最新人教版八年级数学上册第14章《整式的乘除与因式分解》单元测试

合集下载

人教版八年级数学上册第十四章《整式的乘法和因式分解》单元测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法和因式分解》单元测试题(含答案)

人教版八年级数学上册第十四章《整式的乘法和因式分解》单元测试题(含答案)一、单选题1.下列运算中,正确的是( )A .326a a a ⋅=B .623a a a ÷=C .23523a a a +=D .3412()a a = 2.因式分解x 3-2x 2+x 正确的是( )A .(x -1)2B .x (x -1)2C .x (x 2-2x +1)D .x (x +1)23.下列运算正确的是( )A .3a 2﹣2a 2=1B .a 2•a 3=a 6C .(a ﹣b )2=a 2﹣b 2D .(2a+b )2=4a 2+4ab+b 2 4.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为( )A .212m mn +B .22mn m - C .22m mn + D .222m n + 5.下列运算正确的是( )A .236a a a ⋅=B .()326a a -=C .32a a a ÷=D .()a b c ab ac -+=-+6.将多项式x ﹣x 3因式分解正确的是( )A .x (x 2﹣1)B .x (1﹣x 2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x ) 7.下列各式中正确的是( )A .(a - b)2 = a 2 - b 2B .(a + 2b)2= a 2+ 2ab + b 2C .(a + b)2= a 2+ b 2D .(-a + b)2= a 2- 2ab + b 28.在下列多项式中,不能用平方差公式因式分解的是( )A .229x y -B .21m -+C .2216a b -+D .21x -- 9.下列因式分解正确的是( )A .B .C .D .10.当2x =时,代数式31px qx ++的值是2018,则当2x =-时,代数式31px qx ++的值是( )A .-2016B .2015C .-2018D .2016第II 卷(非选择题)二、填空题11.如果3x =时代数式31ax bx ++的值为2019,那么当3x =-时代数式31ax bx ++的值是_________12.已知:1238242739x x --⎛⎫⎛⎫⋅= ⎪ ⎪⎝⎭⎝⎭, 则x=____________. 13.计算:232a a a ⋅-=____________.14.分解因式:a 2+5a ﹣6= .15.分解因式:x 2﹣16y 2=_____.16.已知223x x -=,则2361x x -++=___________.17.若7a b +=,3a b -=.则ab =______.18.在实数范围内分解因式:______.三、解答题19.先化简,再求值:()()()()()222222m n m n m n m n m n +--+--+,其中12m =-,n=2. 20.(每题4分,共8分)因式分解:(1)2(21)(32)(21)x x x ---- (2)2484a a ++21.化简(1)(23)(43)y z z y +--+(2)22292(4)a b b a +-+22.计算(1)先化简,再求值:2(2)(43)a b a a b +-+,其中a=1,.(2)解不等式组205121123x x x ->⎧⎪+-⎨+≥⎪⎩ 23.先化简,再求值:(1)(2x +y )2﹣y (2x +y ),其中x,y =﹣1;(2)[(a ﹣2b )2+(a ﹣2b )(a +2b )﹣2a (2a ﹣b )]÷2a ,其中a =3,b =2. 24.化简:(1)()()2222331223ab ab a b -÷-⋅; (2)()()22x y z x y z -+++.25.先化简再求值:x 3·(-y 3)2+328或,其中x =8-a ,y =2.26.如果,a b 互为相反数,,x y 互为倒数,m 的倒数等于它本身,求()263a b m xy ++-的值.27.因式分解:222()14()24x x x x ---+参考答案1.D2.B3.D4.C5.C6.D7.D8.D9.B10.A11.-201712.8513.3a14.(a ﹣1)(a+6)15.(x +4y )(x ﹣4y )16.8-17.118.19.33 20.(1)(21)(1)x x --;(2)24(1)a +.21.(1)7y z -+(2)b22.2+2;(2)-1≤x≤2.23.(1)4x 2+2xy ,原式=123-(2)﹣a ﹣b ,原式=﹣5. 24.(1)249b -;(2)22224xz x z y ++- 25.3678x y ;7 26.-227.(x-2)(x+1)(x-4)(x+3)。

新人教版 八年级数学上册 第14章 整式的乘法与因式分解 单元测试卷 (解析版)

新人教版 八年级数学上册 第14章 整式的乘法与因式分解 单元测试卷 (解析版)

第14章整式的乘法与因式分解单元测试卷一、选择题1.下列各运算中,计算正确的是()A.a2+2a2=3a4B.x8﹣x2=x6C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣27x62.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a83.下列计算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.8x4÷2x2=4x2D.(x﹣2y)(x+2y)=x2﹣2y24.把多项式x2﹣4x+4分解因式,所得结果是()A.x(x﹣4)+4B.(x﹣2)(x+2)C.(x﹣2)2D.(z+2)25.两整式相乘的结果为a2﹣a﹣12的是()A.(a﹣6)(a+2)B.(a﹣3)(a+4)C.(a+6)(a﹣2)D.(a+3)(a﹣4)6.x3y2•(﹣xy3)2的计算结果是()A.x5y10B.x5y8C.﹣x5y8D.x6y127.将一个长方形的长减少1%,宽增加1%,则这个长方形的面积()A.不变B.减少1%C.增大1%D.减少0.01% 8.若(x+3)(2x﹣n)=2x2+mx﹣15,则()A.m=﹣1,n=5B.m=1,n=﹣5C.m=﹣1,n=﹣5D.m=1,n=5 9.下列计算:①3x3•(﹣2x2)=﹣6x5;②(a3)2=a5;③(﹣a)3÷(﹣a)=﹣a2;④4a3b÷(﹣2a2b)=﹣2a:⑤(a﹣b)2=a2﹣b2;⑤(x+2)(x﹣1)=x2﹣x﹣2,其中正确的有()A.1个B.2个C.3个D.4个10.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2B.﹣7、2C.﹣7、﹣2D.7、﹣211.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5B.﹣10C.﹣5D.1012.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k个完全平方数的和,那么k的最小值为()A.1B.2C.3D.4二、填空题13.分解因式:axy﹣ay2=.14.若x2+4x+m能用完全平方公式因式分解,则m的值为.15.若a m=9,a n=3,则a m﹣n=.16.已知2m=a,32n=b,则23m+10n=.17.多项式3ma2+12mab的公因式是.18.已知|m﹣3|与(2+n)4互为相反数,则(n+m)2020的值为.三、解答题19.用提公因式法将下列各式因式分解:(1)2x2﹣4xy+x;(2)﹣4m3+8m2﹣24m.20.(1)计算:(19.99+4.99)2﹣4×4.99×19.99.(2)分解因式:x3﹣x2+x.(3)利用乘法公式进行计算:(2x+y﹣3)(2x﹣y+3).21.化简求值:[(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2]÷2x,其中x=﹣2,y=.22.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.参考答案一、选择题1.下列各运算中,计算正确的是()A.a2+2a2=3a4B.x8﹣x2=x6C.(x﹣y)2=x2﹣xy+y2D.(﹣3x2)3=﹣27x6【分析】根据合并同类项法则,完全平方公式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.解:A、结果是3a2,故本选项不符合题意;B、x8和﹣x2不能合并,故本选项不符合题意;C、结果是x2﹣2xy+y2,故本选项不符合题意;D、结果是﹣27x6,故本选项符合题意;故选:D.2.计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【分析】根据幂的乘方、同底数幂的除法的计算法则进行计算即可.解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.3.下列计算正确的是()A.x2+x=x3B.(﹣3x)2=6x2C.8x4÷2x2=4x2D.(x﹣2y)(x+2y)=x2﹣2y2【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.解:x2+x不能合并,故选项A错误;(﹣3x)2=9x2,故选项B错误;8x4÷2x2=4x2,故选项C正确;(x﹣2y)(x+2y)=x2﹣4y2,故选项D错误;故选:C.4.把多项式x2﹣4x+4分解因式,所得结果是()A.x(x﹣4)+4B.(x﹣2)(x+2)C.(x﹣2)2D.(z+2)2【分析】这个多项式可以用完全平方公式分解因式.完全平方公式:a2±2ab+b2=(a±b)2.解:x2﹣4x+4=x2﹣2•2x+22=(x﹣2)2.故选:C.5.两整式相乘的结果为a2﹣a﹣12的是()A.(a﹣6)(a+2)B.(a﹣3)(a+4)C.(a+6)(a﹣2)D.(a+3)(a﹣4)【分析】把各选项根据多项式的乘法法则展开,然后选取答案即可.解:A、(a﹣6)(a+2)=a2﹣4a﹣12,故本选项错误;B、(a﹣3)(a+4)=a2+a﹣12,故本选项错误;C、(a+6)(a﹣2)=a2+4a﹣12,故本选项错误;D、(a+3)(a﹣4)=a2﹣a﹣12,正确.故选:D.6.x3y2•(﹣xy3)2的计算结果是()A.x5y10B.x5y8C.﹣x5y8D.x6y12【分析】先算乘方,再进行单项式乘法运算,然后直接找出答案.解:x3y2•(﹣xy3)2,=x3y2•x2y3×2,=x3+2y2+6,=x5y8.故选:B.7.将一个长方形的长减少1%,宽增加1%,则这个长方形的面积()A.不变B.减少1%C.增大1%D.减少0.01%【分析】设出原长方形的长为a,宽为b,表示出原长方形的面积,然后根据长方形的长减少1%,宽增加1%,表示出变化后长方形的长与宽,进而表示出变化后长方形的面积,可求出减少的面积,即可求出减少的百分比.解:设原长方形的长为a,宽为b,则原长方形的面积为ab,根据题意得:变化后长方形的长为(1﹣1%)a=0.99a,宽为(1+1%)b=1.01b,∴变化后长方形的面积为0.99a• 1.01b=0.9999ab,∴这个长方形的面积减少ab﹣0.9999ab=0.0001ab,则这个长方形的面积减少的百分数为×100%=0.01%.故选:D.8.若(x+3)(2x﹣n)=2x2+mx﹣15,则()A.m=﹣1,n=5B.m=1,n=﹣5C.m=﹣1,n=﹣5D.m=1,n=5【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件即可求出m与n的值.解:∵(x+3)(2x﹣n)=2x2+(6﹣n)x﹣3n=2x2+mx﹣15,∴6﹣n=m,﹣3n=﹣15,解得:m=1,n=5.故选:D.9.下列计算:①3x3•(﹣2x2)=﹣6x5;②(a3)2=a5;③(﹣a)3÷(﹣a)=﹣a2;④4a3b÷(﹣2a2b)=﹣2a:⑤(a﹣b)2=a2﹣b2;⑤(x+2)(x﹣1)=x2﹣x﹣2,其中正确的有()A.1个B.2个C.3个D.4个【分析】各项计算得到结果,判断即可.解:①3x3•(﹣2x2)=﹣6x5,符合题意;②(a3)2=a6,不符合题意;③(﹣a)3÷(﹣a)=a2,不符合题意;④4a3b÷(﹣2a2b)=﹣2a,符合题意;⑤(a﹣b)2=a2﹣2ab+b2,不符合题意;⑤(x+2)(x﹣1)=x2+x﹣2,不符合题意,故选:B.10.若x2+mx﹣18能分解为(x﹣9)(x+n),那么m、n的值是()A.7、2B.﹣7、2C.﹣7、﹣2D.7、﹣2【分析】将分解因式的结果利用多项式乘以多项式法则计算,合并后根据多项式相等的条件即可求出m与n的值.解:根据题意得:x2+mx﹣18=(x﹣9)(x+n)=x2+(n﹣9)x﹣9n,∴m=n﹣9,﹣18=﹣9n,解得:m=﹣7,n=2.故选:B.11.如果(2x+m)(x﹣5)展开后的结果中不含有x的一次项,那么m等于()A.5B.﹣10C.﹣5D.10【分析】原式利用多项式乘以多项式法则计算,合并后根据结果不含x的一次项,即可确定出m的值.解:(2x+m)(x﹣5)=2x2﹣10x+mx﹣5m=2x2+(m﹣10)x﹣5m,∵结果中不含有x的一次项,∴m﹣10=0,即m=10.故选:D.12.如果对于不<8的自然数n,当3n+1是一个完全平方数时,n+1能表示成k个完全平方数的和,那么k的最小值为()A.1B.2C.3D.4【分析】根据完全平公式计算即可.解:由已知3n+1是一个完全平方数,所以我们就设3n+1=a2,显然a2不是3的倍数,于是a=3x±1,从而3n+1=a2=9x2±6x+1,n=3x2±2x,即n+1=2x2+(x±1)2=x2+x2+(x±1)2,即把n+1写为了x,x,x±1这三个数的平方和,由于当n=8时.8+1=32.所以k的最小值为1,故选:A.二、填空题13.分解因式:axy﹣ay2=ay(x﹣y).【分析】直接提取公因式ay,进而分解因式得出答案.解:axy﹣ay2=ay(x﹣y).故答案为:ay(x﹣y).14.若x2+4x+m能用完全平方公式因式分解,则m的值为4.【分析】利用完全平方公式可得答案.解:x2+4x+4=(x+2)2,故答案为:4.15.若a m=9,a n=3,则a m﹣n=3.【分析】同底数幂的除法法则:同底数幂相除,底数不变,指数相减.解:∵a m=9,a n=3,∴a m﹣n=a m÷a n=9÷3=3.故答案为:3.16.已知2m=a,32n=b,则23m+10n=a3b2.【分析】根据幂的乘方和同底数幂的乘法运算规则进行计算.解:∵32n=b,∴25n=b,∴23m+10n,=23m•210n,=(2m)3•(25n)2,=a3b2.17.多项式3ma2+12mab的公因式是3ma.【分析】根据公因式的定义,即找出两式中公共的因式即可.解:3ma2+12mab中,3与12的公因式是:3,ma2与mab的公因式是:ma,∴多项式3ma2+12mab的公因式是:3ma,故答案为:3ma.18.已知|m﹣3|与(2+n)4互为相反数,则(n+m)2020的值为1.【分析】根据相反数的概念列出算式,根据非负数的性质求出m、n的值,计算即可.解:由题意得,|m﹣3|+(2+n)4=0,则m﹣3=0,2+n=0,解得,m=3,n=﹣2,则(n+m)2020=1,故答案为:1.三、解答题19.用提公因式法将下列各式因式分解:(1)2x2﹣4xy+x;(2)﹣4m3+8m2﹣24m.【分析】(1)直接提取公因式x,进而得出答案;(2)直接提取公因式﹣4m,进而得出答案.解:(1)2x2﹣4xy+x=x(2x﹣4y+1);(2)﹣4m3+8m2﹣24m=﹣4m(m2﹣2m+6).20.(1)计算:(19.99+4.99)2﹣4×4.99×19.99.(2)分解因式:x3﹣x2+x.(3)利用乘法公式进行计算:(2x+y﹣3)(2x﹣y+3).【分析】(1)原式利用完全平方公式化简,合并后再利用完全平方公式变形,计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式利用平方差公式,以及完全平方公式分解即可.解:(1)原式=19.992+2×19.99×4.99+4.992﹣4×4.99×19.99=19.992﹣2×19.99×4.99+4.992=(19.99﹣4.99)2=152=225;(2)原式=x(x2﹣x+)=x(x﹣)2;(3)原式=(2x)2﹣(y﹣3)2=4x2﹣y2+6y﹣9.21.化简求值:[(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2]÷2x,其中x=﹣2,y=.【分析】先根据完全平方公式,平方差公式,多项式除单项式的法则去括号,合并同类项,将整式化为最简式,然后把x、y的值代入即可.解:[(x+2y)2﹣(x﹣2y)2﹣(x+2y)(x﹣2y)﹣4y2]÷2x,=[(x2+4xy+4y2)﹣(x2﹣4xy+4y2)﹣(x2﹣4y2)﹣4y2]÷2x,=(x2+4xy+4y2﹣x2+4xy﹣4y2﹣x2+4y2﹣4y2)÷2x,=(﹣x2+8xy)÷2x,=﹣x+4y,当x=﹣2,y=时,原式=﹣×(﹣2)+4×=1+2=3.22.欢欢与乐乐两人共同计算(2x+a)(3x+b),欢欢抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;乐乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.【分析】(1)根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为6x2﹣13x+6,可知(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,于是2b﹣3a=﹣13①;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知常数项是﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6,可得到2b+a=﹣1②,解关于①②的方程组即可求出a、b的值;(2)把a、b的值代入原式求出整式乘法的正确结果.解:(1)根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为6x2﹣13x+6,那么(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,可得2b﹣3a=﹣13 ①乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为2x2﹣x﹣6,可知(2x+a)(x+b)=2x2﹣x﹣6即2x2+(2b+a)x+ab=2x2﹣x﹣6,可得2b+a=﹣1 ②,解关于①②的方程组,可得a=3,b=﹣2;(2)正确的式子:(2x+3)(3x﹣2)=6x2+5x﹣6。

