鲁教版九年级(上)期末数学试卷(五四学制)4
鲁教版(五四制)数学九年级上册期末复习练习及参考答案
鲁教版(五四制)数学九年级上册期末复习练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.在Rt△ABC△中,如果各边的长度都缩小至原来的15,那么锐角A的各个三角函数值()A.都缩小15B.都扩大5倍C.仅tanA不变D.都不变2.反比例函数y=1mx+在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣1 3.如图所示,在平面直角坐标系中,点(-5,12)在射线OP上,射线OP与x轴的负半轴的夹角为α,则sinα等于()A.513B.512C.1213D.13124.如图所示,在Rt△ABC中,∠ABC=90º,CD⊥AB于点D,AC=AB=设∠BCD=α,那么cosα的值是()A.2B C D5.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A .3B .4C .5D .66.如果将抛物线2y x 2=+向下平移1个单位,那么所得新抛物线的表达式是A .()2y x 12=-+B .()2y x 12=++C .2y x 1=+D .2y x 3=+ 7.已知二次函数y =2 x 2+9x+34,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则当自变量x 取x 1+x 2 时的函数值与A .x =1 时的函数值相等B . x =0时的函数值相等C . x =41时的函数值相等D . x =-49时的函数值相等 8.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线256y x x =++,则原抛物线的解析式是( )A .2511()24y x =--- B .2511()24y x =-+-C .251()24y x =---D .251()24y x =-++ 9.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,现有下列结论:①b 2-4ac>0;②a>0;③c>0;④9a+3b+c<0。
2019—2020年新鲁教版五四制九年级数学第一学期期末模拟检测题及解析(试题).doc
九年级(上)期末数学试卷(五四制)一、选择题:本题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,不选或选出的答案超过一个均记零分.1.一元二次方程4x2+1=4x的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根2.下列图形中既是中心对称图形又是轴对称图形的是()A.B. C. D.3.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)4.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.5.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B.5 C.6 D.86.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米 B.250米C.米D.500米7.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm28.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或39.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(5,2)B.(2,5)C.(2,﹣5)D.(5,﹣2)10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.11.已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.12.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是.13.在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为.14.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为.15.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)16.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是.17.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为.18.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是.三、解答题:本大题共8小题,共58分.解答要写出必要的文字说明,证明过程或演算步骤)19.计算:(﹣)﹣2﹣|﹣2|+(﹣1.414)0﹣3tan30°﹣.20.先化简,再求值:,其中m是二次函数y=(x+2)2﹣3顶点的纵坐标.21.(6分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.22.(7分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C 之间的距离.23.(8分)某市2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.24.(10分)如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.25.(10分)如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.26.(10分)如图,已知点O (0,0),A (﹣5,0),B (2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)抛物线l经过点B,求它的解析式,并写出此时抛物线l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时抛物线l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.参考答案与试题解析一、选择题:本题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,不选或选出的答案超过一个均记零分.1.一元二次方程4x2+1=4x的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先求出△的值,再判断出其符号即可.【解答】解:原方程可化为:4x2﹣4x+1=0,∵△=42﹣4×4×1=0,∴方程有两个相等的实数根.故选C.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.2.下列图形中既是中心对称图形又是轴对称图形的是()A.B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.4.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.5.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B.5 C.6 D.8【考点】平行线分线段成比例.【分析】由AD∥BE∥CF可得=,代入可求得EF.【解答】解:∵AD∥BE∥CF,∴=,∵AB=1,BC=3,DE=2,∴=,解得EF=6,故选:C.【点评】本题主要考查平行线分线段成比例的性质,掌握平行线分线段可得对应线段成比例是解题的关键.6.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米 B.250米C.米D.500米【考点】解直角三角形的应用-方向角问题.【分析】在RT△AOB中,由∠AOB=30°可知AB=AO,由此即可解决问题.【解答】解:由题意∠AOB=90°﹣60°=30°,OA=500,∵AB⊥OB,∴∠ABO=90°,∴AB=AO=250米.故选A.【点评】本题考查解直角三角形,方向角,直角三角形中30度角所对的直角边等于斜边的一半等知识,解题的关键是搞清楚方向角的定义,利用直角三角形性质解决问题,属于中考常考题型.7.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,圆锥侧面展开图的面积为:S侧=×2×6π×10=60π,所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.8.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3【考点】二次函数的最值.【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x ≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.9.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(5,2)B.(2,5)C.(2,﹣5)D.(5,﹣2)【考点】坐标与图形变化-旋转.【分析】根据旋转的性质和点A(﹣2,5)可以求得点A′的坐标.【解答】解:作AD⊥x轴于点D,作A′D′⊥x轴于点D′,则OD=A′D′,AD=OD′,OA=OA′,∴△OAD≌△A′OD′(SSS),∵A(﹣2,5),∴OD=2,AD=5,∴点A′的坐标为(5,2),故选A.【点评】本题考查坐标与图形变化﹣旋转,解题的关键是明确题意,找出所求问题需要的条件.10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个B.3个C.2个D.1个【考点】相似形综合题.【分析】①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④CD与AD的大小不知道,于是tan∠CAD的值无法判断,故④错误.【解答】解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;设AD=a,AB=b由△BAE∽△ADC,有.∵tan∠CAD==,故④错误,故选B.【点评】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确作出辅助线是解题的关键.二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.11.已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为 1 .【考点】反比例函数的性质.【分析】反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.【点评】此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.12.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是m <2 .【考点】抛物线与x轴的交点.【分析】利用判别式的意义得到△=22﹣4(m﹣1)>0,然后解不等式即可.【解答】解:根据题意得△=22﹣4(m﹣1)>0,解得m<2.故答案为m<2.【点评】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.13.在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为.【考点】列表法与树状图法;二次函数的性质.【分析】画树状图展示所有20种等可能的结果数,再利用二次函数的性质得到二次函数y=(x﹣m)2+n的顶点坐标为(m,n),然后根据坐标轴上点的坐标特征可判断顶点在坐标轴上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有20种等可能的结果数,其中二次函数y=(x﹣m)2+n的顶点(m,n)在坐标轴上的结果数为8,所以二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为(1,1).【考点】位似变换;坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,﹣ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故答案为:(1,1).【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.15.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208 米.(精确到1米,参考数据:≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.16.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是.【考点】扇形面积的计算.【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【解答】解:∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC==.故答案为:.【点评】本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.17.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为(﹣1,﹣1).【考点】坐标与图形变化-旋转;规律型:点的坐标;菱形的性质.【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.【解答】解:∵菱形OABC的顶点O(0,0),B(2,2),∴D点坐标为(1,1).∵每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,∴OD旋转了7周半,菱形的对角线交点D的坐标为(﹣1,﹣1),故答案为:(﹣1,﹣1).【点评】本题考查了旋转的性质,利用旋转的性质是解题关键.18.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是292 .【考点】二元一次方程组的应用.【分析】设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y个,根据“所用火柴棍数=三角形个数×2+1+正六边形个数×5+1”联立正三角形的个数比正六边形的个数多6个得出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设连续搭建正三角形的个数为x个,连续搭建正六边形的根数为y 个,由题意得,解得:.故答案为:292.【点评】本题考查了二元一次方程组的应用,解题的关键是列出关于x、y的二元一次方程.本题属于基础题,难度不大,解决该题型题目时,结合数量关系得出关于两种图形个数的方程(或方程组)是关键.三、解答题:本大题共8小题,共58分.解答要写出必要的文字说明,证明过程或演算步骤)19.计算:(﹣)﹣2﹣|﹣2|+(﹣1.414)0﹣3tan30°﹣.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,第四项利用特殊角的三角函数值计算,最后一项利用平方根定义化简,计算即可得到结果.【解答】解:原式=4﹣(2﹣)+1﹣3×﹣2=4﹣2++1﹣﹣2=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:,其中m是二次函数y=(x+2)2﹣3顶点的纵坐标.【考点】二次函数的性质;分式的化简求值.【分析】利用根据分式的乘除法进行化简,再由抛物线的顶点坐标可求得m的值,代入求值即可.【解答】解:∵二次函数y=(x+2)2﹣3顶点的纵坐标是(﹣2,﹣3),∴m=﹣3,∵=,∴当m=﹣3时,原式=m=﹣3.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).21.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.【考点】概率公式;分式方程的应用.【分析】(1)由一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,直接利用概率公式求解即可求得答案;(2)首先设从袋中取出x个黑球,根据题意得:=,继而求得答案.【解答】解:(1)∵一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,∴从袋中摸出一个球是黄球的概率为:=;(2)设从袋中取出x个黑球,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,所以从袋中取出黑球的个数为2个.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.22.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.【考点】解直角三角形的应用-方向角问题.【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD可得出方程,解出x的值后即可得出答案.【解答】解:如图,作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=20(1+),CD+BD=BC,即x+x=20(1+),解得:x=20,∴AC=x=20(海里).答:A、C之间的距离为20海里.【点评】此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.23.某市2014年投入教育经费2500万元,2016年投入教育经费3025万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用2016年的经费×(1+增长率)即可.【解答】解:(1)设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)2万元.则2500(1+x)2=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元),答:2017年该地区将投入教育经费3327.5万元.【点评】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.24.(10分)(2015•黔西南州)如图,点O在∠APB的平分线上,⊙O与PA相切于点C.(1)求证:直线PB与⊙O相切;(2)PO的延长线与⊙O交于点E.若⊙O的半径为3,PC=4.求弦CE的长.【考点】切线的判定.【分析】(1)连接OC,作OD⊥PB于D点.证明OD=OC即可.根据角的平分线性质易证;(2)设PO交⊙O于F,连接CF.根据勾股定理得PO=5,则PE=8.证明△PCF∽△PEC,得CF:CE=PC:PE=1:2.根据勾股定理求解CE.【解答】(1)证明:连接OC,作OD⊥PB于D点.∵⊙O与PA相切于点C,∴OC⊥PA.∵点O在∠APB的平分线上,OC⊥PA,OD⊥PB,∴OD=OC.∴直线PB与⊙O相切;(2)解:设PO交⊙O于F,连接CF.∵OC=3,PC=4,∴PO=5,PE=8.∵⊙O与PA相切于点C,∴∠PCF=∠E.又∵∠CPF=∠EPC,∴△PCF∽△PEC,∴CF:CE=PC:PE=4:8=1:2.∵EF是直径,∴∠ECF=90°.设CF=x,则EC=2x.则x2+(2x)2=62,解得x=.则EC=2x=.【点评】此题考查了切线的判定、相似三角形的性质.注意:当不知道直线与圆是否有公共点而要证明直线是圆的切线时,可通过证明圆心到直线的距离等于圆的半径,来解决问题.25.(10分)(2016•东营)如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的图象上,设出点D的坐标为(n,﹣)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.【解答】解:(1)∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO=,∴CE=BE•tan∠ABO=6×=3,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y=的图象上,∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣.(2)∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO=,∴OA=OB•tan∠ABO=4×=2.∵S△BAF=AF•OB=(OA+OF)•OB=(2+)×4=4+.∵点D在反比例函数y=﹣第四象限的图象上,∴S△DFO=×|﹣6|=3.∵S△BAF=4S△DFO,∴4+=4×3,解得:n=,经验证,n=是分式方程4+=4×3的解,∴点D的坐标为(,﹣4).【点评】本题考查了解直角三角形、反比例函数图象上点的坐标特征、三角形的面积公式以及反比例函数系数k的几何意义,解题的关键是:(1)求出点C的坐标;(2)根据三角形的面积间的关系找出关于n的分式方程.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,找出点的坐标,再利用反比例函数图象上点的坐标特征求出反比例函数系数是关键.26.(10分)(2016秋•垦利县期末)如图,已知点O (0,0),A (﹣5,0),B (2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)抛物线l经过点B,求它的解析式,并写出此时抛物线l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时抛物线l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.。
鲁教版五四制九年级上册期末考试数学试题及答案
