6.4 二次函数的应用(2)【最大面积是多少】

合集下载

《二次函数的应用——面积最大问题》说课稿—获奖说课稿.docx

《二次函数的应用——面积最大问题》说课稿—获奖说课稿.docx

《实际问题与二次函数》说课稿各位评委:你们好!很高兴有机会参加这次比赛,并能得到各位专家的指导,我说课的课题是:实际问题与二次函数——最大值问题。

所用教材是人民教育出版社九年级上第22章第三节实际问题与二次函数,本节共需四课吋,面积最大是第一节,利润最大是第二节。

下面我将从教材内容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程的设计和教学效果预测几方面对本节课进行说明。

一、教学内容的分析1、地位与作用:实际问题与二次函数也可以称作二次函数的应用,本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。

新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题乂是生活中利用二次函数知识解决最常见、最有实际应用价值的问题Z-,它生活背景丰富,学生比较感兴趣,对于面积问题、利润问题学生易于理解和接受,故而在这儿作专题讲解。

目的在于让学生通过掌握求最大值这一类题,学会用建模的思想去解决其它和函数有关的应用问题。

此部分内容是学习一次函数及其应用后的巩固与延伸,又为高小乃至以后学习更多函数打下坚实的理论和思想方法基础。

2、课时安排:教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最人、利润最大、运动小的二次函数、综合应用四课时。

3 •学情及学法分析对九年级学生來说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最値,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,口的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标屮知识与技能呈螺旋式上升的规律。

二、教学目标、重点、难点的确定结合木节课的教学内容和学生现有的学习水平,我确定木节课的教学目标如下:1•知识与技能:通过本节学习,巩固二次函数y=3x? + bx + c QHO)的图象与性质,理解顶点与最值的关系,会求解最值问题。

二次函数的应用

二次函数的应用

二次函数的应用【教学建议】二次函数是中考数学中最重要的内容之一,属于中考数学的必考内容,也是难点内容,我们可以利用二次函数的模型解决很多实际问题(比如:长度、面积和周长等的最值问题、商品利润问题等等)。

