黑龙江省青冈2018届高三第一次模拟考试数学试卷(文)含答案
(全优试卷)黑龙江省青冈一中高三第一次模拟考试文数试卷Word版含答案
2017-2018高三学年第一次模拟数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合}034|{2≥++=x x x A ,}12|{<x x B =,则=B AA .)0,1[]3,(---∞B .]1,3[--C .]0,1(]3,(---∞D .)0,(-∞ 2.已知z 满足2zi z +=-,则z 在复平面内对应的点为( ) A .(1,1)- B .(1,1) C .(1,1)- D .(1,1)-- 3.已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为 A. 110 B. 55 C. 50 D. 不能确定 4.下列说法中,不正确的是A .已知a ,b ,m ∈R ,命题:“若am 2<bm 2,则a <b ”为真命题B .命题:“∃x 0∈R ,x 20-x 0>0”的否定是:“∀x ∈R ,x 2-x ≤0”C .命题“p 或q ”为真命题,则命题p 和命题q 均为真命题D .“x >3”是“x >2”的充分不必要条件5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积等于( ) 3cmA .243π+B .342π+ C .263π+ D .362π+6.如图给出的是计算1111352015++++的值的一个程序框图,则图中 执行框中的①处和判断框中的②处应填的语句是( ) A .1,1009n n i =+>? B .2,1009n n i =+>? C .1,1008n n i =+>? D .2,1008n n i =+>?7.设n m ,是平面α内的两条不同直线,21,l l 是平面β内两条相交直线,则βα⊥的一个充分不必要条件是( )A .11,l m l n ⊥⊥B .12,m l m l ⊥⊥C .12,m l n l ⊥⊥D .1//,m n l n ⊥8.变量x ,y 满足22221x y x y y x +⎧⎪--⎨⎪-⎩≤≥≥,则3z y x =-的取值范围为( )A .[]1,2B .[]2,5C .[]2,6D .[]1,6 9.已知平面向量,a b 的夹角为045,(1,1)a =,1b =,则a b +=( ) A .2 B .3 C .4 D10.若函数y =f (x )的导函数y =f ′(x )的图象如图所示,则y =f (x )的图象可能为( )11.已知抛物线y 2=2px (p>0)与双曲线=1(a >0,b >0)有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为( ) A .+2 B .+1 C .+1 D .+112.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .1D .12第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上 13.已知3cos ,2322πππαα⎛⎫⎛⎫+=∈⎪ ⎪⎝⎭⎝⎭,则tan α= . 14.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是 .15. 在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________. 16. 函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是________C 1B 1A 1FE CBA三、解答题:6大题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6.(1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域.18.(本大题满分12分)如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,AB BC ⊥,12AA AC ==,1=BC ,E 、F 分别为11A C 、BC 的中点.(1)求证:平面ABE ⊥平面11B BCC ;(2)求证:1//C F 平面ABE ; (3)求三棱锥ABE C -1的体积. 19.(本小题满分12分)已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样统计,先将800人按001002003800,,,,L 进行编号. (Ⅰ)如果从第8行第7列的数开始向右读,请你依次写出最先检测的3个人的编号; (下面摘取了第7行 至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54(Ⅱ)抽的100人的数学与地理的水平测试成绩如下表:成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩, 例如:表中数学成绩为良好的共有2018442++=人,若在该样本中,数学成绩优秀率为30%, 求a b ,的值.(Ⅲ)将108a b ≥,≥的a b ,表示成有序数对()a b ,,求“在地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的数对()a b ,的概率. 20.(本小题满分12分)已知椭圆C :)0(12222>>=+b a b y a x 的离心率为22,左焦点为)0,1(-F ,过点)2,0(D 且斜率为k 的直线l 交椭圆于A ,B 两点. (1)求椭圆C 的标准方程;(2)在y 轴上,求点E ,使⋅恒为定值。
黑龙江省哈尔滨市第三中学校2018届高三数学一模考试试题文(含解析)
黑龙江省哈尔滨市第三中学校2018届高三一模考试数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,集合,则()A. B. C. D.【答案】C【解析】∵集合,集合∴故选C.2. 下列函数中,既是偶函数又在区间内单调递减的是()A. B. C. D.【答案】B【解析】对于,是偶函数,在区间单调递增,故排除;对于,是偶函数,在区间单调递减,故正确;对于,是非奇非偶函数,在区间单调递增,故排除;对于,是非奇非偶函数,在区间单调递减,故排除.故选B.3. 在等差数列中,若,公差,那么等于()A. 4B. 5C. 9D. 18【答案】B【解析】∵,公差∴∴∴故选B.4. 已知,,则()A. 2B.C.D. 1【答案】D【解析】∵,∴故选D5. 过原点且倾斜角为的直线被圆所截得的弦长为()A. B. 2 C. D.【答案】D【解析】,即。
依题意可得,直线方程为,则圆心到直线的距离,所以直线被圆所截得的弦长为,故选D6. 设是两条不同的直线,是两个不同的平面,给出下列条件,其中能够推出的是()A. ,,B. ,,C. ,,D. ,,【答案】B【解析】由,,可推出与平行、相交或异面,由可推出∥.故选B7. 函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为()A. B. C. D.【答案】D【解析】∵由得∴函数(且)的图像恒过定点∵点在直线上∴∵,当且仅当时取等号∴∴最大值为故选D.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 设是数列的前项和,若,则()A. B. C. D.【答案】C【解析】当时,,解得.当时,,,则,即.∴数列是首项为,公比为的等比数列∴故选C.9. 如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该几何体的体积为()A. B. 2 C. D. 4【答案】A【解析】由三视图可知该几何体为三棱锥(如图所示),其中,到平面的距离为1,故所求的三棱锥的体积为. 故选:A10. 已知、为双曲线:的左、右焦点,点为双曲线右支上一点,,,则双曲线的离心率为()A. B. C. D.【答案】C【解析】根据题意作图如下:设.∵∴∵由双曲线焦半径公式知,∴∴故选C.点睛:本题考查了双曲线的几何性质,离心率的求法,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).11. 千年潮未落,风起再扬帆,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦奠定坚实基础,哈三中积极响应国家号召,不断加大拔尖人才的培养力度,据不完全统计:根据上表可得回归方程中的为1.35,我校2018届同学在学科竞赛中获省级一等奖以上学生人数为63人,据此模型预报我校今年被清华、北大等世界名校录取的学生人数为()A. 111B. 115C. 117D. 123【答案】C【解析】由题意得,.∵数据的样本中心点在线性回归直线上,中的为1.35∴,即∴线性回归方程是∵我校2018届同学在学科竞赛中获省级一等奖以上学生人数为63人∴我校今年被清华、北大等世界名校录取的学生人数为故选C.点睛:本题考查的知识是线性回归方程.回归直线方程中系数的两种求法①公式法:利用公式,求出回归系数;②待定系数法:利用回归直线过样本点中心求系数.12. 设函数,若是函数是极大值点,则函数的极小值为()A. B. C. D.【答案】A【解析】∵∴∵是函数是极大值点∴∴∴∴∴当时,,当时,∴当时取极小值为故选A.点睛:本题主要考查函数的极值,属于中档题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.二、填空题(每题4分,满分20分,将答案填在答题纸上)13. 已知正方形边长为2,是的中点,则______.【答案】2【解析】根据题意.故正确答案为.14. 若实数满足,则的最大值为_______.【答案】5【解析】作出不等式组表示的平面区域,得到如图的及其内部:其中,,,设,将直线进行平移,当经过点时,目标函数达到最大值,此时.故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 直线与抛物线相交于不同两点,若是中点,则直线的斜率_______. 【答案】【解析】设,∵直线与抛物线相交于不同两点∴,,则两式相减得∵是中点∴∴故答案为.16. 钝角中,若,,则的最大值为_______.【答案】【解析】在钝角中,若,,由正弦定理可得. ∴,∴,其中∵∴∴当时,的最大值为故答案为.点睛:本题求最值利用三角函数辅助角公式将函数化为的形式,利用求最值,其中的取值需结合数值以及符号确定.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数.(1)当时,求的值域;(2)已知的内角的对边分别为,,,求的面积. 【答案】(1) (2)【解析】试题分析:(1)利用三角恒等变换化简函数的解析式,结合,即可求得的值域;(2)由求得的值,利用余弦定理求得的值,可得的面积.试题解析:(1)由题意知,由.∵∴∴∴(2)∵∴∵∴∵,∴由余弦定理可得∴∴18. 某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.(1)请根据上述表格中的统计数据填写下面的列联表;(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考格式:,其中【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)根据所给数据,可得列联表;(2)根据关联表,代入公式计算,与临界值比较即可得出结论.试题解析:(1)(2)所以在犯错误的概率不超过的前提下不能判断“课外体育达标”与性别有关.19. 如图,直三棱柱中,且,是棱中点,是的中点.(1)求证:平面;(2)求点到平面的距离.【答案】(1)见解析(2)【解析】试题分析:(1)取中点,连结,则∥且,根据为中点,可推出四边形为平行四边形,即可得证平面;(2)根据及是的中点,可得,即可得到到的距离,从而得到到的距离,再根据,即可求出点到平面的距离......................试题解析:(1)取中点,连结,则∥且.∵当为中点时,∥且,∴∥且.∴四边形为平行四边形,则∥又∵,,∴平面;(2)∵中,,是中点∴.又∵直三棱柱中,,,∴,且到的距离为.∵平面∴到的距离等于到的距离等于.设点到平面的距离为.∵∴,易求,,解得.∴点到平面的距离为.点睛:本题主要是利用等体积法来求解几何体的高,特别是在求三棱锥的高时,等体积法回避了通过具体作图得到三棱锥的高,而通过直接计算得到高的数值,本题解答的关键是通过,进而求出点到平面的距离.20. 已知是椭圆的右焦点,过的直线与椭圆相交于,两点.(1)若,求弦长;(2)为坐标原点,,满足,求直线的方程.【答案】(1) (2)【解析】试题分析:(1)由题意可知过的直线斜率存在,设直线的方程为,联立直线与椭圆的方程,得关于的一元二次方程,由及韦达定理可得的值,从而求出弦长;(2)由可得,即,设直线的方程为,联立直线与椭圆的方程,结合韦达定理即可求出的值,从而求出直线的方程. 试题解析:(1)由题意可知过的直线斜率存在,设直线的方程为联立,得∵∴,则∴(2)∵∴∴,即设直线的方程为,联立,得∴,∴,即∴或∴直线的方程为点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21. 已知函数.(1)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性.【答案】(1) (2)见解析【解析】试题分析:本题主要考查导数的运算、利用导数求曲线的切线方程、利用导数求函数的单调性等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,先将代入得到表达式,对求导,将切点的横坐标2代入中得到切线的斜率k,再将切点的横坐标2代入到中,得到切点的纵坐标,最后利用点斜式写出切线方程;第二问,讨论的单调性即讨论的正负,即讨论导数表达式分子的正负,所以构造函数,通过分析题意,将分成、、、多种情况,分类讨论,判断的正负,从而得到的单调性.试题解析:(1)当时,6分(2)因为,所以,令8分(i)当a=0时,所以当时g(x)>0,此时函数单调递减,x∈(1,∞)时,g(x)<0,此时函数f,(x)单调递增。
2018年黑龙江高三-高考模拟一文科数学
2018年高考真题模拟卷(含答案)文科数学 2018年高三黑龙江省第一次模拟考试文科数学单选题(本大题共12小题,每小题____分,共____分。