2018—2019学年度第一学期期末考试九年级数学试题一、选择题(本题有12小题,每小题4分,共48分,每小题只有一个选项是正确的,不选、多选、错选,均不得分) 题号 123456789101112答案1.反比例函数y =kx 的图象经过点(3,-2),下列各点在图象上的是A .(-3,-2)B .(3,2)C .(-2,-3)D .(-2,3) 2.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则sin A 等于 A .35 B .45 C .34 D .43第2题图 第4题图 第7题图3.下列对二次函数y =x 2-x 的图象的描述,正确的是A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 4.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是A .B .C .D .5.已知⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8cm ,则AC 的长为A .25cmB .45cmC .25cm 或4 5 cmD .23cm 或43cm6.甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是A . 1 2B . 1 3C . 1 4D . 1 67.如图,点A ,B 在双曲线y =x (x >0)上,点C 在双曲线y =x(x >0)上,若AC ∥y 轴,BC ∥x 轴,且AC =BC ,则AB 等于 A .2 2 B . 2 C .4 D .3 2第8题图 第9题图 第10题图8.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是103cm ,则皮球的直径是A .5 3B .15C .10D .8 39.如图,MN 是⊙O 的直径,点A 是半圆上的三等分点,点B 是劣弧AN 的中点,点P 是直径MN 上一动点.若MN =22,AB =1,则△PAB 周长的最小值是( ) A .22+1 B .2+1 C .2 D .310.如图,已知公路l 上A 、B 两点之间的距离为50m ,小明要测量点C 与河对岸边公路l 的距离,测得∠ACB =∠CAB =30°.点C 到公路l 的距离为( ) A .25 m B .253m C .10033m D .(25+253)m11.如图,AB 为半圆O 的直径,C 为AO 的中点,CD ⊥AB 交半圆于点D ,以C 为圆心,CD 为半径画弧交AB 于E 点,若AB =4,则图中阴影部分的面积是 A .712π+ 3 2 B .512π C .712π- 3 2 D .23π12.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,分析下列四个结论: ①abc <0;②b 2-4ac >0;③3a +c >0;④(a +c )2<b 2, 其中正确的结论有A .1个B .2个C .3个D .4个第11题图 第12题图二、填空题(共5小题,每小题4分,满分20分) 13.已知A 为锐角,且4sin 2A -3=0,则∠A = °.14.已知二次函数y =x 2-4x +k 的图象的顶点在x 轴下方,则实数k 的取值范围是 .15.如图,⊙O的内接五边形ABCDE的对角线AC与BD相交于点G,若∠E=92°,∠BAC=41°,则∠DGC= °.第15题图第16题图第17题图16.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=6x (x>0)上,则图中S△OBP= .17.如图抛物线y=x2+2x-3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF 的最小值为.三、解答题(共7小题,共52分)18.计算:sin260°-tan30°•cos30°+tan45°19.如图是一个几何体的三视图.(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积.俯视图20.动画片《小猪佩奇》风靡全球,受到孩子们的喜爱,现有4张(小猪佩奇)角色卡片,分别是A 佩奇,B 乔治,C 佩奇妈妈,D 佩奇爸爸(四张卡片除字母和内容外,其余完全相同)姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好. (1)姐姐从中随机抽取一张卡片,恰好抽到A 佩奇的概率为 .(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的方法求出恰好姐姐抽到A 佩奇,弟弟抽到B 乔治的概率.21.如图,在△ABC 中,以BC 为直径的⊙O 交AC 于点E ,过点E 作AB 的垂线交AB 于点F ,交CB 的延长线于点G ,且∠ABG =2∠C . (1)求证:EG 是⊙O 的切线;(2)若tan C = 12,AC =8,求⊙O 的半径.22.某商场将每件进价为80元的A 商品按每件100元出售,一天可售出128件.经过市场调查,发现这种商品的销售单价每降低1元,其日销量可增加8件.设该商品每件降价x 元,商场一天可通过A 商品获利润y 元.(1)求y 与x 之间的函数解析式(不必写出自变量x 的取值范围)(2)A 商品销售单价为多少时,该商场每天通过A 商品所获的利润最大?23.如图,在直角坐标系中,Rt ABC △的直角边AC 在x 轴上,90ACB ∠=︒,AC =1. 反比例函数y =kx(k >0)的图象经过BC 边的中点31 D (,). (1)求这个反比例函数的表达式;(2)若△ABC 与△EFG 成中心对称,且△EFG 的边FG 在y 轴的正半轴上,点E 在这个函数的图象上. ① 求OF 的长;② 连接AF BE ,,证明四边形ABEF 是正方形.24.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△P AB的面积有最大值?请求出此时点P的坐标.(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.2018——2019学年度第一学期期末考试九年级数学参考答案一、选择题:本题共12小题,每小题4分,共48分 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 DA CDCCA BD BA B二、填空题:每小题4分,共20分题号 13 14 15 16 17 答案 60k <45163 22三、解答题: 18.解:原式=(3 2 )2- 3 3 ×3 2 +1= 34 - 1 2 +1= 54……………………5分 19.解:(1)由三视图得几何体为圆锥,………………………………2分 (2)圆锥的表面积=π•22+ 12 •2π•6•2=16π.………………………………5分20.解:(1)∵姐姐从4张卡片中随机抽取一张卡片, ∴恰好抽到A 佩奇的概率= 14,故答案为: 14 ;…………………………………………………………………3分(2)画树状图为:共有12种等可能的结果数,其中姐姐抽到A 佩奇,弟弟抽到B 乔治的结果数为1,所以姐姐抽到A 佩奇,弟弟抽到B 乔治的概率= 112 .…………………………8分21.证明(1)如图:连接OE ,BE∵∠ABG =2∠C ,∠ABG =∠C +∠A ∴∠C =∠A ∴BC =AB , ∵BC 是直径 ∴∠CEB =90°,且AB =BC∴CE =AE ,且CO =OB ∴OE ∥AB ∵GE ⊥AB∴EG ⊥OE ,且OE 是半径∴EG 是⊙O 的切线.………………………………………………4分 (2)∵AC =8,∴CE =AE =4 ∵tan ∠C =BE CE = 12∴BE =2∴BC =CE 2+ BE 2=25∴CO = 5 即⊙O 半径为5.……………………………………………………8分 22.解:(1)由题意得,商品每件降价x 元时单价为(100-x )元,销售量为(128+8x )件,则y =(128+8x )(100-x -80)= -8x 2+32x +2560,即y 与x 之间的函数解析式是y = -8x 2+32x +2560;………………………………………4分 (2)∵y = -8x 2+32x +2560= -8(x -2)2+2592, ∴当x =2时,y 取得最大值,此时y =2592, ∴销售单价为:100-2=98(元),答:A 商品销售单价为98元时,该商场每天通过A 商品所获的利润最大.…………8分 23.解:(1)∵反比例函数y =kx (k >0)的图象经过点D (3,1),∴k =3×1=3,∴反比例函数表达式为 y =3x ;…………………………3分(2)①∵D 为BC 的中点,∴BC =2,∵△ABC 与△EFG 成中心对称,∴△ABC ≌△EFG , ∴GF =BC =2,GE =AC =1,∵点E 在反比例函数的图象上,∴E (1,3),即OG =3, ∴OF =OG -GF =1;…………………………………6分 ②如图,连接AF 、BE , ∵AC =1,OC =3, ∴OA =GF =2,在△AOF 和△FGE 中⎩⎪⎨⎪⎧AO =FG ,∠AOF =∠FGE , OF =GE . ∴△AOF ≌△FGE (SAS ), ∴∠GFE =∠FAO =∠ABC ,∴∠GFE +∠AFO =∠FAO +∠BAC =90°, ∴EF ∥AB ,且EF =AB ,∴四边形ABEF 为平行四边形, ∴AF =EF ,∴四边形ABEF 为菱形, ∵AF ⊥EF ,∴四边形ABEF 为正方形.…………………………………9分24.解:(1)∵抛物线过点B (6,0)、C (-2,0), ∴设抛物线解析式为y =a (x -6)(x +2), 将点A (0,6)代入,得:-12a =6, 解得:a = - 12,所以抛物线解析式为y = - 1 2 (x -6)(x +2)= - 12 x 2+2x +6;……………………3分(2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y =k x +b ,将点A (0,6)、B (6,0)代入,得:⎩⎨⎧b =6, 6k +b =0. ,解得:⎩⎨⎧k =-1, b =6., 则直线AB 解析式为y = -x +6, 设P (t ,- 12 t 2+2t +6)其中0<t <6,则N (t ,-t +6),∴PN =PM -MN = - 1 2 t 2+2t +6-(-t+6)= - 1 2 t 2+2t +6+t-6= - 12 t 2+3t ,∴S △PAB =S △PAN +S △PBN= 1 2 PN •AG + 1 2 PN •BM = 1 2 PN •(AG +BM )= 12 PN •OB = 1 2 ×(- 1 2 t 2+3t )×6=-3 2 t 2+9t = - 3 2 (t -3)2+ 27 2, ∴当t =3时,△PAB 的面积有最大值;此时点P 的坐标为(3, 152 ).…………6分(3)如图2,若△PDE 为等腰直角三角形, 则PD =PE ,设点P 的横坐标为a ,∴PD =- 1 2 a 2+2a +6-(-a +6)= - 12 a 2+3a ,PE =2|2-a |,∴- 12a 2+3a =2|2-a |, 解得:a =4或a =5-17,所以P (4,6)或P (5-17,317-5).……………………………………9分。
2023年鲁教版(五四制)数学九年级上册期末考试测试卷及部分答案(共4套)
2023年鲁教版(五四制)数学九年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )2.在△ABC 中,A ,B 都是锐角,且sin A =32,tan B =3,AB =8,则AB 边上的高为( ) A .4 3 B .8 3 C .16 3 D .24 33.点A (a ,b )是反比例函数y =k x上的一点,且a ,b 是方程x 2-mx +4=0的根,则反比例函数的表达式是( )A .y =1xB .y =-1xC .y =4xD .y =-4x4.二次函数y =ax 2+bx +c ,自变量x 与函数y 的对应值如下表:下列说法正确的是( )A .抛物线的开口向下B .当x >-3时,y 随x 的增大而增大C .二次函数的最小值是-2D .抛物线的对称轴是直线x =-525.抛物线y =-2(x -3)2-4的顶点坐标为( )A .(-3,4)B .(-3,-4)C .(3,-4)D .(3,4) 6.下列各组投影是平行投影的是( )7.一次函数y =ax +b 和反比例函数y =a -bx在同一直角坐标系中的大致图象是( )8.已知AE ,CF 是锐角三角形ABC 的两条高,AE ∶CF =2 ∶3,则sin ∠BAC ∶sin ∠ACB =( )A .2 ∶3B .3 ∶2C .4 ∶9D .9 ∶49.已知二次函数y =ax 2+2ax -3的部分图象(如图),由图象可知关于x 的一元二次方程ax 2+2ax -3=0的两个根分别是x 1=1.3和x 2等于( ) A .-1.3 B .-2.3 C .0.3 D .-3.310.函数y =x 2+bx +c 与y =x 的图象如图所示,有以下结论:①b 2-4c >0,②b +c +1=0,③(c +1)2>b 2,④当1<x <3时,x 2+(b -1)x +c <0.其中正确的个数为( ) A .4个 B .3个 C .2个 D .1个二、填空题(每题3分,共24分)11.在△ABC 中,∠C =90°,BC =3,tan A =23,则AB =________.12.把抛物线y =x 2-2x +3沿x 轴向右平移2个单位,得到的抛物线的表达式为________. 13.王英同学从A 地沿北偏西60°方向走100 m 到B 地,再从B 地向西南方走到C 地,此时C 地在A 地的正西方向,则王英同学离A 地__________.14.如图:两条宽为A 的纸条,交叉重叠放在一起,且它们的交角为α,则重叠部分的面积(阴影部分)为________.15.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.16.若一次函数y 1=x -2与反比例函数y 2=3x的图象相交于点A ,B ,则当y 1>y 2时,x 的取值范围是________.17.如图,过x 轴负半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y =-6x,y=4x的图象交于B ,A 两点,若点C 是y 轴上任意一点,连接AC ,BC ,则△ABC 的面积是________.18.如图,边长为n 的正方形OABC 的边OA 、OC 分别在x 轴和y 轴的正半轴上,A 1,A 2,A 3,…,A n -1为边OA 的n 等分点,B 1,B 2,B 3,…,B n -1为边CB 的n 等分点,连接A 1B 1,A 2B 2,A 3B 3,…,A n -1B n -1,分别交y =1nx 2(x ≥0)的图象于点C 1,C 2,C 3,…,C n -1.若有B 5C 5=3C 5A 5,则n =________.三、解答题(19题6分,20,21题每题8分,25题14分,其余每题10分,共66分) 19.计算:(-1)2 019+cos 245°-(π-3)0+3·sin60°·tan45°.20.如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE 的高度,已知直立在地面上的竹竿AB 的长为3 m .某一时刻,测得竹竿AB 在阳光下的投影BC 的长为2 m. (1)请你在图中画出此时旗杆DE 在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB 的影长时,同时测得旗杆DE 在阳光下的影长为6 m ,请你计算旗杆DE 的高度.21.如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°.沿山坡向上走到P 处再测得点C 的仰角为45°.已知OA =100 m ,山坡坡度为12⎝⎛⎭⎪⎫即tan ∠PAB =12,且O ,A ,B 在同一条直线上.求电视塔OC 的高度以及此人所在位置点P 的铅直高度.(测倾器的高度忽略不计,结果保留根号)22.如图,在直角坐标系中,已知A (-4,12),B (-1,2)是一次函数y 1=kx +b 与反比例函数y 2=m x(m ≠0,x <0)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D . (1)根据图象直接写出关于x 的不等式kx +b >m x(x <0)的解集; (2)求一次函数和反比例函数的表达式;(3)设P 是第二象限双曲线上AB 之间的一点,连接PA ,PB ,PC ,PD ,若△PCA 和△PDB 的面积相等,求点P 的坐标.23.如图,直角三角形纸片ACB ,∠ACB =90°,AB =5,AC =3,将其折叠,使点C 落在斜边上的点C ′处,折痕为AD ;再沿DE 折叠,使点B 落在DC ′的延长线上的点B ′处. (1)求∠ADE 的度数; (2)求折痕DE 的长.24.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?25.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)求抛物线的表达式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.答案一、1.A 2.A 3.C 4.D 5.C 6.A 7.A 8.B 9.D 10.C 二、11.3132 12.y =(x -3)2+213.(50 3+50)m 14.a 2sin α15.5 点拨:综合左视图和主视图知,这个几何体有两层,底层最少有2+1=3(个)小正方体,第二层有2个小正方体,因此组成这个几何体的小正方体最少有3+2=5(个). 16.x >3或-1<x <0 17.5 18.10三、19.解:原式=-1+⎝ ⎛⎭⎪⎫222-1+3×32×1 =-1+12-1+32=0.20.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求. (2)∵AC ∥DF , ∴∠ACB =∠DFE .又∠ABC =∠DEF =90°, ∴△ABC ∽△DEF . ∴AB DE =BC EF. ∵AB =3 m ,BC =2 m ,EF =6 m ,∴3DE =26. ∴DE =9 m ,即旗杆DE 的高度为9 m.21.解:在Rt △OAC 中,OC =OA ·tan 6 0°=100×3=100 3(m).如图所示,过点P 作PE ⊥O C 于点E ,PF ⊥AB 于点F ,由tan ∠PAB =12,设PF 为x m ,则AF =2x m ,O E =x m ,∴CE =100 3-x =100+2x ,解得x =100(3-1)3.∴电视塔OC 的高度是100 3 m ,此人所在位置P 的铅直高度为100(3-1)3m.22.解:(1)-4<x <-1.(2)∵一次函数y 1=kx +b 的图象过点⎝ ⎛⎭⎪⎫-4,12,(-1,2), ∴⎩⎪⎨⎪⎧-4k +b =12,-k +b =2,解得⎩⎪⎨⎪⎧k =12,b =52.∴一次函数的表达式为y 1=12x +52.又∵反比例函数y =m x的图象过点(-1,2), ∴m =-1×2=-2. ∴反比例函数的表达式为y =-2x(x <0).(3)设P (a ,-2a),a <0,由△PCA 和△PDB 的面积相等得12×12×(a +4)=12×|-1|×⎝ ⎛⎭⎪⎫2+2a ,解得a =-2. ∴P 点的坐标是(-2,1).23.解:(1)由折叠的性质知∠ADC =∠ADC ′,∠BDE =∠B ′DE ,∵∠ADC +∠ADC ′+∠BDE +∠B ′DE =180°, ∴∠ADC ′+∠B ′DE =90°, 即∠ADE =90°.(2)∵∠ACB =90°,AB =5,AC =3, ∴BC =4.由折叠的性质知,∠AC ′D =∠ACD =90°,DC =DC ′,AC ′=AC =3,BC ′=AB -AC ′=2.设DC =DC ′=x ,则BD =4-x .∵tan B =AC BC =34,又tan B =DC ′BC ′=x2, ∴x 2=34,∴x =32,即DC =DC ′=32. ∴AD =32+⎝ ⎛⎭⎪⎫322=3 52.∵∠CAD =∠BAD ,∴tan ∠CAD =CD AC =tan ∠BAD =DE AD. ∴323=DE 3 52. ∴DE =3 54.24.解:(1)设该型号自行车的进价为x 元,则标价为1.5x 元,由题意得:1.5x ×0.9×8-8x =(1.5x -100)×7-7x ,解得x =1 000,1.5×1 000=1 500(元).答:该型号自行车的进价为1 000元,标价为1 500元. (2)设该型号自行车降价a 元,利润为w 元,由题意得:w =(51+a20×3)(1 500-1 000-a )=-320(a -80)2+26 460,∵-320<0,∴当a =80时,w 最大为26 460,答:该型号自行车降价80元时,每月获利最大,最大利润是26 460元. 25.解:(1)依题意得:⎩⎪⎨⎪⎧-b2a =-1,a +b +c =0,c =3,解之得⎩⎪⎨⎪⎧a =-1,b =-2,c =3. ∴抛物线的表达式为y =-x 2-2x +3.(2)易知点B 坐标为(-3,0),过点B 、点C 作直线BC ,又知C (0,3),易得直线BC 的表达式为y =x +3,设直线BC 与对称轴x =-1的交点为M ,则此时MA +MC 的值最小. 把x =-1代入y =x +3得y =2. ∴M (-1,2),即当点M 到点A 的距离与到点C 的距离之和最小时,点M 的坐标为(-1,2). (3)设P (-1,t ), 又∵B (-3,0),C (0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若点B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解之得t =-2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解之得t =4; ③若点P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18,解之得t 1=3+172,t 2=3-172. 综上所述,点P 的坐标为(-1,-2)或(-1,4)或(-1,3+172)或(-1,3-172).2023年鲁教版(五四制)数学九年级上册期末考试测试卷(二)一、选择题(本大题共10小题,共30分。
初中数学鲁教版(五四制)九年级上册期末-章节测试习题