实际生活中的很多问题都可以借助建立二次函数的模型来解决,这属于中考必考题。

解决此类问题一般是根据几何图形的性质,先找变量,再确定变量与该图形周长或面积之间的关系,用变量表示出其他边的长,从而确定二次函数的表达式,再根据题意及二次函数的性质解题即可.1. 如何求关于利润的二次函数表达式(1)若题目给出销售量与单价之间的函数表达式,以及销售单价与进价之间的关系时,则可直接根据:销售利润 =销售总额-成本 =销售量×销售价-销售量×进价 =销售量×(销售价-进价)来解决; (2)若题目中未给出销售量与单价之间的函数表达式,则要先求出销售量与单价之间的函数表达式,表达式一般是一次函数关系,再根据销售利润 =销售量×(销售价-进价)来解决. 2. 如何求二次函数的最值(1)可直接利用公式法求顶点的纵坐标,即y =ax 2+bx +c 的最大值为244ac b a−(a <0)或最小值为244ac b a−(a >0);(2)若顶点在已知给定的自变量取值范围内,则函数在顶点处取得最大值或最小值;若顶点不在已知给定的自变量取值范围内,则根据二次函数的性质判断所给自变量取值范围的两端点处对应的函数值大小,从而确定最值.3.解决最值应用题要注意两点(1)设未知数,在“当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要讲义一、导入 二、知识讲解知识点1 利用二次函数求图形的最大面积知识点2 销售中的最大利润设为函数;(2)求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.知识点3 抛物线形问题常见设问形式和解题策略:(1)抛球运动判断球是否过网:即判断此点的坐标是否在抛物线上方;(2)投篮判断是否能投中:即判断篮网是否在球的运动轨迹所在的抛物线图象上;(3)判断货车是否能通过隧道:即判断两端点的坐标是否在抛物线的下方;(4)判断船是否能通过拱桥:即判断船的高度是否比桥的最高点到水面的距离小;(5)判断人是否会被喷泉淋湿:即判断人所处位置的水的高度是否比人的身高大.解题步骤:1.据题意,结合函数图象求出函数解析式;2.确定自变量的取值范围;3.根据图象,结合所求解析式解决问题.注意事项:若题目中未给出坐标系,则需要建立坐标系求解,建立的原则:①所建立的坐标系要使求出的二次函数表达式比较简单;②使已知点所在的位置适当(如在x轴,y轴、原点、抛物线上等),方便求二次函数表达式和之后的计算求解.知识点4 二次函数中的实际应用综合复习回顾:1.二次函数如何配成顶点式?2.如何根据实际问题情境确定自变量的取值范围?三、例题精析例题1【题干】1.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)若所用铁栅栏的长为40米,求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)在(1)的条件下,求S 与x 的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米? 【答案】(1)y=-2x+44,3445<x ≤(2)2244S x x =−+,AD=6米,AB=32米. 【解析】(1)由34米的墙,及2米宽的小门,得到平行与墙的边,以及垂直于墙的两条边之和,由AD =x ,AB =y ,所用铁栅栏的长为40米,根据求出的之和表示出y 与x 的关系式;(2)由(1)表示出的y 与x 的关系式,列出S 与x 的函数关系式,根据矩形场地的面积为192平方米,求出AD 与AB 的长即可.试题解析:解:(1)∵y +2x -2×2=40, ∴y =-2x +44, ∴5≤x <443; (2)∵y =-2x +44,∴S =xy =x (-2x +44)=-2x 2+44x ; ∵矩形场地的面积为192平方米, ∴-2x 2+44x =192,∴x =6或x =16(不合题意), ∴AB =y =-2x +44=-2×6+44=32.答:AD =6米,AB =32米才能使矩形场地的面积为192平方米.【题干】2.有一块形状如图的五边形余料ABCDE ,AB =AE =6,BC =5,∠A =∠B =90°,∠C =135°,∠E >90°.要在这块余料中截取一块矩形材料,其中一边在AE 上,并使所截矩形的面积尽可能大. (1)若所截矩形材料的一条边是BC 或AE ,求矩形材料的面积;(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.【答案】见解析【解析】解:(1)截法一:如答图①,S 四边形ABCF =AB ·BC =6×5=30. 截法二:如答图②.过点C 作CH ⊥FG 于点H . 则四边形BCHG 为矩形,△CHF 为等腰直角三角形, ∴HG =BC =5,BG =CH ,FH =CH ,∴BG =CH =FH =FG -HG =AE -HG =6-5=1, ∴AG =AB -BG =6-1=5. ∴S 四边形AGFE =AE ·AG =6×5=30.(2)如答图③,在CD 上取点F ,过点F 作FM ⊥AB 于点M ,FN ⊥AE 于点N ,过点C 作CG ⊥FM 于点G . 则四边形AMFN ,BCGM 为矩形, △CGF 为等腰直角三角形, ∴MG =BC =5,BM =CG ,FG =CG . 设AM =x ,则BM =6-x ,∴FM =GM +FG =GM +CG =BC +MB =11-x , ∴S 四边形AMFN =AM ·FM =x (11-x )=-(x -5.5)2+30.25, ∴当x =5.5时,S 的最大值为30.25. ∵30.25>30,∴能截出此(1)中面积更大的矩形材料.图①图②图③【题干】如图,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值,最大值是多少?【答案】252【解析】∵矩形MFGN ∽矩形ABCD ,∴MN :AD =MF :AB . ∵AB =2AD ,MN =x , ∴MF =2x .(2分)∴EM =EF −MF =10−2x (0<x <5). ∴S =x (10−2x )(5分)=−2x 2+10x =−2(x −52)2+252 ∴当x =52时,S 有最大值为252。

二次函数的应用(2)面积问题同步培优题典(原卷版)

二次函数的应用(2)面积问题同步培优题典(原卷版)