)己知集合,则=A.B.C.D.已知i为虚数单位,复数z满足,则z =A.B.C.D.下面四个推理中,属于演绎推理的是()A. 观察下列各式:72=49,73=343,74=2401,…,则72015的末两位数字为43B. 观察,可得偶函数的导函数为奇函数C. 在平面上,若两个正三角形的边长比为1:2,则它们的面积比为1:4,类似的,在空间中,若两个正四面体的棱长比为1:2,则它们的体积之比为1:8D. 已知碱金属都能与水发生还原反应,钠为碱金属,所以钠能与水发生反应A. AB. BC. CD. D在等差数列中,,,则()A. 7B. 8C. 9D. 10在等比数列中,已知,则()A. 1B. 3C. ±1D. ±3命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是( )A. ∃x0∈ (0,+∞),ln x0≠x0-1B. ∃x0∉(0,+∞),ln x0=x0-1C. ∀x∈(0,+∞),ln x≠x-1D. ∀x∉(0,+∞),ln x=x-1设△ABC的内角A,B,C所对的边分别为a,b,c,若,则△ABC的形状为(B)A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不确定已知a为函数的极小值点,则a=(C)A. -4B. -2C. 2D. 4已知函数的部分图像如图所示,则()A.B.C.D.若a>0,b>0,且函数f(x)=4x3-ax2-2bx-2在x=1处有极值,则ab的最大值是( )A. 2B. 3C. 6D. 9已知,则a,b,c的大小关系为()A. a<b<cB. a<c<bC. b<a<cD. b<c<a已知函数在区间上单调递增,则实数b的取值范围是()A.B.C.D.填空题(本大题共9小题,每小题____分,共____分。
黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(三)数学(文科)试题(精编含解析)
普通高等学校招生全国统一考试仿真模拟(三)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,,则()A. B. C. D.【答案】A【解析】【分析】由已知中全集,根据补集的性质及运算方法,先求出,再求出其补集,即可求出答案.【详解】全集,集合,,,,故选:A.【点睛】本题考查的知识点是交、并、补的混合运算,其中将题目中的集合用列举法表示出来,是解答本题的关键.2. 设为复数的共轭复数,则()A. B. C. D.【答案】A【解析】【分析】先求出,从而求出的值即可.【详解】,共轭复数,则.故选:A.【点睛】本题考查复数的运算性质以及共轭复数,是一道基础题. 3. 已知函数,则下列结论正确的是( )A.是偶函数,递增区间是B.是偶函数,递减区间是C.是奇函数,递增区间是 D.是奇函数,递增区间是【答案】D 【解析】【分析】由奇偶性的定义可得函数为奇函数,去绝对值结合二次函数可得单调性.【详解】由题意可得函数定义域为R ,函数,,为奇函数,当时,,由二次函数可知,函数在单调递增,在单调递减;由奇函数的性质可得函数在单调递增,在单调递减.综合可得函数的递增区间为.故选:D.【点睛】本题考查函数的奇偶性和单调性,涉及奇偶性的判定,属基础题.4. 已知双曲线的一条渐近线方程是,它的一个焦点坐标为,则双曲线方程为( )A. B. C. D.【答案】C 【解析】【分析】直接利用双曲线的渐近线方程以及焦点坐标,得到关系式,求出、,即可得到双曲线方程.【详解】双曲线的一条渐近线方程是,可得,它的一个焦点坐标为,可得,即,解得,所求双曲线方程为:.故选:C.【点睛】本题考查双曲线的方程的求法,双曲线的简单性质的应用,考查计算能力.5. 从数字,,,,中任取个,组成一个没有重复数字的两位数,则这个两位数大于的概率是()A. B. C. D.【答案】C【解析】可以构成的两位数的总数为20种,因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41,42,43,45共4种;以5开头的:51,52,53,54共4种.所以所求概率为.本题选择B选项.6. 已知函数的部分图象如图所示,且,,则()A. B. C. D.【答案】D【解析】【分析】由图象可得A值和周期,由周期公式可得,代入点可得值,从而得解析式,再由和同角三角函数基本关系可得.【详解】由图象可得,,解得,故,代入点可得,,即有,,又,,故.又,.,.故选:D.【点睛】根据y=A sin(ωx+φ)+k的图象求其解析式的问题,主要从以下四个方面来考虑:①A的确定:根据图象的最高点和最低点,即;②k的确定:根据图象的最高点和最低点,即;③ω的确定:结合图象,先求出周期T,然后由(ω>0)来确定ω;④φ的确定:由函数y=A sin(ωx+φ)+k最开始与x轴的交点(最靠近原点)的横坐标为 (即令ωx+φ=0,x=)确定φ.7. 我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有坦厚十尺,两鼠对穿,初日各一尺,大鼠日自信,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果()A. B. C. D.【答案】A【解析】【分析】模拟执行程序,依次写出每次循环得到的的值,当,满足条件,退出循环,输出的值为4,从而得解.【详解】模拟执行程序,可得,,不满足条件,执行循环体,,不满足条件,执行循环体,,不满足条件,执行循环体,,满足条件,退出循环,输出的值为4.故选:A.【点睛】本题主要考查了循环结构的程序框图的应用,模拟执行程序正确写出每次循环得到的的值是解答的关键,属于基础题.8. ()A. B. C. D.【答案】B【解析】试题分析:原式.考点:三角恒等变换.9. 不等式组的解集为,下列命题中正确的是()A. ,B. ,C. ,D. ,【答案】B【解析】试题分析:如下图所示,画出不等式组所表示的区域,作直线:,平移,从而可知当,时,,即,故只有B成立,故选B.【考点】本题主要考查线性规划系.10. 已知抛物线的焦点为,准线为,是上一点,是直线与的一个交点,若,则( )A.B. C.D.【答案】A 【解析】【分析】设与x 轴的交点为M ,过Q 向准线作垂线,垂足为N ,由,可得,又,根据抛物线的定义即可得出.【详解】设与x 轴的交点为M ,过Q 向准线作垂线,垂足为N ,,,又,,,.故选:A.【点睛】本题考查了抛物线的定义及其性质、向量的共线,考查了推理能力与计算能力,属于中档题.11. 设函数,若存在,使,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】求出函数的导数,通过讨论的范围,确定函数的单调性,求出的最大值,得到关于的不等式,解出即可.【详解】的定义域是,,当时,,则在上单调递增,且,故存在,使;当时,令,解得,令,解得,在上单调递增,在上单调递减,,解得.综上,的取值范围是.故选:D.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,是一道中档题.12. 已知,则A. B. C. D.【答案】D【解析】【分析】先将用两角和正弦公式化开,然后与合并后用辅助角公式化成一个三角函数,最后再由三角函数的诱导公式可得答案.【详解】,,,.故选:D.【点睛】本题主要考查两角和的正弦公式和三角函数的诱导公式,三角函数部分公式比较多,容易记混,对公式一定要强化记忆与应用.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知单位向量,的夹角为,则向量与的夹角为__________.【答案】【解析】【分析】分别求出,,,从而代入求余弦值,从而求角.【详解】单位向量,的夹角为,,,,设向量与的夹角为,则,.故答案为:.【点睛】(1)在数量积的基本运算中,经常用到数量积的定义、模、夹角等公式,尤其对要引起足够重视,它是求距离常用的公式.(2)要注意向量运算律与实数运算律的区别和联系.在向量的运算中,灵活运用运算律,就会达到简化运算的目的.14. 在某次数学考试中,甲、乙、丙三名同学中只有一个人得了优秀,当他们被问到谁得到了优秀时,丙说:“甲没有得优秀”;乙说:“我得了优秀”;甲说:“丙说的是真话”.事实证明:在这三名同学中,只有一人说的是假话,那么得优秀的同学是__________.【答案】丙【解析】【分析】利用反证法,即可得出结论.【详解】假设丙说的是假话,即甲得优秀,则乙也是假话,不成立;假设乙说的是假话,即乙没有得优秀,又甲没有得优秀,故丙得优秀.故答案为:丙.【点睛】反证法关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等.15. 已知函数则__________.【答案】【解析】【分析】根据分段函数由里到外逐步求解即可.【详解】∵∴f(﹣3)=e﹣3+2=e﹣1,f(f(﹣3)=f(e﹣1)=lne﹣1=﹣1.故答案为:﹣1.【点睛】:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.16. 在中,角、、所对的边分别为、、,且,当取最大值时,角的值为__________.【答案】【解析】试题分析:由正弦定理得,即,,,故最大角为.考点:解三角形.【思路点晴】本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变形等解三角形的知识,还考查了基本不等式的应用,考查了两角差的正切公式.对于题目给定的式子,一般用正弦定理,将边转化为角,再利用三角形内角和定理,消去角,得到的关系后,代入的表达式,然后利用基本不等式来求最值.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列中,,又数列是首项为、公差为的等差数列.(1)求数列的通项公式;(2)求数列的前项和.【答案】(1) (2)【解析】【分析】(1),又数列是首项为,公差为的等差数列,可得,即可得出数列的通项公式;(2)由,利用“裂项求和”即可得出.【详解】(1)∵数列是首项为,公差为的等差数列,∴,解得.(2)∵.∴.【点睛】利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.18. 某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(个月)和市场占有率()的几组相关对应数据:123450.020.050.10.150.18(1)根据上表中的数据,用最小二乘法求出关于的线性回归方程;(2)根据上述回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测自上市起经过多少个月,该款旗舰机型市场占有率能超过(精确到月).【答案】(1) (2)【解析】【分析】(1)根据表中数据求出和,写出线性回归方程;(2)根据回归方程得出上市时间与市场占有率的关系,列出不等式求出解集即可预测结果.【详解】(1)经计算,,所以线性回归方程为;(2)由上面的回归方程可知,上市时间与市场占有率正相关,即上市时间每增加个月,市场占有率都增加个百分点;由,解得,【点睛】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19. 如图,矩形和梯形所在的平面互相垂直,,,.(1)若为的中点,求证:平面;(2)若,求四棱锥的体积.【答案】(1)见解析(2)【解析】【分析】(1)设EC与DF交于点N,连结MN,由中位线定理可得MN∥AC,故AC∥平面MDF;(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,从而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入体积公式即可计算出体积.【详解】(1)证明:设与交于点,连接,在矩形中,点为中点,∵为的中点,∴,又∵平面,平面,∴平面.(2)取中点为,连接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的长即为四棱锥的高,在梯形中,,∴四边形是平行四边形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【点睛】求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.20. 已知椭圆的离心率为,其左顶点在圆上.(1)求椭圆的方程;(2)若点为椭圆上不同于点的点,直线与圆的另一个交点为.是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.【答案】(1) (2)不存在直线,使得【解析】【分析】(1)由题意求出a,通过离心率求出c,然后求解椭圆的标准方程;(2)设点,,设直线的方程为,与椭圆方程联立,利用弦长公式求出,利用垂径定理求出,从而整理即可得到结果.【详解】(1)因为椭圆的左顶点在圆上,令,得,所以,又离心率为,所以,所以,所以,所以的方程为.(2)设点,,设直线的方程为,与椭圆方程联立得化简得到,因为为方程的一个根,所以,所以,所以.因为圆心到直线的距离为,所以,因为,代入得到,显然,所以不存在直线,使得.【点睛】对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果.21. 设函数.(1)讨论的单调性;(2)若为正数,且存在使得,求的取值范围.【答案】(1)见解析(2)【解析】【分析】(1)求出函数的定义域,求导,讨论k的取值,分别解出,即可得出;(2)由(1)可求得函数的最小值,,将其转化成,构造函数,判断其单调性,即可求得的取值范围.【详解】(1),(),①当时,,在上单调递增;②当时,,;,,所以在上单调递减,在上单调递增.(2)因为,由(1)知的最小值为,由题意得,即.令,则,所以在上单调递增,又,所以时,,于是;时,,于是.故的取值范围为.【点睛】本题主要考查利用导数求函数的单调性及函数的最值,考查学生分析解决问题的能力,构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离常数的方法,转化为求函数的值域问题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,圆的参数方程为(为参数).(1)以原点为极点、轴正半轴为极轴建立极坐标系,求圆的极坐标方程;(2)已知,,圆上任意一点,求面积的最大值.【答案】(1) (2)【解析】试题分析:直角坐标系与极坐标系的转换时满足关系式,圆的直角坐标方程为,将其中的利用前面的关系式换作,即可得到极坐标方程;先求出点到直线:的距离,再求的面积,然后求最值。
青冈县高中2018-2019学年上学期高三数学期末模拟试卷含答案