章节测试题1.【答题】下列式子中,表示是的反比例函数的是()A. B. C. D.【答案】D【分析】【解答】2.【答题】已知点,是反比例函数图象上的两点,若,则有()A. B. C. D.【答案】A【分析】【解答】3.【答题】已知关于的函数和,它们在同一坐标系中的大致图象是()A. B.C. D.【答案】A【分析】【解答】4.【答题】如图,点的坐标是,是等边三角形,点在第一象限,若反比例函数的图象经过点,则的值是()A. 1B. 2C.D.【答案】C【分析】【解答】5.【答题】如图,中,,如果,那么的值是()A. B. C. D.【分析】【解答】6.【答题】在中,,,,则的面积为()A. B. C. 或 D. 或【答案】B【分析】【解答】7.【答题】在平面直角坐标系中,二次函数的大致图象如图所示,则下列结论正确的是()A. ,,B.C.D. 关于的方程有两个不相等的实数根【分析】【解答】8.【答题】在正方形网格中,的位置如图所示,则的值为()A. B. C. D.【答案】D【分析】【解答】9.【答题】在函数中,自变量的取值范围是()A. B. 且 C. 且 D.【答案】C【分析】【解答】10.【答题】已知二次函数如图所示,那么函数的图象可能是()A. B.C. D.【答案】C【分析】【解答】11.【答题】已知一个正比例函数的图象与一个反比例函数的图象的一个交点坐标为,则另一个交点坐标是______.【答案】(-1,-3)【分析】【解答】12.【答题】关于的二次函数的最大值为4,则的值为______.【分析】【解答】13.【答题】天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价为30元,主楼梯宽为2m,其侧面如图所示,则购买地毯至少需要______元.【答案】504【分析】【解答】14.【答题】如图,反比例函数的图象交的斜边于点,交直角边于点,点在轴上,若的面积为5,,则的值为______.【答案】8【解答】15.【答题】如图所示是某种型号的正六角螺母毛坯的三视图,则它的表面积为______【答案】【分析】【解答】16.【答题】如图是将一正方体货物沿坡面装进汽车货厢的平面示意图,已知长方体货厢的高度为2m,斜坡的坡度,现把图中的货物沿斜坡继续往前平移,当货物顶点与重合时,恰好可把货物放平装进货厢,则______.【答案】【分析】17.【题文】(9分)如图,有长为24m的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度).(1)如果所围成的花圃的面积为,试求宽的长;(2)按题目的设计要求,能围成面积比更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.【答案】解:(1)设花圃的宽,知应为,故面积与的关系式为.当时,,解出,.当时,,不合题意,舍去;当时,,符合题意.故的长为.(2)能围成面积比更大的矩形花圃.由(1)知.∵,∴.由抛物线知,当时,随的增大而增大,当时,随的增大而减小.∴当时,有最大值,最大值为.此时,,,即围成长为,宽为的矩形花圃时,其最大面积为.【分析】【解答】18.【题文】(9分)病人按规定的剂量服用某药物,测得服药后2小时,每毫升血液中含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中含药量(毫克)与时间(小时)成正比例;2小时后与成反比例(如图所示),根据以上信息解答下列问题:(1)求当时,与的函数关系式;(2)求当时,与的函数关系式;(3)如果每毫升血液中含药量不低于2毫克时治疗有效,那么服药一次,治疗疾病的有效时间是多长?【答案】解:(1)根据图象,正比例函数图象经过点,设函数解析式为,则,解得,∴函数关系式为.(2)根据图象,反比例函数图象经过点,设函数解析式为,则,解得,∴函数关系式为.(3)当时,,解得.,解得,.∴服药一次,治疗疾病的有效时间是.【分析】【解答】19.【题文】(9分)如图,湿地景区岸边有三个观景台,,,已知,,点位于点的南偏西方向,点位于点的南偏东方向.(1)求的面积;(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道,试求,间的距离.(结果精确到0.1m)(参考数据:,,,,,,)【答案】解:(1)作于.在中,,∴,∴.(2)连接,作于,则.∵,,∴,∴.∵,∴,∴.在中,.【分析】【解答】20.【题文】(9分)如图,在平面直角坐标系中,正方形的顶点与坐标原点重合,点的坐标为,点在轴的负半轴上,点,分别在边,上,且,,一次函数的图象过点和,反比例函数的图象经过点,与的交点为.(1)求反比例函数和一次函数的表达式;(2)若点在直线上,且使的面积与四边形的面积相等,求点的坐标.【答案】解:(1):正方形的顶点,∴,.∵,∴,∴.把的坐标代入中,得,∴反比例的表达式为.∵,∴,即.把与的坐标代入中,得解得则直线的表达式为.(2)把代入中,得,∴,即.设,∵的面积与四边形的面积相等,∴,即,解得.当时,,当时,.则的坐标为或.【分析】【解答】。
【鲁教版】初三数学上期末试题(带答案)
一、选择题1.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )A .15B .310C .13D .122.某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是( ) A .12B .13C .23D .163.下列事件中,属于必然事件的是( ) A .深圳明天会下大暴雨B .打开电视机,正好在播足球比赛C .在13个人中,一定有两个人在同月出生D .小明这次数学期末考试得分是80分4.下列事件:(1)如果a 、b 都是实数,那么a+b=b+a ;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签;(3)同时抛掷两枚骰子向上一面的点数之和为13;(4)射击1次中靶.其中随机事件的个数有( ) A .0个B .1个C .2个D .3个5.如图,已知AB 是O 的直径,AD 切O 于点A ,CE CB =.则下列结论中不一定正确的是( )A .OC BE ⊥B .//OC AE C .2COE BAC ∠=∠D .OD AC ⊥6.下列说法正确的有( )①垂直平分弦的直线经过圆心;②平分弦的直径一定垂直于弦;③相等的圆周角所对的弧相等;④等弧所对的弦相等;⑤等弦所对的弧相等 A .1个B .2个C .3个D .4个7.如图,在⊙O 中,OA BC ⊥,35ADB ∠=︒.则AOC ∠的度数为( )A .40︒B .55︒C .70︒D .65︒8.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( ) A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案9.如图,把ABC 绕点C 顺时针旋转35︒,得到A B C ''',A B ''交AC 于点D ,若105A CB '∠=︒,则ACB '∠度数为( )A .45︒B .30C .35︒D .70︒10.下列图标中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .11.抛物线2(3)y a x k =++的图象如图所示.已知点()15,A y -,()22,B y -,()36.5,C y -三点都在该图象上,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .321y y y >>C .213y y y >>D .231y y y >> 12.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17二、填空题13.已知一元二次方程23m 0x x -+=,从m =-1,1,0,2,3的值中选一个作为m 的值,则使该方程无解的m 值的概率为_________14.重庆市某校初二(3)班同学,在学校组织的语文作文选拔考试中,有三名同学满分,其中有一名男生和两名女生,现在从三名满分同学中随机抽取两名同学参加重庆市优秀作文比赛,则选出来的两名同学刚好是一男一女的概率是_____.15.一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是_____.16.如图,若∠BOD =140°,则∠BCD=___________ .17.如图,△ABC 内接于O ,∠BAC=45°,AD ⊥BC 于D , BD=6,DC=4,则AD 的长是_____.18.如图,在Rt ABC 中,5AB =,4BC =,如果ABC 绕点B 旋转,使点C 落在AB 边上的点D 处得到EBD △,则点A 到BE 的距离是__________.19.二次函数2y ax bx c =++自变量x 与函数值y 之间有下列关系:那么()ba b c a++的值为______. x … 3-2- 0 … y…31.68- 1.68-…20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.为响应垃圾分类处理,改善生态环境,某小区将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a ,b ,c ,并且设置了相应的垃圾箱,“厨余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A ,B ,C(1)小明将垃圾分装在三个袋中,任意投放,用画树状图或列表的方法求把三个袋子都放错位置的概率是多少?(2)某学习小组为了了解居民生活垃圾分类投放的情况,现随机抽取了某天三类垃圾箱中总共100吨的生活垃圾,数据统计如表(单位:吨):A B C a 40 10 10 b 3 24 3 c226调查发现,在“可回收垃圾”中塑料类垃圾占10%,每回收1吨塑料类垃圾可获得0.7吨二级原料,某城市每天大约产生200吨生活垃圾假设该城市每天处理投放正确的垃圾,每天大概可回收多少吨塑料类垃圾的二级原料? 22.某种油菜籽在相同条件下的发芽实验结果如表:(1)a = ,b = ;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?参考答案23.对于平面直角坐标系xOy 中的点P 和C ,给出如下定义:如果C 的半径为r ,C 外一点P 到C 的切线长小于或等于2r ,那么点P 叫做C 的“离心点”.(1)当C 的半径为1时,①在点()()12313,,0,2,5,02P P P ⎛⎫- ⎪ ⎪⎝⎭中,C 的“离心点”是_____________;②点P(m ,n)在直线3y x =-+上,且点P 是O 的“离心点”,求点P 横坐标m 的取值范围;(2)C 的圆心C 在y 轴上,半径为2,直线132y x =-+与x 轴.y 轴分别交于点A 、B .如果线段AB 上的所有点都是C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.24.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD △绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △.(1)请求出旋转角的度数;(2)请判断AE 与BD 的位置关系,并说明理由.25.已知:直线2l y x =+:与过点(0,2)-且平行于x 轴的直线交于点A ,点A 关于直线1x =- 的对称点为点B . (1)求A B 、两点的坐标;(2)若抛物线2y x bx c =-++的顶点(,)m n 在直线l 上移动.①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,求抛物线解析式;②若抛物线2y x bx c =-++与线段AB 有交点,当抛物线的顶点(,)m n 向上运动时,抛物线与y 轴的交点也向上运动,求m 的取值范围.26.解方程:2410y y --=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可. 【详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份, 所以P(飞镖落在黑色区域)=48=12. 故答案选:D. 【点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.2.C解析:C 【解析】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是46=23;故选C . 3.C解析:C 【分析】根据事件的分类判断,必然事件就是一定发生的事件,根据定义即可解决. 【详解】A 、深圳明天会下大暴雨,是随机事件,故本选项错误;B 、打开电视机,正好在播足球比赛,是随机事件,故本选项错误;C 、在13个人中,一定有两个人在同月出生,是必然事件,故本选项正确;D 、小明这次数学期末考试得分是80分,是随机事件,故本选项错误. 故选:C . 【点睛】本题考查的是随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P (必然事件)=1; ②不可能事件发生的概率为0,即P (不可能事件)=0; ③如果A 为不确定事件(随机事件),那么0<P (A )<1.4.C解析:C 【分析】根据必然事件、不可能事件、随机事件的概念找到各类事件的个数即可. 【详解】(1)如果a 、b 都是实数,那么a+b=b+a ,是必然事件,故此选项错误;(2)从分别标有数字1~10的10张小标签中任取1张,得到10号签,是随机事件; (3)同时抛掷两枚骰子,向上一面的点数之和为13,是不可能事件,故此选项错误; (4)射击1次,中靶,是随机事件. 故随机事件的个数有2个. 故选:C . 【点睛】此题主要考查了随机事件、不可能事件和随机事件定义,用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.D解析:D 【分析】分别根据平行线的判定与性质,以及圆周角定理对各选项进行逐一判断即可. 【详解】B. ∵CE CB =,2BAE BAC ∴∠=∠, 又2BOC BAC ∠=∠,BAE BOC ∴∠=∠,//OC AE ∴,正确;A.AB 是O 的直径,∴∠AEB=90°,∵//OC AE ,OC BE ⊥,正确;C. ∵EC 所对的圆心角为COE ∠,EC 所对的圆周角为CAE ∠,2COE CAE ∴∠=∠,正确;D. 只有AE EC =时,才可证得OD AC ⊥,故不一定正确; 故选D . 【点睛】本题考查了圆周角定理,平行线的判定与性质,熟知圆周角定理及其推论是解答此题的关键.6.B解析:B 【分析】根据垂径定理及其推论即可判定①正确,②错误;根据弧、弦、圆周角之间的关系可知③⑤错误,④正确. 【详解】解:①根据垂径定理的推论可知,垂直平分弦的直线经过圆心;故本选项正确; ②直径是最长的弦,任意两条直径互相平分,但不一定互相垂直,故被平分弦不能是直径;故本选项错误;③在同圆或等圆中,相等的圆周角所对的弧相等,故本选项错误; ④相等的弧所对的弦一定相等,故本选项正确;⑤∵在一个圆中一条弦所对的弧有两条,∴等弦所对的弧不一定相等,故本选项错误. 故选:B . 【点睛】本题考查的是垂径定理及其推论、圆周角、弧、弦的关系,解题的关键是正确理解各知识点.7.C解析:C 【分析】根据圆周角定理可得270AOB ADB ∠=∠=︒,再利用垂径定理即可求解. 【详解】 解:连接OB ,∵35ADB ∠=︒, ∴270AOB ADB ∠=∠=︒, ∵OA BC ⊥, ∴AB AC =,∴70AOC AOB ∠=∠=︒, 故选:C . 【点睛】本题考查圆周角定理、垂径定理、同弧所对的圆心角相等,掌握圆的基本性质定理是解题的关键.8.D解析:D 【分析】设展开后的圆半径为r ,根据圆锥性质可知底面周长就等于展开后扇形的弧长,然后算出展开后扇形的半径,进而计算出扇形的面积. 【详解】解:设展开后的扇形半径为r ,由题可得: 4π=2r π解得r =8 ∴S 扇形=14π×82 =16π 故选:D 【点睛】此题主要考查了圆锥的计算,正确理解圆锥侧面展开图与各部分对应情况是解题关键.9.C解析:C 【分析】先根据旋转的定义可得35BCB ACA ''∠=∠=︒,再根据角的和差即可得. 【详解】由旋转的定义得:BCB '∠和ACA '∠均为旋转角,35BCB ACA ''∴∠=∠=︒, 105A CB '∠=︒,35ACB BCB A A CB CA '''∠=∠-∠'∴∠-=︒, 故选:C . 【点睛】本题考查了旋转的定义,熟练掌握旋转的概念是解题关键.10.D解析:D 【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知: A 既不是轴对称图形,也不是中心对称图形,故不正确; B 不是轴对称图形,但是中心对称图形,故不正确;C 是轴对称图形,但不是中心对称图形,故不正确;D 即是轴对称图形,也是中心对称图形,故正确. 故选D.考点:轴对称图形和中心对称图形识别11.C解析:C 【分析】根据函数解析式的特点为顶点式,其对称轴为x=-3,图象开口向下;根据二次函数图象的对称性,利用在对称轴的左侧,y 随x 的增大而增大,可判断y 2>y 1>y 3. 【详解】由二次函数y =a (x +3)2+k 可知对称轴为x =−3,根据二次函数图象的对称性可知,()22,B y -与2(4,)D y -对称,∵点()15,A y -,()36.5,C y -, 2(4,)D y -)在对称轴的左侧,y 随x 的增大而增大, ∵-4>-5>-6.5, ∴y 2>y 1>y 3, 故选C. 【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.12.B解析:B 【分析】根据一元二次方程的根的定义、根与系数的关系即可得. 【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++,()()24m m m n =-++,34=-+, 1=, 故选:B . 【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.二、填空题13.【分析】利用根的判别式得出使该方程无解的m 值的个数再用这个个数除以总情况数即为所求的概率【详解】∵∴当方程无解时∴当m 取-11023时只有当m 取3时方程无解则使该方程无解的m 值的概率为:故答案为:【 解析:15 【分析】利用根的判别式,得出使该方程无解的m 值的个数,再用这个个数除以总情况数即为所求的概率.【详解】∵1a =,3b =-,c m =,∴()22434194b ac m m =-=--⨯⨯=-, 当方程无解时,940m =-<,∴94m >, 当m 取-1,1,0,2,3时,只有当m 取3时,方程无解, 则使该方程无解的m 值的概率为:15. 故答案为:15. 【点睛】本题考查了一元二次方程根的差别式以及概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比. 14.【分析】利用列表法或树状图法列举出所有可能出现的结果数进而求出该事件发生的概率【详解】解:利用列表法可以得出所有可能的结果:∴P (两名同学是一男一女)=【点睛】考查等可能事件发生的概率用列表法或树状解析:23【分析】利用列表法或树状图法列举出所有可能出现的结果数,进而求出该事件发生的概率.【详解】解:利用列表法可以得出所有可能的结果:∴P (两名同学是一男一女)=4263=, 【点睛】 考查等可能事件发生的概率,用列表法或树状图法列举出等可能出现的结果数是正确解答的关键,同时注意每一种结果出现的可能性一定要均等.15.【分析】画树状图展示所有16种等可能的结果数再找出两次摸出的球的编号之和为偶数的结果数然后根据概率公式求解【详解】解:根据题意画图如下:共有16种等情况数其中两次摸出的球的编号之和为偶数的有10种则解析:58【分析】画树状图展示所有16种等可能的结果数,再找出两次摸出的球的编号之和为偶数的结果数,然后根据概率公式求解.【详解】解:根据题意画图如下:共有16种等情况数,其中两次摸出的球的编号之和为偶数的有10种,则两次摸出的球的编号之和为偶数的概率是1016=58 . 故答案为:58. 【点睛】此题考查列树状图求概率问题,难度一般. 16.【分析】如图(见解析)先根据圆周角定理可得再根据圆内接四边形的性质即可得【详解】如图在优弧上取一点E 连接BEDE 由圆内接四边形的性质得:故答案为:【点睛】本题考查了圆周角定理圆内接四边形的性质熟练掌 解析:110︒【分析】如图(见解析),先根据圆周角定理可得70BED ∠=︒,再根据圆内接四边形的性质即可得.【详解】如图,在优弧BD 上取一点E ,连接BE 、DE ,140BOD ∠=︒,1702BED BOD ∠∴∠==︒, 由圆内接四边形的性质得:180110BC ED D B ∠=︒-∠=︒,故答案为:110︒.【点睛】本题考查了圆周角定理、圆内接四边形的性质,熟练掌握圆周角定理是解题关键. 17.12【分析】连接OAOBOC 过点O 作OE ⊥AD 于EOF ⊥BC 于F 根据圆周角定理得到∠BOC=90°再根据等腰直角三角形的性质计算求出OB 再由DF=BD-BF 得出DF 然后等腰直角三角形的性质求出OF 根解析:12【分析】连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,根据圆周角定理得到∠BOC=90°,再根据等腰直角三角形的性质计算,求出OB ,再由DF=BD-BF 得出DF ,然后等腰直角三角形的性质求出OF ,根据勾股定理求出AE ,再根据AD=AE+OF 得到答案.【详解】解:∵BD=6,DC=4,∴BC=BD+DC=10∵∠BAC=45°,∴∠BOC=90°,∴252==OB BC 连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,∴BF=FC=5,∴DF=BD-BF=1,∵∠BOC=90°,BF=FC∴OF=12BC=5, ∵AD ⊥BC ,OE ⊥AD ,OF ⊥BC ,∴四边形OFDE 为矩形,∴OE=DF=1,DE=OF=5,在Rt △AOE 中,227,=-=AE OA OE∴AD=AE+DE=12.【点睛】本题考查的是三角形的外接圆,掌握圆周角定理、垂径定理、等腰直角三角形的性质是解题的关键.18.3【分析】连接AE 作AH ⊥BE 于H 根据勾股定理求出AC 的值根据旋转的性质可知BE=AB=5DE=AC=3然后根据等面积法求解即可【详解】解:连接AE 作AH ⊥BE 于H ∵在中∴AC=由旋转的性质得BE=解析:3【分析】连接AE ,作AH ⊥BE 于H ,根据勾股定理求出AC 的值,根据旋转的性质可知BE=AB=5,DE=AC=3,然后根据等面积法求解即可.【详解】解:连接AE ,作AH ⊥BE 于H ,∵在Rt ABC 中,5AB =,4BC =,∴AC=2254=3-,由旋转的性质得BE=AB=5,DE=AC=3,∵1122BE AH AB DE ⋅=⋅, ∴5AH=5×3,∴AH=3,故答案为:3.【点睛】本题考查了勾股定理,旋转的性质,等面积法求线段的长,熟练掌握各知识点是解答本题的关键.19.6【分析】利用抛物线的对称性得到抛物线的对称轴为直线x =−1则−=−1所以=2再利用x =−3和x =1对应的函数值相等得到a +b +c =3然后利用整体代入的方法计算(a +b +c )的值【详解】解:∵抛物线解析:6【分析】利用抛物线的对称性得到抛物线的对称轴为直线x =−1,则−2b a =−1,所以b a=2,再利用x =−3和x =1对应的函数值相等得到a +b +c =3,然后利用整体代入的方法计算b a (a +b +c )的值.【详解】解:∵抛物线经过点(−2,−1.68),(0,−1.68),∴抛物线的对称轴为直线x =−1,即−2b a =−1, ∴b a=2, ∴x =−3和x =1对应的函数值相等,∵x =−3时,y =3,∴x =1时,y =3,即a +b +c =3, ∴b a(a +b +c )=2×3=6. 故答案为:6.【点睛】 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)13;(2)每天大概可回收3.36吨塑料类垃圾的二级原料.【分析】(1)画树状图得出所有等可能结果,从中找到把三个袋子都放错位置的结果数,再根据概率公式计算可得;(2)根据样本,首先求得可回收垃圾量,然后再求塑料类垃圾中投放正确的,再根据每回收1吨塑料类垃圾可获得0.7吨二级原料计算即可.【详解】解:(1)画树状图如下:由树状图知,共有6种等可能结果,其中把三个袋子都放错位置的有2种结果,所以把三个袋子都放错位置的概率是26=13;(2)200×3243100++×0.1×2430×0.7=3.36(吨),答:每天大概可回收3.36吨塑料类垃圾的二级原料.