专题2.7二次函数的应用(2)面积问题姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•行唐县期末)如图,一边靠墙(墙有足够长),其它三边用12m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是()A.16m2B.12 m2C.18 m2D.以上都不对2.(2019春•西湖区校级月考)有一个矩形苗圃园,其中一边靠墙,另外边用长为20m的篱笆围成.已知墙长为15m,若平行于墙的一边长不小于8m,则这个苗圃园面积的最大值和最小值分别为()A.48m2,37.5m2B.50m2,32m2C.50m2,37.5m2D.48m2,32m23.(2019•宝安区二模)如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是()平方米.A.16B.18C.20D.244.(2018秋•柯桥区期末)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=m.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为()A .193B .194C .195D .1965.(2019•保定三模)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门,已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的饲养室面积最大为( )A .75m 2B .752m 2C .48m 2D .2252m 26.(2018秋•西湖区校级月考)有一个矩形苗圃园,其中一边靠墙,另外三边用长为20m 的篱笆围成.已知墙长为15m ,若平行于墙的一边长不小于8m ,则这个苗圃园面积的最大值和最小值分别为( )A .48m 2,37.5m 2B .50m 2,32m 2C .50m 2,37.5m 2D .48m 2 ,32m 27.(2018秋•大观区校级月考)用长度为8m 的铝合金条制成如图所示的矩形窗框,那么这个窗户的最大透光面积为( )m 2.A .256 B .83 C .2 D .48.(2018•建平县模拟)如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1cm /s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm /s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形P ABQ的面积的最小值为()A.19cm2B.16cm2C.12cm2D.15cm29.(2019•桥西区校级模拟)如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1B.2C.3D.410.(2018•扬州一模)一种包装盒的设计方法如图所示,ABCD是边长为80cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四点重合于图中的点O,形成一个底面为正方形的长方体包装盒.设BE=CF=xcm,要使包装盒的侧面积最大,则x应取()A.30cm B.25cm C.20cm D.15cm二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•宿豫区期末)若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为.12.(2020•沈河区二模)如图,有一个矩形苗圃园、其中一边靠墙(墙长为15m),另外三边用长为16m的篱笆围成,则这个苗圃园面积的最大值为.13.(2020•和平区一模)如图,假设篱笆(虚线部分)的长度是8m,则所围成矩形ABCD的最大面积是.14.(2019秋•台州期中)在某市治理违建的过程中,某小区拆除了自建房,改建绿地.如图,自建房占地是边长为8m的正方形ABCD,改建的绿地的是矩形AEFG,其中点E在AB上,点G在AD的延长线上,且DG=2BE.那么当BE=m时,绿地AEFG的面积最大.15.(2019秋•唐山期末)如图,用长8m的铝合金条制成使窗户的透光面积最大的矩形窗框,那么这个窗户的最大透光面积是m2.(中间横框所占的面积忽略不计)16.(2020•和平区校级模拟)为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为60m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则BC长为时,能围成的矩形区域ABCD的面积最大.17.(2019秋•江岸区校级月考)如图,小滕用铁栅栏及一面墙(墙足够长)围成了一个矩形自行车场地ABCD,在AB 和BC 边各有一个2m 宽的小门(不用铁栅栏),小滕共用了铁栅栏40米,则矩形ABCD 的面积的最大值为 m 2.18.(2019秋•兖州区期中)一养鸡专业户计划用116m 长的篱笆围成如图所示的三间长方形鸡舍,门MN 宽2m ,门PQ 和RS 的宽都是1m ,围成的鸡舍面积最大是 平方米.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020•荔城区校级模拟)某农场拟用总长为60m 的建筑材料建三间矩形牛饲养室,饲养室的一面靠现有墙(墙长为40m ),其中间用建筑材料做的墙隔开(如图).设三间饲养室平行于墙的一边合计用建筑材料xm ,总占地面积为ym 2.(1)求y 关于x 的函数解析式和自变量的取值范围;(2)当x 为何值时,三间饲养室占地总面积最大?最大面积为多少?20.(2019春•南岗区校级期中)如图,印刷一张矩形的包装纸,印刷部分的长为8cm ,宽为4cm ,上下空白宽各x2cm ,左右空白宽各xcm ,四周空白处的面积为Scm 2. (1)求S 与x 的关系式;(2)当四周空白处的面积为18cm 2时,求x 的值.21.(2020•河北)用承重指数W衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]22.(2020春•道里区期末)某养鸡专业户用篱笆及一面墙(该墙可用最大长度为36米)围成一个矩形场地ABCD来供鸡室外活动,该场地中间隔有一道与AB平行的篱笆(EF),如图,BE、EF上各留有1米宽的门(门不需要篱笆),该养鸡专业户共用篱笆58米,设该矩形的一边AB长x米,AD>AB,矩形ABCD 的面积为s平方米.(1)求出S与x的函数关系式,直接写出自变量x的取值范围;(2)若矩形ABCD的面积为252平方米,求AB的长.23.(2020•无锡)有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD 和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1)当x=5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.24.(2019秋•南岸区期末)空地上有一段长为am的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为120m.(1)已知a=30,矩形菜园的一边靠墙,另三边一共用了120m木栏,且围成的矩形菜园而积为1000m2.如图1,求所利用旧墙AD的长;(2)已知0<a<60,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.。

二次函数的实际应用——面积最大(小)值问题

二次函数的实际应用——面积最大(小)值问题

二次函数的实际应用——面积最大(小)值问题[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.[例3]如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.。

二次函数的实际应用(典型例题分类)

二次函数的实际应用(典型例题分类)