青冈县高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=02. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)3. 某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )A .2B .C .D .34. 函数f (x )=kx +b x +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .45. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个6. 天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,这三天中恰有两天下雨的概率近似为( ) A .0.35 B .0.25 C .0.20 D .0.157. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .B .C .D .8. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 29. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B . {}|3003x x x -<<<<或 C .{}|33x x x <->或 D . {}|303x x x <-<<或 10.已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .611.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( ) A .B .y=x 2C .y=﹣x|x|D .y=x ﹣212.已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0)D .(﹣∞,﹣1)二、填空题13.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .14.已知过球面上 ,,A B C 三点的截面和球心的距离是球半径的一半,且2AB BC CA ===,则球表面积是_________.15.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .16.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .17.已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2﹣5x+4=0的两个根,则S6=.18.定积分sintcostdt=.三、解答题19.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.20.已知双曲线C:与点P(1,2).(1)求过点P(1,2)且与曲线C只有一个交点的直线方程;(2)是否存在过点P的弦AB,使AB的中点为P,若存在,求出弦AB所在的直线方程,若不存在,请说明理由.21.已知数列{a n}的前n项和S n=2n2﹣19n+1,记T n=|a1|+|a2|+…+|a n|.(1)求S n的最小值及相应n的值;(2)求T n.22.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t 0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t 0,试确定t 0的取值范围23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.(1)将曲线C 的参数方程化为普通方程;(2)求||||PB PA ⋅的最值.24.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)青冈县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:圆x2+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l将圆x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l的方程是:y+2=﹣(x﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C.【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.2.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(﹣∞,﹣),∴f(x)的单调增区间为(﹣∞,﹣),故选:D.【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.3.【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x的侧棱垂直于底面.则体积为=,解得x=.故选:C.4.【答案】【解析】解析:选B.设点P(m,n)是函数图象上任一点,P关于(-1,2)的对称点为Q(-2-m,4-n),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b -1-m ,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B.5. 【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况, 所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥; 至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题.6. 【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数, 在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为.故选B .7. 【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种, 其中只有(3,4,5)为勾股数, 故这3个数构成一组勾股数的概率为.故选:C8. 【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2, 所以S 球=4πR 2=6πa 2.故选B9. 【答案】B 【解析】试题分析:因为()f x 为奇函数且()30f -=,所以()30f =,又因为()f x 在区间()0,+∞上为增函数且()30f =,所以当()0,3x ∈时,()0f x <,当()3,x ∈+∞时,()0f x >,再根据奇函数图象关于原点对称可知:当()3,0x ∈-时,()0f x >,当(),3x ∈-∞-时,()0f x <,所以满足()0x f x ⋅<的x 的取值范围是:()3,0x ∈-或()0,3x ∈。
青冈县第一中学2018-2019学年高三上学期11月月考数学试卷含答案
青冈县第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在中,,那么一定是( )ABC ∆22tan sin tan sin A B B A =gg ABC ∆A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形2. 若函数在上是单调函数,则的取值范围是()2()48f x x kx =--[5,8]k A . B . C . D .(][),4064,-∞+∞U [40,64](],40-∞[)64,+∞3. 若复数的实部与虚部相等,则实数等于( )2b ii++b (A )( B )(C )(D ) 311312-4. 给出函数,如下表,则的值域为()()f x ()g x(())f g xA .B .C .D .以上情况都有可能{}4,2{}1,3{}1,2,3,45. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为()A .1B .2C .3D .46. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是()A .﹣1B .0C .1D .27. 变量x 、y 满足条件,则(x ﹣2)2+y 2的最小值为()A .B .C .D .58. 设a ,b ∈R ,i 为虚数单位,若=3+b i ,则a -b 为()2+a i1+iA .3B .2C .1D .09. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.若数列{a n }的通项公式a n =5()2n ﹣2﹣4()n ﹣1(n ∈N *),{a n }的最大项为第p 项,最小项为第q 项,则q ﹣p 等于( )A .1B .2C .3D .411.已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是()A .p ∧qB .¬p ∧¬qC .¬p ∧qD .p ∧¬q 12.直线在平面外是指( )A .直线与平面没有公共点B .直线与平面相交C .直线与平面平行D .直线与平面最多只有一个公共点二、填空题13.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = . 14.设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为 . 15.已知抛物线:的焦点为,点为抛物线上一点,且,双曲线:1C x y 42=F P 3||=PF 2C 12222=-by a x (,)的渐近线恰好过点,则双曲线的离心率为 .0>a 0>b P 2C 【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.16.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .17.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .18.图中的三个直角三角形是一个体积为20的几何体的三视图,则__________.h =三、解答题19.已知椭圆C :=1(a >2)上一点P 到它的两个焦点F 1(左),F 2 (右)的距离的和是6.(1)求椭圆C 的离心率的值;(2)若PF 2⊥x 轴,且p 在y 轴上的射影为点Q ,求点Q 的坐标.20.已知数列{a n}的首项为1,前n项和S n满足=+1(n≥2).(Ⅰ)求S n与数列{a n}的通项公式;(Ⅱ)设b n=(n∈N*),求使不等式b1+b2+…+b n>成立的最小正整数n.21.平面直角坐标系xOy中,过椭圆C:(a>b>0)右焦点的直线l:y=kx﹣k交C于A,B两点,P为AB的中点,当k=1时OP的斜率为.(Ⅰ)求C的方程;(Ⅱ)x轴上是否存在点Q,使得k变化时总有∠AQO=∠BQO,若存在请求出点Q的坐标,若不存在,请说明理由.22.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b 至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x ,y ,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.23.如图所示,在正方体中.1111ABCD A B C D -(1)求与所成角的大小;11A C 1B C (2)若、分别为、的中点,求与所成角的大小.E F AB AD 11A CEF 24.(本小题满分12分)已知数列的各项均为正数,,.{}n a 12a =114n n n na a a a ++-=+(Ⅰ)求数列的通项公式;{}n a (Ⅱ)求数列的前项和.11n n a a +⎧⎫⎨⎬+⎩⎭n n S青冈县第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D 【解析】试题分析:在中,,化简得,解得ABC ∆22tan sin tan sin A B B A =g g 22sin sin sin sin cos cos A BB A A B=g ,即,所以或,即sin sin sin cos sin cos cos cos B AA AB B A B=⇒=sin 2sin 2A B =22A B =22A B π=-A B =或,所以三角形为等腰三角形或直角三角形,故选D .2A B π+=考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出,从而得到或是试sin 2sin 2A B =A B =2A B π+=题的一个难点,属于中档试题.2. 【答案】A 【解析】试题分析:根据可知,函数图象为开口向上的抛物线,对称轴为,所以若函数()248f x x kx =--8kx =()f x 在区间上为单调函数,则应满足:或,所以或。
(全优试卷)黑龙江省青冈一中高三第一次模拟考试理数试卷Word版含答案
2017-2018高三学年第一次模拟数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}034|{2≥++=x x x A ,}12|{<xx B =,则=B A ( ) A .)0,1[]3,(---∞ B .]1,3[-- C .]0,1(]3,(---∞ D .)0,(-∞ 2.若复数z 满足232+=-z z i , 其中i 为虚数单位,则z =( )A. 12+iB. 12-iC. 12-+iD. 12--i 3.已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为 A. 110 B. 55 C. 50 D. 不能确定4.命题:p 2,,22<+∈y x R y x ,命题:q 2||||,,<+∈y x R y x ,则的是q p ( ) A .充分非必要条件 B .必要非充分条件 C .必要充分条件 D .既不充分也不必要条件5.若y x ,满足条件⎪⎩⎪⎨⎧≤≥+-≥-+206202x y x y x ,则目标函数22y x z +=的最小值是( )A .2B .2C .4D .9686.某几何体的三视图如图所示(单位:cm ),则该几何体的体积等于( ) 3cmA .243π+B .342π+ C .263π+ D .362π+7.美索不达米亚平原是人类文明的发祥地之一。
美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的。