【点睛】此题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.22.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键. 23.(1)①23,P P ;②12m ≤≤;(2)圆心C 的纵坐标满足34y <≤或11y -≤<-【分析】(1) ①分别计算123OP OP OP ,,的长,判断P 到C 的切线长是否小于或等于2r ,即可解题;②设(),3P m m -+,根据题意,当过点P 的切线长为2时,OP=5,列出相应的一元二次方程,解方程即可;(2) 分类讨论,当C 在y 轴的正半轴上时,当点C 在y 轴的负半轴上时,当圆C 与直线112y x =-+相切时,画出相应的图形,结合全等三角形的判定与性质解题. 【详解】①())1231,0,2,2P P P ⎛- ⎝⎭1231,2,OP OP OP ===所以点1P 不在圆上,不符合题意;因为过点2P 的切线长为==2<所以2P 是圆的离心点因为过3P 的切线长为22===所以3P 是离心点;故答案为23,P P ;②如图设(),3P m m -+当过点P 的切线长为2时,OP=5,所以22(3)5m m +-+=解得m=1或m=2观察图像得12m ≤≤(2)如图2,当C 在y 轴的正半轴上时,经过点B(1,0),A(2,0)当AC=25,点A 是离心点,此时C(0,4); 观察图像知圆的纵坐标满足34y <≤,线段AB 上所有的点都是离心点;如图3,当点C 在y 轴的负半轴上时,25BC =,点B 是离心点,此时C(0, 125-)如图4,当圆C 与直线112y x =-+相切时,设切点为N , 如图,由题意得CNB AOB ∆≅∆5CB NB ==(0,15C ∴,观察图像得当圆C 的纵坐标满足1515y -≤<-AB 上的所有点都是离心点; 综上所述,圆C 的纵坐标满足34y <≤或1515y -≤<-【点睛】本题考查直线与圆的位置关系、切线等知识,是重要考点,难度中等,掌握相关知识是解题关键.24.(1)旋转角的度数为90°;(2)AE 与BD 互相垂直,理由见详解.【分析】(1)由题意易得BC=AC ,则有∠CBA=∠CAB=45°,进而问题可求解;(2)由(1)可得∠DBC=∠EAC ,如图∠1=∠2,∠2+∠DBC=90°,进而问题可求解.【详解】解:(1)由将BCD △绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE △可得:BCD ACE ≌,∴BC=AC ,∵45ABC ADC ∠=∠=︒,∴∠CBA=∠CAB=45°,∴∠ACB=90°,即旋转角度为对应边的夹角,故旋转角为∠ACB=90°;(2)AE ⊥BD ,理由如下:如图所示,由(1)可得:BCD ACE ≌,∴∠DBC=∠EAC ,∵∠ACB=90°,∴∠2+∠DBC=90°,∵∠1=∠2,∴∠1+∠EAC=90°,∴BD ⊥AE .【点睛】本题主要考查旋转的性质,熟练掌握旋转的性质是解题的关键.25.(1)()4,2A --;()2,2B -;(2)①244y x x =---;②43m -≤≤-或0<5m ≤【分析】(1)根据已知直线和对称点的性质即可求出A 、B .(2)①根据抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-求解即可;②根据已知条件判断出二次函数顶点的位置,计算即可;【详解】(1)直线2l y x =+:与2y =-的交点为A ,则可得到:22x -=+,∴4x =-,∴点A 的坐标是()4,2--, 设(),2Bb -,点A 与点B 关于1x =-对称,则()()141b ---=--, ∴2b =,∴()2,2B -;(2)①当抛物线2y x bx c =-++与坐标轴仅有两个公共点,此时抛物线的顶点为直线2l y x =+:与x 轴的交点()2,0-, 则222b b x a =-==-, ∴4b =-,代入顶点可得4c =-, ∴抛物线的解析式为244y x x =---;②抛物线2y x bx c =-++与线段AB 有交点,∴顶点坐标为(),2m m +,∴抛物线的解析式可化为()22y x m m =--++, 把点()4,2A --代入解析式可得,()2242m m -=---++,13m =-,24m =-,∴43m -≤≤-,把点()2.2B -代入解析式得, ()2222m m ---++=-, 30m =,45m =,∴0<5m ≤;综上所述:43m -≤≤-或0<5m ≤.【点睛】本题主要考查了二次函数与一次函数的综合,准确分析计算是解题的关键.26.12y =,22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --=24=1y y - 24+4=5y y - 2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键.。
鲁教版(五四学制)九年级数学上册期末复习检测题(含答案详解)
期末检测题(时间:120分钟,满分:120分)一、 选择题(每小题3分,共36分)1.在Rt △ABC 中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( ) A.sin A= B.tan A= C.cos B= D.tan B=2. 将二次三项式配方后得( ) A. C. D.3. 一个物体的主视图如图,则它的俯视图可能是( )A B C D4. 身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的 )同学5.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子()A.越大B.越小 C.不变 D.无法确定条宽度均为的公路相交成角,这两条公路在相交处的公6. 如图,两共部分(阴影部分)的面积是( ) A.B.C.D.7. 关于的二次函数,下列说法正确的是( ) A.图象的开口向上B.图象的顶点坐标是(-1,2)C.当时,随的增大而减小D.图象与轴的交点坐标为(0,2)8. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )A.6B.8C.12D.249. 如图是一个正六棱柱,它的俯视图是( )ACBD第3题图第5题图 第6题图第8题图 第9题图10.由二次函数,可知( ) A.其图象的开口向下B.其图象的对称轴为直线 C.其最小值为1D.当时,随的增大而增大11. 如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )12. 如图,在矩形ABCD 中,AB=4,AD=2,动点M 自点A 出发沿A→B 的方向,以每秒1cm 的速度运动,同时动点N 自点A 出发沿A→D→C 的方向以每秒2cm 的速度运动,当点N 到达点C 时,两点同时停止运动,设运动时间为(秒),△AMN 的面积为y (cm 2),则下列图象中能反映与之间的函数关系的是( )二、填空题(每小题3分,共24分) 13. 把抛物线写成的形式为 .14. 如图,飞机A 在目标B 的正上方3 000米处,飞行员测得地面目标C 的俯角∠DAC=30°,则地面目标BC 的长是米.15.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:),计算出这个立体图形的表面积是.A DC B A BC D 第12题图第14题图 第15题图16. 抛物线 =与直线=1,=2,=1, =2组成的正方形有公共点,则的取值范围是. 17. 把抛物线的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为,则的值为.18. 如图,小明在A 时测得某树的影长为2 ,B 时又测得该 树的影长为8 ,若两次日照的光线互相垂直,则树的高度 为.19. 在同一平面内下列4个函数:① ②;③;④的图象不可能由函数的图象通过平移变换得到的函数是. 20. 把抛物线向下平移2个单位,得到的抛物线与轴的交点坐标为. 三、解答题(共60分)21.(6分) 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB 的长为12米,调整后的楼梯所占地面CD 有多长?(结果精确到0.1米;参考数据:sin 25°≈0.42,cos 25°≈0.91,tan 25°≈0.47) 22. (6分)小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长.(两个三角板分别是等腰直角三角形和含30°的直角三角形)若已知CD=2,求AC 的长.请你先阅读并完成解法一,然后利用锐角三角函数的知识写出与解法一不同的解法. 解法一:在Rt △BCD 中,∵ BD=CD=2,∴ 由勾股定理,得BC==在Rt △ABC 中,设AB=,∵ ∠BCA=30°,∴ AC=2AB=2. 由勾股定理,得, 即∵>0,解得 = .∴ AC= .23.(8分) 如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300 m ,求点M 到直线AB 的距离(精确到整数).第18题图第21题图第22题图第24题图24.(8分)如图,花丛中有一路灯杆AB ,在灯光下,小丽在D 点处的影长DE =3米,沿BD 方向行走到达G 点,DG =5米,这时小丽的影长GH =5米.如果小丽的身高为1.7米,求路灯杆AB 的高度.(精确到0.1米)25.(8分)八年级美术老师在课堂上进行立体模型素描教学时,把14个棱长为10的正方体摆成如图所示的形式,然后他把露出的表面都涂上不同的颜色,求被他涂上颜色部分的面积.26.(8分)作出图中立体图形的三视图. 27.(8分)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O 点为原点,OM 所在直线为轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数解析式;(3)若要搭建一个矩形“支撑架”AD+DC+CB ,使C 、D点在抛物线上,A 、B 点在地面OM 上,这个“支撑架”总长的最大值是多少?28.(8分)如图所示,抛物线经过原点O ,与轴交于另一点N ,直线与两坐标轴分别交于A 、D 两点,与抛物线交于B (1,3)、C (2,2)两点.(1)求直线与抛物线的解析式.(2)若抛物线在轴上方的部分有一动点P (,),求△PON 面积的最大值.(3)若动点P 保持(2)中的运动路线,问是否存在点P ,使得△POA 的面积等于△POD 面积的?若存在,请求出点P 的坐标;若不存在,请说明理由.第25题图第27题图第28题图第26题图期末检测题参考答案1.D 解析:∵ 在Rt △ABC 中,∠ACB=90°,BC=1,AB=2, ∴ AC===,∴ sin A== ,tan A===,cosB==,tan B==.故选D .2.B 解析:∵,故选B .3.C 解析:从主视图可以看出中间两条线,左边是虚线,右边是实线.只有C 满足条件,故选C .4.D 解析:如图, AC=140 ,∠甲中,C=30°,AB=140×sin 30°=70 ;乙中,DF=100 ,∠F=45°,DE=100×sin 45°=50≈70.71 ; 丙中,GI=95 ,∠I=45°,GH=95×sin 45°=≈67.18 ;丁中,JL=90 ,∠L=60°,JK=90×sin 60°=45≈77.9 . 可见JK 最大,故选D .5.A 解析:白炽灯向上移时,阴影会逐渐变小;相反当乒乓球越接近灯泡时,它在地面上的影子变大.故选A .6.A 解析:如图,的对边AC 即为路宽, 即sin =,即AB=,∴ 阴影的面积=×=.故选A .7.C 解析:∵ 这个函数的顶点是(1,2), ∴ 函数的开口向下,对称轴是直线,∴在对称轴的左侧随的增大而增大,在对称轴的右侧随的增大而减小. 故选.8.B 解析:主视图反映物体的长和高,左视图反映物体的宽和高,俯视图反映物体的长和宽.结合三者之间的关系从而确定主视图的长和高分别为4,2,所以面积为8,故选B . 9.C 解析:从上面看可得到一个正六边形.故选C . 10.C 解析:由二次函数,可知: A.∵,其图象的开口向上,故此选项错误; B.∵其图象的对称轴为直线,故此选项错误; C .其最小值为1,故此选项正确;D .当<3时,随的增大而减小,故此选项错误. 故选C .第4题答图第6题答图11.C 解析:A.此半球的三视图分别为半圆弓形,半圆弓形,圆,不符合题意; B.圆柱的三视图分别为长方形,长方形,圆,不符合题意; C.球的三视图都是圆,符合题意;D.六棱柱的三视图不相同,不符合题意. 故选C .12.D 解析:在矩形ABCD 中,AB=4,AD=2 cm , AD+DC=AB+AD=4+2=6 cm ,∵ 点M 以每秒1 cm 的速度运动,∴ 4÷1=4秒. ∵ 点N 以每秒2 cm 的速度运动,∴ 6÷2=3秒, ∴点N 先到达终点,运动时间为3秒. ①点N 在AD 上运动时,=AM •AN=•2=(0≤≤1);②点N 在DC 上运动时, =AM •AD=•2=(1≤3),∴ 能反映与之间的函数关系的是选项D .故选D .13. 解析:故答案是.14.3 000 解析:根据题意可得BC=AB ÷tan 30°=3 000(米).15.200 解析:根据三视图可得:上面的长方体长4mm ,高4mm ,宽2mm ,下面的长方体底面两边长分别为6mm 、8mm ,高2mm ,∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2-4×2=200(mm 2).故答案为200. 16.解析:如图,四条直线=1,=2, =1,=2围成正方形ABCD ,因为抛物线与正方形有公共点,所以可得>0,而且值越大,抛物线开口越小,因此当抛物线分别过A (1,2),C (2,1)时, 分别取得最大值与最小值,代入计算得出:=2,=. 由此得出的取值范围是.故填.17. 解析:∵=, ∴抛物线顶点坐标为(1,2),依题意,得平移前抛物线顶点坐标为(-2,4), ∵平移不改变二次项系数, ∴, 比较系数,得.18.4 解析:根据题意,作△EFC,树高为CD ,且∠ECF=90°,ED=2,FD=8. 易得△∽△, 有 =,即,代入数据可得,DC=4.第16题答图第18题答图故答案为4 m.19.③④解析:二次项的系数不是2的函数有③④.故答案为③④.20.解析:由题意得原抛物线的顶点坐标为(2,-3),∴新抛物线的顶点坐标为(2,-5),∴新抛物线的解析式为,∴抛物线与轴交点坐标为(0,-1).故答案为(0,-1).21.解:由题意得,在Rt△ABC中,∠ABC=30°,AB=12米,∴ AC= ×12=6(米). 又∵在Rt△ACD中,∠D=25°,=tanD,∴ CD=≈12.8(米),答:调整后的楼梯所占地面CD长约为12.8米.22.解:∵ BD=CD=2,BC==,∴设AB=,则AC=2,,∴ 2+8=4 2,∴ 3 2=8,∴ 2=,∴ =,AC=2AB=.故答案为,.第二种方法:在Rt△BCD中,CD=2,∠DBC=45°,∴ BC===.在Rt△BAC中,∠BCA=30°,∴ AC===.23.解:过点M作AB的垂线MN,垂足为N .∵M位于B的北偏东45°方向上,∴∠M BN= 45°,BN=MN.又M位于A的北偏西30°方向上,∴∠M A N=60°,AN = .∵AB = 300,∴AN+NB = 300 .∴.MN24. 解:如图所示,设AB为,∵ CD∥AB ,∴=,∴=①同理==②A住宅小区M45°30B北第23题答图N第24题答图°由①②得= ,∴ BD =. ∴= ,∴ ≈6.0.答:路灯杆AB 的高度约为6.0米.25.解:从前、后、左、右看该物体均为6个正方形,从上面看有9个正方形, 所以被涂上颜色部分的面积为 6×100×4+900=3 300.26.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形. 解:如图所示.27.解:(1)M(12,0),P(6,6).(2)设此函数关系式为6)6(2+-=x ay . ∵函数6)6(2+-=x a y 经过点(0,3), ∴6)60(32+-=a ,即121-=a . ∴此函数解析式为:31216)6(12122++-=+--=x x x y . (3)设A(,0),则B(12-,0),C )3121,12(2++--m m m ,D )3121,(2++-m m m . ∴“支撑架”总长AD+DC+CB= )3121()212()3121(22++-+-+++-m m m m m= 18612+-m .∵此二次函数的图象开口向下, ∴ 当时,AD+DC+CB 有最大值为18. 28.分析:(1)把点B 、C 的坐标代入直线表达式解方程组即可得解,把点B 、C 、O 的坐标代入抛物线的解析式,解方程组求出的值,即可得到抛物线的解析式.(2)先根据抛物线的解析式求出点N 的坐标,再根据三角形的面积公式可知,点P 为抛物线的顶点时△PON 底边ON 上的高最大,面积最大,求出点P 的纵坐标,代入面积公式即可得解.(3)先求出点A 、D 的坐标,再设点P 的坐标为(,),根据三角形的面积公式列式得到关于的一元二次方程,然后求出方程的解,再根据点P 在轴的上方进行判断. 解:(1)根据题意,得解得∴ 直线的解析式是. 根据图象,抛物线经过点B (1,3)、C (2,2)、O (0,0),∴解得∴抛物线的解析式是=.(2)当时,,解得=0,=,∴ 点N 的坐标是(,0).∴ 点P 的纵坐标越大,则△PON 的面积越大, 当点P 是抛物线的顶点时,△PON 的面积最大,第26题答图此时==,=××=.(3)由(1)知直线的解析式是当=0时,=4,当=0时,-+4=0,解得=4,∴点A、D的坐标是A(0,4)、D(4,0). 设点P的坐标是(,),则×4=××4×(),整理得=0,解得 =0,=-2,此时点P不在轴的上方,不符合题意,∴不存在点P,使得△POA的面积等于△POD面积的.。
初中数学鲁教版(五四制)九年级上册期末-章节测试习题(4)
章节测试题1.【答题】某品牌电视机经过连续两次降价,每台售价由原来的1500元降到了980元,设平均每次降价的百分率为x,则下列方程中正确的是()A. B.C. D.【答案】A【分析】【解答】2.【答题】AE,CF是锐角三角形ABC的两条高,如果,则()A. 3:2B. 2:3C. 9:4D. 4:9【答案】B【分析】【解答】3.【答题】如图,在Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别F 在AC,BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A. B.C. D.【答案】A【分析】【解答】4.【答题】二次函数的大致图象如图所示().下列结论:①;②;③若OC=2OA,则2b-ac=4;④3a-c<0,其中正确的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】【解答】5.【答题】已知抛物线对应的函数表达式为,则抛物线的顶点坐标是______.【答案】(2,1)【分析】【解答】6.【答题】已知抛物线经过点(1,2)与(-1,4),则a+c的值是______.【答案】3【分析】【解答】7.【答题】如图是引拉线固定电线杆的示意图,其中,CD⊥AB,垂足为D,,,则拉线AC的长是______m.【答案】6【分析】【解答】8.【答题】如图,甲、乙两楼相距20m,甲楼高20m,自甲楼顶看乙楼楼顶,仰角为60°,则乙楼的高为______.(结果保留根号)(第16题)【答案】【分析】【解答】9.【答题】已知反比例函数的图象经过点,则k=______.【答案】【分析】【解答】10.【答题】如图,在△ABC中,,则AB的长为______.(第18题)【答案】【分析】【解答】11.【题文】(7分)根据下面的俯视图画出主视图和左视图,小正方形中的数字表示在该位置正方体的个数.【答案】如图所示:【分析】【解答】12.【题文】(7分)计算:【答案】-2【分析】【解答】13.【题文】(10分)已知二次函数.(1)用配方法求该二次函数图象的顶点坐标;(2)当y=-3时,求自变量x的值.【答案】(1)(4,-5);(2)【分析】【解答】14.【题文】(10分)如图,某一广告墙PQ旁有两根直立的木杆AB和CD,某一时刻在太阳光下,木杆CD的影子刚好不落在广告墙PQ上.(1)在图中画出此时的太阳光线CE及木杆AB的影子BF;(2)若,求此时木杆AB的影长.【答案】解:(1)如图所示:(2)【分析】【解答】15.【题文】(10分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数的图象有一个交点A(m,2).(1)求m的值;(2)求正比例函数的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.【答案】(1)m=1(2)y=2x(3)点B(2,3)不在正比例函数图象上【分析】【解答】16.【题文】(10分)某校九年级二班开展数学活动,小明和小军合作用一副三角板测量学校旗杆的高度,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在D点测得旗杆顶端E点的仰角为30°,已知小明和小军之间的距离(BD)6m,小明的身高(AB)为1.5m,小军的身高(CD)1.75m,求旗杆EF的高.(结果精确到0.1m,参考数据:,.)【答案】10.3m【分析】【解答】17.【题文】(12分)实验数据显示,一般成人喝半斤(1斤=0.5千克)低度白酒后,1.5小时内其100毫升血液中酒精含量y(毫克)与时间x(小时)之间的关系可近似地用二次函数刻画;1.5小时后(包括1.5小时)y与x之间的关系可近似地用反比例函数刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几小时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员100毫升血液中的酒精含量大于或等于20毫克时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.【答案】(1)①喝酒后1小时血液中的酒精含量达到最大值,最大值为200毫克②25(2)不能驾车上班【分析】【解答】18.【题文】(12分)如图,抛物线与y轴交于点C(0,4),与x 轴交于点A,B,点A的坐标为(4,0).(1)求该抛物线对应的函数解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(1);(2)(1,0);(3)或.【分析】【解答】19.【答题】的值等于()A. B. C. 1 D.【答案】B【分析】【解答】20.【答题】如图是由6个大小相同的小立方块组成的几何体,这个几何体的三视图中,是中心对称图形的是()A. 主视图B. 左视图C. 俯视图D. 主视图和左视图(第2题)【答案】C【分析】【解答】。
鲁教版九年级数学第一学期期末模拟试卷(五四学制)