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。

人教版八年级数学 上册 第14章 整式的乘法与因式分解 单元测试题(有答案)

 人教版八年级数学 上册 第14章 整式的乘法与因式分解 单元测试题(有答案)

人教版八年级数学上册第14章整式的乘法与因式分解单元测试题一.选择题(共10小题)1.下列各式中计算正确的是()A.(x4)3=x7B.[(﹣a)2]5=a10C.(﹣a2)3=(﹣a3)2D.a2m=a2•a m2.计算(2x﹣3)(3x+4)的结果,与下列哪一个式子相同?()A.﹣7x+4B.﹣7x﹣12C.6x2﹣12D.6x2﹣x﹣123.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x,则余下阴影部分的面积是()A.ab﹣ax﹣bx+x2B.ab﹣ax﹣bx﹣x2C.ab﹣ax﹣bx+2x2D.ab﹣ax﹣bx﹣2x24.下列运算正确的是()A.a3+a4=a7B.a3÷a4=a C.2a3•a4=2a7D.(2a4)3=8a75.选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式6.如果x2+x+1=0,那么x2016+x2015+x2014+…+x3+x2+x()A.3B.2C.1D.07.在下列多项式中,与﹣x﹣y相乘的结果为x2﹣y2的多项式是()A.x﹣y B.x+y C.﹣x+y D.﹣x﹣y8.下列计算正确的是()A.a3•a2=a6B.a5+a5=a10C.(﹣2a3)3=﹣6a9D.(a+2b)(a﹣2b)=a2﹣4b2 9.若4x2﹣kxy+9y2是完全平方式,则k的值是()A.±6B.±12C.±36D.±72 10.下列从左到右的变形是因式分解的是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣6a+5=a(a﹣6)+5C.x2﹣y2+2x+1=(x+y)(x﹣y)+2x+1D.(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2二.填空题(共8小题)11.已知3m=a,9n=b,则3m+2n﹣1的值用含a、b的式子表示为.12.如果(a m b n)3=a9b12,那么m+n=.13.如果9x2﹣axy+4y2是完全平方式,则a的值是.14.若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是.15.计算:(2a﹣5b)(2b﹣5a)=.16.计算:(5+1)(52+1)(54+1)(58+1)=.17.因式分解:4a3b3﹣ab=.18.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d=.三.解答题(共8小题)19.计算:(1)3(x3)2x3﹣(3x3)3+(5x)2•x7;(2)(﹣2ab)(3a2•2ab﹣b2)20.因式分解:(1)27xy2﹣3x(2)a2+b2﹣9+2ab(3)x2﹣2x﹣821.(1)已知m2﹣n2=24,m+n=8,求m﹣n的值;(2)已知xy=5,x+y=6,求x﹣y的值.22.(1)已知(m+n)2=11,mn=2,求(m﹣n)2的值(2)已知2x+2=a,用含a的代数式表示2x;(3)已知x=3m+2,y=9m+3m,试用含x的代数式表示y.23.(1)已知a2+b2=17,ab=4,求a+b的值;(2)已知a﹣b=5,(a+b)2=49,求a2+b2的值.24.解方程或不等式:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1)(2)x(3x﹣2)<3(x﹣2)(x+1)25.先阅读下列解答过程,然后再解题.例:已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b.比较系数得,解得∴m=.解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取x=﹣,2×(﹣)3﹣(﹣)2+m=0,故m=.(1)已知多项式2x3﹣2x2+m有一个因式是x+2,求m的值.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.26.阅读:材料1:只含有一个未知数,并且未知数的最高次数是2次,最高次项的系数不为零,这样的整式方程叫做一元二次方程.一元二次方程有一种解法是利用因式分解来解的.如解方程:x2﹣3x+2=0,左边分解因式得(x﹣1)(x﹣2)=0,所以x﹣1=0或x﹣2=0,所以原方程的解是x=1或x=2.材料2:立方和公式用字母表示为:x3+y3=(x+y)(x2﹣xy+y2),(1)请利用材料1的方法解方程:x2﹣4x+3=0;(2)请根据材料2类比写出立方差公式:x3﹣y3=;(提示:可以用换元方法)(3)结合材料1和2,请你写出方程x6﹣7x3﹣8=0所有根中的两个根.参考答案与试题解析一.选择题(共10小题)1.解:A.(x4)3=x12,故本选项不合题意;B.[(﹣a)2]5=a10,正确,故本选项符合题意;C.(﹣a2)3=﹣a6,(﹣a3)2=a6,∴(﹣a2)3≠(﹣a3)2,故本选项不合题意;D.a2+m=a2•a m,故本选项不合题意.故选:B.2.解:由多项式乘法运算法则得(2x﹣3)(3x+4)=6x2+8x﹣9x﹣12=6x2﹣x﹣12.故选:D.3.解:根据题意得:(a﹣x)(b﹣x)=ab﹣ax﹣bx+x2,故选:A.4.解:A、a3+a4,无法计算,故此选项错误;B、a3÷a4=a﹣1,故此选项错误;C、2a3•a4=2a7,正确;D、(2a4)3=8a12,故此选项错误;故选:C.5.解:选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是:运用平方差公式.故选:B.6.解:∵x2+x+1=0,∴x2016+x2015+x2014+…+x3+x2+x=x2014(x2+x+1)+…+x(x2+x+1)=0.故选:D.7.解:(x﹣y)(﹣x﹣y)=y2﹣x2,故A错误;(﹣x﹣y)(x+y)=﹣x2﹣2xy﹣y2,故B错误;(﹣x+y)(﹣x﹣y)=x2﹣y2,故C正确;(﹣x﹣y)(﹣x﹣y)=x22xy+y2,故D错误.故选:C.8.解:A.a3•a2=a5,故A选项错误;B.a5+a5=2a5,故B选项错误;C.(﹣2a3)3=﹣8a9,故C选项错误;D.(a+2b)(a﹣2b)=a2﹣4b2,故D选项正确;故选:D.9.解:∵4x2﹣kxy+9y2是完全平方式,∴﹣kxy=±2×2x•3y,解得k=±12.故选:B.10.解:选项A:是整式的乘法运算,故A不正确;选项B:只将前两项提取公因式了,整体上并不是因式分解,故B不正确;选项C:仅将前两项利用平方差公式分解了,整体上并未分解,故C不正确;选项D:是将(x﹣y)当作一个整体,利用完全平方公式进行的因式分解,D正确.故选:D.二.填空题(共8小题)11.解:∵3m=a,9n=32n=b,∴3m+2n﹣1=3m•32n÷3=.故答案为:12.解:∵(a m b n)3=a9b12,∴3m=9,3n=12,解得m=3,n=4,∴m+n=3+4=7.故答案为:713.解:∵(3x±2y)2=9x2±12xy+4y2,∴a=±12,故答案为:±1214.解:∵ab=﹣3,a﹣2b=5,∴a2b﹣2ab2=ab(a﹣2b)=﹣3×5=﹣15.故答案为:﹣15.15.解:原式=4ab﹣10a2﹣10b2+25ab=29ab﹣10a2﹣10b2,故答案为:29ab﹣10a2﹣10b2.16.解:原式=(5﹣1)(5+1)(52+1)(54+1)(58+1)=(52﹣1)(52+1)(54+1)(58+1)=(54﹣1)(54+1)(58+1)=(58﹣1)(58+1)=(516﹣1),故答案为:(516﹣1)17.解:原式=ab(4a2b2﹣1)=ab(2ab+1)(2ab﹣1),故答案为:ab(2ab+1)(2ab﹣1)18.解:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x)+x2﹣12x﹣5=5x2+x2﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x﹣5)+25=6×0+25=25故答案为:25.三.解答题(共8小题)19.解:(1)原式=3x9﹣27x9+25x9=x9;(2)原式=﹣12a4b2+2ab3.20.解:(1)27xy2﹣3x=3x(9y2﹣1)=3x(3y+1)(3y﹣1);(2)a2+b2﹣9+2ab=a2+2ab+b2﹣9=(a+b)2﹣32=(a+b+3)(a+b﹣3);(3)x2﹣2x﹣8=(x+2)(x﹣4).21.解:(1)∵m2﹣n2=(m+n)(m﹣n)=24,m+n=8,∴;(2)∵xy=5,x+y=6,∴(x﹣y)2=(x+y)2﹣4xy=62﹣4×5=16,x﹣y=±4.22.解:(1)(m﹣n)2=(m+n)2﹣4mn,当(m+n)2=11,mn=2时,原式=11﹣4×2=3;(2)∵2x+2=2x×22=a,∴2x=;(3)∵x=3m+2,∴3m=x﹣2,∵y=9m+3m=(3m)2+3m,∴y=(x﹣2)2+(x﹣2),即y=x2﹣3x+2.23.解:(1)∵a2+b2=17,ab=4,∴(a+b)2=a2+b2+2ab=17+2×4=25,∴,故a+b的值为5或﹣5;(2)∵a﹣b=5,∴(a﹣b)2=a2+b2﹣2ab=25①,又∵(a+b)2=a2+b2+2ab=49②,由①②得a2+b2=37,即a2+b2的值为37.24.解:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1),x2﹣2x﹣3x+6+18=x2+x+9x+9,x2﹣5x﹣10x﹣x2=9﹣6﹣18,﹣15x=﹣15,x=1;(2)x(3x﹣2)<3(x﹣2)(x+1),3x2﹣2x<3x2+3x﹣6x﹣6,3x2﹣2x﹣3x2﹣3x+6x<﹣6,x<﹣6.25.解:(1)∵多项式2x3﹣2x2+m有一个因式是x+2,∴设2x3﹣2x2+m=A•(x+2)(A为整式)由于上式为恒等式,为方便计算取x=﹣2,2×(﹣2)3﹣2×(﹣2)2+m=0,故m=24;(2)∵x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),∴设x4+mx3+nx﹣16=A•(x﹣1)(x﹣2)(A为整式)由于上式为恒等式,为方便计算取x=2和x=1,代入得:24+m×23+2n﹣16=0,14+m×13+n﹣16=0,解得:m=﹣5,n=20.26.解:(1)∵x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,∴x﹣1=0或x﹣3=0,解得:x=1或x=3;(2)∵x3+y3=(x+y)(x2﹣xy+y2),∴x3﹣y3=x3+(﹣y)3=[x+(﹣y)][x2﹣x(﹣y)+(﹣y)2]=(x﹣y)(x2+xy+y2);(3)∵x6﹣7x3﹣8=0,∴(x3)2﹣7x3﹣8=0,∴(x3﹣8)(x3+1)=0,∴x3﹣8=0或x3+1=0,∴x=2或x=﹣1。

人教版数学8年级上册 第十四章 整式的乘除与因式分解 单元测试(含答案)

人教版数学8年级上册 第十四章 整式的乘除与因式分解   单元测试(含答案)