程序框图如图所示,若输入ξ,,n a的值分别为8,2,0.5,(每次运算都精确到小数点后两位)则输出结果为( ) A. 2.81 B. 2.82 C. 2.83 D. 2.848.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①α∥β⇒⊥l m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥β其中正确命题的序号是( )A .①②③ B.②③④ C.①③ D.②④9.一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,则摸出的两个都是白球的概率是 ( )A.B.C.D.10.已知平面向量,a b 的夹角为045,(1,1)a =,1b =,则a b +=( )A .2B .3C .4 D11.已知抛物线y 2=2px (p >0)与双曲线=1(a >0,b >0)有相同的焦点F ,点A是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为( ) A .+2 B .+1 C .+1 D .+112.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .1D .12第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是 . 14.在nx x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.15. 在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________. 16.已知函数f (x )=-0.5x 2+4x-3ln x 在[t ,t+1]上不单调,则t 的取值范围是 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6.(1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域.18.(本小题满分12分)在如图所示的多面体ABCDEF 中,四边形ABCD 为正方形,底面ABFE 为直角梯形,ABF ∠为直角,1//,1,2BF AB A BF E ==平面ABCD ⊥平面ABFE . (1)求证:EC DB ⊥;(2)若,AB AE =求二面角B EF C --的余弦值. 20.(本小题满分12分)心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答.选情况如下表:(单位:人)(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?(2)经过多次测试后,女生甲每次解答一道几何题所用的时间在5---7分钟,女生乙每次解答一道几何题所用的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.(3)现从选择几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生中被抽到的人数为X ,求X 的分布列及数学期望()E X .附表及公式()()()()()22n ad bc k a b c d a c b d -=++++ 20.(本小题满分12分)已知椭圆C :)0(12222>>=+b a b y a x 的离心率为22,左焦点为)0,1(-F ,过点)2,0(D 且斜率为k 的直线l 交椭圆于A ,B 两点.(1)求椭圆C 的标准方程;(2)在y 轴上,是否存在定点E ,使⋅恒为定值?若存在,求出E 点的坐标和这个定值;若不存在,说明理由.21(本小题满分12分)已知函数()xexf x e =,()2ln g x ax x a =--(,a R e ∈为自然对数的底数). (1)求()f x 的极值;(2)在区间(0,]e 上,对于任意的0x ,总存在两个不同的12,x x ,使得120()()()g x g x f x ==,求a 的取值范围. 22.选修4-4:坐标系与参数方程(本小题满分10分)在直角坐标系中,曲线:cos sin x r y r θθ=⎧⎨=⎩(为参数,为大于零的常数),以坐标原点为极点,轴的非负半轴为极轴建立坐标系,曲线的极坐标方程为:.(Ⅰ)若曲线与有公共点,求的取值范围;(Ⅱ)若,过曲线上任意一点作曲线的切线,切于点,求的最大值.数学(理科)试卷参考答案一、选择题:ABBAB;DDCBD;DC二、填空题: 13.甲 14. 112 15.14 16.(0,1)∪(2,3) 三、解答题。
2018东北三省三校一模考试数学文科试题
2018东北三省三校一模考试数学文科试题2018东北三省三校一模考试数学文科试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}*2,A x x x N =≤∈,{}2,B y y x x R ==∈,则A B =( ) A.{}0x x ≥ B.{}1x x ≥ C.{}1,2 D.{}0,1,22.已知复数z 满足()12i z i +=,i 为虚数单位,则z 等于( )A.1i -B.1i +C.1122i -D.1122i + 3.在下列向量中,可以把向量()3,1a =-表示出来的是( ) A.()10,0e =,()23,2e = B.()11,2e =-,()23,2e = C.()13,5e =,()26,10e = D.()13,5e =-,()23,5e =-4.在区间()0,3上任取一个实数x ,则22x<的概率是( )A.23B.12C.13D.14 5.抛物线24y x =的焦点到准线的距离为( )A.2B.1C.14D.186.已知,a b 都是实数,p :直线0x y +=与圆()()222x a y b -+-=相切;q :2a b +=,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》,执行该程序框图若输出的4a =,则输入的,a b 不可能为( ) A.4,8 B.4,4 C.12,16 D.15,188.已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭,则下列说法不正确的是( ) A.()f x 的一个周期为2π B.()f x 向左平移3π个单位长度后图象关于原点对称C.()f x 在7,66ππ⎡⎤⎢⎥⎣⎦上单调递减 D.()f x 的图象关于56x π=-对称 9.函数()a f x x x=+(其中a R ∈)的图象不可能是( )A B C D10.如图所示是一个三棱锥的三视图,则此三棱锥的外接球的体积为( )A.43πB.3πC.55πD.6π11.设双曲线()222210,0x y a b a b -=>>的两条渐近线与直线2a x c=分别交于,A B 两点,F 为该双曲线的右焦点,若6090AFB <<∠°°,则该双曲线离心率e 的取值范围是( ) A.()1,2 B.23,⎛⎫+∞ ⎪ ⎪⎝⎭ C.()2,2D.23,2⎛⎫⎪ ⎪⎝使用手机支付的情况,得到如下的22⨯列联表,已知其中从使用手机支付的人群中随机抽取1人,抽到青年的概率为710.(1)根据已知条件完成22⨯列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”? (2)现采用分层抽样从这100名顾客中按照“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本,设事件A 为“从这个样本中任选2人,这2人中至少有1人是不使用手机支付的”,求事件A 发生的概率?()2P K k ≥0.05 0.025 0.010 0.005 0k3.841 5.024 6.635 7.879 22⨯列联表青年 中老年 合计 使用手机支付60 不使用手机支付 24 合计100附:()()()()()22n ad bc Ka b c d a c b d -=++++19.已知圆锥SO ,2SO =,AB 为底面圆的直径,2AB =,点C 在底面圆周上,且OC AB ⊥,E 在母线SC 上,且4SE CE =,F 为SB 中点,M 为弦AC 中点. (1)求证:AC ⊥平面SOM ;(2)求四棱锥O EFBC -的体积.20.已知椭圆()2222:10x y C a b a b+=>>22,()1,0F c -,()2,0F c 为椭圆C 的左、右焦点,M 为椭圆C 上的任意一点,12MF F △的面积的最大值为1,A 、B 为椭圆C 上任意两个关于x 轴对称的点,直线2a x c=与x 轴的交点为P ,直线PB 交椭圆C 于另一点E .(1)求椭圆C 的标准方程;(2)求证:直线AE 过定点. 21.已知函数()34f x x ax =-+,x R ∈. (1)讨论函数()f x 的单调性;(2)若函数()f x 在[]1,1-上的最大值为1,求实数a 的取值集合. 22.已知在极坐标系中曲线1C 的极坐标方程为:4cos ρθ=,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,曲线2C 的参数方程为:1323x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),点()3,0A .(1)求出曲线1C 的直角坐标方程和曲线2C 的普通方程;(2)设曲线1C 与曲线2C 相交于,P Q 两点,求AP AQ ⋅的值. 23.已知函数()2521f x x x =-++. (1)求不等式()1f x x >-的解集;(2)若()1>-对于x R∈恒成立,求实数a的范围.f x a2018年三省三校一模考试文科数学答案一、选择题(本大题共12小题,每小题5分,共60分) 1.C 2.A 3.B 4.C 5.D 6.B 7.D 8.B 9.C 10.C 11.C 12.A二、填空题(本大题共4小题,每小题5分,共20分) 13. //l α或l α⊂ 14. []5,2-- 15.丙 16.22三、解答题(本大题共70分) 17.(本小题满分12分) 解:(Ⅰ)当2≥n 时,3+13232111(22)(22)277n n n nn n aS S ---=-=---=当1=n 时,112a S ==312=2⨯-,符合上式所以32*2()n na n -=∈N .(Ⅱ)由(Ⅰ)得322log 2=32n nb n -=-,所以=+-++⨯+⨯=++++)13)(23(174141111113221n n b b b b b b n n13)1311(31)]131231()7141()411[(31+=+-=+--++-+-n nn n n .18.(本小题满分12分)解:(Ⅰ) 从使用手机支付的人群中随机抽取1人,抽到青年的概率为710 ∴使用手机支付的人群中的青年的人数为7604210⨯=人,则使用手机支付的人群中的中老年的人数为604218-=人,所以22⨯列联表为:2K的观测值2100(42241816)1800=8.86758426040203k ⨯-⨯=≈⨯⨯⨯28.8677.879(7.879)0.005P K >≥=,,故有99.5%的把握认为“市场购物用手机支付与年龄有关”. (Ⅱ) 这100名顾客中采用分层抽样从“使用手机支付”和“不使用手机支付”中抽取得到一个容量 为5的样本中:使用手机支付的人有6053100⨯=人,记编号为1,2,3不使用手机支付的人有2人,记编号为a,b , 则从这个样本中任选2人有(1,2)(1,3)(1,a)(1,b)(2,3)(2,a)(2,b)(3,a)(3,b)(a ,b)共10种其中至少有1人是不使用手机支付的(1,a)(1,b) (2,a)(2,b)(3,a)(3,b)(a,b)共7种,故7()10P A =.青年 中老年 合计使用手机支付42 18 60不使用手机支付16 24 40合计 58 42 10019.(本小题满分12分)(Ⅰ)证明:∵SO ⊥平面ABC ,∴SO AC ⊥, 又∵点M 是圆O 内弦AC 的中点, AC MO ∴⊥,又SO MO O =AC ∴⊥平面SOM(Ⅱ)∵SO ⊥平面ABC ,SO 为三棱锥S OCB -的高,111112323S OCB O SCB V V --∴==⨯⨯⨯⨯=而O EFBCV-与O SCBV-等高,1sin 2215sin 2ESFSCBSE SF ESFS S SC SB CSB ∆∆⨯⨯∠==⨯⨯∠,∴35SCB EFBCSS ∆=四边形因此,33115535O EFBCO SCB VV --==⨯=20.(本小题满分12分) 解:(Ⅰ)2c e a ==,当M 为椭圆C 的短轴端点时,12MF F ∆的面积的最大值为112112c b bc ∴⨯⨯=∴=, 而222ab c =+2,1a b ∴==故椭圆C 标准方程为:2212x y +=(Ⅱ)设112211(,),,),(,)B x y Ex y A x y -(,且12x x ≠,2=2a x c=,(2,0)P ∴由题意知BP 的斜率必存在,设BP :(2)y k x =-,代入2212x y +=得2222(21)8820k x k x k +-+-=∆>得212k<22121222882,2121k k x x x x k k -+=⋅=++12x x ≠∴AE 斜率必存在,AE :121121()y y y yx x x x ++=--由对称性易知直线AE 过的定点必在x 轴上,则当0y =时,得121122112211121212()(2)(2)()4y x x y x y x k x x k x x x x y y y y k x x k-+-+-=+==+++-2222121221228282222()2121=184421k k x x x x k k k x x k -⋅-⋅-+++==+--+即在212k<的条件下,直线AE 过定点(1,0).21. (本小题满分12分) 解:(Ⅰ)2()12f x x a '=-+.当0a =时,3()4f x x =-在R 上单调递减;当0a <时,2()120f x x a '=-+<,即3()4f x xax=-+在R 上单调递减;当0a >时,2()12f x xa'=-+.3(,6a x ∈-∞-时,()0f x '<,()f x 在3(,6a -∞-上递减; 33(a a x ∈时,()0f x '>,()f x 在33()a a上递增;3)ax ∈+∞时,()0f x '<,()f x 在3)a+∞上递减;综上,当0a ≤时,()f x 在R 上单调递减; 当0a >时,()f x 在3(,6a -∞-上递减; 在33(a a 上递增;3)a+∞上递减.(Ⅱ)∵函数()f x 在[1,1]-上的最大值为1. 即对任意[1,1]x ∈-,()1f x ≤恒成立。
2018年黑龙江省普通高等学校招生全国统一考试仿真模拟数学(文)试卷答案(一)
π πö 3 æ ʑf( x x =s i n 2ˑ + = . 1+ 2) 6 3ø 2 è
÷
9. A㊀ n=1, a=1-
所以这组数据的众数为 4 4 5 出现的次数最多 , 5; 最大值是 4 最小值是 1 故极差是 : 7, 2, 3 5.