鲁教版九年级数学第一学期期末模拟试卷(五四学制)一、选择题(本题共12个小题,36个评价点,每小题都给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请讲正确答案的标号填在下列表中相应的位置上)1.如图,下列四个几何体中,它们各自的三视图(主视图.左视图.俯视图)完全相同的几何体是()A.①②B.①④C.②③D.③④2.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°3.已知反比例函数y=,下列结论中不正确的是()A.图象必经过点(1,﹣5)B.y随x的增大而增大C.图象在第二、四象限内 D.若x>1,则﹣5<y<04.二次函数y=x2﹣2x+c的部分图象如图所示.那么方程x2﹣2x+c=0的根是()A.﹣3,1 B.﹣3,2 C.﹣2,3 D.﹣1,35.一个圆锥的主视图是边长为4的等边三角形,这个这个圆锥的侧面积为()A.(4+4)πB.(8+4)πC.12πD.8π6.下列投影一定不会改变△ABC的形状和大小的是()A.中心投影B.平行投影C.正投影D .当△ABC 平行投影面时的平行投影7.要将抛物线y=x 2+2x+3平移后得到抛物线y=x 2,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位8.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1)9.如图,在平地MN 上用一块10m 长的木板AB 搭了一个斜坡,两根支柱AC=7.5m ,AD=6m ,其中AC ⊥AB ,AD ⊥MN ,则斜坡AB 的坡度是( )A .3:5B .4:5C .3:4D .4:310.如图,AB 和CD 是⊙O 的两条直径,弦BE ∥CD ,若∠BAC=30°,则的值是( )A .B .2C .D .11.如图,点A 在双曲线y=上,点B 在双曲线y=(k ≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为( )A.6 B.9 C.10 D.1212.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a,b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=﹣2时,x的值只能取2;⑤当﹣1<x<5时,y<0.其中正确的有()A.2个B.3个C.4个D.5个二、填空题(本题共6个小题,18个评价点,只要求填写最后结果)13.若函数y=4x与y=的图象有一个交点是(,2),则另一个交点坐标是.14.圆锥的底面半径为5,侧面积为60π,则其侧面展开图的圆心角等于.15.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:若A(m,y1),B(m﹣2,y2)两点都在该函数的图象上,当m=时,y1=y2.16.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=.17.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是.18.如图,抛物线y=ax2﹣2与y轴交于点A,过点A与x轴平行的直线交抛物线y=﹣x2于点B,C,则S△BOC=.三、解答题(本题共7个小题,66个评价点,要求写出必要的文字说明、证明过程或演算步骤)19.计算:2cos60°﹣4sin245+3tan30°.20.如图,AD为△ABC的外接圆O的直径,AE⊥BC于E.求证:∠BAD=∠EAC.21.如图,小明要测量河内小岛B到河边公路AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,求小岛B到公路AD的距离.22.如图,身高1.6米的小明从距路灯的底部(点O)20米的点A沿AO方向行走14米到点C处,小明在A处,头顶B在路灯投影下形成的影子在M处.(1)已知灯杆垂直于路面,试标出路灯P的位置和小明在C处,头顶D在路灯投影下形成的影子N的位置.(2)若路灯(点P)距地面8米,小明从A到C时,身影的长度是变长了还是变短了?变长或变短了多少米?23.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点.(1)求反比例函数与一次函数的解析式;(2)求反比例函数与一次函数的另一个交点M的坐标;(3)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.24.如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.(1)判断BC、MD的位置关系,并说明理由;(2)若AE=16,BE=4,求线段CD的长;(3)若MD恰好经过圆心O,求∠D的度数.25.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?26.如图,在平面直角坐标系中,⊙D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.(1)求圆的半径和点D的坐标;(2)点A的坐标是,点B的坐标是,sin∠ACB;(3)求经过C、A、B三点的抛物线解析式;(3)设抛物线的顶点为F,证明直线FA与⊙D相切.2015-2016学年山东省烟台市莱阳市九年级(上)期末数学试卷(五四学制)参考答案与试题解析一、选择题(本题共12个小题,36个评价点,每小题都给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请讲正确答案的标号填在下列表中相应的位置上)1.如图,下列四个几何体中,它们各自的三视图(主视图.左视图.俯视图)完全相同的几何体是()A.①②B.①④C.②③D.③④【考点】简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.【解答】解:①正方体的三视图分别为正方形,正方形,正方形,正确;②圆柱的三视图分别为四边形、四边形、圆,错误;③圆锥的三视图分别为三角形、三角形、圆,错误;④球的主视图、左视图、俯视图分别为三个全等的圆,正确;故选:B.【点评】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.2.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据两个非负数的和为0,求出sinA=,tanB=1,由特殊角的三角函数值求出∠A,∠B 的度数,再根据三角形的内角和定理即可求出∠C的值.【解答】解:∵△ABC中,|sinA﹣|+(1﹣tanB)2=0,∴sinA=,tanB=1.∴∠A=60°,∠B=45°.∴∠C=180°﹣60°﹣45°=75°.故选C.【点评】本题考查了特殊角的三角函数值和三角形内角和定理.3.已知反比例函数y=,下列结论中不正确的是()A.图象必经过点(1,﹣5)B.y随x的增大而增大C.图象在第二、四象限内 D.若x>1,则﹣5<y<0【考点】反比例函数的性质.【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k,可以判断出A的正误;根据反比例函数的性质:k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大可判断出B、C、D的正误.【解答】解:A、反比例函数y=,所过的点的横纵坐标之积=﹣5,此结论正确,故此选项不符合题意;B、反比例函数y=,在每一象限内y随x的增大而增大,此结论不正确,故此选项符合题意;C、反比例函数y=,图象在第二、四象限内,此结论正确,故此选项不合题意;D、反比例函数y=,当x>1时图象在第四象限,y随x的增大而增大,故x>1时﹣5<y<0;故选:B.【点评】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4.二次函数y=x2﹣2x+c的部分图象如图所示.那么方程x2﹣2x+c=0的根是()A.﹣3,1 B.﹣3,2 C.﹣2,3 D.﹣1,3【考点】二次函数的图象;根与系数的关系.【专题】计算题.【分析】由图象可知,抛物线过点(0,﹣3),将点(0,﹣3)代入y=x2﹣2x+c中,求c,令y=0,求方程的根.【解答】解:依题意,抛物线过点(0,﹣3),将点(0,﹣3)代入y=x2﹣2x+c中,得c=﹣3,∴y=x2﹣2x﹣3,令y=0,即x2﹣2x﹣3=0,解得x1=﹣1,x2=3.故选D.【点评】本题考查了二次函数图象上的点的坐标与二次函数解析式的关系,二次函数解析式的运用.关键是根据抛物线经过的点的坐标求解析式.5.一个圆锥的主视图是边长为4的等边三角形,这个这个圆锥的侧面积为()A.(4+4)πB.(8+4)πC.12πD.8π【考点】圆锥的计算.【分析】根据视图的意义得到圆锥的母线长为4,底面圆的半径为2,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:根据题意得圆锥的母线长为4,底面圆的半径为2,所以这个圆锥的侧面积=×4×2π×2=8π(cm2).故选D.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.下列投影一定不会改变△ABC的形状和大小的是()A.中心投影B.平行投影C.正投影D.当△ABC平行投影面时的平行投影【考点】平行投影;中心投影.【分析】根据正投影、平行投影、中心投影的定义即可得答案.【解答】解:一定不会改变△ABC的形状和大小的是当△ABC平行投影面时的平行投影,故选:D.【点评】此题主要考查了投影,关键是掌握中心投影、平行投影、正投影的区别.7.要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位【考点】二次函数图象与几何变换.【分析】原抛物线顶点坐标为(﹣1,2),平移后抛物线顶点坐标为(0,0),由此确定平移规律.【解答】解:y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(﹣1,2),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2+2x+3向右移1个单位,再向下平移2个单位.故选:D.【点评】本题考查了二次函数图象与几何变换.关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.8.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)【考点】切线的性质;坐标与图形性质;勾股定理;垂径定理.【专题】压轴题;网格型.【分析】根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F 点的位置即可.【解答】解:连接AC,作AC,AB的垂直平分线,交格点于点O′,则点O′就是所在圆的圆心,∴三点组成的圆的圆心为:O′(2,0),∵只有∠O′BD+∠EBF=90°时,BF与圆相切,∴当△BO′D≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选:C.【点评】此题主要考查了切线的性质以及垂径定理和坐标与图形的性质,得出△BOD≌△FBE时,EF=BD=2,即得出F点的坐标是解决问题的关键.9.如图,在平地MN上用一块10m长的木板AB搭了一个斜坡,两根支柱AC=7.5m,AD=6m,其中AC⊥AB,AD⊥MN,则斜坡AB的坡度是()A .3:5B .4:5C .3:4D .4:3【考点】解直角三角形的应用-坡度坡角问题.【分析】首先利用勾股定理得出BD 的长,再利用坡度的定义得出答案.【解答】解:由题意可得:AB=10m ,AD=6m ,则BD==8(m ),故斜坡AB 的坡度是:AD :BD=6:8=3:4.故选:C .【点评】此题主要考查了坡度与坡角问题,正确把握坡角的定义是解题关键.10.如图,AB 和CD 是⊙O 的两条直径,弦BE ∥CD ,若∠BAC=30°,则的值是( )A .B .2C .D .【考点】相似三角形的判定与性质;圆周角定理.【分析】连接AE ,根据等腰三角形的性质得到∠C=∠A=30°,由三角形的外角的性质得到∠BOC=60°,根据平行线的性质得到∠B=60°,根据三角函数的定义即可得到结论.【解答】解:连接AE ,∵OA=OC ,∴∠C=∠A=30°,∴∠BOC=60°,∵BE ∥CD ,∴∠B=∠BOC=60°,∵AB 是⊙O 的直径,∴∠AEB=90°,∴=cos ∠B=.故选A .【点评】本题考查了圆周角定理,平行线的性质,等腰三角形的性质,正确的识别图形是解题的关键.11.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12【考点】反比例函数图象上点的坐标特征.【分析】过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF是矩形,得出S矩形AFOD =3,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.【解答】解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD ,∴DE=2OD ,∴S 矩形OEBF =3S 矩形AFOD =9,∴k=9,故选B .【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.12.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论:①a ,b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=﹣2时,x 的值只能取2; ⑤当﹣1<x <5时,y <0.其中正确的有( )A .2个B .3个C .4个D .5个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵抛物线的开口方向向上,∴a >0,∵对称轴为x==2>0,又∵a >0,∴b<0,即a,b异号,错误;②∵x=1和x=3关于x=2对称,∴当x=1和x=3时,函数值相等,正确;③∵x==2,∴b=﹣4a,即4a+b=0,正确;④∵y=﹣2正好为抛物线顶点坐标的纵坐标,∴当y=﹣2时,x的值只能取2,正确;⑤∵对称轴为x=2,∴x=﹣1和x=5关于x=2对称,故当﹣1<x<5时,y<0.∴②、③、④、⑤正确.故选C.【点评】考查二次函数y=ax2+bx+c系数符号的确定.二、填空题(本题共6个小题,18个评价点,只要求填写最后结果)13.若函数y=4x与y=的图象有一个交点是(,2),则另一个交点坐标是(﹣,﹣2).【考点】反比例函数图象的对称性.【专题】计算题.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:正比例函数y=4x与反比例函数y=的图象均关于原点对称,则其交点也关于原点对称,那么(,2)关于原点的对称点为:(﹣,﹣2).故答案为:(﹣,﹣2).【点评】本题考查反比例函数图象的中心对称性,较为简单,容易掌握.14.圆锥的底面半径为5,侧面积为60π,则其侧面展开图的圆心角等于150°.【考点】圆锥的计算.【分析】根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【解答】解:设圆锥的侧面展开图的圆心角为n°,母线长为R,根据题意得•2π•5•R=60π,解得R=12,所以=2•5π,解得n=150,即圆锥的侧面展开图的圆心角为150°.故答案为:150°.【点评】本题考查了圆锥的计算:锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:若A(m,y1),B(m﹣2,y2)两点都在该函数的图象上,当m=3时,y1=y2.【考点】二次函数图象上点的坐标特征.【分析】根据表中的对应值可得x=1和x=3时函数值相等,则得到抛物线的对称轴为直线x=2,由于y1=y2,所以A(m,y1),B(m﹣2,y2)是抛物线上的对称点,则2﹣(m﹣2)=m﹣2,然后解方程即可.【解答】解:∵x=1时,y=2;x=3时,y=2,∴抛物线的对称轴为直线x=2,∵A(m,y1),B(m﹣2,y2)两点都在该函数的图象上,且y1=y2,∴2﹣(m﹣2)=m﹣2,解得m=3.故答案为:3【点评】本题考查了二次函数图象上点的坐标特征,抛物线y=ax2+bx+c(a≠0)关于对称轴x=﹣成轴对称,所以抛物线上的点关于其对称轴对称,且都满足函数关系式.16.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=.【考点】锐角三角函数的定义;圆周角定理.【分析】连接BC,根据同弧所对的圆周角相等得到∠D=∠A,在直角三角形ABC中,根据余弦的定义即可得到结果.【解答】解:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为:.【点评】本题考查了圆周角定理,解直角三角形,连接BC构造直角三角形是解题的关键.17.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是2cm.【考点】正多边形和圆.【专题】计算题.【分析】a的值等于正六边形的边心距的2倍,过正六边形的中心作边的垂线,连接OA,在直角△OAB 中,利用三角函数求得边心距OB即可求解.【解答】解:过正六边形的中心作边的垂线,连接OA.则∠O=30°,AB=1∴OB==cm.∴a=2OB=2cm.故答案是:2cm.【点评】正多边形的计算基本思路是转化为解直角三角形.18.如图,抛物线y=ax2﹣2与y轴交于点A,过点A与x轴平行的直线交抛物线y=﹣x2于点B,C,则S△BOC=4.【考点】抛物线与x轴的交点.【分析】根据抛物线与y轴相交,求出点A的坐标,令y=﹣2时,求出点B,C的坐标,根据三角形的面积公式即可解答.【解答】解:∵抛物线y=ax2﹣2与y轴交于点A,∴点A(0,﹣2),令y=﹣2,得:﹣x2=﹣2,解得:x1=2,x2=﹣2,当y=0时,﹣x2=0,解得:x1=x2=0,∴点O(0,0),∴点B(﹣2,﹣2),点C(2,﹣2),∴S△BOC=.故答案为:4.【点评】本题主要考查抛物线与x轴的交点,熟记相关的公式,与x轴相交即y=0,是解决此题的关键.三、解答题(本题共7个小题,66个评价点,要求写出必要的文字说明、证明过程或演算步骤)19.计算:2cos60°﹣4sin245+3tan30°.【考点】特殊角的三角函数值.【分析】把特殊角的三角函数值代入原式,再分别进行计算,把所得的结果合并即可.【解答】解:2cos60°﹣4sin245+3tan30°=2×﹣4×()2+3×=1﹣2+3=2.【点评】本题考查了特殊角的三角函数值,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值.20.如图,AD为△ABC的外接圆O的直径,AE⊥BC于E.求证:∠BAD=∠EAC.【考点】圆周角定理.【分析】因为AD是△ABC的外接圆直径,所以∠ABD=90°,根据∠BAD+∠D=90°,∠AEC=90°,可知∠D=∠ACB,所以∠BAD=∠CAE.【解答】证明:连接BD,∵AD是△ABC的外接圆直径,∴∠ABD=90°.∴∠BAD+∠D=90°.∵AE是△ABC的高,∴∠AEC=90°.∴∠CAE+∠ACB=90°.∵∠D=∠ACB,∴∠BAD=∠EAC.【点评】此题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.21.如图,小明要测量河内小岛B到河边公路AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=50米,求小岛B到公路AD的距离.【考点】解直角三角形的应用.【分析】利用三角形外角的性质得出∠ABC=30°,进而得出BC=AC的长,再利用锐角三角函数关系得出BE的长,即可得出答案.【解答】解:过B作BE⊥AD于E∵∠BAD=30°,∠BCE=60°,∴∠ABC=30°.∴∠ABC=∠BAD=30°.∴BC=AC=50(米).在Rt△BCE中,sin∠BCD==.解得:BE=25(米).答:小岛B到公路AD的距离是25米.【点评】此题主要考查了解直角三角形的应用,根据题意得出BC=AC是解题关键.22.如图,身高1.6米的小明从距路灯的底部(点O)20米的点A沿AO方向行走14米到点C处,小明在A处,头顶B在路灯投影下形成的影子在M处.(1)已知灯杆垂直于路面,试标出路灯P的位置和小明在C处,头顶D在路灯投影下形成的影子N的位置.(2)若路灯(点P)距地面8米,小明从A到C时,身影的长度是变长了还是变短了?变长或变短了多少米?【考点】中心投影.【分析】(1)连接MB并延长,与过点O作的垂直与路面的直线相交于点P,连接PD并延长交路面于点N,点P、点N即为所求;(2)利用相似三角形对应边成比例列式求出AM、CN,然后相减即可得解.【解答】解:(1)如图(2)设在A处时影长AM为x米,在C处时影长CN为y米由,解得x=5,由,解得y=1.5,∴x﹣y=5﹣1.5=3.5∴变短了,变短了3.5米.【点评】本题考查了中心投影以及相似三角形的应用,读懂题目信息,列出两个影长的表达式是解题的关键.23.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点.(1)求反比例函数与一次函数的解析式;(2)求反比例函数与一次函数的另一个交点M的坐标;(3)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)先根据A点和B点坐标得到正方形的边长,则BC=3,于是可得到C(3,﹣2),然后利用待定系数法求反比例函数与一次函数的解析式;(2)通过解关于反比例函数解析式与一次函数的解析式所组成的方程组可得到M点的坐标;(3)根据函数的图象结合交点即可求得.【解答】解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴Bc=3,∴C(3,﹣2),把C(3,﹣2)代入y=得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣,把C(3,﹣2),A(0,1)代入y=ax+b得,解得,∴一次函数解析式为y=﹣x+1;(2)解方程组得或,∴M点的坐标为(﹣2,3);(3)∵一次函数的值与反比例函数的图象的两个交点是M(﹣2,3),C(3,﹣2),∴由图象可知,x的取值范围是x<﹣2或0<<3.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.24.如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.(1)判断BC、MD的位置关系,并说明理由;(2)若AE=16,BE=4,求线段CD的长;(3)若MD恰好经过圆心O,求∠D的度数.【考点】垂径定理;勾股定理;圆周角定理.【分析】(1)根据圆周角定理可得出∠M=∠D=∠C=∠CBM,由此即可得出结论;(2)先根据AE=16,BE=4得出OB的长,进而得出OE的长,连接OC,根据勾股定理得出CE的长,进而得出结论;(3)根据题意画出图形,根据圆周角定理可知,∠M=∠BOD,由∠M=∠D可知∠D=∠BOD,故可得出∠D的度数.【解答】解:(1)BC∥MD.