人教版数学8年级上册第14单元测试时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022秋•任城区校级月考)下列各组多项式中,没有公因式的是( )A.ax﹣bx和by﹣ay B.3﹣9y和6y2﹣2yC.x2+y2和x+y D.a﹣b和a2﹣2ab+b22.(3分)(2022秋•张店区校级月考)下列从左到右的变形,是因式分解的是( )A.(3﹣x)(3+x)=9﹣x2B.m3﹣mn2=m(m+n)(m﹣n)C.(y+1)(y﹣3)=﹣(3﹣y)(y+1)D.﹣x2+(﹣2)2=(x﹣2)(x+2)3.(3分)(2022秋•安岳县校级月考)下列运算正确的是( )A.a2•a3=a6B.(2a)3=6a3C.(a2)3=a6D.a6÷a2=a3 4.(3分)(2022秋•仁寿县校级月考)若a﹣b=1,ab=﹣2,则(a+2)(b﹣2)的值为( )A.8B.﹣8C.4D.﹣45.(3分)(2022秋•西湖区校级月考)计算正确的是( )A.(﹣2022)0=0B.x8÷x2=x4C.(﹣a2b3)4=﹣a8b12D.3a4•4a=12a56.(3分)(2022秋•宛城区校级月考)课堂上老师布置了四个运算题目,小刚做对的题数是( )计算:①(﹣3a2)3=﹣27a6;②(﹣a)2•a3=a5;③(2x﹣y)2=4x2﹣y2;④a2+4a2=5a2A.0个B.1个C.2个D.3个7.(3分)(2022秋•南关区校级月考)已知,a=344,b=433,c=522,则a,b,c的大小关系是( )A.a>b>c B.a>c>b C.a<b<c D.b>c>a8.(3分)(2022秋•临汾月考)计算(−72)2022×(27)2023的结果是( )A .27B .−72C .1D .﹣19.(3分)(2022秋•卧龙区校级月考)下列式子中能用平方差公式的有( )①(x ﹣2y )(x +2y )②(3a ﹣bc )(﹣bc ﹣3a )③(3m ﹣2n )(﹣3m +2n )④(3﹣x ﹣y )(3+x +y )A .1个B .2个C .3个D .4个10.(3分)(2022秋•卧龙区校级月考)若x 2﹣2(m +4)x +25是一个完全平方式,则m 的值为( )A .1或﹣9B .2C .3D .5或111.(3分)(2022春•鹿城区校级期中)如图,在长方形ABCD 中,AB =6,BC =10,其内部有边长为a 的正方形AEFG 与边长为b 的正方形HIJK ,两个正方形的重合部分也为正方形,且面积为5,若S 2=4S 1,则正方形AEFG 与正方形HIJK 的面积之和为( )A .20B .25C .492D .81412.(3分)(2022春•市北区期中)如图将4个长、宽分别均为a 和b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数式是( )A .a 2+2ab +b 2=(a +b )2B .a 2+2ab +b 2=(a ﹣b )2C .4ab =(a +b )2﹣(a ﹣b )2D .(a +b )(a ﹣b )=a 2﹣b 2二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•南召县月考)计算:(﹣0.25)2023×42022= .14.(3分)(2022秋•张店区校级月考)已知正方形的面积是(16﹣8x+x2)cm2(x>4cm),则正方形的边长是 .15.(3分)(2022秋•任城区校级月考)下列各式能在实数范围内因式分解的是:①9x2﹣4y2;②x2+5xy﹣6y2;③x2+2x+3;④a2+2ab﹣b2;⑤m2﹣2;⑥9a2﹣6a(a﹣b)+(a+b)2. (请填序号).16.(3分)(2022秋•任城区校级月考)甲、乙两个同学分解因式2x2+ax+b 时,甲看错了b,分解结果为(2x+3)(x﹣2);乙看错了a分解结果为(x+3)(2x+2),则a+b= .17.(3分)(2022秋•任城区校级月考)计算1236321123456×123456−123455×123457 = .18.(3分)(2022秋•仁寿县校级月考)若x3y n+1•x m+n•y2n+2=x9y9,则4m﹣3n = .三、解答题(共7小题,满分66分)19.(9分)(2022秋•东平县校级月考)因式分解:(1)9(m﹣n)(m+n)﹣3(m﹣n)2;(2)8a(a﹣b)2﹣12(b﹣a)3;(3)(x2﹣6x)2+18(x2﹣6x)+81.20.(9分)(2022秋•海门市校级月考)(1)已知273×94=3x,求x的值.(2)已知10a=2,10b=3,求103a+b的值.21.(9分)(2022秋•卧龙区校级月考)已知a+b=﹣4,ab=3.求:(1)a2+b2;(2)a﹣b的值.22.(9分)(2022春•蜀山区校级期中)如图,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)上述操作能验证的等式是: (请选择正确的选项);A.a2﹣ab=a(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)D.a2﹣b2=(a+b)(a﹣b)(2)请利用你从(1)选出的等式,完成下列各题:①已知9a2﹣b2=36,3a+b=9,则3a﹣b= ;②计算:(1−122)⋅(1−132)⋅(1−142)⋅(1−152)⋯(1−120222).23.(10分)(2022春•金水区校级期中)阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b,则(30﹣x)(x﹣10)=ab=160,且a+b=(30﹣x)+(x﹣10)=20,所以(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2x160=80.解决问题:(1)若x满足(50﹣x)(x﹣40)=2,求(50﹣x)2+(x﹣40)2= ;(2)若x满足(x﹣2022)2+(x﹣2020)2=2000,求(x﹣2022)(x﹣2020)的值.(3)如图,在长方形ABCD中,AB=10,BC=6,点E、F是BC、CD 上的点,且BE=DF=x,分别以FC:CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为50平方单位,则图中阴影部分的面积和为 平方单位.24.(10分)(2022春•鹿城区校级期中)已知线段AB=4a,点M是AB中点,点P在线段MB上,MP=b,如图所示构造三个正方形.(1)用含a,b的代数式表示阴影部分的面积并化简.(2)若阴影部分的面积为4,且4a2+b2=7,求小正方形的边长.25.(10分)(2022春•海曙区校级期中)【学习材料】拆项添项法在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,这样的分解因式的方法称为拆项添项法.如:例1、分解因式:x4+4y4.解:原式=x4+4y4=x4+4x2y2+4y4﹣4x2y2=(x2+2y2)2﹣4x2y2=(x2+2y2+2xy)(x2+2y2﹣2xy)例2、分解因式:x3+5x﹣6.解:原式=x3﹣x+6x﹣6=x(x2﹣1)+6(x﹣1)=(x﹣1)(x2+x+6).我们还可以通过拆项对多项式进行变形,如例3、把多项式a2+b2+4a﹣6b+13写成A2+B2的形式.解:原式=a2+4a+4+b2﹣6b+9=(a+2)2+(b﹣3)2【知识应用】请根据以上材料中的方法,解决下列问题:(1)分解因式:x2+2x﹣8= ;(2)运用拆项添项法分解因式:x4+4= ;(3)判断关于x的二次三项式x2﹣20x+111在x= 时有最小值;(4)已知M=x2+6x+4y2﹣12y+m(x﹣y均为整数,m是常数),若M恰能表示成A2+B2的形式,求m的值.参考答案一、选择题(共12小题,满分36分,每小题3分)1.C2.B3.C4.B5.D6.D7.A8.A9.C10.A11.B12.C;二、填空题(共6小题,满分18分,每小题3分)13.﹣0.2514.(x﹣4)cm15.①②④⑤⑥16.017.123632118.10;三、解答题(共7小题,满分66分)19.【解答】解:(1)9(m﹣n)(m+n)﹣3(m﹣n)2=3(m﹣n)[3(m+n)﹣(m﹣n)]=3(m﹣n)(3m+3n﹣m+n)=3(m﹣n)(2m+4n)=6(m﹣n)(m+2n);(2)8a(a﹣b)2﹣12(b﹣a)3=8a(a﹣b)2+12(a﹣b)3=4(a﹣b)2[2a+3(a﹣b)]=4(a﹣b)2(2a+3a﹣3b)=4(a﹣b)2(5a﹣3b);(3)(x2﹣6x)2+18(x2﹣6x)+81=(x2﹣6x+9)2=[(x﹣3)2]2=(x﹣3)4.20.【解答】解:(1)∵273×94=3x,∴(33)3×(32)4=3x,∴39×38=3x,∴317=3x,∴x=17;(2)∵10a=2,10b=3,∴103a+b=103a×10b=(10a)3×10b=23×3=8×3=24.21.【解答】解:(1)∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=16﹣2×3=10.(2)∵a2+b2=10,ab=3,∴(a﹣b)2=a2+b2﹣2ab=10﹣2×3=4,∴a﹣b=±2.22.【解答】解:(1)图1阴影部分的面积可以看作两个正方形的面积差,即a2﹣b2,图2阴影部分是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),由图1、图2的面积相等得,a2﹣b2=(a+b)(a﹣b),故答案为:D;(2)①∵9a 2﹣b 2=36,∴(3a +b )(3a ﹣b )=36,又∵3a +b =9,∴3a ﹣b =36÷9=4,故答案为:4;②原式=(1−12)(1+12)(1−13)(1+13)(1−14)(1+14)(1−15)(1+15)…(1−12022)(1+12022)=12×32×23×43×34×54×45×65×⋯×20212022×20232022 =12×20232022 =20234044.23.【解答】解:(1)设50﹣x =m ,x ﹣40=n ,则m +n =10,mn =(50﹣x )(x ﹣40)=2,∴(50﹣x )2+(x ﹣40)2=m 2+n 2=(m +n )2﹣2mn =100﹣4=96,故答案为:96;(2)设x ﹣2022=p ,x ﹣2020=q ,则p ﹣q =﹣2,p 2+q 2=(x ﹣2022)2+(x ﹣2020)2=2000,∵(p ﹣q )2=p 2+q 2﹣2pq ,∴pq =p 2+q 2−(p−q )22=2000−42=998,即(x ﹣2022)(x ﹣2020)=998;(3)由题意可得,FC =10﹣x ,EC =6﹣x ,则(10﹣x )(6﹣x )=50,设10﹣x =m ,6﹣x =n ,则m ﹣n =4,mn =(10﹣x )(6﹣x )=50,∵(m ﹣n )2=m 2+n 2﹣2mn ,即16=m 2+n 2﹣100,∴m 2+n 2=116,即阴影部分的面积为116平方单位,故答案为:116.24.【解答】解:(1)∵AB=4a,点M是AB中点,∴AM=BM=2a,∵MP=b,∴AP=2a+b,PB=2a﹣b,∴S阴影=(2a+b)2﹣(2a﹣b)2=4a2+b2+4ab﹣(4a2+b2﹣4ab)=4a2+b2+4ab﹣4a2﹣b2+4ab=8ab;(2)∵阴影部分的面积为4,∴8ab=4,∵4a2+b2=7,∴(2a﹣b)2=4a2+b2﹣4ab=7﹣2=5,∴小正方形的边长为5.25.【解答】解:(1)x2+2x﹣8=x2+2x+1﹣1﹣8=(x+1)2﹣9=(x+1+3)(x+1﹣3)=(x+4)(x﹣2).故答案为:(x+4)(x﹣2).(2)x4+4=x4+4+4x2﹣4x2=(x2+2)2﹣4x2=(x2+2+2x)(x2+2﹣2x).故答案为:(x2+2+2x)(x2+2﹣2x).(3)∵x2﹣20x+111=x2﹣20x+100﹣100+111=(x﹣10)2+11,∴当x=10时,有最小值.故答案为:10.(4)M=(x2+6x+9)+(4y2﹣12y+9)+m﹣18=(x+3)2+(2y﹣3)2+m﹣18,∵若M恰能表示成A2+B2的形式,∴m﹣18=0,∴m=18,答:m的值为18.。

人教版八年级数学上:第14章《整式的乘除与因式分解》单元测试(含答案)

人教版八年级数学上:第14章《整式的乘除与因式分解》单元测试(含答案)

第14章整式的乘法与因式分解一、选择题1.下列何者是22x7﹣83x6+21x5的因式?()A.2x+3 B.x2(11x﹣7)C.x5(11x﹣3)D.x6(2x+7)2.把多项式x3﹣2x2+x分解因式,正确的是()A.(x﹣1)2B.x(x﹣1)2C.x(x2﹣2x+1)D.x(x+1)23.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)二、填空题4.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n=______.5.因式分解:ax2﹣7ax+6a=______.6.分解因式:(a+2)(a﹣2)+3a=______.7.因式分解:ab2﹣a=______.8.分解因式:2m3﹣8m=______.9.因式分解4x﹣x3=______.10.分解因式x3﹣xy2的结果是______.11.分解因式:2﹣2a2=______.12.分解因式:12m2﹣3n2=______.13.分解因式:5x2﹣20=______.14.分解因式:2x(x﹣3)﹣8=______.15.因式分解:a3﹣ab2=______.16.分解因式:2a2﹣8=______.17.分解因式:m3﹣4m=______.18.分解因式:ax2﹣4a=______.19.分解因式:ab2﹣4ab+4a=______.20.分解因式:2a3﹣8a2+8a=______.21.分解因式:3a2﹣12ab+12b2=______.22.分解因式:4x2﹣8x+4=______.23.把多项式4ax2﹣ay2分解因式的结果是______.24.把多项式分解因式:ax2﹣ay2=______.25.分解因式: =______.26.因式分解:x3﹣5x2+6x=______.27.分解因式:3x2﹣18x+27=______.28.分解因式:a3b﹣9ab=______.29.分解因式:x2+3x(x﹣3)﹣9=______.30.分解因式:x2y﹣4y=______.第14章整式的乘法与因式分解参考答案一、选择题1.C;2.B;3.A;二、填空题4.4;5.a(x-1)(x-6);6.(a-1)(a+4);7.a(b+1)(b-1);8.2m(m+2)(m-2);9.-x (x+2)(x-2);10.x(x+y)(x-y);11.2(1+a)(1-a);12.3(2m+n)(2m-n);13.5(x+2)(x-2);14.2(x-4)(x+1);15.a(a+b)(a-b);16.2(a+2)(a-2);17.m(m-2)(m+2);18.a(x+2)(x-2);19.a(b-2)2;20.2a(a-2)2;21.3(a-2b)2;22.4(x-1)2;23.a(2x+y)(2x-y);24.a(x+y)(x-y);25.-(3x-1)2;26.x(x-3)(x-2);27.3(x-3)2;28.ab(a+3)(a-3);29.(x-3)(4x+3);30.y(x+2)(x-2);。

八年级上册数学人教版《第十四章 整式的乘除与因式分解》单元测试01(含答案)

八年级上册数学人教版《第十四章 整式的乘除与因式分解》单元测试01(含答案)

人教版八年级数学上册《第14章 整式的乘法与因式分解》单元测试一、选择题(共8小题,4×8=32)1.计算2x 3·x 2的结果是( )A .-2x 5B .2x 5C .-2x 6D .2x 62.下列计算,正确的是( )A .a 2·a 3=a 6B .2a 2-a =aC .a 6÷a 2=a 3D .(a 2)3=a 63.下列算式的运算结果为x 4的是( )A .x 4·xB .(x 2)2C .x 3+x 3D .x 4÷x 4.若3x =a ,3y =b ,则32x+y 等于( ) A .-a 2b B .a 2bC .2abD .a 2+b 5.计算:(a -b +3)(a +b -3)=( )A .a 2+b 2-9B .a 2-b 2-6b -9C .a 2-b 2+6b -9D .a 2+b 2-2ab +6a +6b +96.下列因式分解正确的是( )A .x 2-x =x (x +1)B .a 2-3a -4=(a +4)(a -1)C .a 2+2ab -b 2=(a -b )2D .x 2-y 2=(x +y )(x -y )7.若m =2100,n =375,则m ,n 的大小关系正确的是( )A .m >nB .m <nC .相等D .大小关系无法确定8.7张如图①的长为a ,宽为b (a >b )的小长方形纸片,按图②的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的方式放置,S 始终保持不变,则a ,b 满足( )A .a =52bB .a =3bC .a =72bD .a =4b二、填空题(共6小题,4×6=24)9.计算:-x2·x3=________10.计算2 017×2 019-2 0182=__________.11.因式分解:x2y-4y3=________________.12.多项式x2+mx+5分解因式是(x+5)(x+n),则m=__ __,n=__ __.13.已知2a2+2b2=10,a+b=3,则ab的值为________.14.已知2x+3·3x+3=36x-2,则x=______.三、解答题(共5小题,44分)15.(6分)计算:(1)a5·a7+a6·(-a3)2+2(-a3)4;(2)9(a-1)2-(3a+2)(3a-2);16.(8分)因式分解:(1)x2y-2xy2+y3;(2)(x-1)2+2(x-5);(3)(x2+16y2)2-64x2y2.17.(8分)先化简,再求值:[2y(x-1)8-3y2(x-1)7+4y3(x-1)6]÷[-3y(x-1)2],其中x=2,y=-1.18.(10分)已知m2=n+2,n2=m+2(m≠n),求m3-2mn+n3的值.19.(12分)如图是某环保工程所需要的一种圆柱形空心混凝土管道,它的内径长为d,外径长为D,长为l.设它的实体部分体积为V立方米.(1)用含D,d的式子表示V;(2)当它的内径d=45 cm,外径D=75 cm,长l=3 m时,利用分解因式的知识求浇制一节这样的管道大约需要多少立方米的混凝土?(其中π取3)参考答案1-4BDBB 5-8CDBB9.-x 510.-111.y (x -2y )·(x +2y )12.6,113.214.715.(1) 4a 12(2)-18a +1316.(1)解:原式=y (x 2-2xy +y 2)=y (x -y )2(2)解:原式=x 2-2x +1+2x -10=x 2-9=(x +3)(x -3)(3)解:原式=(x 2+16y 2+8xy )(x 2+16y 2-8xy )=(x +4y )2(x -4y )217.解:原式=-23 (x -1)6+y (x -1)5-43y 2(x -1)4,当x =2,y =-1时,原式=-318.解:m 3-2mn +n 3=m (n +2)-2mn +n (m +2)=2(m +n ),m 2-n 2=(n +2)-(m +2)=n -m ,∴(m +n )(m -n )=n -m ,∵m≠n ,∴m +n =-1,∴m 3-2mn +n 3=2(m +n )=2×(-1)=-219.解:(1)V =l·[π·⎝⎛⎭⎫D 2 2-π·⎝⎛⎭⎫d 2 2]=πl 4()D 2-d 2 (2)当d =45 cm ,D =75 cm ,l =3 m 时,V =πl 4 ()D 2-d 2 =πl 4 (D +d )·(D -d )=3×34×(75+45)×(75-45)×10-4=0.81(立方米).答:浇制一节这样的管道大约需要0.81立方米的混凝土。