1 n=2, a=1- =-1; a
1 1, = 2 2
π πö æ 即题图最高点的坐标 ʑs i n 2ˑ + = 1, 2 3ø è 1
ö 为 æ π, 1 , 2 ø è1
ç ÷ ç
πö, æ π, ( , 又x 且 f( x x = x x x f( 1, 2ɪ - 1) 2) 1ʂ 2) è 6 3ø
÷
π π ʑx x ˑ2= , 1+ 2= 1 2 6
x 有关 , 3 x 可构 造 函 数 为 f( e x) =2 e -1, 4 x) > f(
2 π 2 π , ʑ + = k π ʑ k π - , kɪZ, φ= 3 φ 3
原函 数 之 间 没 有 用 变 量 x 联 系 , 可 知 函 数 与 y= 详解答案
9 7
3 x 即 f( 解得 ᶄ( x) =3 x) +3, x) >3, 2 e -1>3, f f(
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
2018哈三中高三一模考试数学(文)
2018届黑龙江省哈尔滨市第三中学高三第一次模拟考试第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合{|24}xA x =≥,集合(){|lg 1}B x y x ==-,则A B ⋂=A. [)1,2B. (]1,2C. [)2,+∞D. [)1,+∞ 2.下列函数中,既是偶函数又在区间()0,1内单调递减的是A.2y x =B.cos y x =C.2xy =D.x y ln =3.在等差数列{}n a 中,若18113=+a a ,公差2=d ,那么5a 等于A. 4B. 5C. 9D. 184.已知()οο15sin ,15cos =OA , ()οο75sin ,75cos ==A. 2D. 15. 过原点且倾斜角为3π的直线被圆0422=-+y y x 所截得的弦长为B. 2C. 6D. 326.设m l ,是两条不同的直线, βα,是两个不同的平面,给出下列条件,其中能够推出l ∥m 的是A. l ∥α,m ⊥β,α⊥βB. l ⊥α,m ⊥β,α∥βC. l ∥α,m ∥β,α∥βD. l ∥α,m ∥β,α⊥β7. 函数()log 31a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-= 上,其中0,0>>n m ,则mn 的最大值为A.21B.41C.81D.161 8. 设n S 是数列{}n a 的前n 项和,若32-=n n a S ,则=n S A. 12+nB. 121-+nC. 323-⋅nD. 123-⋅n9.如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该几何体的体积为A.23B. 2C. 43D. 410.已知1F 、2F 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,点P 为双曲线C 右支上一点,212PF F F =,ο3021=∠F PF ,则双曲线C 的离心率为A. 2B. 12+C. 213+D. 13+10. 11.千年潮未落,风起再扬帆,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦奠定坚实基础,哈三中积极响应国家号召,不断加大拔尖人才的培养力度,据不完全统计:年 份(届) 2014 2015 2016 2017学科竞赛获省级一等奖及以上学生人数x 51 49 55 57被清华、北大等世界名校录取的学生人数y103 96 108 107根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为1.35,我校2018届同学在学科竞赛中获省级一等奖及以上学生人数为63人,据此模型预报我校今年被清华、北大等世界名校录取的学生人数为 A. 111B. 115C.117D.12312.设函数x ax x x f 23ln )(2-+=,若1=x 是函数)(x f 的极大值点,则函数)(x f 的 极小值为A. 22ln -B. 12ln -C. 23ln -D. 13ln -第Ⅱ卷 (非选择题, 共90分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上) 13.已知正方形ABCD 边长为2, M 是CD 的中点,则BD AM ⋅= .14.若实数,x y 满足⎪⎩⎪⎨⎧-≥≥+≤111x y y x y ,则2x y +的最大值为 .15.直线l 与抛物线x y 42=相交于不同两点B A 、,若)4,(0x M 是AB 中点,则直线l 的斜率=k . 16.钝角ABC ∆中,若43π=A ,1=BC ,则AC AB 322+的最大值为 .三、解答题(共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)已知函数2()sin cos f x x x x =+.(1)当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域; (2)已知ABC ∆的内角,,A B C 的对边分别为,,,a bc ()22A f =,4,5a b c =+=,求ABC ∆的面积.18. (本小题满分12分)某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均课外体育锻炼时间在[)40,60的学生评价为“课外体育达标”.A 1(1)请根据上述表格中的统计数据填写下面的22⨯列联表;(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考公式22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++19. (本小题满分12分)如图,直三棱柱111C B A ABC -中,ο120=∠ACB 且21===AA BC AC ,E 是1CC 中点,F 是AB 中点.(1)求证://CF 平面1AEB ; (2)求点B 到平面1AEB 的距离.20. (本小题满分12分)已知F 是椭圆12622=+y x 的右焦点,过F 的直线l 与椭圆相交于),(11y x A ,),(22y x B 两点. (1)若321=+x x ,求AB 弦长;(2)O 为坐标原点,θ=∠AOB ,满足64tan 3=⋅θ,求直线l 的方程.21. (本小题满分12分) 已知函数11ln )(--+-=xaax x x f . (1)当1-=a 时,求曲线)(x f y =在点))2(,2(f 处的切线方程; (2)当21≤a 时,讨论)(x f 的单调性. 请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程(本小题满分10分) 在极坐标系中,曲线1C 的方程为22312sin ρθ=+,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,曲线2C 的方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 21232(t 为参数). (1)求曲线1C 的参数方程和曲线2C 的普通方程; (2)求曲线1C 上的点到曲线2C 的距离的最大值. 23.选修4-5:不等式选讲(本小题满分10分) 已知函数()22f x x a x =--+. (1)当1a =时,求不等式()0f x ≥的解集; (2)当2a =时,函数()f x 的最小值为t ,114t m n+=- (0,0)m n >>,求m n +的最小值.A12018哈三中第一次模拟考试文科数学答案二、填空题13. 214. 5 15. 2116. 10 三、解答题17.(1)题意知,由2()sin cossin(2)32f x x x x x π=+=-+∵0,3x π⎡⎤∈⎢⎥⎣⎦,∴2,333x πππ⎡⎤-∈-⎢⎥⎣⎦,∴sin(2)3x π⎡-∈⎢⎣⎦可得()f x ⎡∈⎣(2)∵()22Af =,∴sin()03A π-=,∵()0,A π∈可得3A π= ∵4,5a b c =+=,∴由余弦定理可得22216()3253b c bc b c bc bc =+-=+-=-∴3bc = ∴1sin 2ABC S bc A ∆==18. (1)(2) 22200(60203090)2006.060 6.635150509011033K ⨯-⨯===<⨯⨯⨯ 所以在犯错误的概率不超过0.01的前提下不能判断“课外体育达标”与性别有关. 19. (1)取1AB 中点G ,连结FG EG 、,则FG ∥1BB 且121BB FG =. 因为当E 为1CC 中点时,CE ∥1BB 且121BB CE =,所以FG ∥CE 且=FG CE .所以四边形CEGF 为平行四边形,CF ∥EG ,又因为1AEB CF 平面⊄,1AEB EG 平面⊂, 所以//CF 平面1AEB ;(2)因为ABC ∆中,BC AC =,F 是AB 中点,所以AB CF ⊥.又因为直三棱柱111C B A ABC -中,1BB CF ⊥,B BB AB =1I , 所以1ABB CF 平面⊥,C 到1ABB 平面的距离为1=CF .因为//1CC 平面1ABB ,所以E 到1ABB 平面的距离等于C 到1ABB 平面的距离等于1. 设点B 到平面1AEB 的距离为d .11ABB E AEB B V V --=,1313111⨯⨯=⨯⨯ABB AEB S d S ,易求321=ABB S ,21=AEB S ,解得3=d .点B 到平面1AEB 的距离为3.20.(1) 061212)13()2(63222222=-+-+⇒⎩⎨⎧-==+k x k x k x k y y x 613221=⇒=⇒=+AB k x x(2) 36264tan 3=⇒=⋅∆AOB S OB OA θ ()233,2-±==⇒x y x 21. (1) 22ln )2(,1)2(+=='f f 所求切线方程为02ln =+-y x(2) 221)(11ln )(x ax ax x f x a ax x x f -+--='⇒--+-= 11,10)(21-==⇒='ax x x f 0≤a 时)(x f 在)1,0(递减, ),1(+∞递增21=a 时)(x f 在),0(+∞递减 210<<a 时,)(x f 在)1,0(递减,在)11,1(-a 递增,在),11(+∞-a 递减22. (1)曲线1C 的参数方程为1:sin x C y αα⎧=⎪⎨=⎪⎩(α为参数)曲线2C 的普通方程为20x -=(2)设曲线1C 上任意一点(3cos ,sin )P αα,点P 到320x y --=的距离6cos()23cos 3sin 24d πααα+---==∵626cos()2624πα--≤+-≤- ∴6202d +≤≤所以曲线1C 上的点到曲线2C 的距离的最大值为62+ 23.(1)当1a =时,不等式为2120212x x x x --+≥⇔-≥+两边平方得224(1)(2)x x -≥+,解得4x ≥或0x ≤∴()0f x ≥的解集为(][),04,-∞⋃+∞ (2)当2a =时,6,2,()22223,226,2x x f x x x x x x x -≤-⎧⎪=--+=--<<⎨⎪-≥⎩,可得4t =-,∴1144m n+=(0,0)m n >> ∴111()44m n m n m n ⎛⎫+=++ ⎪⎝⎭1515914444416n m m n ⎛⎫⎛⎫=++≥+= ⎪ ⎪⎝⎭⎝⎭ 当且仅当2m n =,即316n =,38m =时取等号.。