理由:∵∠M=∠D,∠M=∠C,∠D=∠CBM,∴∠M=∠D=∠C=∠CBM,∴BC∥MD;(2)∵AE=16,BE=4,∴OB==10,∴OE=10﹣4=6,连接OC,∵CD⊥AB,∴CE=CD,在Rt△OCE中,∵OE2+CE2=OC2,即62+CE2=102,解得CE=8,∴CD=2CE=16;(3)如图2,∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=×90°=30°.【点评】本题考查的是垂径定理,熟知“平分弦的直径平分这条弦,并且平分弦所对的两条弧”是解答此题的关键.25.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?【考点】二次函数的应用.【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.(2)根据想获得4000元的利润,列出方程求解即可;(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得,解得.故y与x的函数关系式为y=﹣x+150;(2)根据题意得(﹣x+150)(x﹣20)=4000,解得x1=70,x2=100>90(不合题意,舍去).故该批发商若想获得4000元的利润,应将售价定为70元;(3)w与x的函数关系式为:w=(﹣x+150)(x﹣20)=﹣x2+170x﹣3000=﹣(x﹣85)2+4225,∵﹣1<0,∴当x=85时,w值最大,w最大值是4225.∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元.【点评】本题考查二次函数的应用,难度较大,解答本题的关键是根据题意列出方程,另外要注意掌握二次函数的最值的求法.26.如图,在平面直角坐标系中,⊙D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.(1)求圆的半径和点D的坐标;(2)点A的坐标是(2,0),点B的坐标是(8,0),sin∠ACB;(3)求经过C、A、B三点的抛物线解析式;(3)设抛物线的顶点为F,证明直线FA与⊙D相切.【考点】圆的综合题;待定系数法求二次函数解析式;勾股定理;勾股定理的逆定理.【专题】综合题.【分析】(1)过点D作DE⊥AB于E,连接DC、AD,如图1,根据垂径定理可得AE=EB=3,根据切线的性质可得DC⊥y轴,易证四边形OCDE是矩形,在Rt△ADE中运用勾股定理就可解决问题;(2)过点D作DE⊥AB于E,连接DB、AD,如图2,只需求出OA、OB就可求出点A、B的坐标,易证∠ADE=∠ACB,只需求出sin∠ADE就可解决问题;(3)只需运用待定系数法就可解决问题;(4)易得DF垂直平分AB,要证直线FA与⊙D相切,只需证∠DAF=90°,只需运用勾股定理的逆定理就可解决问题.【解答】解:(1)过点D作DE⊥AB于E,连接DC、AD,如图1,则AE=EB=AB=3,DC⊥y轴,∴∠DCO=∠COE=∠DEO=90°,∴四边形OCDE是矩形,∴OE=CD,DE=OC=4.在Rt△ADE中,AD===5,∴OE=CD=AD=5,∴圆的半径为5,点D的坐标为(5,4);(2)过点D作DE⊥AB于E,连接DB、AD,如图2,∵OE=5,AE=EB=3,∴OA=5﹣3=2,OB=5+3=8.∵DA=DB,∴∠ADE=∠BDE=∠ADB=∠ACB,∴sin∠ACB=sin∠ADE==.故答案分别为:(2,0),(8,0),;(3)设抛物线的解析式为y=ax2+bx+c,∵A(2,0),B(8,0),C(0,4)在抛物线y=ax2+bx+c上,∴,解得.∴抛物线的解析式为y=x2﹣x+4;(4)连接DA,DF,如图3,∵D、F都在线段AB的垂直平分线上,∴DF垂直平分AB.由y=x2﹣x+4=(x﹣5)2﹣可得F(5,﹣),∵DF=4+=,AF==,∴DA2+AF2=52+()2==()2=DF2,∴∠DAF=90°,∴FA与⊙D相切.【点评】本题主要考查了运用待定系数法求抛物线的解析式、垂径定理、切线的性质、勾股定理及其逆定理、圆周角定理、等腰三角形的性质、三角函数等知识,将求sin∠ACB转化为求sin∠ADE 是解决第(2)小题的关键,运用勾股定理的逆定理是解决第(4)小题的关键.。
最新鲁教版五四制九级数学上学期期末模拟检测题及解析.doc
鲁教版五四制九年级数学上学期期末复习检测题(时间:120分钟,满分:120分)一、 选择题(每小题3分,共36分)1.在Rt △ABC 中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A.sin A=B.tan A=C.cos B=D.tan B=2. 将二次三项式配方后得( ) A.C.D.3. 一个物体的主视图如图,则它的俯视图可能是( )A B C D4. 身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是( )同学A.甲B.乙C.丙D.丁5. 如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子( ) A.越大 B.越小 C.不变 D.无法确定第3题图6. 如图,两条宽度均为的公路相交成角,这两条公路在相交处的公共部分(阴影部分)的面积是( )A.B.C. D.7. 关于的二次函数,下列说法正确的是( )A.图象的开口向上B.图象的顶点坐标是(-1,2)C.当时,随的增大而减小D.图象与轴的交点坐标为(0,2)8. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( ) A.6 B.8 C.12 D.249. 如图是一个正六棱柱,它的俯视图是( )10.由二次函数,可知( )A.其图象的开口向下B.其图象的对称轴为直线ACBD第5题图第6题图第8题图第9题图C.其最小值为1D.当时,随的增大而增大11. 如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )12. 如图,在矩形ABCD 中,AB=4,AD=2,动点M 自点A 出发沿A →B 的方向,以每秒1cm 的速度运动,同时动点N 自点A 出发沿A →D →C 的方向以每秒2cm 的速度运动,当点N 到达点C 时,两点同时停止运动,设运动时间为(秒),△AMN 的面积为y (cm2),则下列图象中能反映与之间的函数关系的是( )二、填空题(每小题3分,共24分)13. 把抛物线写成的形式为 .14. 如图,飞机A 在目标B 的正上方3 000米处,飞行员测得地面目标C 的俯角∠DAC=30°,则地面目标BC 的长是米.ADCBABCD第12题图15.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:),计算出这个立体图形的表面积是.16. 抛物线 =与直线=1,=2,=1, =2组成的正方形有公共点,则的取值范围是.17. 把抛物线的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为,则的值为.18. 如图,小明在A 时测得某树的影长为2 ,B 时又测得该树的影长为8 ,若两次日照的光线互相垂直,则树的高度为.19. 在同一平面内下列4个函数:①②;③;④的图象不可能由函数的图象通过平移变换得到的函数是. 20. 把抛物线向下平移2个单位,得到的抛物线与轴的交点坐标为.三、解答题(共60分)21.(6分) 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB 的长为12米,调整后的楼梯所占地面CD 有多长?(结果精第14题图第15题图第18题图确到0.1米;参考数据:sin 25°≈0.42,cos 25°≈0.91,tan 25°≈0.47)22. (6分)小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长.(两个三角板分别是等腰直角三角形和含30°的直角三角形) 若已知CD=2,求AC 的长.请你先阅读并完成解法一,然后利用锐角三角函数的知识写出与解法一不同的解法. 解法一:在Rt △BCD 中,∵ BD=CD=2,∴ 由勾股定理,得BC==在Rt △ABC 中,设AB=, ∵ ∠BCA=30°,∴ AC=2AB=2. 由勾股定理,得,即∵>0,解得 = .∴ AC= .第21题图第22题图23.(8分) 如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300 m ,求点M 到直线AB 的距离(精确到整数).24.(8分)如图,花丛中有一路灯杆AB ,在灯光下,小丽在D 点处的影长DE =3米,沿BD 方向行走到达G 点,DG =5米,这时小丽的影长GH =5米.如果小丽的身高为1.7米,求路灯杆AB 的高度.(精确到0.1米)25.(8分)八年级美术老师在课堂上进行立体模型素描教学时,把14个棱长为10的正方体摆成如图所示的形式,然后他把露出的表面都涂上不同的颜色,求被他涂上颜色部分的面积.第24题图第25题图第26题图26.(8分)作出图中立体图形的三视图.27.(8分)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O 点为原点,OM 所在直线为轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数解析式;(3)若要搭建一个矩形“支撑架”AD+DC+CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,这个“支撑架”总长的最大值是多少? 28.(8分)如图所示,抛物线经过原点O ,与轴交于另一点N ,直线与两坐标轴分别交于A 、D 两点,与抛物线交于B (1,3)、C (2,2)两点.(1)求直线与抛物线的解析式.(2)若抛物线在轴上方的部分有一动点P (,),求△PON 面积的最大值.(3)若动点P 保持(2)中的运动路线,问是否存在点P ,使得△POA 的面积等于△POD面积的?若存在,请求出点P 的坐标;若不存在,请说明理由.第27题图第28题图期末检测题参考答案1.D 解析:∵ 在Rt △ABC 中,∠ACB=90°,BC=1,AB=2, ∴ AC===,∴ sin A== ,tan A===,cosB==,tan B==.故选D .2.B 解析:∵,故选B .3.C 解析:从主视图可以看出中间两条线,左边是虚线,右边是实线.只有C 满足条件,故选C .4.D 解析:如图,甲中,AC=140 ,∠C=30°,AB=140×sin 30°=70 ; 乙中,DF=100,∠F=45°,DE=100×sin 45°=50≈70.71;丙中,GI=95 ,∠I=45°,GH=95×sin 45°=≈67.18 ;丁中,JL=90 ,∠L=60°,JK=90×sin 60°=45≈77.9 .可见JK 最大,故选D .5.A 解析:白炽灯向上移时,阴影会逐渐变小;相反当乒乓球越接第4题答图第6题答图近灯泡时,它在地面上的影子变大.故选A.6.A 解析:如图,的对边AC即为路宽,即sin =,即AB=,∴阴影的面积=×=.故选A.7.C 解析:∵这个函数的顶点是(1,2),∴函数的开口向下,对称轴是直线,∴在对称轴的左侧随的增大而增大,在对称轴的右侧随的增大而减小.故选.8.B 解析:主视图反映物体的长和高,左视图反映物体的宽和高,俯视图反映物体的长和宽.结合三者之间的关系从而确定主视图的长和高分别为4,2,所以面积为8,故选B.9.C 解析:从上面看可得到一个正六边形.故选C.10.C 解析:由二次函数,可知:A.∵,其图象的开口向上,故此选项错误;B.∵其图象的对称轴为直线,故此选项错误;C.其最小值为1,故此选项正确;D.当<3时,随的增大而减小,故此选项错误.故选C.11.C 解析:A.此半球的三视图分别为半圆弓形,半圆弓形,圆,不符合题意;B.圆柱的三视图分别为长方形,长方形,圆,不符合题意;C.球的三视图都是圆,符合题意;D.六棱柱的三视图不相同,不符合题意. 故选C .12.D 解析:在矩形ABCD 中,AB=4,AD=2 cm ,AD+DC=AB+AD=4+2=6 cm ,∵ 点M 以每秒1 cm 的速度运动,∴ 4÷1=4秒. ∵ 点N 以每秒2 cm 的速度运动,∴ 6÷2=3秒, ∴点N 先到达终点,运动时间为3秒.①点N 在AD 上运动时,=AM •AN=•2=(0≤≤1);②点N 在DC 上运动时, =AM •AD= •2=(1≤3),∴ 能反映与之间的函数关系的是选项D .故选D . 13. 解析:故答案是.14.3 000解析:根据题意可得BC=AB ÷tan 30°=3 000(米).15.200 解析:根据三视图可得:上面的长方体长4mm ,高4mm ,宽2mm ,下面的长方体底面两边长分别为6mm 、8mm ,高2mm ,∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2-4×2= 200(mm 2).故答案为200.16. 解析:如图,四条直线=1,=2, =1,=2围成正方形ABCD ,因为抛物线与正方形有公共点,所以可得>0,而且值越大,抛物线开口越小, 因此当抛物线分别过A (1,2),C (2,1)时,第16题答图分别取得最大值与最小值,代入计算得出:=2,=. 由此得出的取值范围是. 故填. 17. 解析:∵=,∴抛物线顶点坐标为(1,2), 依题意,得平移前抛物线顶点坐标为(-2,4),∵平移不改变二次项系数, ∴, 比较系数,得. 18.4 解析:根据题意,作△EFC,树高为CD ,且∠ECF=90°,ED=2,FD=8. 易得△∽△,有=,即, 代入数据可得,DC=4.故答案为4 m . 19.③④ 解析:二次项的系数不是2的函数有③④.故答案为③④. 20. 解析:由题意得原抛物线的顶点坐标为(2,-3),∴新抛物线的顶点坐标为(2,-5),第18题答图∴新抛物线的解析式为, ∴抛物线与轴交点坐标为 (0,-1).故答案为(0,-1). 21.解:由题意得,在Rt △ABC 中,∠ABC=30°,AB=12米,∴AC= ×12=6(米). 又∵ 在Rt △ACD 中,∠D=25°,=tanD ,∴ CD=≈12.8(米),答:调整后的楼梯所占地面CD 长约为12.8米.22.解:∵ BD=CD=2,BC==,∴ 设AB=,则AC=2,,∴ 2+8=4 2,∴ 3 2=8,∴ 2=,∴=,AC=2AB=. 故答案为,.第二种方法:在Rt △BCD 中,CD=2,∠DBC=45°,∴ BC===.在Rt △BAC 中,∠BCA=30°,∴ AC===.23.解:过点M 作AB 的垂线MN ,垂足为N .∵M 位于B 的北偏东45°方向上,∴∠MBN= 45°,BN=MN.又M 位于A 的北偏西30°方向上,∴∠MAN=60°,AN = .∵AB = 300,∴AN+NB = 300 .∴. MNA住宅小区M 45°30B 北第23题答图 N24. 解:如图所示,设AB 为,∵ CD ∥AB ,∴=,∴= ①同理== ②由①②得= ,∴ BD =. ∴= ,∴ ≈6.0.答:路灯杆AB 的高度约为6.0米.25.解:从前、后、左、右看该物体均为6个正方形,从上面看有9个正方形, 所以被涂上颜色部分的面积为 6×100×4+900=3 300.26.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.解:如图所示.27.解:(1)M(12,0),P(6,6).第24题答图°第26题答图(2)设此函数关系式为6)6(2+-=x a y .∵函数6)6(2+-=x a y 经过点(0,3), ∴6)60(32+-=a ,即121-=a . ∴此函数解析式为:31216)6(12122++-=+--=x x x y . (3)设A(,0),则B(12-,0), C )3121,12(2++--m m m ,D )3121,(2++-m m m . ∴“支撑架”总长AD+DC+CB= )3121()212()3121(22++-+-+++-m m m m m = 18612+-m . ∵此二次函数的图象开口向下,∴ 当时,AD+DC+CB 有最大值为18.28.分析:(1)把点B 、C 的坐标代入直线表达式解方程组即可得解,把点B 、C 、O 的坐标代入抛物线的解析式,解方程组求出的值,即可得到抛物线的解析式.(2)先根据抛物线的解析式求出点N 的坐标,再根据三角形的面积公式可知,点P 为抛物线的顶点时△PON 底边ON 上的高最大,面积最大,求出点P 的纵坐标,代入面积公式即可得解.(3)先求出点A 、D 的坐标,再设点P 的坐标为(,),根据三角形的面积公式列式得到关于的一元二次方程,然后求出方程的解,再根据点P 在轴的上方进行判断.解:(1)根据题意,得解得∴直线的解析式是.根据图象,抛物线经过点B(1,3)、C(2,2)、O(0,0),∴解得∴抛物线的解析式是=.(2)当时,,解得=0,=,∴点N的坐标是(,0). ∴点P的纵坐标越大,则△PON的面积越大,当点P是抛物线的顶点时,△PON的面积最大,此时==,=××=.(3)由(1)知直线的解析式是当=0时,=4,当=0时,-+4=0,解得=4,∴点A、D的坐标是A(0,4)、D(4,0).设点P的坐标是(,),则×4=××4×(),整理得=0,解得=0,=-2,此时点P不在轴的上方,不符合题意,∴不存在点P,使得△POA的面积等于△POD面积的.。
最新鲁教版五四制九级数学上册期末模拟检测题及解析.doc
鲁教版五四制九年级数学上学期期末复习检测题一.选择题(共20小题)1.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.(1)(3)(5)(7)2.cos60°的值等于()A.B.C. D.3.拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()A.15m B.20m C.10m D. 20m 4.函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.5.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C.D.6.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C. 2 D. 57.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>08.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y=﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3 9.用配方法求抛物线y=x2﹣4x+1的顶点坐标,配方后的结果是()A.y=(x﹣2)2﹣3 B.y=(x+2)2﹣3 C.y=(x﹣2)2﹣5 D. y=(x+2)2﹣510.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2 B.m≥5 C.m≥0 D. m>4(10)(13)(14)(15)11.下列图形中阴影部分的面积相等的是()A.②③B.③④C.①② D.①④12.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.13.如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥AC C.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形14.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D. 6次15.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D. 1﹣16.如图,是一个工件的三视图,则此工件的全面积是()A.60πcm2B.90πcm2C.96πcm2D. 120πcm2(16)(19)(20)17.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.④②③① D.④③②①18.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒19.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A. 30°B.25°C.20° D.15°20.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A. 5:4 B.5:2 C.:2 D.:二.填空题(共5小题)21.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为_________ .(21)(22)22.画出几何体的俯视图、左视图.23.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C= .24.抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c= .25.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为_________ .三.解答题(共5小题)26.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?27.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.28.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.29.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.30.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC 的中点,连接DE(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.参考答案一.选择题(共20小题)1.D.2.A.3.D.4.B.5.C.6.B.7.D.8.D.9.A.10.A.11.A.12.B.13.C.14.B.15.A.16.C.17.B.18.C.19.B.20.A.二.填空题(共5小题)21.8 .22.23.75°.24.0 25.0 .三.解答题(共5小题)26.解:(1),∴y=﹣4x+480;(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.27.解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).28.解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=﹣1或x=﹣2(不合题意舍去),故当N(﹣1,4)时,BM和NC互相垂直平分.(27)(28)(29)(30)29.(1)证明:连接OD,∵D是BC的中点,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AC;(2)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,精编复习资料∵DE⊥AC,∴∠ADC=∠DEC=∠AED=90°,∴∠ADE=∠DCE在△ADE和△CDE中,∴△CDE∽△DAE,∴,设tan∠ACB=x,CE=a,则DE=ax,AC=3ax,AE=3ax﹣a,∴,整理得:x2﹣3x+1=0,解得:x=,∴tan∠ACB=.30.(1)证明:连接OD,OE,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=CE,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.。
