的问题。
以下是一些历年数学建模国赛
的预测类题目的一些例子:
1. 预测城市交通拥堵情况,要求参赛者利用历史交通数据和城
市发展规划,预测未来某一时段内城市交通拥堵的情况,并提出改
善方案。
2. 预测气候变化对农作物产量的影响,要求参赛者结合气候数
据和农作物生长模型,预测未来气候变化对特定农作物产量的影响,并提出应对措施。
3. 预测人口增长对城市基础设施的需求,要求参赛者利用人口
增长趋势和城市基础设施数据,预测未来某一时期城市基础设施的
需求情况,并提出相应的规划建议。
4. 预测金融市场波动对投资组合的影响,要求参赛者利用金融
市场数据和投资组合理论,预测未来金融市场波动对特定投资组合
的影响,并提出风险管理策略。
5. 预测环境污染对健康的影响,要求参赛者结合环境监测数据和健康统计数据,预测未来环境污染对特定人群健康的影响,并提出环境保护建议。
以上仅是一些例子,实际上历年数学建模国赛的预测类题目涉及的领域非常广泛,涉及到经济、环境、社会等多个方面的实际问题,要求参赛者综合运用数学建模的方法和技巧进行预测和分析。
希望这些例子可以帮助你对历年数学建模国赛的预测类题目有一个初步的了解。
2023数学建模赛题
有关“数学建模”的赛题
数学建模赛题通常涉及到各种实际问题,需要通过建立数学模型进行解决。
有关“数学建模”的赛题如下:
1.人口预测问题:给定历史人口数据,要求预测未来人口数量和年龄结构。
2.传染病传播问题:给定传染病传播的参数和初始感染人数,要求预测疾病传播的趋势
和影响。
3.物流优化问题:给定运输网络和货物需求,要求设计最优的运输方案,降低运输成
本。
4.金融风险管理问题:给定投资组合和风险因子,要求评估投资组合的风险和回报,制
定最优投资策略。
5.生产计划问题:给定市场需求和生产成本,要求制定最优的生产计划,满足市场需求
并实现利润最大化。
6.资源分配问题:给定有限资源的数量和各种需求,要求分配资源以满足需求,并实现
资源利用的最大化。
7.交通运输问题:给定运输网络和货物需求,要求设计最优的运输方案,提高运输效率
并降低成本。
8.环境保护问题:给定环境污染数据和环境质量标准,要求制定最优的环境治理方案,
改善环境质量。
数学建模试题
一、填空题(2’*8=16’) 1.对于人口模型0()t x t x e λ=,当t →∞时,人口变化趋势是()。
2.数学建模方法相结合,可以用()建立模型结构,用()确定模型参数。
3.传染病模型中,设λ为日接触率,μ为日治愈率,则/λμ表示()。
4.若线性回归模型的2R 统计量的值为0.98,F 统计量为206,则该模型()(线性显著、线性不显著)。
5.对于经济批量订购公式T Q rT ===若订购费1c 增加,则订购周期和订购量的变化趋势是()。
6.变量123,,x x x 与y 之间的多元线性回归模型为()。
7.对于模型1max ,nj j j Z c x ==∑1,1,2,...,,0,1,2,...,nij j i j ja xb i mx j n=⎧≤=⎪⎨⎪≥=⎩∑变量1x 的价值系数为( )。
8.二维线性规划问题的可行域若存在,则一定为( )。
二、判断题(2*6’=12’)9.线性规划问题12max 2,Z x x =+212121,251562245,0x x x x x x x ⎧≤⎪+≤⎨⎪+≤≥⎩的最优解为*7/2,3/2x ⎛⎫= ⎪⎝⎭若三个约束分别代表A 、B 、C 三种资源,则哪种资源的影子价格为0?那种资源在生产中已耗费完毕?那种资源未得到充分利用? 10.“生猪出售时机”模型中,(1)第t 天生猪体重函数为w(t)=w(0)+rt 时,表示体重变化趋势是什么?(2)体重函数为0()(0)/[(0)()]at m m w t w w w w w e -=+-时,表示体重变化趋势是什么?(3)哪个函数更符合实际? 三、模型分析题(2*6’=12’) 11.物体在时刻t 的温度为().xx t =在常温A 下,假设物体温度对时间的变化率与物体温度和周围温度之差成正比。
比例系数为k>0.(1)建立数学模型。
(2)在初始条件00()x t x =下,求平衡点。
全国大学生数学建模竞赛经典试题
全国大学生数学建模竞赛经典试题导语:数模参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。
竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网的经典的数学建模问题:运用灰色关联模型为我国产业结构的调整和优化提供建议改革开放以来,中国的产业结构优化都是以经济增长为主要目标,在该目标下所形成的产业结构己经使中国经济保持了近三十年的高速增长。
但是,由于忽视了能源与环境目标,过快的经济增长导致了产业结构失衡、能源消耗过渡、环境污染严重等问题。
因此,产业结构优化作为促进经济发展的重要手段已不是传统意义所指,结构优化的目标更着重于促进产业持续、健康发展以及产业与自然、社会和谐发展,结构状态和变化趋势符合可持续发展要求,结构的优化和变革促进产业可持续发展能力增强,结构优化政策贯彻可持续发展战略思想等。
基于此结合收集的资料,建立数学模型,解决一下问题。
问题一:建立各产业对我国经济增长影响的定量数学模型。
问题二:定量分析能源消费结构对空气质量的的关系。
问题三:建立数学模型分析未来能源消费的大体趋势。
问题四:结合以上问题结论为我国产业结构的调整和优化提供一些建议。
一、问题分析问题一我们发现我国各产业对经济的增长都有一定的作用,通过表分析我们需要定量分析各产业对我国经济增长影响的大小,于是我们通过建立灰色关联的数学模型计算各产业灰色相对关联度p1,p2,p3,比较其大小发现各产业对我国经济增长的定量影响。
问题二我们认为SO2排放放映出我国空气质量的大体状况,而无论是煤炭,石油,天然气,电能等能源的消耗都会排放一定量的的SO2,但我们无法准确确定影响大小,于是我们考虑建立灰色关联的数学模型,计算出各能源对SO2排放的影响程度大小,进而确定能源消费结构对空气质量的关系。
2020年数学建模题目b题
2020年数学建模题目b题
2020年数学建模题目B题:
B题:碳排放交易机制分析
背景:
随着全球气候变化问题日益严重,减少碳排放已成为国际社会的共识。
碳排放交易作为一种重要的市场机制,被广泛用于促进企业减少碳排放。
碳排放交易的基本思想是通过建立碳排放权市场,使碳排放权成为一种商品,企业可以根据自身情况购买或出售碳排放权。
通过这种方式,企业可以在不影响经济发展的前提下,实现碳排放的减少。
问题:
1. 建立一个碳排放权交易模型,描述碳排放权市场的运行机制。
2. 分析碳排放权价格的影响因素,并讨论如何通过政策手段调控碳排放权价格。
3. 研究碳排放权交易对企业经营的影响,探讨企业在碳排放权交易机制下的应对策略。
4. 基于你的研究,提出优化碳排放权交易机制的建议。
要求:
1. 针对以上问题,建立数学模型并进行求解。
2. 对模型进行验证,确保其合理性和有效性。
3. 对所得结果进行解释和分析,给出具体的建议和方案。
[理学]数学建模c题-精品文档
企业退休职工养老金制度的改革摘要近30年来我国经济发展迅速,工资增长率也较高;而发达国家的经济和工资增长率都较低。
未来中国经济的发展和社会平均工资快速增长后也将趋于平稳。
我们通过建立Logistic 模型得到未来社会平均工资的预测值⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=-t t e C 11924.015667000001700000,参考附件1,从而得到2011年至2035年山东省的职工的年平均工资。
取附件2中企业各年龄段职工工资与该企业平均工资之比作为缴费指数,根据养老金以及替代率的计算方法得到该企业职工自2000年起分别从30岁、40岁开始缴养老保险,一直缴费到退休(55岁,60岁,65岁)时的各种情况下的职工自 2000年起从30岁开始缴养老保险,一直缴费到退休(55岁,60岁,65岁),收支平衡时的年龄分别为:59,63,68。
我们可以尝试通过延迟退休年龄,或增大基础养老金计算公式中的系数(即适当增大政府预算)来达到国家所要求的目标替代率,且比较容易维持收支平衡点。
并且随着时间的推移,在不出现大的经济波动的情况下,养老金保险率会逐渐增大,但收支平衡点不易维持。
关键词:Logistic 模型 预测 养老金替代率 收支平衡问题重述养老金也称退休金,是一种根据劳动者对社会所作贡献及其所具备享受养老保险的资格,以货币形式支付的保险待遇,用于保障职工退休后的基本生活需要。
我国企业职工基本养老保险实行“社会统筹”与“个人账户”相结合的模式,即企业把职工工资总额按一定比例(20%)缴纳到社会统筹基金账户,再把职工个人工资按一定比例(8%)缴纳到个人账户。