黑龙江省哈尔滨市第三中学校2018届高三数学一模考试试题文(含解析)
黑龙江省哈尔滨市第三中学校2018届高三一模考试数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,集合,则()A. B. C. D.【答案】C【解析】∵集合,集合∴故选C.2. 下列函数中,既是偶函数又在区间内单调递减的是()A. B. C. D.【答案】B【解析】对于,是偶函数,在区间单调递增,故排除;对于,是偶函数,在区间单调递减,故正确;对于,是非奇非偶函数,在区间单调递增,故排除;对于,是非奇非偶函数,在区间单调递减,故排除.故选B.3. 在等差数列中,若,公差,那么等于()A. 4B. 5C. 9D. 18【答案】B【解析】∵,公差∴∴∴故选B.4. 已知,,则()A. 2B.C.D. 1【答案】D【解析】∵,∴故选D5. 过原点且倾斜角为的直线被圆所截得的弦长为()A. B. 2 C. D.【答案】D【解析】,即。
依题意可得,直线方程为,则圆心到直线的距离,所以直线被圆所截得的弦长为,故选D6. 设是两条不同的直线,是两个不同的平面,给出下列条件,其中能够推出的是()A. ,,B. ,,C. ,,D. ,,【答案】B【解析】由,,可推出与平行、相交或异面,由可推出∥.故选B7. 函数(且)的图象恒过定点,若点在直线上,其中,则的最大值为()A. B. C. D.【答案】D【解析】∵由得∴函数(且)的图像恒过定点∵点在直线上∴∵,当且仅当时取等号∴∴最大值为故选D.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 设是数列的前项和,若,则()A. B. C. D.【答案】C【解析】当时,,解得.当时,,,则,即.∴数列是首项为,公比为的等比数列∴故选C.9. 如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该几何体的体积为()A. B. 2 C. D. 4【答案】A【解析】由三视图可知该几何体为三棱锥(如图所示),其中,到平面的距离为1,故所求的三棱锥的体积为.故选:A10. 已知、为双曲线:的左、右焦点,点为双曲线右支上一点,,,则双曲线的离心率为()A. B. C. D.【答案】C【解析】根据题意作图如下:设.∵∴∵由双曲线焦半径公式知,∴∴故选C.点睛:本题考查了双曲线的几何性质,离心率的求法,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得(的取值范围).11. 千年潮未落,风起再扬帆,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦奠定坚实基础,哈三中积极响应国家号召,不断加大拔尖人才的培养力度,据不完全统计:根据上表可得回归方程中的为1.35,我校2018届同学在学科竞赛中获省级一等奖以上学生人数为63人,据此模型预报我校今年被清华、北大等世界名校录取的学生人数为()A. 111B. 115C. 117D. 123【答案】C【解析】由题意得,.∵数据的样本中心点在线性回归直线上,中的为1.35∴,即∴线性回归方程是∵我校2018届同学在学科竞赛中获省级一等奖以上学生人数为63人∴我校今年被清华、北大等世界名校录取的学生人数为故选C.点睛:本题考查的知识是线性回归方程.回归直线方程中系数的两种求法①公式法:利用公式,求出回归系数;②待定系数法:利用回归直线过样本点中心求系数.12. 设函数,若是函数是极大值点,则函数的极小值为()A. B. C. D.【答案】A【解析】∵∴∵是函数是极大值点∴∴∴∴∴当时,,当时,∴当时取极小值为故选A.点睛:本题主要考查函数的极值,属于中档题.求函数极值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.二、填空题(每题4分,满分20分,将答案填在答题纸上)13. 已知正方形边长为2,是的中点,则______.【答案】2【解析】根据题意. 故正确答案为.14. 若实数满足,则的最大值为_______.【答案】5【解析】作出不等式组表示的平面区域,得到如图的及其内部:其中,,,设,将直线进行平移,当经过点时,目标函数达到最大值,此时.故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15. 直线与抛物线相交于不同两点,若是中点,则直线的斜率_______.【答案】【解析】设,∵直线与抛物线相交于不同两点∴,,则两式相减得∵是中点∴∴故答案为.16. 钝角中,若,,则的最大值为_______.【答案】【解析】在钝角中,若,,由正弦定理可得. ∴,∴,其中∵∴∴当时,的最大值为故答案为.点睛:本题求最值利用三角函数辅助角公式将函数化为的形式,利用求最值,其中的取值需结合数值以及符号确定.三、解答题(本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知函数.(1)当时,求的值域;(2)已知的内角的对边分别为,,,求的面积.【答案】(1) (2)【解析】试题分析:(1)利用三角恒等变换化简函数的解析式,结合,即可求得的值域;(2)由求得的值,利用余弦定理求得的值,可得的面积.试题解析:(1)由题意知,由.∵∴∴∴(2)∵∴∵∴∵,∴由余弦定理可得∴∴18. 某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.(1)请根据上述表格中的统计数据填写下面的列联表;课外体育不达标课外体育达标合计男女20 110合计(2)通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?参考格式:,其中0.025 0.15 0.10 0.005 0.025 0.010 0.005 0.0015.024 2.0726.6357.879 5.024 6.635 7.879 10.828【答案】(1)见解析;(2)见解析.【解析】试题分析:(1)根据所给数据,可得列联表;(2)根据关联表,代入公式计算,与临界值比较即可得出结论.试题解析:(1)(2)所以在犯错误的概率不超过的前提下不能判断“课外体育达标”与性别有关.19. 如图,直三棱柱中,且,是棱中点,是的中点.(1)求证:平面;(2)求点到平面的距离.【答案】(1)见解析(2)【解析】试题分析:(1)取中点,连结,则∥且,根据为中点,可推出四边形为平行四边形,即可得证平面;(2)根据及是的中点,可得,即可得到到的距离,从而得到到的距离,再根据,即可求出点到平面的距离......................试题解析:(1)取中点,连结,则∥且.∵当为中点时,∥且,∴∥且.∴四边形为平行四边形,则∥又∵,,∴平面;(2)∵中,,是中点∴.又∵直三棱柱中,,,∴,且到的距离为.∵平面∴到的距离等于到的距离等于.设点到平面的距离为.∵∴,易求,,解得.∴点到平面的距离为.点睛:本题主要是利用等体积法来求解几何体的高,特别是在求三棱锥的高时,等体积法回避了通过具体作图得到三棱锥的高,而通过直接计算得到高的数值,本题解答的关键是通过,进而求出点到平面的距离.20. 已知是椭圆的右焦点,过的直线与椭圆相交于,两点.(1)若,求弦长;(2)为坐标原点,,满足,求直线的方程.【答案】(1) (2)【解析】试题分析:(1)由题意可知过的直线斜率存在,设直线的方程为,联立直线与椭圆的方程,得关于的一元二次方程,由及韦达定理可得的值,从而求出弦长;(2)由可得,即,设直线的方程为,联立直线与椭圆的方程,结合韦达定理即可求出的值,从而求出直线的方程. 试题解析:(1)由题意可知过的直线斜率存在,设直线的方程为联立,得∵∴,则∴(2)∵∴∴,即设直线的方程为,联立,得∴,∴,即∴或∴直线的方程为点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.21. 已知函数.(1)当时,求曲线在点处的切线方程;(2)当时,讨论的单调性.【答案】(1) (2)见解析【解析】试题分析:本题主要考查导数的运算、利用导数求曲线的切线方程、利用导数求函数的单调性等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,先将代入得到表达式,对求导,将切点的横坐标2代入中得到切线的斜率k,再将切点的横坐标2代入到中,得到切点的纵坐标,最后利用点斜式写出切线方程;第二问,讨论的单调性即讨论的正负,即讨论导数表达式分子的正负,所以构造函数,通过分析题意,将分成、、、多种情况,分类讨论,判断的正负,从而得到的单调性.试题解析:(1)当时,6分(2)因为,所以,令8分(i)当a=0时,所以当时g(x)>0,此时函数单调递减,x∈(1,∞)时,g(x)<0,此时函数f,(x)单调递增。
2018年黑龙江省齐齐哈尔市高考一模数学试卷(文科)【解析版】
三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题 为必考题,每个试题考生都必须作答,第 22、23 题为选考题,考生根据要求
第 3 页(共 19 页)
作答.(一)必考题:共 60 分. 17 . ( 12 分)在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c .满足 2acosC+bcosC+ccosB=0. (Ⅰ)求角 C 的大小; (Ⅱ)若 a=2,△ABC 的面积为 ,求 c 的大小.
=( B.
) C. D.
5. (5 分)已知等差数列{an}的前 n 项和为 Sn,若 a3=3,S4=14.则{an}的公差 为( A.1 ) B.﹣1 C.2 D.﹣2
6. (5 分)圆 x2+y2﹣2x﹣4y+3=0 的圆心到直线 x﹣ay+1=0 的距离为 2,则 a= ( ) B.0 C.1 D.2 ) D.c<b<a )
2018 年黑龙江省齐齐哈尔市高考数学一模试卷(文科)
一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选 项中,只有一项是符合题目要求的. 1. (5 分)设集合 A={1,2,3},B={x[3x>4},则 A∩B=( A.{1,2} 2. (5 分)设 z= A.1 B.{2,3} C.{1,3} ) D.﹣3 )
A.﹣1
7. (5 分)若 a,b,c 满足 2a=3,b=log25,3c=2.则( A.c<a<b B.b<c<a C.a<b<c
8. (5 分)函数 f(x)=(2x﹣2﹣x)cosx 在区间[﹣5,5]上的图象大致为(
第 1 页(共 19 页)
A.
B.