2019-2020年新鲁教版五四制九年级数学上册期末模拟检测题及解析
鲁教版五四制九年级数学上学期期末复习检测题一.选择题(共20小题)1.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.(1)(3)(5)(7)2.cos60°的值等于()A.B.C. D.3.拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()A.15m B.20m C.10m D. 20m 4.函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.5.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n 与反比例函数y=的图象可能是()A.B.C.D.6.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C. 2 D. 57.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>08.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y=﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D. y=﹣2(x﹣1)2+39.用配方法求抛物线y=x2﹣4x+1的顶点坐标,配方后的结果是()A.y=(x﹣2)2﹣3 B.y=(x+2)2﹣3 C.y=(x﹣2)2﹣5 D.y=(x+2)2﹣510.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2 B.m≥5C.m≥0D. m >4(10)(13)(14)(15)11.下列图形中阴影部分的面积相等的是()A.②③B.③④C.①②D.①④12.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.13.如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形14.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB 于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次 D. 6次15.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D. 1﹣16.如图,是一个工件的三视图,则此工件的全面积是()A.60πcm2B.90πcm2C.96πcm2D.120πcm2(16)(19)(20)17.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.④②③①D.④③②①18.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒19.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20° D.15°20.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:二.填空题(共5小题)21.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为_________ .(21)(22)22.画出几何体的俯视图、左视图.23.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=.24.抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c= .25.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为_________ .三.解答题(共5小题)26.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?27.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.28.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.29.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.30.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.参考答案一.选择题(共20小题)1.D.2.A.3.D.4.B.5.C.6.B.7.D.8.D.9.A.10.A.11.A.12.B.13.C.14.B.15.A.16.C.17.B.18.C.19.B.20.A.二.填空题(共5小题)21.8 .22.23.75°.24.0 25.0 .三.解答题(共5小题)26.解:(1),∴y=﹣4x+480;(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.27.解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).28.解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=﹣1或x=﹣2(不合题意舍去),故当N(﹣1,4)时,BM和NC互相垂直平分.(27)(28)(29)(30)~初中数学期末专题~29.(1)证明:连接OD,∵D是BC的中点,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AC;(2)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AC,∴∠ADC=∠DEC=∠AED=90°,∴∠ADE=∠DCE在△ADE和△CDE 中,∴△CDE∽△DAE ,∴,设tan∠ACB=x,CE=a,则DE=ax,AC=3ax,AE=3ax﹣a,∴,整理得:x2﹣3x+1=0,解得:x=,∴tan∠ACB=.30.(1)证明:连接OD,OE,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE 中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=CE,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.@三人行,必有我师!@。
五四制鲁教版初三第一学期期末模拟题
初三数学第一学期期末模拟测试题一.选择题 1. 使分式1212-+x x 无意义的x 的值是( )A 21-=x B 21=x C 21-≠x D 21≠x 2、下列多项式中,不能用公式法因式分解的是( )A 22b a +- B 2222n mn m ++ C 2244y xy x ++ D 2216121y xy x +- 3、已知21)2)(1(33-++=-+-x Bx A x x x ,则实数A,B 分别为( ) A 1,2- B 1,2- C 1,2-- D 1,24、如图所示,在△ABC 中,∠CAB=700,在同一平面内,将△ABC 绕点A 旋转到△AB ‘C ’的位置,使得CC ‘∥AB ,则∠BAB ’等于( )A 300B 350C 400D 505、如图所示,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可以是( ) A 300 B 600 C 720 D 9006、如果数据a,b,c 的中位数与众数都是5,平均数是4,那么a 可以是( )A 2 B 3 C 4 D 67、下列图形中,既是轴对称图形又是中心对称图形的是( )8、已知点A(2,0),点B(21-,0),点C(0,1),以A,B,C 三点为顶点画平行四边形,则第四个顶点不可能在( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 9、如图,将△ABC 绕着顶点A 逆时针旋转了700后,得到△AB ‘C ’,若∠B+∠C=1300,则∠C AB ’的度数是( )A 200 B 500 C 600 D 70010、如图,□ABCD 的对角线AC,BD 相交于点O ,点E,F 分别是线段AO,BO 的中点,若AC+BD=24cm ,△OAB 的周长是18cm ,则EF 的长为( )A 6cm B 4cm C 3cm D 2cm 11、已知,如图,点A (4-,0),B (1-,0),将线段AB 平移后得到线段CD ,点A 的对应点C 恰好落在y 轴上,且四边形ABDC 的面积为9,则四边形ABDC 的周长是( ) A 14 B 16 C 18 D 2012、如图所示,△DEF 的顶点分别是△ABC 各边的中点,△GHI 的顶点分别是△DEF 各边的中点,┅依次做下去,记△ABC 的周长为P 1,△DEF 的周长为P 2,△GHI 的周长为P 3,已知P 1=1,则Pn 等于( )A121-n Bn 21 C 121+n D 221+n 二、填空题。
鲁教版五四制初中数学九年级上册期末考试题4
第一学期期末学业水平检测初 四 数 学 试 题一、选择题(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题纸的相应位置上).1. 一司机驾驶汽车从甲地去乙地,他以平均80千米/时的速度用了4小时到达乙地,当他按原路匀速返回时,汽车的速度v (千米/时)与时间t (小时)的函数关系是A .=320v tB. 320=v t C. =20v t D. 20=v t2.在ABC 中,∠=90C °,=5AB ,=3BC ,则sin B 的值是A. 34B. 43C. 35D. 453.抛物线2=-2+1y x 的对称轴是A. 直线=1yB. x 轴C. y 轴D. 直线=2x4. 如图,在O 中,∠=80BOC °,则∠A 等于A. 50°B. 20°C. 30°D. 40°5.如图所示的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是A.B.C. D.6.在反比例函数 的图象上有两点 ,,则1y 、2y的大小关系是A. 12<y yB. 12=y yC. 12>y yD. 不能确定7.抛物线 2=2-22+1y x x 与坐标轴的交点个数是A. 0B. 1C. 2D. 38. 如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边形的边心距OM 为A. 2B. 23C.3 D. 19.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm .若纸扇两面贴纸,则贴纸的面积为 ( )A. 2150cm π B. 2175cm πC. 2350cm π D.28003cm π第8题图 第9题图10.赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为21=-25y x ,当水面离桥拱顶的高度DO 是2m 时,这时水面宽度AB 为A. -10mB. -52mC. 52mD. 102m11.如图,坐标平面上,二次函数2=-+4-y x x k 的图形与x 轴交于A ,B 两点,与y 轴交于C 点,其顶点为D ,且>0k .若ABC ∆与ABD ∆的面积比为1:4,则k 值为何A. 1B.12 C. 43D.4512. 如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网 格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正弦值是A.255 B. 32 C. 322D. 2105第11题图 第12题图二、填空题(本题共5小题,请将结果填在答题纸指定位置) 13. 若3cos =α,则锐角α为 度. 14.已知一个函数的图象与反比例函数3=y x的图象关于y 轴对称,则这个函数的表达式是 .15.某产品每件成本10元,试销阶段每件产品的销售单价x (元/件)与日销售量y (件)之间的关系如下表.按照这样的规律可得,日销售利润w (元)与销售单价x (元/件)之间的函数关系式是.16. 如图,已知圆锥的高AO 为8cm ,底面圆的直径BC 长为12cm ,则此圆锥的侧面展开图的圆心角为 度.17.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是 .第16题图 第17题图三、解答题(本大题共7小题,请将解答及证明过程写在答题纸指定位置.) 18.如图,一次函数y =x +b 的图象与反比例函数xky (k 为常数,k ≠0)的图象交于点A (﹣1,4)和点B (a ,1).(1)求反比例函数的表达式 (2)求a ,b 的值;(3)若A ,O 两点关于直线l 对称,请连接AO ,求出直线l 与线段AO 的交点坐标.第18题19. 已知抛物线2=++y ax bx c ,如图所示,直线=-1x 是其对称轴.(1)确定2-4,,,=a b c b ac 的符号; (2)求证:-+>0a b c(3)当x 取何值时,>0y ;当x 取何值时,<0y .20. 如图,边长为acm 的正方体其上、下底面的对角线AC 、11AC 与平面H 垂直,观察图中的投影并回答以下问题:(1)正方体在平面H 上的正投影是 ;(2)面11AA B B 在平面H 上的正投影是 ; (3 面ABCD 在平面H 上的正投影是 .21. 如图,在大楼AB 的正前方有一斜坡CD ,CD =4米,坡角∠DCE =30°,小红在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A 、C 、E 在同一直线上. (1)求斜坡CD 的高度DE ;(2)求大楼AB 的高度(结果保留根号)第22题22. 如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A ,C 重合),过点P 作PE ⊥AB ,垂足为E ,射线EP 交弧AC 于点F ,交过点C 的切线于点D .(1)求证:DC =DP ;(2)若∠CAB =30°,当F 是弧AC 的中点时,判断以A ,O ,C ,F 为顶点的四边形是什么特殊四边形?说明理由.23.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点. (1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为1x ,2x ,且它们的倒数之和是32-,求k 的值.24. 如图,半圆O 的直径AB =4,以长为2的弦PQ 为直径,向点O 方向作半圆M ,其中P 点在弧AQ 上且不.与A 点重合,但Q 点可与B 点重合. (1)弧AP 的长与弧QB 的长之和为定值l ,请直接写出l 的值;(2)请直接写出点M 与AB 的最大距离,此时点P ,A 间的距离;点M 与AB 的最小距离,此时半圆M 的弧与AB 所围成的封闭图形面积.(3)当半圆M 与AB 相切时,求弧AP 的长. (注:结果保留π,cos 35°=6,cos 55°=3)第一学期期末学业水平检测初 四 数 学 试 题 答 案一、 选择题(每题4分,共48分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDCDCACBCDDA二、填空题(每题4分,共20分)13. 30; 14.3=-y x ; 15. 2=-10+500-4000W x x ; 16. 216; 17. 3-26π.三、解答题(共52分) 18.(本题满分6分)解:(1)∵点A (﹣1,4)在反比例函数xky =(k 为常数,k ≠0)的图象上, ∴k =﹣1×4=﹣4, ……1分 ∴反比例函数的解析式为xy 4-=.……2分 把点A (﹣1,4)、B (a ,1)分别代入y =x +b 中,得:⎩⎨⎧+=+-=b a b114, ………………3分解得:⎩⎨⎧=-=54b a . ………………4分(2)连接AO ,设线段AO 与直线l 相交于点M .∵A ,O 两点关于直线l 对称,∴点M 为线段OA 的中点,…………… ……5分 ∵点A (﹣1,4),O (0,0),∴点M 的坐标为(21-,2). …………6分 ∴直线l 与线段AO 的交点坐标为(12,2).第19题19. (本题满分7分)解:(1)<0a ,<0b ,>0c ,2-4>0=b ac …………4分 (2)∵抛物线的顶点在x 轴的上方,对称轴是=-1x ∴当=-1x 时,=-+>0y a b c …………5分(3)当3<<1-x 时,>0y …………6分;当<-3x 或>1x 时,<0y ………7分 20.(本题满分6分)解:(1)矩形MNPQ ……2分;(2)矩形MNFE ……2分;(2)线段MQ ……2分. 21.(本题满分8分,答案不唯一,方法仅供参考)解:(1)在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°, ∴DE =21DC =2米; ……………………2分 (2)过D 作DF ⊥AB ,交AB 于点F ,∵∠BFD =90°,∠BDF =45°, ∴∠DBF =45°,即△BFD 为等腰直角三角形……………………3分设AC =x 米,∵四边形DEAF 为矩形,∴AE =(x+2)米………………4分 在Rt △ABC 中,∠ABC =30°,∴BC =2x ,AB=3x ………………5分 在Rt △DCE 中,EC =224-2=23∵ BF =DF =AE =23+x , BF =AB -AF =3x -2………6分 ∴ 23+x =3x -2解得:=4+23x ……………7分则AB =3x =(6+43)米……………………8分22.(本题满分8分)(1)连接BC ,OC , ………………1分∵AB 是⊙O 的直径, ∴∠ACB =90°, ∴∠OAC+∠B =90°,∵CD 为切线,∴∠OCD =90°,第22题∴∠OCA+∠ACD=90°,…………2分∵∠OCA=∠OAC,∴∠B=∠ACD,∵PE⊥AB,∴∠APE=∠DPC=∠B,…………3分∴∠DPC=∠ACD,∴DP=DC. ………………4分(2)四边形AOCF是菱形.………………5分理由如下:∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,………………6分连接OF,AF,∵F是弧AC的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,………………7分∴四边形AOCF为菱形.…………8分23.(本题满分8分)解:(1)∵二次函数y=x2-(2k-1)x+k2+1的图象与x轴有两交点,∴当y=0时,x2-(2k-1)x+k2+1=0有两个不相等的实数根.…………………1分∴△=b2-4ac=[-(2k-1)]2-4×1×(k2+1)>0.…………………3分解得k<-34;……………………………4分(2)当y=0时,x2-(2k-1)x+k2+1=0.则x1+x2=2k-1,x1•x2=k2+1,…………………5分∵===32 -,…………………6分解得:k=-1或k=13-(舍去),…………………7分∴k=﹣1 ……………………………8分第22题24.(本题满分9分)(1)34π……………………1分 (2)3,2,23,436-π; ……………………5分 (3)半圆M 与AB 相切,分两种情况:①如图1,半圆M 与AO 切于点T 时,连结PO ,MO ,TM .则MT ⊥AO ,OM ⊥PQ , 在Rt △POM 中,sin ∠POM =21,∴∠POM =30° ……………………6分 在Rt △TOM 中,TO =2,∴cos ∠AOM =36,即∠AOM =35°………7分 ∴∠POA =35°-30°=5°.∴弧AP 的长=18π……………………8分 ②如图2,半圆M 与BO 切于点S 时,连结PO ,MO ,SM .根据圆的对称性,同理得弧BQ 的长为18π,得弧AP 的长为1823π. 综上,弧AP 的长为18π或1823π……………………9分。
最新鲁教版五四制九年级数学上册期末模拟检测题及解析(精品试卷)
