6.4 二次函数的应用(2)【最大面积是多少】

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§6.4 二次函数的应用(2)【最大面积是多少】---( 教案)

备课时间: 主备人:

教学目标:

掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.

教学重点:

本节的重点是应用二次函数解决图形有关的最值问题,这是本书惟一的一种类型,也是二次函数综合题目中常见的一种类型.在二次函数的应用中占有重要的地位,是经常考查的题型,根据图形中的线段之间的关系,与二次函数结合,可解决此类问题.

教学难点:

由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式.

教学方法:

教师指导学生自学法。

教学过程:

一、例题:

例1、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.

(1)设矩形的一边AB=xcm,那么AD边的长度如何表示?

(2)设矩形的面积为ym2,当x取何值时,y的最大值是多少?

例2、某建筑物窗户如图所示,它的上半部是半圆,下半部是矩形.制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户透过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?

二、练习

1、如图⑴,在Rt△ABC中,AC=3cm,BC=4cm,四边形CFDE为矩形,其中CF、CE在两直角

边上,设矩形的一边CF=xcm.当x取何值时,矩形ECFD的面积最大?最大是多少?

2、如图⑵,在Rt△ABC中,作一个长方形DEGF,其中FG边在斜边上,AC=3cm,BC=4cm,那么长方形OEGF的面积最大是多少?

3、如图⑶,已知△ABC,矩形GDEF的DE边在BC边上.G、F分别在AB、AC边上,BC=5cm,

S△ABC为30cm2,AH为△ABC在BC边上的高,求△ABC的内接长方形的最大面积.

三、小结:本节课我们学习了什么?

四、作业:

相关文档
最新文档