青冈县一中2018-2019学年上学期高三数学10月月考试题
青冈县一中2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 棱长为的正方体的8个顶点都在球的表面上,则球的表面积为( )2O O A .B .C .D .π4π6π8π102. 某工厂产生的废气经过过虑后排放,过虑过程中废气的污染物数量(单位:毫克/升)与时间(单位:P t 小时)间的关系为(,均为正常数).如果前5个小时消除了的污染物,为了消除0e ktP P -=0P k 10%27.1%的污染物,则需要( )小时.A. B. C. D. 8101518【命题意图】本题考指数函数的简单应用,考查函数思想,方程思想的灵活运用,体现“数学是有用的”的新课标的这一重要思想.3. 过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( )A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=04. 以下四个命题中,真命题的是( )A .2,2x R x x ∃∈≤- B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++< C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+ D .已知,表示两条不同的直线,,表示不同的平面,并且,,则“”是m n αβm α⊥n β⊂αβ⊥ “”的必要不充分条件//m n 【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.5. 下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( )A .y=2x 3B .y=|x|+1C .y=﹣x 2+4D .y=2﹣|x|6. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 307. 已知函数,其中,为自然对数的底数.当时,函数()e sin xf x x =x ∈R e 2.71828= [0,]2x π∈()y f x =的图象不在直线的下方,则实数的取值范围()y kx =k A . B . C . D .(,1)-∞(,1]-∞2(,e )π-∞2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.8. 已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则=()A .﹣1B .2C .﹣5D .﹣39. 若满足约束条件,则当取最大值时,的值为( )y x ,⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x 31++x y y x +A . B . C . D .1-3-310.已知函数()在定义域上为单调递增函数,则的最小值是( )2()2ln 2f x a x x x =+-a R ∈A .B .C .D.141211.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S()A .2B .4C .1D .﹣112.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则点轨迹方程为()O P A . B . C . D .86210x y --=86210x y +-=68210x y +-=68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.二、填空题13.在正方形中,,分别是边上的动点,当时,则ABCD 2==AD AB N M ,CD BC ,4AM AN⋅=MN的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.14.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值;④当x=﹣1时,(i ,j )有2种不同取值;⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号) 15.函数在区间上递减,则实数的取值范围是 .2()2(1)2f x x a x =+-+(,4]-∞16.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .17.已知圆的方程为,过点的直线与圆交于两点,若使C 22230x y y +--=()1,2P -C ,A B AB最小则直线的方程是 .三、解答题18.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐x l 标方程为,曲线的极坐标方程为.cos sin 2ρθρθ-=C 2sin 2cos (0)p p ρθθ=>(1)设为参数,若,求直线的参数方程;t 2x =-+l (2)已知直线与曲线交于,设,且,求实数的值.l C ,P Q (2,4)M --2||||||PQ MP MQ =⋅p 19.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n .20.如图,四棱锥中,,P ABC -,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====M为线段上一点,为的中点.AD 2,AM MD N PC(1)证明:平面;//MN PAB (2)求直线与平面所成角的正弦值;AN PMN 21.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BC ⊥CF ,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF ⊥平面DCE ;(Ⅱ)当AB 的长为何值时,二面角A ﹣EF ﹣C 的大小为60°.22.(本题满分12分)如图1在直角三角形ABC 中,∠A=90°,AB=2,AC=4,D ,E 分别是AC ,BC 边上的中点,M 为CD 的中点,现将△CDE 沿DE 折起,使点A 在平面CDE 内的射影恰好为M .(I )求AM 的长;(Ⅱ)求面DCE 与面BCE 夹角的余弦值.23.已知三棱柱ABC ﹣A 1B 1C 1,底面三角形ABC 为正三角形,侧棱AA 1⊥底面ABC ,AB=2,AA 1=4,E 为AA 1的中点,F 为BC 的中点(1)求证:直线AF ∥平面BEC 1(2)求A 到平面BEC 1的距离.24.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐{x =1+3cos αy =2+3sin α)标系,C 2的极坐标方程为ρ=.2sin (θ+π4)(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面3π4积.青冈县一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】B【解析】考点:球与几何体2.【答案】15【解析】3.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=﹣5,∴直线方程是:2x+y﹣5=0,故选:A.4.【答案】D5. 【答案】B【解析】解:对于A .y=2x 3,由f (﹣x )=﹣2x 3=﹣f (x ),为奇函数,故排除A ;对于B .y=|x|+1,由f (﹣x )=|﹣x|+1=f (x ),为偶函数,当x >0时,y=x+1,是增函数,故B 正确;对于C .y=﹣x 2+4,有f (﹣x )=f (x ),是偶函数,但x >0时为减函数,故排除C ;对于D .y=2﹣|x|,有f (﹣x )=f (x ),是偶函数,当x >0时,y=2﹣x ,为减函数,故排除D .故选B . 6. 【答案】C 【解析】解:a n ==1+,该函数在(0,)和(,+∞)上都是递减的,图象如图,∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a 10,a 9.故选:C .【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.7. 【答案】B【解析】由题意设,且在时恒成立,而()()e sin xg x f x kx x kx =-=-()0g x ≥[0,]2x π∈.令,则,所以在上递'()e (sin cos )x g x x x k =+-()e (sin cos )x h x x x =+'()2e cos 0x h x x =≥()h x [0,]2π增,所以.当时,,在上递增,,符合题意;当21()h x e π≤≤1k ≤'()0g x ≥()g x [0,]2π()(0)0g x g ≥=时,,在上递减,,与题意不合;当时,为一2e k π≥'()0g x ≤()g x [0,]2π()(0)0g x g ≤=21e k π<<()g x '个递增函数,而,,由零点存在性定理,必存在一个零点,使得'(0)10g k =-<2'(e 02g k ππ=->0x ,当时,,从而在上单调递减,从而,与题0'()0g x =0[0,)x x ∈'()0g x ≤()g x 0[0,)x x ∈()(0)0g x g ≤=意不合,综上所述:的取值范围为,故选B .k (,1]-∞8. 【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f ′(x )=0的两个根,∵f (x )=ax 3+bx 2+cx+d ,∴f ′(x )=3ax 2+2bx+c ,由f ′(x )=3ax 2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a ,2b=﹣3a ,即f ′(x )=3ax 2+2bx+c=3ax 2﹣3ax ﹣6a=3a (x ﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力. 9. 【答案】D 【解析】考点:简单线性规划.10.【答案】A 【解析】试题分析:由题意知函数定义域为,,因为函数),0(+∞2'222()x x a f x x++=2()2ln 2f x a x x x=+-()在定义域上为单调递增函数在定义域上恒成立,转化为在a R ∈0)('≥x f 2()222h x x x a =++),0(+∞恒成立,,故选A. 110,4a ∴∆≤∴≥考点:导数与函数的单调性.11.【答案】 A【解析】解:∵椭圆方程为+=1,∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),∴双曲线方程为,设点P (x ,y ),记F 1(﹣3,0),F 2(3,0),∵=,∴=,整理得:=5,化简得:5x=12y ﹣15,又∵,∴5﹣4y 2=20,解得:y=或y=(舍),∴P (3,),∴直线PF 1方程为:5x ﹣12y+15=0,∴点M 到直线PF 1的距离d==1,易知点M 到x 轴、直线PF 2的距离都为1,结合平面几何知识可知点M (2,1)就是△F 1PF 2的内心.故﹣===2,故选:A .【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题. 12.【答案】D【解析】由切线性质知,所以,则由,得,PQ CQ ⊥222PQ PC QC =-PQ PO =,化简得,即点的轨迹方程,故选D ,2222(3)(4)4x y xy -++-=+68210x y --=P 二、填空题13.【答案】2](,)上的点到定点,最大值为,故的取值02x ££02y ££(,)x y (2,2)2MN 范围为.2]x14.【答案】 ①③⑤ 【解析】解:建立直角坐标系如图:则P 1(0,1),P 2(0,0),P 3(1,0),P 4(1,1).∵集合M={x|x=且i ,j ∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i ,j ∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i ,j )有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i ,j )有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i ,j )有4种不同取值;当x=﹣1时,(i ,j )有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M 中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题. 15.【答案】3a ≤-【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以()f x 1x a =-(,4]-∞.14,3a a -≥≤-考点:二次函数图象与性质.16.【答案】﹣2≤a ≤2【解析】解:原命题的否定为“∀x ∈R ,2x 2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a 2﹣4×2×9≤0,解得:﹣2≤a ≤2.故答案为:﹣2≤a ≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用. 17.【答案】30x y -+=【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距C 22230x y y +--=(0,1)C ()1,2P -,小于圆的半径,所以点在圆内,所以当时,最小,此时()1,2P -AB CP ⊥AB ,由点斜式方程可得,直线的方程为,即.11,1CP k k =-=21y x -=+30x y -+=考点:直线与圆的位置关系的应用.三、解答题18.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.19.【答案】【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:2a2=a1+a3﹣1,∴,∴2q=q2,∵q≠0,∴q=2,∴;(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.n≥2时,由b1+2b2+3b3+…+nb n=a n ①b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.20.【答案】(1)证明见解析;(2.【解析】试题解析:(2)在三角形中,由,得AMC 22,3,cos 3AM AC MAC ==∠=,2222cos 5CM AC AM AC AN MAC =+-∠=A A ,则,222AM MC AC +=AM MC ⊥∵底面平面,PA ⊥,ABCD PA ⊂PAD ∴平面平面,且平面平面,ABCD ⊥PAD ABCD PAD AD =∴平面,则平面平面,CM ⊥PAD PNM ⊥PAD 在平面内,过作,交于,连结,则为直线与平面所成角。
黑龙江省青冈县2018届高三数学第一次模拟考试试题理
2017-2018高三学年第一次模拟数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}034|{2≥++=x x x A ,}12|{<x x B =,则=B A ( )A .)0,1[]3,(---∞B .]1,3[--C .]0,1(]3,(---∞D .)0,(-∞ 2.若复数z 满足232+=-z z i , 其中i 为虚数单位,则z =( )A. 12+iB. 12-iC. 12-+iD. 12--i 3.已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为 A. 110 B. 55 C. 50 D. 不能确定4.命题:p 2,,22<+∈y x R y x ,命题:q 2||||,,<+∈y x R y x ,则的是q p ( ) A .充分非必要条件 B .必要非充分条件 C .必要充分条件 D .既不充分也不必要条件5.若y x ,满足条件⎪⎩⎪⎨⎧≤≥+-≥-+206202x y x y x ,则目标函数22y x z +=的最小值是( )A .2B .2C .4D .9686.某几何体的三视图如图所示(单位:cm ),则该几何体的体积等于( )3cmA .243π+B .342π+ C .263π+ D .362π+7.美索不达米亚平原是人类文明的发祥地之一。
美索不达米亚人善于计算,他们创造了优良的计数系统,其中开平方算法是最具有代表性的。