二次函数与实际问题1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(求最值、最大利润、最大面积等)解决此类问题的基本思路是:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合理性,拓展等.例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系并求出绿地面积的最大值@变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式当x为多长时,花园面积最大·例二:某商店经营T恤衫,已知成批购进时单价是元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多设销售单价为x元,(0<x≤元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)@(4)所获利润可以表示为__________________;(5)当销售单价是________元时,可以获得最大利润,最大利润是__________。

~变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量其中自变量是_______,因变量是___________.(2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结_________个橙子.(3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________.(4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。

二次函数的应用课件面积问题(共10张PPT)

二次函数的应用课件面积问题(共10张PPT)
使销售利润最大?
请同学们完成这个 问题的解答
你会解吗?
例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。窗框 的长、宽各为多少时,它的透光面积最大?最大透光面积是多少?
解:设矩形的宽为x米,矩形的透光面积为y米。由题 意得:
y=x· 6-3x 2
(0<x<2)
即:y=- 3 x2+3x
2
配方,得:
的距离)能否通过此隧道? 如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1
米为数轴的单位长度,建立平面直角坐标系,
A CB
)
(6)y=- x2-4x+1
值范围; 例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。
该店想通过降低售价、增加销售量的办法来提高利润。
O x
(2) 有一辆宽2.8米,高3米的 y=x·
(0<x<2)
∴当x=5,y最大值=50
农用货车(货物最高处与地面AB y随着x的增大而减小。
(4)y=100-5x2 将这个函数关系式配方,得:
y=- 3 (x-1)2+ 3
2
2
∴它的顶点坐标是(1,1.5)
∴当x=1,y最大值=1.5
因为x=1时,满足0<x<2,这时
6-3x 2
=1.5
答:当矩形窗框的宽为5m时,长为1.5m时,它的透光
面积最大,最大面积为1.5m2。
1.求下列函数的最大值或最小值:
(1)y=x2-3x+4
(2)y=1-2x-x2
物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角

二次函数应用几何图形的最大面积问题教学课件

二次函数应用几何图形的最大面积问题教学课件
根据几何图形的特性,选择合 适的二次函数模型来表示面积 。
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所

二次函数求面积最大值

二次函数求面积最大值

二次函数求面积最大值二次函数是高中数学中比较重要的一章内容,它在数学和物理中都有广泛的应用。

其中,求二次函数的最值是一个常见的问题,而二次函数求面积最大值也是其中一个重要的应用。

一、二次函数的基本概念二次函数是形如y=ax+bx+c的函数,其中a、b、c是实数且a≠0。

二次函数的图像是一条开口向上或向下的抛物线,其顶点坐标为(-b/2a, c-b/4a)。

二、二次函数求面积最大值的问题对于给定的二次函数y=ax+bx+c,我们要求其在区间[a, b]上的面积最大值。

这个问题可以转化为求y=ax+bx+c在区间[a, b]上的最大值和最小值,然后再利用定积分求解。

三、求二次函数的最值我们知道,二次函数的最值只可能出现在其顶点处,因此我们可以先求出二次函数的顶点坐标,然后再判断其是否在区间[a, b]内。

对于y=ax+bx+c,其顶点坐标为(-b/2a, c-b/4a)。

如果顶点坐标不在区间[a, b]内,则最值出现在区间端点处,即y(a)和y(b)中的较大值。

四、利用定积分求解面积最大值已知y=ax+bx+c在区间[a, b]上的最大值和最小值,我们可以利用定积分求解其面积最大值。

设y=ax+bx+c在区间[a, b]上的最大值和最小值分别为y1和y2,则其面积最大值为∫[a, b] (y1-y2)dx。

五、例题解析下面通过一个例题来说明如何利用二次函数求面积最大值。

例1:求函数y=-x+4x+5在区间[0, 4]上的面积最大值。

首先,求出该函数的顶点坐标:x0 = -b/2a = -4/(-2) = 2y0 = -x0+4x0+5 = -4+8+5 = 9因为顶点坐标(2, 9)在区间[0, 4]内,所以函数的最值为y(2)=9。

然后,利用定积分求解面积最大值:∫[0, 4] (y(2)-y)dx = ∫[0, 4] (9+x-4x)dx = 20/3因此,函数y=-x+4x+5在区间[0, 4]上的面积最大值为20/3。

二次函数的应用——面积最大问题》说课稿—获奖说课稿

二次函数的应用——面积最大问题》说课稿—获奖说课稿

二次函数的应用——面积最大问题》说课稿—获奖说课稿22.过程与方法:培养学生利用所学知识构建数学模型,解决实际问题的能力,掌握建模思想,熟练掌握最值问题的解法。

23.情感态度与价值观:通过实际问题的应用,让学生感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱。