鲁教版五四制九年级数学上学期期末复习检测题一.选择题(共20小题)1.如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是()A.B.C.D.(1)(3)(5)(7)2.cos60°的值等于()A.B.C. D.3.拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()A.15m B.20m C.10m D. 20m 4.函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.5.已知函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B.C.D.6.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C. 2 D. 57.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>08.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y=﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3 9.用配方法求抛物线y=x2﹣4x+1的顶点坐标,配方后的结果是()A.y=(x﹣2)2﹣3 B.y=(x+2)2﹣3 C.y=(x﹣2)2﹣5 D. y=(x+2)2﹣510.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()A.m≥﹣2 B.m≥5 C.m≥0 D. m>4(10)(13)(14)(15)11.下列图形中阴影部分的面积相等的是()A.②③B.③④C.①② D.①④12.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.13.如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥AC C.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形14.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D. 6次15.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D. 1﹣16.如图,是一个工件的三视图,则此工件的全面积是()A.60πcm2B.90πcm2C.96πcm2D. 120πcm2(16)(19)(20)17.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.④②③① D.④③②①18.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的()A.第9.5秒B.第10秒C.第10.5秒D.第11秒19.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A. 30°B.25°C.20° D.15°20.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A. 5:4 B.5:2 C.:2 D.:二.填空题(共5小题)21.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为_________ .(21)(22)22.画出几何体的俯视图、左视图.23.在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C= .24.抛物线y=ax2+bx+c经过点A(﹣3,0),对称轴是直线x=﹣1,则a+b+c= .25.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为_________ .三.解答题(共5小题)26.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?27.甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离;(2)甲轮船后来的速度.28.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.29.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若AB=3DE,求tan∠ACB的值.30.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC 的中点,连接DE(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.参考答案一.选择题(共20小题)1.D.2.A.3.D.4.B.5.C.6.B.7.D.8.D.9.A.10.A.11.A.12.B.13.C.14.B.15.A.16.C.17.B.18.C.19.B.20.A.二.填空题(共5小题)21.8 .22.23.75°.24.0 25.0 .三.解答题(共5小题)26.解:(1),∴y=﹣4x+480;(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.27.解:(1)作BD⊥AC于点D,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=15海里,在Rt△BCD中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=15海里,∴AC=AD+CD=15+15海里,即A、C间的距离为(15+15)海里.(2)∵AC=15+15(海里),轮船乙从A到C的时间为=+1,由B到C的时间为+1﹣1=,∵BC=15海里,∴轮船甲从B到C的速度为=5(海里/小时).28.解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=﹣1或x=﹣2(不合题意舍去),故当N(﹣1,4)时,BM和NC互相垂直平分.(27)(28)(29)(30)29.(1)证明:连接OD,∵D是BC的中点,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AC;(2)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,精编复习资料∵DE⊥AC,∴∠ADC=∠DEC=∠AED=90°,∴∠ADE=∠DCE在△ADE和△CDE中,∴△CDE∽△DAE,∴,设tan∠ACB=x,CE=a,则DE=ax,AC=3ax,AE=3ax﹣a,∴,整理得:x2﹣3x+1=0,解得:x=,∴tan∠ACB=.30.(1)证明:连接OD,OE,∵AB为圆O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,E为斜边BC的中点,∴DE=BE,在△OBE和△ODE中,,∴△OBE≌△ODE(SSS),∴∠ODE=∠ABC=90°,则DE为圆O的切线;(2)在Rt△ABC中,∠BAC=30°,∴BC=AC,∵BC=2DE=4,∴AC=8,又∵∠C=60°,DE=CE,∴△DEC为等边三角形,即DC=DE=2,则AD=AC﹣DC=6.。
最新鲁教版五四制九年级数学上学期期末模拟检测题及解析(精品试卷)
鲁教版五四制九年级数学上学期期末复习检测题(时间:120分钟,满分:120分)一、 选择题(每小题3分,共36分)1.在Rt △ABC 中,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( )A.sin A=B.tan A=C.cos B=D.tan B=2. 将二次三项式配方后得( ) A.C.D.3. 一个物体的主视图如图,则它的俯视图可能是( )A B C D4. 身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是( )同学A.甲B.乙C.丙D.丁5. 如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子( ) A.越大 B.越小 C.不变 D.无法确定第3题图6. 如图,两条宽度均为的公路相交成角,这两条公路在相交处的公共部分(阴影部分)的面积是( )A.B.C. D.7. 关于的二次函数,下列说法正确的是( )A.图象的开口向上B.图象的顶点坐标是(-1,2)C.当时,随的增大而减小D.图象与轴的交点坐标为(0,2)8. 一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( ) A.6 B.8 C.12 D.249. 如图是一个正六棱柱,它的俯视图是( )10.由二次函数,可知( )A.其图象的开口向下B.其图象的对称轴为直线ACBD第5题图第6题图第8题图第9题图C.其最小值为1D.当时,随的增大而增大11. 如图所示,下列几何体中主视图、左视图、俯视图都相同的是( )12. 如图,在矩形ABCD 中,AB=4,AD=2,动点M 自点A 出发沿A →B 的方向,以每秒1cm 的速度运动,同时动点N 自点A 出发沿A →D →C 的方向以每秒2cm 的速度运动,当点N 到达点C 时,两点同时停止运动,设运动时间为(秒),△AMN 的面积为y (cm2),则下列图象中能反映与之间的函数关系的是( )二、填空题(每小题3分,共24分)13. 把抛物线写成的形式为 .14. 如图,飞机A 在目标B 的正上方3 000米处,飞行员测得地面目标C 的俯角∠DAC=30°,则地面目标BC 的长是米.ADCBABCD第12题图15.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:),计算出这个立体图形的表面积是.16. 抛物线 =与直线=1,=2,=1, =2组成的正方形有公共点,则的取值范围是.17. 把抛物线的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为,则的值为.18. 如图,小明在A 时测得某树的影长为2 ,B 时又测得该树的影长为8 ,若两次日照的光线互相垂直,则树的高度为.19. 在同一平面内下列4个函数:①②;③;④的图象不可能由函数的图象通过平移变换得到的函数是. 20. 把抛物线向下平移2个单位,得到的抛物线与轴的交点坐标为.三、解答题(共60分)21.(6分) 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB 的长为12米,调整后的楼梯所占地面CD 有多长?(结果精第14题图第15题图第18题图确到0.1米;参考数据:sin 25°≈0.42,cos 25°≈0.91,tan 25°≈0.47)22. (6分)小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长.(两个三角板分别是等腰直角三角形和含30°的直角三角形) 若已知CD=2,求AC 的长.请你先阅读并完成解法一,然后利用锐角三角函数的知识写出与解法一不同的解法. 解法一:在Rt △BCD 中,∵ BD=CD=2,∴ 由勾股定理,得BC==在Rt △ABC 中,设AB=, ∵ ∠BCA=30°,∴ AC=2AB=2. 由勾股定理,得,即∵>0,解得 = .∴ AC= .第21题图第22题图23.(8分) 如图,是一个实际问题抽象的几何模型,已知A 、B 之间的距离为300 m ,求点M 到直线AB 的距离(精确到整数).24.(8分)如图,花丛中有一路灯杆AB ,在灯光下,小丽在D 点处的影长DE =3米,沿BD 方向行走到达G 点,DG =5米,这时小丽的影长GH =5米.如果小丽的身高为1.7米,求路灯杆AB 的高度.(精确到0.1米)25.(8分)八年级美术老师在课堂上进行立体模型素描教学时,把14个棱长为10的正方体摆成如图所示的形式,然后他把露出的表面都涂上不同的颜色,求被他涂上颜色部分的面积.第24题图第25题图第26题图26.(8分)作出图中立体图形的三视图.27.(8分)如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O 点为原点,OM 所在直线为轴建立直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数解析式;(3)若要搭建一个矩形“支撑架”AD+DC+CB ,使C 、D 点在抛物线上,A 、B 点在地面OM 上,这个“支撑架”总长的最大值是多少? 28.(8分)如图所示,抛物线经过原点O ,与轴交于另一点N ,直线与两坐标轴分别交于A 、D 两点,与抛物线交于B (1,3)、C (2,2)两点.(1)求直线与抛物线的解析式.(2)若抛物线在轴上方的部分有一动点P (,),求△PON 面积的最大值.(3)若动点P 保持(2)中的运动路线,问是否存在点P ,使得△POA 的面积等于△POD面积的?若存在,请求出点P 的坐标;若不存在,请说明理由.第27题图第28题图期末检测题参考答案1.D 解析:∵ 在Rt △ABC 中,∠ACB=90°,BC=1,AB=2, ∴ AC===,∴ sin A== ,tan A===,cosB==,tan B==.故选D .2.B 解析:∵,故选B .3.C 解析:从主视图可以看出中间两条线,左边是虚线,右边是实线.只有C 满足条件,故选C .4.D 解析:如图,甲中,AC=140 ,∠C=30°,AB=140×sin 30°=70 ; 乙中,DF=100,∠F=45°,DE=100×sin 45°=50≈70.71;丙中,GI=95 ,∠I=45°,GH=95×sin 45°=≈67.18 ;丁中,JL=90 ,∠L=60°,JK=90×sin 60°=45≈77.9 .可见JK 最大,故选D .5.A 解析:白炽灯向上移时,阴影会逐渐变小;相反当乒乓球越接第4题答图第6题答图近灯泡时,它在地面上的影子变大.故选A.6.A 解析:如图,的对边AC即为路宽,即sin =,即AB=,∴阴影的面积=×=.故选A.7.C 解析:∵这个函数的顶点是(1,2),∴函数的开口向下,对称轴是直线,∴在对称轴的左侧随的增大而增大,在对称轴的右侧随的增大而减小.故选.8.B 解析:主视图反映物体的长和高,左视图反映物体的宽和高,俯视图反映物体的长和宽.结合三者之间的关系从而确定主视图的长和高分别为4,2,所以面积为8,故选B.9.C 解析:从上面看可得到一个正六边形.故选C.10.C 解析:由二次函数,可知:A.∵,其图象的开口向上,故此选项错误;B.∵其图象的对称轴为直线,故此选项错误;C.其最小值为1,故此选项正确;D.当<3时,随的增大而减小,故此选项错误.故选C.11.C 解析:A.此半球的三视图分别为半圆弓形,半圆弓形,圆,不符合题意;B.圆柱的三视图分别为长方形,长方形,圆,不符合题意;C.球的三视图都是圆,符合题意;D.六棱柱的三视图不相同,不符合题意. 故选C .12.D 解析:在矩形ABCD 中,AB=4,AD=2 cm ,AD+DC=AB+AD=4+2=6 cm ,∵ 点M 以每秒1 cm 的速度运动,∴ 4÷1=4秒. ∵ 点N 以每秒2 cm 的速度运动,∴ 6÷2=3秒, ∴点N 先到达终点,运动时间为3秒.①点N 在AD 上运动时,=AM •AN=•2=(0≤≤1);②点N 在DC 上运动时, =AM •AD= •2=(1≤3),∴ 能反映与之间的函数关系的是选项D .故选D . 13. 解析:故答案是.14.3 000解析:根据题意可得BC=AB ÷tan 30°=3 000(米).15.200 解析:根据三视图可得:上面的长方体长4mm ,高4mm ,宽2mm ,下面的长方体底面两边长分别为6mm 、8mm ,高2mm ,∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2-4×2= 200(mm 2).故答案为200.16. 解析:如图,四条直线=1,=2, =1,=2围成正方形ABCD ,因为抛物线与正方形有公共点,所以可得>0,而且值越大,抛物线开口越小, 因此当抛物线分别过A (1,2),C (2,1)时,第16题答图分别取得最大值与最小值,代入计算得出:=2,=. 由此得出的取值范围是. 故填. 17. 解析:∵=,∴抛物线顶点坐标为(1,2), 依题意,得平移前抛物线顶点坐标为(-2,4),∵平移不改变二次项系数, ∴, 比较系数,得. 18.4 解析:根据题意,作△EFC,树高为CD ,且∠ECF=90°,ED=2,FD=8. 易得△∽△,有=,即, 代入数据可得,DC=4.故答案为4 m . 19.③④ 解析:二次项的系数不是2的函数有③④.故答案为③④. 20. 解析:由题意得原抛物线的顶点坐标为(2,-3),∴新抛物线的顶点坐标为(2,-5),第18题答图∴新抛物线的解析式为, ∴抛物线与轴交点坐标为 (0,-1).故答案为(0,-1). 21.解:由题意得,在Rt △ABC 中,∠ABC=30°,AB=12米,∴AC= ×12=6(米). 又∵ 在Rt △ACD 中,∠D=25°,=tanD ,∴ CD=≈12.8(米),答:调整后的楼梯所占地面CD 长约为12.8米.22.解:∵ BD=CD=2,BC==,∴ 设AB=,则AC=2,,∴ 2+8=4 2,∴ 3 2=8,∴ 2=,∴=,AC=2AB=. 故答案为,.第二种方法:在Rt △BCD 中,CD=2,∠DBC=45°,∴ BC===.在Rt △BAC 中,∠BCA=30°,∴ AC===.23.解:过点M 作AB 的垂线MN ,垂足为N .∵M 位于B 的北偏东45°方向上,∴∠MBN= 45°,BN=MN.又M 位于A 的北偏西30°方向上,∴∠MAN=60°,AN = .∵AB = 300,∴AN+NB = 300 .∴. MNA住宅小区M 45°30B 北第23题答图 N24. 解:如图所示,设AB 为,∵ CD ∥AB ,∴=,∴= ①同理== ②由①②得= ,∴ BD =. ∴= ,∴ ≈6.0.答:路灯杆AB 的高度约为6.0米.25.解:从前、后、左、右看该物体均为6个正方形,从上面看有9个正方形, 所以被涂上颜色部分的面积为 6×100×4+900=3 300.26.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.解:如图所示.27.解:(1)M(12,0),P(6,6).第24题答图°第26题答图(2)设此函数关系式为6)6(2+-=x a y .∵函数6)6(2+-=x a y 经过点(0,3), ∴6)60(32+-=a ,即121-=a . ∴此函数解析式为:31216)6(12122++-=+--=x x x y . (3)设A(,0),则B(12-,0), C )3121,12(2++--m m m ,D )3121,(2++-m m m . ∴“支撑架”总长AD+DC+CB= )3121()212()3121(22++-+-+++-m m m m m = 18612+-m . ∵此二次函数的图象开口向下,∴ 当时,AD+DC+CB 有最大值为18.28.分析:(1)把点B 、C 的坐标代入直线表达式解方程组即可得解,把点B 、C 、O 的坐标代入抛物线的解析式,解方程组求出的值,即可得到抛物线的解析式.(2)先根据抛物线的解析式求出点N 的坐标,再根据三角形的面积公式可知,点P 为抛物线的顶点时△PON 底边ON 上的高最大,面积最大,求出点P 的纵坐标,代入面积公式即可得解.(3)先求出点A 、D 的坐标,再设点P 的坐标为(,),根据三角形的面积公式列式得到关于的一元二次方程,然后求出方程的解,再根据点P 在轴的上方进行判断.解:(1)根据题意,得解得∴直线的解析式是.根据图象,抛物线经过点B(1,3)、C(2,2)、O(0,0),∴解得∴抛物线的解析式是=.(2)当时,,解得=0,=,∴点N的坐标是(,0). ∴点P的纵坐标越大,则△PON的面积越大,当点P是抛物线的顶点时,△PON的面积最大,此时==,=××=.(3)由(1)知直线的解析式是当=0时,=4,当=0时,-+4=0,解得=4,∴点A、D的坐标是A(0,4)、D(4,0).设点P的坐标是(,),则×4=××4×(),整理得=0,解得=0,=-2,此时点P不在轴的上方,不符合题意,∴不存在点P,使得△POA的面积等于△POD面积的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年山东省烟台市莱州市九年级(上)期末数学试卷
(五四学制)
一、选择题(共12小题,每小题3分,满分36分)
1.(3分)已知在Rt△ABC中,∠C=90°,sinA=,AC=2,那么BC的值为()
A.2 B.4 C.4 D.6
2.(3分)抛物线y=x2﹣6x+5的顶点坐标为()
A.(3,﹣4)B.(3,4) C.(﹣3,﹣4)D.(﹣3,4)
3.(3分)若A(﹣3.5,y1),B(﹣1,y2),C(1,y3)为二次函数y=﹣x2﹣4x+5的图象上的三点,则y1,y2,y3的大小关系是()
A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y2
4.(3分)下列语句中:①三角形的三条中线的交点是三角形的外心.②三角形两条角平分线的交点是三角形的内心.③三角形的外心到三个顶点的距离相等.④三角形的内心不一定在三角形的内部.其中正确的有()
A.1个 B.2个 C.3个 D.4个
5.(3分)一条排水管的截面如图所示,已知排水管的截面圆心O到水面的距离OC=6,截面半径OB=10,则水面宽AB等于()
A.8 B.10 C.12 D.16
6.(3分)如图,AB是⊙O的直径,∠C=38°,则∠AOD等于()
A.100°B.102°C.104° D.10°
7.(3分)如图,PA,PB分别与⊙O相切于A,B两点,点E在上,过点E作⊙O的切线,分别与PA,PB相交于点C,D.若PA=3cm,则△PCD的周长等于()
A.3cm B.6cm C.9cm D.12cm
8.(3分)如图,P为⊙O的直径AB的延长线上一点,PC切⊙O于点C,若∠P=26°,则∠A等于()
A.32°B.36°C.38°D.42°
9.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,则点A(b2﹣4ac,)在()
A.第一象限B.第二象限C.第三象限D.第四象限
10.(3分)函数y=ax2+bx(a≠0,b<0)的图象可能是()
A. B.C. D.
11.(3分)如图,在等腰直角△ABC中,∠C=90°,D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、B,且AC=2,则图中阴影部分的面积为()
A.2﹣πB.2π﹣4 C.D.
12.(3分)在平面直角坐标系中,点P的坐标为(4,0),以P为圆心,5为半径作⊙P,则直线y=kx+2(k≠0)与⊙P的位置关系是()
A.相交B.相离
C.相切D.与k的取值有关
二、填空题(共6小题,每小题3分,满分18分)
13.(3分)已知∠A为锐角,sin(90°﹣A)=,则cosA=.14.(3分)已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为.15.(3分)将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是.
16.(3分)圆内接正六边形的半径为2cm,则其边长等于.
17.(3分)圆内接四边形ABCD的内角∠A:∠B:∠C=2:3:4,则∠D=度.
18.(3分)如图是四个直立在地面上的艺术字母的投影(阴影部分)效果,在艺术字母“L,K,C”的投影中,与艺术字母“N”属于同一种投影的有.
三、解答题(共7小题,满分66分)
19.(10分)在Rt△ABC中,∠C=90°,a=,b=,解这个直角三角形.20.(6分)作出如图立体图形的三视图.
21.(10分)如图,在⊙O中,D,E分别是半径OA,OB的中点,点C在圆上,
CD=CE.求证:=.
22.(10分)如图,一边利用墙,其余各边用篱笆靠墙围成矩形花圈ABCD,在花圈中间用一道篱笆隔成两个小矩形,墙可利用的最大长度为15m,篱笆总长为24m,设平行于墙的BC边长c m,矩形ABCD的面积为S m2.
(1)写出S与x之间的函数关系式,并指出x的取值范围;
(2)当x为多少米时,矩形ABCD的面积最大?最大面积是多少?
23.(10分)如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,过点C作直线CD⊥AB于点D,弦CF与AB交于点E,弦BF与直线CD交于点G.已知BG=2,GF=4,求:BC的长度.
24.(10分)如图,以等腰三角形ABC的腰AB为直径的⊙O交底边BC于点D,交腰AB于点F,过D点作DE⊥AC于E点,试确定直线DE与⊙O的位置关系,并说明理由.
25.(10分)将一块三角板按如图所示放在直角坐标系中,∠OAB=90°,∠AOB=30°,AB=2.将三角板沿OB翻折后,得到△OBC.
(1)求点C的坐标;
(2)求经过O,A,C三点的抛物线的表达式;
(3)以OB为直径的圆是否经过(2)中所求抛物线的顶点?
2014-2015学年山东省烟台市莱州市九年级(上)期末数
学试卷(五四学制)
参考答案
一、选择题(共12小题,每小题3分,满分36分)
1.A;2.A;3.D;4.B;5.D;6.C;7.B;8.A;9.D;10.D;11.D;12.A;
二、填空题(共6小题,每小题3分,满分18分)
13.;14.15π;15.y=(x﹣5)2+2或y=x2﹣10x+27;16.2cm;17.90;18.L、K;
三、解答题(共7小题,满分66分)
19.;20.;21.;22.;23.;24.;25.;。