人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案

人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案

人教版八年级数学上册《第十四章整式乘法与因式分解》单元测试卷-附带有答案学校:班级:姓名:考号:一、单选题1.下列计算正确的是()A.2a•3a=6a B.(﹣a3)2=a6C.6a÷2a=3a D.(﹣2a)3=﹣6a32.下列因式分解错误的是()A.a2+4a−4=(a+2)2B.2a−2b=2(a−b)C.x2−9=(x+3)(x−3)D.x2−x−2=(x+1)(x−2)3.将-12a2b-ab2提公因式-12ab后,另一个因式是()A.a+2b B.-a+2b C.-a-b D.a-2b4.已知x2+y2=4,xy=2那么(x+y)2的值为()A.6B.8C.10D.125.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为()A.10B.12C.14D.166.某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁二、填空题7.若a=b+2,则代数式a2−2ab+b2的值为.8.若a+b=5,ab=6,则(a+2)(b+2)的值是。

9.若(2x﹣3)x+5=1,则x的值为.10.观察下列各式的规律:1×3=22−1:3×5=42−1:5×7=62−1:7×9=82−1…请将发现的规律用含n的式子表示为.11.若m2=n+2023,n2=m+2023,且m≠n,则代数式m3−2mn+n3的值为.三、计算题12.计算:(1)(−12ab)(23ab2−2ab+43b)(2)(2x+y)(2x-y)+(x+y)2-2(2x2-xy)13.把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x)(4)4m2n2-(m2+n2)214.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣12.四、解答题15.木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km,木星的体积大约是多少km3(取3.14)?16.说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.17.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+ 10.请你计算出a、b的值各是多少,并写出这道整式乘法的符合题意结果.18.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2-2xy+y2-16;(2)△ABC三边a,b,c 满足a2-ab-ac+bc=0,判断△ABC的形状.19.阅读材料,解决后面的问题:若m2+2mn+2n2−6n+9=0,求m−n的值.解:∵m2+2mn+2n2−6n+9=0∴(m2+2mn+n2)+(n2−6n+9)=0即:(m+n)2+(n−3)2=0,∴m+n=0,n−3=0解得:m=−3,n=3∴m−n=−3−3=−6.(1)若x2+y2+6x−8y+25=0,求x+2y的值;(2)已知等腰△ABC的两边长a,b,满足a2+b2=10a+12b−61,求该△ABC的周长;(3)已知正整数a,b,c满足不等式a2+b2+c2+36<ab+6b+10c,求a+b−c的值.参考答案和解析1.【答案】B【解析】【解答】解:∵2a•3a=6a2∴选项A不正确;∵(﹣a3)2=a6∴选项B正确;∵6a÷2a=3∴选项C不正确;∵(﹣2a)3=﹣8a3∴选项D不正确.故选:B.【分析】A:根据单项式乘单项式的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据整式除法的运算方法判断即可.D:根据积的乘方的运算方法判断即可.2.【答案】A【解析】【解答】A、原式不能分解,故答案为:A错误,符合题意;B、2a−2b=2(a−b)故答案为:B正确,不符合题意;C、x2−9=(x+3)(x−3)故答案为:C正确,不符合题意;D、x2−x−2=(x+1)(x−2)故答案为:D正确,不符合题意.故答案为:A.【分析】A、a2+4a-4不是完全平方式,不能用完全平方公式进行因式分解,即可判断A错误;B、利用提公因式法进行因式分解,即可判断B正确;C、利用平方差公式进行因式分解,即可判断C正确;D、利用十字相乘法进行因式分解,即可判断D正确.3.【答案】A【解析】【解答】解:∵−12a2b−ab2=−12ab(a+2b),∴将−12a2b−ab2提公因式−12ab后,另一个因式是a+2b.故答案为:A.【分析】利用提公因式的方法对−12a2b−ab2进行因式分解即可.4.【答案】B【解析】【解答】∵x2+y2=4∴(x+y)2=x2+2xy+y2=4+2×2=8故答案为:B.【分析】将x2+y2=4,xy=2代入(x+y)2=x2+2xy+y2计算即可.5.【答案】B【解析】【解答】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2设大正方形边长为a,小正方形的边长为b,∴a-b+2=b如图2,阴影部分面积=a2-2b2+(b-a−b2)2=44,解得b=6,∴a=10如图3,两个小正方形重叠部分的面积=b[(a-b)]=12.故答案为:B.【分析】根据图1重叠图形及已知条件,可得重叠部分的边长为2,设大正方形边长为a,小正方形的边长为b,可得a-b+2=b,根据图2阴影部分面积为44建立方程,从而求出b值,即得a值,根据图3两个小正方形重叠部分的面积=b[(a-b)]即可求出结论.6.【答案】A【解析】【解答】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米设运输的运费每吨为z元/千米①设在甲处建总仓库则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库∵a+d=5y,b+c=7y∴a+d<b+c则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适故答案为:A.【分析】根据比例分别设甲基地的产量为4x吨,可得乙、丙、丁基地的产量分别为5x吨、4x吨、2x 吨;设a=2y千米,可得b、c、d、e分别为3y千米、4y千米、3y千米、3y千米.接着设设运输的运费每吨为z元/千米,然后分别求出设在甲处、乙处、丙处、丁处的总费用,最后比较即可.7.【答案】4【解析】【解答】解:∵a=b+2∴a−b=2∴a2−2ab+b2=(a−b)2=22=4。

人教版八年级上《第14章整式的乘法与因式分解》单元测试含答案

人教版八年级上《第14章整式的乘法与因式分解》单元测试含答案

新人教版八年级上册第14章整式的乘法与因式分解单元测试满分:150分考试时间:100分钟一.选择题(共10小题,满分50分,每小题5分)1.计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b2.下列运算正确的是()A.3a2﹣2a2=a2B.﹣(2a)2=﹣2a2C.(a+b)2=a2+b2D.﹣2(a﹣1)=﹣2a+13.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1 B.﹣3 C.﹣2 D.34.小明在抄分解因式的题目时,不小心漏抄了x的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x□﹣4y2(“□”表示漏抄的指数),则这个指数可能的结果共有()A.2种B.3种C.4种D.5种5.已知a2+b2=6ab且a>b>0,则的值为()A.B.±C.2 D.±26.如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“和谐数”如(8=32﹣12,16=52﹣32,即8,16均为“和谐数”),在不超过的正整数中,所有的“和谐数”之和为()A.255054 B.255064 C.250554 D.255024 7.已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形8.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为()A.1.1111111×1016B.1.1111111×1027C.1.111111×1056D.1.1111111×10179.已知x2+mx+25是完全平方式,则m的值为()A.10 B.±10 C.20 D.±20 10.计算(a﹣1)2正确的是()A.a2﹣a+1 B.a2﹣2a+1 C.a2﹣2a﹣1 D.a2﹣1二.填空题(共5小题,满分25分,每小题5分)11.分解因式:a3﹣a=.12.若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为.13.因式分解:(a﹣b)2﹣(b﹣a)=.14.如图,两个正方形边长分别为a、b,如果a+b=7,ab=13,则阴影部分的面积为.15.已知m=,n=,那么m﹣n=.三.解答题(共5小题,满分75分)16.(14分)因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)17.(13分)张老师在黑板上布置了一道题:计算:2(x+1)2﹣(4x﹣5),求当x=和x=﹣时的值.小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由.18.(16分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:19.(16分)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出三个)(2)若一个直角三角形的周长是24,斜边长为10,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可);(3)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.20.(16分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n 的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.参考答案与试题解析一.选择题1.B.2.A.3.D.4.D.5.A.6.D.7.B.8.D.9.B.10.B.二.填空题11.a(a+1)(a﹣1).12.﹣12.13.(a﹣b)(a﹣b+1)14.515.1.三.解答题16.解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).17.解:2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,当x=时,原式=+7=7;当x=﹣时,原式=+7=7.故小亮说的对.18.解:由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.19.解:(1)x3﹣xy2=x(x﹣y)(x+y),当x=21,y=7时,x﹣y=14,x+y=28,可得数字密码是211428;也可以是212814;142128;(2)由题意得:,解得xy=48,而x3y+xy3=xy(x2+y2),所以可得数字密码为48100;(2)由题意得:x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∵(x﹣3)(x+1)(x+7)=x3+5x2﹣17x﹣21,∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴,解得.故m、n的值分别是56、17.20.解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为42cm.。

人教版八年级数学上册 第14章《整式的乘法与因式分解》 单元测试卷

人教版八年级数学上册 第14章《整式的乘法与因式分解》 单元测试卷

人教版八年级数学上册第14章14.2-14.3 整式的乘法与因式分解单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共30分)1.下列运算中,正确的是()A. 2a2−a2=2B. (a3)2=a5C. a2⋅a4=a6D. a−3÷a−2=a2.下列计算正确的是()A. (a+2)(a−2)=a2−2B. (1+3a)(1−3b)=1−9abC. (x+1)(x−2)=x2−x−2D. (x−y)2=x2−y23.小明做了如下四个因式分解题,你认为小明做得对得不完整一题是()A. x2y−xy2=xy(x−y)B. m2−2mn+n2=(m−n)2C. a3−a=a(a2−1)D. −x2+y2=(y+x)(y−x)4.要使x2+2ax+16是一个完全平方式,则a的值为()A. 4B. 8C. 4或−4D. 8或−85.若(a−b−2)2+|a+b+3|=0,则a2−b2的值是()A. −1B. 1C. 6D. −66.如图 ①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图 ②),则这个长方形的面积为()A. a2−4b2B. (a+b)(a−b)C. (a+2b)(a−b)D. (a+b)(a−2b)7.若(x+2)是多项式4x2+5x+m的一个因式,则m的值为().A. −6B. 6C. −9D. 98.若把x−y看成一项,合并2(x−y)2+3(x−y)+5(y−x)2+3(y−x)得()A. 7(x−y)2B. −3(x−y)2C. −3(x+y)2+6(x−y)D. (y−x)29.若(a−b)2+X=a2+ab+b2,则整式X的值为()A. abB. 0C. 2abD. 3ab10.如图,正方形ABCD和EFGC中,正方形EFGC的边长为4,则△AEG的面积为()A. 4B. 8C. 16D. 与正方形ABCD的边长有关二、填空题(本大题共9小题,共27分)11.若m2−n2=6,且m−n=3,则m+n=_____.12.分解因式:ab+2b=______.13.计算:(2a−b)(−2a−b)=______ .14.若(x−y)2=6,xy=2,则x2+y2=______.15.若1a −1b=4,则a−2ab−b2a+7ab−2b的值是_________.16.分解因式:a3−4a2+3a=______.17.分解因式:x2−2x+1=______.18.如图是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及其系数的有关规律.请你观察,并根据此规律写出(a+b)7的展开式共有________项,第二项的系数是________,(a+b)n的展开式共有________项,各项的系数和是________.19.一个自然数若能表示为两个自然数的平方差,则这个自然数称为“智慧数”.比如:22−12=3,则3就是智慧数;22−02=4,则4就是智慧数.(1)从0开始第7个智慧数是______ ;(2)不大于200的智慧数共有______ .三、计算题(本大题共2小题,共24分)20.计算(1)(8x2y−4x4y3)÷(−2x2y)(2)(3x−2)(2x+3)−(x−1)2.21.分解因式:(m2+4)2−16m2.四、解答题(本大题共6小题,共39分)22.已知:(a+b)2=3,(a−b)2=2,分别求a2+b2,ab的值.23.已知a+b=4,ab=2(1)求a2+b2的值;(2)求(a−b)2的值.24.(1)已知x+y=4,xy=1.5,求x3y+2x2y2+xy3的值;(2)已知三次四项式2x3−5x2−6x+k分解因式后有一个因式是x−3,试求k的值及另一个因式.25.阅读材料:若m2−4mn+5n2−2n+1=0,求m、n的值.解:∵m2−4m+5n2−2n+1=0,∴(m2−4mn+4n2)+(n2−2n+1)=0,∴(m−2n)2+(n−1)2=0,∴(m−2n)2=0,(n−1)2=0,∴n=1,m=2.根据你的观察,探究下面的问题:(1)若x2+2xy+2y2+2y+1=0,求x、y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=12a+8b−52,且△ABC是等腰三角形,求c的值.26.阅读下面文字内容:对于形如x2+2ax+a2的二次三项式,可以直接用完全平方公式把它分解成(x+a)2的形式.但对于二次三项式x2+4x−5,就不能直接用完全平方公式分解了.对此,我们可以添上一项4,使它与x2+4x构成一个完全平方式,然后再减去4,这样整个多项式的值不变,即x2+4x−5=(x2+4x+4)−4−5=(x+2)2−9=(x+2+3)(x+2−3)=(x+5)(x−1).像这样,把一个二次三项式变成含有完全平方式的方法,叫做配方法.请用配方法来解下列问题:(1)已知x2+y2−8x+12y+52=0,求(x+y)2的值;(2)求x2+8x+7的最小值.27. 已知:a 2+a −1=0,(1)求2a 2+2a 的值; (2)求a 3+2a 2+2017的值.1、最困难的事就是认识自己。