本节课的重点是最值问题的解法和建模思想的培养,难点是对实际问题的分析和建模思想的掌握。

三、教学方法的选择本节课采用“引导发现、归纳总结、启发式教学”等多种教学方法,其中引导发现法是本节课的核心教学方法,通过引导学生发现实际问题中的规律和模式,培养学生独立思考和解决问题的能力;归纳总结法是巩固知识的有效方法,通过对学生已有的知识进行梳理和总结,加深对知识的理解和记忆;启发式教学法则是在教学中采用启发式问题,激发学生的思考和求知欲,提高学生的研究兴趣和积极性。

四、教学过程的设计本节课的教学过程分为四个环节:导入、讲授、练、归纳总结。

导入环节通过引入实际问题,激发学生的兴趣和求知欲,让学生认识到最值问题的实际应用价值;讲授环节通过具体例子和图像分析,讲解最值问题的解法和建模思想;练环节则通过多种形式的练,巩固学生的知识和技能;归纳总结环节则对本节课的知识点进行总结和梳理,加深对知识的理解和记忆。

五、教学效果预测通过本节课的教学,学生将能够掌握最值问题的解法和建模思想,能够熟练应用所学知识解决实际问题,同时也能够感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱,为学生今后的研究打下坚实的理论和思想方法基础。

2、___要在一块长为20米、宽为15米的空地上建一个长方形花园,他想让花园的面积最大,你能帮他算一下最大面积是多少吗?3、某公司生产一种产品,销售价格为每个10元,生产成本为每个5元,每天能生产1000个,你能帮助他们算一下每天的最大利润是多少吗?设计思路]通过这三个问题,引导学生发现实际问题中的最值问题,从而引出二次函数的最值问题。

二次函数中求面积最大的技巧

二次函数中求面积最大的技巧

二次函数中求面积最大的技巧二次函数是数学中非常重要的一类函数,应用广泛。

在二次函数中,如何求面积最大是一个非常重要的问题。

下面,我将分步骤阐述这个问题的解决技巧。

一、二次函数的基本形式二次函数的基本形式为:y=ax^2+bx+c其中,a、b、c均为实数,而a不能为零。

二次函数的图像是一个开口向上或向下的抛物线。

当a>0时,抛物线是开口向上的;当a<0时,抛物线是开口向下的。

二、求解面积最大的过程在二次函数中,若要求出面积,则必须指明积分范围。

一般情况下,我们可以选择从抛物线与x轴的交点处开始积分。

例如,有一个二次函数f(x)=-2x^2+8x+6,我们可以先将其画出来,然后找到交点。

这样,我们就可以使用定积分的方法求出抛物线所围成的面积了。

但事实上,这个方法并不是最有效的。

在这里,我将介绍一种更为简单的方法,具体步骤如下:1.将二次函数表示为顶点式二次函数是一个二次多项式,可以通过完成平方来将其写成顶点式。

即:y=a(x-h)^2+k其中,(h,k)为抛物线的顶点坐标。

根据这种表示方法,我们可以更容易地分析抛物线的性质。

2.求出抛物线的顶点如果已知二次函数的标准形式,我们可以直接使用公式求解。

即:h=-b/2ak=f(h)当然,如果已知抛物线的坐标和斜率,我们也可以通过其他方法求解。

不过,在这里我们只需要使用这个公式就可以了。

比如,对于f(x)=-2x^2+8x+6,我们可以使用上述公式求解,得到:h=2k=10也就是说,这个抛物线的顶点坐标为(2,10)。

3.求出最大面积的横坐标由于抛物线是关于顶点对称的,因此最大面积一定在顶点处或抛物线的两个端点处取得。

但由于面积为正,因此我们只需要考虑顶点附近的情况。

如果我们要求解最大面积,必须先确定面积的边界条件。

此处,横坐标的取值范围是顶点左右两侧的区域。

因此,我们需要求解的是从顶点向两侧的距离。

如果我们设距离为x,那么横坐标的取值就是[h-x,h+x],而这一区域内的面积是可以通过定积分求解的。

二次函数的实际应用(面积最值问题)

二次函数的实际应用(面积最值问题)