这两个账户我们合称为养老保险基金。
退休后,按职工在职期间每月(或年)的缴费工资与社会平均工资之比(缴费指数),再考虑到退休前一年的社会平均工资等因素,从社会统筹账户中拨出资金(基础养老金),加上个人工资账户中一定比例的资金(个人账户养老金),作为退休后每个月的养老金。
数学建模大作业题目
A 题:图书馆购书计划的制定现代化图书馆馆藏图书,主要目的不是为了收藏而是为了使用。
除了国家图书馆等特大型的图书馆以外,一般图书馆都有特定的服务群体,办馆宗旨就是要尽量好地为这些特定群体服务,提高馆藏资源的利用率、读者文献信息需求的满足率以及对图书馆服务功能的满意率。
图书馆每年用于购书的经费是有限的,如何合理分配使用,以便使有限的购书经费最大限度地发挥其特定的经济效益是图书馆工作的重要环节之一。
以学校图书馆为例,要实现办馆效益,必须做到入藏文献合乎本校教师、学生(有时也兼顾社会)的需求,使图书馆藏书结构(学科结构、文种结构、文献类型结构等)满足本校教学科研的要求,以求藏书体系与本校专业设置相适应。
所购图书要能够真实地反映读者的实际需要,使读者结构和藏书结构尽量吻合,以便减少读者借不到图书的现象,即降低读者被借的比率、增加满足率。
文献只有在流通中才能传播信息,产生效益。
文献资料得不到利用,购置文献资料所耗费的资金就体现不出其价值。
因此,图书馆在增加藏书规模的同时,要千方百计地把文献提供给读者,以增加图书的出借次数、出借时间以及在借图书的数量等,力求使有限的价值投入获得最大的办馆效益。
设某普通高校现有十个系:计算机科学与技术系,在校学生960 人,信息科学与工程系,在校学生900 人,信息与计算科学系,在校学生280 人,生物与制药工程系,在校学生1500 人,机电工程系,在校学生1440 人,建筑工程系,在校生960 人,外语系,在校学生720 人,法律系,在校学生460 人,新闻系,在校学生642 人,经济与管理系,在校学生2400 人。
此外,该校目前还有“药物分子设计及生物化工”和“土木建筑工程”2 个重点学科;“外国语言学及应用语言学”重点扶植学科以及“计算机科学与技术”、“市场营销”2 个重点专业。
该校图书馆每学年都要投入大量资金购置图书,图书覆盖全院各学科专业、具有较完整的中外文文献资源。
大湾区杯粤港澳金融数学建模大赛题目
大湾区杯粤港澳金融数学建模大赛题目一、赛题背景随着大湾区经济的快速发展,金融行业对于数学建模的需求也越来越迫切。
为了促进粤港澳地区金融行业的交流与合作,大湾区杯粤港澳金融数学建模大赛应运而生。
本次比赛旨在通过金融数学建模的方式,解决实际金融问题,提升参赛选手的数学建模能力和金融业务理解能力。
二、赛题描述本次大赛的赛题为“大湾区金融风险评估与预测”。
选手需要根据所提供的数据和信息,利用数学建模的方法,对大湾区金融市场的风险进行评估和预测。
1. 数据准备参赛选手将获得大湾区金融市场的相关数据,包括但不限于股票价格、利率、汇率、宏观经济指标等。
选手需要对这些数据进行分析和处理,以便后续的建模工作。
2. 风险评估选手需要根据所提供的数据,建立适当的模型来评估大湾区金融市场的风险水平。
可以考虑使用统计学方法、时间序列分析、风险价值模型等进行建模和分析。
3. 风险预测选手需要基于已有的数据和模型,对大湾区金融市场的未来风险进行预测。
可以利用时间序列预测、回归分析、机器学习等方法进行预测。
4. 结果呈现选手需要将建模和预测的结果进行呈现,可以使用图表、报告等形式展示。
同时,选手还需要对模型的准确性和可靠性进行评估和讨论。
三、评分标准本次大赛将根据以下几个方面对参赛选手进行评分:1. 模型建立的合理性和创新性2. 数据分析和处理的准确性和全面性3. 风险评估和预测的准确性和可靠性4. 结果呈现的清晰度和美观度5. 论文的逻辑性和语言表达能力四、参赛要求1. 参赛选手需组成3-5人的团队,团队成员可以来自不同的高校或企事业单位。
2. 参赛选手需具备一定的数学建模和金融知识,具备一定的编程和数据分析能力。
3. 参赛选手需按照规定时间完成建模和预测工作,并提交相应的报告和结果呈现材料。
五、奖项设置本次大赛将设立一、二、三等奖,同时还将评选最佳创意奖、最佳数据分析奖、最佳结果呈现奖等特别奖项。
六、报名方式参赛团队需在规定时间内将报名表和相关材料发送至指定邮箱,报名成功后将获得比赛所需的数据和信息。