人教版八年级上册数学第十四章(整式的乘法与因式分解)单元测试卷及答案

人教版八年级上册数学第十四章(整式的乘法与因式分解)单元测试卷及答案

人教版八年级上册数学单元测试卷第十四章整式的乘法与因式分解姓名班级学号成绩一、选择题(每题3分,共30分)1.计算(a3)2的结果是( )A.a5B.a6 C.a8D.a92.下列添括号错误的是( )A.a2-b2-b+a=a2-b2+(a-b)B.(a+b+c)(a-b-c)=[a+(b+c)][a-(b+c)]C.a-b+c-d=(a-d)+(c-b)D.a-b=-(b+a)3.计算6m6÷(-2m2)3的结果为( )A.-m B.-1 C.34D.-344.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.x2y﹣y3=y(x+y)(x﹣y)5.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7.计算(﹣0.25)2021×(﹣4)2020的结果是()A.﹣B.C.﹣4 D.48.若x 2+mx +k 是一个完全平方式,则k 等于( ) A .B .C .D .m 29.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x -1,a-b ,3,x 2+1,a ,x +1分别对应“州”“爱”“我”“数”“学”“广”六个字,现将3a (x 2-1)-3b (x 2-1)分解因式,结果呈现的密码信息可能是( )A .我爱学B .爱广州C .我爱广州D .广州数学10.如图,在边长为2a 的正方形中央剪去一个边长为a +2的小正方形(a >2)后,将剩余部分沿虚线剪开,并拼成一个平行四边形,则该平行四边形的面积为( )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2 二、填空题(每题3分,共24分)11.要使(﹣6x 3)(x 2+ax +5)+3x 4的结果中不含x 4项,则a 的值为_______ 12.计算:()()2323x y z x y z +--+=_______________________ 13.若(a +b )2=25,ab =6,则a ﹣b =_____.14.已知x +y =10,xy =1,则代数式x 2y +xy 2的值为_____ 15.已知10m=5,10n=7,则102m+n = .16.若x 2−(m −1)x+36是一个完全平方式,则m 的值为 . 17.若|a ﹣2|+b 2﹣2b+1=0,则a=______,b=_________.18.如图,边长分别为a ,b 的两个正方形并排放在一起,当a +b =16,ab =60时阴影部分的面积为 .三.解答题(共46分,19题6分,20 ---24题8分) 19.计算: (1)(-1)2 018+⎝ ⎛⎭⎪⎫-12 2-(3.14-π)0; (2)(2x 3y )2·(-2xy )+(-2x 3y )3÷2x 2;(3)(2x -3)2-(2x +3)(2x -3);(4)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a .20.分解因式:(1)m 3n -9mn; (2)(x 2+4)2-16x 2;(3)x 2-4y 2-x +2y; (4)4x 3y +4x 2y 2+xy 3.21.先化简,再求值:(1)(x 2-4xy +4y 2)÷(x -2y )-(4x 2-9y 2)÷(2x -3y ),其中x =-4,y =15;(2)(m -n )(m +n )+(m +n )2-2m 2,其中m ,n 满足⎩⎨⎧m +2n =1,3m -2n =11.22.若a ,b ,c 是△ABC 的三边,满足a 2(c 2﹣a 2)=b 2(c 2﹣b 2),判断并说明△ABC 的形状.23.小马、小虎两人共同计算一道题:(x +a )(2x +b ).由于小马抄错了a 的符号,得到的结果是2x 2-7x +3,小虎漏抄了第二个多项式中x 的系数,得到的结果是x 2+2x -3. (1)求a ,b 的值;(2)请计算这道题的正确结果; (3)当x =-1时,计算(2)中式子的值.24.小红家有一块L 形菜地,要把L 形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a m ,下底都是b m ,高都是(b -a ) m.(1)请你算一算,小红家菜地的面积是多少平方米? (2)当a =10,b =30时,该菜地的面积是多少平方米?答案一、选择题(每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 BDDDBBAACC二、填空题(每题3分,共24分) 11.12解:原式=543466303x ax x x ---+=()54363630x a x x -+--∵(﹣6x 3)(x 2+ax +5)+3x 4的结果中不含x 4项,得360a -= 解得12a = 故答案为:12. 12.2224129x y yz z -+- 解:()()2323x y z x y z +--+()()=2323x y z x y z +---⎡⎤⎡⎤⎣⎦⎣⎦()2223x y z =-- ()2224129x y yz z =--+222=4129x y yz z -+-13.±1解:(a+b)2=a2+2ab+b2=25(a﹣b)2=a2﹣2ab+b2=(a2+2ab+b2)﹣4ab=(a+b)2﹣4ab=25﹣24=1 ∴a﹣b=±114.1015.17516.若x2−(m−1)x+36是一个完全平方式,则m的值为.解析:∵x2−(m−1)x+36是一个完全平方式∴m−1=±12故m的值为−11或13故答案为:−11或13.17.2,1【解析】∵|a﹣2|+b2﹣2b+1=0∴|a﹣2|+(b-1)2=0∴a-2=0,b-1=0∴a=2,b=1.18.22三.解答题(共46分,19题6分,20 ---24题8分)19.解:(1)原式=1+14-1=14;(2)原式=4x6y2·(-2xy)-8x9y3÷2x2=-8x7y3-4x7y3=-12x7y3;(3)原式=(2x-3)·[(2x-3)-(2x+3)]=(2x-3)·(-6)=-12x+18;(4)原式=(a2-4ab+4b2+a2-4b2-4a2+2ab)÷2a=(-2a2-2ab)÷2a=-a-b.20.解:(1)原式=mn(m2-9)=mn(m+3)(m-3);(2)原式=(x2+4+4x)(x2+4-4x)=(x+2)2(x-2)2;(3)原式=x2-4y2-(x-2y)=(x+2y)(x-2y)-(x-2y)=(x-2y)(x+2y-1);(4)原式=xy(4x2+4xy+y2)=xy(2x+y)2.21.解:(1)原式=(x -2y )2÷(x -2y )-(2x +3y )(2x -3y )÷(2x -3y )=x -2y-2x -3y =-x -5y . ∵x =-4,y =15∴原式=-x -5y =4-5×15=3.(2)原式=m 2-n 2+m 2+2mn +n 2-2m 2=2mn . 解方程组⎩⎨⎧m +2n =1,3m -2n =11,得⎩⎨⎧m =3,n =-1.∴原式=2mn =2×3×(-1)=-6. 22.解:∵a 2(c 2﹣a 2)=b 2(c 2﹣b 2) ∴a 2(c 2﹣a 2)﹣b 2(c 2﹣b 2)=0a 2c 2﹣a 4﹣b 2c 2+b 4=0 c 2(a 2﹣b 2)﹣(a 4﹣b 4)=0c 2(a 2﹣b 2)﹣(a 2+b 2)(a 2﹣b 2)=0(a 2﹣b 2)(c 2﹣a 2﹣b 2)=0 ∴a 2﹣b 2=0或c 2﹣a 2﹣b 2=0 ∵a ,b ,c 是△ABC 的三边 ∴a =b 或c 2=a 2+b 2∴△ABC 是等腰三角形或直角三角形. 23.解:(1)根据题意,得小马的计算过程如下:(x -a )(2x +b )=2x 2+bx -2ax -ab =2x 2+(b -2a )x -ab =2x 2-7x +3. 小虎的计算过程如下:(x +a )(x +b )=x 2+(a +b )x +ab =x 2+2x -3. 所以b -2a =-7,a +b =2 解得a =3,b =-1.(2)由(1)得正确的算式是(x+3)(2x-1)=2x2-x+6x-3=2x2+5x-3.(3)当x=-1时2x2+5x-3=2×(-1)2+5×(-1)-3=-6.24.解:(1)小红家菜地的面积是2×12×(a+b)(b-a)= (b2-a2) m2.(2)当a=10,b=30时,该菜地的面积是302-102=800(m2).。

人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)

人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)

人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)一、单选题 1.计算结果正确的是()A.B.C.D.2.计算12x a a a a ⋅⋅=,则x 等于( ) A.10B.9C.8D.43.下列计算正确的是( ) A .326a a a ∙=B .()239a a = C .5510x x x += D .78y y y ∙=4.若m ,n 是正整数,且2232m n ⋅=,()m n =264,则mn m n ++的值为( ) A.10B.11C.12D.135.20192019532135⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .1C .0D .20036.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6.7.( 22)221xy x y xy ÷=-+,括号内应填的多项式为( ) A .322324x y x y -B .12x y - C .3223242x y x y xy -+D .112x y -+ 8.下列多项式乘法中可以用平方差公式计算的是( ) A .(﹣a +b )(a ﹣b ) B .(x +2)(2+x )C .(3x +y )(y ﹣3x) D .(x ﹣2)(x +1) 9.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x•y=8D .x 2+y 2=3610.下列等式从左往右因式分解正确的是( ) A .()ab ac b a b c d ++=++B .()()23212x x x x -+=--C .()222121m n m mn n +-=++- D .()()2414141x x x -=+-11.下列多项式能分解因式的是( ) A .22xy +B .22x y xy -C .22x xy y ++D .244x x +-12.在多项式①-m 4-n 4,②a 2+b 2,③-16x 2+y 2,④9(a -b )2-4,⑤-4a 2+b 2中,能用平方差公式分解因式的有() A.1个 B.2个 C.3个 D.4个二、填空题13.分解因式:a 2-5a -14=________.14.若7m n +=,11mn =,则22m mn n -+的值是______. 15.()2320x y -++=,则x y 为 .16.如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是______________.三、解答题 17.计算:(13|(2)2342()()n n ⋅(3)23322(3)(4)(6)a b ab ⋅÷18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.计算:(1)2(2)(1)(1)a b a a +--+(2)()43322223694(3)a b a b a bab -+÷-20.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x +y =8,xy =7,求x -y 的值.21.把下列各式分解因式:(1)481a - (2)223242x y xy y -+22.乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达)答案 1.A 2.A 3.D 4.B 5.B 6.B 7.C 8.C 9.D 10.B 11.B 12.C 13.(a-7)(a+2) 14.16. 15.-816.a 2-b 2=(a+b )(a-b ).17.(1) 7-14n ;(3)1244a b18.(1)3;(2)25x ;19.(1)4ab+42b +1;(2)2449a b a -+20.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±621.(1)(a 2+9)(a+3)(a-3); (2)2y (x-y )2.22.小题1: 22a b -;小题2: -a b ,+a b ,()()a b a b +-;小题3: 22()()a b a b a b +-=-人教版八年级数学上册第14章《整式的乘法与因式分解》培优试题 一.选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( ) A .x 2+x 2=x 4B .3a 3•2a 2=6a 6C.(﹣a2)3=﹣a6D.(a﹣b)2=a2﹣b22.下列分解因式正确的是()A.m4﹣8m2+64=(m2﹣8)2B.x4﹣y4=(x2+y2)(x2﹣y2)C.4a2﹣4a+1=(2a﹣1)2D.a(x﹣y)﹣b(y﹣x)=(x﹣y)(a﹣b)3.小明做了如下四个因式分解题,你认为小明做得对得不完整一题是()A.x2y﹣xy2=xy(x﹣y)B.m2﹣2mn+n2=(m﹣n)2C.a3﹣a=a(a2﹣1)D.﹣x2+y2=(y+x)(y﹣x)4.(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A.0B.23C.﹣23D.﹣325.下列计算正确的是()A.(2a﹣b)(﹣2a+b)=4a2﹣b2B.(2a﹣b)2=4a2﹣2ab+b2C.(2a﹣b)2=4a2﹣4ab+b2D.(a+b)2=a2+b26.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.07.下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+98.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1B.b=﹣6,c=2C.b=﹣6,c=﹣4D.b=﹣4,c=﹣6 9.下列运算正确的是()A.(x3)4=x7B.﹣(﹣x)2•x3=﹣x5C.x+x2=x3D.(x+y)2=x2+y210.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2﹣7x+12,则a,b的值可能分别是()A.﹣3,﹣4B.﹣3,4C.3,﹣4D.3,4二.填空题(共8小题,每小题3分,共24分)11.分解因式:x2﹣4=.12.分解因式:2a3﹣8a=.13.x2﹣23x+ =(x﹣)2.14.分解因式:ba2+b+2ab=.15.因式分解:(x+2)x﹣x﹣2=.16.已知x m=2,x n=3,则x2m+n=.17.多项式x2﹣9,x2+6x+9的公因式是.18.若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为.三.计算与分解因式(共2小题,每小题16分,共32分)19.计算(1)(﹣3xy)•(﹣4yz)(2)(2x﹣1)(3x+2)(3)﹣(a2b)3+2a2b•(﹣3a2b)2(4)(a+2b﹣c)(a﹣2b+c)20.分解因式:(1)4xy2﹣4x2y﹣y3(2)9a2(x﹣y)+4b2(y﹣x)(3)16(a﹣b)2﹣9(a+b)2(4)5mx2﹣10mxy+5my2四.解答题(共4小题,21、22每小题7分;23、24每小题10分)21.已知a、b、c是△ABC的三条边长.若a、b、c满足a2+14b2+5=4a+b﹣|c﹣2|,试判断△ABC的形状,并说明你的理由.22.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于;②请用两种不同的方法表示图②中阴影部分的面积:方法1:方法2:③观察图②,请写出代数式(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系:;(2)根据(1)题中的等量关系,解决如下问题:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.(3)实际上有许多代数恒等式可以用图形的面积来表示,如图③,它表示了.23.(1)已知实数a、b满足(a+b)2=3,(a﹣b)2=27,求a2+b2的值.(2)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.24.观察下列计算过程,发现规律,利用规律猜想并计算:1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…(1)猜想:1+2+3+4+…+n=.(2)利用上述规律计算:1+2+3+4+ (200)(3)尝试计算:3+6+9+12+…3n的结果.2018—2019学年人教版八年级数学上册第14章《整式的乘法与因式分解》培优试题参考简答一.选择题(共10小题,每小题3分,共30分)1.C.2.C.3.C.4.C.5.C.6.C.7.D.8.D.9.B.10.A.二.填空题(共8小题,每小题3分,共24分)11.(x+2)(x﹣2).12.2a(a+2)(a﹣2).13.1913.14.b(a+1)2.15.(x+2)(x﹣1).16.12.17.x+3.18.﹣12.三.计算与分解因式(共2小题,每小题16分,共32分)19.计算(1)(﹣3xy)•(﹣4yz)(2)(2x﹣1)(3x+2)(3)﹣(a2b)3+2a2b•(﹣3a2b)2(4)(a+2b﹣c)(a﹣2b+c)【解】:(1)(﹣3xy)•(﹣4yz)=12xy2z;(2)(2x﹣1)(3x+2)=6x2+4x﹣3x﹣2=6x2+x﹣2;(3)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(4)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c220.分解因式:(1)4xy2﹣4x2y﹣y3(2)9a2(x﹣y)+4b2(y﹣x)(3)16(a﹣b)2﹣9(a+b)2(4)5mx2﹣10mxy+5my2【解】:(1)4xy2﹣4x2y﹣y3=﹣y(﹣4xy+4x2+y2)=﹣y(2x﹣y)2;(2)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)16(a﹣b)2﹣9(a+b)2=[4(a﹣b)+3(a+b)][4(a﹣b)﹣3(a+b)]=(7a﹣b)(a﹣7b).(4)原式=5m(x2﹣2xy+y2)=5m(x﹣y)2.四.解答题(共4小题,21、22每小题7分;23、24每小题10分)21.已知a、b、c是△ABC的三条边长.若a、b、c满足a2+14b2+5=4a+b﹣|c﹣2|,试判断△ABC的形状,并说明你的理由.【解】:△ABC为等边三角形.∵a2+14b2+5=4a+b﹣|c﹣2|,∴a2+14b2+5﹣4a﹣b+|c﹣2|=0,∴(a﹣2)2+(12b﹣1)2+c﹣2|=0,∴a﹣2=0,12b﹣1=0,c﹣2=0,∴a=b=2,∴△ABC为等边三角形.22.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)按要求填空:①你认为图②中的阴影部分的正方形的边长等于m﹣n;②请用两种不同的方法表示图②中阴影部分的面积:方法1:(m﹣n)2方法2:(m+n)2﹣4mn③观察图②,请写出代数式(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系:(m﹣n)2=(m+n)2﹣4mn;(2)根据(1)题中的等量关系,解决如下问题:若|m+n﹣6|+|mn﹣4|=0,求(m﹣n)2的值.(3)实际上有许多代数恒等式可以用图形的面积来表示,如图③,它表示了(2m+n)(m+n)=2m2+3mn+n2.【解】:(1)①阴影部分的正方形边长是m﹣n.②方法1:阴影部分的面积就等于边长为m﹣n的小正方形的面积,即(m﹣n)2,方法2:边长为m+n的大正方形的面积减去4个长为m,宽为n的长方形面积,即(m+n)2﹣4mn;③(m﹣n)2=(m+n)2﹣4mn.(2))∵|m+n﹣6|+|mn﹣4|=0,∴m+n﹣6=0,mn﹣4=0,∴m+n=6,mn=4∵由(1)可得(m﹣n)2=(m+n)2﹣4mn∴(m﹣n)2=(m+n)2﹣4mn=62﹣4×4=20,∴(m﹣n)2=20;(3)根据大长方形面积等于长乘以宽有:(2m+n)(m+n),或两个边长分别为m、n的正方形加上3个长为m、宽为n的小长方形面积和有:2m2+3mn+n2,故可得:(2m+n)(m+n)=2m2+3mn+n2.故答案为:(1)m﹣n;(2)①(m﹣n)2,②(m+n)2﹣4mn,③(m﹣n)2=(m+n)2﹣4mn;(3)(2m+n)(m+n)=2m2+3mn+n2.23.(1)已知实数a、b满足(a+b)2=3,(a﹣b)2=27,求a2+b2的值.(2)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.【解】:(1)∵(a+b)2=3,(a﹣b)2=27,∴a2+2ab+b2=3①,a2﹣2ab+b2=27②,∴①+②得:2a2+2b2=30,∴a2+b2=15;(2)3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣98.24.观察下列计算过程,发现规律,利用规律猜想并计算:1+2==3;1+2+3==6,1+2+3+4==10;1+2+3+4+5==15;…(1)猜想:1+2+3+4+…+n=.(2)利用上述规律计算:1+2+3+4+ (200)(3)尝试计算:3+6+9+12+…3n的结果.【解】:(1)1+2+3+4+…+n=;故答案为:;(2)1+2+3+4+…+200==20100.(3)3+6+9+12+…3n=3(1+2+3+4+…+n)=.人教版数学八年级上册第14章整式的乘法与因式分解单元测试题一、选择题(本大题共10小题,每小题4分,满分40分)1.下列运算正确的是A.a3·a3=a9B.a3+a3=a6C.a3·a3=a6D.a2·a3=a62.y m+2可以改写成A.2y mB.y m·y2C.(y m)2D.y m+y23.若(x-1)0=1,则A.x≥1B.x≤1C.x≠1D.x≠04.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是A.(a-b)2=a2-2ab+b2B.(a+b)2=a2+2ab+b2C.2a(a+b)=2a2+2abD.(a+b)(a-b)=a2-b25.下列因式分解正确的是A.12a2b-8ac+4a=4a(3ab-2c)B.-4x2+1=(1+2x)(1-2x)C.4b2+4b-1=(2b-1)2D.a2+ab+b2=(a+b)26.下列式子可以运用平方差公式运算的有①(a+b)(-b+a);②(-a+b)(a-b);③(a+b)(-a-b);④(a-b)(-a-b).A.1个B.2个C.3个D.4个7.(15x2y-10xy2)÷(-5xy)的结果是A.-3x+2yB.3x-2yC.-3x+2D.-3x-28.将下列多项式分解因式,结果中不含因式x-1的是A.x2-1B.x(x-2)+(2-x)C.x2-2x+1D.x2+2x+19.已知a+b=5,ab=3,则a2+b2等于A.25B.22C.19D.1310.如果x2+x+1=0,那么x2016+x2015+x2014+…+x3+x2+x的值为A.3B.2C.1D.0二、填空题(本大题共4小题,每小题5分,满分20分)11.多项式9x2+1加上一个单项式后,成为一个整式的完全平方式,那么加上的单项式可以是6x(答案不唯一).(填上一个你认为正确的即可)12.已知x2+2x+4=5,则4x2+8x-3=1.13.若关于x的二次三项式x2+ax+是完全平方式,则a的值是±1.14.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列.如图,观察下面的杨辉三角:11 112 1133 11464 115101051(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…按照前面的规律,则(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.三、解答题(本大题共5小题,满分60分)15.(10分)计算:(x-2)(x+6)-(6x4-4x3-2x2)÷(-2x2).解:原式=x2+4x-12-(-3x2+2x+1)=x2+4x-12+3x2-2x-1=4x2+2x-13.16.(12分)观察下列各式:(x2-1)÷(x-1)=x+1;(x3-1)÷(x-1)=x2+x+1;(x4-1)÷(x-1)=x3+x2+x+1;(x5-1)÷(x-1)=x4+x3+x2+x+1;(1)猜想:(x7-1)÷(x-1)=x6+x5+x4+x3+x2+x+1;(27-1)÷(2-1)=26+25+24+23+22+2+1.(2)根据(1)猜想的结论,计算:1+2+22+23+24+25+26+27.解:(2)原式=(28-1)÷(2-1)=28-1=255.17.(12分)仔细阅读下面的例题:【例题】已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n,∴解得n=-7,m=-21.∴另一个因式为(x-7),m的值为-21.仿照以上方法解答问题:已知二次三项式3x2+5x-m有一个因式是(3x-1),求另一个因式以及m的值.解:设另一个因式为(x+n),得3x2+5x-m=(3x-1)(x+n),则3x2+5x-m=3x2+(3n-1)x-n,∴解得n=2,m=2.∴另一个因式为(x+2),m的值为2.18.(12分)若x满足(9-x)(x-4)=4,求(4-x)2+(x-9)2的值.解:设9-x=a,x-4=b,则(9-x)(x-4)=ab=4,a+b=(9-x)+(x-4)=5,∴(9-x)2+(x-4)2=a2+b2=(a+b)2-2ab=52-2×4=17.请仿照上面的方法求解问题:(1)若x满足(5-x)(x-2)=2,求(5-x)2+(x-2)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF,DF为边作正方形,求阴影部分的面积.解:(1)设5-x=a,x-2=b,则(5-x)(x-2)=ab=2,a+b=(5-x)+(x-2)=3,∴(5-x)2+(x-2)2=a2+b2=(a+b)2-2ab=32-2×2=5.(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴MF=DE=x-1,DF=x-3,∴(x-1)·(x-3)=48,∴(x-1)-(x-3)=2,∴阴影部分的面积=FM2-DF2=(x-1)2-(x-3)2.设(x-1)=a,(x-3)=b,则(x-1)(x-3)=ab=48,a-b=(x-1)-(x-3)=2,∴a=8,b=6,a+b=14,∴(x-1)2-(x-3)2=a2-b2=(a+b)(a-b)=14×2=28.即阴影部分的面积是28.19.(14分)发现任意五个连续整数的平方和是5的倍数.【验证】(1)(-1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个数为n,写出它们的平方和,并说明是5的倍数.【延伸】(3)任意三个连续整数的平方和被3除的余数是几呢?请写出理由.解:(1)(-1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(-1)2+02+12+22+32的结果是5的3倍.(2)设五个连续整数的中间一个数为n,则其余的4个整数分别是n-2,n-1,n+1,n+2,它们的平方和为(n-2)2+(n-1)2+n2+(n+1)2+(n+2)2=n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又∵n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数.(3)设三个连续整数的中间一个数为n,则其余的2个整数是n-1,n+1,它们的平方和为(n-1)2+n2+(n+1)2=n2-2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.人教版八年级数学上册单元练习卷:第14章整式的乘法与因式分解一、填空题:1、(2018•山东东营)分解因式:x 3﹣4xy2= .2、若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为.3、把多项式x2+ax+b分解因式,得(x+1)(x﹣3)则a,b的值分别是a= ,b= ;4、若代数式2a2+3a+1的值是6,则代数式6a2+9a+5的值为.5、已知实数a,b满足a2-b2=10,则(a+b)3·(a-b)3的值是6、有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为 .7、(2018•广西玉林)已知ab=a+b+1,则(a﹣1)(b﹣1)= .8、已知实数x、y、z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是 .9、已知x2+kxy+64y2是一个完全式,则k的值是10、观察下列等式:①9-1=8,②16-4=12,③25-9=16,④36-16=20,…写出第10个等式:,第n(n≥1)个式子是 .二、选择题:11、下列分解因式正确的是()A.m4﹣8m2+64=(m2﹣8)2B.x4﹣y4=(x2+y2)(x2﹣y2)C.4a2﹣4a+1=(2a﹣1)2D .a (x ﹣y )﹣b (y ﹣x )=(x ﹣y )(a ﹣b )12、(2018•江苏徐州)下列运算中,正确的是( ) A .x 3+x 3=x 6 B .x 3•x 9=x 27 C .(x 2)3=x 5 D .x ÷x 2=x ﹣113、某青少年活动中心的场地为长方形,原来长a 米,宽b 米.现在要把四周都向外扩展,长增加3米,宽增加2米,那么这个场地的面积增加了( ) A .6平方米 B .(3a -2b)平方米 C .(2a +3b +6)平方米 D .(3a +2b +6)平方米 14、已知x+y=﹣4,xy=2,则x 2+y 2的值( ) A .10B .11C .12D .1315、若a -b=8,a 2+b 2=82,则3ab 的值为( ) A 、9B 、-9C 、27D 、-2716、若x 2-4x -4=0,则3(x +2)2-6(x +1)(x -1)的值为( ) A .-6 B .6 C .18 D .3017、若二次三项式x 2+(2m-1)x+4是一个完全平方式,则m 为( ) A .2.5B .-0.5C .2.5或-1.5D .1.518、(2018湖南邵阳)将多项式x ﹣x 3因式分解正确的是( )A .x (x 2﹣1)B .x (1﹣x 2)C .x (x+1)(x ﹣1)D .x (1+x )(1﹣x )19、若m 2+m-1=0,则m 3+2m 2+2018的值为( ) A .2020B .2017C .2019D .201520、下列各式,能够表示图中阴影部分的面积的是( )①ac+(b ﹣c )c ;②ac+bc ﹣c 2;③ab ﹣(a ﹣c )(b ﹣c );④(a ﹣c )c+(b ﹣c )c+c 2A .①②③④B .①②③C .①②D .①21、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ()A.p=0,q=0B.p=3,q=1C.p=–3,–9D.p=–3,q=122、若a、b、c为一个三角形的三边长,则式子(a-c)2-b2的值()A.一定为正数B.一定为负数C.可能为正数,也可能为负数D.可能为0三、解答题:23、因式分解:(1)a2b﹣4b:(2)(x﹣7)(x﹣5)+2x﹣1024、(2018·湖北襄阳)先化简,再求值:(x+y)(x﹣y)+y(x+2y)﹣(x﹣y)2,其中x=2+√3,y=2﹣√3.25、(1)已知实数a、b满足(a+b)2=3,(a﹣b)2=27,求a2+b2的值.(2)先化简,再求值:3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.26、已知一个长方形的周长为20,其长为a,宽为b,且a,b满足a2-2ab+b2-4a+4b+4=0,求a,b 的值.27、(2018•贵州贵阳)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.参考答案:一、选择题:1、C2、D3、C4、C5、A6、B7、C8、D9、C 10、A 11、B 12、B二、填空题: 13、x (x+2y )(x ﹣2y ) 14、-1215、-2 -3 16、20 17、1000 18、13 19、2 20、28 21、±1622、122-102=44 (n+2)2-n 2=4n+4 三、解答题:23、(1)原式=b (a 2﹣4) =b (a+2)(a ﹣2);(2)原式=(x ﹣7)(x ﹣5)+2(x ﹣5) =(x ﹣5)(x ﹣7+2) =(x ﹣5)2.24、(x+y )(x ﹣y )+y (x+2y )﹣(x ﹣y )2 =x 2﹣y 2+xy+2y 2﹣x 2+2xy ﹣y 2 =3xy ,当y=2=3×()(2﹣√3)=3. 25、(1)∵(a+b )2=3,(a ﹣b )2=27, ∴a 2+2ab+b 2=3①,a 2﹣2ab+b 2=27②, ∴①+②得: 2a 2+2b 2=30, ∴a 2+b 2=15;(2)3a(2a2﹣4a+3)﹣2a2(3a+4)=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,当a=﹣2时,原式=﹣98.26、∵长方形的周长为20,其长为a,宽为b, ∴a+b=20÷2=10.∵a2-2ab+b2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得a=6 b=427、(1)拼成矩形的周长=m+n+m-n =2m (2)拼成举行的面积=(m+n)(m-n)=(7+4)。