程序框图如图所示,若输入ξ,,n a的值分别为8,2,0.5,(每次运算都精确到小数点后两位)则输出结果为( )A. 2.81B. 2.82C. 2.83D. 2.84 8.已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题:①α∥β⇒⊥l m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥β 其中正确命题的序号是( )A .①②③ B.②③④ C.①③ D.②④9.一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,则摸出的两个都是白球的概率是 ( ) A.B.C.D.10.已知平面向量,a b 的夹角为045,(1,1)a =,1b =,则a b +=( )A .2B .3C .4 D11.已知抛物线y 2=2px (p >0)与双曲线=1(a >0,b >0)有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,则双曲线的离心率为( ) A .+2 B .+1 C .+1 D .+112.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .1D .12第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是 . 14.在n x x ⎪⎭⎫ ⎝⎛-23的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.15. 在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________. 16.已知函数f (x )=-0.5x 2+4x-3ln x 在[t ,t+1]上不单调,则t 的取值范围是 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数f (x )=2sin x sin ⎝⎛⎭⎪⎫x +π6.(1)求函数f (x )的最小正周期和单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,求函数f (x )的值域.18.(本小题满分12分)在如图所示的多面体ABCDEF 中,四边形ABCD 为正方形,底面ABFE 为直角梯形,ABF ∠为直角,1//,1,2BF AB A BF E ==平面ABCD ⊥平面ABFE . (1)求证:EC DB ⊥;(2)若,AB AE =求二面角B EF C --的余弦值. 20.(本小题满分12分)心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何和代数各一题,让各位同学自由选择一道题进行解答.选情况如下表:(单位:人)(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?(2)经过多次测试后,女生甲每次解答一道几何题所用的时间在5---7分钟,女生乙每次解答一道几何题所用的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.(3)现从选择几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生中被抽到的人数为X ,求X 的分布列及数学期望()E X .附表及公式()()()()()22n ad bc k a b c d a c b d -=++++20.(本小题满分12分)已知椭圆C :)0(12222>>=+b a b y a x 的离心率为22,左焦点为)0,1(-F ,过点)2,0(D 且斜率为k 的直线l 交椭圆于A ,B 两点.(1)求椭圆C 的标准方程;(2)在y 轴上,是否存在定点E ,使⋅恒为定值?若存在,求出E 点的坐标和这个定值;若不存在,说明理由.21(本小题满分12分)已知函数()xexf x e =,()2ln g x ax x a =--(,a R e ∈为自然对数的底数). (1)求()f x 的极值;(2)在区间(0,]e 上,对于任意的0x ,总存在两个不同的12,x x ,使得120()()()g x g x f x ==,求a 的取值范围. 22.选修4-4:坐标系与参数方程(本小题满分10分)在直角坐标系中,曲线:cos sin x r y r θθ=⎧⎨=⎩(为参数,为大于零的常数),以坐标原点为极点,轴的非负半轴为极轴建立坐标系,曲线的极坐标方程为:.(Ⅰ)若曲线与有公共点,求的取值范围;(Ⅱ)若,过曲线上任意一点作曲线的切线,切于点,求的最大值.数学(理科)试卷参考答案 一、选择题:ABBAB;DDCBD;DC二、填空题: 13.甲 14. 112 15.14 16.(0,1)∪(2,3) 三、解答题。
2018届黑龙江省齐齐哈尔市高三第一次模拟考试 数学(文)试题word版含解析
2018届黑龙江省齐齐哈尔市高三第一次模拟考试 数学(文)试题一、单选题1.设集合A={1,2,3},B={x[3x >4},则A ⋂B= A. {1,2} B. {2,3} C. {1,3} D. {1,2,3} 2.设z=3ii+,i 是虚数单位,则z 的虚部为 A. 1 B. 一1 C. 3 D. -33.某校连续12天对同学们的着装进行检查,着装不合格的人数用茎叶图表示,如图,则该组数据的中位数是A. 24B. 26C. 27D. 32 4.将函数y=sin(2x-4∏)的图象向左平移6∏个单位后,得到函数f (x )的图象,则f (12∏)=A.B. C. D. 25.已知等差数列{a n }的前n 项和为S.,若a 3=3,S 4=14.则{a n }的公差为 A. 1 B. 一1 C. 2 D. -26.圆x 2+y 2-2x-4y+3=0的圆心到直线x-ay+1=0的距离为2,则a= A. -1 B. O C. 1 D. 27.若a.b.c 满足a2=3,b=2log 5. 3c =2.则 A. c<a<b B. b<c<aC. a<b<cD. c<b<a8.函数f(x)=(2x-2-x )cosx 在区间[-5,5]上的图象大致为A. B. C. D.9.我国南宋时期的数学家秦九部(约1202-1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法,如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输人的n=5,v=1,x=2,则程序框图计算的是A. 25+24+23+22+2+1B. 25+24+23+22+2+5C. 26+25+24+23+22+2+1D. 24+23+22+2+110.如图,网格纸上小正方形的边长为1,图中画出的是某几何体的三视图,则该几何体的表面积为11.已知直三棱柱ABC-A1B1C1的底面为等腰直角三角形,∠ABC-90。
青冈县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
青冈县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.经过两点,的直线的倾斜角为( )A .120°B .150°C .60°D .30°2. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( ) ①三棱锥M ﹣DCC 1的体积为定值 ②DC 1⊥D 1M ③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④3. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}的元素个数为( )A .4B .5C .6D .94. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 5. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在02π⎡⎤-⎢⎥⎣⎦,上单调递增,则实数的取值范围为( )A .117⎡⎤⎢⎥⎣⎦,B .117⎡⎤-⎢⎥⎣⎦,C.1(][1)7-∞-+∞,,D .[1)+∞, 6. 等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( )A .6B .9C .36D .727. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C. (1,3) D .(3,)+∞ 8. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2D .2 59. 设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )43π ( B ) 83π (C ) 4π (D ) 8π11.函数f (x )=log 2(x+2)﹣(x >0)的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,e ) D .(3,4)12.62)21(x x -的展开式中,常数项是( ) A .45- B .45 C .1615- D .1615二、填空题13.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .14.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .15.函数f (x )=x 2e x 在区间(a ,a+1)上存在极值点,则实数a 的取值范围为 .16.函数f (x )=的定义域是 .17.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)18.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是 米.(太阳光线可看作为平行光线)三、解答题19.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).(1)求函数f (x )的定义域;(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.20.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;(2)令()()g x xf x =,区间1522,D e e -⎛⎫= ⎪⎝⎭,e 为自然对数的底数。
2018年黑龙江省绥化市青冈一中高考一模试卷语文
2018年黑龙江省绥化市青冈一中高考一模试卷语文一、现代文阅读(21分)(9分)论述类文本阅读,阅读下面的文字,完成问题。
自拍和镜子、肖像画一样,塑造着人们的自我意识,同时自拍也催生了自我意识的分裂。
在玻璃镜子被发明之前,古人其实很难清晰地看到自己的模样。
普通人只能从昏暗而晃动的水面中看到自己的模样。
历史学家莫蒂默认为,玻璃镜子虽小,但它在14世纪被威尼斯人发明的时刻,在人类历史上有着重要的意义。
几千年来,人类终于可以第一次如此清晰、完整、便捷地看到自己的模样。
这同时也就意味着,人类第一次清晰地了解到自己在他人眼中的形象。
这种神奇的发明极大地促进了人类自我意识、个人意识的增长。
以西欧为例,此前,人们更多是通过自己的家族、教堂、领主、行业公会来定义自己的身份。
而镜子的发明则让人们开始更多地面对自我,更经常地思考自己的身份,更频繁地从个体化的角度来回答“我是谁”这个问题。
也就是说,个人主义思潮的萌芽和镜子的发明也许不无关系。
镜子的出现也和艺术史上肖像画的热潮有着紧密的联系。
莫蒂默说,在西欧,镜子让人们更清晰地认识到个人外貌的独特性和重要性,从而催生了肖像画的流行。
尤其是处于社会上层的人,非常乐于邀请画家为自己绘制肖像。
这些肖像成为身份和地位的象征,它们赤裸裸地向观众传递着这样的信息:不管我长得美还是丑,反正我很重要,请看着我!无论是镜子还是肖像画,都是技术和媒介塑造自我意识的典型例子。
当人们从镜子中看到自己,当人们被呈现在肖像画中供人观看,人们看待自我的方式都在悄悄发生变化。
在今天这个时代,和镜子、肖像画一脉相承的媒介技术是自拍。
可以说,自拍是镜子和肖像画的结合体。
一方面,当人们拿起手机,用前置摄像头对准自己的时候,人们清晰地看到自己的容貌,这甚至比照镜子都更有用,经常自拍的人对自己脸上最漂亮和最需遮掩的细节都了如指掌;另一方面,自拍的下一步往往是上传到社交媒体等待点赞,这就类似于几百年前的上流社会人士公开展示自己的肖像画,期待他人的重视和欣赏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学成绩 为优秀的人数比及格的人数少 ”的数对 (a ,b) 的概率.
)
x1 x2
A. 2e
B
.e C .1
D
.1
2
第Ⅱ卷(非选择题 共 90 分)
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在横线上
13.已知 cos
2 2,
, 3 ,则 tan
.
2
3
22
14.某珠宝店丢了一件珍贵珠宝 ,以下四人中只有一人说真话 ,只有一人偷了珠宝 .甲 :我没有偷 ;
2y x≥ 1
D. m // n,l1 n
)
A. 1,2
B . 2,5 C . 2,6
D . 1,6
9.已知平面向量 a,b 的夹角为 450 , a (1,1), b 1,则 a b ( )
A. 2 B . 3 C . 4 D . 5
10.若函数 y= f(x)的导函数 y= f′x()的图象如图所示,则 y= f(x)的图象可能为 ( )
(Ⅱ)抽的 100 人的数学与地理的水平测试成绩如下表:
人数
数学
优秀
良好
及格
优秀
7
地
良好
9
理
及格
a
20
5
18
6
4
b
成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,
例如:表中数学成绩为良好的共有 20 18 4 42 人,若在该样本中,数学成绩优秀率
为 30% ,
求 a ,b 的值. (Ⅲ) 将 a≥ 10 ,b ≥8 的 a ,b 表示成有序数对 ( a ,b) ,求 “在地理成绩为及格的学生中,
3 个人的编号;
(下面摘取了第 7 行 至第 9 行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
乙 :丙 是 小 偷 ;丙 :丁 是 小 偷 ; 丁 : 我 没 有 偷 .根 据 以 上 条 件 ,可 以 判 断 偷 珠 宝 的 人
是
.
15. 在正项等比数列 { an} 中,已知 a1a2a3= 4,a4a5a6= 12,an -1anan+1= 324,则 n= ________.
16. 函数 f(x)= x3- 3ax+b(a> 0)的极大值为 6,极小值为 2,则 f(x)的单调递减区间是 ________
B . [ 3, 1] C. ( , 3] ( 1,0]
D. ( ,0)
2.已知 z 满足 zi z 2 ,则 z 在复平面内对应的点为(
)
A . (1, 1)
B . (1, 1)
C. ( 1,1)
D . ( 1, 1)
3.已知数列 an 为等差数列,其前 n项和为 Sn , 2a7 a8 5 ,则 S11 为
11. 已知抛物线 y 2=2px( p>0)与双曲线
=1( a> 0, b> 0)有相同的焦点 F,点 A 是
两曲线的一个交点,且 AF⊥ x 轴,则双曲线的离心率为 ( )
A . +2
B . +1
C . +1
D . +1
12.若对于任意的 0 x1 x2 a ,都有 x2 ln x1 x1 ln x2 1,则 a 的最大值为(
C
18.(本大题满分 12 分)
F
如图,在三棱柱 ABC A1B1C1 中,侧棱垂直于底面,
AB
BC , AA1
B
AC 2 ,
BC 1,
E 、 F 分别为 A1C1 、 BC 的中点 .
( 1)求证:平面 ABE 平面 B1BCC1 ;( 2)求证: C1F // 平面 ABE ;
( 3)求三棱锥 C1 ABE 的体积 .
三、解答题: 6 大题,共 70 分.解答应写出文字说明,证明过程或演算步骤 .
17. (本小题满分 12 分 ) π
已知函数 f (x)= 2sin xsin x+ 6 .
A1
E
C1
B1
(1) 求函数 f(x)的最小正周期和单调递增区间;
(2) 当 x∈
π 0, 2
时,求函数
f( x)的值域.
A
A. 110 B. 55 C. 50 D. 不能确定
4.下列说法中,不正确的是 A .已知 a, b, m∈R,命题: “若 am2<bm2,则 a<b”为真命题 B .命题: “? x0∈ R, x20- x0>0”的否定是: “? x∈ R, x2- x≤0” C.命题 “p 或 q”为真命题,则命题 p 和命题 q 均为真命题 D . “x>3”是 “x>2”的充分不必要条件
C. n n 1,i 1008?
D . n n 2,i 1008?
7.设 m, n 是平面 内的两条不同直线, l1 ,l 2 是平面 内两条相交直线,则
充分不必要条件是(
)
的一个
A . l1 m, l1 n
B . m l1 , m l2 C. m l1, n l2
x y≤2 8.变量 x , y 满足 2x y≥ 2 ,则 z 3y x 的取值范围为(
19.(本小题满分 12 分) 已知某中学高三文科班学生共有 800 人参加了数学与地理的水平测试, 现学校决定利用
随机数表法 从中抽取 100 人进行成绩抽样统计,先将 800 人按 001,002 ,003,L ,800 进行编号.
(Ⅰ)如果从第 8 行第 7 列的数开始向右读,请你依次写出最先检测的
2017-2018 高三学年第一次模拟数学试卷(文科)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分 . 在每小题给出的四个选项中,只有 一项是符合题目要求的 .
1. 已知集合 A { x | x2 4x 3 0} , B { x | 2x <1} ,则 A B
A . ( , 3] [ 1,0)
5.某几何体的三视图如图所示 (单位: cm ),则该几何体的体积等于 (
2 A.4
3
3 B. 4
2
2 C. 6
3
3 D. 6
2
) cm3
11 6.如图给出的是计算 1
35
1
的值的一个程序框图,则图中
2015
执行框中的①处和判断框中的②处应填的语句是(
)
A . n n 1,i 1009 ?
B. n பைடு நூலகம் 2,i 1009?