二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。

求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -= x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PH BH BF AF =,即3412--=y x, ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE 和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH是正方形.图(2)可以看作是由四块图(1)所示地砖绕C点按顺(逆)时针方向旋转90°后得到的,故CE=CF =CG.∴△CEF是等腰直角三角形因此四边形EFGH是正方形.(2)设CE=x, 则BE=0.4-x,每块地砖的费用为y元那么:y =x×30+×0.4×(0.4-x)×20+[0.16-x-×0.4×(0.4-x)×10])24.02.0(102+-=xx3.2)1.0(102+-=x)4.00(<<x当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1.答:当CE=CF=0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间t(单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米.2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图像上,(如图所示),则6楼房子的价格为元/平方米.提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x x(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=3 7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ABCD PQ解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x ∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.5易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米. 答案:如图所示建立直角坐标系则:设c ax y +=2 将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年南宁市)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得==+21y y +== ∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润.因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,11 将的坐标代入, 得 解得. 所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是. 过点作垂直交抛物线于, 则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.。

二次函数的应用ppt课件

二次函数的应用ppt课件

∴Q的坐标为(4,0);∠GCF=90°不存在,
综上所述,点Q的坐标为(4,0)或(9,0).
2.4
二次函数的应用(2)
北师大版 九年级数学下册


00 名师导学
01 基础巩固
02 能力提升
C O N TA N T S
数学
返回目录
◆ 名师导学 ◆
知识点 最大利润问题
(一)这类问题反映的是销售额与单价、销售量以及利润与每
(3)存在.∵y= x +2x+1= (x+3) -2,∴P(-3,-2),
3
3
∴PF=yF-yP=3,CF=xF-xC=3,
∴PF=CF,∴∠PCF=45°.
同理,可得∠EAF=45°,∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的点Q.
设Q(t,1)且AB=9 2,AC=6,CP=3 2.
∵以C,P,Q为顶点的三角形与△ABC相似,
数学
返回目录
①当△CPQ∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=-4,∴Q(-4,1);

6
9 2
②当△CQP∽△ABC时,
+6 3 2
∴ = ,∴ = ,∴t=3,∴Q(3,1).
9 2
6
综上所述,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形
数学
返回目录
◆ 基础巩固◆
一、选择题
1.在一个边长为1的正方形中挖去一个边长为 x(0<x<1)的小
正方形,如果设剩余部分的面积为y,那么y关于x的函数表达式
B

(
)
2
2

二次函数应用几何图形的最大面积问题课件

二次函数应用几何图形的最大面积问题课件

对未来学习的思考和展望
深入学习二次函数和几何图形的基础知识,掌握更多解 决实际问题的技巧和方法。
拓展学习领域,了解更多与数学相关的学科知识,如线 性代数、微积分等,为解决更复杂的问题提供支持。
关注数学在实际生活中的应用,了解数学与其他学科的 交叉点,培养跨学科解决问题的能力。
THANKS
的最大面积。
03
几何图形面积的最大值问 题
几何图形面积最大值的求解方法
03
代数法
几何法
参数法
通过代数运算和不等式性质,求出几何图 形面积的最大值。
利用几何图形的性质和特点,通过作图和 观察,求出面积最大值。
引入参数表示几何图形,通过参数的变化 和约束条件,求出面积的最大值。
面积最大值在二次函数中的应用
二次函数应用几何图形的最 大面积问题课件
目录
• 二次函数与几何图形的关系 • 二次函数的最值问题 • 几何图形面积的最大值问题 • 实际应用案例分析 • 总结与思考
01
二次函数与几何图形的关 系
二次函数图像的几何意义
01
二次函数图像是抛物线,其 顶点是函数的极值点。
02
二次函数图像的对称轴是x=h ,顶点的纵坐标是k。
二次函数与几何图形面积最大值问题 紧密相关,通过合理设定函数参数, 可以找到几何图形面积的最大值。
在解决实际问题时,需要综合考虑多 种因素,如几何图形的形状、大小和 位置等,以及二次函数的参数和约束 条件。
二次函数开口方向和顶点位置对几何 图形面积的影响是关键,需要根据实 际情况调整函数表达式,以获得最佳 效果。
01
总结词
02
详细描述
矩形面积最大化
在给定长和宽的条件下,利用二次函数求矩形的最大面积。通过设定 长和宽为二次函数的形式,并利用求导数的方法找到面积的最大值。