人教版八年级数学上册 第14章 整式的乘法与因式分解 单元测试卷(有答案)

人教版八年级数学上册 第14章 整式的乘法与因式分解 单元测试卷(有答案)

人教版八年级数学上册第14章整式的乘法与因式分解单元测试卷一、选择题(本大题共8小题,共24分)1.计算的结果是A. B. C. D.2.计算的结果为A. B. C. D.3.运用乘法公式计算的结果是A. B. C. D.4.下列各式中,能用完全平方公式计算的是A. B.C. D.5.若,则A. 9B. 6C. 27D. 186.计算A. B.C. D.7.设,,,若,则的值是A. 16B. 12C. 8D. 48.若a,b,c是三角形三边的长,则代数式的值A. 大于零B. 小于零C. 大于或等于零D. 小于或等于零二、填空题(本大题共7小题,共21分)9.分解因式:______ .10.根据里氏震级的定义,若地震所释放的相对能量E与地震级数n的关系为:,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍11.因式分解:______ .12.因式分解:___.13.已知,,则______.14.分解因式:______ .15.分解因式:______.三、解答题(本大题共4小题,共55分)16.分解因式:.17.分解因式:.18.利用因式分解说明能被60整除.19.因式分解:答案和解析1.【答案】C【解析】解:.故选:C.根据幂的乘方和积的乘方的运算法则求解.本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题关键.2.【答案】A【解析】【分析】本题主要考查积的乘方的性质,同底数幂的除法,单项式的除法法则,熟练掌握运算法则是解题的关键.根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式解答.【解答】解:.故选A.3.【答案】C【解析】【分析】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.根据完全平方公式,即可解答.【解答】解:.故选C.4.【答案】C【解析】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项符合题意;D、,本选项不合题意,故选C利用完全平方公式的特点判断即可得到结果.此题考查了完全平方公式,熟练掌握公式是解本题的关键.5.【答案】C【解析】【分析】此题主要考查了求代数式的值、幂的乘方,解题关键是掌握幂的乘方的运算法则.解题时,根据幂的乘方:底数不变,指数相乘,可得,最后整体代入即可求解.【解答】解:.故选C.6.【答案】D【解析】解:原式,故选D原式利用完全平方公式化简即可得到结果.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.【答案】A【解析】【分析】本题考查了完全平方公式,本题关键是把变形为,注意整体思想的应用先把,,代入,得到,变形为,把看作一个整体,根据完全平方公式展开,得到关于的方程,解方程即可求解.【解答】解:,,,,,,,,又,.故选A.8.【答案】B【解析】【分析】此题考查了利用完全平方公式配方,利用平方差公式因式分解,三角形的三边关系,利用完全平方公式配方整理成两个因式乘积的形式是解题的关键.根据三角形中任意两边之和大于第三边.把代数式分解因式就可以进行判断.解:.,b,c是三角形的三边.,..故选B.9.【答案】【解析】解:,,.应先提取公因式m,再对余下的多项式利用平方差公式继续分解.本题考查了提公因式法,公式法分解因式,关键在于提取公因式后继续利用平方差公式进行因式分解.10.【答案】100【解析】【分析】本题考查了有理数混合运算和同底数幂的除法的应用,解题关键是能根据题意列出算式解题时,先根据题意得出,然后根据同底数幂的除法运算性质进行计算即可.【解答】解:.11.【答案】【解析】解:原式,故答案为:原式提取公因式即可得到结果.此题考查了因式分解提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.【答案】【解析】分析根据因式分解就是把一个多项式变形成几个整式的积的形式的定义,利用提取公因式求解.详解解:点睛本题考查了因式分解解题的关键是掌握提取公因式法因式分解.13.【答案】5【解析】解:,,得:,则,故答案为:5利用完全平方公式计算即可求出所求.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14.【答案】【解析】解:原式,故答案为:原式利用完全平方公式分解即可.此题考查了因式分解运用公式法,熟练掌握完全平方公式是解本题的关键.15.【答案】九;3;10【解析】解:小英的学号是20120310,则小英现就读的班级是九年级3班,座位号是10号,故答案为:九,3,10.根据学号的表示:前四位是年级,56位是班级,七八位是座位号,可得答案.本题考查了用数字表示事件,利用了学号的表示方法:前四位是年级,56位是班级,七八位是座位号.16.【答案】【解析】解:.故答案为:.首先提取公因式x,进而利用平方差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.17.【答案】解:.【解析】原式后三项结合后提取变形,再利用完全平方公式及平方差公式分解即可.此题考查了因式分解分组分解法,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.18.【答案】原式【解析】本题主要考查的是分组分解法和运用公式法分解因式的有关知识,由题意先将给出的式子变形为,然后再进一步因式分解即可.19.【答案】证明:,能被60整除.【解析】本题考查了因式分解的应用,解决本题的关键是用因式分解法把所给式子整理为含有120的因数相乘的形式.,进而把整理成底数为5的幂的形式,然后提取公因式并整理为含有60的因数即可.20.【答案】;;;.【解析】【分析】提出公因式2ab即可;直接利用平方差公式进行分解即可;先提出公因式2x,然后利用完全平方公式分解,再利用平方差公式分解即可;先利用整式的乘法将原式转化为多项式的形式,然后利用完全平方公式分解即可.【详解】解:原式;原式;原式;原式.【点睛】此题综合考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.。

人教版八年级数学上册第14章整式的乘法与因式分解单元测试题含答案

人教版八年级数学上册第14章整式的乘法与因式分解单元测试题含答案

⼈教版⼋年级数学上册第14章整式的乘法与因式分解单元测试题含答案第⼗四章整式的乘法与因式分解⼀、选择题1.下列各式由左边到右边的变形为因式分解的是()A.a2-b2+1=(a+b)(a-b)+1B.m2-4m+4=(m-2)2C.(x+3)(x-3)=x2-9D.t2+3t-16=(t+4)(t-4)+3t2.分解因式:x3-x,结果为()A.x(x2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是()A.16m2-4=(4m+2)(4m-2)B.m4-1=(m2+1)(m2-1)C.m2-6m+9=(m-3)2D.1-a2=(a+1)(a-1)4.下列多项式能因式分解的是()A.m2+n B.m2-m+1C.m2-2m+1D.m2-n5.计算(2x3y)2的结果是()A.4x6y2B.8x6y2C.4x5y2D.8x5y26.已知a+b=3,ab=2,计算:a2b+ab2等于()A.5B.6C.9D.17、下列运算中结果正确的是()A、x3·x3=x6;B、3x2+2x2=5x4;C、(x2)3=x5;D、(x+y)2=x2+y2.8、ab减去a2-ab+b2等于()。

A、a2+2ab+b2;B、-a2-2ab+b2;C、-a2+2ab-b2;D、-a2+2ab+b29、已知x2+kxy+64y2是⼀个完全式,则k的值是()A、8B、±8C、16D、±1610、如下图(1),边长为a的⼤正⽅形中⼀个边长为b的⼩正⽅形,⼩明将图(1)的阴影部分拼成了⼀个矩形,b a ab如图(2)。

这⼀过程可以验证()A、a2+b2-2ab=(a-b)2;B、a2+b2+2ab=(a+b)2;图1图2 (第10题图)C、2a2-3ab+b2=(2a-b)(a-b);D、a2-b2=(a+b)(a-b)⼆、填空题11.若单项式-3x4a-b y2与3x3y a+b是同类项,则这两个单项式的积为.12.已知(x-1)(x+2)=ax2+bx+c,则代数式4a-2b+c的值为.13.若16b2+a2+m是完全平⽅式,则m=.14.分解因式:x3﹣x=.15.因式分解:4a3﹣12a2+9a=.16、若4x2+kx+25=(2x-5)2,那么k的值是三、解答题17.(8分)因式分解:(1)3a2-27b2;(2)x2-8(x-2).18.(10分)计算:(1)已知a+b=3,ab=-2,求a2+b2和a2-ab+b2的值;(2)已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值;(3)已知a-b=1,a 2+b2=25,求ab的值.19.已知⼀个长⽅形的周长为20,其长为a,宽为b,且a,b满⾜a2-2ab+b2-4a+4b+4=0,求a,b的值.20、李⽼师给学⽣出了⼀道题:当a=0.35,b=-0.28时,求7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3的值.题⽬出完后,⼩聪说:“⽼师给的条件a=0.35,b=-0.28是多余的.”⼩明说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?21、如图为杨辉三⾓表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+_____a3b+_____a2b2+______ab3+b4答案BDCCA BACDD11.-9x6y412.013.±8ab14.x(x+1)(x﹣1).15.a(2a-3)216.-20;17.解(1)3a2-27b2=3(a2-9b2)=3(a+3b)(a-3b);(2)x2-8(x-2)=x2-8x+16=(x-4)2.18(1)a2+b2=(a+b)2-2ab=32-2×(-2)=13;a2-ab+b2=(a+b)2-3ab=32-3×(-2)=15.(2)∵(x+y)2=x2+y2+2xy=1,(x-y)2=x2+y2-2xy=49,即解得(3)∵a-b=1,∴(a-b)2=a2+b2-2ab=1.∵a2+b2=25,∴25-2ab=1,解得ab=12.19.解∵长⽅形的周长为20,其长为a,宽为b,∴a+b=20÷2=10.∵a2-2ab+b2-4a+4b+4=0,∴(a-b)2-4(a-b)+4=0.∴(a-b-2)2=0.∴a-b-2=0,由此得⽅程组解得20.原式=(7+3-10)a3+(-6+6)a3b+(3-3)a2b=0,合并得结果为0,与a、b的取值⽆关,所以⼩明说的有道理.21.4;6;4;。

新人教版 八年级数学上册 第14章 整式的乘法与因式分解 单元测试卷 (解析版)

新人教版 八年级数学上册 第14章 整式的乘法与因式分解 单元测试卷 (解析版)

第14章整式的乘法与因式分解单元测试卷一、选择题(共10小题).1.(3分)下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(ab2)3=ab6D.a10÷a2=a5 2.(3分)计算2x2•(﹣3x3)的结果是()A.6x5B.2x6C.﹣2x6D.﹣6x5 3.(3分)计算的结果正确的是()A.B.C.D.4.(3分)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2 5.(3分)如图,阴影部分的面积是()A.xy B.xy C.4xy D.2xy 6.(3分)计算(x﹣a)(x2+ax+a2)的结果是()A.x3+2ax2﹣a3B.x3﹣a3C.x3+2a2x﹣a3D.x3+2ax2+2a2x﹣a37.(3分)下面是某同学在一次作业中的计算摘录:①3a+2b=5ab②4m3n﹣5mn3=﹣m3n③4x3•(﹣2x2)=﹣6x5④4a3b÷(﹣2a2b)=﹣2a⑤(a3)2=a5⑥(a)3÷(﹣a)=﹣a2其中正确的个数有()A.1 个B.2 个C.3 个D.4 个8.(3分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.(a+3)(a﹣3)=a2﹣9C.a2﹣9=(a+3)(a﹣3)D.x2+y2=(x+y)(x﹣y)9.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.110.(3分)若3x=15,3y=5,则3x﹣y等于()A.5 B.3 C.15 D.10二、填空题(本大题共有7小题,每空2分,共16分)11.(2分)计算:(﹣3x2y)•(xy2)=.12.(2分)计算:(﹣m+n)(﹣m﹣n)=.13.(2分)()2+π0=.14.(2分)当x时,(x﹣3)0=1.15.(4分)若|a﹣2|+b2﹣2b+1=0,则a=,b=.16.(2分)如果4x2+mx+9是完全平方式,则m的值是.17.(2分)已知a+b=5,ab=3,则a2+b2=.18.(2分)定义:a*b=a2﹣b,则(1*2)*3=.三、解答题(本大题共有7小题,共54分)19.(9分)计算或化简:(1)(a3b4)2÷(ab2)3(2)(x+y)2﹣(x+y)(x﹣y)(3)(﹣2x3y2﹣3x2y2+2xy)÷2xy.20.(12分)分解因式:(1)12abc﹣2bc2;(2)2a3﹣12a2+18a;(3)9a(x﹣y)+3b(x﹣y);(4)(x+y)2+2(x+y)+1.21.(5分)先化简,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.22.(5分)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.4a2,(x+y)2,1,9b2.23.(8分)解下列方程与不等式(1)3x(7﹣x)=18﹣x(3x﹣15);(2)(x+3)(x﹣7)+8>(x+5)(x﹣1).24.(7分)数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.25.(6分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案一、选择题(本大题共有10小题,每小题3分,共30分)1.(3分)下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(ab2)3=ab6D.a10÷a2=a5解:A、a2与a3不是同类项,不能直接合并,故本选项错误;B、a2•a3=a5,计算正确,故本选项正确;C、(ab2)3=a3b6,原式计算错误,故本选项错误;D、a10÷a2=a8,原式计算错误,故本选项错误;故选:B.2.(3分)计算2x2•(﹣3x3)的结果是()A.6x5B.2x6C.﹣2x6D.﹣6x5解:原式=2×(﹣3)x2+3=﹣6x5,故选:D.3.(3分)计算的结果正确的是()A.B.C.D.解:=﹣a6b3.故选:C.4.(3分)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.5.(3分)如图,阴影部分的面积是()A.xy B.xy C.4xy D.2xy 解:阴影部分面积为:2x×2y﹣0.5x(2y﹣y),=4xy﹣xy,=xy.故选:A.6.(3分)计算(x﹣a)(x2+ax+a2)的结果是()A.x3+2ax2﹣a3B.x3﹣a3C.x3+2a2x﹣a3D.x3+2ax2+2a2x﹣a3解:(x﹣a)(x2+ax+a2)=x3+ax2+a2x﹣ax2﹣a2x﹣a3=x3﹣a3.故选:B.7.(3分)下面是某同学在一次作业中的计算摘录:①3a+2b=5ab②4m3n﹣5mn3=﹣m3n③4x3•(﹣2x2)=﹣6x5④4a3b÷(﹣2a2b)=﹣2a⑤(a3)2=a5⑥(a)3÷(﹣a)=﹣a2其中正确的个数有()A.1 个B.2 个C.3 个D.4 个解:①3a+2b不能合并,不正确;②4m3n﹣5mn3不能合并,不正确;③4x3•(﹣2x2)=﹣8x5,不正确;④4a3b÷(﹣2a2b)=﹣2a,正确;⑤(a3)2=a6,不正确;⑥(a)3÷(﹣a)=﹣a2,正确,其中正确的个数有2个,故选:B.8.(3分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.(a+3)(a﹣3)=a2﹣9 C.a2﹣9=(a+3)(a﹣3)D.x2+y2=(x+y)(x﹣y)解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),故此选项错误;B、(a+3)(a﹣3)=a2﹣9,是整式乘法运算,故此选项错误;C、a2﹣9=(a+3)(a﹣3),符合题意;D、x2+y2无法因式分解,故此选项错误;故选:C.9.(3分)如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.1解:∵(x+m)(x+3)=x2+3x+mx+3m=x2+(3+m)x+3m,又∵(x+m)与(x+3)的乘积中不含x的一次项,∴3+m=0,解得m=﹣3.故选:A.10.(3分)若3x=15,3y=5,则3x﹣y等于()A.5 B.3 C.15 D.10 解:3x﹣y=3x÷3y=15÷5=3,故选:B.二、填空题(本大题共有7小题,每空2分,共16分)11.(2分)计算:(﹣3x2y)•(xy2)=﹣x3y3.解:(﹣3x2y)•(xy2),=(﹣3)××x2•x•y•y2,=﹣x2+1•y1+2,=﹣x3y3.12.(2分)计算:(﹣m+n)(﹣m﹣n)=m2﹣n2.解:原式=(﹣m)2﹣n2=(m)2﹣n2,=m2﹣n2故答案为:m2﹣n2.13.(2分)()2+π0=1.解:原式=+1=1.故答案为:1.14.(2分)当x≠3时,(x﹣3)0=1.解:由题意得:x﹣3≠0,解得:x≠3,故答案为:≠3.15.(4分)若|a﹣2|+b2﹣2b+1=0,则a=2,b=1.解:原方程变形为:|a﹣2|+(b﹣1)2=0,∴a﹣2=0或b﹣1=0,∴a=2,b=1.16.(2分)如果4x2+mx+9是完全平方式,则m的值是±12.解:∵4x2+mx+9是完全平方式,∴m=±12,故答案为:±1217.(2分)已知a+b=5,ab=3,则a2+b2=19.解:把知a+b=5两边平方,可得:a2+2ab+b2=25,把ab=3代入得:a2+b2=25﹣6=19,故答案为:19.18.(2分)定义:a*b=a2﹣b,则(1*2)*3=﹣2.解:∵a*b=a2﹣b,∴(1*2)*3=(12﹣2)*3=(﹣1)*3=(﹣1)2﹣3=﹣2,故答案为﹣2.三、解答题(本大题共有7小题,共54分)19.(9分)计算或化简:(1)(a3b4)2÷(ab2)3(2)(x+y)2﹣(x+y)(x﹣y)(3)(﹣2x3y2﹣3x2y2+2xy)÷2xy.解:(1)原式=a6b8÷(a3b6)=a3b2(2)原式=(x+y)(x+y﹣x+y)=2xy+2y2(3)原式=﹣x2y﹣xy+120.(12分)分解因式:(1)12abc﹣2bc2;(2)2a3﹣12a2+18a;(3)9a(x﹣y)+3b(x﹣y);(4)(x+y)2+2(x+y)+1.解:(1)12abc﹣2bc2=2bc(6a﹣c);(2)2a3﹣12a2+18a=2a(a2﹣6a+9)2a(a﹣3)2;(3)9a(x﹣y)+3b(x﹣y)=3(x﹣y)(3a+b);(4)(x+y)2+2(x+y)+1=(x+y+1)2.21.(5分)先化简,再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.解:原式=(x2﹣2xy+y2+x2﹣y2)÷2x=(2x2﹣2xy)÷2x=x﹣y,则当x=3,y=1时,原式=3﹣1=2.22.(5分)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.4a2,(x+y)2,1,9b2.解:4a2﹣9b2=(2a+3b)(2a﹣3b);(x+y)2﹣1=(x+y+1)(x+y﹣1);(x+y)2﹣4a2=(x+y+2a)(x+y﹣2a);(x+y)2﹣9b2=(x+y+3b)(x+y﹣3b);4a2﹣(x+y)2=[2a+(x+y)][2a﹣(x+y)]=(2a+x+y)(2a﹣x﹣y);9b2﹣(x+y)2=[3b+(x+y)][3b﹣(x+y)]=(3b+x+y)(3b﹣x﹣y);1﹣(x+y)2=[1+(x+y)][1﹣(x+y)]=(1+x+y)(1﹣x﹣y)等等.23.(8分)解下列方程与不等式(1)3x(7﹣x)=18﹣x(3x﹣15);(2)(x+3)(x﹣7)+8>(x+5)(x﹣1).解:(1)去括号得:21x﹣3x2=18﹣3x2+15x,移项合并得:6x=18,解得:x=3;(2)去括号得:x2﹣4x﹣21+8>x2+4x﹣5,移项合并得:﹣8x>8,解得:x<﹣1.24.(7分)数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.解:答案:错在“﹣2×300×(﹣4)”,应为“﹣2×300×4”,公式用错.∴2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.25.(6分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的C.A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.解:(1)运用了C,两数和的完全平方公式;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.。

八年级数学上册第十四章《整式的乘法与因式分解》单元测试卷-人教版(含答案)

八年级数学上册第十四章《整式的乘法与因式分解》单元测试卷-人教版(含答案)