二次函数的应用

二次函数的应用

现在两船同时出发,A船以每时12km
的速度朝正北方向行驶,B船以每时
5km的速度朝正西方向行使,何时两
船相距最近?最近距离是多少?
A
D
B
解:设经过 t 时后,A,B两船分别到达C,D,
两船之间的距离 是s :
s = CD = √AC2+AD2 = √(26-5t)2+(12t)2
= √169t2-260t+676 = √ (13t-10)2+576 (t>0)
问题?
2021/12/14
地面 14
课内练习
1.一球从地面抛出的运动路线呈抛物线,如图,当球离
抛出地的水平距离为 30m 时,到达最大高10m。 ⑴ 求球运动路线的函数解析式和自变量的取值范围;
⑵ 求球被抛出多远;
⑶ 当球的高度为5m时,球离抛出地面的水平距离
是多少m?
y
提出问题远比解
决问题更有价值
➢注意:有此求得的最大值或最小值对应的
。 字变量的值必须在自变量的取值范围内
2021/12/14
11
例:
如图,B船位于A船正东26KM处,现在A,B 两船同时出发,A船以12KM/H的速度朝正北方向行 驶,B船以5KM/H的速度朝正西方向行驶,何时两船 相距最近?最近距离是多少?
➢ ①设经过t时后,A、B两 船分别到达A/、B/〔如图〕, A’ 那么两船的距离S应为多少 ?
当 13t-10=0 , 即t=10/13时, 被开放式 (13t-10)2+576 有最小值 576 所以当 t=10/13时, s最小值= √ 576 =24(km) 2021答/12:/14 经过10/13时,两船之间的距离最近,最近距离为24k2m1

二次函数面积最值问题

二次函数面积最值问题

二次函数面积最值问题一、问题概述二次函数面积最值问题是指在给定的二次函数中,找到使其面积最大或最小的变量取值。

这个问题在数学中有着广泛的应用,比如在经济学、物理学、工程学等领域都有着重要的作用。

二、问题分析为了解决二次函数面积最值问题,我们需要先了解一些基本概念和公式。

下面是一些常见的数学公式:1. 二次函数的标准形式:y=ax^2+bx+c其中a,b,c都是实数,且a≠0。

2. 二次函数的顶点坐标:(h,k)其中h=-b/2a,k=f(h),f(x)表示二次函数。

3. 二次函数的对称轴方程:x=h4. 两点之间距离公式:d=sqrt[(x2-x1)^2+(y2-y1)^2]5. 矩形面积公式:S=lw其中S表示矩形面积,l表示矩形长,w表示矩形宽。

了解了这些基本概念和公式后,我们可以开始分析如何解决二次函数面积最值问题。

三、求解方法1. 求最大值要求一个二次函数在给定区间内的最大面积,我们可以通过以下步骤来实现:步骤一:将二次函数化为标准形式。

步骤二:求出二次函数的顶点坐标。

步骤三:根据顶点坐标和区间端点,确定矩形的长和宽。

步骤四:计算矩形面积,并比较得出最大值。

具体的,可以按照以下函数来实现:```pythondef max_area(a,b,c,start,end):# 将二次函数化为标准形式f = lambda x: a*x**2+b*x+c# 求出二次函数的顶点坐标h = -b/(2*a)k = f(h)# 根据顶点坐标和区间端点,确定矩形的长和宽l = end-startw = abs(f(start)-k)*2# 计算矩形面积,并比较得出最大值S = l*wreturn S if S>0 else 0```其中,a,b,c分别表示二次函数的系数,start,end表示给定区间的端点。

这个函数会返回一个最大面积值。

2. 求最小值要求一个二次函数在给定区间内的最小面积,我们可以通过以下步骤来实现:步骤一:将二次函数化为标准形式。

[详细讲解]利用二次函数求几何图形面积的最值问题

[详细讲解]利用二次函数求几何图形面积的最值问题

利用二次函数求几何图形面积的最值问题构造二次函数来确定几何图形中的有关面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如,勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质即可求解.现举例说明.方法:1、用含有自变量的代数式分别表示出与所求几何图形相关的量(如周长、长、宽、半径等)。