八年级数学上册第十四章《整式的乘法与因式分解》单元测试-人教版(含答案)一.选择题(共10小题)1.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab22.若(x+3y)(ax﹣y)的展开式不含xy项,则a的值为()A.0B.1C.3D.3.若x m÷x2n+1=x,则m与n的关系是()A.m=2n+1B.m=﹣2n﹣1C.m﹣2n=2D.m﹣2n=﹣24.若x2﹣axy+9y2是一个整式完全平方后的结果,则a值为()A.3B.6C.±6D.±35.下列多项式中,不能进行因式分解的是()A.3x2+6B.x2+4C.x2﹣x+D.x(x﹣1)﹣2(x﹣1)6.计算(a﹣2)(﹣a+2),结果是()A.a2+4a+4B.a2﹣4a+4C.﹣a2+4a﹣4D.﹣a2﹣4a﹣47.下列运算正确的是()A.a2•a3=a6B.a2•b2=(ab)4C.(a4)3=a7D.(﹣m)7÷(﹣m2)=m58.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣129.若(x+3)(2x﹣a)展开后不含x的一次项,则a的值等于()A.6B.﹣6C.0D.﹣210.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8B.a﹣b=4C.a•b=12D.a2+b2=64二.填空题(共8小题)11.分解因式:xy﹣2y2=.12.计算:(4x2y3+8x2y2﹣2xy2)÷2xy2=.13.若a m=5,a n=6,则a m+2n的值为.14.计算:(﹣x﹣2y2)2=.15.计算:=.16.若x+y=5,xy=6,则(x+1)(y+1)的值为.17.多项式a2+(m+2)ab+25b2能用完全平方式分解因式,则m的值为.18.已知:x2+4y2+z2=9,x﹣2y+z=2,则2xy+2yz﹣xz=.三.解答题(共4小题)19.已知22•22m﹣1•23﹣m=128,求m的值.20.(1)试说明代数式(s﹣2t)(s+2t+1)+4t(t+)的值与s、t的值取值有无关系;(2)已知多项式ax﹣b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,试求a b 的值;(3)已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.21.计算:(1)(a+b+3)(a+b﹣3);(2)(a﹣b)3.22.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中各项的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式.参考答案一.选择题(共10小题)1.多项式12ab3+8a3b的各项公因式是()A.ab B.2ab C.4ab D.4ab2【解答】解:系数的最大公约数是4,相同字母的最低指数幂是ab,所以多项式12ab3+8a3b的各项公因式是4ab,故选:C.2.若(x+3y)(ax﹣y)的展开式不含xy项,则a的值为()A.0B.1C.3D.【解答】解:(x+3y)(ax﹣y)=ax2﹣xy+3axy﹣3y2=ax2+(3a﹣1)xy﹣3y2由题意得,3a﹣1=0,解得,a=,故选:D.3.若x m÷x2n+1=x,则m与n的关系是()A.m=2n+1B.m=﹣2n﹣1C.m﹣2n=2D.m﹣2n=﹣2【解答】解:∵x m÷x2n+1=x,∴m﹣2n﹣1=1,则m﹣2n=2.故选:C.4.若x2﹣axy+9y2是一个整式完全平方后的结果,则a值为()A.3B.6C.±6D.±3【解答】解:∵x2﹣axy+9y2是完全平方式,∴﹣axy=±2×3y•x,解得k=±6.故选:C.5.下列多项式中,不能进行因式分解的是()A.3x2+6B.x2+4C.x2﹣x+D.x(x﹣1)﹣2(x﹣1)【解答】解:A、3x2+6=3(x2+2),故此选项不合题意;B、x2+4,无法分解因式,符合题意;C、x2﹣x+=(x﹣)2,故此选项不合题意;D、x(x﹣1)﹣2(x﹣1)=(x﹣1)(x﹣2),故此选项不合题意;故选:B.6.计算(a﹣2)(﹣a+2),结果是()A.a2+4a+4B.a2﹣4a+4C.﹣a2+4a﹣4D.﹣a2﹣4a﹣4【解答】解:(a﹣2)(﹣a+2)=﹣(a﹣2)(a﹣2)=﹣(a2﹣4a+4)=﹣a2+4a﹣4.故选:C.7.下列运算正确的是()A.a2•a3=a6B.a2•b2=(ab)4C.(a4)3=a7D.(﹣m)7÷(﹣m2)=m5【解答】解:A.a2•a3=a5,故此选项不合题意;B.a2•b2=(ab)2,故此选项不合题意;C.(a4)3=a12,故此选项不合题意;D.(﹣m)7÷(﹣m2)=m5,故此选项符合题意;故选:D.8.如果x2+kxy+36y2是完全平方式,则k的值是()A.6B.6或﹣6C.12D.12或﹣12【解答】解:∵x2+kxy+36y2是一个完全平方式,∴k=±2×6,即k=±12,故选:D.9.若(x+3)(2x﹣a)展开后不含x的一次项,则a的值等于()A.6B.﹣6C.0D.﹣2【解答】解:(x+3)(2x﹣a)=2x2﹣ax+6x﹣3a=2x2+(6﹣a)x﹣3a,∵展开后不含x的一次项,∴6﹣a=0.解得a=6.故选:A.10.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8B.a﹣b=4C.a•b=12D.a2+b2=64【解答】解:∵大正方形的面积为64,中间空缺的小正方形的面积为16,∴大正方形的边长为8,小正方形的边长为4,即:a+b=8,a﹣b=4,因此a=6,b=2,∴a2+b2=36+4=40,ab=6×2=12,故选:D.二.填空题(共8小题)11.分解因式:xy﹣2y2=y(x﹣2y).【解答】解:xy﹣2y2=y(x﹣2y),故答案为:y(x﹣2y).12.计算:(4x2y3+8x2y2﹣2xy2)÷2xy2=2xy+4x﹣1.【解答】解:原式=2xy+4x﹣1,故答案为:2xy+4x﹣1.13.若a m=5,a n=6,则a m+2n的值为180.【解答】解:∵a n=6,∴(a n)2=a2n=36∴a m+2n=a m•a2n=5×36=180.故单位:18014.计算:(﹣x﹣2y2)2=x2﹣4xy2+4y4.【解答】解:(﹣x﹣2y2)2=x2﹣4xy2+4y4.故答案为:x2﹣4xy2+4y4.15.计算:=1.【解答】解:原式==a0=1.16.若x+y=5,xy=6,则(x+1)(y+1)的值为12.【解答】解:当x+y=5、xy=6时,原式=xy+x+y+1=6+5+1=12,故答案为:12.17.多项式a2+(m+2)ab+25b2能用完全平方式分解因式,则m的值为8或﹣12..【解答】解:由题意得:a2+(m+2)ab+25b2=(a±5b)2,∴a2+(m+2)ab+25b2=a2±10ab+25b2,∴m+2=±10,∴m+2=10或m+2=﹣10,∴m=8或m=﹣12,故答案为:8或﹣12.18.已知:x2+4y2+z2=9,x﹣2y+z=2,则2xy+2yz﹣xz=.【解答】解:∵x﹣2y+z=2x+z=2+2y(x+z)2=(2+2y)2x2+z2+2xz=4y2+4y+4x2+z2=4y2+8y﹣2xz+4…①x2+4y2+z2=9x2+z2=9﹣4y2…②∴由①、②两式得:4y2+8y﹣2xz+4=9﹣4y2化简得:4y2+4y﹣xz=,所求代数式为:2xy+2yz﹣xz=2y(x+z)﹣xz=2y(2y+2)﹣xz=,故答案为.三.解答题(共4小题)19.已知22•22m﹣1•23﹣m=128,求m的值.【解答】解:∵22•22m﹣1•23﹣m=128=27,∴2+2m﹣1+3﹣m=7,解得:m=3.20.(1)试说明代数式(s﹣2t)(s+2t+1)+4t(t+)的值与s、t的值取值有无关系;(2)已知多项式ax﹣b与2x2﹣x+2的乘积展开式中不含x的一次项,且常数项为﹣4,试求a b 的值;(3)已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【解答】解:(1)代数式的值与t的值取值无关系,与s的值取值有关系.∵(s﹣2t)(s+2t+1)+4t(t+)=s2+2st+s﹣2ts﹣4t2﹣2t+4t2+2t=s2+s,∴代数式的值与t的值取值无关系,与s的值取值有关系.(2)(ax﹣b)(2x2﹣x+2)=2ax3﹣ax2+2ax﹣2bx2+bx﹣2b=2ax3﹣(a+2b)x2+(2a+b)x﹣2b,∵积展开式中不含x的一次项,且常数项为﹣4,∴2a+b=0,﹣2b=﹣4,∴a=﹣1,b=2.a b=1.(3)设另一个因式为(x+m).根据题意得,(x+m)(2x﹣5)=2x2+3x﹣k,x2﹣5x+2mx﹣5m=2x2+3x﹣k,x2+(2m﹣5)x﹣5m=2x2+3x﹣k,∴2m﹣5=3,﹣k=﹣5m,∴m=4,k=20,∴另一个因式:(x+4),k是20.21.计算:(1)(a+b+3)(a+b﹣3);(2)(a﹣b)3.【解答】解:(1)原式=(a+b)2﹣32=a2+2ab+b2﹣9;(2)原式=(a﹣b)2(a﹣b)=(a2﹣2ab+b2)(a﹣b)=a3﹣2a2b+ab2﹣a2b+2ab2﹣b3=a3﹣3a2b+3ab2﹣b3.22.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中各项的系数1,2,1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式.【解答】解:根据题意可知图中第五行的数字依次为1、﹣4、6、﹣4、1,因为它的每一行的数字正好对应了(a﹣b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数,所以(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.。

人教版八年级上册第14章《整式的乘法与因式分解》单元测试卷 含答案

人教版八年级上册第14章《整式的乘法与因式分解》单元测试卷   含答案

人教版八年级上册第14章《整式的乘法与因式分解》单元测试卷满分120分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.计算a5•a3正确的是()A.a2B.a8C.a10D.a152.下列说法正确的是()A.多项式乘以单项式,积可以是多项式也可以是单项式B.多项式乘以单项式,积的次数等于多项式的次数与单项式次数的积C.多项式乘以单项式,积的系数是多项式系数与单项式系数的和D.多项式乘以单项式,积的项数与多项式的项数相等3.下列多项式中,不能进行因式分解的是()A.﹣a2+b2B.﹣a2﹣b2C.a3﹣3a2+2a D.a2﹣2ab+b2﹣14.下列多项式中,在实数范围内能进行因式分解的是()A.a﹣1B.a2﹣1C.x2﹣4y D.a2+15.若2x=a,2y=b,则2x+y=()A.a+b B.ab C.a b D.b a6.若a+b=3,ab=2,则a2+b2的值是()A.2.5B.5C.10D.157.已知:(2x+1)(x﹣3)=2x2+px+q,则p,q的值分别为()A.5,3B.5,﹣3C.﹣5,3D.﹣5,﹣38.比较355,444,533的大小,正确的是()A.444>355>533B.533>444>355C.355>444>533D.355>533>4449.请你观察图形,依据图形面积之间的关系,不需要添加辅助线,便可以得到一个你熟悉的公式,这个公式是()A.(x+y)(x﹣y)=x2﹣y2B.(x+y)2=x2+2xy+y2C.(x﹣y)2=x2﹣2xy+y2D.(x+y)2=x2+xy+y210.如果,则=()A.4B.2C.0D.6二.填空题(共7小题,满分28分,每小题4分)11.20200=.12.计算:xy(x﹣y)=.13.多项式8a2b3+6ab2的公因式是.14.分解因式:16x4﹣81=.15.=.16.若代数式x2+kx+25是一个完全平方式,则k=.17.若2x+m与x+2的乘积中不含的x的一次项,则m的值为.三.解答题(共8小题,满分62分)18.(6分)计算:(1)(5mn2﹣4m2n)(﹣2mn)(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)19.(6分)把下列各式分解因式:(1)2a2﹣4ab+2b2 (2)(2x﹣1)2﹣(2﹣x)2.20.(6分)[(2x﹣y)2﹣(2x+3y)(2x﹣3y)]÷(﹣2y),其中x=﹣,y=.21.(8分)利用完全平方公式或平方差公式计算(1)20192﹣2018×2020 (2)(3+2a+b)(3﹣2a+b)22.(8分)已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.23.(8分)如果a c=b,那么我们规定(a,b)=c,例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(3,27)=,(4,1)=(2,0.25)=;(2)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c.24.(9分)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.25.(11分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是.(请选择“A”、“B”、“C”)A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:a5•a3=a5+3=a8.故选:B.2.解:A、多项式乘以单项式,单项式不为0,积一定是多项式,单项式为0,积是单项式,故本选项正确;B、多项式乘以单项式,积的次数等于多项式的次数与单项式次数的和,故本选项错误;C、多项式乘以单项式,积的系数是多项式系数与单项式系数的积,故本选项错误;D、由选项A知错误.故选:A.3.解:A、两个平方项异号,可用平方差公式进行因式分解,故A正确;B、两个平方项同号,不能运用平方差公式进行因式分解,故B错误;C、可先运用提公因式法,再运用十字相乘法,原式=a(a2﹣3a+2)=a(a﹣1)(a﹣2),故C正确;D、可先分组,再运用公式法,原式=(a﹣b)2﹣1=(a﹣b+1)(a﹣b﹣1),故D正确.故选:B.4.解:A、a﹣1不能分解,不符合题意;B、原式=(a+1)(a﹣1),符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意,故选:B.5.解:当2x=a,2y=b时,2x+y=2x•2y=ab,故选:B.6.解:a2+b2=(a+b)2﹣2ab=32﹣2×2=5.故选:B.7.解:(2x+1)(x﹣3)=2x2﹣6x+x﹣3=2x2﹣5x﹣3,∵(2x+1)(x﹣3)=2x2+px+q,∴p=﹣5,q=﹣3,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第14章整式的乘法与因式分解
一、选择题
1.下列何者是22x7﹣83x6+21x5的因式?()
A.2x+3 B.x2(11x﹣7)C.x5(11x﹣3)D.x6(2x+7)
2.把多项式x3﹣2x2+x分解因式,正确的是()
A.(x﹣1)2B.x(x﹣1)2C.x(x2﹣2x+1)D.x(x+1)2
3.多项式ax2﹣4ax﹣12a因式分解正确的是()
A.a(x﹣6)(x+2)B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)
二、填空题
4.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n=______.
5.因式分解:ax2﹣7ax+6a=______.
6.分解因式:(a+2)(a﹣2)+3a=______.
7.因式分解:ab2﹣a=______.
8.分解因式:2m3﹣8m=______.
9.因式分解4x﹣x3=______.
10.分解因式x3﹣xy2的结果是______.
11.分解因式:2﹣2a2=______.
12.分解因式:12m2﹣3n2=______.
13.分解因式:5x2﹣20=______.
14.分解因式:2x(x﹣3)﹣8=______.
15.因式分解:a3﹣ab2=______.
16.分解因式:2a2﹣8=______.
17.分解因式:m3﹣4m=______.
18.分解因式:ax2﹣4a=______.
19.分解因式:ab2﹣4ab+4a=______.
20.分解因式:2a3﹣8a2+8a=______.
21.分解因式:3a2﹣12ab+12b2=______.
22.分解因式:4x2﹣8x+4=______.
23.把多项式4ax2﹣ay2分解因式的结果是______.24.把多项式分解因式:ax2﹣ay2=______.
25.分解因式: =______.26.因式分解:x3﹣5x2+6x=______.
27.分解因式:3x2﹣18x+27=______.
28.分解因式:a3b﹣9ab=______.
29.分解因式:x2+3x(x﹣3)﹣9=______.30.分解因式:x2y﹣4y=______.
第14章整式的乘法与因式分解
参考答案
一、选择题
1.C;2.B;3.A;
二、填空题
4.4;5.a(x-1)(x-6);6.(a-1)(a+4);7.a(b+1)(b-1);8.2m(m+2)(m-2);9.-x(x+2)(x-2);10.x(x+y)(x-y);11.2(1+a)(1-a);12.3(2m+n)(2m-n);13.5(x+2)(x-2);14.2(x-4)(x+1);15.a(a+b)(a-b);16.2(a+2)(a-2);17.m(m-2)(m+2);18.a(x+2)(x-2);19.a(b-2)2;20.2a(a-2)2;21.3(a-2b)2;22.4(x-1)2;23.a(2x+y)(2x-y);24.a(x+y)(x-y);25.-(3x-1)2;26.x (x-3)(x-2);27.3(x-3)2;28.ab(a+3)(a-3);29.(x-3)(4x+3);30.y(x+2)(x-2);。

相关文档
最新文档