2、根据几何图形的特征,列出其面积的计算公式,用函数表示这个面积。

3、根据函数关系式求出最大值及取得最大值的自变量的值,当 的值不在自变量的取值范围内时,应根据取值范围来确定最大值。

例1(2006年旅顺口区中考试题)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.简析 设矩形PNDM 的边DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4), 易知CN =4-x ,EM =4-y .且有NP BC CN-=BFAF(作辅助线构造相似三角形),即34y x --=12,所以y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4),此二次函数的图象开口向下,对称轴为x =5,所以当x ≤5时,函数的值是随x 的增大而增大,对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12×42+5×4=12.说明 本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给同学们探索解题思路留下了思维空间.例2(2006年南京市中考试题)如图2,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?简析 因为矩形MFGN ∽矩形ABCD ,所以MNAD=MF AB,因为AB =2AD ,MN =x ,所以MF =2x ,所以EM =EF -MF =10-2x ,所以S =x (10-2x )=-2x 2+10x =-2(x -52)2+252,所以当x =52时,S 有最大值为252.说明 本题是利用相似多边形的性质,求出矩形的边之间的关系,再运用矩形的面积构造出二次函数的表达式,使问题求解.例3(2006年泉州市中考试题)一条隧道的截面如图3所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S (米)关于半径r (米)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米)简析(1)当AD =4米时,S半圆=12π×22AD ⎛⎫ ⎪⎝⎭=12π×22=2π(米2).(2)①因为AD =2r ,AD +CD =8,所以CD =8-AD =8-2r ,所以S =12πr 2+AD ·CD =12πr 2+2r (8-2r )=(12π-4)r 2+16r ;②由①知CD =8-2r ,又因为2米≤CD ≤3米,所以2≤8-2r ≤3,图 2 图1所以 2.5≤r ≤3,由①知S =(12π-4)r 2+16r =(12×3.14-4)r 2+16r =-2.43r 2+16r =-2.43(r -82.43)2+642.43,因为-2.43<0,所以函数图象为开口向下的抛物线,因为函数图象对称轴r =82.43≈3.3.又2.5≤r ≤3<3.3,由函数图象的性质可知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值,S最大值=(12π-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).即隧道截面面积S 的最大值约为26.1米2.说明 本题是一道典型的代数与几何的综合题,集图形的面积、不等式与二次函数的知识有机的结合在一起,有助于培养同学们的综合应用能力.例4(2006年陕西中考课改试题)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图4),王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图5),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点.(1)求FC 的长;(2)利用如图5求出矩形顶点B 所对的顶点到BC 边的距离x (cm)为多少时,矩形的面积最大?最大面积时多少?图3(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.简析(1)由题意,得△DEF ∽△CGF ,FC DF =CGDE,即603060=-FC FC , 所以FC =40(cm).(2)如图5,设矩形顶点B 所对顶点为P ,则①当顶点P 在AE 上时,x =60,y 的最大值为60×30=1800(cm 2);②当顶点P 在EF 上时,过点P 分别作PN ⊥BG 于点N ,PM ⊥AB 于点M .根据题意,得△GFC ∽△GPN ,所以CGFG NG DF =,所以NG =23x ,所以BN =120-23x ,所以y =x (120-23x )=-23(x -40)2+2400,所以当x =40时,y 的最大值为2400(cm 2);③当顶点P 在FC 上时,y 的最大值为60×40=2400(cm 2).综合①②③,得x =40cm 时,矩形的面积最大,最大面积为2400cm 2.(3)根据题意,正方形的面积y (cm 2)与边长x (cm)满足的函数表达式为: y =-23x 2+120x .当y =x 2时,正方形的面积最大,所以x 2=-23x 2+120x .解之,得 x 1=0(舍去),x 2=48(cm).图4图5所以面积最大得正方形得边长为48 cm.说明本题是一道典型的二次函数与几何综合应用的问题,在解第(2)小题时,一定不要忽视分类讨论来求出每一种情况的最大值后,再进行比较得出结论,第(3)小题只需根据题意列出方程就能解决.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§6.4 二次函数的应用(2)【最大面积是多少】---( 教案)
备课时间: 主备人:
教学目标:
掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.
教学重点:
本节的重点是应用二次函数解决图形有关的最值问题,这是本书惟一的一种类型,也是二次函数综合题目中常见的一种类型.在二次函数的应用中占有重要的地位,是经常考查的题型,根据图形中的线段之间的关系,与二次函数结合,可解决此类问题.
教学难点:
由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式.
教学方法:
教师指导学生自学法。

教学过程:
一、例题:
例1、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.
(1)设矩形的一边AB=xcm,那么AD边的长度如何表示?
(2)设矩形的面积为ym2,当x取何值时,y的最大值是多少?
例2、某建筑物窗户如图所示,它的上半部是半圆,下半部是矩形.制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户透过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
二、练习
1、如图⑴,在Rt△ABC中,AC=3cm,BC=4cm,四边形CFDE为矩形,其中CF、CE在两直角
边上,设矩形的一边CF=xcm.当x取何值时,矩形ECFD的面积最大?最大是多少?
2、如图⑵,在Rt△ABC中,作一个长方形DEGF,其中FG边在斜边上,AC=3cm,BC=4cm,那么长方形OEGF的面积最大是多少?
3、如图⑶,已知△ABC,矩形GDEF的DE边在BC边上.G、F分别在AB、AC边上,BC=5cm,
S△ABC为30cm2,AH为△ABC在BC边上的高,求△ABC的内接长方形的最大面积.
三、小结:本节课我们学习了什么?
四、作业:。

相关文档
最新文档